
Fifteenth International Conference on
Geometry, Integrability and Quantization
June 7–12, 2013, Varna, Bulgaria
Ivaïlo M. Mladenov, Andrei Ludu
and Akira Yoshioka, Editors
Avangard Prima, Sofia 2014, pp 11–52
doi: 10.7546/giq-15-2014-11-52

SYMMETRIES OF HAMILTONIAN DYNAMICAL SYSTEMS,
MOMENTUM MAPS AND REDUCTIONS

CHARLES-MICHEL MARLE

Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie
Paris, France

Abstract. This text presents some basic notions in symplectic geometry,
Poisson geometry, Hamiltonian systems, Lie algebras and Lie groups actions
on symplectic or Poisson manifolds, momentum maps and their use for the
reduction of Hamiltonian systems. It should be accessible to readers with a
general knowledge of basic notions in differential geometry. Full proofs of
many results are provided.
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1. Introduction

This text presents some basic notions in symplectic geometry, Poisson geometry,
Hamiltonian systems, Lie algebras and Lie groups actions on symplectic or Pois-
son manifolds, momentum maps and their use for the reduction of Hamiltonian
systems. It should be accessible to readers with a general knowledge of basic no-
tions in differential geometry. Full proofs of many results are provided.
Of course this text is just an introduction. To extend his knowledge of the sub-
ject, the reader can consult the books by Abraham and Marsden [1], Arnold [3],
Arnold and Khesin [4], Iglesias-Zemmour [17], Laurent-Gengoux, Pichereau and
Vanhaecke [25], Kosmann-Schwarzbach (editor) [22] and Vaisman [42] on both
the scientific and historical aspects of the development of modern Poisson geome-
try.
Our notations are those which today are generally used in differential geometry.
For example, the tangent and the cotangent bundles to a smooth manifold M are
denoted, respectively, by TM and by T ∗M , and their canonical projections on M
by τM : TM →M and by πM : T ∗M →M .
The spaces of smooth differential forms of degree p on a smooth manifold M is
denoted by Ωp(M), and the space of smooth multivectorr fields of degree p (that
means the space of smooth sections of

∧p TM , the p-th external power of TM )
by Ap(M). The exterior algebras of smooth differential forms and of smooth mul-
tivector fields are Ω(M) = ⊕p∈ZΩ

p(M) and A(M) = ⊕p∈ZA
p(M), respectively,

with the convention that Ω0(M) = A0(M) = C∞(M,R) (the space of smooth
real functions on M ), and that Ωp(M) = 0 and Ap(M) = 0 for p < 0 and for
p > dimM .
When f : M → N is a smooth map between two smooth manifolds M and N ,
the natural lift of f to the tangent bundles is denoted by Tf : TM → TN . The
same notation Tf :

∧p TM →
∧p TN is used to denote its natural prolongation

to the p-th exterior power of TM . The pull-back by f of a smooth differential form
α ∈ Ω(N) is denoted by f∗α.
When f : M → N is a smooth diffeomorphism, the push-forward f∗X of a a
smooth vector field X ∈ A1(M) is the vector field f∗X ∈ A1(N) defined by

f∗X(y) = Tf
(
X
(
f−1(y)

))
, y ∈ N
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Similarly, the pull-back of a smooth vector field Y ∈ A1(N) is the vector field
f∗Y ∈ A1(N) defined by

f∗Y (x) = Tf−1
(
Y
(
f(x)

))
, x ∈ N.

The same notation is used for the push-forward of any smooth tensor field on M
and the pull-back of any smooth tensor field on N .

2. Symplectic Manifolds

2.1. Definition and Elementary Properties

Definition 1. A symplectic form on a smooth manifold M is a bilinear skew-
symmetric differential form ω on that manifold which satisfies the following two
properties:

• the form ω is closed which it means that its exterior differential dω vanishes,
i.e., dω = 0

• the rank of ω is everywhere equal to the dimension of M which it means
that for each point x ∈ M and each vector v ∈ TxM , v ̸= 0, there exists
another vector w ∈ TxM such that ω(x)(v, w) ̸= 0.

Equipped with the symplectic form ω, the manifoldM is called a symplectic man-
ifold and denoted (M,ω). One says also that ω determines a symplectic structure
on the manifold M .

2.1.1. Elementary Properties of Symplectic Manifolds
Let (M,ω) be a symplectic manifold.

1. For each x ∈ M and each v ∈ TxM we denote by ι(v)ω : TxM → R
the map w 7→ ω(x)(v, w), which is a linear form on the vector space TxM , in
other words an element of the cotangent space T ∗

xM . Saying that the rank of ω is
everywhere equal to the dimension of M amounts to say that the map v 7→ ι(v)ω
is an isomorphism of the tangent bundle TM onto the cotangent bundle T ∗M .

2. Let V be a finite-dimensional vector space, and η : V × V → R be a skew-
symmetric bilinear form. As above, v 7→ ι(v)η is a linear map defined on V , with
values in its dual space V ∗. The rank of η is the dimension of the image of that
map. An easy result in linear algebra is that the rank of a skew-symmetric bilinear
form is always an even integer. When (M,ω) is a symplectic manifold, for each
x ∈ M that result can be applied to the bilinear form ω(x) : TxM × TxM → R,
and we see that the dimension of M must be an even integer 2n.

3. The Darboux theorem, due to the French mathematician Gaston Darboux,
states that any point in a 2n-dimensional symplectic manifold (M,ω) has a neigh-
bourhood on which there exists a system of local coordinates (x1, . . . , x2n) in
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which the (2n) × (2n)-matrix (ωi j) (1 ≤ i, j ≤ 2n) of components of ω is a
constant, skew-symmetric invertible matrix. We recall that

ωi j = ω

(
∂

∂xi
,
∂

∂xj

)
.

These local coordinates can even be chosen in such a way that

ωij =


1 if i− j = n

−1 if i− j = −n,
0 if |i− j| ̸= n

1 ≤ i, j ≤ 2n.

Local coordinates which satisfy this property are called Darboux local coordinates.
4. On the 2n-dimensional symplectic manifold (M,ω), the 2n-form ωn (the

n-th exterior power of ω) is a volume form (it means that it is everywhere ̸= 0).
Therefore a symplectic manifold always is orientable.

2.2. Examples of Symplectic Manifolds

2.2.1. Surfaces
A smooth orientable surface embedded in an Euclidean three-dimensional affine
space, endowed with the area form determined by the Euclidean metric, is a sym-
plectic manifold.
More generally, any two-dimensional orientable manifold, equipped with a nowhere
vanishing area form, is a symplectic manifold.

2.2.2. Symplectic Vector Spaces
A symplectic vector space is a finite-dimensional real vector space E equipped
with a skew-symmetric bilinear form ω : E × E → R which is of rank equal to
the dimension of E and therefore dimE is an even integer 2n. Considered as a
constant differential two-form on E, η is symplectic, which allows us to consider
(E, η) as a symplectic manifold.
The canonical example of a symplectic vector space is the following. Let V be a
real n-dimensional vector space and let V ∗ be its dual space. There exists on the
direct sum V ⊕ V ∗ a natural skew-symmetric bilinear form

η
(
(x1, ζ1), (x2, ζ2)

)
= ⟨ζ1, x2⟩ − ⟨ζ2, x1⟩.

The rank of η being 2n, (V ⊕ V ∗, η) is a symplectic vector space.
Conversely, any 2n-dimensional symplectic vector space (E,ω) can be identified
with the direct sum of any of its n-dimensional vector subspaces V such that the
symplectic form ω vanishes identically on V × V , with its dual space V ∗. In
this identification, the symplectic form ω on E becomes identified with the above-
defined symplectic form η on V ⊕ V ∗.
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2.2.3. Cotangent Bundles
Let N be a smooth n-dimensional manifold. We denote by τN : TN → N and
by πN : T ∗N → N the canonical projections, respectively of the tangent bundle
TN and of the cotangent bundle T ∗N onto their common base N , by τT ∗N :
T (T ∗N) → T ∗N the canonical projection of the tangent bundle T (T ∗N) onto
its base T ∗N , and by TπN : T (T ∗N) → TN the prolongation to vectors of the
canonical projection πN : T ∗N → N . We recall that the diagram

T (T ∗N)
TπN- TN

T ∗N

τT ∗N

? πN - N

τN

?

is commutative. For each w ∈ T (T ∗N), we can therefore write

ηN (w) =
⟨
τT ∗N (w), TπN (w)

⟩
.

This formula defines a differential one-form ηN on the manifold T ∗N , called the
Liouville one-form. Its exterior differential dηN is a symplectic form, called the
canonical symplectic form on the cotangent bundle T ∗N .
Let (x1, . . . , xn) be a system of local coordinates on the smooth manifold N , and
(x1, . . . , xn, p1, . . . , pn) be the corresponding system of local coordinates on T ∗N .
The local expressions of the Liouville form ηN and of its exterior differential dηN
are

ηN =
n∑

i=1

pi dx
i, dηN =

n∑
i=1

dpi ∧ dxi.

We see that (x1, . . . , xn, p1, . . . , pn) is a system of Darboux local coordinates.
Therefore any symplectic manifold is locally isomorphic to a cotangent bundle.

2.2.4. The Complex Plane
The complex plane C is naturally endowed with a Hermitian form

η(z1, z2) = z1z2, z1 and z2 ∈ C
where z2 is the conjugate of the complex number z2. Let us write z1 = x1 + iy1,
z2 = x2 + iy2, where x1, y1, x2, y2 are real, and separate the real and imaginary
parts of η(z1, z2). We get

η(z1, z2) = (x1x2 + y1y2) + i(y1x2 − y2x1).

The complex plane C has an underlying structure of real, two-dimensional vector
space, which can be identified with R2, each complex number z = x + iy ∈ C
being identified with (x, y) ∈ R2. The real and imaginary parts of the Hermitian
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form η on C are, respectively, the Euclidean scalar product g and the symplectic
form ω on R2 such that

η(z1, z2) = (x1x2 + y1y2) + i(y1x2 − y2x1)

= g
(
(x1, y1), (x2, y2)

)
+ iω

(
(x1, y1), (x2, y2)).

2.2.5. Kähler Manifolds.

More generally, a n-dimensional Kähler manifold (i.e., a complex manifold of
complex dimension n endowed with a Hermitian form whose imaginary part is a
closed two-form), when considered as a real 2n-dimensional manifold, is automati-
cally endowed with a Riemannian metric and a symplectic form given, respectively,
by the real and the imaginary parts of the Hermitian form.
Conversely, it is not always possible to endow a symplectic manifold with a com-
plex structure and a Hermitian form of which the given symplectic form is the
imaginary part. However, it is always possible to define, on a symplectic manifold,
an almost complex structure and an almost complex two-form with which the prop-
erties of the symplectic manifold become similar to those of a Kähler manifold (but
with change of chart functions which are not holomorphic functions).
This possibility was used by Gromov [12] in his theory of pseudo-holomorphic
curves.

2.3. Remarkable Submanifolds of a Symplectic Manifold

Definitions 1. Let (V, ω) be a symplectic vector space, andW be a vector subspace
of V . The symplectic orthogonal of W is the vector subspace

orthW = { v ∈ V ; ω(v, w) = 0 for all w ∈W }.

The vector subspace W is said to be

• isotropic if W ⊂ orthW

• coisotropic if W ⊃ orthw

• Lagrangian if W = orthW

• symplectic if W ⊕ orthW = V .

Exercises 1. 1. For any vector subspace W of the symplectic vector space
(W,ω), we have orth(orthW ) =W .

2. Let dimV = 2n. For any vector subspace W of V , we have dim(orthW ) =
dimV − dimW = 2n− dimW .
Therefore, if W is isotropic, dimW ≤ n; if W is coisotropic, dimW ≥ n; and if
W is Lagrangian, dimW = n.
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3. Let W be an isotropic vector subspace of V . The restriction to W ×W of
the symplectic form ω vanishes identically. Conversely, if W is a vector subspace
such that the restriction of ω to W ×W vanishes identically, W is isotropic.

4. A Lagrangian vector subspace of V is an isotropic subspace whose dimension
is the highest possible, equal to half the dimension of V .

5. Let W be a symplectic vector subspace of V . Since W ∩ orthW = {0},
the rank of the restriction to W ×W of the form ω is equal to dimW ; therefore
dimW is even, and, equipped with the restriction of ω, W is a symplectic vector
space. Conversely if, when equipped with the restriction of ω, a vector subspace
W of V is a symplectic vector space, we have W ⊕ orthW = V , and W is a
symplectic vector subspace of V in the sense of the above definition.

6. A vector subspace W of V is symplectic if and only if orthW is symplectic.

Definitions 2. Let (M,ω) be a symplectic manifold. For each x ∈M ,
(
TxM,ω(x)

)
is a symplectic vector space. A submanifold N of M is said to be

• isotropic if for each point x ∈ N , the space TxN is an isotropic vector
subspace of

(
TxM,ω(x)

)
• coisotropic if for each x ∈ N , TxN is a coisotropic vector subspace of(

TxM,ω(x)
)

• Lagrangian if for each x ∈ N , TxN is a Lagrangian vector subspace of(
TxM,ω(x)

)
• symplectic if for each x ∈ N , TxN is a symplectic vector subspace of(

TxM,ω(x)
)
.

2.4. Hamiltonian Vector Fields on a Symplectic Manifold

Let (M,ω) be a symplectic manifold. We have seen that the map which asso-
ciates to each vector v ∈ TM the covector ι(v)ω is an isomorphism from TM
onto T ∗M . So, for any given differential one-form α, there exists a unique vector
field X such that ι(X)ω = α. We are therefore allowed to state the following
definitions.

Definitions 3. Let (M,ω) be a symplectic manifold and f : M → R be a smooth
function. The vector field Xf which satisfies

ι(Xf )ω = −df

is called the Hamiltonian vector field associated to f . The function f is called a
Hamiltonian for the Hamiltonian vector field Xf .
A vector field X on M such that the one-form ι(X)ω is closed

dι(X)ω = 0

is said to be locally Hamiltonian.
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Remarks 1. The function f is not the unique Hamiltonian of the Hamiltonian
vector field Xf as any function g such that ι(Xf )ω = −dg is another Hamiltonian
for Xf . Given a Hamiltonian f of Xf , a function g is another Hamiltonian for Xf

if and only if d(f − g) = 0, or in other words if and only if f − g keeps a constant
value on each connected component of M .
Of course, a Hamiltonian vector field is locally Hamiltonian. The converse is not
true when the cohomology space H1(M,R) is not trivial.

Proposition 1. On a symplectic manifold (M,ω), a vector fieldX is locally Hamil-
tonian if and only if the Lie derivative L(X)ω of the symplectic form ω with respect
to X vanishes

L(X)ω = 0.

The bracket [X,Y ] of two locally Hamiltonian vector fields X and Y is Hamilton-
ian, and has as a Hamiltonian the function ω(X,Y ).

Proof: The well known formula which relates the the exterior differential d, the in-
terior product ι(X) and the Lie derivative L(X) with respect to the vector field X

L(X) = ι(X)d + dι(X)

proves that when X is a vector field on a symplectic manifold (M,ω)

L(X)ω = d ι(X)ω

since dω = 0. Therefore ι(X)ω is closed if and only if L(X)ω = 0.
Let X and Y be two locally Hamiltonian vector fields. We have

i
(
[X,Y ]

)
ω = L(X)ι(Y )ω − ι(Y )L(X)ω

= L(X)ι(Y )ω =
(
ι(X)d + d ι(X)

)
ι(Y )ω

= d ι(X)ι(Y )ω = −d
(
ω(X,Y )

)
which proves that ω(X,Y ) is a Hamiltonian for [X,Y ]. �

2.4.1. Expression in a System of Darboux Local Coordinates
Let (x1, . . . , x2n) be a system of Darboux local coordinates. The symplectic form
ω can be locally writen as

ω =

n∑
i=1

dxn+i ∧ dxi

so we see that the Hamiltonian vector field Xf associated to a smooth function f
can be locally written as

Xf =

n∑
i=1

∂f

∂xn+i

∂

∂xi
− ∂f

∂xi
∂

∂xn+i
·
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A smooth curve φ drawn in M parameterized by the real variable t is said to be a
solution of the differential equation determined by Xf , or an integral curve of Xf ,
if it satisfies the equation, called the Hamilton equation for the Hamiltonian f

dφ(t)

dt
= Xf

(
φ(t)

)
.

Its local expression in the considered system of Darboux local coordinates is

dxi

dt
=

∂f

∂xn+i
,

dxn+i

dt
= − ∂f

∂xi
, 1 ≤ i ≤ n. (1)

Definition 2. Let Φ : N → N be a diffeomorphism of a smooth manifold N onto
itself. The canonical lift of Φ to the cotangent bundle is the transpose of the vector
bundle isomorphism T (Φ−1) = (TΦ)−1 : TN → TN . In other words, denoting
by Φ̂ the canonical lift of Φ to the cotangent bundle, we have for all x ∈ N ,
ξ ∈ T ∗

xN and v ∈ TΦ(x)N⟨
Φ̂(ξ), v

⟩
=

⟨
ξ, (TΦ)−1(v)

⟩
.

Remark 1. With the notations of Definition 2, we have

πN ◦ Φ̂ = Φ ◦ πN ,

where πN : T ∗N → N is the canonical projection.

2.4.2. The Flow of a Vector Field

LetX be a smooth vector field on a smooth manifoldM . We recall that the reduced
flow ofX is the map Φ, defined on an open subset Ω of R×M and taking its values
in M , such that for each x ∈ M the parameterized curve t 7→ φ(t) = Φ(t, x) is
the maximal integral curve of the differential equation

dφ(t)

dt
= X

(
φ(t))

which satisfies

φ(0) = x.

For each t ∈ R, the set Dt = {x ∈ M ; (t, x) ∈ Ω} is an open subset of M and
when Dt is not empty the map x 7→ Φt(x) = Φ(t, x) is a diffeomorphism of Dt

onto D−t.

Definitions 4. Let N be a smooth manifold, TN and T ∗N be its tangent and
cotangent bundles, τN : TN → N and πN : T ∗N → N be their canonical
projections. Let X be a smooth vector field on N and {ΦX

t ; t ∈ R} be its reduced
flow.
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1. The canonical lift of X to the tangent bundle TN is the unique vector field
X̄ on TM whose reduced flow {ΦX̄

t ; t ∈ R} is the prolongation to vectors of the
reduced flow of X . In other words, for each t ∈ R

ΦX̄
t = TΦX

t

therefore, for each v ∈ TN

X̄(v) =
d

dt

(
TΦX

t (v)
) ∣∣

t=0
.

2. The canonical lift ofX to the cotangent bundle T ∗N is the unique vector field
X̂ on T ∗M whose reduced flow {ΦX̂

t ; t ∈ R} is the lift to the cotangent bundle of
the reduced flow {ΦX

t ; t ∈ R} of X . In other words, for each t ∈ R

ΦX̂
t = Φ̂X

t

therefore, for each ξ ∈ T ∗N

X̂(ξ) =
d

dt

(
Φ̂X
t (ξ)

) ∣∣
t=0

.

Exercise 1. Let X be a smooth vector field defined on a smooth manifold N and
X̄ be its canonical lift to TN (cf Definition 4.1). Prove that

X̄ = κN ◦ TX

where κN : T (TN) → T (TN) is the canonical involution of the tangent bundle
to TN (see [41]).

Proposition 2. Let Φ : N → N be a diffeomorphism of a smooth manifoldN onto
itself and Φ̂ : TN → T ∗N the canonical lift of Φ to the cotangent bundle. Let ηN
be the Liouville form on T ∗N . We have

Φ̂∗ηN = ηN .

Let X be a smooth vector field on N , and X̂ be the canonical lift of X to the
cotangent bundle. We have

L(X̂)(ηN ) = 0.

Proof: Let ξ ∈ T ∗N and v ∈ Tξ(T
∗N). We have

Φ̂∗ηN (v) = ηN
(
T Φ̂(v)

)
=

⟨
τT ∗N ◦ T Φ̂(v), TπN ◦ T Φ̂(v)

⟩
.

But τT ∗N ◦T Φ̂ = Φ̂◦τT ∗N and TπN ◦T Φ̂ = T (πN ◦ Φ̂) = T (Φ◦πN ). Therefore

Φ̂∗ηN (v) =
⟨
Φ̂ ◦ τT ∗N (v), T (Φ ◦ πN )(v)

⟩
=

⟨
τT ∗N (v), TπN (v)

⟩
= ηN (v)

since Φ̂ = (TΦ−1)T .
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Now let X be a smooth vector field on N , {ΦX
t ; t ∈ R} be its reduced flow, and

X̂ be the canonical lift of X to the cotangent bundle. We know that the reduced
flow of X̂ is {Φ̂X

t ; t ∈ R}, so we can write

L(X̂)ηN =
d

dt

(
Φ̂X
t

∗
ηN

) ∣∣
t=0

.

Since Φ̂X
t

∗
ηN = ηN does not depend on t, L(X̂)ηN = 0 �.

The following Proposition, which presents an important example of Hamiltonian
vector field on a cotangent bundle, will be used when we will consider Hamiltonian
actions of a Lie group on its cotangent bundle.

Proposition 3. Let N be a smooth manifold, TN be its cotangent bundle, ηN be
the Liouville form and dηN be the canonical symplectic form on T ∗N . Let X be a
smooth vector field on N and fX : T ∗N → R be the smooth function defined by

fX(ξ) =
⟨
ξ,X

(
πN (ξ)

)⟩
, ξ ∈ T ∗N.

On the symplectic manifold (T ∗N,dηN ), the vector field X̂ , canonical lift to T ∗N
of the vector field X on N in the sense defined above (4), is a Hamiltonian field
which has the function fX as a Hamiltonian. In other words

ι(X̂)dηN = −dfX .

Moreover
fX = ι(X̂)ηN .

Proof: We have seen (Proposition 2) that L(X̂)ηN = 0. Therefore

ι(X̂)dηN = L(X̂)ηN − dι(X̂)ηN = −dι(X̂)ηN ,

which proves that X̂ is Hamiltonian and admits ι(X̂)ηN as Hamiltonian. For each
ξ ∈ T ∗N

ι(X̂)ηN (ξ) = ηN (X̂)(ξ) =
⟨
ξ, TπN

(
X̂(ξ)

)⟩
=

⟨
ξ,X

(
πN (ξ)

)⟩
= fX(ξ). �

2.5. The Poisson bracket

Definition 3. The Poisson bracket of an ordered pair (f, g) of smooth functions
defined on the symplectic manifold (M,ω) is the smooth function {f, g} defined
by the equivalent formulae

{f, g} = ι(Xf ) dg = −ι(Xg) df = ω(Xf , Xg).
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Lemma 1. Let (M,ω) be a symplectic manifold, let f and g be two smooth func-
tions on M and let Xf and Xg be the associated Hamiltonian vector fields. The
bracket [Xf , Xg] is a Hamiltonian vector field which admits {f, g} as Hamilton-
ian.

Proof: This result is an immediate consequence of Proposition 1. �
Proposition 4. Let (M,ω) be a symplectic manifold. The Poisson bracket is a bi-
linear composition law on the space C∞(M,R) of smooth functions on M , which
satisfies the following properties

1. it is skew-symmetric: {g, f} = −{f, g}
2. it satisfies the Leibniz identity with respect to the ordinary product of func-

tions:
{f, gh} = {f, g}h+ g{f, h}

3. it satisfies the Jacobi identity, which is a kind of Leibniz identity with respect
to the Poisson bracket itself{

f, {g, h}
}
=

{
{f, g}, h

}
+

{
g, {f, h}

}
which can also be written, when the skew-symmetry of the Poisson bracket
is taken into account{

{f, g}, h
}
+

{
{g, h}, f

}
+

{
{h, f}, g

}
= 0.

Proof: The proofs of Properties 1 and 2 are very easy and left to the reader. Let us
prove Property 3. We have{

{f, g}, h
}
= ω(X{f,g}, Xh) = −ι(X{f,g})i(Xh)ω = ι(X{f,g})dh.

By Lemma 1, X{f,g} = [Xf , Xg] so we have{
{f, g}, h

}
= ι

(
[Xf , Xg]

)
dh = L

(
[Xf , Xg]

)
h .

We also have{
{g, h}, f

}
= −L(Xf ) ◦ L(Xg)h ,

{
{h, f}, g

}
= L(Xg) ◦ L(Xf )h .

Taking the sum of these three terms, and taking into account the identity

L
(
[Xf , Xg]

)
= L(Xf ) ◦ L(Xg)− L(Xg) ◦ L(Xf )

we see that the Jacobi identity is satisfied. �
Remarks 2.

1. In a system of Darboux local coordinates (x1, . . . , x2n), the Poisson bracket
can be written in the form

{f, g} =

n∑
i=1

(
∂f

∂xn+i

∂g

∂xi
− ∂f

∂xi
∂g

∂xn+i

)
.
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2. Let H be a smooth function on the symplectic manifold (M,ω), and XH

be the associaled Hamiltonian vector field. By using the Poisson bracket, one can
write in a very concise way the Hamilton equation for XH . Let t 7→ φ(t) be any
integral curve of XH . Then for any smooth function f :M → R

df
(
φ(t)

)
dt

= {H, f}
(
φ(t)

)
.

By succesively taking for f the coordinate functions x1, . . . , x2n of a system of
Darboux local coordinates, we recover the equations (1).

3. Poisson Manifolds

3.1. The Inception of Poisson Manifolds

Around the middle of the XX-th century, several scientists felt the need of a frame
in which Hamiltonian differential equations could be considered, more general
than that of symplectic manifolds. Dirac for example had proposed such a frame
in his famous 1950 paper Generalized Hamiltonian dynamics [10, 11].

In many applications in which, starting from a symplectic manifold, another man-
ifold is built by a combination of processes (products, quotients, restriction to a
submanifold, . . .), there exists on that manifold a structure, more general than a
symplectic structure, with which a vector field can be associated to each smooth
function, and the bracket of two smooth functions can be defined. It was also
known that on a (odd-dimensional) contact manifold one can define the bracket of
two smooth functions.

Several generalizatons of symplectic manifolds were defined and investigated by
Lichnerowicz during the years 1975–1980. He gave several names to these general-
izations: canonical, Poisson, Jacobi and locally conformally symplectic manifolds
[28, 29].

In 1976 Kirillov published a paper entitled Local Lie Algebras [19] in which he
determined all the possible structures on a manifold allowing the definition of a
bracket with which the space of smooth functions becomes a local Lie algebra.
Local means that the value taken by the bracket of two smooth functions at each
point only depends of the values taken by these functions on an arbitrarily small
neighbourhood of that point. The only such structures are those called by Lich-
nerowicz Poisson structures, Jacobi structures and locally conformally symplectic
structures.

In what follows we will mainly consider Poisson manifolds.
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3.2. Definition and Structure of Poisson Manifolds

Definition 4. A Poisson structure on a smooth manifold M is the structure de-
termined by a bilinear, skew-symmetric composition law on the space of smooth
functions, called the Poisson bracket and denoted by (f, g) 7→ {f, g}, satisfying
the Leibniz identity

{f, gh} = {f, g}h+ g{f, h}
and the Jacobi identity{

{f, g}, h
}
+

{
{g, h}, f

}
+

{
{h, f}, g

}
= 0.

A manifold endowed with a Poisson structure is called a Poisson manifold.

Proposition 5. On a Poisson manifold M , there exists a unique smooth bivector
field Λ, called the Poisson bivector field of M , such that for any pair (f, g) of
smooth functions defined on M , the Poisson bracket {f, g} is given by the formula

{f, g} = Λ(df, dg).

Proof: The existence, uniqueness and skew-symmetry of Λ are easy consequences
of the the Leibniz identity and of the skew-symmetry of the Poisson bracket. It does
not depend on the Jacobi identity. �
Remark 2. The Poisson bivector field Λ determines the Poisson structure of M ,
since it allows the calculation of the Poisson bracket of any pair of smooth func-
tions. For this reason a Poisson manifold M is often denoted by (M,Λ).

Definition 5. Let (M,Λ) be a Poisson manifold. We denote by Λ♯ : T ∗M → TM
the vector bundle homomorphism such that, for each x ∈ M and each α ∈ T ∗

xM ,
Λ♯(α) is the unique element in TxM such that, for any β ∈ T ∗

xM ,⟨
β,Λ♯(α)

⟩
= Λ(α, β).

The subset C = Λ♯(T ∗M) of the tangent bundle TM is called the characteristic
field of the Poisson manifold (M,Λ)

The following theorem, due to Weinstein [44], proves that, loosely speaking, a
Poisson manifold is the disjoint union of symplectic manifolds, arranged in such a
way that the union is endowed with a differentiable structure.

Theorem 1. Let (M,Λ) be a Poisson manifold. Its characteristic field C is a
completely integrable generalized distribution on M . It means that M is the dis-
joint union of immersed connected submanifolds, called the symplectic leaves of
(M,Λ), with the following properties: a leaf S is such that, for each x ∈ S, TxS =
TxM ∩C. Moreover, S is maximal in the sense that any immersed connected sub-
manifold S′ containing S and such that for each x ∈ S′, TxS′ = TxM ∩ C, is
equal to S.
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Moreover, the Poisson structure ofM determines, on each leaf S, a symplectic form
ωS , such that the restriction to S of the Poisson bracket of two smooth functions
defined on M only depends on the restrictions of these functions to S, and can be
calculated as the Poisson bracket of these restrictions, using the symplectic form
ωS .

The reader may look at [44] or at [27] for a proof of this theorem.

3.2.1. The Schouten Bracket

Let M be a smooth n-dimensional manifold. For each integer p (1 ≤ p ≤ n)
we denote by Ωp(M) the space of differential forms of degree p, in other words
the space of smooth sections of

∧p(T ∗M), the p-th exterior power of the cotan-
gent bundle T ∗M . By convention Ω0(M) = C∞(M,R) is the space of smooth
functions, and for p < 0 or p > n, we set Ωp(M) = {0}. The direct sum
Ω(M) = ⊕p∈ZΩ

p(M) is the exterior algebra of differential forms on M . It is
endowed with a composition law, the exterior product, which associates to a pair
(η, ζ), with η ∈ Ωp(M) and ζ ∈ Ωq(M) the form η ∧ ζ ∈ Ωp+q(M). Moreover
Ω(M) is endowed with a derivation of degree one, the exterior differential d,
which is such that when η ∈ Ωp(M), dη ∈ Ωp+1(M).

Similarly, for each integer p (1 ≤ p ≤ n) we denote by Ap(M) the space of
smooth multivector fields of degree p, in other words the space of smooth sections
of

∧p(TM), the p-th exterior power of the tangent bundle TM . By convention
A0(M) = C∞(M,R) is the space of smooth functions, and for p < 0 or p > n,
we set Ap(M) = {0}. The direct sum A(M) = ⊕p∈ZA

p(M) is the exterior
algebra of smooth multivector fields on M . It is endowed with a composition law,
the exterior product, which associates to a pair (P,Q), with P ∈ Ap(M) and
Q ∈ Aq(M) the multivector field P ∧Q ∈ Ap+q(M).
There is a natural pairing of elements of same degree in A(M) and in Ω(M). It
is first defined for decomposable elements: let η = η1 ∧ · · · ∧ ηp ∈ Ωp(M) and
P = X1 ∧ · · · ∧Xp ∈ Ap(M). We set

⟨η, P ⟩ = det
(
⟨ηi, Xj⟩

)
.

Then this pairing can be uniquely extended to Ωp(M)×Ap(M) by bilinearity.
With any P ∈ Ap(M) we can associate a graded endomorphism ι(P ) of the ex-
terior algebra of differential formls Ω(M), of degree −p, which means that when
η ∈ Ωq(M), ι(P )η ∈ Ωq−p(M). This endomorphism, which extends to multi-
vector fields the interior product of forms with a vector field, is determined by the
formula, in which P ∈ Ap(M), η ∈ Ωq(M) and R ∈ Aq−p(M)⟨

ι(P )η,R
⟩
= (−1)(p−1)p/2⟨η, P ∧Q⟩.
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Besides the exterior product, there exists on the graded vector space A(M) of
multivector fields another bilinear composition law, which naturally extends to
multivector fields the Lie bracket of vector fields. It associates to P ∈ Ap(M)
and Q ∈ Aq(M) an element denoted [P,Q] ∈ Ap+q−1(M), called the Schouten
bracket of P and Q. The Schouten bracket [P,Q] is defined by the following for-
mula, which gives the expression of the corresponding graded endomorphism of
Ω(M)

i
(
[P,Q]

)
=

[[
ι(P ), d

]
, ι(Q)

]
.

The brackets in the right hand side of this formula are the graded commutators
of graded endomorphisms of Ω(M). Let us recall that if E1 and E2 are graded en-
domorphisms of Ω(M) of degrees e1 and e2 respectively, their graded commotator
is

[E1, E2] = E1 ◦ E2 − (−1)e1e2E2 ◦ E1.

The properties of the Schouten bracket can be deduced from the above formulae.
For example, we easily see that if the degrees of P and Q are, respectively, p and
q, the degree of [P,Q]S is p+ q − 1.
For more information about the Schouten bracket, the reader may look at [24] or
[31].

Proposition 6. Let Λ be a smooth bivector field on a smooth manifold M . Then
Λ is a Poisson bivector field (and (M,Λ) is a Poisson manifold) if and only if
[Λ,Λ] = 0.

Proof: We define the vector bundle homomorphism Λ♯ : T ∗M → TM by setting,
for all x ∈M , α and β ∈ T ∗

xM⟨
β,Λ♯(α)

⟩
= Λ(α, β).

For any pair (f, g) of smooth functions we set

Xf = Λ♯(df), {f, g} = ι(Xf )(dg) = Λ(df, dg).

This bracket is a bilinear skew-symmetric composition law on C∞(M,R) which
satisfies the Leibniz identity. Therefore Λ is a Poisson bivecctor field if and only if
the above defined bracket of functions satisfies the Jacobi identity.
Let f , g and h be three smooth functions on M . We easily see that Xf and {f, g}
can be expressed in terms of the Schouten bracket. Indeed we have

Xf = −[Λ, f ] = −[f,Λ], {f, g} =
[
[Λ, f ], g

]
.

Therefore {
{f, g}, h

}
=

[[
Λ,

[
[Λ, f ], g

]]
, h

]
.
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By using the graded Jacobi identity satisfied by Schouten bracket, we see that[
Λ,

[
[Λ, f ], g

]]
= −

[
[g,Λ], [f,Λ]

]
+ 2

[[
[Λ,Λ], f

]
, g
]
.

Using the equalities Xf = −[Λ, f ] = −[f,Λ] and Xg = −[Λ, g] = −[g,Λ] we
obtain {

{f, g}, h
}
=

[
[Xf , Xg], h

]
+ 2

[[[
[Λ,Λ], f

]
, g
]
, h

]
= L

(
[Xf , Xg]

)
h+ 2

[[[
[Λ,Λ], f

]
, g
]
, h

]
.

On the other hand, we have{
{g, h}, f

}
= −L(Xf ) ◦ L(Xg)h,

{
{h, f}, g

}
= L(Xg) ◦ L(Xf )h.

Taking into account the equality

L
(
[Xf , Xg]

)
= L(Xf ) ◦ L(Xg)− L(Xg) ◦ L(Xf )

we obtain{
{f, g}, h

}
+

{
{g, h}, f

}
+

{
{h, f}, g

}
= 2

[[[
[Λ,Λ], f

]
, g
]
, h

]
.

By using the formula which defines the Schouten bracket, we check that for any
P ∈ A3(M) [[

[P, f ], g
]
, h

]
= P (df, dg, dh).

Therefore{
{f, g}, h

}
+

{
{g, h}, f

}
+

{
{h, f}, g

}
= 2[Λ,Λ](df, dg, dh)

so Λ is a Poisson bivector field if and only if [Λ,Λ] = 0. �

3.3. Some Properties of Poisson Manifolds

Definitions 5. Let (M,Λ) be a Poisson manifold.
1. The Hamiltonian vector field associated to a smooth function f ∈ C∞(M,R)

is the vector field Xf on M defined by

Xf = Λ♯(df).

The function f is called a Hamiltonian for the Hamiltonian vector field Xf .
2. A Poisson vector field is a vector field X which satisfies

L(X)Λ = 0.

Example 1. On a symplectic manifold (M,ω) we have defined the Poisson bracket
of smooth functions. That bracket endows M with a Poisson structure, said to be
associated to its symplectic structure. The Poisson bivector field Λ is related to the
symplectic form ω by

Λ(df, dg) = ω(Xf , Xg), f and g ∈ C∞(M,R).
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The map Λ♯ : T ∗M → TM such that, for any x ∈M , α and β ∈ T ∗
xM⟨

β,Λ♯(α) = Λ(α, β)

is therefore the inverse of the map ω♭ : TM → T ∗M such that, for any x ∈ M , v
and w ∈ TxM , ⟨

ω♭(v), w
⟩
= −

⟨
ι(v)ω,w

⟩
= ω(w, v).

Hamiltonian vector fields for the symplectic structure of M coincide with Hamil-
tonian vector fields for its Poisson structure. The Poisson vector fields on the sym-
plectic manifold (M,ω) are the locally Hamiltonian vector fields. However, on
a general Poisson manifold, Poisson vector fields are more general than locally
Hamiltonian vector fields: even restricted to an arbitrary small neighbourhood of a
point, a Poisson vector field may not be Hamiltonian.

Remarks 3.
1. Another way in which the Hamiltonian vector fieldXf associated to a smooth

function f can be defined is by saying that, for any other smooth function g on the
Poisson manifold (M,Λ),

ι(Xf )(dg) = {f, g}.

2. A smooth function g defined on the Poisson manifold (M,Λ) is said to be a
Casimir if for any other smooth function h, we have {g, h} = 0. In other words,
a Casimir is a smooth function g whose associated Hamiltonian vector field is
Xg = 0. On a general Poisson manifold, there may exist Casimirs other than the
locally constant functions.

3. A smooth vector field X on the Poisson manifold (M,Λ) is a Poisson vector
field if and only if, for any pair (f, g) of smooth functions

L(X)
(
{f, g}

)
=

{
L(X)f, g

}
+
{
f,L(X)g

}
.

Indeed we have

L(X)
(
{f, g}

)
= L(X)

(
Λ(df, dg)

)
=

(
L(X(Λ)

)
(df, dg) + Λ

(
L(X)(df), dg

)
+ Λ

(
df,L(X)(dg)

)
=

(
L(X)(Λ)

)
(df, dg) +

{
L(X)f, g

}
+

{
f,L(X)g

}
.

3. Any Hamiltonian vector field Xf is a Poisson vetor field. Indeed, if f is a
Hamiltonian for Xf , g and h two other smooth functions,we have according to the
Jacobi identity

L(Xf )
(
{g, h}

)
=

{
f, {g, h}

}
=

{
{f, g}, h

}
+

{
g, {f, h}

}
=

{
L(Xf )g, h

}
+

{
g,L(Xf )h

}
.
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4. Since the characteristic field of the Poisson manifold (M,Λ) is generated
by the Hamiltonian vector fields, any Hamiltonian vector field is everywhere tan-
gent to the symplectic foliation. A Poisson vector field may not be tangent to that
foliation.

Proposition 7. Let (M1,Λ1) and (M2,Λ2) be two Poisson manifolds and φ :
M1 →M2 a smooth map. The following properties are equivalent.

1. For any pair (f, g) of smooth functions defined on M2

{φ∗f, φ∗g}M1 = φ∗{f, g}M2 .

2. For any smooth function f ∈ C∞(M2,R) the Hamiltonian vector fields
Λ♯
2(df) on M2 and Λ♯

1

(
d(f ◦ φ)

)
on M1 are φ-compatible, which means that for

each x ∈M1

Txφ
(
Λ♯
1

(
d(f ◦ φ)(x)

))
= Λ♯

2

(
df

(
φ(x)

))
.

3. The bivector fields Λ1 on M1 and Λ2 on M2 are φ-compatible, which means
that for each x ∈M1

Txφ
(
Λ1(x)

)
= Λ2

(
φ(x)

)
.

A mapφ :M1 →M2 which satisfies these equivalent properties is called a Poisson
map.

Proof: Let f and g be two smooth functions defined on M2. For each x ∈M1, we
have

{φ∗f, φ∗g}M1(x) = {f ◦ φ, g ◦ φ}(x) = Λ1(x)
(
d(f ◦ φ)(x)d(g ◦ φ)(x)

)
=

⟨
d(g ◦ φ)(x),Λ♯

1

(
d(f ◦ φ(x))

)⟩
.

We have also

φ∗{f, g}M2(x) = {f, g}M2

(
φ(x)

)
=

⟨
dg

(
φ(x)

)
,Λ∗

2

(
df

(
φ(x)

))⟩
.

These formulae show that Properties 1 and 2 are equivalent.
We recall that Txφ

(
Λ1(x)

)
is, by its very definition, the bivector at φ(x) ∈ M2

such that, for any pair (f, g) of smooth functions on M2

Txφ
(
Λ1(x)

)(
df

(
φ(x)

)
, dg

(
φ(x)

))
= Λ1

(
d(f ◦ φ)(x), d(g ◦ φ)(x)

)
.

The above equalities therefore prove that Properties 2 and 3 are equivalent. �

Poisson manifolds often appear as quotients of symplectic manifolds, as indicated
by the following Proposition, due to Paulette Libermann [26].
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Proposition 8. Let (M,ω) be a symplectic manifold and φ :M → P a surjective
submersion of M onto a smooth manifold P whose fibres are conncted (it means
that for each y ∈ P , φ−1(y) is connected). The following properties are equiva-
lent.

1. On the manifold M , the distribution orth(kerTφ) is integrable.
2. For any pair (f, g) of smooth functions defined on P , the Poisson bracket

{f ◦ φ, g ◦ φ} is constant on each fibre φ−1(y) of the submersion φ (with y ∈ P ).
When these two equivalent properties are satisfied, there exist on P a unique Pois-
son structure for which φ : M → P is a Poisson map (the manifold M being
endowed with the Poisson structure associated to its symplectic structure).

Proof: On the manifoldM , kerTφ is a an integrable distribution of rank dimM−
dimP whose integral submanifolds are the fibres of the submersion φ. Its sym-
plectic orthogonal orth(kerTφ) is therefore a distribution of rank dimP . Let f
and g be two smooth functions defined on M2. On M1, the Hamiltonian vector
fields Xf◦φ and Xg◦φ take their values in orth(kerTφ). We have

[Xf◦φ, Xg◦φ] = X{f◦φ,g◦φ}.

Their bracket [Xf◦φ, Xg◦φ] takes value in orth(kerTφ) if and only if {f ◦ φ, g ◦
φ} is constant on each fibre φ−1(y) of the submersion φ. The equivalence of
Properties 1 and 2 easily follows.
Let us now assume that the equivalent properties 1 and 2 are satisfied. Since φ :
M → P is a submersion with connected fibres, the map which associates to each
function f ∈ C∞(M2,R) the function f ◦ φ is an isomorphism of C∞(M2,R)
onto the subspace of C∞(M1,R) made by smooth functions which are constant
on each fibre of φ. The existence and unicity of a Poisson structure on M2 for
which φ is a Poisson map follows. �

Remark 3. Poisson manifolds obtained as quotients of symplectic manifolds often
come by pairs. Let us assume indeed that (M,ω) is a symplectic manifold and
that the above Proposition can be applied to a smooth surjective submersion with
connected fibres φ : M → P , and defines a Poisson structure on P for which φ is
a Poisson map. Since orth(kerTφ) is integrable, it defines a foliation ofM , which
is said to be simple when the set of leavesQ of that foliation has a smooth manifold
structure such that the map ψ : M → Q, which associates to each point in M the
leaf through this point, is a submersion. Then the maps φ :M → P and ψ :M →
Q play similar parts, so there exists on Q a unique Poisson structure for which ψ
is a Poisson map. Weinstein [44] has determined the links which exist between
the local structures of the two Poisson manifolds P and Q at corresponding points
(that means, at points which are the images of the same point in M by the maps φ
and ψ).
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Several kinds of remarkable submanifolds of a Poisson manifold can be defined
[44]. The most important are the coisotropic submanifolds, defined below.

Definition 6. A submanifoldN of a Poisson manifold (M,Λ) is said to be coisotro-
pic if for any point x ∈ N and any pair (f, g) of smooth functions defined on a
neighbourhood U of x inM whose restrictions to U ∩N are constants, the Poisson
bracket {f, g} vanishes on U ∩N .

3.4. Examples of Poisson Manifolds

3.4.1. Symplectic Manifolds

We have seen above that any symplectic manifold is a Poisson manifold.

3.4.2. Dual Spaces of Finite-Dimensional Lie Algebras

Let G be a finite-dimensional Lie algebra, and G∗ its dual space. The Lie algebra
G can be considered as the dual of G∗, that means as the space of linear functions
on G∗, and the bracket of the Lie algebra G is a composition law on this space of
linear functions. This composition law can be extended to the space C∞(G∗,R)
by setting

{f, g}(x) =
[
df(x), dg(x)

]
, f and g ∈ C∞(G∗,R), x ∈ G∗.

This bracket on C∞(G∗,R) defines a Poisson structure on G∗, called its canonical
Poisson structure. It implicitly appears in the works of Lie, and was rediscovered
by Kirillov [18], Kostant [23] and Souriau [38]. Its existence can be seen as an
application of Proposition 8. Let indeed G be the connected and simply connected
Lie group whose Lie algebra is G. We know that the contangent bundle T ∗G has
a canonical symplectic structure. One can check easily that for this symplectic
structure, the Poisson bracket of two smooth functions defined on T ∗G and invari-
ant with respect to the lift to T ∗G of the action of G on itself by left translations, is
too invariant with respect to that action. Application of Proposition 8, the submer-
sion φ : T ∗G → G∗ being the left translation which, for each g ∈ G, maps T ∗

gG
onto T ∗

eG ≡ G∗, yields the above defined Poisson structure on G∗. If instead of
translations on the left, we use translation on the right, we obtain on G∗ the oppo-
site Poisson structure. This illustrates Remark 3, since, as we will see later, each
one of the tangent spaces at a point ξ ∈ T ∗G to the orbits of that point by the lifts
to T ∗G of the actions of G on itself by translations on the left and on the right, is
the symplectic orthogonal of the other.
The symplectic leaves of G∗ equipped with the above defined Poisson structure are
the coadjoint orbits.
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3.4.3. Symplectic Cocycles
A symplectic cocycle of the Lie algebra G is a skew-symmetric bilinear map Θ :
G × G → R which satisfies

Θ
(
[X,Y ], Z

)
+Θ

(
[Y,Z], X

)
+Θ

(
[Z,X], Y

)
= 0.

The above defined canonical Poisson structure on G∗ can be modified by means of
a symplectic cocycle Θ by defining the new bracket (see for example [27])

{f, g}Θ(x) =
[
df(x), dg(x)

]
−Θ

(
df(x), dg(x)), f, g ∈ C∞(G∗,R), x ∈ G∗.

This Poisson structure is called the modified canonical Poisson structure by
means of the symplectic cocycle Θ. The symplectic leaves of G∗ equipped with
this Poisson structures are the orbits of an affine action whose linear part is the
coadjoint action, with an additional term determined by Θ.

4. Symplectic, Poisson and Hamiltonian Actions

4.1. Actions on a Smooth Manifold

Let us first recall some definitions and facts about actions of a Lie algebra or of a
Lie group on a smooth manifold.

Definition 7. An action on the left (respectively an action on the right) of a Lie
groupG on a smooth manifoldM is a smooth map Φ : G×M →M (respectively,
Ψ : M × G → M ) such that, for any x ∈ M , g1 and g2 ∈ G, e ∈ G being the
neutral element

• for an action on the left

Φ
(
g1,Φ(g2, x)

)
= Φ(g1g2, x), Φ(e, x) = x

• for an action on the right

Ψ
(
Ψ(x, g1), g2

)
= Ψ(x, g1g2), Φ(x, e) = x.

4.1.1. Consequences
Let Φ : G ×M → M be an action on the left of the Lie group G on the smooth
manifold M . For each g ∈ G, we denote by Φg :M →M the map

Φg(x) = Φ(g, x).

The map g 7→ Φg is a groups homomorphism of G into the group of smooth
diffeomorphisms of M . In other words, for each g ∈ G, Φg is a diffeomorphism
of M , and we have

Φg ◦ Φh = Φgh, (Φg)
−1 = Φg−1 , g and h ∈ G.
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Similarly, let Ψ :M ×G→M be an action on the right of the Lie group G on the
smooth manifold M . For each g ∈ G, we denote by Ψg :M →M the map

Ψg(x) = Ψ(x, g).

The map g 7→ Ψg is a groups anti-homomorphism of G into the group of smooth
diffeomorphisms of M . In other words, for each g ∈ G, Ψg is a diffeomorphism
of M , and we have

Ψg ◦Ψh = Ψhg, (Ψg)
−1 = Ψg−1 , g and h ∈ G.

Definition 8. Let Φ : G × M → M be an action on the left (respectively let
Ψ : M × G → M be an action of the right) of the Lie group G on the smooth
manifoldM . With each elementX ∈ G ≡ TeG (the tangent space to the Lie group
G at the neutral element) we associate the vector field XM on M defined by

XM (x) =


dΦ

(
exp(sX), x

)
ds

∣∣∣
s=0

if Φ is an action on the left

dΨ
(
x, exp(sX)

)
ds

∣∣∣
s=0

if Ψ is an action on the right

The vector field XM is called the fundamental vector field on M associated to
X .

Definition 9. An action of a Lie algebra G on a smooth manifold M is a Lie
algebras homomorphism φ of G into the Lie algebra A1(M) of smooth vector
fields on M (with the Lie bracket of vector fields as composition law). In other
words, it is a linear map φ : G → A1(M) such that for each pair (X,Y ) ∈ G × G,

φ
(
[X,Y ]

)
=

[
φ(X), φ(Y )

]
.

Remark 4. Let G be a Lie group. There are two natural ways in which the tangent
space TeG ≡ G to a Lie group G at the neutral element e can be endowed with a
Lie algebra structure.
In the first way, we associate with each element X ∈ TeG the left invariant vector
field XL on G such that XL(e) = X; its value at a point g ∈ G is XL(g) =
TLg(X), where Lg : G → G is the map h 7→ Lg(h) = gh. We observe that
for any pair (X,Y ) of elements in G the Lie bracket [XL, Y L] of the vector fields
XL and Y L on G is left invariant, and we define the bracket [X,Y ] by setting
[X,Y ] = [XL, Y L](e). This Lie algebra structure on G ≡ TeG will be called the
Lie algebra structure of left invariant vector fields on G.
In the second way, we choose the right invariant vector fields on G XR and
Y R, instead of the left invariant vector fields XL and Y L. Since [XR, Y R](e) =
−[XL, Y L](e), the Lie algebra structure on G ≡ TeG obtained in this way, called
the Lie algebra structure of right invariant vector fields, is the opposite of that of
left invariant vector fields. We have therefore on TeG two opposite Lie algebras



34 Charles-Michel Marle

structures, both equally natural. Fortunately, the choice of one rather than the other
as the Lie algebra G of G does not matter because the map X 7→ −X is a Lie al-
gebras isomorphism between these two structures.

Proposition 9. Let Φ : G ×M → M be an action on the left (respectively let
Ψ :M×G→M be an action on the right) of a Lie groupG on a smooth manifold
M . We endow G ≡ TeG with the Lie algebra structure of right invariant vector
fields on G (resp, with the Lie algebra structure of left invariant vector fields on
G). The map φ : G → A1(M) (respectively ψ : G → A1(M)) which associates to
each element X of the Lie algebra G of G the corresponding fundamental vector
field XM , is an action of the Lie algebra G on the manifold M . This Lie algebra
action is said to be associated to the Lie group action Φ (respectively Ψ).

Proof: Let us look at an action on the left Φ. Let x ∈M , and let Φx : G→M be
the map g 7→ Φx(g) = Φ(g, x). For any X ∈ TeG and g ∈ G, we have

XM

(
Φ(g, x)

)
=

d

ds
Φ
(
exp(sX),Φ(g, x)

) ∣∣
s=0

=
d

ds
Φ
(
exp(sX)g, x

) ∣∣
s=0

=
d

ds
Φ
(
Rg

(
exp(sX)

)
, x

) ∣∣∣
s=0

= TΦx ◦ TRg(X).

We see that for each X ∈ TxG, the right invariant vector field XR on G and
the fundamental vector field XM on M are compatible with respect to the map
TΦx : TG → TM . Therefore for any pair (X,Y ) of elements in TeG, we have
[X,Y ]M = [XM , YM ]. In other words the map X 7→ XM is an action of the Lie
algebra G = TeG (equipped with the Lie algebra structure of right invariant vector
fields on G) on the manifold M .
For an action on the right Ψ, the proof is similar, G = TeG being this time endowed
with the Lie algebra structure of left invariant vector fields on G. �

Proposition 10. Let Φ : G ×M → M be an action on the left (respectively let
Ψ :M×G→M be an action on the right) of a Lie groupG on a smooth manifold
M . Let XM be the fundamental vector field associated to an element X ∈ G. For
any g ∈ G, the direct image (Φg)∗(XM ) (respectively (Ψg)∗(XM )) of the vector
field XM by the diffeomorphism Φg : M → M (respectively Ψg : M → M)
is the fundamnetal vector field (AdgX)M associated to AdgX (respectively the
fundamental vector field (Adg−1 X)M associated to Adg−1 X).

Proof: For each x ∈M

(Φg)∗(XM )(x) = TΦg

(
XM

(
Φ(g−1, x)

))
= TΦg(

d

ds
Φ
(
exp(sX)g−1, x

) ∣∣
s=0

)

=
d

ds

(
Φ
(
g exp(sX)g−1, x

)) ∣∣∣
s=0

= (AdgX)M (x)



Symmetries of Hamiltonian Dynamical Systems, Momentum Maps and Reductions 35

since g exp(sX)g−1 = exp(AdgX). The proof for the action on the right Ψ is
similar. �

4.2. Poisson, Symplectic and Hamiltonian Actions

Definitions 6.
1. An action φ of a Lie algebra G on a Poisson manifold (M,Λ) is called a

Poisson action if for any X ∈ G the corresponding vector field φ(X) is a Poisson
vector field. When the Poisson manifold is in fact a symplectic manifold (M,ω),
Poisson vector fields on M are locally Hamiltonian vector fields and a Poisson
action is called a symplectic action.

2. An action Φ (either on the left or on the right) of a Lie group G on a Poisson
manifold (M,Λ) is called a Poisson action when for each g ∈ G

(Φg)∗Λ = Λ.

When the Poisson manifold (M,Λ) is in fact a symplectic manifold (M,ω), a
Poisson action is called a symplectic action; the fibre bundle isomorphism Λ♯ :
T ∗M → TM being the inverse of ω♭ : TM → T ∗M , we also can say that an
action Φ of a Lie group G on a symplectic manifold (M,ω) is called a symplectic
action when for each g ∈ G

(Φg)
∗ω = ω.

Proposition 11. We assume that G is a connected Lie group which acts by an
action Φ, either on the left or on the right, on a Poisson manifold (M,Λ), in such
a way that the corresponding action of its Lie algebra G is a Poisson action. Then
the action Φ itself is a Poisson action.

Proof: Let X ∈ G. For each x ∈M , the parameterized curve s 7→ Φexp(sX)(x) is
the integral curve of the fundamental vector field XM which takes the value x for
s = 0. In other words, the reduced flow of the vector field XM is the map, defined
on R×M and taking its values in M

(s, x) 7→ Φexp(sX)(x).

According to a formula which relates inverse images of multivectors or differential
forms with respect to the flow of a vector field, with their Lie derivatives with
respect to that vector field (see for example [27], Appendix 1, Section 3.4, page
351), for any s0 ∈ R

d

ds

((
(Φexp(sX))

∗(Λ)
)
(x)

) ∣∣∣
s=s0

=
(
(Φexp(s0X))

∗(L(XM )Λ
))

(x) = 0

since L(XM )Λ = 0. Therefore for any s ∈ R,

(Φexp(sX))
∗Λ = (Φexp(−sX))∗Λ = Λ.
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The Lie group G being connected, any g ∈ G is the product of a finite number of
exponentials, so (Φg)∗Λ = Λ. �

Exercise 2. Let Φ be an action, either on the left or on the right, of a Lie group G
on a Poisson manifold (M,Λ). Prove that the following properties are equivalent.
Conclude that any of these properties can be used as the definition of a Poisson
action

• for each g ∈ G

(Φg)∗Λ = Λ

• for each g ∈ G and f ∈ C∞(M,R)

(Φg)∗(Xf ) = X(Φg)∗(f)

• for each g ∈ G, Φg :M →M is a Poisson map, which means that for each
pair (f1, f2) of smooth functions on M{

(Φg)
∗f1, (Φg)

∗f2
}
= (Φg)

∗({f1, f2})
• and in the special case when the Poisson manifold (M,Λ) is in fact a sym-

plectic manifold (M,ω), for each g ∈ G

(Φg)
∗ω = ω.

Prove that when these equivalent properties are satisfied, the action of the Lie al-
gebra G of G which associates, to each X ∈ G, the fundamental vector field XM

on M , is a Poisson action.

Definitions 7.
1. An action φ of a Lie algebra G on a Poisson manifold (M,Λ) is called a

Hamiltonian action if for every X ∈ G the corresponding vector field φ(X) is a
Hamiltonian vector field on M .

2. An action Φ (either on the left or on the right) of a Lie group G on a Pois-
son manifold (M,Λ) is called a Hamiltonian action if it is a Poisson action (or
a symplectic action when the Poisson manifold (M,Λ) is in fact a symplectic
manifold(M,ω)) and if, in addition, the associated action φ of its Lie algebra is a
Hamiltonian action.

Remarks 4.
1. A Hamiltonian action of a Lie algebra on a Poisson manifold is automatically

a Poisson action.
2. An action Φ of a connected Lie group G on a Poisson manifold such that the

corresponding action of its Lie algebra is Hamiltonian, automatially is a Hamilton-
ian action.
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Proposition 12. Let φ be a Hamiltonian action of a Lie algebra G on a Poisson
manifold (M,Λ). Let G∗ be the dual space of G. There exists a smooth map
J : M → G∗ such that for each X ∈ G the corresponding Hamiltonian vector
field XM has the function JX :M → R, defined by

JX(x) =
⟨
J(x), X

⟩
, with x ∈M

as Hamiltonian.
Such a map J :M → G∗ is called a momentum map for the Hamiltonian Lie alge-
bra action φ. When φ is the Lie algebra action associated to a Hamiltonian action
Φ of a Lie group G on the Poisson manifold (M,Λ), J is called a momentum map
for the Hamiltonian Lie group action Φ.

Proof: Let (e1, . . . , ep) be a basis of the Lie algebra G and(ε1, . . . , εp) be the
dual basis of G∗. Since φ is Hamiltonian, for each i (1 ≤ i ≤ p) there exists
a Hamiltonian Jei : M → R for the Hamiltonian vector field φ(ei). The map
J :M → G defined by

J(x) =

p∑
i=1

Jeiε
i, x ∈M

is a momentum map for φ. �

The momentum map was introduced by Souriau [38] and in the Lagrangian for-
malism by Smale [39].

4.3. Some Properties of Momentum Maps

Proposition 13. Let φ be a Hamiltonian action of a Lie algebra G on a Poisson
manifold (M,Λ), and J : M → G∗ be a momentum map for that action. For any
pair (X,Y ) ∈ G × G, the smooth function Θ(X,Y ) :M → R defined by

Θ(X,Y ) = {JX , JY } − J[X,Y ]

is a Casimir of the Poisson algebra C∞(M,R), which satisfies, for all X , Y and
Z ∈ G

Θ
(
[X,Y ], Z

)
+Θ

(
[Y,Z], X

)
+Θ

(
[Z,X], Y

)
= 0. (2)

When the Poisson manifold (M,Λ) is in fact a connected symplectic manifold
(M,ω), for any pair (X,Y ) ∈ G × G the function Θ(X,Y ) is constant on M ,
and the map Θ : G×G → R is a skew-symmetric bilinear form, which satisfies the
above identity (2).

Proof: Since JX and JY are Hamiltonians for the Hamiltonian vector fields φ(X)
andφ(Y ), the Poisson bracket {JX , JY } is a Hamiltonian for

[
φ(X), φ(Y )]. Since

φ : G → A1(M) is a Lie algebras homomorphism,
[
φ(X), φ(Y )] = φ

(
[X,Y ]

)
,
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and J[X,Y ] is a Hamiltonian for this vector field. We have two different Hamiltoni-
ans for the same Hamiltonian vector field. Their difference Θ(X,Y ) is therefore a
Casimir of the Poisson algebra C∞(M,R).
Let X , Y and Z be three elments in G. We have

Θ
(
[X,Y ], Z

)
= {J[X,Y ], JZ} − J[

[X,Y ],Z
]

=
{
{JX , JY } −Θ(X,Y ), JZ

}
− J[

[X,Y ],Z
]

=
{
{JX , JY }, JZ

}
− J[

[X,Y ],Z
]

since Θ(X,Y ) is a Casimir of the Poisson algebra C∞(M,R). Similarly

Θ
(
[Y, Z], X

)
=

{
{JY , JZ}, JX

}
− J[

[Y,Z],X
]

Θ
(
[Z,X], Y

)
=

{
{JZ , JX}, JY

}
− J[

[Z,X],Y
].

Adding these three terms and using the fact that the Poisson bracket of functions
and the bracket in the Lie algebra G both satisfy the Jacobi identity, we see that Θ
satisfies (2).
When (M,Λ) is in fact a connected symplectic manifold (M,ω), the only Casimirs
of the Poisson algebra C∞(M,R) are the constants, and Θ becomes a bilinear
skew-symmetric form on G. �

Definition 10. Under the assumptions of the above Proposition 13, the skew-
symmetric bilinear map Θ, defined on G × G and taking its value in the space of
Casimirs of the Poisson algebra C∞(M,R) (real-valued when the Poisson mani-
fold (M,Λ) is in fact a connected symplectic manifold (M,ω)), is called the sym-
plectic cocycle of the Lie algebra G associated to the momentum map J .

Remark 5. Under the assumptions of Proposition 13, let us assume in addition that
the Poisson manifold (M,Λ) is in fact a connected symplectic manifold (M,ω).
The symplectic cocycle Θ is then a real-valued skew-symmetric bilinear form on
G. Therefore it is a symplectic cocycle in the sense of 3.4.3. Two different inter-
pretations of this cocycle can be given.

• Let Θ♭ : G → G∗ be the map such that, for all X and Y ∈ G⟨
Θ♭(X), Y

⟩
= Θ(X,Y ).

The map Θ♭ is a one-cocycle of the Lie algebra G for the coadjoint repre-
sentation, in the sense of the cohomology theory of Lie algebras (see for
example the book [16]).

• Let G be a Lie group whose Lie algebra is G. The skew-symmetric bilinear
form Θ on G = TeG can be extended, either by left translations or by right
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translations, into a left invariant (or a right invariant) closed differential two-
form on G, since the above identity (2) means that its exterior differential
dΘ vanishes. In other words, Θ is a two-cocycle for the restriction of the de
Rham cohomology of G to left (or right) invariant differential forms.

Theorem 2 (First Noether’s theorem in Hamiltonian form). Let φ be a Hamilton-
ian action of a Lie algebra G on a Poisson manifold (M,Λ), J : M → G∗ be a
momentum map for φ and H : M → R be a smooth Hamiltonian. If the action φ
leaves H invariant, that means if

L
(
φ(X)

)
H = 0, for any X ∈ G

the momentum map J keeps a constant value along each interal curve of the Hamil-
tonian vector field Λ♯(dH).

Proof: For any X ∈ G, let JX : M → R be the function x 7→
⟨
J(x), X

⟩
. Let

t 7→ ψ(t) be an integral curve of the Hamiltonian vector field Λ♯(dH). We have
d

dt

(
JX

(
ψ(t)

))
= L

(
Λ♯(dH)

)(
JX

)(
ψ(t)

)
= Λ

(
dH,dJX

)
(ψ(t))

= −L
(
Λ♯

(
dJX

))
H = −L

(
φ(X)

)
H = 0.

Therefore, for any X ∈ G, the derivative of ⟨J,X⟩
(
ψ(t)

)
with respect to the

parameter t of the parameterized curve t 7→ ψ(t) vanishes identically, which means
that J keeps a constant value along that curve. �

The reader will find in the book by Kosmann-Schwarzbach [21] a very nice expo-
sition of the history and scientific applications of the Noether’s theorems.

Proposition 14. Let φ be a Hamiltonian action of a Lie algebra G on a Poisson
manifold (M,Λ) and J : M → G∗ be a momentum map for that action. Let S be
a symplectic leaf of (M,Λ) and ωS be its symplectic form.

1. For each x ∈ S, in the symplectic vector space
(
TxS, ωS(x)

)
, each of the

two vector subspaces TxS ∩ ker(TxJ) and
{
φ(X)(x) ; X ∈ G } is the symplectic

orthogonal of the other.
2. For each x ∈ S, TxJ(TxS) is the annihilator of the isotropy subalgebra

Gx =
{
X ∈ G ; ϕ(X)(x) = 0

}
of x.

Proof: Let v ∈ TxS. For each X ∈ G we have

ωS

(
v, φ(X)(x)

)
=

⟨
d⟨J,X⟩(x), v

⟩
=

⟨
TxJ(v), X

⟩
.

Therefore a vector v ∈ TxS belongs to orth
{
φ(X)(x) ; X ∈ G } if and only

if TxJ(v) = 0. In other words, in the symplectic vector space
(
TxS, ωS(x)

)
,

TxS ∩ ker(TxJ) is the symplectic orthogonal of
{
φ(X)(x) ; X ∈ G }. Of course,

conversely
{
φ(X)(x) ; X ∈ G } is the symplectic orthogonal of TxS ∩ker(TxJ).
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The same formula shows that
⟨
TxJ(v), X

⟩
= 0 for all v ∈ TxS if and only if

X ∈ Gx. �

Remark 6. Under the assumptions of the above Proposition, when φ is the Lie
algebra action associated to a the Hamiltonian action Φ of a Lie group G, the
vector space

{
φ(X)(x) ; X ∈ G } is the space tangent at x to the G-orbit of this

point.

Corollary 1. Let φ be a Hamiltonian action of a Lie algebra G on a symplectic
manifold (M,ω) and J :M → G∗ be a momentum map for that action.

1. For each x ∈M , in the symplectic vector space
(
TxM,ω(x)

)
each of the two

vector subspaces ker(TxJ) and
{
φ(X)(x) ; X ∈ G } is the symplectic orthogonal

of the other.
2. For each x ∈ M , TxJ(TxM) is the annihilator of the isotropy subalgebra

Gx = {X ∈ G ; φ(X)(x) = 0} of x.

Proof: These assertions both follow immediately from the above Proposition since
the symplectic leaves of (M,ω) are its connected components. �

Proposition 15. Let Φ be a Hamiltonian action of a Lie group G on a connected
symplectic manifold (M,ω) and J :M → G∗ be a momentum map for that action.
There exists a unique action a of the Lie group G on the dual G∗ of its Lie algebra
for which the momentum map J is equivariant, that means satisfies for each x ∈M
and g ∈ G

J
(
Φg(x)

)
= ag

(
J(x)

)
.

The action a is an action on the left (respectively, on the right) if Φ is an action on
the left (respectively, on the right), and its expression is{
a(g, ξ) = Ad∗g−1(ξ) + θ(g) if Φ is an action on the left,
a(ξ, g) = Ad∗g(ξ)− θ(g−1) if Φ is an action on the right,

g ∈ G, ξ ∈ G∗.

The map θ : G → G∗ is called the symplectic cocycle of the Lie group G associ-
ated to the momentum map J .

Proof: Let us first assume that Φ is an action on the left. For eachX ∈ G the asso-
ciated fundamental vector field XM is Hamiltonian and the function JX :M → R
defined by

JX(x) =
⟨
J(x), X

⟩
, x ∈M

is a Hamiltonian for the vector field XM . We know by Exercise 2 that its direct
image (Φg−1)∗(XM ) by the diffeomorphism Φg−1 : M → M is a Hamiltonian
vector field for which the function JX ◦ Φg is a Hamiltonian. But Proposition 10
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shows that (Φg−1)∗(XM ) is the fundamental vector field associated to Adg−1(X),
therefore has the function

x 7→
⟨
J(x),Adg−1(X)

⟩
=

⟨
Ad∗g−1 ◦J(x), X

⟩
as a Hamiltonian. The difference between these two Hamiltonians for the same
Hamiltonian vector field is a constant since M is assumed to be connected. There-
fore the expression ⟨

J ◦ Φg(x)−Ad∗g−1 ◦J(x), X
⟩

does not depend on x ∈ M , and depends linearly on X ∈ G (and of course
smoothly depends on g ∈ G). We can therefore define a smooth map θ : G → G∗

by setting
θ(g) = J ◦ Φg −Ad∗g−1 ◦J, g ∈ G.

It follows that the map a : G× G∗ → G∗

a(g, ξ) = Ad∗g−1(ξ) + θ(g)

is an action on the the left of the Lie group G on the dual G∗ of its Lie algebra,
which renders the momentum map J equivariant.
The case when Φ is an action on the right easily follows by observing that (g, x) 7→
Φ(x, g−1) is a Hamiltonian action on the left whose momentum map is the opposite
of that of Φ. �

Proposition 16. Under the same assumptions as those of Proposition 15, the map
θ : G→ G∗ satisfies, for all g and h ∈ G

θ(gh) = θ(g) + Ad∗g−1

(
θ(h)

)
.

Proof: In Proposition 15, the cocycle θ introduced for an action on the right Ψ :
M×G→M was the cocycle of the corresponding action on the left Φ : G×M →
M defined by Φ(g, x) = Ψ(x, g−1). We can therefore consider only the case when
Φ is an action on the left.
Let g and h ∈ G. We have

θ(gh) = J
(
Φ(gh, x)

)
−Ad∗(gh)−1 J(x)

= J
(
Φ
(
g,Φ(h, x)

))
−Ad∗g−1 ◦Ad∗h−1 J(x)

= θ(g) + Ad∗g−1

(
J
(
Φ(h, x)

)
−Ad∗h−1 J(x)

)
= θ(g) + Ad∗g−1 θ(h). �

Proposition 17. Let Φ be a Hamiltonian action of a Lie group G on a connected
symplectic manifold (M,ω) and J : M → G∗ be a momentum map for that
action. The symplectic cocycle θ : G → G∗ of the Lie group G introduced in
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Proposition 15 and the symplectic cocycle Θ♭ : G → G∗ of its Lie algebra G intro-
duced in Definition 10 and Remark 5 are related by

Θ♭ = Teθ

where e is the neutral element of G, the Lie algebra G being identified with TeG
and the tangent space at G∗ at its origin being identified with G∗. Moreover J is a
Poisson map when G∗ is endowed with

• its canonical Poisson structure modified by the symplectic cocycle Θ (defined
in 3.4.3) if Φ is an action on the right,

• the opposite of this Poisson structure if Φ is an action on the left.

Proof: As in the proof of Proposition 16, we have only to consider the case when Φ
is an action on the left. The map which associates to each X ∈ G the fundamental
vector field XM is a Lie algebras homomorphism when G is endowed with the
Lie algebra structure of right invariant vector fields on the Lie group G. We will
follow here the more common convention, in which G is endowed with the Lie
algebra structure of left invariant vector fields on G. With this convention the map
X 7→ XM is a Lie algebras antihomomorphism and we must change a sign in the
definition of Θ given in Proposition 13 and take

Θ(X,Y ) =
⟨
Θ♭(X), Y

⟩
= {JX , JY }+ J[X,Y ], X and Y ∈ G.

We have, for any x ∈M

{JX , JY }(x) = ω(XM , YM )(x) = ι(XM )d
(
⟨J, Y ⟩

)
(x)

=
d

dt

⟨
J
(
Φ(exp(tX), x

)
, Y

⟩∣∣∣
t=0

=
d

dt

⟨
Ad∗exp(−tX) J(x) + θ

(
exp(tX)

)
, Y

⟩∣∣∣
t=0

=
⟨
J(x),−[X,Y ]

⟩
+

⟨
Teθ(X), Y

⟩
= −J[X,Y ](x) +

⟨
Teθ(X), Y

⟩
.

We see that Θ = Teθ. Moreover, the elements X and Y in G can be considered
as linear functions on G∗. Their Poisson bracket, when G∗ is equipped with its
canonical Poisson structure modified by Θ, is

{X,Y }Θ(ξ) =
⟨
ξ, [X,Y ]

⟩
−Θ(X,Y ).

The formula {JX , JY }(x) = −J[X,Y ](x) + Θ(X,Y ) can be read as

{X ◦ J, Y ◦ J}(x) = −{X,Y }Θ ◦ J(x).

Since the value taken at a point by the Poisson bracket of two functions only de-
pends on the values of the differentials of these two functions at that point, this
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result proves that J is a Poisson map when G∗ is equipped with the opposite of the
Poisson bracket { , }Θ �

4.3.1. Other Properties of the Momentum Map

The momentum map has several other very remarkable properties. Atiyah [5],
Guillemin and Sternberg [13, 14] have shown that the image of the momentum
map of a Hamiltonian action of a torus on a compact symplectic manifold is a
convex polytope. Kirwan [20] adapted this result when the torus is replaced by
any compact Lie group. Delzant [9] has shown that the convex polytope which is
the image of a Hamiltonian action of a torus on a compact symplectic manifold
determines this manifold.

4.4. Actions of a Lie Group on its Cotangent Bundle

In this section G is a Lie group, G is its Lie algebra and G∗ is the dual space of G.
The Liouville one-form on T ∗G is denoted by ηG.
The group composition law m : G × G → G, m(g, h) = gh, can be seen as an
action of G on itself either on the left, or on the right. For each g ∈ G we will
denote by Lg : G→ G and Rg : G→ G the diffeomorphisms

Lg(h) = gh, Rg(h) = hg, h ∈ G

called, respectively, the left translation and the right translation of G by g.

Definitions 8. The canonical lifts to the tangent bundle TG of the actions of G
on itself by left translations (respectively, by right translations) are, repectively, the
maps L : G× TG→ TG and R : TG×G→ TG

L(g, v) = TLg(v), R(v, g) = TRg(v), g ∈ G, v ∈ TG.

The canonical lifts to the cotangent bundle T ∗G of the actions of G on itself by
left translations (respectively, by right translations) are, respectively, the maps L̂ :

G× T ∗G→ T ∗G and R̂ : T ∗G×G→ T ∗G

L̂(g, ξ) =
(
TLg−1

)T
(ξ), R̂(ξ, g) =

(
TRg−1

)T
(ξ), g ∈ G, ξ ∈ T ∗G.

We have denoted by
(
TLg−1

)T and
(
TRg−1

)T the transposes of the vector bundles
morphisms TLg−1 and TRg−1 , respectively.

Proposition 18. The canonical lifts to the tangent bundle and to the cotangent
bundle of the actions of the Lie group G on itself by left translations (respectively,
by right translations) are actions on the left (respectively, on the right) of G on its
tangent bundle and on its cotangent bundle, which project onto the actions of G on
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itself by left translations (respectively, by right translations). It means that for all
g ∈ G and v ∈ TG

τG
(
L(g, v)

)
= Lg

(
τG(v)

)
, τG

(
R(v, g)

)
= Rg

(
τG(v)

)
and that for all g ∈ G and ξ ∈ T ∗G

πG
(
L̂(g, ξ)

)
= Lg

(
πG(ξ)

)
, πG

(
R̂(ξ, g)

)
= Rg

(
πG(ξ)

)
.

Proof: It is an easy verification that the properties of actions are indeed satisfied
by the maps L, R, L̂ and R̂, which is left to the reader. �

Proposition 19. The canonical lifts to the cotangent bundle L̂ and R̂ of the actions
of the Lie group G on itself by translations on the left and on the right are two
Hamiltonian actions of G on the symplectic manifold (T ∗G,dηG). The two maps
JL : T ∗G→ G∗ and JR : T ∗G→ G∗ defined, for each ξ ∈ T ∗G, by

JL(ξ) = R̂
(
ξ, πG(ξ)

−1
)
, JR(ξ) = L̂

(
πG(ξ)

−1, ξ
)

are momentum maps for the actions L̂ and R̂, respectively.
Moreover, the map JL is constant on each orbit of the action R̂, the map JR is
constant on each orbit of the action L̂ and for each ξ ∈ T ∗G each of the tangent
spaces at ξ to the orbits L̂(G, ξ) and R̂(ξ,G) is the symplectic orthogonal of the
other. The maps JL : T ∗G → G∗ and JR : T ∗G → G∗ are Poisson maps when
T ∗G is equipped with the Poisson structure associated to its canonical symplectic
structure and when T ∗G is equipped, respectively, with its canonical symplectic
structure 3.4.2 and with the opposite of its canonical symplectic structure.

Proof: For each X ∈ G, let XL
G and XR

G be the fundamental vector fields on G
associated to X for the actions of G on itself, respectively by left and by right
translations. Similarly, let XL

T ∗G and XR
T ∗G be the fundamental vector fields on

T ∗G associated to X for the actions L̂ and R̂ of G on T ∗G defined in 8. The
reduced flows of XL and of XR are the maps

ΦXL
(t, g) = exp(TX)g, ΦXR

(t, g) = g exp(tX), t ∈ R, g ∈ G.

Therefore

XL(g) = TRg(X), XR(g) = TLg(X), g ∈ G

and we see that the fundamental vector fields XL
T ∗G and XR

T ∗G on T ∗G are the
canonical lifts to the cotangent bundle of the vector fields XL

G and XR
G on the Lie

group G. Proposition 3 proves that XL
T ∗G and XR

T ∗G are Hamiltonian vector fields
which admit as Hamiltonians, respectively, the maps

JL(ξ) =
⟨
ξ,XL

G

(
πG(ξ)

)⟩
, JR(ξ) =

⟨
ξ,XR

G

(
πG(ξ)

)⟩
, ξ ∈ T ∗G.
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Replacing XL
G and XG by their expressions given above and using the definitions

of R̂ and L̂, we easily get the stated expressions for JL and JR. These expressions
prove that JL is constant on each orbit of the action R̂, and that JR is constant on
each orbit of the action L̂.
The actions L̂ and R̂ being free, each of their orbits is a smooth submanifold of
T ∗G of dimension dimG. The ranks of the maps JL and JR are everywhere equal
to dimG since their restrictions to each fibre of T ∗G is a diffeomorphism of that
fibre onto G. Therefore, for each ξ ∈ T ∗G

kerTξJ
L = Tξ

(
R̂(ξ,G)

)
, kerTξJ

R = Tξ
(
L̂(ξ,G)

)
.

Corollary 1 proves that for each ξ ∈ T ∗G each of the two vector subspaces of
Tξ(T

∗G)

Tξ
(
L̂(G, ξ)

)
and Tξ

(
R̂(ξ,G)

)
is the symplectic orthogonal of the other.
Finally, the fact that JL and JR are Poisson maps when G is equipped with its
canonical Poisson structure or its opposite is an easy consequence of Proposition 8.

�

4.4.1. Generalization
Proposition 18 can be generalized by using a symplectic cocycle θ of the Lie group
to modify the actions L̂ and R̂, and the associated symplectic cocycle Θ of the Lie
algebra G to modify the symplectic structure of T ∗G. The reader is referred to [27]
for a proof of this generalization.

5. Reduction of Hamiltonian Systems with Symmetries

Very early, the first integrals were used by many scientists (Lagrange, Jacobi,
Poincaré, . . .) to facilitate the determination of integral curves of Hamiltonian sys-
tems. It was observed that the knowledge of one real-valued first integral often
allows the reduction by two units of the dimension of the phase space in which
solutions are searched for.
Sniatycki and Tulczyjew [37] and, when first integrals come from the momentum
map of a Lie group action, Meyer [34], Marsden and Weinstein [33], developed a
geometric presentation of this reduction procedure, widely known now under the
name “Marsden-Weinstein reduction”.
Another way in which symmetries of a Hamiltonian system can be used to facili-
tate the determination of its integral curves was discovered around 1750 by Euler
when he derived the equations of motion of a rigid body about a fixed point. In
a short Note published in 1901 [36], Henri Poincaré formalized and generalized
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this reduction procedure, often called today, rather improperly, “Lagrangian reduc-
tion” while the equations obtained by its application are called the “Euler-Poincaré
equations” [7, 8].

5.1. The Marsden-Weinstein Reduction Rrocedure

Theorem 3. Let (M,ω) be a connected symplectic manifold on which a Lie group
G acts by a Hamiltonian action Φ, with a momentum map J : M → G∗. Let
ξ ∈ J(M) ⊂ G∗ be a possible value of J . The subset Gξ of elements g ∈ G such
that Φg

(
J−1(ξ)

)
= J−1(ξ) is a closed Lie subgroup of G.

If in addition ξ is a weakly regular value of J in the sense of Bott [6], J−1(ξ) is
a submanifold of M on which Gξ acts, by the action Φ restricted to Gξ and to
J−1(ξ), in such a way that all orbits are of the same dimension. For each x ∈
J−1(ξ) the kernel of the two-form induced by ω on J−1(ξ) is the space tangent at
this point to itsGξ-orbit. LetMξ = J−1(ξ)/Gξ be the set of all these orbits. When
Mξ has a structure of smooth manifold such that the canonical projection πξ :
J−1(ξ) → Mξ is a submersion, there exists on Mξ a unique symplectic form ωξ

such that π∗ξωξ is the two-form induced on J−1(ξ) by ω. The symplectic manifold
(Mξ, ωξ) is called the reduced symplectic manifold (in the sense of Marden and
Weinstein) for the value ξ of the momentum map.

Proof: Proposition 15 shows that there exists an affine action a of G on G∗ for
which the momentum map J is equivariant. The subset Gξ of G is therefore the
isotropy subgroup of ξ for the action a, which proves that it is indeed a closed
subgroup of G. A well known theorem due to Cartan allows us to state that Gξ is
a Lie subgroup of G.
When ξ is a weakly regular value of J , J−1(ξ) is a submanifold of M and, for
each x ∈ J−1(ξ), the tangent space at x to this submanifold is kerTxJ (it is the
definition of a weakly regular value in the sense of Bott). Let N = J−1(ξ) and let
iN : N →M be the canonical injection. For all x ∈ N , the vector spaces kerTxJ
all are of the same dimension dimN , and dim

(
TxJ(TxM)

)
= dimM − dimN .

Corollary 1 shows that TxJ
(
TxM

)
is the annihilator of Gx. Therefore for all x ∈

N the isotropy subalgebras Gx are of the same dimension dimG−dimM+dimN .
TheGξ-orbits of all points x ∈ N are all of the same dimension dimGξ−dimGx.
Corollary 1 also shows that orth(kerTxJ) = orth(TxN) = Tx

(
Φ(G, x)

)
. There-

fore, for each x ∈ N

ker(i∗Nω)(x) = TxN ∩ orth(TxN) = TxN ∩ Tx
(
Φ(G, x)

)
= Tx

(
Φ(Gξ, x)

)
.

It is indeed the space tangent at this point to its Gξ-orbit. When Mξ = N/Gξ has
a smooth manifold structure such that the canonical projection πξ : N → Mξ is a
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submersion, for each x ∈ N the kernel of Txπξ is ker(i∗Nω)(x), and the existence
on Mξ of a symplectic form ωξ such that π∗ξ (ωξ) = i∗Nω easily follows. �

Proposition 20. The assumptions made here are the strongest of those made in
Theorem 3: the set J−1(ξ)/Gξ has a smooth manifold structure such that the
canonical projection πξ : J−1(ξ)/Gξ is a submersion. Let H : M → R be a
smooth Hamiltonian, invariant under the action Φ. There exists an unique smooth
function Hξ :Mξ → R such that Hξ ◦πξ is equal to the restricton of H to J−1(ξ).
Each integral curve t 7→ φ(t) of the Hamiltonian vector field XH which meets
J−1(ξ) is entirely contained in J−1(ξ), and in the reduced symplectic manifold
(Mξ, ωξ) the parameterized curve t 7→ πξ ◦ φ(t) is an integral curve of XHξ

.

Proof: As in the proof of Theorem 3, we set N = J−1(ξ) and denote by iN :
N → M the canonical injection. Let ωN = i∗Nω. Since H is invariant under the
action Φ, it keeps a constant value on each orbit of Gξ contained in N , so there
exists on Mξ an unique function Hξ such that Hξ ◦ πξ = H ◦ iN . The projection
πξ being a surjective submersion, Hξ is smooth. Noether’s theorem (2) proves that
the momentum map J remains constant on each integral curve of the Hamiltonian
vector field XH . So if one of these integral curves meets N it is entirely contained
in N , and we see that the Hamiltonian vector field XH is tangent to N . We have,
for each x ∈ N

π∗ξ

(
ι
(
Txπξ

(
XH(x)

))
ωξ

(
πξ(x)

))
= ι

(
XH(x)

)(
i∗Nω(x)

)
= −d(i∗NH)(x)

= −π∗ξ
(
dHξ

)
(x) = π∗ξ

(
ι(XHξ

)ωξ

)
(x).

Since πξ is a submersion and ωξ a non-degenerate two-form, this implies that for
each x ∈ N , Txπξ

(
XH(x)

)
= XHξ

(
πξ(x)

)
. The restriction of XH to N and XHξ

are therefore two vector fields compatible with respect to the map πξ : N → Mξ,
which implies the stated result. �
Remark 7. Theorem 3 and Proposition 20 still hold when instead of the Lie group
action Φ we have an action φ of a finite-dimensional Lie algebra. The proof of
the fact that the Gξ-orbits in J−1(ξ) all are of the same dimension can easily be
adapted to prove that the vector spaces {φ(x);X ∈ Gξ}, with x ∈ J−1(ξ), all are
of the same dimension and determine a foliation of J−1(ξ). We have then only to
replace the Gξ-orbits by the leaves of this foliation.

5.1.1. Use of the Marsden-Weinstein Reduction Procedure
Theorem 3 and Proposition 20 are used to determine the integral curves of the
Hamiltonian vector field XH contained in J−1(ξ) in two steps

• their projections on Mξ are first determined: they are integral curves of
the Hamiltonian vector field XHξ

. This step is often much easier than the
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full determination of the integral curves of XH , since the dimension of the
reduced symplectic manifold Mξ is smaller than the dimension of M .

• Then these curves themselves are determined. This second step, called re-
construction, involves the resolution of a differential equation on the Lie
group Gξ.

Many scientists (T. Ratiu, R. Cushman, J. Sniatycki, L. Bates, J.-P. Ortega, . . .)
generalized this reduction procedure in several ways: when M is a Poisson mani-
fold instead of a symplectic manifold, when ξ is not a weakly regular value of J ,
etc. The reader will find more results on the subject in the recent book by Ortega
and Ratiu [35].

Reduced symplectic manifolds occur in many applications other than the deter-
mination of integral curves of Hamiltonian systems. The reader will find such
applications in the book by Guillemin and Sternberg [15] and in the papers on the
phase space of a particle in a Yang-Mills field [40, 43]).

5.2. The Euler-Poincaré Equation

In his Note [36], Poincaré writes the equations of motion of a Lagrangian mechan-
ical system when there exists a locally transitive action of a finite-dimensional Lie
algebra on its configuration space. Below we translate his results in the Hamilton-
ian formalism.

Proposition 21. Let G be a finite-dimensional Lie algebra which acts, by an action
φ : G → A1(N), on a smooth manifold N . The action φ is assumed to be locally
transitive, which means that for each x ∈ N ,

{
φ(X)(x) ;X ∈ G

}
= TxN . Let

φ̂ : G → A1(T ∗N) be the map which associates to each X ∈ G the canonical lift
to T ∗N of the vector field φ(X) on N (4). The map φ̂ is a Hamiltonian action of
G on (T ∗N, dηN ) which admits the map J : T ∗N → G∗, given by⟨

J(ξ), X
⟩
= ι

(
φ̂(X)

)
ηN (ξ), X ∈ G, ξ ∈ T ∗N

as a momentum map. Let H : T ∗N → R be a smooth Hamiltonian, which comes
from a hyper-regular Lagrangian L : TN → R (hyper-regular means that the
associated Legendre map L : TN → T ∗N is a diffeomorphism). Let ψ : I → T ∗N
be an integral curve of the Hamiltonian vector fieldXH defined on an open interval
I and let V : I → G be a smooth parameterized curve in G which satisfies, for
each t ∈ I

φ
(
πN ◦ ψ(t), V (t)

)
=

d
(
πN ◦ ψ(t)

)
dt

· (3)
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The curve J ◦ψ : I → G∗, obtained by composition with J of the integral curve ψ
of the Hamiltonian vector field XH , satisfies the differential equation in G∗(

d

dt
− ad∗V (t)

)(
J ◦ ψ(t)

)
= J

(
d1L

(
πN ◦ ψ(t), V (t)

))
. (4)

We have denoted by L : N × G → R the map

(x,X) 7→ L(x,X) = L
(
φ(X)(x)

)
, x ∈ N, X ∈ G,

and by d1L : N × G → T ∗N the partial differential of L with respect to its first
variable.

Equation (4) is called the Euler-Poincaré equation, while Equation (3) is called the
compatibility condition.

The reader is referred to [32] for the proof of this Proposition.

5.2.1. Use of the Euler-Poincaré Equation for Reduction.
Poincaré observes in his Note [36] that the Euler-Poincaré equation (4) can be use-
ful mainly when its right hand side vanishes and when it reduces to an autonomous
differential equation on G∗ for the parameterized curve t 7→ J ◦ ψ(t). The first
condition is satisfied when the Hamiltonian system under consideration describes
the motion of a rigid body around a fixed point in the absence of external forces
(Euler-Poinsot problem). The second condition generally is not satisfied, since the
Euler-Poincaré equation involves the parameterized curve t 7→ V (t) in G, whose
dependence on J ◦ ψ(t) is complicated.
However„ this simplification occurs when there exists a smooth function h : G∗ →
R such that

H = h ◦ J
which implies that H is constant on each level set of J . Then it can be shown
that the Euler-Poincaré equation becomes the Hamilton equation on G∗ for the
Hamiltonian h and its canonical Poisson structure.
If we assume that the manifold N is a Lie group G and that φ : G → A1(G)
of its Lie algebra is the action associated to the action of G on itself by trans-
lations on the left (respectively, on the right), φ̂ is Lie algebra action associated
to the canonical lift to T ∗G of the canonical action of G on itself by translations
on the left (respectively, on the right). The conditions under which the Euler-
Poincaré equation can be used for reduction are exactly the same as those under
which the Marsden-Weinstein reduction method can be applied, but for the canoni-
cal lift to T ∗G of the action ofG on itself by translations on the right (respectively,
on the left). Moreover, applications of these two reduction methods lead to essen-
tially the same equations: the only difference is that the Euler-Poincaré reduction
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method leads to a differential equation on G∗, while the Marsden-Weinstein reduc-
tion method leads, for each value of the momentum map, to the same differential
equation restricted to a coadjoint orbit of G∗). The reader will find the proof of
these assertions in [30, 32].
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