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THE SPINNING GAS CLOUDS WITH PRECESSION:
THE SYMMETRY GENERATORS

BERNARD GAFFET

IRFU, CEN Saclay, F91191 Gif-sur-Yvette, France

Abstract. The Dyson model of a spinning ellipsoidal gas cloud expanding
into a vacuum has been found to be Liouville integrable under certain ad-
ditional assumptions, such as the absence of either vorticity or of angular
momentum. Here we present a new formulation in the form of a 4x4 matrix
equation, which generalizes a similar result obtained in rotationless cases.
This implies to consider an extended affine space of seven dimensions, in
which the seven coordinates of the point-mass representative of the cloud
obey differential equations of the same general form as those defining the
elliptic functions. This leads very directly to the linearization of the system
in the so-called degenerate cases. We obtain also explicit expressions for the
symmetry generators, a prerequisite in the task of constructing a Backlund
transformation.

1. Introduction

Here we consider the model of a spinning cloud of gas of ellipsoidal shape, ex-
panding into a vacuum, proposed by Dyson [5]. This belongs to a more general
class of self-gravitating models, studied in particular by Dirichlet [4], Riemann
[19], Chandrasekhar [3] in the case of incompressible fluids, and by Ovsiannikov
[18], Dyson and by Fujimoto [6] in the compressible case.
The Dyson model becomes completely integrable by quadratures (Gaffet [8], here-
after Paper I) in the absence of either vorticity or of angular momentum, when the
cloud is constituted of an ideal gas with the adiabatic index γ = 5/3 characteristic
of monatomic gases.
Under the restriction of rotation about a fixed principal axis, it has been found
(Gaffet [7, 9]) that the equations of motion are amenable to the puzzling form

Mijx
′j = 0 (1)
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in which M is a 4×4 matrix, xi (i= 1, 2, 3) are the basic functions, x4 is a quadratic
function of the latter, and a prime denotes derivation. The remarkable facts are
that the matrix elements of M are simply linear functions of the xi, and that the
latter are very closely related to a coordinate system, which makes the equations
of motion manifestly separable. One of the motivations of the present work was to
extend these results to another sub-case of interest, namely that of minimal energy
with precession, introduced in references [11] and [12] (hereafter Paper II). In
Section 3 we propose for it a matrix formulation closely related with (1), and show
that it admits a natural formulation in terms of Wronskians constructed from the
four unknown functions.

In Section 4, through an extension of the space of functions to eight dimensions
- extension suggested by our earlier works, Paper II and [14] (hereafter Paper III)
- we find that these new unknowns satisfy a system with properties reminiscent
of those of Riccati systems, and in fact analogous to the equations defining the
elliptic functions of order two. This turns out to be a powerful tool for a deeper
study of its properties, and leads us, first to obtain a simple expression of the in-
tegrating factor (Section 4.3) associated with each Liouville torus of this Liouville
integrable Hamiltonian system (Whittaker [22]), then to an explicit determination
of the second symmetry generator (Section 5). We remark that the finding of the
second generator is an unavoidable step (see Section 5.2) in the task of generaliz-
ing to the minimal energy cases the Backlund transformation obtained by Gaffet
[7] in the cases without rotation.

Another remarkable by-product of the new formulation presented here is the sim-
plicity with which it leads to the linearization in the sub-cases with minimal energy
called “degenerate” (Section 6).

2. The Equations of Motion in General, and in the Block-Diagonal
Cases

2.1. The Equations of Motion and their First-Integrals

In the case of the Dyson model with the restricting conditions mentioned above, the
equations of motion have already been derived in earlier works [9, 10] and involve
a 3× 3 symmetric and traceless velocity matrix v, together with a diagonal matrix
∆ with unit determinant. The diagonal part of v represents the rate of deformation
of the cloud, and its off-diagonal part is related with the angular velocity matrix.
The symmetric nature of v is a consequence of the assumed absence of vorticity,
and the vanishing of the trace results from the fact that the expanding motion of
the cloud can be (and has been) treated separately.
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The diagonal matrix ∆ = (∆1,∆2,∆3) has components which are proportional to
the squares of the principal axes of the cloud. The equations of motion are deriv-
able from a Hamiltonian (I, Appendix A) with time coordinate τ say - which is
a function of the physical time t (Anisimov and Lysikov [2], see also [10], equa-
tions (4.3), (4.4) therein) but the appropriate independent variable - with respect to
which the Painleve property is conjectured to hold - is

u =

∫
Tc dt =

∫
X0 dτ

where Tc is the temperature of the cloud, and X0 = Tr∆. The equations of motion
then assume the form

d

du
ln∆i = 2vii,

dv

du
+ v2 + [v, ω]− 1

∆
= kI (2)

where ω is the (antisymmetric) angular velocity matrix

ωij =
∆i +∆j

∆i −∆j
vij

k an a priori arbitrary scalar function (which is defined by (2) itself) and I the unit
matrix.
A useful equivalent formulation involves the following set of variables (Paper I)

Xn = Tr(vn∆), Yn = Tr(vn/∆)

in which n= 0,1,2, and

T = −1/2Tr(v2), P = det(v)

and reads

T ′(u) = 3P − Y1, P ′(u) = Y2 + 2/3T (Y0 − T ) (3)

X ′
0(u) = 2X1

X ′
1(u) = X2 + 3−X0(Y0 + 2S/3) (4)

X ′
2(u) = −2/3X1(2T + Y0)

Y ′
0(u) = −2Y1

Y ′
1(u) = 2/3Y0(Y0 − T )− 3Y2 − 2X0 (5)

Y ′
2(u) = 4/3Y1(2T + Y0)− 4PY0 + 2X1.
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These eight variables in addition satisfy an algebraic constraint (Paper I, Section
5.2 therein)

K6(Xn, Yn, T, P ) = 0.

The energy constant m which is canonically conjugate to the time τ is given by

9m = X0X2 −X2
1 + 3X0

and the total angular momentum j2 by

j2 = X0X2 −X2
1 + 3Y2 + 4TY0

where j is the angular momentum vector in the rotating frame

jk = (∆i −∆j)vij , i, j, k = circ. perm. of 1, 2, 3.

There are in addition two integrals of motion of the sixth degree in velocities,
whose expression involves a three-vector j̃ related to the angular momentum vector
j, as

j̃ = −∆j.

The first one, L6, can be written compactly in terms of a pair of triple products

L6 = L66 + L64, L66 = (j̃, vj̃, v2j̃), L64 = −3(j, j̃, vj̃) (6)

where the lower indices are a reminder of the degree in velocities. The triple prod-
uct

K66 = (j, vj, v2j) (7)

will also be of interest in what follows.

The remaining constant of motion ϵ admits a compact expression as well, involving
two matrices U and V (Paper III)

−4ϵ = detU +Tr(2UV + U + 2V ) + j̃2/3 (8)

with

U = ∆−1(v2 + 4T/3)∆−1, V = ∆(v2 + T/3).

We note that detU = detV = P 2 + 4T 3/27.
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2.2. The Minimal Energy Cases

Given a particular choice of all other integrals of motion, the energy constant m
cannot be less than a minimum value m0 if at least a part of the Liouville torus is to
remain real. At this point the exterior product of the four one-forms corresponding
to the constants of motion becomes zero, since m is an extremum

dm ∧ dj2 ∧ dϵ ∧ dL6 = 0. (9)

The resulting relation between the integrals has been derived explicitly (see Gaffet
[13]), and admits a rational parametrization in terms of three parameters h, l,K

m =
(2y + 1)(1−K)

3p

j2 =
6K(1− y)

p (10)

ϵ =
2K(x− 1)

x

L6 = 27
K2

xy
(K − 1 + 2y − xy)

where x = h3, y = l3, p = hl.
The corresponding Liouville tori are two-dimensional surfaces in the space of the
eight coordinates (Xn, Yn, T, P ). The extra condition on the Liouville tori im-
posed by (9) can be expressed in a simple way in terms of the vectors j and j̃
[11]

j · j̃ = f12 = −3K(S +X0/p) (11)
where

S = T − Y0. (12)

Although there is only one independent condition, the following one holds as well

j̃2 = f22 = cX(
X2

0

1−K
− 2Y0)− 9K (13)

with cX = 3K/p.
Using the above conditions (11) and (13), together with the conditions obtained by
their differentiation, one gets an algebraic system (see [11], Section 3.2 therein)
for the variables X1, Y1, P (which are the variables of odd degree in velocities).
Choosing for definiteness the case m = 5, j2 = 12, they read

3X2
1 −X0Y

2
1 = A1(X0, Y0, T )

3X1Y1 + Y0Y
2
1 = −B1

(Y 2
0 − 3X0)(P + Y1)− Ã1X1 + C1Y1 = 0
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where A1, Ã1, B1, C1 are polynomials in (X0, Y0, T )

Ã1 = T +
cXX0

K − 1

A1 = 4/3TX0(Y
2
0 − 3X0) +X0Y0(33 +

30

K − 1
−X0)

+ cXX3
0/(1−K) + 9X0(1−K)− 135

B1 = T [4/3Y 3
0 − 5X0Y0 + 9(1−K)]− Y 2

0 [X0 − 33 + 30/(1−K)]

+ cXX2
0Y0/(1−K) + 3X2

0 + 45X0/(K − 1)

C1 = Y0(T/3− Y0) + 2X0 + 15/(1−K).

Taking into account the condition imposed by the constancy of the integral ϵ (see
equation (8)), which is the form

(P + Y1)
2 = S3(X0, Y0, T )

one obtains explicit expressions for the products X2
1 , X1Y1, Y

2
1 in terms of X0, Y0, T

only

X2
1 = P7/D4, X1Y1 = Q7/D4, Y 2

1 = R7/D4

where P7, Q7, R7 are polynomials and

D4 = X0Ã1
2
+ 2Y0Ã1C1 + 3C2

1 . (14)

We note that when D4 = 0 on the Liouville torus, the polynomials P7, Q7, R7 also
vanish and the variables X1, Y1 determined by (2.23) are no longer single-valued.
The line D4 = 0 is in fact a double line on the torus, when considered in the
coordinate system (X0, Y0, T ).

2.3. The Block-Diagonal Cases

In the cases of rotation about a fixed principal axis, the velocity matrix v becomes
block-diagonal, and it has been found [9] that the equations of motion can be writ-
ten in matrix form

Mijx
′j(u) = 0 (15)

where M is a 4 × 4 symmetric matrix with coefficients linear in the variables xi,
and has, of course, zero determinant. The variable x4 is not independent, and is
a quadratic combination of the other xi. As a result, the equation of the Liouville
torus, detM = 0, is a quartic polynomial in (x1, x2, x3). Equation (15) only
determines the relative scale of the derivatives x′i, but their absolute scale can also
be found, as

x′ix′j = Cij (16)
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where Cij is the cofactor matrix.
There are at least three remarkable things to be pointed out about equation (15).
The first is that the lack of linear independence of the four equations that it repre-
sents, precisely gives rise to one of the equations of the Liouville torus. A second
is that the dependence of the matrix M on the four variables should be so simple.
A third is that the associated equation (16) has a very simple form too, when the
independent variable is chosen to be the one (u) with respect to which the Painleve
property holds (Weiss et al [21], Kowalevski [16], [17], Ince [15]).
We show in the next section that a formulation analogous to (15) also holds in the
minimal energy cases with precession.

3. A 4×4 Matrix Formulation Applicable to the Precessing Cases

3.1. A 3×3 Matrix Equation

We now go back to the minimal energy cases with precession defined in Section
2.2. For any given values of the integrals m and j2, the remaining integrals L6 and ϵ
are rational functions of the parameter K. As a first step, we look for a 3×3 matrix
relation similar to (15), where the matrix coefficients are functions of X0, Y0, T and
of X2, and the column vector is constituted by the variables (X1, Y1, P ) which are
of odd degree (respectively 1, 1 and 3) in velocities. The remaining Y2 can be
eliminated using the values chosen for m and j2

Y2 = −4/3TY0 +X0 + j2/3− 3m.

Using the general expressions of j2, j·, j̃, j̃2 given in Paper I (equation (4.6)
therein), we obtain by differentiation of equation (11) the following first compo-
nent of a matrix equation of the form: Aijx

j = 0, where xj stands for the column
vector (X1, Y1, P )

−A1jx
j = (Y2 + 2cX)X1 + (X2 + 3K)Y1 + [X0Y0 + 9(K − 1)]P = 0.

Similarly, differentiation of equation (13) gives

A2jx
j = (T +

cXX0

K − 1
)X1 + (Y2 + TY0 − cX)Y1 + (3X0 − Y 2

0 )P = 0.

We remark that A13 and A23 may be identified with the first two components of
the cross-product (

−X0 3(1−K) Y0
−Y0 X0 3

)
(17)

of which the third component is A33 = 3Y0(1−K)−X2
0 . This suggests choosing

as third row of our matrix the linear combination satisfying

−Y0A1j +X0A2j + 3A3j = 0.
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Now, as a result of the general expressions of j2, j·, j̃, j̃2 mentioned above, and
of equations (11), (13), the quadratic combinations formed with X1 and Y1 satisfy
the following relations

X2
1 = F11 = X0X2 + 3Y2 + 4TY0 − j2

X1Y1 = F12 = −[X0Y2 + Y0X2 + T (X0Y0 + 3)]− f12 (18)

Y 2
1 = F22 = Y0Y2 + 3X2 + 4TX0 − f22.

It then turns out that, taking account of the identity F22X1 − F12Y1 = 0, the
expression of A3j can be simplified significantly, and the third equation becomes

A3jx
j = (X2 + TX0 + 3K)X1 + (1−K)TY1 + [3Y0(1−K)−X2

0 ]P = 0.

This completes the determination of the 3×3 matrix A. The compatibility condition
detA = 0 is of the second degree in X2, and may be viewed as determining
X2 as an implicit function of (X0, Y0, T ). The eigenvector (X1, Y1, P ) is fully
determined, apart from its sign, by the relations (18). Finally, the requirement that
the derivatives of (X0, Y0, T ) satisfy the equations (3)-(5), namely

X ′
0 = +2X1, Y ′

0 = −2Y1, T ′ = 3P − Y1

makes the equation Aijx
j = 0 a closed differential system, of the third order.

A related formulation, which involves a partially symmetric matrix AS , may also
be found by forming the linear combinations, inspired by (17)

AS1j = −X0A1j + 3(1−K)A2j + Y0A3j

AS2j = −Y0A1j +X0A2j + 3A3j

AS3j = A3j .

The result is the following matrix

AS =

 F22 −F12 0
−F12 F11 0
A31 A32 A33

 .

It then follows that

detA = −detAS

A33
= F 2

12 − F11F22.

3.2. The Additional Constraint ϵ = constant

In order that the above system should describe the evolution of a spinning cloud, it
is necessary to incorporate an additional constraint, so that the integral of motion
ϵ assumes a constant value (given by equation (10)). This gives rise to a new con-
straint on the variables (X0, Y0, T,X2) in addition to that implied by detA = 0, in
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agreement with the two-dimensional nature of the Liouville torus. The derivative
of X2 then coincides with that given by equation (4), namely

X ′
2(u) = −2/3X1(2T + Y0).

With equation (4) incorporated, the matrix equation becomes four-dimensional,
and may be written

Bijz
′j = 0 (19)

where Bij is a 4 × 4 matrix and zj may be chosen to be the column vector
(X0, Y0, T,X2).

3.3. The Matrix Equation as Simple Relations Between Wronskians

For reasons that will become apparent in the next Section 4, a choice of variable
more appropriate than the above zj turns out to be (X0, Y0, S, U), where S has
already been defined (equation (12)) and

−U = X2 + 3 + TX0/3

and, as a result, the derivative of U is given by

3U ′ = 2X1(T + Y0) +X0(Y1 − 3P ).

Defining the Wronskian of two functions F , G which are linear combinations of
(X0, S, U) as

[F,G] = FG′ −GF ′

whereas, by definition, when one of the functions is Y0

[Y0, F ] = −[F, Y0] = 2Y0F
′ − FY ′

0

the four equations of motion encapsulated in equation (19) are found to express
simple relations between Wronskians

SU ′ + 6(1−K)S′ + S/3[X0, S]+[Y0, U ] = (X0 +
j2

3
− 3m+ 2cX)X ′

0

2X0S
′ + 6(T +

cXX0

1−K
)X ′

0 − Y0/3[Y0, S] = (
j2

3
− 3m− cX)Y ′

0 (20)

(K − 1)(3X ′
0 − [Y0, S]) + [X0, U ]−X0/3[X0, S] = 0

3U ′ = [S,X0] + [Y0, X0]. (21)

The equations (20) correspond to the rows 1,2,3 of the matrix equation Aijx
j = 0,

and equation (21) to the fourth line of the matrix equation (19).
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4. The Eight-Dimensional Space of Functions Z

In the preceding Section 3, we have obtained a new formulation of the equations of
motion (equation (19)) in close analogy with that (equation (15)) that was found in
the block-diagonal cases. We also observed that it may be written in the equivalent
form (20)-(21) where the Wronskians play a major role. This strongly suggests
that X0, S, U are, in some sense, variables of the first degree, while Y0 itself (and
hence also T ) is of the second degree. This view is supported by the expressions
of X ′2

0 , X ′
0Y

′
0 , Y

′2
0 , which are of the form (see equation (18))

X ′2
0 = −4/3TX2

0 + ...

X ′
0Y

′
0 = −8/3TX0Y0 + ... (22)

Y ′2
0 = −16/3TY 2

0 + ....

where the dots on the right sides stand for polynomial terms of lower degree.

4.1. The Seven Variables of the First Degree

The expressions of the remaining quadratic combinations X ′
0S

′, X ′
0U

′, etc. do
not however admit polynomial expressions in terms of the four basic variables
X0, S, U, T . This suggests enlarging this set of variables so as to restore a poly-
nomial behaviour, and a natural candidate is the set of eight variables Sn first con-
sidered in Paper II (Section 4 therein), which are seventh degree polynomials in
X0, Y0, S - or, rather the seven ratios Sn/S1 (S1 = D4, see equation (14)).
It has been shown in Paper III that (X0, S, U, L66,K66) (see equations (6), (7)) and
another variable denoted by ZW0 (equation (3.19) in Paper III), all are linear com-
binations of the ratios Sn/S1 (we note that U is a linear function - with constant
coefficients - of X0 and of the variable denoted by (jV j) (Paper III, equation (3.7)
therein).
If we then consider X0, S, U, L66,K66, ZW0 to be quantities of the first degree,
then we find that not only the products X ′

0S
′, X ′

0U
′, S′2, S′U ′, U ′2 all admit poly-

nomial expressions in that extended space, but in addition to that, their leading
terms are −4/3TX0S,−4/3TX0U etc., in agreement with the general form of
equation (22).
More generally, letting

Z0 = 1, Z1 = X0, Z2 = S, Z3 = U

Z4 = L66, Z5 = K66, Z6 = ZW0

and letting Z7 be a seventh, linearly independent, linear combination of the ratios
Sn/S1 (see also the next Section 4.2 for an independent definition of Z7), it is
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found that, for all i, j = 1,...,7

Z ′
i(u)Z

′
j(u) = Pij(Zn) = −4/3TZiZj + ... (23)

where Pij is a quartic polynomial. (The variable T , or Y0 = T −S, coincides with
a quadratic combination of Zn).
Moreover, the second derivatives Z ′′

i (u) are found to be given by

Z ′′
i (u) = Ki(Zn) = −8/3TZi + ... (24)

where Ki is a cubic polynomial.
The fundamental properties of equations (23) and (24) are characteristic of certain
systems of Riccati equations, and fully account for the particularly simple form
of the equations of motion in terms of Wronskians (Section 3.3), and for the as-
sociated matrix formulation of Section 3.2. The similarity with Riccati equations
is clearly related with the Painleve property exhibited by this differential system.
Moreover, equations (23) and (24) may be viewed as constituting a generalization,
to a seventh dimensional space, of the equations defining the elliptic functions of
order two.

4.2. The Ten Quadratic Relations Satisfied by Zn

It should be noted that there are 28 differential equations of the form (Paper II,
equation (4.3)), although the number of unknown functions is only seven. The
associated compatibility condition is the following set of ten linearly independent
quadratic relations

Z3Z5 = cZ1Z5 +Q1(Z1, . . . , Z4) (25)

Z6 = Q2(Z1, . . . , Z5)

Z1Z6 = Q3(Z1, . . . , Z5) (26)
Z3Z6 = Q4(Z1, . . . , Z5)

Z4Z6 = Q5(Z1, . . . , Z5)

Z7 = Q6(Z1, . . . , Z5)

Z1Z7 = Q7(Z1, . . . , Z5)

Z3Z7 = Q8(Z1, . . . , Z6) (27)

Z4Z7 = Q9(Z1, . . . , Z6)

Z5Z7 = Q10(Z1, . . . , Z6)

where c is a constant and the Qn are quadratic functions.
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We note that the variable Z7 may thus be defined as a quadratic combination of
Z1, ..., Z5 such that Z5Z7 is effectively of the second degree only - that product
coincides, on the Liouville torus, with some quadratic combination of Z1, ..., Z6.
Of course, Z7 is thus only determined up to an additive linear combination of
Z0, ..., Z6.
Although the ten relations (25)-(27) are linearly independent, only five of them are
functionally independent and, taken together, they constitute the equations of the
two-dimensional Liouville torus, i.e., the torus is the intersection of ten quadrics
in the seven-dimensional space with coordinates Zn. It may also be viewed as the
intersection of the five quadrics (25), (26) in the six-dimensional space spanned by
Z1, ..., Z6.
In Paper II (equation (4.6) therein) we actually found sixteen different ways of
writing the following equation, valid all over the Liouville torus

B2 −AC = 0

where A, B, C are certain linear combinations of the eight Zn and the preceding
results show that at most ten of these expressions can be linearly independent.
In the same work (equation (4.8) therein) we also obtained sixteen different ways
of expressing the Liouville torus in the form

P (A,B,C,D) = 0

where P is an homogeneous quartic polynomial, and A, B, C, D are certain linear
combinations of the eight Zn.

4.3. The Integrating Factor

In general, integral curves of a differential system reducible to the first order, lo-
cated on a two-dimensional surface F (x, y, z) = 0, are given by an equation of the
form

QdΦ =
z′dy − y′dz

Fx
=

x′dz − z′dx

Fy
=

y′dx− x′dy

Fz

where Φ is a constant on each curve (or “trajectory”), and Q may be termed the
integrating factor.
In the block-diagonal cases ([9], equation (4.14) therein) it was found that, using
the 4 × 4 matrix formulation (see Section 2.3) and letting F = detM , the inte-
grating factor is unity. In the present case where precession is included, letting
F = detA (see Section 3), this is no longer true. We note, however, that in ad-
dition to X0, Y0, S, the determinant detA also involves the variable U , which is a
non-polynomial function of X0, Y0, S

U = SU/D4
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(in the above expression, the numerator is a linear combination of the eight poly-
nomials Sn(X0, Y0, S), and D4 has already been defined (14)). This suggests that
the integrating factor may involve some power of the denominator D4. As it turns
out, the trajectories are determined by the equation

D4dΦ =
S′dX0 −X ′

0dS

∂(detA)/∂Y0
(28)

where dΦ is an exact differential, i.e., the integrating factor is just Q = D4. It
is worth noting that the denominator of dΦ, namely D4∂(detA)/∂Y0, coincides
with a cubic combination of the variables Zn, as was the case in the block-diagonal
cases, where the determinant of M(x1, x2, x3) is a quartic.

5. The Second Symmetry Generator

Up to now, the independent variable u has only been defined on trajectories, but it
is of course possible to define all over the Liouville torus a variable, ũ say, that will
coincide with u on each trajectory. In the present problem, which is known to be
Liouville integrable, there must exist an explicit expression for its exact differential
dũ. (From now on we will always write u in place of ũ for simplicity).
There are thus two basic symmetry generators: ∂/∂u|Φ, whose explicit expression
is just the set of the equations of motion, and ∂/∂Φ|u, whose explicit expression is
yet to be found. The two generators of course commute.
Let us denote by δ the operation of the second generator

δF = ∂F/∂Φ|u.

Using for definiteness the coordinate system (X0, S), the following relations be-
tween exact differentials hold

dX0 = X ′
0du+ δX0dΦ, dS = S′du+ δSdΦ

and, conversely

dΦ =
S′dX0 −X ′

0dS

S′δX0 −X ′
0δS

, du =
−δSdX0 + δX0dS

S′δX0 −X ′
0δS

· (29)

The first equation in (29) merely states that S′δX0 −X ′
0δS = ∂(X0, S)/∂(Φ, u)

is the integrating factor.

5.1. The Canonical Time τ and the Second Generator

We now point out a useful connection between the definition (2) of the time τ
canonically conjugated to the energy m, and the second generator. In the same
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way as in the case of the variable u, the definition of τ may be extended so as to
make dτ an exact differential on the Liouville torus

dτ =
du− FdΦ

X0
(30)

and the function F must satisfy the compatibility condition

d

du
(F/X0) +

d

dΦ
(1/X0) = 0

which we rewrite, using the notation [F,G] for the Wronskian FG′ −GF ′

δX0 = [X0, F ]. (31)

That is, knowing the explicit expression (30) of dτ , is the same as knowing the
second generator’s transformation formula for the variable X0. Moreover, it also
gives us the transformation formulae for the u-derivatives of X0 of all order, since
the two generators commute. This leads us to consider the new coordinate system
X0, X1 = X ′

0/2, in which the expression (29) of dΦ becomes

dΦ =
(X ′

1dX0 −X ′
0dX1)

∂(X0, X1)/∂(Φ, u)
·

The new integrating factor is thus

∂(X0, X1)

∂(Φ, u)
= δX0X

′
1 − δX1X

′
0 = 1/2(X ′′

0 δX0 −X ′
0

d

du
δX0). (32)

Comparing this equation with equations (29) and (28)),
∂(X0, S)

∂(Φ, u)
= D4

∂(detA)

∂Y0
= Q̂ say, we get a linear ordinary differential equation for δX0

X ′′
0 δX0 −X ′

0

d

du
δX0 = Q̂

∂X ′
0

∂S
|X0 .

Now, we have seen that F ′(u) is a quantity of degree n+1 when F is of degree n,
in the sense that F ′2 can be identified with a polynomial in Zn of degree 2(n+1).
It is reasonable to assume that this is also true of δF , and that consequently δX0

ought to be a quantity of second degree, which in turn suggests that the function
F of equation (31) may be a linear combination of Zn: F =

∑
cnZn. If so, the

equation (34) becomes easily solvable, as it amounts to a linear algebraic equation
for the eight constants cn. We obtain the following simple result

F = L66.

Thus the exact differential of the time τ is found as

dτ =
(du− L66dΦ)

X0
(33)



128 Bernard Gaffet

and at the same time the action of the second generator on X0 and all its derivatives
is also obtained.

The transformation formula for S then follows from the relation (see equations
(29) and (32))

S′δX0 −X ′
0δS = Q̂

and δS turns out to be of the second degree in the same sense as δX0 is. It admits
an expansion of the form quite analogous to the Wronskian relations (20)-(21) of
Section 3.3

δS =

5∑
1

cnZ
′
n + c6[X0, U ] + c7[S,U ] + (c8X0 + c9S)[X0, S].

Given δX0, the action of the second generator on any other variable can be deter-
mined similarly. Of course, its action on derivatives of S of arbitrary order can be
found by mere u-differentiation, as already mentioned in the case of the derivatives
of X0.

5.2. The Second Generator as an Unavoidable Intermediate Step in the
Search for a Backlund Transformation

In the context of partial differential equations (PDE), a Backlund transformation
(BT) involves a spectral function, which is the solution of a linear equation depend-
ing on one parameter - the spectral parameter - and establishes a correspondence
between solutions of the PDE (Scott [20], Ablowitz [1] et al). In the present case,
a BT will therefore change any trajectory on the Liouville torus into some other.
Now, in the case of an equation possessing the Painleve property with respect to an
independent variable denoted by u, the BT is expected to preserve the value of u
along a trajectory. More precisely, since u is in principle only determined modulo
an additive constant in our case, the BT may be said to amount to a finite transla-
tion of u, together with, of course, a finite translation of the integration constant
Φ, i.e., a finite translation in the (u,Φ) plane (reference [7], Section 4, p.8351). In
particular, the infinitesimal BT, which usually corresponds to the limit of an infinite
value of the spectral parameter, must be a linear combination of the two generators
∂u, ∂Φ. This shows that the determination of the second generator is a necessary
step in the process of finding a Backlund transformation.

Let us note finally that a BT has indeed been found in the rotationless cases (ref-
erence [7] , Section 4 and the “Note Added in Proof”, p.8353), which gives hope
that it may also be found in the cases incorporating precession.
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6. The Linearization of the Degenerate Cases

The linearizability in the degenerate cases - which are characterized by the pres-
ence of a singular line on the Liouville torus, which is also a particular solution -
is the result of the following two circumstances

- The decomposability of the equations (23) into pairs of equations of Riccati,
along a family of sections - (Kx) say - parametrized by x, of the Liouville
torus.

- The fact that the independent variable u may be chosen to be constant along
each section (Kx).

Thus the differential system reduces to equations of the form

Z ′
n(u) = ΩZn + ZnL (34)

where the second degree part on the right-hand-side is ΩZn. As a consequence of
the form of equations (23) Ω2 = −4/3T modulo linear terms, so that the factor

Ω =
7∑
0

ωk(x)Zk

may be chosen to be independent of n. The last term in (34)

ZnL =

7∑
0

ζnk(x)Zk

is of course linear.
The singular line is found to be located on one (or several) hyperplane(s)

Zs =
7∑
0

σkZk = 0

and, keeping in mind that the singular line is a particular solution, there exist at
least one such combination Zs whose derivative assumes the form

Z ′
s(u) = ΩZs + λ(x)Zs.

We note that the λ term on the right-hand-side is reducible and may be eliminated
through an appropriate redefinition of the factor Ω. The Wronskians with Zs then
reduce to

[Zs, Zn] = ZsZnL
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and, upon transformation to the new set of variables Xn = Zn/Zs the differential
system is linearized

X ′
n(u) = [Zs, Zn]/Z

2
s = ZnL/Zs =

7∑
0

ζnk(x)Xk

(we recall that x is a function of u only).
The above method of linearization is applicable to all three cases of degeneracy
defined in [13] (Section 7 therein), and not only to the cases of vanishing L6.

7. Conclusion

In the block-diagonal cases, which are the cases of cloud rotation about a fixed
axis, the equations of motion were found to be amenable to the puzzling form (15),
involving a 4 × 4 matrix M with zero determinant. It was one of the motivations
of the present study to see whether a similar formulation could also exist in the
cases with precession. A close analogue has indeed been found (of Section 3),
and we have shown that its existence is related with the possibility of rewriting
the equations of motion in the form of a differential system presenting the Riccati-
like properties (23) and (24), where the unknown functions are the coordinates
in a seven-dimensional affine space. These properties are in turn related with the
Painleve property exhibited by the system.
This new 4×4 matrix formulation directly leads to a simple and explicit expression
of the integrating factor associated with the integral curves on the Liouville tori
(Section 4.3). Further, the consideration of the seven-dimensional space naturally
leads to a determination of the second symmetry generator, ∂/∂Φ, whose action
on the variable X0 (representing the temperature of the cloud, see equation (2))
is found to be particularly simple (equation (31), where F = L66). This in turn
entails a correspondingly simple and general expression of the differential of the
time τ (canonical conjugate of the energy constant m) in the form of an exact
differential on the Liouville torus (equation (33)). It is worth mentioning here that
an explicit knowledge of the second generator is a required step in the search for a
Backlund transformation that relates the various integral curves of the system (see
Section 5.2).
Finally, the Riccati-like properties of the system are found to provide a direct short-
cut to the linearization of the system in the so-called degenerate cases (Section 6).
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