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Abstract. Approximate solution for the Dirac equation with the q-deformed
Manning-Rosen potential, under the condition of spin and pseudospin sym-
metry are obtained. Also the energy spectrum and wave functions are ob-
tained by the Nikiforov-Uvarov (NU) method. The special cases q = 1,
Hulthén potential (b → 0) and the nonrelativistic limit are studied for the q-
deformed Manning-Rosen potential, and then results are compared with the
other works.

1. Introduction

A particle in a strong potential field should be described with the Klein-Gordon
(KG) and Dirac equations. The solutions of the Dirac or KG equations having
the spin, and pseudospin symmetry have been extensively studied in the last years.
The spin symmetry arises if the magnitude of the spherical scalar potential S(r)
and vector potential V (r) are nearly equal in nuclei (i.e., ∆(r) = V (r)− S(r) =
Cs = const). However, the pseudospin symmetry occurs when S(r) ∼ −V (r)
(i.e., Σ(r) = V (r) + S(r) = Cps = const) [7].
In recent years, many authors have worked on solving these equations with physi-
cal potentials including Morse potential [1], Hulthén potential [5, 10, 18], Woods-
Saxon potential [4,20], reflectionless-type potential [6,15], Rosen-Morse potential
[15, 19], Manning-Rosen potential [9, 15], five-parameter exponent-type potential
[17], etc.
Various methods are used to obtain the solutions of the wave equations for this
type of exponential potentials, like the supersymmetric quantum mechanics and
shape invariant [8,12], the standard methods [14], the asymptotic iteration method
(AIM) [3] and the Nikiforov-Uvarov (NU) method [13], etc. Recently, the NU
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method has received increasing interest for solving Schrödinger equation [11], KG
[18] and Dirac [16] equations.
Based on the observations and experimental data in nuclear physics with above
mentioned potential, becomes clear that the results obtained via Dirac equation do
not coincide with experimental results. On the other hand, the deformed potentials
are deformed versions of the usual potentials which are obtained by introducing
a deformation parameter q, that have more accordance with observational data.
Therefore, our aim, in the present work, is to investigate analytical bound state
solutions of the Dirac equation with q-deformed Manning-Rosen potential, using
the NU method. Also, we will show that, when we take q = 1, as one expected, we
obtain the result of usual Manning-Rosen potential [15]. A q-deformed Manning-
Rosen potential is expressed as

Vq(r) = V (x) =
C exp(−αx) + 1√

qD exp(−2αx)
√
q(1− 1√

q exp(−αx))2
(1)

where C and D are two dimensionless parameters, α is the range of the potential
and q defines the deformation parameter of the potential. The above q-deformation
in equation (1), is obtained according to the prescription by Arai [2]. In fact this de-
formation of the potential function can be obtained by following coordinate trans-
formation

r → x+
1

α
ln

√
q. (2)

In the following sections, at first the Nikiforov-Uvarov (NU) method will be re-
viewed briefly. In Section 3 we solve the q-deformed Manning-Rosen potential
[8, 14]. We obtain the energy eigenvalue and the corresponding eigenfunctions for
any spin-orbit quantum number κ. Then we study the solutions of the Dirac equa-
tion with spin and pseudospin symmetry. Here we use the NU method for our aim.
Finally, we summary our results in Section 4.

2. The Nikiforov-Uovarov Method

In this section we recall briefly the Nikiforov-Uovarov (NU) method. Using the NU
method we can solve the second order differential equation. The master equation
in this method is

σ2(z)ψ̈n(z) + σ(z)τ̃(z)ψ̇n(z) + σ̃(z)ψn(z) = 0 (3)

where σ(z) and σ̃(z) are polynomials, at most of second-degree and τ̃(z) is a
polynomial, at most of first-degree. We choose ψn(z) in the form

ψn(z) = ϕn(z)yn(z). (4)
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By substituting equation (4) into equation (3) we have

σ(z)ÿn(z) + τ(z)ẏn(z) + λyn(z) = 0 (5)

where
τ(z) = τ̃(z) + 2π(z) (6)

π(z) =
1

2
[σ̇(z)− τ̃(z)]±

√
1

4
(σ̇(z)− τ̃(z))2 − σ̃(z) + kσ(z) (7)

and λ is a constant parameter given by the formula

λ = λn = −nτ̇(z)− n(n− 1)

2
σ̈(z), n = 0, 1, 2, ... (8)

There is also a relationship between λ and k, i.e.,

k = λ− π̇(z). (9)

The yn(z) part of the anzatz (4) is the hypergeometric-type function which can be
written as

yn(z) =
Bn

ρ(z)

dn

dzn
[σn(z)ρ(z)] (10)

whereBn is the normalization constant, and ρ(z) is the weight function that should
satisfy the condition

σ̇(z)ρ(z) + σ(z)ρ̇(z) = τ(z)ρ(z). (11)

Finally, ϕn(z) can be calculated as the solution of the differential equation

ϕ̇(z) = (
π(z)

σ(z)
)ϕ(z). (12)

In appendix A, we solved a general example by this method.

3. Dirac Equation with Q-Deformed Manning-Rosen Potential

3.1. The Dirac Equation

The Dirac equation with scalar and vector potentials, S(r) and V (r) is(
α⃗.P⃗ + β(m+ s(r)) + v(r)− E

)
ψ(⃗r) = 0, ~ = c = 1 (13)

where m and E are the mass and the energy of Dirac particle. Also P⃗ is the linear
momentum operator, α⃗ and β are the Dirac 4× 4 matrices

α⃗ =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
(14)

where σi, i = 1, 2, 3, are the Pauli’s 2× 2 matrices and I is the 2× 2 unit matrix.
For spherical nuclei, the nucleon angular momentum J and spin matrix operator
κ̂ = −β(σ⃗.L⃗+ 1) commute with the Dirac Hamiltonian. The eigenvalues of κ̂ are
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κ = ±(j + 1
2) with (−) for aligned spin (s 1

2
; p 3

2
, etc.) and (+) for unaligned spin

(p 1
2
; d 3

2
etc.). Hence, we use further the quantum number κ since it is sufficient to

label the orbitals. For a given κ = ±1,±2, ..., j =| κ+ 1
2 | −1

2 and l̃ =| κ− 1
2 | −1

2
the wave functions in Pauli-Dirac representation are given by

ψnκ(r⃗) =

(
1
rFnκ(r) y

l
jm(r̂)

1
rGnκ(r) y

l̃
jm(r̂)

)
(15)

in which Fnκ(r) and Gnκ(r) are the radial wave functions and yljm(r̂), y l̃jm(r̂) are
the spherical harmonic functions. Here n, l and j are the single-nucleon radial,
orbital and total angular momentum quantum numbers, respectively, and m is the
projection of the angular momentum on the z axis. Pseudo-orbital angular momen-
tum was defined as l̃. Substituting equation (15) into equation (13), we have(

d

dr
+
κ

r

)
Fnκ(r) = (m+ Enκ −∆(r))Gnκ(r) (16)

(
d

dr
− κ

r

)
Gnκ(r) = (m− Enκ +Σ(r))Fnκ(r). (17)

By eliminating Gnκ(r) in equation (16) and putting it in equation (17), we get a
differential equation of second order for the upper radial spinor component(

d2

dr2
− κ(κ+ 1)

r2
+

d∆(r)
dr

m+ Enκ −∆(r)

(
d

dr
+
κ

r

))
Fnκ(r)

= ((m+Enκ −∆(r))(m− Enκ +Σ(r)))Fnκ(r) (18)

and also by eliminating Fnκ(r) between equation (16) and equation (17), we have(
d2

dr2
− κ(κ− 1)

r2
+

dΣ(r)
dr

m− Enκ +Σ(r)

(
d

dr
− κ

r

))
Gnκ(r)

=
(
(m+ Enκ −∆(r)

)(
m− Enκ +Σ(r))

)
Gnκ(r) = 0 (19)

where κ(κ+ 1) = l(l + 1) and κ(κ− 1) = l̃(l̃ + 1).

3.1.1. Dirac Equation with Spin Symmetry

In this subsection we would like to study the Dirac equation with spin symmetry.
The condition of spin symmetry is d∆(r)

dr = 0 or ∆(r) = Cs = const, so by
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substituting Σ(r) = Vq(r) into equation (4), we have(
− d2

dx2
+

κ(κ+ 1)

(x+ 1
α ln

√
q)2

+ α2A2
1 + α2B1

×
C exp(−αx) + 1√

q exp(−2αx)
√
q(1− 1√

q exp(−αx))2

)
Fnκ(x) = 0 (20)

where

A2
1 =

1

α2
(m− Enκ)(m+ Enκ − Cs), B1 =

1

α2
(m+ Enκ − Cs) (21)

with κ = l for κ < 0 and κ = −(l+1) for κ > 0. The eigenenergies Enk, depend
only on n and l, i.e., Enk = E(n; l(l + 1)). For l ̸= 0, the states with j = l ± 1

2
are degenerate. The lower component of Dirac equation become

Gnκ(r) =
1

m+ Enκ − Cs

(
d

dr
+
κ

r

)
Fnκ(r). (22)

The differential equation (20), can not be solved exactly using the NU method for
κ ̸= 1, due to the presence of the centrifugal term κ(κ+ 1)r−2. So, we should do
an approximation. Here we use the following approximation of (20)

1

(x+ 1
α ln

√
q)2

≈ α2 exp(−αx)
(1− 1√

q exp(−αx))2
· (23)

By introducing z = exp(−αx), we can rewrite equation (20) as(
d2

dz2
+

(1− z√
q )

z(1− z√
q )

d

dz
+

1

z2(1− z√
q )

2

(
−1

q
(A2

1 +B1D)z2

+
1
√
q
(2A2

1 −B1C −√
qκ(κ+ 1))z −A2

1

))
Fnκ(z) = 0. (24)

It is necessary to compare equation (24) with equation (3). Subsequently, the fol-
lowing values for the parameters in equation (3) are obtained as

τ̃(z) = 1− z
√
q
, σ(z) = z(1− z

√
q
), σ̃(z) = −q2z2 + q1z − q0 (25)

where

q2 =
1

q
(A2

1 +B1D), q1 =
1
√
q
(2A2

1 −B1C −√
qκ(κ+ 1)), q0 = A2

1. (26)
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Using the introduced parameters in Appendix A and the results in Table 1, we
obtain the following expression

π(z) = A1 −
1
√
q

(
1

2
+A1 +

√
B1C +B1D +

√
qκ(κ+ 1) +

1

4

)
z (27)

where

κ = − 1
√
q

(
B1C +

√
qκ(κ+ 1) + 2A1

√
B1C +B1D +

√
qκ(κ+ 1) +

1

4

)
.

(28)
We can also write

τ(z) = 1+2A1−
2
√
q

(
1 +A1 +

√
B1C +B1D +

√
qκ(κ+ 1) +

1

4

)
z (29)

where τ̇(z) = − 2√
q [1 +A1 +

√
B1C +B1D +

√
qκ(κ+ 1) + 1

4 ] < 0.

To find the energy eigenvalues of our Dirac equation we can use the equations (8),
(9). So we have

2A1

(
n+

1

2
+ Λ

)
+2(n+

1

2
)Λ+

√
qκ(κ+1)+B1C+(n+

1

2
)2+

1

4
= 0 (30)

where Λ =
√
B1C +B1D +

√
qκ(κ+ 1) + 1

4 .

Now we will obtain the non-relativistic limit of the energy by these replacements
Enκ − m → Enκ, Enκ + m → 2m, κ = l. By substituting A1 and B1 from
equation (21) into the above equation, we get the energy in the form

Enl = − α2

2m

(
(n+ 1

2)
2 + 1

4 +
√
ql(l + 1) + 2mC

α2 + (n+ 1
2)Λ̂

2n+ 1 + Λ̂

)2

(31)

where Λ̂ =
√

1 + 4
√
ql(l + 1) + 8m

α2 (C +D) and Cs = 0.

By choosing C = − α2

2mA, D = α2

2m(A+ b(b− 1)) we have

Enl = − α2

2m

(
(n+ 1)2 −A+

√
ql(l + 1) + (2n+ 1)β

2(n+ β + 1)

)2

(32)

where β = −1+Λ̂1
2 , Λ̂1 =

√
(1− 2b)2 + 4

√
ql(l + 1). Now by considering the

limiting case q = 1, we obtain the following expression for the non-relativistic
energy

Enl = − α2

2m

(
(n+ 1)2 −A+ l(l + 1) + (2n+ 1)β̂

2(n+ β̂ + 1)

)2

(33)
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Table 1. The specific values for the necessary parametric constants for
q-deformed Manning-Rosen potential with spin symmetry.

parameter value
c1 1
c2

1√
q

c3
1√
q

c4 0
c5 − 1

2
√
q

c6
1
4q [1 + 4(A2

1 +B1D)]

c7
1√
q [−2A2

1 +B1C +
√
qκ(κ+ 1)]

c8 A2
1

c9
1
4q [1 + 4

√
qκ(κ+ 1) + 4B1(C +D)]

c10 1 + 2A1

c11
2√
q [1 +A1 + Λ1]

c12 A1

c13 − 1√
q (

1
2 +A1 + Λ1)

where β̂ = −1+Λ̂2
2 , Λ̂2 =

√
(1− 2b)2 + 4l(l + 1), The result for Enl in equa-

tion (33) is completely in agreement with the energy of the Schrödinger equation
with Manning-Rosen potential. Now we obtain the energy spectrum of this prob-
lem with Hulthén potential, easily by replacing b → 0, because in this limit the
Manning-Rosen potential transform to the Hulthén potential

Enl = − α2

2m

(
(n+ 1)2 −A+

√
ql(l + 1) + (2n+ 1)β

2(n+ β + 1)

)2

. (34)

Then by taking q = 1, we have

Enl = − α2

2m

(
−A+ (n+ l + 1)2

2(n+ l + 1)

)2

. (35)

In this part, referring to Appendix A, we calculate the wave functions as

ϕn(z) = zA1(1− z
√
q
)
1
2
+Λ (36)

and the weight function takes the form

ρ(z) = z2A1(1− z
√
q
)2Λ. (37)
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Furthermore, we find the function, yn , which is just the Hypergeometric function

yn(z) ≈ P (2A1,2Λ)
n (1− 2z

√
q
). (38)

Using the relation Fnκ(z) = ϕn(z)yn(z), we get the radial upper spinor as

Fnκ(r) =Nnκq
A1
2 exp(−αA1r)(1− exp(−αr))

1
2
+Λ (39)

× 2F1(−n, n+ 2A1 + 2Λ + 1, 2A1 + 1; exp(−αr))
where

2F1(−n, n+ η + µ+ 1, η + 1;
1− s

2
) =

n!Γ(η + 1)

Γ(n+ η + 1)
P (η,µ)
n (s) (40)

z(r) =
√
qe−αr and Nnκ is the normalization constant. This equation satisfies the

requirements, i.e., Fnκ(r) = 0 as r = 0 and Fnκ(r) = 0 as r → ∞. Therefore,
the wave functions, Fnκ(r) in equation (39) is valid physical solution in the closed
interval z ∈ [0,

√
q] or r ∈ (0,∞). We obtain the lower spinor component in

equation (22), by using equation (39)

Gnκ(r) =
1

m+ Enκ − Cs

((
κ

r
− α+

α(12 + Λ) exp(−αr)
(1− exp(−αr))

)
Fnκ(r)

+
q

1
2
(1+A1)αnNnκ(n+ 2A1 + 2Λ + 1)

(m+ Enκ − Cs)(2A1 + 1)
(1− exp(−αr))

1
2
+Λ (41)

× exp(−2αr) 2F1(−n+ 1, n+ 2(1 +A1 + Λ), 2(A1 + 1); exp(−αr))
)
.

3.1.2. Dirac Equation with Pseudospin Symmetry

The condition of pseudospin symmetry is dΣ(r)
dr = 0 or Σ(r) = Cps = const. Now

by inserting ∆(r) = Vq(r) in equation (19) we have(
− d2

dx2
+

κ(κ− 1)

(x+ 1
α ln

√
q)2

+A2
2α

2 +B2α
2

×
C exp(−αx) + D√

q exp(−2αx)
√
q(1− 1√

q exp(−αx))2

)
Gnκ(x) = 0 (42)

where

A2
2 =

1

α2
(m+ Enκ)(m−Enκ + Cps), B2 =

1

α2
(m− Enκ + Cps) (43)

and κ = −l̃ for κ < 0 and κ = l̃ + 1 for κ > 0. The energy eigenvalues, Enk,
depend only on n and l, i.e., Enk = E(n; l( l + 1)). For l ̸= 0, the states with
j = l ± 1

2 are degenerated.
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By using transformations z = exp(−αx) and equation (23), we have(
d2

dz2
+

(1− z√
q )

z(1− z√
q )

d

dz
+

1

z2(1− z√
q )

2

(
−1

q
(A2

2 −B2D)z2

+
1
√
q
(2A2

2 +B2C −√
qκ(κ+ 1))z −A2

2

))
Gnκ(z) = 0. (44)

Now, we follow the same procedures in the previous subsection and with attention
to Table 2, we can obtain energy equation

2(n+
1

2
+Λ)A2 +2(n+

1

2
)Λ−B2C +

√
qκ(κ− 1) + (n+

1

2
)2 +

1

4
= 0 (45)

where Λ =
√√

qκ(κ− 1)−B2C −B2D + 1
4 . Also the wave function is

Gnκ(r) =Ńnκq
A2
2 exp(−αA2r)(1− exp(−αr))

1
2
+Λ (46)

× 2F1(−n, n+ 2A2 + 2Λ + 1, 2A2 + 1; exp(−αr))

where Ńnκ is the normalization constant.

4. Conclusion

In the present paper, we have studied the approximate solutions of the Dirac equa-
tion for the q-deformed Manning-Rosen potential for any arbitrary spin-orbit quan-
tum number κ under conditions of the spin and pseudospin symmetries by the NU
method, using the approximation scheme to deal with the centrifugal term. Un-
der the condition of spin symmetry and pseudospin symmetry, i.e., ∆(r) = Cs,
Σ(r) = Cps, respectively, we have solved the energy equation and we have also
obtained the wave functions in terms of the hypergeometric functions. We have
shown that in the limiting case q = 1, our results for the energy eigenvalues are
agree with previous obtained values of usual Manning-Rozen potential [15]. If
we choose ∆(r) = const = Cs = 0 and consider the non-relativistic limit, i.e.,
Enκ−m = Enl,Enκ+m ∼ 2m, we obtain the expression (31) for the spectrum of
our problem. By considering the special valuesC = − α2

2mA,D = α2

2m [A+b(b−1)]
and q = 1, we have found that the spectrum of energy is consistent with the result
of [9]. So this is the correctly shrödinger energy spectrum as non-relativistic limit
of Dirac equation. We have also investigated the special case b = 0 (C = −D)
for the q-deformed Manning-Rosen potential, which corresponds to the case of the
Hulthén potential.
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Table 2. The specific values for the necessary parametric constants and
functions for q-deformed Manning-Rosen potential with pseudospin
simmetry.

parameter and functions value
c1 1
c2

1√
q

c3
1√
q

c4 0
c5 − 1

2
√
q

c6
1
4q [1 + 4(A2

2 −B2D)]

c7
1√
q [−2A2

2 −B2C +
√
qκ(κ− 1)]

c8 A2
2

c9
1
4q [1 + 4

√
qκ(κ− 1)− 4B2(C +D)]

c10 1 + 2A2

c11
2√
q [1 +A2 + Λ2]

c12 A2

c13 − 1√
q (

1
2 +A2 + Λ2)

q2
1
q (A

2
2 −B2D)

q1
1√
q (2A

2
2 +B2C −√

qκ(κ− 1))

q0 A2
2

π(z) A2 − 1√
q (

1
2 +A2 + Λ2)z

k − 1√
q [−B2C +

√
qκ(κ− 1) + 2A2Λ2]

τ(z) 1 + 2A2 − 2√
q [1 +A2 + Λ2]z

ϕn(z) zA2(1− z√
q )

1
2
+Λ2

ρ(z) z2A2(1− z√
q )

2Λ2

yn(z) P
(2A2,2Λ2)
n (1− 2z√

q )

Appendix A: Parametric Generalization of the NU Method

In this Appendix we consider parametric generalization of the NU method. We
begin with the following equation(

d2

dz2
+

(c1 − c2z)

z(1− c3z)

d

dz
+

1

z2(1− c3z)2
(
− q2z

2 + q1z − q0
))

ψ(z) = 0. (47)

By comparing the above equation with equation (1), we have

τ̃(z) = c1 − c2z, σ(z) = z(1− c3z), σ̃(z) = −q2z2 + q1z − q0. (48)
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The polynomials functions given by

π(z) = c4 + c5z − ((
√
c9 + c3

√
c8)z −

√
c8) (49)

k = −(c7 + 2c3c8)− 2
√
c8c9 (50)

τ(z) = c1 + 2c4 − (c2 − 2c5)z − 2((
√
c9 + c3

√
c8)z −

√
c8) (51)

where the parameters ci, i = 1...9 are to be determined during the solution proce-
dure

c4 =
1

2
(1− c1), c5 =

1

2
(c2 − 2c3), c6 = q2 + c25

c7 =2c4c5 − q1, c8 = c24 + q0, c9 = c3(c3c8 + c7) + c6

And, it gives the energy equation and the wave functions as

n((n−1)c3+c2−2c5)−c5+(2n+1)(
√
c9+c3

√
c8)+c7+2c3c8+2

√
c8c9 = 0

ϕn(z) = zc12(1− c3z)
−c12− c13

c3

(52)
ρ(z) = zc10−1(1− c3z)

c11
c3

−c10−1

yn(z) = P
(c10−1,

c11
c3

−c10−1)

n (1− 2c3z)

where P
(c10−1,

c11
c3

−c10−1)

n (1−2c3z) are the Jacobi polynomials, and c10−1 > −1,
c11
c3

− c10 − 1 > −1. So the function Ψ take following form

ψn(z) = Nnz
c12(1− c3z)

−c12− c13
c3 P

(c10−1,
c11
c3

−c10−1)

n (1− 2c3z) (53)

where
c10 = c1 + 2c4 + 2

√
c8, c11 = c2 − 2c5 + 2(

√
c9 + c3

√
c8)

c12 = c4 +
√
c8, c13 = c5 − (

√
c9 + c3

√
c8).
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