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Abstract. The Baily-Borel compactification B̂/Γ of an arithmetic ball quo-
tient admits projective embeddings by Γ-modular forms of sufficiently large
weight. We are interested in the target and the rank of the projective map Φ,
determined by Γ-modular forms of weight one. This paper concentrates on
the finite H-Galois quotients B/ΓH of a specific B/Γ(6,8)

−1 , birational to an
abelian surface A−1. Any compactification of B/ΓH has non-positive Ko-
daira dimension. The rational maps ΦH of B̂/ΓH are studied by means of
the H-invariant abelian functions on A−1.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

2. The Transfer of Modular Forms to Meromorphic Functions is
Inherited by the Finite Galois Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

4. Technical Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

5. Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

∗Reprinted from J. Geom. Symmetry Phys. 20 (2011) 69–96.

263



264 Azniv Kasparian

1. Introduction

The modular forms of sufficiently large weight are known to provide projective
embeddings of the arithmetic quotients of the two-ball

B = {z = (z1, z2) ∈ C2 ; |z1|2 + |z2|2 < 1} ≃ SU(2, 1)/S(U2 ×U1).

The present work studies the projective maps, given by the modular forms of
weight one on certain Baily-Borel compactifications B̂/ΓH of Kodaira dimension
κ(B̂/ΓH) ≤ 0. More precisely, we start with a fixed smooth Picard modular

surface A′
−1 =

(
B/Γ(6,8)

−1

)′
with abelian minimal model A−1 = E−1 × E−1,

E−1 = C/Z+Zi. Any automorphism group of A′
−1, preserving the toroidal com-

pactifying divisor T ′ =
(
B/Γ(6,8)

−1

)′
\
(
B/Γ(6,8)

−1

)
acts on A−1 and lifts to a ball lat-

tice ΓH , normalizing Γ
(6,8)
−1 . The ball quotient compactification A′

−1/H = B/ΓH

is birational to A−1/H . We study the ΓH -modular forms [ΓH , 1] of weight one
by realizing them as H-invariants of [Γ(6,8)

−1 , 1]. That allows to transfer [ΓH , 1] to
the H-invariant abelian functions, in order to determine dimC[ΓH , 1] and the tran-
scendence dimension of the graded C-algebra, generated by [ΓH , 1]. The last one

is exactly the rank of the projective map Φ : B̃/ΓH > P([ΓH , 1]).

2. The Transfer of Modular Forms to Meromorphic Functions is
Inherited by the Finite Galois Quotients

Definition 1. Let Γ < SU(2, 1) be a lattice, i.e., a discrete subgroup, whose quo-
tient SU(2, 1)/Γ has finite invariant measure. A Γ-modular form of weight n is a
holomorphic function δ : B → C with transformation law

γ(δ)(z) = δ(γ(z)) = [det Jac(γ)]−nδ(z), γ ∈ Γ, z ∈ B.

Bearing in mind that a biholomorphism γ ∈ Aut(B) acts on a differential form
dz1∧dz2 of top degree as a multiplication by the Jacobian determinant det Jac(γ),
one constructs the linear isomorphism

jn : [Γ, n] −→ H0(B, (Ω2
B)

⊗n)Γ

with the Γ-invariant holomorphic sections of the canonical bundle Ω2
B of B. Thus,

the graded C-algebra of the Γ-modular forms can be viewed as the tensor algebra
of the Γ-invariant volume forms on B. For any δ1, δ2 ∈ [Γ, n] the quotient δ1

δ2
is a

correctly defined holomorphic function on B/Γ. In such a way, [Γ, n] and jn[Γ, n]
determine a projective map

Φn : B/Γ −→ P([Γ, n]) = P(jn[Γ, n]).
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The Γ-cusps ∂ΓB/Γ are of complex co-dimension two, so that Φn extends to the
Baily-Borel compactification

Φn : B̂/Γ −→ P([Γ, n]).

If the lattice Γ < SU2,1 is torsion-free then the toroidal compactification X ′ =

(B/Γ)′ is a smooth surface. Denote by ρ : X ′ = (B/Γ)′ → X̂ = B̂/Γ the
contraction of the irreducible components T ′

i of the toroidal compactifying divisor
T ′ to the Γ-cusps κi ∈ ∂ΓB/Γ. The tensor product Ω2

X′(T ′) of the canonical
bundle Ω2

X′ of X ′ with the holomorphic line bundle O(T ′), associated with the
toroidal compactifying divisor T ′ is the logarithmic canonical bundle of X ′. In [2]
Hemperly has observes that

H0(X ′,Ω2
X′(T ′)⊗n) = ρ∗jn[Γ, n] ≃ [Γ, n].

Let KX′ be the canonical divisor of X ′

LX′(nKX′ + nT ′) = {f ∈ Mer(X ′) ; (f) + nKX′ + nT ′ ≥ 0}

be the linear system of the divisor n(KX′ + T ′) and s be a global meromorphic
section of Ω2

X′(T ′). Then

s⊗n : LX′(nKX′ + nT ′) −→ H0(X ′,Ω2
X′(T ′)⊗n)

is a C-linear isomorphism. Let ξ : X ′ → X be the blow-down of the (−1)-
curves on X ′ = (B/Γ)′ to its minimal model X . The Kobayashi hyperbolicity of
B requires X ′ to be the blow-up of X at the singular locus T sing of T = ξ(T ′).
The canonical divisor KX′ = ξ∗KX + L is the sum of the pull-back of KX with
the exceptional divisor L of ξ. The birational map ξ induces an isomorphism ξ∗ :
Mer(X) → Mer(X ′) of the meromorphic function fields. In order to translate the
condition ξ∗(f) + nKX′ + nT ′ ≥ 0 in terms of f ∈ Mer(X), let us recall the
notion of a multiplicity of a divisor D ⊂ X at a point p ∈ X . If D =

∑
i
niDi is

the decomposition of D into irreducible components then mp(D) =
∑
i
nimp(Di),

where

mp(Di) =

{
1 for p ∈ Di

0 for p ̸∈ Di.

Let L =
∑

p∈T sing

L(p) for L(p) = ξ−1(p) and f ∈ Mer(X). The condition ξ∗(f)+

nL ≥ 0 is equivalent to mp(f)+n ≥ 0 for all p ∈ T sing. Thus, LX′(nKX′ +nT ′)
turns to be the pull-back of the subspace

LX(nKX + nT, nT sing)

= {f ∈ Mer(X) ; (f) + nKX + nT ≥ 0, mp(f) + n ≥ 0, p ∈ T sing}
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of the linear system LX(nKX + nT ). The C-linear isomorphism

Transn := (ξ∗)−1s⊗(−n)jn : [Γ, n] −→ LX(nKX + nT, nT sing)

introduced by Holzapfel in [3], is called transfer of modular forms.
Bearing in mind Hemperly’s result H0(X ′,Ω2

X′(T ′)⊗n) = ρ∗j1[Γ, n] for a fixed
point free Γ, we refer to

ΦH
n : B̂/ΓH −→ P([ΓH , n]) = P(jn[ΓH , n])

as the n-th logarithmic-canonical map of B̂/ΓH , regardless of the ramifications of
B → B/ΓH .
The next lemma explains the transfer of modular forms on finite Galois quotients
B/ΓH of B/Γ to meromorphic functions on X/H . In general, the toroidal com-
pactification X ′

H = (B/ΓH)′ is a normal surface. The logarithmic-canonical bun-
dle is not defined on a singular X ′

H , but there is always a logarithmic-canonical
Weil divisor on X ′

H .

Lemma 1. Let A′ = (B/Γ)′ be a neat toroidal compactification with an abelian
minimal model A and H be a subgroup of G = Aut(A, T ) = Aut(A′, T ′). Then

i) the transfer Transn := (ξ∗)−1s⊗(−n)jn : [Γ, n] −→ LA(nT, nT
sing) of

Γ-modular forms to abelian functions induces a linear isomorphism

TransHn : [ΓH , n] −→ LA(nT, nT
sing)H

of ΓH -modular forms with rational functions onA/H , called also a transfer
ii) the projective maps

ΦH
n : B̂/ΓH > P([ΓH , n]), ΨH

n : A/H > P(LA(nT, nT
sing)H)

coincide on an open Zariski dense subset.

Proof: i) Note that jn[ΓH , n] = jn[Γ, n]
H . The inclusion jn[ΓH , n] ⊆ jn[Γ, n]

follows from Γ ≤ ΓH . If ΓH = ∪n
j=1γjΓ is the coset decomposition of ΓH modulo

Γ, then H = {hi = γiΓ; 1 ≤ i ≤ n}. A Γ-modular form ω ∈ jn[Γ, n] is ΓH -
modular exactly when it is invariant under all γi, which amounts to the invariance
under all hi.
One needs a global meromorphic G-invariant section s of Ω2

A′(T ′), in order to
obtain a linear isomorphism

(ξ∗)−1s⊗(−n) = TransHn j−1
n : jn[ΓH , n] = jn[Γ, n]

H → LA(nT, nT
sing)H .

The global meromorphic sections of the logarithmic-canonical line bundle Ω2
A′(T ′)

are in a bijective correspondence with the families (fα, Uα)α∈S of local mero-
morphic defining equations fα : Uα → C of the logarithmic-canonical divisor
L + T ′. We construct local meromorphic G-invariant equations gα : Vα → C of
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T and pull-back to (fα = ξ∗gα, Uα = ξ−1(Vα))α∈S . Let FA : Ã = C2 → A
be the universal covering map of A. Then for any point p ∈ A choose a lifting
p̃ ∈ F−1

A (p) and a sufficiently small neighborhood W̃ of p̃ on Ã, which is con-
tained in the interior of a π1(A)-fundamental domain on Ã, centered at p̃. The
G-invariant open neighborhood W = ∩g∈GgW̃ of p̃ on Ã intersects F−1

A (T ) in
lines with local equations lj(u, v) = aj(p̃)u+ bj(p̃)v + cj(p̃) = 0. The holomor-
phic function g(u, v) =

∏
g∈G

∏
j
(lj(u, v)) on W is G-invariant and can be viewed as

a G-invariant local defining equation of T on V = FA(W ). Note that FA is locally
biholomorphic, so that V ⊂ A is an open subset, after an eventual shrinking of W̃ .
The family (g, V )p∈A of local G-invariant defining equations of T pullbacks to a
family (f = ξ∗g, U = ξ−1(V ))p∈A of local G-invariant sections of Ω2

A(T
′).

ii) Towards the coincidence ΨH
n |[(A\T )/H] ≡ ΦH

n |[(B/ΓH)\(L/H)], let us fix a basis
{ωi ; 1 ≤ i ≤ d} of jn[ΓH , n] and apply i), in order to conclude that the set
{fi = TransHn j−1

n (ωi) ; 1 ≤ i ≤ d} is a basis of LA(nT, nT
sing)H . Tensoring by

s⊗(−n) does not alter the ratios ωi
ωj

. The isomorphism ξ : Mer(A) → Mer(A′) is
identical on (A \ T )/H . �

3. Preliminaries

In order to specify A′
−1 =

(
B/Γ(6,8)

−1

)′
let us note that the blow-down ξ : A′

−1 →
A−1 of the (−1)-curves maps T ′ to a divisor T = ξ(T ′) with smooth elliptic irre-
ducible components Ti. Such T are called multi-elliptic divisors. Any irreducible
component Ti of T lifts to a π1(A−1)-orbit of complex lines on the universal cover
Ã′

−1 = C2. That allows to represent

Tj = {(u(mod Z+ Zi), v(mod Z+ Zi)) ; aju+ bjv + cj = 0}.

If Tj is defined over the field Q(i) of Gauss numbers, there is no loss of generality
in assuming aj , bj ∈ Z[i] to be Gaussian integers.

Theorem 1 (Holzapfel [4]). Let A−1 = E−1×E−1 be the Cartesian square of the
elliptic curve E−1 = C/Z+Zi, ω1 =

1
2 , ω2 = iω1, ω3 = ω1+ω2 be half-periods,

Q0 = 0(mod Z+ Zi), Q1 = ω1(mod Z+ Zi), Q2 = iQ1, Q3 = Q1 +Q2

be the two-torsion points on E−1, Qij = (Qi, Qj) ∈ A2−tor
−1 and

Tk = {(u(mod Z+ Zi), v(mod Z+ Zi) ; u− ikv = 0} with 1 ≤ k ≤ 4,

T4+m = {u(modZ+ Zi), v(modZ+ Zi) ; u− ωm = 0} for 1 ≤ m ≤ 2 and

T6+m = {u(modZ+ Zi), v(modZ+ Zi) ; v − ωm = 0} for 1 ≤ m ≤ 2.
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Then the blow-up of A−1 at the singular locus
(
T
(6,8)
−1

)sing
= Q00 + Q33 +

2∑
i=1

2∑
j=1

Qij of the multi-elliptic divisor T (6,8)
−1 =

8∑
i=1

Ti is a neat toroidal ball quo-

tient compactification A′
−1 =

(
B/Γ(6,8)

−1

)′
.

Theorem 2 (Kasparian and Kotzev [6]). The group G−1 = Aut(A−1, T
(6,8)
−1 ) =

Aut(A′
−1, T

′) of order 64 is generated by the translation τ33 with Q33, the multi-
plications

I =

(
i 0
0 1

)
, respectively J =

(
1 0
0 i

)
with i∈Z[i] on the first, respectively, the second factor E−1 of A−1 and the trans-
position

θ =

(
0 1
1 0

)
of these factors.

Throughout, we use the notations from Theorem 1 and Theorem 2, without men-
tioning this explicitly. With a slight abuse of notation, we speak of Kodaira-
Enriques classification type, irregularity and geometric genus of A−1/H , H ≤
G−1, referring actually to a smooth minimal model Y of A−1/H .

Theorem 3 (Kasparian and Nikolova [7]). Let

L : G−1 → GL2(Z[i]) = {g ∈ Z[i]2×2 ; det(g) ∈ Z[i]∗ = ⟨i⟩}

be the homomorphism, associating to g ∈ G−1 its linear part L and

L1(G−1) = {g ∈ G−1 ; rk(L(g)− I2) = 1}

= {τn33Ik, τn33Jk, τn33I
lJ−lθ ; 0 ≤ n ≤ 1, 1 ≤ k ≤ 3, 0 ≤ l ≤ 3}.

Then

i) A−1/H is an abelian surface for H = ⟨τ33⟩
ii) A−1/H is a hyperelliptic surface for H = ⟨τ33I2⟩ or H = ⟨τ33J2⟩

iii) A−1/H is a ruled surface with an elliptic base for

H = ⟨h⟩, h ∈ L1(G−1) \{τ33I2, τ33J2} or H=⟨τ33, ho⟩, ho ∈ L(L1(G−1))

iv) A−1/H is a K3 surface for ⟨τn33⟩ ̸= H ≤ K = ker detL, where

K = {τn33IkJ−k, τn33I
kJ2−kθ ; 0 ≤ n ≤ 1, 0 ≤ k ≤ 3}

v) A−1/H is an Enriques surface for H = ⟨I2J2, τ33I
2⟩
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vi) A−1/H is a rational surface for

⟨h⟩ ≤ H, h ∈ {τn33IJ, τn33I2J, τn33IJ2 ; 0 ≤ n ≤ 1} or ⟨τn33I2J2, h1⟩ ≤ H

h1 ∈ {I2mJ2−2m, τm33I, τ
m
33J, τ

m
33I

lJ−lθ ; 0 ≤ m ≤ 1, 0 ≤ l ≤ 3}, 0 ≤ n ≤ 1.

The following lemma specifies some known properties of Weierstrass σ-function
over Gaussian integers Z[i].

Lemma 2. Let σ(z) = z
∏

λ∈Z[i]\{0}

(
1− z

λ

) z
λ
+ 1

2(
z
λ)

2

be the Weierstrass σ-function,

associated with the lattice Z[i] of C. Then

i) σ(ikz) = ikσ(z), z ∈ C, 0 ≤ k ≤ 3

ii) σ(z+λ)
σ(z) = ε(λ)e−πλz−π

2
|λ|2 , z ∈ C, λ ∈ Z[i], where

ε(λ) =

{
−1 if λ ∈ Z[i] \ 2Z[i]
1 if λ ∈ 2Z[i].

Proof: i) follows from

∏
λ∈Z[i]\{0}

(
1− ikz

λ

) ikz
λ

+ 1
2

(
ikz
λ

)2

=
∏

µ= λ

ik
∈Z[i]\{0}

(
1− z

µ

) z
µ
+ 1

2

(
z
µ

)2

.

ii) According to Lang’s book [8]

σ(z + λ)

σ(z)
= ε(λ)eη(λ)(z+

λ
2 ), z ∈ C, λ ∈ Z[i]

where η : Z[i] → C is the homomorphism of Z-modules, related to Weierstrass
ζ-function ζ(z) = σ′(z)

σ(z) by the identity ζ(z + λ) = ζ(z) + η(λ). It suffices

to establish that η(λ) = −πλ, λ ∈ Z[i]. Recall from [8] Legendre’s equality
η(i)− iη(1) = 2πi, in order to derive

η(λ) =
λ+ λ

2
η(1) +

λ− λ

2i
η(i) = (η(1) + π)λ− πλ, λ ∈ Z[i].

Combining with homogeneity η(iλ) = 1
i η(λ), λ ∈ Z[i] (cf.[8]), one obtains

(η(1) + π)iλ+ πiλ = η(iλ) = −iη(λ) = −(η(1) + π)iλ+ πiλ, λ ∈ Z[i].

Therefore η(1) = −π and η(λ) = −πλ, λ ∈ Z[i]. �

Corollary 1.
σ(z + ωm)

σ(z − ωm)
= −e2(−1)mωmπz



270 Azniv Kasparian

σ(z + ωm + 2εω3−m)

σ(z − ωm)
= (−1)m+1εie−

π
2
+2(−1)m+1εω3−mπz+2(−1)mωmπz

σ(z − ωm + 2εω3−m)

σ(z − ωm)
= (−1)m+1εie−

π
2
+2(−1)m+1εω3−mπz.

for the half-periods ω1 =
1
2 , ω2 = iω1 and ε = ±1.

Corollary 2.
σ(z + 2εωm)

σ(z − 1)
= e−πz+(−1)m2επωmz

σ(z + (−1)mωm + ε(−1)mω3−m)

σ(z − (−1)mωm + (−1)mω3−m)
= −i(−1)m

(1+ε)
2 e2ωmπz+(1−ε)ω3−mπz.

for the half-periods ω1 =
1
2 , ω2 = iω1 and ε = ±1.

Corollary 1 and Corollary 2 follow from Lemma 2 ii) and ω̄m = (−1)m+1ωm,
ω2
m = (−1)m+1

4 ·

In [5] the map Φ : B̃/Γ(6,8)
−1 → P([Γ(6,8)

−1 , 1]) is shown to be a regular embedding.

This is done by constructing a C-basis of L = LA−1

(
T
(6,8)
−1 ,

(
T
(6,8)
−1

)sing
)

, con-

sisting of binary parallel or triangular σ-quotients. An abelian function fα,β ∈ L
is binary parallel if the pole divisor (fα,β)∞ = Tα + Tβ consists of two dis-
joint smooth elliptic curves Tα and Tβ . A σ-quotient fi,α,β ∈ L is triangular if
Ti ∩ Tα ∩ Tβ = ∅ and any two of Ti, Tα and Tβ intersect in a single point.

Theorem 4 (Kasparian and Kotzev [5]). Let

Σ12(z) =
σ(z − 1)σ(z + ω1 − ω2)

σ(z − ω1)σ(z − ω2)
, Σ1 =

σ(u− iv + ω3)

σ(u− iv)

Σ2 =
σ(u+ v + ω3)

σ(u+ v)
, Σ3 =

σ(u+ iv + ω3)

σ(u+ iv)
, Σ4 =

σ(u− v + ω3)

σ(u− v)

Σ5 =
σ(u− ω2)

σ(u− ω1)
, Σ6 =

σ(u− ω1)

σ(u− ω2)
, Σ7 =

σ(v − ω2)

σ(v − ω1)
, Σ8 =

σ(v − ω1)

σ(v − ω2)
·

Then

i) the space L = LA−1

(
T
(6,8)√
−1

,
(
T
(6,8)√
−1

)sing
)

contains the binary parallel

σ-quotients f56(u, v) = Σ12(u), f78(u, v) = Σ12(v) and the triangular
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σ-quotients

f157 = ie−
π
2
+πuΣ1Σ5Σ7, f168 =− e−π−πiu−πv−πivΣ1Σ6Σ8

f357 =− e−π+πu+πv+πivΣ3Σ5Σ7, f368 =− ie−
π
2
−πiuΣ3Σ6Σ8

f258 =e−π+πu−πivΣ2Σ5Σ8, f267 =e−π−πiu+πvΣ2Σ6Σ7

f458 =− ie−
π
2
+πu−πvΣ4Σ5Σ8, f467 = ie−

π
2
−πiu+πivΣ4Σ6Σ7

ii) a C-basis of L is

fo := 1, f1 := f157, f2 := f258, f3 := f368, f4 := f467, f5 := f56, f6 := f78.

4. Technical Preparation

The group G−1 = Aut
(
A−1, T

(6,8)
−1

)
permutes the eight irreducible components

of T (6,8)
−1 and the Γ

(6,8)
−1 -cusps. For any subgroup H of G−1, the ΓH -cusps are the

H-orbits of ∂
Γ
(6,8)
−1

B/Γ(6,8)
−1 = {κi ; 1 ≤ i ≤ 8}.

Lemma 3. If φ : G−1 → S8(κ1, . . . , κ8) is the natural representation of G−1 =

Aut
(
A−1, T

(6,8)
−1

)
in the symmetric group of the Γ

(6,8)
−1 -cusps, then

φ(τ33) = (κ5, κ6)(κ7, κ8), φ(I) = (κ1, κ4, κ3, κ2)(κ5, κ6)

φ(J) = (κ1, κ2, κ3, κ4)(κ7, κ8), φ(θ) = (κ1, κ3)(κ5, κ7)(κ6, κ8).

Proof: The Γ
(6,8)
−1 -cusps κi are obtained by contraction of the proper transforms

T ′
i of Ti under the blow-up of A−1 at

(
T
(6,8)
−1

)sing
. Therefore the representations

of G−1 in the permutation groups of {Ti ; 1 ≤ i ≤ 8}, {T ′
i ; 1 ≤ i ≤ 8} and

{κi ; 1 ≤ i ≤ 8} coincide.
According to τ33(u − ikv) = u − ikv + (1 − ik)ω3 = u − ikv(mod Z + Zi),
the translation τ33 acts identically on T1, T2, T3, T4. Further, τ33(u − ωm) =
u+ ω3−m ≡ u− ω3−m(mod Z+Zi) reveals the permutation (T5, T6)(T7, T8) of
the last four components of T (6,8)

−1 .

Due to the identity I(u − ikv) = iu − ikv = i(u − ik−1v), the automorphism
I induces the permutation (T1, T4, T3, T2) of the first four components of T (6,8)

−1 .
Further, I(u− ωm) = i(u± ω3−m) reveals that I permutes T5 with T6. Note that
I acts identically on v and fixes T7, T8.
In a similar vein, J(u − ikv) = u − ik+1v, J(v − ωm) = i(v ± iω3−m) de-
termine that φ(J) = (κ1, κ2, κ3, κ4)(κ7, κ8). According to θ(u − ikv) = v −
iku = −ik(u − i−kv) and θ(u − ωm) = v − ωm, one concludes that φ(θ) =
(κ1, κ3)(κ5, κ7)(κ6, κ8). �
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The following lemma incorporates several arguments, which will be applied re-
peatedly towards determination of the target P([ΓH , 1]) and the rank of the loga-
rithmic canonical map ΦH .

Lemma 4. In the notations from Theorem 4, for an arbitrary subgroup H of

G−1 = Aut
(
A−1, T

(6,8)
−1

)
and any f ∈ L = LA−1

(
T
(6,8)
−1 ,

(
T
(6,8)
−1

)sing
)

, let

RH(f) =
∑
h∈H

h(f) be the value of Reynolds operator RH of H on f .

i) The space LH of the H-invariants of L is spanned by {RH(fi) ; 0 ≤ i ≤ 6}.

ii) Let Ti ⊂ (RH(fi,α1,β1))∞, (RH(fi,α2,β2))∞ ⊆ OrbH(Ti) +
8∑

α=5
Tα for

some 1 ≤ i ≤ 4, 5 ≤ αj ≤ 6, 7 ≤ βj ≤ 8. Then

RH(fi,α2,β2) ∈ SpanC(1, RH(f56), RH(f78), RH(fi,α1,β1)).

iii) Let κ̄i1 , . . . , κ̄ip with 1 ≤ i1 < . . . < ip ≤ 4 be different ΓH -cusps

Tij ⊂ (RH(fij ))∞ ⊆ OrbH(Tij ) +

8∑
α=5

Tα for all 1 ≤ j ≤ p

and B be a C-basis of LH
2 = LA−1

(
8∑

α=5
Tα

)H

. Then the set

{RH(fij ,αj ,βj
) ; 1 ≤ j ≤ p} ∪B

consists of linearly independent invariants over C.
iv) If Rj = RH(fj,αj ,βj

) ̸≡ const, Rj |Tj = ∞ and Ri = RH(fi,αi,βi
) has

Ri|Tj ̸≡ const then for any subgroup Ho of H the projective maps

ΨHo : X/Ho > P(LHo), ΦHo : B̂/ΓHo > P(j1[ΓHo , 1])

are of rank rkΦHo = rkΨHo = 2.
v) If the group H ′ is obtained from the group H by replacing all τn33I

kJ lθm ∈
H with τn33I

lJkθm, then the spaces of modular forms j1[ΓH′ , 1] ≃ j1[ΓH , 1]
are isomorphic and the logarithmic-canonical maps have equal rank rkΦH =
rkΦH′

.

Proof: i) By Theorem 4 ii), L = SpanC(fi ; 0 ≤ 6). Therefore any f ∈ L is a

C-linear combination f =
6∑

i=0
cifi. Due to H-invariance of f and the linearity of

the representation of H in Aut(L), Reynolds operator

|H|f = RH(f) =

6∑
i=0

ciRH(fi).
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ii) Let ωs ∈ j1

[
Γ
(6,8)
−1 , 1

]H
are the modular forms, which transfer to RH(fi,αs,βs),

1 ≤ s ≤ 2. Since ω1(κi) ̸= 0, there exists ci ∈ C, such that ω′
i = ω2 − ciω1 van-

ishes at κi. By the assumption (RH(fi,αs,βs))∞ ⊆ OrbH(Ti)+
8∑

α=5
Tα, the transfer

Fi ∈ LH of ω′
i belongs to SpanC(1, f56, f78)

H = SpanC(1, RH(f56), RH(f78)).

iii) As far as the transfer TransH1 : j1[ΓH , 1] → L is a C-linear isomorphism, it
suffices to establish the linear independence of the corresponding modular forms

{ωij ; 1 ≤ j ≤ p} ∪ {ωb ; b ∈ B}. Evaluating the C-linear combination
p∑

j=1
cijωij

+
∑
b∈B

cbωb = 0 at κ̄i1 , . . . , κ̄ip , one obtains cij = 0, according to ωij (κ̄is) = δsj

and ωb(κ̄ij ) = 0, b ∈ B, 1 ≤ j ≤ p. Then
∑
b∈B

ωb = 0 requires the vanishing of all

cb, due to the linear independence of B.

iv) If Ho is a subgroup of H then LH is a subspace of LHo , j1[ΓH , 1] is a subspace
of j1[ΓHo , 1] and ΨH = prLΨHo , ΦH = prΓHΦHo for the projections prL :
P(LHo) → P(LH), prΓH : P(j1[ΓHo , 1]) → P(j1[ΓH , 1]). That is why, it suffices
to justify that rkΦH = rkΨH = 2 is maximal. Assume the opposite and consider
Ri, Rj : X/H > P1. The commutative diagram

X/H P1 × P1

P1

-(Ri,Rj)

?

Rj

�
�

�
�

�	

pr2

has surjective Rj , as far as Rj ̸≡ const. If the image C = (Ri, Rj)(X/H) is
a curve, then the projection pr2 : C → P1 has only finite fibers. In particular,
pr−1

2 (∞) = Ri((Rj)∞)×∞ ⊇ Ri(Tj)×∞ consists of finitely many points. How-
ever, Ri(Tj) = P1 as an image of the non-constant elliptic function Ri: Tj > P1.
The contradiction implies that dimCC = 2 and rkΨH = 2.

v) The transposition of the holomorphic coordinates (u, v) ∈ C2 affects non-
trivially the constructed σ-quotients. However, one can replace the equations
u − ikv = 0 of Tk, 1 ≤ k ≤ 4 by v − i−ku = 0 and repeat the above con-
siderations with interchanged u, v. The dimension of j1[ΓH , 1] and the rank of
ΦH are invariant under the transposition of the global holomorphic coordinates on
Ã−1 = C2. �
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With a slight abuse of notation, we write g(f) instead of g∗(f), for g ∈ G−1,

f ∈ L = LA−1

(
T
(6,8)
−1 ,

(
T
(6,8)
−1

)sing
)

.

Lemma 5. The generators τ33, I, J, θ of G−1 act on the binary parallel and trian-
gular σ-quotients from Corollary 4 as follows

3τ33(f56) =− f56, τ33(f78) =− f78

τ33(f157) =− ie
π
2 f168, τ33(f168) = ie−

π
2 f157, τ33(f357) =− ie−

π
2 f368

τ33(f368) = ie
π
2 f357, τ33(f258) = f267, τ33(f267) = f258

τ33(f458) =− f467, τ33(f467) =− f458

I(f56) =− if56, I(f78) =f78

I(f157) =− if467, I(f168) =− e−
π
2 f458, I(f357) = if267

I(f368) =− e
π
2 f258, I(f258) = if168, I(f267) =− e−

π
2 f157

I(f458) =− if368, I(f467) =− e
π
2 f357

J(f56) =f56, J(f78) =− if78

J(f157) =− ie
π
2 f258, J(f168) =f267, J(f357) = ie−

π
2 f458

J(f368) =f467, J(f258) =f357, J(f267) =− ie−
π
2 f368

J(f458) =f157, J(f467) = ie
π
2 f168

θ(f56) =f78, θ(f78) =f56

θ(f157) =− e
π
2 f357, θ(f168) =− e−

π
2 f368, θ(f357) =− e−

π
2 f157

θ(f368) =− e
π
2 f168, θ(f258) =f267, θ(f267) =f258

θ(f458) =f467, θ(f467) =f458.

Proof: Making use of Lemma 2 and Corollary 2, one computes that

τ33σ(u− 1) = −eπu+πiuσ(u+ ω1 − ω2), τ33σ(u+ ω1 − ω2) = e−2πuσ(u− 1)

τ33σ(u− ω1) = −eπiuσ(u− ω2), τ33σ(u− ω2) = −e−πuσ(u− ω1)

τ33(Σ1) = −ie−
π
2 Σ1, τ33(Σ2) = e−πΣ2, τ33(Σ3) = ie−

π
2 Σ3, τ33(Σ4) = Σ4

τ33(Σ5) = e−πu−πiuΣ6, τ33(Σ6) = eπu+πiuΣ5

τ33(Σ7) = e−πv−πivΣ8, τ33(Σ8) = eπv+πivΣ7

Iσ(u− 1) = ie−πu+πiuσ(u− 1), Iσ(u+ ω1 − ω2) = −eπuσ(u+ ω1 − ω2)

Iσ(u− ω1) = −ieπiuσ(u− ω2), Iσ(u− ω2) = iσ(u− ω1)

I(Σ1) = ie−πiu+πivΣ4, I(Σ2) = ie−πiu−πvΣ1

I(Σ3) = ie−πiu−πivΣ2, I(Σ4) = ie−πiu+πvΣ3
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I(Σ5) = −e−πiuΣ6, I(Σ6) = −eπiuΣ5, I(Σ7) = Σ7, I(Σ8) = Σ8

Jσ(v + µ) = Iσ(u+ µ)|u=v, µ ∈ C
4J(Σ1) = Σ2, J(Σ2) = Σ3, J(Σ3) = Σ4, J(Σ4) = Σ1

J(Σ5) = Σ5, J(Σ6) = Σ6, J(Σ7) = −e−πivΣ8, J(Σ8) = −eπivΣ7

θσ(u+ µ) = σ(v + µ), µ ∈ C

θ(Σ1) = −ieπu+πivΣ3, θ(Σ2) = Σ2

θ(Σ3) = ie−πiu−πvΣ1, θ(Σ4) = −eπu−πiu−πv+πivΣ4

θ(Σ5) = Σ7, θ(Σ6) = Σ8, θ(Σ7) = Σ5, θ(Σ8) = Σ6.

�

The following lemma is an immediate consequence of Lemma 2 and Corollary 1.

Lemma 6.
f157
Σ1

∣∣∣
T1

= −ie−
π
2 ,

f168
Σ1

∣∣∣
T1

= e−π,
f258
Σ2

∣∣∣
T2

= e−π,
f267
Σ2

∣∣∣
T2

= e−π

f357
Σ3

∣∣∣
T3

= e−π,
f368
Σ3

∣∣∣
T3

= ie−
π
2 ,

f458
Σ4

∣∣∣
T4

= −ie−
π
2 ,

f467
Σ4

∣∣∣
T4

= ie−
π
2

f157 + ie
π
2 f357

Σ5

∣∣∣
T5

= 0,
f258 − ie−

π
2 f458

Σ5

∣∣∣
T5

= 0.

Lemma 7.

[(f157 − ie
π
2 f168) + c(f357 − ie−

π
2 f368)]|T2 = ie−

π
2
−πv

(
1 + ce−

π
2

)
σ((1 + i)v + ω3)

σ((1 + i)v)

[
e(1+i)πv σ(v − ω2)

2

σ(v − ω1)2
+ e−(1+i)πv σ(v − ω1)

2

σ(v − ω2)2

]
is non-constant for all c ∈ C \ {−e

π
2 }.

Proof: Note that

f(v) = [(f157 − ie
π
2 f168) + c(f357 − ie−

π
2 f368)]|T2

=
[
ie−

π
2
−πvΣ1(−v, v)− ce−π+πivΣ3(−v, v)

]
× [Σ5(−v)Σ7(v) + Σ6(−v)Σ8(v)]

= ie−
π
2
−πv

(
1 + ce−

π
2

) σ((1 + i)v − ω3)

σ((1 + i)v)

×
[
e(1+i)πv σ(v − ω2)

2

σ(v − ω1)2
+ e−(1+i)πv σ(v − ω1)

2

σ(v − ω2)2

]
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making use of Lemma 2 and Corollary 1. Obviously, f(v) has no poles outside
Q(i). It suffices to justify that lim

v→0
f(v) = ∞, in order to conclude that f(v) ̸≡

const. To this end, use σ(ω2) = iσ(ω1) to observe that

f(v)σ((1 + i)v)
∣∣∣
v=0

= 2 ie−
π
2

(
1 + ce−

π
2

)
σ(ω3) ̸= 0

whenever c ̸= −e
π
2 , while σ((1 + i)v)|v=0 = 0. �

5. Basic Results

Lemma 8. For H = ⟨IJ2, τ33J
2⟩, ⟨I2J, τ33I2⟩ with rational A−1/H and any

− Id ∈ H ≤ G−1, the map ΦH : B̂/ΓH > P([ΓH , 1]) is constant.

Proof: By Lemma 4 (iv), the assertion for ⟨I2J, τ33I2⟩ is a consequence of the
one for ⟨IJ2, τ33J

2⟩. In the case of H = ⟨IJ2, τ33J
2⟩, the space LH is spanned

by Reynolds operators

RH(f56) = 0, RH(f78) = 0

RH(f157) = f157 + ie
π
2 f168 + e

π
2 f267 − e

π
2 f258 + ie

π
2 f357 − f368 + if467 + if458.

The ΓH -cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8. By Lemma 6,
f157+ie

π
2 f168

Σ1

∣∣∣
T1

= 0, so that RH(f157)|T1 ̸= ∞. Therefore RH(f157) ∈ LH
2 = C

and rkΦH = 0.
It suffices to observe that − Id changes the signs of the C-basis

f56, f78, f157, f258, f368, f467 (1)

of L = LA−1

(
T
(6,8)
−1 ,

(
T
(6,8)
−1

)sing
)

. Then for Ho = ⟨− Id⟩ the space LHo is

generated by RHo(1) = 1. Any subgroup Ho ≤ H ≤ G−1 decomposes into

cosets H = ∪k
i=1hiHo and RH =

k∑
i=1

hiRHo vanishes on (1). Thus, LH = C and

rkΦH = 0. �

Note that A−1/⟨− Id⟩ has 16 double points, whose minimal resolution is the Kum-
mer surface X−1 of A−1. Thus, H ∋ − Id exactly when the minimal resolution Y
of the singularities of A−1/H is covered by a smooth model of X−1. More pre-
cisely, all A−1/H with − Id ∈ H have vanishing irregularity 0 ≤ q(A−1/H) ≤
q(X−1) = 0. These are the Enriques A−1/⟨− Id, τ33I

2⟩, all K3 quotients A−1/H
with ⟨τn33⟩ ̸= H ≤ K = ker detL, except A−1/⟨τ33(− Id)⟩ and the rational
A−1/H with τ33IJ ∈ H for 0 ≤ n ≤ 1 or ⟨− Id, h1⟩ ≤ H for

h1 ∈ {I2mJ2−2m, τm33I, τm33J, τm33I
lJ−lθ ; 0 ≤ m ≤ 1, 0 ≤ l ≤ 3}.
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Lemma 9. The non-trivial subgroups H ̸∋ − Id of G−1 are
i) cyclic of order two

H2(m, l) = ⟨τ33I2mJ2l⟩ with 0 ≤ m, l ≤ 1

Hθ
2 (n, k) = ⟨τn33IkJ−kθ⟩ with 0 ≤ n ≤ 1, 0 ≤ k ≤ 3, H ′

2 = ⟨I2⟩, H ′′
2 = ⟨J2⟩

ii) cyclic of order four

H ′
4(n,m) = ⟨τn33IJ2m⟩ with 0 ≤ n,m ≤ 1

H ′′
4 (n,m) = ⟨τn33I2mJ⟩ with 0 ≤ n,m ≤ 1

iii) isomorphic to the Klein group Z2 × Z2

H ′
2×2(m) = ⟨τ33J2m, I2⟩ with 0 ≤ m ≤ 1

H ′′
2×2(m) = ⟨τ33I2m, J2⟩ with 0 ≤ m ≤ 1

Hθ
2×2(k) = ⟨IkJ−kθ, τ33⟩ with 0 ≤ k ≤ 1

Hθ
2×2(n, k) = ⟨τn33IkJ−kθ, τ33I

2J2⟩ with 0 ≤ n, k ≤ 1

iv) isomorphic to Z4 × Z2

H ′
4×2(m, l) = ⟨IJ2m, τ33J

2l⟩ with 0 ≤ m, l ≤ 1

H ′′
4×2(m, l) = ⟨I2mJ, τ33I

2l⟩ with 0 ≤ m, l ≤ 1.

Proof: If H is a subgroup of G−1, which does not contain − Id, then H ⊆ S
= {g ∈ G−1 ; − Id ̸∈ ⟨g⟩}. Decompose G−1 = G′

−1 ∪G′
−1θ into cosets modulo

the abelian subgroup

G′
−1 = {τn33IkJ l ; 0 ≤ n ≤ 1, 0 ≤ k, l ≤ 3} ≤ G−1.

The cyclic group, generated by (τn33I
kJ lθ)2 = (IJ)k+l does not contain − Id

= (IJ)2 if and only if k+ l ≡ 0(mod 4). If S(r) = {g ∈ S ; g is of order r} then

S ∩G′
−1θ = {τn33IkJ−kθ ; 0 ≤ n ≤ 1, 0 ≤ k ≤ 3} = S(2) ∩G′

−1θ =: S
(2)
1

and S ∩ G′
−1θ ⊆ S(2) consists of elements of order two. Concerning S ∩ G′

−1,
observe that (τn33I

kJk+2m)2 = (IJ)2k ∈ S for 0 ≤ n,m ≤ 1, 0 ≤ k ≤ 3 requires
k = 2p to be even. Consequently

{τn33IkJ l ; k ≡ l(mod 2)} ∩ S

= {τ33I2mJ2l, I2, J2 ; 0 ≤ m, l ≤ 1} = S(2) ∩G′
−1 =: S

(2)
0

{τn33IkJ l ; k ≡ l + 1(mod 2)} ∩ S

= {τn33I2m+1J2l, τn33I
2mJ2l+1 ; 0 ≤ n,m, l ≤ 1} = S(4).
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In such a way, one obtains S = {Id}∪S
(2)
0 ∪S

(2)
1 ∪S(4) of cardinality |S| = 31. If

a subgroup H of G−1 is contained in S, then |H| ≤ |S| = 31 divides |G−1| = 64,
i.e., |H| = 1, 2, 4, 8 or 16. The only subgroup H < G−1 of |H| = 1 is the
trivial one H = {Id}. The subgroups − Id ̸∈ H < G−1 of order two are the
cyclic ones, generated by h ∈ S

(2)
0 ∪ S

(2)
1 . We denote H2(m, l) = ⟨τ33I2mJ2l⟩

for 0 ≤ m, l ≤ 1, Hθ
2 (n, k) = ⟨τn33IkJ−kθ⟩ for 0 ≤ n ≤ 1, 0 ≤ k ≤ 3 and

H ′
2 = ⟨I2⟩, H ′′

2 = ⟨J2⟩.
For any h ∈ S(4) one has ⟨h⟩ = ⟨h3⟩, so that the subgroups − Id ̸∈ H ≃ Z4

of G−1 are depleted by H ′
4(n,m) = ⟨τn33IJ2m⟩, H ′′

4 (n,m) = ⟨τn33I2mJ⟩ with
0 ≤ n,m ≤ 1.

The subgroups − Id ̸∈ H ≃ Z2×Z2 of G−1 are generated by commuting g1, g2 ∈
S(2) = S

(2)
0 ∪ S

(2)
1 . If g1, g2 ∈ S

(2)
1 then g1g2 ∈ G′

−1, so that one can always

assume that g2 ∈ S
(2)
0 . Any g1 ̸= g2 from S

(2)
0 ⊂ G′

−1 generate the Klein group of
order four. Moreover, if

S
(2)
0,1 = {τ33I2mJ2l ; 0 ≤ m, l ≤ 1}, S

(2)
0,0 = {I2, J2}

then for any g1, g2 ∈ S
(2)
0,1 with g1g2 ∈ S there follows g1g2 ∈ S

(2)
0,0 . Thus, any

S
(2)
0 ⊃ H ≃ Z2 × Z2 has at least one generator g2 ∈ S

(2)
0,0 . The requirement

I2J2 = − Id ̸∈ H specifies that g1 ∈ S
(2)
0,1 . In the case of g2 = I2 there is no loss

of generality to choose g1 = τ33J
2m, in order to form H ′

2×2(m). Similarly, for
g2 = J2 it suffices to take g1 = τ33I

2m, while constructing H ′′
2×2(m). In order to

determine the subgroups − Id ̸∈ H = ⟨g1⟩× ⟨g2⟩ ≃ Z2×Z2 with g1 ∈ S
(2)
1 , g2 ∈

S
(2)
0 , note that g1 = τn33I

kJ−kθ does not commute with I2, J2 and commutes with
g2 = τ33I

2mJ2l if and only if 2m ≡ 2l(mod 4), i.e., 0 ≤ m = l ≤ 1. Bearing
in mind that ⟨τn33IkJ−kθ, τ33I

2mJ2m⟩ = ⟨τn+1
33 Ik+2mJ−k+2mθ, τ33I

2mJ2m⟩,
one restricts the values of k to 0 ≤ k ≤ 1. For m = 0 denote Hθ

2×2(k) =

⟨IkJ−kθ, τ33⟩. For m = 1 put Hθ
2×2(n, k) = ⟨τn33IkJ−kθ, τ33I

2J2⟩.
Let − Id ̸∈ H ⊂ S be a subgroup of order 8. The non-abelian such H are isomor-
phic to quaternionic group Q8 = ⟨s, t ; s4 = Id, s2 = t2, sts = t⟩ or to dihedral
group D4 = ⟨s, t ; s4 = Id, t2 = Id, sts = t⟩. Note that s ∈ S(4) and sts = t re-
quire st ̸= ts. As far as S(4)∪S(2)

0 ⊂ G′
−1 for the abelian group G′

−1 = ⟨τ33, I, J⟩,
it suffices to consider t = τn33I

kJ−kθ ∈ S
(2)
1 and s = τm33I

pJ2l+1−p ∈ S(4) with
0 ≤ n,m, l ≤ 1, 0 ≤ p, k ≤ 3. However, sts = τn33I

k+2l+1Jk+2l+1θ ̸= t reveals
the non-existence of a non-abelian group − Id ̸∈ H ≤ G−1 of order eight.

The abelian groups H ⊂ S = {Id} ∪ S(2) ∪ S(4) of order eight are isomorphic
to Z4 × Z2 or Z2 × Z2 × Z2. Any Z4 × Z2 ≃ H ⊂ S is generated by s =
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τm33I
pJ2l+1−p ∈ S(4) and t ∈ S

(2)
0 , as far as t′ = τn33I

kJ−kθ ∈ S
(2)
1 has

st′ = τm+n
33 Ip+kJ2l+1−(p+k)θ ̸= τm+n

33 I2l+1−(p−k)Jp−kθ = t′s.

For s = τn33I
2m+1J2l ∈ S(4) there holds ⟨s, t⟩ = ⟨s3, t⟩ and it suffices to consider

s = τn33IJ
2l. Further, t ̸∈ ⟨s2⟩ = ⟨I2⟩ and s2t ̸= − Id specify that t = τ33I

2pJ2q

for some 0 ≤ p, q ≤ 1. Replacing eventually t by ts2 = tI2, one attains t =
τ33J

2q. On the other hand, the generator s = τ33IJ
2l ∈ S(4) of H = ⟨s, t⟩

can be restored by st = IJ2(l+q), so that H = H ′
4×2(l, q) = ⟨IJ2l, τ33J

2q⟩ for
some 0 ≤ l, q ≤ 1. Exchanging I with J , one obtains the remaining groups
H ′′

4×2(l, q) = ⟨I2lJ, τ33I2q⟩ ≃ Z4 × Z2, contained in S.
If − Id ̸∈ H ⊂ S is isomorphic to Z2 × Z2 × Z2 then arbitrary different elements
s, t, r ∈ H of order two commute and generate H . For any x ∈ S and M ⊆ S,
consider the centralizer CM (x) = {y ∈ M ; xy = yx} of x in M . Looking for
s ∈ S(2), t ∈ CS(2)(s) and r ∈ CS(2)(s) ∩ CS(2)(t), one computes that

CS(2)(τn33I
2) = CS(2)(τn33J

2) = S
(2)
0

CS(2)(τ33I
2mJ2m) = S(2) = S

(2)
0 ∪ S

(2)
1

CS(2)(τn33I
2mJ−2mθ) = {τp33I

2qJ−2qθ, τ33I
2pJ2p ; 0 ≤ p, q ≤ 1}

CS(2)(τn33I
2m+1J−2m−1θ) = {τp33I

2q+1J−2q−1θ, τ33I
2pJ2p ; 0 ≤ p, q ≤ 1}.

Any subgroup Z2 × Z2 × Z2 ≃ H ⊂ {Id} ∪ S
(2)
0 ∪ S

(2)
1 intersects S

(2)
1 , due to

|S(2)
0 | = 6. That allows to assume that s ∈ S

(2)
1 and observe that

CS(2)(s) = {s, (− Id)s, τ33s, τ33(− Id)s, τ33, τ33(− Id)}.

If t = τ33I
2pJ2p ∈ CS(2)(s) then CS(2)(t) = S(2), so that

H \ {Id, s, t} ⊆ [CS(2)(s) ∩ CS(2)(t)] \ {s, t} = CS(2) \ {s, t} (2)

with 5 = |H \ {Id, s, t}| ≤ |CS(2)(s) \ {s, t}| = 4 is an absurd. For t ∈ CS(2)(s) \
{τ33I2pJ2p ; 0 ≤ p ≤ 1} one has CS(2)(t) = CS(2)(s), which again leads to (2).
Therefore, there is no subgroup Z2 × Z2 × Z2 ≃ H ̸∋ − Id of G−1.
Concerning the non-existence of subgroups − Id ̸∈ H ⊂ S of order 16, the abelian
− Id ̸∈ H ⊂ S of order 16 may be isomorphic to Z4 × Z4, Z4 × Z2 × Z2 or
Z2 × Z2 × Z2 × Z2. Any H ≃ Z4 × Z4 is generated by s, t ∈ S(4) with s2 ̸= t2.
Replacing, eventually, s by s3 and t by t3, one has s = τn33IJ

2m, t = τp33I
2qJ

with 0 ≤ n,m, p, q ≤ 1. Then s2t2 = I2J2 = − Id ∈ H is an absurd. The
groups H ≃ Z4 × Z2 × Z2 are generated by s ∈ S(4) and t, rinCS(2)(s) with
r ∈ CS(2)(t). In the case of s = τn33IJ

2m, the centralizer CS(2)(s) = S
(2)
0 .

Bearing in mind that s2 = I2, one observes that ⟨t, r⟩ ∩ {I2, J2} = ∅. Therefore
t, r ∈ {τ33I2pJ2q ; 0 ≤ p, q ≤ 1}, whereas tr ∈ {Id, I2, J2,− Id}. That reveals
the non-existence of Z4×Z2×Z2 ≃ H ̸∋ − Id. The groups H ≃ Z2×Z2×Z2×Z2
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contain 15 elements of order two, while |S(2)| = 14. Therefore there is no abelian
group − Id ̸∈ H ≤ G−1 of order 16.
There are three non-abelian groups of order 16, which do not contain a non-abelian
subgroup of order 8 and consist of elements of order 1, 2 or 4. If

⟨s, t ; s4 = e, t4 = e, st = ts3⟩ ≃ H ⊂ S

then s, t ∈ S(4) ⊂ G′
−1 = ⟨τ33, I, J⟩ commute and imply that s is of order two.

The assumption

⟨a, b, c ; a4 = e, b2 = e, c2 = e, cbca2b = e, ba = ab, ca = ac⟩ ≃ H ⊂ S

requires b, c ∈ CS(2)(a) = S
(2)
0 = {τ33I2mJ2l, I2, J2 ; 0 ≤ m, l ≤ 1}. Then b

and c commute and imply that cbca2b = e = a2 = e. Finally, for

G4,4 = ⟨s, t ; s4 = e, t4 = e, stst = e, ts3 = st3⟩

there follows s, t ∈ S(4) ⊂ G′
−1, whereas st = ts. Consequently, s2 = t2 and

G4,4 = {sitj ; 0 ≤ i ≤ 3, 0 ≤ j ≤ 1} is of order ≤ 8, contrary to |G4,4| = 16.
Thus, there is no subgroup − Id ̸∈ H ≤ G−1 of order 16. �

Throughout, we use the notations Hβ
α(γ) from Lemma 9 and denote by Γβ

α(γ) the
corresponding lattices with Γβ

α(γ)/Γ
(6,8)
−1 = Hβ

α(γ).

Theorem 5. For the groups H = H ′
4×2(p, q) = ⟨IJ2p, τ33J

2q⟩, H ′′
4×2(p, q) =

⟨I2pJ, τ33I2q⟩, H ′
4(1 − m,m) = ⟨τ1−m

33 IJ2m⟩, H ′′
4 (1 − m,m) = ⟨τ1−m

33 I2mJ⟩,
H ′

2×2(1) = ⟨τ33J2, I2⟩, H ′′
2×2(1) = ⟨τ33I2, J2⟩, Hθ

2×2(n,m) = ⟨τn33ImJ−mθ,

τ33I
2J2⟩ with 0 ≤ p, q ≤ 1, (p, q) ̸= (1, 1) and 0 ≤ n,m ≤ 1 the logarithmic-

canonical map
ΦH : B̂/ΓH > P([ΓH , 1]) = P1

is dominant and not globally defined. The Baily-Borel compactifications B̂/ΓH

are birational to ruled surfaces with elliptic bases whenever H = H ′
4×2(0, 0),

H ′′
4×2(0, 0), H

′
4(1, 0) or H ′′

4 (1, 0). The remaining ones are rational surfaces.

Proof: According to Lemma 4(v), it suffices to prove the theorem for H ′
4×2(p, q)

with (p, q) ̸= (1, 1), H ′
4(1−m,m) H ′

2×2(1) and Hθ
2×2(n,m).

If H = H ′
4(1, 0) = ⟨τ33I⟩, then LH is generated by 1 ∈ C and Reynolds operators

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 − e
π
2 f258 + ie

π
2 f357 + if458

RH(f168) = f168 − if267 + ie−
π
2 f368 + e−

π
2 f467 = ie−

π
2 RH(f368).

There are four Γ′
4(1, 0)-cusps : κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5, κ̄6, κ̄7 = κ̄8. Applying

Lemma 4 ii) to T1 ⊂ (RH(f157))∞, RH(f168)∞ ⊆
8∑

i=1
Ti, one concludes that

RH(f168) ∈ SpanC(1, RH(f157). Therefore LH ≃ C2 and ΦH′
4(1,0) is a dominant
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map to P(LH) ≃ P1. Since RH(f157)|T6 ̸= ∞, the entire [Γ′
4(1, 0), 1] vanishes at

κ̄6 and ΦH′
4(1,0) is not defined at κ̄6.

The group H = H ′
4×2(0, 0) = ⟨I, τ33⟩ contains F = H ′

4(1, 0) as a subgroup of
index two with non-trivial coset representative I . Therefore RH(f56) = RF (f56)+

IRF (f56) = 0, RH(f78) = 0 and rkΦH′
4×2(0,0) ≤ 1. Due to

RH(f157) = f157 − ie
π
2 f168 − e

π
2 f258 − e

π
2 f267 + f368 + ie

π
2 f357 + if458 − if467

LH = SpanC(1, RH(f157)). Lemma 6 provides f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 ̸= 0,

whereas RH(f157)|T1 = ∞. Therefore dimC LH = 2 and ΦH′
4×2(0,0) is a dominant

map to P1. The Γ4×2(0, 0)-cusps are κ̄1 = κ̄2 = κ3 = κ̄4, κ̄5 = κ̄6 and κ̄7 =

κ̄8. Again from Lemma 6, f157−e
π
2 f258+ie

π
2 f357+if458

Σ5

∣∣∣
T5

= 0, so that RH(f157) is

regular over T5 + T6. As a result, ΦH′
4×2(0,0) is not defined at κ̄5 = κ̄6.

For H = H ′
4(0, 1) = ⟨IJ2⟩, the space LH is spanned by 1 and Reynolds operators

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 + e
π
2 f267 + ie

π
2 f357 + if467

RH(f168) = f168 + if258 + ie−
π
2 f368 + e−

π
2 f458 = iRH(f258).

The Γ′
4(0, 1)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6, κ̄7 and κ̄8. Note that

T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆
8∑

i=1
Ti, in order to conclude that RH(f168) ∈

SpanC(1, RH(f157)) by Lemma 4 ii). Therefore LH = SpanC(1, RH(f157)) ≃
C2 and ΦH′

4(0,1) is a dominant map to P1. Lemma 6 supplies f157+ie
π
2 f357

Σ5

∣∣∣
T5

= 0

and justifies that ΦH′
4(0,1) is not defined at κ̄5.

For H = H ′
4×2(1, 0) = ⟨IJ2, τ33⟩ note that RH(f56) = 0, RH(f78) = 0, as far as

H ′
4(1, 0) is a subgroup of H ′

4×2(1, 0). Further,

RH(f157) = f157 − ie
π
2 f168 + e

π
2 f267 + e

π
2 f258 + ie

π
2 f357 + f368 + if467 − if458

has a pole over
4∑

i=1
Ti, according to f157−ie

π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 ̸= 0 by Lemma 6

and the transitiveness of the H ′
4(1, 0)-action on {κi ; 1 ≤ i ≤ 4}. Therefore

LH = SpanC(1, RH(f157)) ≃ C2 and ΦH′
4×2(1,0) is a dominant map to P1. One

computes immediately that the Γ′
4×2(1, 0)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6

and κ̄7 = κ̄8. Again from Lemma 6, f157+e
π
2 f258+ie

π
2 f357−if458

Σ5

∣∣∣
T5

= 0, RH(f157)

has no pole at T5 + T6 and ΦH′
4×2(1,0) is not defined at κ̄5 = κ̄6.

If H = H ′
2×2(1) = ⟨I2, τ33J2⟩ then

RH(f56) = 0, RH(f78) = 4f78, RH(f157) = f157 + ie
π
2 f168 + ie

π
2 f357 − f368
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RH(f258) = f258 − f267 − ie−
π
2 f467 − ie−

π
2 f458 and 1 ∈ C

span LH . The Γ′
2×2(1)-cusps are κ̄1 = κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄6 and κ̄7 =

κ̄8. Lemma 6 reveals that f157+ie
π
2 f168

Σ1

∣∣∣
T1

= ie
π
2 f357−f368

Σ3

∣∣∣
T3

= f258−f267
Σ2

∣∣∣
T2

=

f467+f458
Σ4

∣∣∣
T4

= 0, so that RH(f157), RH(f258) ∈ SpanC(1, f78) and LH ≃ C2.

As a result, ΦH′
2×2(1) is a dominant map to P1, which is not defined at κ̄1 and κ̄2.

For the group H = H ′
4×2(0, 1) = ⟨I, τ33J2⟩, containing H ′

2×2(1) = ⟨I2, τ33J2⟩
there follows RH(f56) = 0 and rkΦH′

4×2(0,1) ≤ 1. Therefore RH(f78) = 8f78,

RH(f157) = f157 + ie
π
2 f168 + e

π
2 f258 − e

π
2 f267 + ie

π
2 f357 − f368 − if458 − if467

and 1 ∈ C span LH . The Γ′
4×2(0, 1)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6 and

κ̄7 = κ̄8. By Lemma 6, f157+ie
π
2 f168

Σ1

∣∣∣
T1

= 0, so that RH(f157) ∈ SpanC(1, f78) ≃

C2. Thus, ΦH′
4×2(0,1) is a dominant map to P1, which is not defined at κ̄1.

If H = Hθ
2×2(0, 0) = ⟨θ, τ33I2J2⟩ then LH is spanned by 1 ∈ C,

RH(f56) = 2(f56 + f78), RH(f157) = f157 + ie
π
2 f168 − e

π
2 f357 − if368

and RH(f467) = 2(f467 + f458), due to RH(f258) = 0. The Γθ
2(0, 0)-cusps are

κ̄1 = κ̄3, κ̄2, κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ̄8. Lemma 6 provides f157+ie
π
2 f168

Σ1

∣∣∣
T1

= 0,

f467+f458
Σ4

∣∣∣
T4

= 0, whereas RH(f157), RH(f467) ∈ SpanC(1, RH(f56)) ≃ C2.

Therefore ΦHθ
2 (0,0) is a dominant map to P1, which is not defined at κ̄1, κ̄2 and κ̄4.

For H = Hθ
2×2(0, 1) = ⟨IJ−1θ, τ33I

2J2⟩ one has

RH(f56) = 2(f56 + if78), RH(f157) = 0, RH(f168) = 0

RH(f368) = 2(f368 − ie
π
2 f357), RH(f258) = f258 − f267 − e−

π
2 f458 − e−

π
2 f467.

The Γθ
2×2(0, 1)-cusps are κ̄1, κ3, κ2 = κ4, κ5 = κ6 = κ7 = κ8. Lemma 6

implies that f368−ie
π
2 f357

Σ3

∣∣∣
T3

= 0, f258−f267
Σ2

∣∣∣
T2

= 0, f458+f467
Σ4

∣∣∣
T4

= 0, whereas

RH(f368), RH(f258) ∈ SpanC(1, RH(f56)) ≃ C. Consequently, ΦHθ
2×2(0,1) is a

dominant map to P1, which is not defined at κ̄1, κ̄2 and κ̄4.
In the case of H = Hθ

2×2(1, 0) = ⟨τ33θ, τ33I2J2⟩, the Reynolds operators are

RH(f56) = 2(f56 − f78), RH(f157) = f157 + ie
π
2 f168 + if368 + e

π
2 f357

RH(f258) = 2(f258 − f267), RH(f458) = 0, RH(f467) = 0.

The Γθ
2×2(1, 0)-cusps are κ̄1, κ̄3, κ̄2 = κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ̄8. Lemma 6

yields f157+ie
π
2 f168

Σ1

∣∣∣
T1

= if368+e
π
2 f357

Σ3
|T3 = f258−f267

Σ2

∣∣∣
T2

= 0. Consequently,

RH(f157), RH(f258) ∈ SpanC(1, RH(f56)). Bearing in mind that RH(f56)|T5 =
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∞, one concludes that ΦHθ
2×2(1,0) is a dominant map to P1, which is not defined at

κ̄1, κ̄2 and κ̄3.

Finally, for H = Hθ
2×2(1, 1) = ⟨τ33IJ−1θ, τ33I

2J2⟩ one has

RH(f56) = 2(f56 − if78), RH(f157) = 2(f157 + ie
π
2 f168), RH(f357) = 0

RH(f368) = 0 and RH(f258) = f258 − f267 + e−
π
2 f467 + e−

π
2 f458.

The Γθ
2×2(1, 1)-cusps are κ̄1, κ̄3, κ̄2 = κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ8. Lemma 6

implies that f157+ie
π
2 f168

Σ1

∣∣∣
T1

= f258−f267
Σ2

∣∣∣
T2

= 0, so that RH(f157), RH(f258) ∈

SpanC(1, RH(f56)) ≃ C2. As a result, ΦHθ
2×2(1,1) is a dominant map to P1, which

is not defined at κ̄1, κ̄3 and κ̄2. �
Theorem 6. If H = H ′

2×2(0) = ⟨τ33, I2⟩, H ′′
2×2(0) = ⟨τ33, J2⟩, Hθ

2×2(n) =

⟨InJ−nθ, τ33⟩ with 0 ≤ n ≤ 1, H ′
4(n, n) = ⟨τn33IJ2n⟩, H ′′

4 (n, n) = ⟨τn33I2nJ⟩
with 0 ≤ n ≤ 1 or H2(1, 1) = ⟨τ33I2J2⟩ then the logarithmic-canonical map

ΦH : B̂/ΓH > P([ΓH , 1]) = P2

is dominant and not globally defined. The surface B̂/ΓH is K3 for H = H2(1, 1),
rational for H = H ′

4(1, 1), H
′′
4 (1, 1) and ruled with an elliptic base for all the

other aforementioned H .

Proof: By Lemma 4 v), it suffices to consider H ′
2×2(0), H

θ
2×2(n), H

′
4(n, n) and

H2(1, 1).
In the case of H = H ′

2×2(0) = ⟨τ33, I2⟩, LH is spanned by

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 − ie
π
2 f168 + ie

π
2 f357 + f368

RH(f258) = f258 + f267 − ie−
π
2 f458 + ie−

π
2 f467 and 1 ∈ C.

The Γ′
2×2(0)-cusps are κ̄1 = κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8. Lemma 6

provides f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 ̸= 0, whereas RH(f157)|T1 = ∞. Simi-

larly, f258+f267
Σ2

∣∣∣
T2

= 2e−π ̸= 0 suffices for RH(f258)|T2 = ∞. Therefore 1,

RH(f157), RH(f258) are linearly independent, according to Lemma 4 iii) and
constitute a C-basis for LH . In order to assert that rkΦH′

2×2(0) = 2, we use
that RH(f258)|T2 = ∞ and RH(f157)|T2 ̸≡ const by Lemma 7 with c = ie

π
2 .

Lemma 6 provides f157+ie
π
2 f357

Σ5

∣∣∣
T5

= 0, in order to conclude that RH(f157)|T5 ̸=

∞ and the entire [Γ′
2×2(0), 1] vanishes at κ̄5. Therefore ΦH′

2×2(0) is a dominant
map to P([Γ′

2×2(0), 1]) = P2, which is not defined at κ̄5.
For H = Hθ

2×2(0) = ⟨θ, τ33⟩, the Reynolds operators are

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 − ie
π
2 f168 − e

π
2 f357 + if368
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RH(f258) = 2(f258 + f267), RH(f467) = 0

generate LH . The Γθ
2×2(0)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ̄8.

According to Lemma 6, f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 ̸= 0, so that RH(f157)|T1 =∞.

Further, f258+f267
Σ2

∣∣∣
T2

= 2e−π ̸= 0 and the lemma provides RH(f258)|T2 = ∞.

Therefore 1, RH(f157), RH(f258) are linearly independent and LH ≃ C3 by
Lemma 4 iii). We claim that

RH(f258)|T1 = −2e−πiv σ((1 + i)v + ω3)

σ((1 + i)v)

[
σ(v − ω1)

2

σ(v − ω2)2
+ e2π(1+i)v σ(v − ω2)

2

σ(v − ω1)2

]
is non-constant. On one hand, RH(f258)|T1 has no poles on C \ Q(i). On the

other hand,
[
1
2RH(f258)

∣∣∣
T1

]
σ((1 + i)v)

∣∣∣
v=0

= −σ(ω3)
[
1
i2
+ i2

]
̸= 0, so that

lim
v→0

[RH(f258)|T1 ] = ∞. According to Lemma 4 iv), RH(f157)|T1 = ∞ and

RH(f258)|T1 ̸≡ const suffice for ΦHθ
2×2(0) to be a dominant map to P2. The entire

LH takes finite values on T4, so that ΦHθ
2×2(0) is not defined at κ̄4.

Concerning H = Hθ
2×2(1) = ⟨IJ−1θ, τ33⟩, one computes that

RH(f56) = 0, RH(f78) = 0, RH(f157) = 2(f157 − ie
π
2 f168)

RH(f368) = 0, RH(f258) = f258 + f267 − e−
π
2 f458 + e−

π
2 f467.

The Γθ
2×2(1)-cusps are κ̄1, κ̄3, κ̄2 = κ̄4 and κ̄5 = κ̄6 = κ̄7 = κ̄8. By Lemma 6

we have f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 ̸= 0 and f258+f267

Σ2

∣∣∣
T2

= 2e−π ̸= 0. Therefore

RH(f157)|T1 = ∞, RH(f258)|T2 = ∞ and 1, RH(f157), RH(f258) constitute a
C-basis of LH , according to Lemma 4 iii). Applying Lemma 7 with c = 0, one
concludes that RH(f157)|T2 ̸≡ const. Then Lemma 4 iv) implies that ΦHθ

2×2(1) is
a dominant map to P2. The lack of f ∈ LH with f |T3 = ∞ reveals that ΦHθ

2×2(1)

is not defined at κ̄3.
If H = H ′

4(0, 0) = ⟨I⟩ then the Reynolds operators are

RH(f56) = 0, RH(f78) = 4f78, RH(f157) = f157 − e
π
2 f267 + ie

π
2 f357 − if467

RH(f168) = f168 − if258 + ie−
π
2 f368 − e−

π
2 f458 and RH(1) = 1 ∈ C

span LH . The Γ′
4(0, 0)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5 = κ̄6, κ̄7 and κ̄8.

According to Lemma 4 ii), the inclusions T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆
8∑

i=1
Ti suffice for RH(f168) ∈ SpanC(1, RH(f78), RH(f157). Therefore LH ≃ C3.

Observe that RH(f78)|T1 = 4Σ12(v) ̸≡ const, in order to apply Lemma 4 iv) and

assert that ΦH′
4(0,0) is a dominant map to P2. As far as f157+ie

π
2 f357

Σ5

∣∣∣
T5

= 0 by
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Lemma 6, the abelian function RH(f157) has no pole on T5. Therefore ΦH′
4(0,0) is

not defined at κ̄5.
For H ′

4(1, 1) = ⟨τ33IJ2⟩ the Reynolds operators are

Rh(f56) = 0, RH(f78) = 4f78, RH(f157) = f157+e
π
2 f258+ie

π
2 f357− if458

RH(f168) = f168 + if267 + ie−
π
2 f368 − e−

π
2 f467.

The Γ′
4(1, 1)-cusps are κ̄1 = κ̄2 = κ̄3 = κ̄4, κ̄5, κ̄6 and κ̄7 = κ̄8. Due to

T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆
8∑

i=1
Ti, Lemma 4 ii) applies to provide

RH(f168) ∈ SpanC(1, RH(f78), RH(f157)). Thus, LH ≃ C3. According to
Lemma 4 iv), RH(f78)|T1 = 4Σ12(v) ̸≡ const suffices for ΦH′

4(1,1) to be a dom-

inant rational map to P2. Further, f157+ie
π
2 f357

Σ5

∣∣∣
T5

= 0 by Lemma 6 implies that

RH(f157) has no pole over T5 and ΦH′
4(1,1) is not defined at κ̄5.

If H = H2(1, 1) = ⟨τ33I2J2⟩ then LH is generated by

1 ∈ C, RH(f56) = 2f56, RH(f78) = 2f78, RH(f157) = f157 + ie
π
2 f168

RH(f368) = f368−ie
π
2 f357, RH(f258) = f258−f267, RH(f467) = f467+f458.

The Γ2(1, 1)-cusps are κ̄1, κ̄2, κ̄3, κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8. By Lemma 6 one

has f157+ie
π
2 f168

Σ1

∣∣∣
T1

= f368−ie
π
2 f357

Σ3

∣∣∣
T3

= f258−f267
Σ2

∣∣∣
T2

= f467+f458
Σ4

∣∣∣
T4

= 0. Thus,

RH(f157), RH(f368), RH(f258), RH(f467) ∈ SpanC(1, RH(f56), RH(f78)) and
LH ≃ C3. Bearing in mind that RH(f56)|T5 = ∞, RH(f78)|T5 ̸≡ const, one
applies Lemma 4 iv) and concludes that ΦH2(1,1) is a dominant map to P2. Since

LH has no pole over
4∑

i=1
Ti, the map ΦH2(1,1) is not defined at κ̄1, κ̄2, κ̄3, κ̄4. �

Let us recall from Hacon and Pardini’s [1] that the geometric genus pg(X) =
dimCH0(X,Ω2

X) of a smooth minimal surface X of general type is at most 4.
The next theorem provides a smooth toroidal compactification Y =

(
B/Γ⟨τ33⟩

)′
with abelian minimal model A−1/⟨τ33⟩ and dimCH0(Y,Ω2

Y (T
′)) = 5.

Theorem 7. i) For H = H ′
2 = ⟨I2⟩, H ′′

2 = ⟨J2⟩, H2(n, 1− n) = ⟨τ33I2nJ2−2n⟩
or Hθ

2 (n, k) = ⟨τn33IkJ−kθ⟩ with 0 ≤ n ≤ 1, 0 ≤ k ≤ 3 the logarithmic-
canonical map

ΦH : B̂/ΓH > P([ΓH , 1]) = P3

has maximal rkΦH = 2. For H ̸= H2(n, 1 − n) the rational map ΦH is not
globally defined and B̂/ΓH are ruled surfaces with elliptic bases. In the case of
H = H2(n, 1− n) the surface B̂/ΓH is hyperelliptic.
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ii) For H = H2(0, 0) = ⟨τ33⟩ the smooth surface
(
B/Γ⟨τ33⟩

)′ has abelian minimal
model A−1/⟨τ33⟩ and the logarithmic-canonical map

Φ⟨τ33⟩ : ̂B/Γ⟨τ33⟩ > P([Γ⟨τ33⟩, 1]) = P4

is of maximal rkΦ⟨τ33⟩ = 2.

Proof: i) By Lemma 4 v), it suffices to prove the statement for H ′
2, H2(1, 0) and

Hθ
2 (n, k) = ⟨τn33IkJ−kθ⟩ with 0 ≤ n ≤ 1, 0 ≤ k ≤ 2.

Note that H ′
2, H2(1, 0) are subgroups of H ′

2×2(0) = ⟨τ33, I2⟩ and rkΦH′
2×2(0) = 2.

By Lemma 4 iv) that suffices for rkΦH′
2 = rkΦH2(1,0) = 2.

In the case of H = H ′
2 = ⟨I2⟩, the Reynolds operators

RH(f56) = 0, RH(f78) = 2f78

RH(f157) = f157 + ie
π

2
f357, RH(f168) = f168 + ie−

π
2 f368

RH(f258) = f258 − ie−
π
2 f458, RH(f267) = f267 + ie−

π
2 f467.

The Γ′
2-cusps are κ̄1 = κ̄3, κ̄2 = κ̄4, κ̄5, κ̄6, κ̄7 and κ̄8. According to Lemma

4 ii), the inclusions T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆ T1 + T3 +
8∑

α=5
Tα

suffice for RH(f168) ∈ SpanC(1, RH(f78), RH(f157)). Similarly, from T2 ⊂

(RH(f258))∞, (RH(f267))∞ ⊆ T2 + T4 +
8∑

α=5
Tα there follows RH(f267) ∈

SpanC(1, RH(f78), RH(f258)). As a result, one concludes that the space of the
invariants LH = SpanC(1, RH(f78), RH(f157), RH(f258)) ≃ C4. Since LH has
no pole over T6, the rational map ΦH′

2 is not defined at κ̄6.
If H = H2(1, 0) = ⟨τ33I2⟩, then LH is spanned by

1 ∈ C, RH(f56) = 2f56, RH(f78) = 0

RH(f157) = f157 + f368, RH(f258) = f258 + ie−
π
2 f467.

The Γ2(1, 0)-cusps are κ̄1 = κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄6, κ̄7 = κ̄8. According to

Lemma 4 iii), the inclusions T1 + T3 ⊂ (RH(f157))∞ ⊆ T1 + T3 +
8∑

α=5
Tα and

T2 + T4 ⊂ (RH(f258))∞ ⊆ T2 + T4 +
8∑

α=5
Tα suffice for the linear independence

of 1, RH(f56), RH(f157), RH(f258).
Further, observe that Hθ

2 (n, 0) = ⟨τn33θ⟩ are subgroups of Hθ
2×2(0) = ⟨τ33, θ⟩ with

rkΦHθ
2×2(0) = 2. Therefore rkΦHθ

2 (n,0) = 2 by Lemma 4 iv).
If H = Hθ

2 (0, 0) = ⟨θ⟩ then

RH(f56) = f56+f78, RH(f157) = f157−e
π
2 f357, RH(f368) = f368−e

π
2 f168
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RH(f258) = f258 + f267, RH(f467) = f467 + f458.

The Γθ
2(0, 0)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4, κ̄5 = κ̄7 and κ̄6 = κ̄8. According

to Lemma 4 ii), T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆ T1 + T3 +
8∑

α=5
Tα im-

plies R(f168) ∈ SpanC(1, RH(f56), R(f157)). Lemma 6 supplies f258+f267
Σ2

∣∣∣
T2

=

2e−π ̸= 0 and f467+f458
Σ4

∣∣∣
T4

= 0. Therefore RH(f258)|T2 = ∞ and RH(f467) ⊂

SpanC(1, RH(f56)). Thus, LH = SpanC(1, RH(f56), RH(f157), RH(f258)) ≃
C4. The entire [Γθ

2(0, 0), 1] vanishes at κ̄4 and ΦHθ
2 (0,0) is not globally defined.

For H = Hθ
2 (1, 0) = ⟨τ33θ⟩ the space LH is generated by

1 ∈ C, RH(f56) = f56 − f78

RH(f157) = f157 + if368, RH(f258) = 2f258, RH(f467) = 0.

The Γθ
2(1, 0)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4, κ̄5 = κ̄8 and κ̄6 = κ̄7. Making use of

T1 ⊂ (RH(f157))∞ ⊆ T1 + T3 +
8∑

α=5
Tα and T2 ⊂ (RH(f258))∞ ⊂ T2 +

8∑
α=5

Tα,

one applies Lemma 4 iii), in order to conclude that

LH = SpanC(1, RH(f56), RH(f157), RH(f258)) ≃ C4.

The abelian functions from LH have no poles along T4, so that ΦHθ
2 (1,0) is not

defined at κ̄4.
Observe that Hθ

2 (n, 1) = ⟨τn33IJ−1θ⟩ are subgroups of Hθ
2×2(1) = ⟨τ33, IJ−1θ⟩

with rkΦHθ
2×2(1) = 2, so that rkΦHθ

2 (n,1) = 2 as well.
More precisely, Reynolds operators for H = Hθ

2 (0, 1) = ⟨IJ−1θ⟩ are

RH(f56) = f56+if78, RH(f157) = f157−ie
π
2 f168, RH(f368) = f368−ie

π
2 f357

RH(f258) = f258 − e−
π
2 f458, RH(f267) = f267 + e−

π
2 f467.

The Γθ
2-cusps are κ̄1, κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄8, κ̄6 = κ̄7. By Lemma 6 one has

f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 ̸= 0, f368−ie

π
2 f357

Σ3

∣∣∣
T3

= 0, whereas RH(f157)|T1 = ∞,

RH(f368) ∈ SpanC(1, RH(f56)). Applying Lemma 4 ii) to the inclusions T2 ⊂

(RH(f258))∞, (RH(f267))∞ ⊆ T2+T4+
8∑

α=5
Tα, one concludes that RH(f267) ∈

SpanC(1, RH(f56), RH(f258)). Altogether

LH = SpanC(1, RH(f56), RH(f157), RH(f258)) ≃ C4.

Since LH has no pole over T3, the rational map ΦHθ
2 (0,1) is not defined at κ̄3.

If H = Hθ
2 (1, 1) = ⟨τ33IJ−1θ⟩ then

RH(f56) = f56 − if78, RH(f157) = 2f157



288 Azniv Kasparian

RH(f368) = 0, RH(f258) = f258 + e−
π
2 f467.

The Γθ
2(1, 1)-cusps are κ̄1, κ̄3, κ̄2 = κ̄4, κ̄5 = κ̄7 and κ̄6 = κ̄8. Making use

of RH(f157)|T1 = ∞, TH(f258)|T2 = ∞, one applies Lemma 4 iii), in order to
conclude that LH = SpanC(1, RH(f56), RH(f157), RH(f258)) ≃ C4. Since LH

has no pole over T3, the rational map ΦHθ
2 (1,1) is not defined at κ̄3.

Reynolds operators for H = Hθ
2 (0, 2) = ⟨I2J2θ⟩ are

RH(f56) = f56−f78, RH(f157) = f157+e
π
2 f357, RH(f168) = f168+e−

π
2 f368

RH(f258) = f258 − f267, RH(f467) = f467 − f458.

The Γθ
2(0, 2)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4, κ̄5 = κ̄7, κ6 = κ8. Lemma 4 ii)

applies to T1 ⊂ (RH(f157))∞, (RH(f168))∞ ⊆ T1 + T3 +
8∑

α=5
Tα to provide

RH(f168) ∈ SpanC(1, RH(f56), RH(f157)). By Lemma 6 one has f258−f267
Σ2

∣∣∣
T2

=

0 and f467−f458
Σ4

∣∣∣
T4

= 2ie−
π
2 ̸= 0. As a result, RH(f258) ∈ SpanC(1, RH(f56))

and RH(f467)|T4 = ∞. Lemma 4 iii) reveals that 1 ∈ C, RH(f56), RH(f157),
RH(f467) form a C-basis of LH . Since LH has no pole over T2, the rational map
ΦHθ

2 (0,2) is not defined over κ̄2.
In the case of H = Hθ

2 (1, 2) = ⟨τ33I2J2θ⟩ one has

RH(f56) = f56 + f78, RH(f157) = f157 − if368

RH(f258) = 0, RH(f467) = 2f467.

The Γθ
2(1, 2)-cusps are κ̄1 = κ̄3, κ̄2, κ̄4, κ̄5 = κ̄8 and κ̄6 = κ̄7. Lemma 4 iii)

applies to T1 ⊂ (RH(f157))∞ ⊆ T1 + T3 +
8∑

α=5
Tα, T4 ⊂ (RH(f467))∞ ⊆

T4+T6+T7, in order to justify the linear independence of 1, RH(f56), RH(f157),
RH(f467). Since LH ≃ C4 has no pole over T2, the rational map ΦHθ

2 (1,2) is not
defined at κ̄2.
ii) For H = H2(0, 0) = ⟨τ33⟩ one has the following Reynolds operators

RH(f56) = 0, RH(f78) = 0, RH(f157) = f157 − ie
π
2 f168

RH(f258) = f258+f267, RH(f368) = f368+ie
π
2 f357, RH(f467) = f467−f458.

There are six Γ⟨τ33⟩-cusps: κ̄1, κ̄2, κ̄3, κ̄4, κ̄5 = κ̄6 and κ̄7 = κ̄8. By the means

of Lemma 6 one observes that f157−ie
π
2 f168

Σ1

∣∣∣
T1

= −2ie−
π
2 ̸= 0, f258+f267

Σ2

∣∣∣
T2

=

2e−π ̸= 0, f368+ie
π
2 f357

Σ3

∣∣∣
T3

= 2ie−
π
2 ̸= 0, f467−f458

Σ4

∣∣∣
T4

= 2ie−
π
2 ̸= 0. Therefore

Ti ⊂ (RH(fi,αi,βi
))∞ ⊆ Ti +

8∑
δ=5

Tδ for 1 ≤ i ≤ 4, (α1, β1) = (5, 7), (α2, β2) =
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(5, 8), (α3, β3) = (6, 8), (α4, β4) = (6, 7). According to Lemma 4 iii), that
suffices for 1, RH(f157), RH(f258), RH(f368), RH(f467) to be a C-basis of LH .
Bearing in mind that H2(0, 0) = ⟨τ33⟩ is a subgroup of H ′

2×2(0) = ⟨τ33, I2⟩ with
rkΦH′

2×2(0) = 2, one concludes that rkΦ⟨τ33⟩ = 2. �
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