MOTION OF CHARGED PARTICLES IN TWO-STEP NILPOTENT LIE GROUPS*

OSAMU IKAWA
Department of General Education, Fukushima National College of Technology Iwaki, Fukushima, 970-8034 JAPAN

Abstract

We formulate the equation of motion of a charged particle in a Riemannian manifold with a closed two form. Since a two-step nilpotent Lie group has natural left-invariant closed two forms, it is natural to consider the motion of a charged particle in a simply connected two-step nilpotent Lie groups with a left invariant metric. We study the behavior of the motion of a charged particle in the above spaces.

1. Introduction

Let Ω be a closed two-form on a connected Riemannian manifold (M,\langle,$\rangle),$ where \langle,$\rangle is a Riemannian metric on M$. We denote by $\Lambda^{\mathfrak{m}}(M)$ the space of m forms on M. We denote by $\iota(X): \Lambda^{\mathfrak{m}}(M) \rightarrow \Lambda^{m-1}(M)$ the interior product operator induced from a vector field X on M, and by $\mathcal{L}: T(M) \rightarrow T^{*}(M)$, the Legendre transformation from the tangent bundle $T(M)$ over M onto the cotangent bundle $T^{*}(M)$ over M, which is defined by

$$
\begin{equation*}
\mathcal{L}: \mathrm{T}(M) \rightarrow \mathrm{T}^{*}(M), \quad u \mapsto \mathcal{L}(u), \quad \mathcal{L}(u)(v)=\langle u, v\rangle, \quad u, v \in \mathrm{~T}(M) \tag{1}
\end{equation*}
$$

A curve $\chi(t)$ in M is referred as a motion of a charged particle under electromagnetic field Ω, if it satisfies the following second order differential equation

$$
\begin{equation*}
\nabla_{\dot{\chi}} \dot{\chi}=-\mathcal{L}^{-1}(\iota(\dot{\chi}) \Omega) \tag{2}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of M. Here $\nabla_{\dot{\chi}} \dot{\chi}$ means the acceleration of the charged particle. Since $-\mathcal{L}^{-1}(\mathfrak{l}(\dot{x}) \Omega)$ is perpendicular to the direction \dot{x} of the movement, $-\mathcal{L}^{-1}(\mathfrak{l}(\dot{x}) \Omega)$ means the Lorentz force. The speed $|\dot{x}|$ is a conservative constant for a charged particle. When $\Omega=0$, then the motion of a

[^0]charged particle is nothing but a geodesic. The equation (2) originated in the theory of relativity (see [2] for details).
In this paper, we deal with the motion of a charged particles in a simply connected two-step nilpotent Lie group N with a left invariant Riemannian metric. Since a two-step nilpotent Lie group has a non-trivial center Z, we can construct a left-invariant closed two form $\Omega_{a_{0}}$ from an element $a_{0} \in Z$ specified below and consider the motion of a charged particle under the electromagnetic field $\Omega_{a_{0}}$. H. Naitoh and Y. Sakane proved that there are no closed geodesics in a simply connected nilpotent Lie group. In contrast with geodesics, there exist motions of charged particles which are periodic. Kaplan defined a H-type Lie group, which is a kind of two-step nilpotent Lie groups. We study the motion of a charged particle in a H-type Lie group more explicitly than in a general two-step nilpotent Lie group.

2. Charged Particles in Two-step Nilpotent Lie Groups

Let N be a simply connected two-step nilpotent Lie group with a left-invariant Riemannian metric \langle,$\rangle . Denote by \mathfrak{n}$ the vector space consisting of all left-invariant vector fields on N. Since \mathfrak{n} is two-step nilpotent, \mathfrak{n} has a non-trivial center \mathfrak{z}. Let $\mathfrak{n}=\mathfrak{z} \oplus \mathfrak{z}^{\perp}$ be an orthogonal direct sum decomposition of \mathfrak{n}, then $\left[\mathfrak{z}^{\perp}, \mathfrak{z}^{\perp}\right] \subset \mathfrak{z}$. For $a_{0} \in \mathfrak{z}$, we define a linear transformation $\phi_{a_{0}}$ on \mathfrak{z}^{\perp} by

$$
\left\langle\phi_{\mathrm{a}_{0}}(\mathrm{X}), \mathrm{Y}\right\rangle=\left\langle\mathrm{a}_{0},[\mathrm{X}, \mathrm{Y}]\right\rangle, \quad \mathrm{X}, \mathrm{Y} \in \mathfrak{z}^{\perp}
$$

We extend $\phi_{a_{0}}$ to a linear transformation on \mathfrak{n} by $\phi=0$ on \mathfrak{z}, which is also denoted by $\phi_{a_{0}}$. We can regard $\phi_{a_{0}}$ as a left-invariant (1,1)-tensor on N. Then $\phi_{a_{0}}$ is skew-symmetric with respect to the left-invariant Riemannian metric \langle, since

$$
\left\langle\phi_{\mathrm{a}_{0}}(\mathrm{X}), \mathrm{Y}\right\rangle+\left\langle\mathrm{X}, \phi_{\mathrm{a}_{0}}(\mathrm{Y})\right\rangle=\left\langle\mathrm{a}_{0},[\mathrm{X}, \mathrm{Y}]\right\rangle+\left\langle\mathrm{a}_{0},[\mathrm{Y}, \mathrm{X}]\right\rangle=0
$$

for any left invariant vector fields $X, Y \in \mathfrak{n}$. If we define a left-invariant two-form $\Omega_{a_{0}}$ on N by

$$
\Omega_{a_{0}}(X, Y)=\left\langle X, \phi_{a_{0}}(Y)\right\rangle, \quad X, Y \in \mathfrak{n}
$$

then a simple calculation implies that $\Omega_{a_{0}}$ is closed. In fact, for any X_{1}, X_{2} and X_{3} in \mathfrak{n} we have

$$
\begin{aligned}
3!\left(\mathrm{d} \Omega_{\mathrm{a}_{0}}\right)\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right) & =-\mathfrak{S} \Omega_{\mathrm{a}_{0}}\left(\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right], \mathrm{X}_{3}\right) \\
& =-\mathfrak{S}\left\langle\left[\mathrm{X}_{1}, X_{2}\right], \phi_{\mathrm{a}_{0}}\left(\mathrm{X}_{3}\right)\right\rangle=0
\end{aligned}
$$

where we denote by \mathfrak{S} the cyclic sum, and the last equality follows from the fact that $\left[X_{1}, X_{2}\right] \in \mathfrak{z}$ and $\phi\left(X_{3}\right) \in \mathfrak{z}^{\perp}$. The equation of motion of the charged particle under the electromagnetic field $\Omega_{a_{0}}$ is

$$
\begin{equation*}
\nabla_{\dot{x}} \dot{x}=\phi_{a_{0}}(\dot{x}) . \tag{3}
\end{equation*}
$$

Here a curve in a manifold is simple if it is a simply closed periodic curve, or if it does not intersect itself. Since N is simply connected, the one dimensional de-Rham cohomology group vanishes. Hence we get the following theorem using Theorem 9 in [2].
Theorem 1. The motion of a charged particle (3) in a simply connected two-step nilpotent Lie group is simple.

Now we will construct explicitly a simply connected two step nilpotent Lie group with a left-invariant Riemannian metric from an (abstract) two-step nilpotent Lie algebra \mathfrak{n} with an inner product \langle,$\rangle . In order to do this, we recall a Hausdorff$ formula for a Lie group (see [1, p. 106]), which states that

$$
\exp X \exp Y=\exp \left(X+Y+\frac{1}{2}[X, Y]+\cdots\right)
$$

If the Lie group is two-step nilpotent, then the higher terms $+\cdots$ on the right hand side vanish. Based on the Hausdorff formula, we define a Lie group structure on \mathfrak{n} itself by

$$
X \cdot Y=X+Y+\frac{1}{2}[X, Y], \quad X, Y \in \mathfrak{n} .
$$

The identity element in this group is 0 , and the inverse element of $x \in \mathfrak{n}$ is equal to $-\chi$. We denote by $\mathrm{N}=(\mathfrak{n}, \cdot)$ the so obtained Lie group. The center of N coincides with \mathfrak{z}. Denote by $\operatorname{Lie}(\mathrm{N})$ the Lie algebra consisting of all left-invariant vector fields on N. Then $\operatorname{Lie}(N)$ is identified with \mathfrak{n} as a Lie algebra as mentioned below. Since N is a Euclidean space as a manifold, we can identify $T_{0}(N)$ with \mathfrak{n} as vector spaces. The identification induces a Lie algebra structure on $T_{0}(N)$. For $X \in T_{0}(N)$, we denote by $\tilde{X} \in \operatorname{Lie}(N)$ the left-invariant vector field on N such that $\tilde{X}_{0}=X$. The mapping defined by $\mathfrak{n}=T_{0}(N) \rightarrow \operatorname{Lie}(N), X \mapsto \tilde{X}$ gives an isomorphism as Lie algebras. Hence N is a simply connected two-step nilpotent Lie group whose Lie algebra is \mathfrak{n}. The inner product \langle,$\rangle on \mathfrak{n}$ induces a left-invariant Riemannian metric \langle,$\rangle on N$. Using this notation, we have

$$
\Omega_{a_{0}}(\tilde{X}, \tilde{Y})=\langle\tilde{X}, \phi \tilde{Y}\rangle=\left\langle\tilde{a}_{0},[\tilde{Y}, \tilde{X}]\right\rangle=\left\langle a_{0},[Y, X]\right\rangle .
$$

The exponential mapping exp : $\mathfrak{n} \rightarrow \mathrm{N}$ is equal to identity mapping. Hence for $X \in T_{0}(N)$, we have

$$
\tilde{X}_{x}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{x} \cdot \mathrm{tX})_{\mid \mathrm{t}=0}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{x}+\mathrm{tX}+\frac{\mathrm{t}}{2}[\mathrm{x}, \mathrm{X}]\right)_{\mid \mathrm{t}=0} \in \mathrm{~T}_{\mathrm{x}}(\mathrm{~N}) .
$$

Since the Riemannian metric on N is left-invariant, the left action of N on N itself is isometric. Hence $X \in T_{0}(N)$ induces a Killing vector field X^{*} on N by

$$
X_{x}^{*}=\frac{\mathrm{d}}{\mathrm{dt}}(\operatorname{expt} \mathrm{X}) \mathrm{x}_{\mid \mathrm{t}=0}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{t} X+x+\frac{\mathrm{t}}{2}[\mathrm{X}, \mathrm{x}]\right)_{\mid \mathrm{t}=0} \in \mathrm{~T}_{\mathrm{x}}(\mathrm{~N}) .
$$

The Killing vector field X^{*} is right-invariant.
Lemma 1. The mapping defined by

$$
\mathfrak{n} \rightarrow \mathfrak{n}, \quad X \mapsto X+\frac{1}{2}[X, x]
$$

is a linear isomorphism.

Proof: Since the mapping is clearly linear, it is sufficient to prove that it is injective. In order to do this, we study the kernel of the mapping. Suppose that $X \in \mathfrak{n}$ satisfy the condition $X+\frac{1}{2}[X, x]=0$. Decompose X as $X=X_{1}+X_{2}$ where $X_{1} \in \mathfrak{z}^{\perp}$ and $X_{2} \in \mathfrak{z}$, then $X_{1}+\left(X_{2}+\frac{1}{2}\left[X_{1}, x\right]\right)=0$. This implies $X_{1}=0$ and $X_{2}+\frac{1}{2}\left[X_{1}, x\right]=0$. Hence we have $X_{2}=0$, hence, $X=0$.

By the lemma above, we have $T_{x}(N)=\operatorname{span}\left\{X_{x}^{*} ; X \in \mathfrak{n}\right\}$ for any x in N. The Killing vector field X^{*} is an infinitesimal automorphism of ϕ.

Lemma 2. Let X be in $\mathrm{T}_{0}(\mathrm{~N})=\mathfrak{n}$. For a fixed $\mathrm{x} \in \mathrm{N}$, we have $\mathrm{X}_{x}^{*}=\tilde{W}_{x}$, where we set $W=X+[X, x]$.

Proof: Since

$$
\begin{aligned}
\tilde{W}_{x} & =\frac{d}{d t}\left(x+t X+t[X, x]+\frac{t}{2}[x, X+[X, x]]\right)_{\mid t=0} \\
& =\frac{d}{d t}\left(x+t X+\frac{t}{2}[X, x]\right)_{\mid t=0}=X_{x}^{*}
\end{aligned}
$$

we have the assertion.
Lemma 3. Define a one-form $\eta_{\mathrm{a}_{0}}$ on N by

$$
\eta_{\mathrm{a}_{0}}\left(X_{x}^{*}\right)=\left\langle[x, X], a_{0}\right\rangle, \quad X \in \mathfrak{n}
$$

Then $\mathfrak{l}\left(\mathrm{X}^{*}\right) \Omega_{\mathrm{a}_{0}}=\mathrm{d}\left(\eta_{\mathrm{a}_{0}}\left(\mathrm{X}^{*}\right)\right)$ for any X in \mathfrak{n}.

Proof: Let X and Y be in \mathfrak{n}. By Lemma 2, we have

$$
\begin{aligned}
\left(\iota\left(X_{x}^{*}\right) \Omega_{a_{0}}\right)\left(\tilde{Y}_{x}\right) & =\Omega_{a_{0}}\left(X_{x}^{*}, \tilde{Y}_{x}\right) \\
& =\Omega_{a_{0}}\left(\tilde{W}_{x}, \tilde{Y}_{x}\right) \\
& \left.=\Omega_{a_{0}}(X+[X, x]), Y\right) \\
& =\left\langle a_{0},[Y, X+[X, x]]\right\rangle=\left\langle a_{0},[Y, X]\right\rangle .
\end{aligned}
$$

Using the above equation, we have also

$$
\begin{aligned}
\mathrm{d}\left(\eta_{\mathrm{a}_{0}}\left(X^{*}\right)\right)\left(\tilde{Y}_{x}\right) & =\tilde{Y}_{x}\left(\eta_{\mathrm{a}_{0}}\left(X^{*}\right)\right) \\
& =\frac{\mathrm{d}}{\mathrm{dt}} \eta_{\mathrm{a}_{0}}\left(X_{x+t \mathrm{t}+\frac{\mathrm{t}}{2}[x, Y]}^{*}\right)_{\mid t=0} \\
& =\frac{\mathrm{d}}{\mathrm{dt}}\left\langle\left[x+\mathrm{t} Y+\frac{\mathrm{t}}{2}[x, Y], X\right], a_{0}\right\rangle \\
& =\left\langle[Y, X], a_{0}\right\rangle=\left(\iota\left(X_{x}^{*}\right) \Omega_{a_{0}}\right)\left(\tilde{Y}_{x}\right) .
\end{aligned}
$$

Hence we get $d\left(\eta_{a_{0}}\left(X^{*}\right)\right)=\imath\left(X^{*}\right) \Omega_{a_{0}}$.
Denote by $\mathrm{T}_{x}(\mathrm{~N}) \rightarrow \mathrm{T}_{0}(\mathrm{~N}) ; v \mapsto \nu_{\mathfrak{n}}$ the usual parallel translation in the Euclidean space \mathfrak{n} : Take a curve $\mathrm{c}(\mathrm{t})$ in N such that $\mathrm{c}(0)=x, \dot{\mathrm{c}}(0)=v$. Then $v_{\mathfrak{n}}=$ $\frac{d}{d t}(c(t)-x)_{\mid t=0}$. The following lemma gives a relation between the two linear isomorphisms $L_{x}^{-1}: T_{x}(N) \rightarrow T_{0}(N)$ and $T_{x}(N) \rightarrow T_{0}(N), v \mapsto v_{n}$.
Lemma 4. $\mathrm{L}_{\chi}^{-1} v=v_{\mathfrak{n}}-\frac{1}{2}\left[x, v_{\mathfrak{n}}\right] \quad$ for $\quad v \in \mathrm{~T}_{x}(\mathrm{~N})$.
Proof: Take a curve $c(t)$ in N such that $c(0)=x, \dot{c}(0)=v$. Then

$$
\begin{aligned}
\mathrm{L}_{x}^{-1} v & =\mathrm{L}_{-\mathrm{x}} v=\frac{\mathrm{d}}{\mathrm{dt}}\left(-\mathrm{x}+\mathrm{c}(\mathrm{t})-\frac{1}{2}[\mathrm{x}, \mathrm{c}(\mathrm{t})]\right)_{\mid \mathrm{t}=0} \\
& =\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{c}(\mathrm{t})-\mathrm{x}-\frac{1}{2}[\mathrm{x}, \mathrm{c}(\mathrm{t})-\mathrm{x}]\right)_{\mid \mathrm{t}=0}=v_{\mathfrak{n}}-\frac{1}{2}\left[\mathrm{x}, v_{\mathfrak{n}}\right]
\end{aligned}
$$

Hence we have the assertion.
Similarly we define $T_{y}\left(\mathfrak{z}^{\perp}\right) \rightarrow T_{0}\left(\mathfrak{z}^{\perp}\right), \mathfrak{u} \mapsto \mathfrak{u}_{\mathfrak{z}}$ and $T_{z}(\mathfrak{z}) \rightarrow T_{0}(\mathfrak{z}), w \mapsto w_{\mathfrak{z}}$. Since \mathfrak{z} is abelian, we have $L_{z}^{-1} w=w_{\mathfrak{z}}$ for $w \in T_{z}(\mathfrak{z})$. Hence we can write $w=w_{\mathfrak{z}}$. Let $x \in \mathfrak{n}$ and $v \in \mathrm{~T}_{\mathfrak{x}}(\mathfrak{n})$. Expressing x and v as $x=y+z$ and $v=v_{1}+v_{2}$, where $\mathfrak{y} \in \mathfrak{z}^{\perp}, z \in \mathfrak{z}, v_{1} \in \mathrm{~T}_{\mathrm{y}}\left(\mathfrak{z}^{\perp}\right)$ and $v_{2} \in \mathrm{~T}_{z}(\mathfrak{z})$ we obtain

$$
\begin{equation*}
\mathrm{L}_{x}^{-1} v=\left(v_{1}\right)_{\mathfrak{z}^{\perp}}+\left(v_{2}-\frac{1}{2}\left[y,\left(v_{1}\right)_{\mathfrak{z}^{\perp}}\right]\right) \tag{4}
\end{equation*}
$$

Proposition 1. Let $x(t)=y(t)+z(t)$ be a curve in \mathfrak{n}, where $y(t) \in \mathfrak{z}^{\perp}$ and $z(t) \in \mathfrak{z}$. Assume that $y(0)=0$. Then $x(t)$ describes the motion of a charged particle (3) if and only if

$$
\begin{equation*}
\dot{y}(t)_{\mathfrak{z}^{\perp}}-\phi_{\dot{z}(0)+a_{0}} y(t)=\dot{y}(0), \quad \dot{z}(t)-\frac{1}{2}\left[y(t), \dot{y}(t)_{\mathfrak{z}^{\perp}}\right]=\dot{z}(0) \tag{5}
\end{equation*}
$$

Proof: Taking the inner product of (3) and the Killing vector field X^{*} for $X \in \mathfrak{n}$, we have

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left\langle\dot{x}, X^{*}\right\rangle=\Omega\left(X^{*}, \dot{x}\right)=\left(\iota\left(X^{*}\right) \Omega\right)(\dot{x})
$$

Using Lemma 3 we find

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left\langle\dot{x}, X^{*}\right\rangle=\left(\mathrm{d}\left(\eta\left(X^{*}\right)\right)\right)(\dot{x})=\frac{\mathrm{d}}{\mathrm{dt}} \eta\left(X_{x(t)}^{*}\right)
$$

Since $T_{\chi}(N)=\operatorname{span}\left\{X_{x}^{*} ; X \in \mathfrak{n}\right\}$, the equation (3) is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\left\langle\dot{x}(\mathrm{t}), X_{x(\mathrm{t})}^{*}\right\rangle-\eta\left(X_{x(t)}^{*}\right)\right)=0
$$

By the definition of η, we have

$$
\eta\left(X_{x(t)}^{*}\right)=\left\langle[x(t), x], a_{0}\right\rangle=\left\langle\phi_{a_{0}}(y(t)), X\right\rangle
$$

Since \langle,$\rangle is left invariant$

$$
\begin{aligned}
\left\langle\dot{x}, X_{x(t)}^{*}\right\rangle & =\left\langle\mathrm{L}_{x}^{-1} \dot{x}, \mathrm{~L}_{x}^{-1} X_{x}^{*}\right\rangle \\
& =\left\langle\dot{y}_{\mathfrak{z}^{\perp}}+\left(\dot{z}-\frac{1}{2}\left[y, \dot{y}_{\mathfrak{z}^{\perp}}\right]\right), X+[\mathrm{X}, \mathrm{x}]\right\rangle \\
& =\left\langle\dot{\mathrm{y}}_{\mathfrak{z}^{\perp}}, X\right\rangle+\left\langle\dot{z}-\frac{1}{2}\left[y, \dot{\mathrm{y}}_{\mathfrak{z}^{\perp}}\right], X+[\mathrm{X}, \mathrm{x}]\right\rangle
\end{aligned}
$$

where we have used Lemma 2 and equation (4). Hence the equation (3) is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\left\langle\dot{\mathrm{y}}_{\mathfrak{z}^{\perp}}-\phi_{\mathrm{a}_{0}}(\mathrm{y}), \mathrm{X}\right\rangle+\left\langle\dot{z}-\frac{1}{2}\left[\mathrm{y}, \dot{\mathrm{y}}_{\mathfrak{z}^{\perp}}\right], \mathrm{X}+[\mathrm{X}, \mathrm{y}]\right\rangle\right)=0
$$

Taking $X \in \mathfrak{z}$, we have

$$
\dot{z}(\mathrm{t})-\frac{1}{2}\left[\mathrm{y}(\mathrm{t}), \dot{\mathrm{y}}(\mathrm{t})_{\mathfrak{z}^{\perp}}\right]=\dot{z}(0)
$$

where we have used the initial condition $y(0)=0$. Next, taking $X \in \mathfrak{z}^{\perp}$, we have

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\left\langle\dot{\mathfrak{y}}_{\mathfrak{z}^{\perp}}-\phi_{\mathrm{a}_{0}}(\mathrm{y}), X\right\rangle+\langle\dot{z}(0),[X, y]\rangle\right)=0
$$

Taking into account the initial condition $y(0)=0$, we finally have

$$
\dot{y}(\mathrm{t})_{\mathfrak{z}^{\perp}}-\phi_{\dot{z}(0)+\mathrm{a}_{0}} \mathrm{y}(\mathrm{t})=\dot{\mathrm{y}}(0)
$$

Proposition 2. The motion of a charged particle (3) with $y(0)=0$ is given by the equations

$$
\begin{aligned}
& y(t)=\exp t \phi_{\dot{z}(0)+a_{0}} \int_{0}^{t} \exp \left(-t \phi_{\dot{z}(0)+a_{0}}\right) \dot{y}(0) d t \\
& z(t)=z(0)+t \dot{z}(0)+\frac{1}{2} \int_{0}^{t}\left[y(t),\left(\exp t \phi_{\dot{z}(0)+a_{0}}\right) \dot{y}(0)\right] d t .
\end{aligned}
$$

Proof: Using the first equation of (5) with $y(0)=0$, we have

$$
y(t)=\operatorname{expt} \phi_{\dot{z}(0)+\mathrm{a}_{0}} \int_{0}^{\mathrm{t}} \exp \left(-\mathrm{t} \phi_{\dot{z}(0)+\mathrm{a}_{0}}\right) \dot{\mathrm{y}}(0) \mathrm{dt}
$$

Hence

$$
\phi_{\dot{z}(0)+a_{0}} y(t)=\left(\exp t \phi_{\dot{z}(0)+a_{0}}-1\right) \dot{y}(0)
$$

which implies that

$$
\phi_{\dot{z}(0)+a_{0}} y(t)+\dot{y}(0)=\left(\exp t \phi_{\dot{z}}(0)+a_{0}\right) \dot{y}(0)
$$

Using the second and the first equation from (5)

$$
\begin{aligned}
z(t) & =z(0)+t \dot{z}(0)+\frac{1}{2} \int_{0}^{t}\left[y(t), \dot{y}(t)_{\mathfrak{z}^{\perp}}\right] d t \\
& =z(0)+t \dot{z}(0)+\frac{1}{2} \int_{0}^{t}\left[y(t), \phi_{\dot{z}(0)+a_{0}} y(t)+\dot{y}(0)\right] d t \\
& =z(0)+t \dot{z}(0)+\frac{1}{2} \int_{0}^{t}\left[y(t),\left(\exp t \phi_{\dot{z}}(0)+a_{0}\right) \dot{y}(0)\right] d t .
\end{aligned}
$$

Hence we get the assertion.
When $\phi_{\dot{z}(0)+a_{0}}=0$, then, using the above Proposition, we get $y(t)=t \dot{y}(0)$ and

$$
z(t)=z(0)+t \dot{z}(0)+\frac{1}{2} \int_{0}^{\mathrm{t}}[\mathrm{t} \dot{y}(0), \dot{y}(0)] \mathrm{dt}=z(0)+\mathrm{t} \dot{z}(0) .
$$

Lemma 5. The equation of motion (3) implies the following relation

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\left\langle z(\mathrm{t}), \dot{z}(0)+\mathrm{a}_{0}\right\rangle+\frac{1}{2}\langle\mathrm{y}(\mathrm{t}), \dot{\mathrm{y}}(0)\rangle\right)=|\dot{z}(0)|^{2}+\left\langle\dot{z}(0), \mathrm{a}_{0}\right\rangle+\frac{1}{2}\left|\dot{\mathrm{y}}_{\mathfrak{z}^{\perp}}\right|^{2}
$$

Proof: Taking the inner product of the second equation of (5) with $\dot{z}(0)+a_{0}$, we have

$$
\left\langle\dot{z}, \dot{z}(0)+a_{0}\right\rangle-\frac{1}{2}\left\langle\left[y, \dot{y}_{\mathfrak{z}^{\perp}}\right], \dot{z}(0)+a_{0}\right\rangle=|\dot{z}(0)|^{2}+\left\langle\dot{z}(0), a_{0}\right\rangle .
$$

Using equation (5) again produces

$$
\begin{aligned}
\left\langle\left[y, \dot{y}_{\mathfrak{z}^{\perp}}\right], \dot{z}(0)+a_{0}\right\rangle & =\left\langle\phi_{\dot{z}(0)+a_{0}} y, \dot{y}_{\mathfrak{z}^{\perp}}\right\rangle \\
& =\left\langle\dot{y}_{\mathfrak{z}^{\perp}}-\dot{y}(0), \dot{y}_{\mathfrak{z}^{\perp}}\right\rangle \\
& =\left|\dot{y}_{\mathfrak{z}^{\perp}}\right|^{2}-\left\langle\dot{y}_{\mathfrak{z}^{\perp}}, \dot{y}(0)\right\rangle=\left|\dot{y}_{\mathfrak{z}^{\perp}}\right|^{2}-\frac{d}{d t}\langle y(t), \dot{y}(0)\rangle
\end{aligned}
$$

Hence

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\left\langle z(\mathrm{t}), \dot{z}(0)+\mathrm{a}_{0}\right\rangle+\frac{1}{2}\langle\mathrm{y}(\mathrm{t}), \dot{\mathrm{y}}(0)\rangle\right)=|\dot{z}(0)|^{2}+\left\langle\dot{z}(0), a_{0}\right\rangle+\frac{1}{2}\left|\dot{y}_{\mathfrak{z}^{\prime}}\right|^{2}
$$

Applying the lemma above for geodesics, we can re-demonstrate the following theorem of Naitoh-Sakane.

Theorem 2. (Naitoh-Sakane [4, Corrolary 3.3]) Every geodesic in any simply connected two-step nilpotent Lie group with a left-invariant Riemannian metric does not intersect itself.

Proof: Let $x(t)=y(t)+z(t) \in N$ be a geodesic with $y(0)=0$. Applying Lemma 5 with $a_{0}=0$

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\langle z(\mathrm{t}), \dot{z}(0)\rangle+\frac{1}{2}\langle\mathrm{y}(\mathrm{t}), \dot{\mathrm{y}}(0)\rangle\right)=|\dot{z}(0)|^{2}+\frac{1}{2}\left|\dot{y}_{\mathfrak{z}^{\perp}}\right|^{2}>0
$$

Hence $\langle z(t), \dot{z}(0)\rangle+\frac{1}{2}\langle y(t), \dot{y}(0)\rangle$ is monotone increasing. Thus $x(t)$ is not periodic. Since we have already proved that $x(t)$ is simple by Theorem 1, we get the assertion.

The author thinks that the above proof is easier than the original proof of NaitohSakane.

3. Charged Particles in H-type Lie Groups

In this section, we study the motion of a charged particle in a simply connected H-type Lie group. First we review the definition of H-type Lie algebra according to Kaplan. Let $(\mathrm{U},\langle\rangle$,$) and (\mathrm{V},\langle\rangle$,$) be finite-dimensional real vector spaces with$ inner products \langle,$\rangle . Denote by \operatorname{End}(\mathrm{V})$ the vector space consisting of all linear transformations on V . We assume that there exists a linear mapping $j: \mathrm{U} \rightarrow$ End (V) such that

$$
\begin{equation*}
j(a)^{2}=-|a|^{2} I, \quad|j(a) x|=|a||x|, \quad a \in U, \quad x \in V \tag{6}
\end{equation*}
$$

In other words, V is a Clifford module over the Clifford algebra generated by U . By (6) we have

$$
\begin{aligned}
& \langle\mathfrak{j}(a) x, \mathfrak{j}(b) x\rangle=\langle a, b\rangle|x|^{2}, \quad\langle\mathfrak{j}(a) x, j(a) y\rangle=|a|^{2}\langle x, y\rangle \\
& \langle\mathfrak{j}(a) x, y\rangle+\langle x, j(a) y\rangle=0, \quad a, b \in U, \quad x, y \in V
\end{aligned}
$$

Define a bi-linear mapping $[]:, \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{U}$ via the formula

$$
\begin{equation*}
\langle a,[x, y]\rangle=\langle j(a) x, y\rangle, \quad a \in U, \quad x, y \in V \tag{7}
\end{equation*}
$$

Then [,] is alternative. Substituting $\mathfrak{j}(b) x$ into y, we have

$$
\langle a,[x, j(b) x]\rangle=\langle j(a) x, j(b) x\rangle=\langle a, b\rangle|x|^{2} .
$$

Hence

$$
\begin{equation*}
[x, j(b) x]=|x|^{2} b, \quad b \in U, \quad x \in V \tag{8}
\end{equation*}
$$

We denote by $\mathfrak{n}=\mathrm{U} \oplus \mathrm{V}$ the orthogonal direct sum of U and V , and define a Lie algebra structure on \mathfrak{n} by

$$
[a+x, b+y]=[x, y] \in U, \quad a, b \in U, \quad x, y \in V
$$

Then the Lie algebra \mathfrak{n} is called H-type. Since the H-type Lie algebra \mathfrak{n} is a kind of two-step nilpotent Lie algebra with an inner product, we can define a Lie group structure on \mathfrak{n} with a left-invariant Riemannian metric, whose Lie algebra is \mathfrak{n} itself as we mentioned in the previous section. For $a_{0} \in U$, we consider the equation

$$
\begin{equation*}
\nabla_{\dot{x}} \dot{x}=j\left(a_{0}\right) \dot{x} \tag{9}
\end{equation*}
$$

of motion of a charged particle. If we express its trajectory as $x(t)=y(t)+z(t)$ where $y(t) \in \mathrm{V}, z(\mathrm{t}) \in \mathrm{U}$, then (9) is equivalent to

$$
\begin{equation*}
\dot{y}(t)_{V}-j\left(\dot{z}(0)+a_{0}\right) y(t)=\dot{y}(0) \tag{10}
\end{equation*}
$$

where $T_{y}(V) \rightarrow V, w \mapsto w_{V}$ denotes the usual parallel translation in V. Here we have used equation (5).

Theorem 3. Let $\mathrm{x}(\mathrm{t})=\mathrm{y}(\mathrm{t})+\mathrm{z}(\mathrm{t}) \in \mathrm{N}($ where $\mathrm{y}(\mathrm{t}) \in \mathrm{V}, \mathrm{z}(\mathrm{t}) \in \mathrm{U})$ is a motion of a charged particle (9) with $x(0)=0$.

1) When $\dot{z}(0)+a_{0}=0$, then $x(t)=t \dot{x}(0)$.
2) When $\dot{z}(0)+a_{0} \neq 0$, then

$$
\begin{aligned}
& y(t)=\frac{\sin \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{\left|\dot{z}(0)+a_{0}\right|} \dot{y}(0)+\frac{1-\cos \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{\left|\dot{z}(0)+a_{0}\right|^{2}} \dot{j}\left(\dot{z}(0)+a_{0}\right) \dot{y}(0) \\
& z(t)=t \dot{z}(0)+\frac{t|\dot{y}(0)|^{2}}{2\left|\dot{z}(0)+a_{0}\right|^{2}}\left(\dot{z}(0)+a_{0}\right)-\frac{\sin \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{2\left|\dot{z}(0)+a_{0}\right|^{3}}|\dot{y}(0)|^{2}\left(\dot{z}(0)+a_{0}\right)
\end{aligned}
$$

The curve $\mathrm{y}(\mathrm{t})$ is a circle in V . The motion of a charged particle is periodic if and only if

$$
a_{0}=-\left(\frac{|\dot{y}(0)|^{2}}{2|\dot{z}(0)|^{2}}+1\right) \dot{z}(0)
$$

In this case $\mathrm{x}(\mathrm{t})$ is an elliptic motion.
Remark 1. When $x(t)$ is a geodesic, the condition $a_{0}=0$ implies the theorem of Kaplan [3].

Proof: 1) is clear from (10). We will show 2). Using the first equation of (10), we have

$$
y(t)=\frac{\sin \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{\left|\dot{z}(0)+a_{0}\right|} \dot{y}(0)+\frac{1-\cos \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{\left|\dot{z}(0)+a_{0}\right|^{2}} j\left(\dot{z}(0)+a_{0}\right) \dot{y}(0)
$$

which implies that

$$
\dot{y}(t)_{V}=\cos \left(t\left|\dot{z}(0)+a_{0}\right|\right) \dot{y}(0)+\frac{\sin \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{\left|\dot{z}(0)+a_{0}\right|} \dot{j}\left(\dot{z}(0)+a_{0}\right) \dot{y}(0)
$$

Using the equation above, we have

$$
\left[y(t)_{V}, \dot{y}(t)\right]=\frac{1-\cos \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{\left|\dot{z}(0)+a_{0}\right|^{2}}\left[\dot{y}(0), j\left(\dot{z}(0)+a_{0}\right) \dot{y}(0)\right]
$$

Further the second equation of (10) gives

$$
\begin{align*}
\dot{z}(t) & =\dot{z}(0)+\frac{1-\cos \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{2\left|\dot{z}(0)+a_{0}\right|^{2}}\left[\dot{y}(0), j\left(\dot{z}(0)+a_{0}\right) \dot{y}(0)\right] \tag{11}\\
& =\dot{z}(0)+\frac{1-\cos \left(t\left|\dot{z}(0)+a_{0}\right|\right)}{2\left|\dot{z}(0)+a_{0}\right|^{2}}\left(\dot{z}(0)+a_{0}\right)|\dot{y}(0)|^{2}
\end{align*}
$$

where we have used the equation (8). Since

$$
\begin{aligned}
y(t)-\frac{1}{\left|\dot{z}(0)+a_{0}\right|} j\left(\frac{\dot{z}(0)+a_{0}}{\left|\dot{z}(0)+a_{0}\right|}\right) \dot{y}(0) & =\frac{\sin \left(\left|\dot{z}(0)+a_{0}\right| t\right)}{\left|\dot{z}(0)+a_{0}\right|} \dot{y}(0) \\
& -\frac{\cos \left(\left|\dot{z}(0)+a_{0}\right| t\right)}{\left|\dot{z}(0)+a_{0}\right|} j\left(\frac{\dot{z}(0)+a_{0}}{\left|\dot{z}(0)+a_{0}\right|}\right) \dot{y}(0)
\end{aligned}
$$

the curve $y(t)$ is a circle in V whose center is $\frac{1}{\left|\dot{z}(0)+a_{0}\right|} j\left(\frac{\dot{z}(0)+a_{0}}{\left|\dot{z}(0)+a_{0}\right|}\right) \dot{y}(0)$ and the radius is $\frac{|\dot{y}(0)|}{\left|\dot{z}(0)+a_{0}\right|}$. The periodic condition is as follows

$$
\begin{aligned}
x(t) \text { is periodic } & \Leftrightarrow \dot{z}(0)+\frac{|\dot{y}(0)|^{2}}{2\left|\dot{z}(0)+a_{0}\right|^{2}}\left(\dot{z}(0)+a_{0}\right)=0 \\
& \Leftrightarrow a_{0}=-\left(\frac{|\dot{y}(0)|^{2}}{2|\dot{z}(0)|^{2}}+1\right) \dot{z}(0)
\end{aligned}
$$

In this case, since

$$
\begin{aligned}
x(t)+\frac{2|\dot{z}(0)|}{|\dot{y}(0)|^{2}} j\left(\frac{\dot{z}(0)}{|\dot{z}(0)|}\right) \dot{y}(0)=\frac{2|\dot{z}(0)|}{|\dot{y}(0)|^{2}}(& \sin \left(\frac{|\dot{y}(0)|^{2}}{2|\dot{z}(0)|} t\right)(\dot{y}(0)+\dot{z}(0)) \\
& \left.+\cos \left(\frac{|\dot{y}(0)|^{2}}{2|\dot{z}(0)|} t\right) j\left(\frac{\dot{z}(0)}{|\dot{z}(0)|}\right) \dot{y}(0)\right)
\end{aligned}
$$

the curve $x(t)$ is an elliptic such that the ratio of the long axis to the short axis is equal to $\sqrt{|\dot{\mathrm{y}}(0)|^{2}+|\dot{z}(0)|^{2}} /|\dot{\mathrm{y}}(0)|$.

Acknowledgments

The author was partially supported by the Japan Society for Promotion of Science through a Grant-in-Aid for Scientific Research (\# 22540108).

References

[1] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York 1978.
[2] Ikawa O., Motion of Charged Particles From the Geometric View Point, J. Geom. Symm. Phys. 18 (2010) 23-47.
[3] Kaplan A., Riemannian Nilmanifiolds Attached to Clifford Modules, Geometriae Dedicata 11 (1981) 127-136.
[4] Naitoh H. and Sakane Y., On Conjugate Points of a Nilpotent Lie Group, Tsukuba J. Math. 5 (1981) 143-152.

[^0]: *Reprinted from J. Geom. Symmetry Phys. 20 (2010) 57-67.

