ON THE JACOBIAN GROUP FOR MÖBIUS LADDER AND PRISM GRAPHS

MADINA DERYAGINA and ILIA MEDNYKH ${ }^{\dagger}$

Mechanics and Mathematics Department, Novosibirsk State University 630090 Novosibirsk, Russia
${ }^{\dagger}$ Sobolev Institute of Mathematics, Novosibirsk State University
630090 Novosibirsk, Russia

Abstract

The notion of the Jacobian group of graph (also known as Picard group, sandpile group, critical group) was independently given by many authors. This is a very important algebraic invariant of a finite graph. In particular, the order of the Jacobian group coincides with the number of spanning trees for a graph. The latter number is known for the simplest families of graphs such as Wheel, Fan, Prism, Ladder and Möbius ladder graphs. At the same time the structure of the Jacobian group is known only in several cases. The aim of this paper is to determine the structure of the Jacobian group of the Möbius ladder and Prism graphs.

1. Introduction

We define a Möbius ladder M_{n} of order n as the cubic circulant graph $C_{2 n}(1, n)$ with $2 n$ vertices. In this case, M_{n} can be considered as a regular $2 n$-gon whose n pairs of opposite vertices are joint by an edge. One can also realize M_{n} as a ladder with n steps on the Möbius band. A Prism graph Pr_{n}, sometimes also called a circular ladder graph, is a cubic graph with $2 n$ vertices, which are connected as shown in Fig. 1. Notice, that Prism graph $\operatorname{Pr}_{2 n}$ is a double cover of Möbius ladder M_{n}. It is a discrete version of the statement that the cylinder is a double cover of the Möbius band.
The aim of the present paper is to find the structure of the Jacobian group of the Möbius ladder M_{n} and Prism graph Pr_{n}.
The notion of the Jacobian group of a graph (also known as Picard group, sandpile group, critical group) was independently given by many authors [1-3,5]. This is
a very important algebraic invariant of a finite graph. In particular, the order of the Jacobian group coinsides with the number of spanning trees for a graph. The latter number is known for the simplest families of graphs such as Wheel, Fan, Prism, Ladder and Möbius ladder graphs [4]. In the same time the structure of the Jacobian group is known only in a several cases (see [9] for references).
Following Baker-Norine [2] we define the Jacobian (or the Picard) group of a graph as follows.
Let G be a graph. Throughout this paper we suppose that G is finite, connected multigraph without loops. Let $V(G)$ and $E(G)$ be the sets of vertices and edges of G, respectively. Denote by $\operatorname{Div}(G)$ a free Abelian group on $V(G)$. We refer to elements of $\operatorname{Div}(G)$ as divisors on G. Each element $D \in \operatorname{Div}(G)$ can be uniquely presented as $D=\sum_{x \in V(G)} D(x)(x), D(x) \in \mathbb{Z}$. We define the degree of D by the formula $\operatorname{deg}(D)=\sum_{x \in V(G)} D(x)$. Denote by $\operatorname{Div}^{0}(G)$ the subgroup of $\operatorname{Div}(G)$ consisting of divisors of degree zero.
Let f be a \mathbb{Z}-valued function on $V(G)$. We define the divisor of f by the formula

$$
\operatorname{div}(f)=\sum_{x \in V(G)} \sum_{x y \in E(G)}(f(x)-f(y))(x) .
$$

The divisor $\operatorname{div}(f)$ can be naturally identified with the graph-theoretic Laplacian of f. Divisors of the form $\operatorname{div}(f)$, where f is as above are called principal divisors. Denote by $\operatorname{Prin}(G)$ the group of principal divisors of G. It is easy to see that every principal divisor has a degree zero, so that $\operatorname{Prin}(G)$ is a subgroup of $\operatorname{Div}^{0}(G)$.
The Jacobian group of G is defined to be quotient group

$$
\operatorname{Jac}(G)=\operatorname{Div}^{0}(G) / \operatorname{Prin}(G)
$$

By making use of the Kirchhoff Matrix-Tree Theorem [8] one can show that $\operatorname{Jac}(G)$ is a finite Abelian group of order $\tau(G)$, where $\tau(G)$ is number of spanning trees of G. Moreover, any finite Abelian group is the Jacobian group of some graph.
For a fixed base point $x_{0} \in V(G)$ we define the Abel-Jacobi map $S_{x_{0}}: G \rightarrow$ $\operatorname{Jac}(G)$ by the formula $S_{x_{0}}(x)=\left[(x)-\left(x_{0}\right)\right]$, where [d] is an equivalence class of divisor d in $\operatorname{Jac}(G)$.
We endow each edge of G by two possible orientations. Since G has no loops it is well-defined procedure. Let $\vec{E}=\vec{E}(G)$ be the set of oriented edges of G. For $e \in \vec{E}$ we denote initial vertex $o(e)$ and terminus vertex $t(e)$, respectively. We define the flow of e by the formula $\omega(e)=[t(e)-o(e)]$. We note that
$\omega(e)=\left[\left(t(e)-x_{0}\right)-\left(o(e)-x_{0}\right)\right]=\left[\left[t(e)-x_{0}\right]-\left[o(e)-x_{0}\right]\right]=S_{x_{0}}(t(e))-S_{x_{0}}(o(e))$
does not depend of the choice of initial point x_{0}. By virtue of Lemma 1.6 in [2] (see also [1]) the $\operatorname{Jacobian} \operatorname{group} \operatorname{Jac}(G)$ is an Abelian group generated by flows
$\omega(e), e \in \vec{E}$, whose defining relations are given by the following two Kirchhoff laws.
I) The flow through each vertex of G is equal to zero. It means that

$$
\sum_{e \in \vec{E}, t(e)=x} \omega(e)=0, \quad \text { for all } \quad x \in V(G)
$$

II) The flow along each closed orientable walk W in G is equal to zero. That is

$$
\sum_{e \in W} \omega(e)=0
$$

Recall that the closed orientable walk in G is a sequence of orientable edges $e_{i} \in$ $\vec{E}(G), i=1, \ldots, n$ such that $t\left(e_{i}\right)=o\left(e_{i+1}\right)$ for $i=1, \ldots, n-1$ and $t\left(e_{n}\right)=$ $o\left(e_{1}\right)$.

2. Preliminary

Let $a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{Z}$. Denote by GCD $\left(a_{1}, a_{2}, \ldots, a_{m}\right)=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{m}$ in the ring of integers \mathbb{Z}. We will use the following evident properties of GCD.
i) $(a, a+b)=(a, b)=(a, a-b)$
ii) $(a, b, c)=(a,(b, c))$
iii) $(k a, k b)=k(a, b)$.

The Chebyshev polynomials of the first and of the second kind are defined by the formulas

$$
T_{n}(x)=\cos (n \arccos (x)), \quad U_{n-1}(x)=\sin (n \arccos (x)) / \sin (\arccos (x))
$$

respectively. Recall the following basic properties of these polynomials

$$
\begin{array}{llll}
1^{\circ} & T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x), & T_{0}(x)=1, & T_{1}(x)=x \\
2^{\circ} & U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x), & U_{0}(x)=1, & U_{1}(x)=2 x
\end{array}
$$

In this paper we will be mainly interesting in particular values of Chebyshev polynomials at the point $x=2$. In this case $T_{n}(2)=\left((2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right) / 2$ and $U_{n-1}(2)=\left((2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}\right) /(2 \sqrt{3})$.
We will use the following version of the fundamental theorem of finite Abelian group (see for instance [7], p. 344).

Theorem 1. Let \mathcal{A} be a finite Abelian group generated by $x_{1}, x_{2}, \ldots, x_{n}$ and satisfying the system of relations

$$
\sum_{j=1}^{n} a_{i j} x_{j}=0, \quad i=1, \ldots, m
$$

where $A=\left\{a_{i j}\right\}$ is an integer $m \times n$ matrix. Set $B_{j}, j=1, \ldots, r=\min (n, m)$, for the greatest common divisor of all $j \times j$ minors of A. Then,

$$
\mathcal{A} \cong \mathbb{Z}_{B_{1}} \oplus \mathbb{Z}_{B_{2} / B_{1}} \oplus \mathbb{Z}_{B_{3} / B_{2}} \oplus \cdots \oplus \mathbb{Z}_{B_{r} / B_{r-1}}
$$

The latter decomposition is known as the Smith Normal Form (see [10], Ch. 3.22 for details of calculations).

3. Main Result

3.1. Calculation of the Structure of Jacobian Group for Prism Graph

Consider the Prism graph Pr_{n} as graph shown on the Fig. 1 with vertices labeled by $1,2, \ldots, n, n+1, \ldots, 2 n$. Denote by $d_{i}, i=1, \ldots, n$ the flow along orientable edge $(i, i+n)$ with initial vertex i and terminal vertex $i+n$. We also denote by X_{i} and x_{i} the flows along orientable edges $(i, i+1)$ and $(i+n, i+n+1)$, respectively.

Figure 1. Prism graph Pr_{n}.

By the first Kirchhoff law we have the following equations

$$
\begin{align*}
d_{1} & =x_{1}-x_{n}, & d_{i} & =x_{i}-x_{i-1}, \\
d_{1} & =X_{n}-X_{1}, & & i=2, \ldots, n \tag{1}\\
d_{i} & =X_{i-1}-X_{i}, & & i=2, \ldots, n .
\end{align*}
$$

Applying the second Kirchhoff's law for the closed walks $W_{i}=(i, n+i, n+i$ $+1, i+1$), we get the following system of equations

$$
\begin{align*}
d_{i}+x_{i}-d_{i+1}-X_{i} & =0, \quad i=1, \ldots, n-1 \\
d_{n}+x_{n}-d_{1}-X_{n} & =0 . \tag{2}
\end{align*}
$$

Excluding $d_{i}, i=1, \ldots, n$, from first line of system (1) and putting them in (2) we get the following relations between X_{i} and x_{i}

$$
\left(\begin{array}{c}
X_{1} \tag{3}\\
X_{2} \\
\ldots \\
X_{n-1} \\
X_{n}
\end{array}\right)=\left(\begin{array}{ccccccc}
3 & -1 & 0 & 0 & \ldots & 0 & -1 \\
-1 & 3 & -1 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & -1 & 3 & -1 \\
-1 & 0 & \ldots & 0 & 0 & -1 & 3
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n-1} \\
x_{n}
\end{array}\right) .
$$

Substituting these identities into expressions $x_{1}-x_{n}=X_{n}-X_{1}, x_{i}-x_{i-1}=$ $X_{i-1}-X_{i}, i=2, \ldots, n-1$ of system (1)we obtain $n-1$ equations of $x_{i}, i=$ $1, \ldots, n$. Notice that by the second Kirchhoff law for the closed walk $(n+1, \ldots, 2 n)$ we have the equation

$$
\sum_{i=1}^{n} x_{i}=0
$$

Thus the Jacobian $\operatorname{Jac}\left(\operatorname{Pr}_{n}\right)$ is an Abelian group generated by $x_{1}, x_{2}, \ldots, x_{n}$ satisfying the relations

$$
\left(\begin{array}{rrrrrrrrr}
1 & -5 & 5 & -1 & 0 & \ldots & 0 & 0 & 0 \tag{4}\\
0 \\
0 & 1 & -5 & 5 & -1 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & -5 & 5 \\
5 & -1 & 0 & 0 & 0 \ldots & 0 & 0 & 1 & -5 \\
-5 & 5 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n-3} \\
x_{n-2} \\
x_{n-1} \\
x_{n}
\end{array}\right)=0
$$

Now we reduce the number of generators of the group $\operatorname{Jac}\left(\operatorname{Pr}_{n}\right)$ from n to 3 . Namely, we will show that the group $\operatorname{Jac}\left(\operatorname{Pr}_{n}\right)$ is generated by x_{1}, x_{2}, x_{3} satisfying three linear equations. To do this we note that the generators $x_{1}, x_{2}, \ldots, x_{n}$ satisfy the following recursive relation

$$
x_{j}-5 x_{j+1}+5 x_{j+2}-x_{j+3}=0, \quad j=1,2, \ldots, n-3
$$

The characteristic polynomial for the above equation is

$$
1-5 q+5 q^{2}-q^{3}=0
$$

The roots of this polynomial are $q_{1}=1, q_{2,3}=2 \pm \sqrt{3}$. Hence, the general solution of recursion is given by $x_{j}=C_{1}+C_{2} q^{j}+C_{3} q^{-j}$, where $q=2+\sqrt{3}$ and C_{1}, C_{2}, C_{3} are constants dependant only of initial values x_{1}, x_{2}, x_{3}. As a result, we obtained $x_{4}, x_{5}, \ldots, x_{n}$ as linear combinations of x_{1}, x_{2} and x_{3} whose coefficients can be found explicitly. Substituting the obtained equations into the
last three lines of system (4) we get

$$
\begin{align*}
& \widetilde{a}_{11} x_{1}+\widetilde{a}_{12} x_{2}+\widetilde{a}_{13} x_{3}=0 \\
& \widetilde{a}_{21} x_{1}+\widetilde{a}_{22} x_{2}+\widetilde{a}_{23} x_{3}=0 \tag{5}\\
& \widetilde{a}_{31} x_{1}+\widetilde{a}_{32} x_{2}+\widetilde{a}_{33} x_{3}=0 .
\end{align*}
$$

We note that $T_{n}(2)=\left(q^{n}+q^{-n}\right) / 2$ and $U_{n-1}(2)=\left(q^{n}-q^{-n}\right) /(2 \sqrt{3})$. By straightforward calculations we obtain the following explicit formulae for $\widetilde{a}_{i j}, i, j=$ $1,2,3$.
$\widetilde{a}_{11}=-7 L+12 U, \quad \widetilde{a}_{12}=9 L-15 U, \quad \widetilde{a}_{13}=-2 L+3 U$
$\widetilde{a}_{21}=\frac{11}{2} L-\frac{19}{2} U, \quad \widetilde{a}_{22}=-7 L+12 U, \quad \widetilde{a}_{23}=\frac{3}{2} L-\frac{5}{2} U$
$\widetilde{a}_{31}=n-2 L+\frac{7}{2} U-\frac{n}{2}, \quad \widetilde{a}_{32}=\frac{5}{2} L-\frac{9}{2} U+2 n, \quad \widetilde{a}_{33}=-\frac{1}{2} L+U-\frac{n}{2}$
where $L=T_{n}(2)-1$ and $U=U_{n-1}(2)$.
Now we are able to proof the following lemma.
Lemma 2. Let B_{1} be the greatest common divisor of $\widetilde{a}_{i j}, i, j=1,2,3$. Then

$$
B_{1}=\operatorname{GCD}(n, L, U) / \operatorname{GCD}(2, n)
$$

Proof: We have

$$
\begin{aligned}
B_{1} & =\operatorname{GCD}\left(\widetilde{a}_{i j}\right)=\operatorname{GCD}\left(\widetilde{a}_{11}, \widetilde{a}_{12}-5 \widetilde{a}_{13}, \widetilde{a}_{13}, \widetilde{a}_{21}-4 \widetilde{a}_{23}, \widetilde{a}_{22}, \widetilde{a}_{23}, \widetilde{a}_{31}, \widetilde{a}_{32}, \widetilde{a}_{33}\right) \\
& =\operatorname{GCD}\left(\widetilde{a}_{11},-L, \widetilde{a}_{13},-\frac{1}{2} L-\frac{1}{2} U, \widetilde{a}_{23}, \widetilde{a}_{31}, \widetilde{a}_{32}, \widetilde{a}_{33}\right) \\
& =\operatorname{GCD}\left(-L, 3 U,-\frac{L+U}{2},-4 U, \frac{7 U-n}{2}, \frac{L-9 U}{2}+2 n,-\frac{L+n}{2}+U\right) \\
& =\operatorname{GCD}\left(L, U,-\frac{L+U}{2}, \frac{U-n}{2}, \frac{L-U}{2}+2 n,-\frac{L+n}{2}\right) \\
& =\operatorname{GCD}\left(L, U,-\frac{L+U}{2}, \frac{U-n}{2}-\frac{L+n}{2}, \frac{L-U}{2}+2 n,-\frac{L+n}{2}\right) \\
& =\operatorname{GCD}\left(L, U,-\frac{L+U}{2},-\frac{L-U}{2}-n, \frac{L-U}{2}+2 n,-\frac{L+n}{2}\right) \\
& =\operatorname{GCD}\left(L, U, n, \frac{L+U}{2}, \frac{L-U}{2}, \frac{L+n}{2}\right) \\
& =\operatorname{GCD}\left(L, U, n, \frac{U+n}{2}, \frac{L+n}{2}\right) .
\end{aligned}
$$

From the main recursive relations for the Chebyshev polynomials 1° and 2° we have the following properties. The numbers $L=T_{n}(2)-1$ and $U=U_{n-1}(2)$ are of the same parity as n.

Let us consider two cases n is odd and n is even. In the first case, we have

$$
\begin{aligned}
B_{1} & =\operatorname{GCD}\left(L, U, n, \frac{U+n}{2}, \frac{L+n}{2}\right)=\operatorname{GCD}(L, U, n, U+n, L+n) \\
& =\operatorname{GCD}(L, U, n)=\operatorname{GCD}(n, L, U) / \operatorname{GCD}(2, n)
\end{aligned}
$$

In the second case, n is even. Using properties of the Chebyshev polynomials 1° and 2° we obtain

$$
\begin{aligned}
B_{1} & =\operatorname{GCD}\left(L, U, n, \frac{U+n}{2}, \frac{L+n}{2}\right) \\
& =\operatorname{GCD}(n, L, U) / 2=\operatorname{GCD}(n, L, U) / \operatorname{GCD}(2, n)
\end{aligned}
$$

Now our aim is to find the greatest common divisor of two-by-two minors of ma$\operatorname{trix} \widetilde{A}=\left\{\widetilde{a}_{i j}\right\}_{i, j=1,2,3}$. Denote by $m_{i j}$ the two-by-two minor of \widetilde{A} obtained by removing i-th row and j-th column of \widetilde{A}. By direct calculations we have

$$
\begin{array}{rlrl}
m_{11} & =\frac{1}{2}(n+1) L-n U, & m_{12} & =-\left(\frac{1}{2}+2 n\right) L+\frac{7 n}{2} U \\
m_{13} & =\frac{1}{2}(1+15 n) L-13 n U & & \\
m_{21} & =-\left(\frac{n}{2}+1\right) L+\frac{3 n}{2} U, & m_{22}=\left(\frac{5 n}{2}+1\right) L-\frac{9 n}{2} U \\
m_{23} & =-\left(\frac{19 n}{2}+1\right) L+\frac{33 n}{2} U, & m_{31}=-m_{32}=m_{33}=L
\end{array}
$$

We assert that the following lemma is true.
Lemma 3. Let B_{2} be the greatest common divisor of $m_{i j}, i, j=1,2,3$. Then

$$
B_{2}=\operatorname{GCD}(L, n U) / \operatorname{GCD}(2, n)
$$

Proof: By virtue of explicit formulae for $m_{i j}$ we have

$$
\begin{aligned}
B_{2}= & \operatorname{GCD}\left(m_{11}, m_{12}, m_{13}, m_{21}, m_{22}, m_{23}, m_{31}\right) \\
= & \operatorname{GCD}\left(m_{11}, m_{12}+2 n m_{31}, m_{13}-7 n m_{31}, m_{21}+m_{31}\right. \\
& \left.m_{22}-(2 n+1) m_{31}, m_{23}+(9 n+1) m_{31}, m_{31}\right) \\
= & \operatorname{GCD}\left(\frac{n+1}{2} L-n U, \frac{7 n U-L}{2}, \frac{n+1}{2} L-13 n U,-\frac{n}{2} L+\frac{3 n}{2} U\right. \\
& \left.\frac{n}{2} L-\frac{9 n}{2} U,-\frac{n}{2} L+\frac{33 n}{2} U, L\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{GCD}\left(\frac{n+1}{2} L-n U, \frac{7 n U-L}{2},-12 n U, \frac{3 n U-n L}{2},-3 n U, 15 n U, L\right) \\
& =\operatorname{GCD}\left(4 n U, \frac{7 n U-L}{2}, \frac{3 n U-n L}{2},-3 n U, L\right) \\
& =\operatorname{GCD}\left(n U, \frac{7 n U-L}{2}, \frac{3 n U-n L}{2}, L\right) \\
& =\operatorname{GCD}\left(n U, \frac{n U-L}{2},-\frac{n}{2} L+\frac{n}{2} U, L\right)
\end{aligned}
$$

Now, let us consider the case $n=2 m$ is even. Then

$$
\begin{aligned}
B_{2} & =\operatorname{GCD}\left(n U, \frac{n U-L}{2},-\frac{n}{2} L+\frac{n}{2} U, L\right) \\
& =\operatorname{GCD}\left(2 m U, \frac{2 m U-L}{2},-m L+m U, L\right) \\
& =\operatorname{GCD}\left(2 m U, \frac{2 m U-L}{2}, m U, L\right) \\
& =\operatorname{GCD}\left(\frac{1}{2} L, m U\right)=\operatorname{GCD}\left(\frac{1}{2} L, \frac{2 m}{2} U\right) \\
& =\operatorname{GCD}(L, n U) / 2=\operatorname{GCD}(L, n U) / \operatorname{GCD}(2, n) .
\end{aligned}
$$

On the other hand, if $n=2 m+1$ is odd, then both L and U are odd. We have

$$
\begin{aligned}
B_{2} & =\operatorname{GCD}\left(n U,-\frac{1}{2} L+\frac{n}{2} U,-\frac{n}{2} L+\frac{n}{2} U, L\right) \\
& =\operatorname{GCD}\left((2 m+1) U,-\frac{1}{2} L+\frac{2 m+1}{2} U,-\frac{2 m+1}{2} L+\frac{2 m+1}{2} U, L\right) \\
& =\operatorname{GCD}((2 m+1) U,-L+(2 m+1) U,-(2 m+1) L+(2 m+1) U, L) \\
& =\operatorname{GCD}((2 m+1) U, L)=\operatorname{GCD}(n U, L)
\end{aligned}
$$

Let B_{3} be the determinant of matrix $\left\{\widetilde{a}_{i j}\right\}_{i, j=1,2,3}$. By the Kirchhoff Matrix-Tree Theorem B_{3} coincides with the number of spanning trees of Prism graph Pr_{n}. This number is well known and was calculated independently by many authors (J . Sedlácěk, J. Moon, N. Biggs and others) [4]. We represent the result as follows.

Lemma 4. Let B_{3} be the determinant of matrix $\left\{\widetilde{a}_{i j}\right\}_{i, j=1,2,3}$. Then B_{3} is given by the formula

$$
B_{3}=n L
$$

where $L=T_{n}(2)-1$ and $T_{n}(2)=\left((2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right) / 2$ is the Chebyshev polynomial of the first kind.

By the fundamental theorem of finite Abelian groups (Theorem 1) we have the following decomposition for the Jacobian group of Pr_{n}

$$
\operatorname{Jac}\left(\operatorname{Pr}_{n}\right)=\mathbb{Z}_{B_{1}} \oplus \mathbb{Z}_{B_{2} / B_{1}} \oplus \mathbb{Z}_{B_{3} / B_{2}}
$$

Taking into account Lemma 2, Lemma 3 and Lemma 4, we have the following theorem

Theorem 5. The Jacobian group of Prism graph Pr_{n} has the following presentation

$$
\begin{equation*}
\operatorname{Jac}\left(\operatorname{Pr}_{n}\right)=\mathbb{Z}_{\frac{(n, L, U)}{(2, n)}} \oplus \mathbb{Z}_{\frac{(L, n U)}{(n, L, U)}} \oplus \mathbb{Z}_{\frac{(2, n) n L}{(L, n U)}} \tag{6}
\end{equation*}
$$

where $(l, m, n)=\operatorname{GCD}(l, m, n), L=T_{n}(2)-1, U=U_{n-1}(2)$ and $T_{n}(2)=$ $\left((2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right) / 2, U_{n-1}(2)=\left((2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right) /(2 \sqrt{3})$ are Chebyshev polynomials of the first and second kind, respectively.

4. The Structure of Jacobian Group for Möbius Ladder

For details of calculations of the structure of Jacobian group for Möbius ladder one can see our paper [11].

Theorem 6. The Jacobian group of Möbius ladder M_{n} has the following presentation

$$
\begin{equation*}
\operatorname{Jac}\left(M_{n}\right)=\mathbb{Z}_{\frac{(n, T, U)}{(2, n)}} \oplus \mathbb{Z}_{\frac{(T, n U)}{(n, T, U)}} \oplus \mathbb{Z}_{\frac{(2, n) n T}{(T, n U)}} \tag{7}
\end{equation*}
$$

where $(l, m, n)=\operatorname{GCD}(l, m, n), T=T_{n}(2)+1, U=U_{n-1}(2)$ and $T_{n}(2)=\left((2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right) / 2, U_{n-1}(2)=\left((2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right) /(2 \sqrt{3})$ are Chebyshev polynomials of the first and second kind, respectively.

Let us notice that $L=T_{n}(2)-1$ and $T=T_{n}(2)+1$. Formula (7) is obtained from formula (6) by replacing L with T. This is related to topological fact that Prism graph $\operatorname{Pr}_{2 n}$ is a double cover of Möbius ladder M_{n}.
We note that the structure of the Jacobian groups $\operatorname{Jac}\left(\operatorname{Pr}_{n}\right)$ and $\operatorname{Jac}\left(M_{n}\right)$ were independently calculated in [6] and [12], respectively. It was done by completely different methods.

Acknowledgements

This work was supported in part by the Russian Foundation for Basic Research (Projects \# 12-01-00210, \# 13-01-00513), by the Grant Council of the President of the Russian Federation (Project \# MK-4447.2012.1), by the program "Leading Scientific Schools" (Project \# NSh-921.2012.1), by the Federal Target Grant for 2009-2013 "Scientific and educational personnel of innovation Russi" (Contract \# 8206), and by the Dynasty Foundation.

References

[1] Bacher R., de la Harpe P. and Nagnibeda T., The Lattice of Integral Flows and the Lattice of Integral Cuts on a Finite Graph, Bulletin de la Société Mathématique de France 125 (1997) 167-198.
[2] Baker M. and Norine S., Harmonic Morphisms and Hyperelliptic Graphs, Int. Math. Res. Notices 15 (2009) 2914-2955.
[3] Biggs N., Chip-Firing and the Critical Group of a Graph, J. Algebraic Combin. 9 (1999) 25-45.
[4] Boesch F. and Prodinger H., Spanning Tree Formulas and Chebyshev Polynomials, Graphs and Combinatorics 2 (1986) 191-200.
[5] Cori R., Rossin D., On the Sandpile Group of a Graph, European J. Combin. 21 (2000) 447-459.
[6] Dartois A., Fiorenzi F. and Francini P., Sandpile Group on the Graph D_{n} of the Dihedral Group, European J. Combin. 24 (2003) 815-824.
[7] Hungerford T., Algebra, Holt, Rinehart and Winston, New York 1974.
[8] Kirchhoff G., Über die Aufösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847) 497-508.
[9] Lorenzini D., Smith Normal Form and Laplacians, Journal of Combinatorial Theory, Series B 98 (2008) 1271-1300.
[10] Marcus M. and Minc H., A Survey of Matrix Theory and Matrix Inequalities, Dover Publications, New York 1992, 192 pp.
[11] Mednykh I. and Zindinova M., On the Structure of Picard Group for Möbius Ladder, Siberian Electronic Mathematical Reports 8 (2011) 54-61.
[12] Chen P., Hou Y. and Woo C., On the Critical Group of the Möbius Ladder Graph, Australasian J. Combin. 36 (2006) 133-142.

