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Abstract. We study certain classes of integrable nonlinear differential equa-
tions related to the type symmetric spaces. Our main examples concern equa-
tions related to A.III-type symmetric spaces. We use the Cartan involution
corresponding to this symmetric space as an element of the reduction group
and restrict generic Lax operators to this symmetric space. Next we outline
the spectral theory of the reduced Lax operator L and construct its funda-
mental analytic solutions. Analyzing the Wronskian relations we introduce
the ‘squared solutions’ of L and derive the recursion operators by three dif-
ferent methods.
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1. Introduction

One of classical models of statistical physics is provided by Heisenberg’s equa-
tion

St = S× Sxx, S2 = 1 (1)
which describes the behavior of an one-dimensional ferromagnet characterized by
a spin vector S(x, t) in a closest neighbors approximation. By making use of the
Lie algebras isomorphism

ei ↔ σi, i = 1, 2, 3

where σi are Pauli’s matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
one is able to set equation (1) into a matrix form

iSt =
1

2
[S, Sxx], S(x, t) =

3∑
k=1

Sk(x, t)σk, S2 = 11. (2)

Heisenberg’s equation is integrable in the sense of inverse scattering transform [25]
and moreover it is gauge equivalent to the nonlinear Schrödinger equation. Its Lax
representation reads

L(λ) ≡ i∂x − λS, A(λ) ≡ i∂t +
iλ

2
[S, Sx] + 2λ2S. (3)

The purpose of the present paper is to derive nonlinear evolution equations to gen-
eralize Heisenberg’s model and study some of the properties of their Lax operators.
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We are going to focus our attention on equations whose Lax representation is re-
lated to su(3).
This paper is a natural continuation of our previous paper [10]. In Section 2
below we give some of the necessary preliminaries. In Section 3 we study the
Z2-reductions of the generalized Heisenberg ferromagnets related to symmetric
spaces. There we outline the spectral properties of the relevant Lax operator and
the construction of its fundamental analytic solutions. Section 4 is devoted to the
derivation of the recursion operators Λ. Here we first derive Λ using the Gürses-
Karasu-Sokolov (GKS) method [15]. We also outline a second way of deriving Λ
based on the recursion relations for the coefficients of the A operator in the Lax
representation. In Section 5 we analyze the Wronskian relations as basic tool in
the inverse scattering method [2, 3]. From them there naturally arise the ‘squared
solutions’, which play a fundamental role also in the analysis of the mapping be-
tween the set of allowed potentials and the minimal sets of scattering data. It is
well known [1, 11] that for a wide class of Lax operators such mappings can be
viewed as generalized Fourier transforms, in which the ‘squared solutions’ play
the role of generalized exponents. In Section 6 we recalculate the recursion opera-
tors, now considering them as the operators, whose eigenfunctions are the ‘squared
solutions’. Thus we are able to show that all three definitions for Λ are compatible.
In Section 7 we briefly outline some of the fundamental properties f the NLEE. We
end with some conclusions in Section 8.

2. Preliminaries

2.1. Generalized Zakharov-Shabat Systems

We are going to deal with nonlinear evolution equations (NLEE) to represent the
compatibility condition [L,A] = 0 of two differential operators of the form

Lψ(x, t, λ) ≡ (i∂x + U(x, t, λ))ψ(x, t, λ) = 0

Aψ(x, t, λ) ≡ (i∂t + V (x, t, λ))ψ(x, t, λ) = ψ(x, t, λ)f(λ)

U(x, t, λ) = q(x, t)− λJ0

(4)

where U and V take values in some simple Lie algebra and λ is a spectral pa-
rameter. The fundamental solutions to (4) then take values in the corresponding
Lie group. Since the compatibility condition of L and A holds identically with re-
spect to λ one obtains a sequence of recurrent differential relations. Solving these
relations generates the very NLEE.
From now on we assume that J0 = diag(J0,1, J0,2, . . . , J0,N ) is a real constant
regular matrix to fulfill J0,1 > J0,2 > . . . > J0,N while the potential q is smooth



14 V. Gerdjikov, A. Mikhailov and T. Valchev

function obeying zero boundary conditions

lim
x→±∞

|x|kq = 0, for all k ∈ N.

It can be shown that the spectrum of a generic operator L consists of a continuous
and a discrete part. Due to the requirements imposed on q and J the continuous
spectrum of L coincides with the real axis in the complex λ-plane.
A significant role in the scattering theory of operator L is played by fundamental
solutions ψ+ and ψ− called Jost solutions. They are normalized at infinity as
follows

lim
x→±∞

ψ±(x, t, λ)e
iλJ0x = 11, λ ∈ R. (5)

One assures that the definition above is correct for all t by choosing f(λ) in (4) in
a appropriate way, namely

f(λ) = lim
x→±∞

V (x, t, λ).

The transition matrix between Jost solutions

ψ−(x, t, λ) = ψ+(x, t, λ)T (t, λ) (6)

is called scattering matrix. Its time evolution is driven by the dispersion law
f(λ) = limx→±∞ V (x, t, λ) of NLEE as follows

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.

Jost solutions do not permit analytic continuation in C\R. However, it is possible
to construct another pair of fundamental solutions χ+ and χ− with analytic prop-
erties in the upper half plane C+ and the lower half plane C− respectively by using
the factors in the Gauss decomposition of T as follows

T (t, λ) = T∓(t, λ)D±(λ)(S±(t, λ))−1

where the matrices S±(λ), D±(λ) and T±(λ) are of the form

S+(λ) =


1 S+

12 . . . S+
1n

0 1 . . . S+
2n

...
...

. . .
...

0 0 . . . 1

 , T+(λ) =


1 T+

12 . . . T+
1n

0 1 . . . T+
2n

...
...

. . .
...

0 0 . . . 1

 (7)

D+(λ) = diag(D+
1 , . . . , D

+
n ), D−(λ) = diag(D−

1 , . . . , D
−
n ) (8)

S−(λ) =


1 0 . . . 0
S−
21 1 . . . 0
...

...
. . .

...
S−
n1 S−

n2 . . . 1

 , T−(λ) =


1 0 . . . 0
T−
21 1 . . . 0
...

...
. . .

...
T−
n1 T−

n2 . . . 1

. (9)
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It is well known how given T (λ) one can construct explicitly its Gauss decompo-
sition, see [6,27]. Here we give only the expressions for D±(λ) which are analytic
functions for λ ∈ C± respectively

D+
j (λ) =

m+
j (λ)

m+
j−1(λ)

, D−
j (λ) =

m−
n−j+1(λ)

m−
n−j(λ)

(10)

where m±
j are the principal upper and lower minors of T (λ) of order j.

Then the fundamental analytic solutions (FAS) of L are related to the Jost solu-
tions [27] by

χ±(x, λ) = ψ−(x, λ)S
±(λ) = ψ+(x, λ)T

∓(λ)D±(λ). (11)

It follows immediately that χ+ and χ− are solutions of a local Riemann-Hilbert
problem

χ+(x, λ) = χ−(x, λ)G(λ), λ ∈ R (12)

where the sewing function G is given by

G(λ) = [S−(λ)]−1S+(λ).

It is important to note that the sewing function determines the minimal set of scat-
tering data of L on the continuous spectrum. Analysis based on the Wronskian
relations [1–3], (see also [11] and numerous references therein) allows one to in-
terprete the inverse scattering method as a generalized Fourier transform. Skipping
the details we formulate the main results

T1 ≡
{
τ±α (λ) ; α > 0, λ ∈ R

}
T2 ≡

{
ρ±α (λ) ; α > 0, λ ∈ R

} (13)

where
τ±α (λ) = i

[[
ad−1

J0
[B0, q(x)], e

±
∓α(x, λ)

]]
, α > 0

ρ±α (λ) = −i
[[
ad−1

J0
[B0, q(x)], e

±
±α(x, λ)

]]
, α > 0.

(14)

The notations that we have used above are as follows. We have assumed that J0 and
q(x) belong to the simple Lie algebra g (in our case g ≃ sl(N), the positive root α
belongs to the root system ∆ (in our case, α = ei − ej with i < j) and Eα is the
corresponding Weyl generator (in our case Eα = Eij , where the N × N matrix
Eij has only one non-vanishing matrix element at position (i, j), i.e., (Eij)kl =
δikδjl), for the other simple Lie algebras see [16]. We have also made use of the
skew-scalar product [[

X,Y
]]
=

∫ ∞

−∞
dx ⟨X(x), [J0, Y (x)]⟩ (15)
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where X(x) and Y (x) are smooth functions vanishing for x → ±∞ and taking
values in the co-adjoint orbit of g passing through J0. We will also need the pro-
jector πJ0 onto the image of ad J0

ad J0X ≡ [J0, X], πJ0 = ad−1
J0

ad J0 (16)

i.e., X = πJ0X and Y = πJ0Y . We will denote the linear space of all such
functions by MJ0 . It is well known that this will be the phase space of the NLEE
related to L. Finally we have to introduce the squared solutions

e±α (x, λ) = χ±Eα(χ
±)−1(x, λ). (17)

Each squared solution takes values in g, satisfies the equation

i
∂e±±α

∂x
+ [q − λJ0, e

±
±α(x, λ)] = 0 (18)

and can be naturally split into

e±±α(x, λ) = πJ0e
±
±α(x, λ) + (11 − πJ0)e

±
±α(x, λ). (19)

It is also easy to see that it is only e±±α(x, λ) = πJ0e
±
±α(x, λ) that contributes to

the skew-scalar products in (14).
It can be proved [5,9] (see also the review paper [6] and the monograph [11]), that
the set of squared solutions e±±α(x, λ) form complete sets of functions in the space
MJ0 . This fact allows one to prove that the inverse scattering method is in fact a
generalized Fourier transform. The completeness relation for the squared solutions
can be viewed also as the spectral decomposition of the recursion operators Λ± for
which the squared solutions are eigenfunctions

Λ+e
±
∓α(x, λ) = λe±∓α(x, λ), Λ−e

±
±α(x, λ) = λe±±α(x, λ), α > 0. (20)

Inserting the splitting (19) into equation (18) one derives the following explicit
form of the recursion operator [5, 9]

Λ±X=ad−1
J0

{
i
∂X

∂x
+ πJ0 [q(x), X] + iπJ0

[
q(x), (11 − πJ0)

∫ x

±∞
[q(y), X(y)]

]}
.

The recursion operators Λ± and their conjugate Λ∗
± with respect to the skew-scalar

product [[
X,Λ±Y

]]
=

[[
Λ∗
±X,Y

]]
, Λ∗

± = Λ∓ (21)

allow one to derive all fundamental properties of the NLEE. For example, the hi-
erarchy of the NLEE related to L in (4) have the form

iad−1
J0

∂q

∂t
+ ck(Λ

∗
±)

kad−1
J0

[B0, q(x, t)] = 0 (22)
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are characterized by dispersion laws f(λ) = ckλ
kB0 and are equivalent to the

following linear evolution equations for the scattering data

i
∂S±

∂t
+ ckλ

k[B0, S
±(λ, t)] = 0. (23)

2.2. Gauge Transformations and Generalized Heisenberg Ferromagnets

In this subsection we are going to discuss how the properties of Lax operators are
affected by the action of a gauge transformation g. For more details we refer the
reader to [8, 11, 25, 27].
If we apply a gauge transformation, say

g : ψ(x, t, λ) → ψ̃(x, t, λ) = g−1(x, t)ψ(x, t, λ)

then the Lax representation remains intact

0 = [L̃, Ã] = [L,A], L̃ = g−1Lg, Ã = g−1Ag. (24)

Thus one can associate different Lax pairs to equivalent NLEE but written in terms
of changed dependent variables

Ũ = ig−1∂xg + g−1Ug, Ṽ = ig−1∂tg + g−1V g.

Our further study concerns NLEEs which are gauge equivalent to these whose
auxiliary linear problem Lψ = 0 is generalized Zakharov-Shabat system. In what
follows we fix up

g(x, t) = ψ+(x, t, λ = 0), i.e., lim
x→∞

g(x, t) = 11. (25)

Then the corresponding Lax operator takes the form

L̃ψ̃ ≡ i
∂ψ̃

∂x
− λS(x, t)ψ̃(x, t, λ) = 0 (26)

where
S(x, t) = g−1J0g(x, t). (27)

We also impose a constraint on S(x, t) by requesting that

lim
x→∞

S(x, t) = lim
x→−∞

S(x, t) = J0. (28)

From this condition and from equation (25) there follows that limx→−∞ g(x, t) =
T−1
0 ≡ T−1(0) must be diagonal matrix.

The Jost solutions ψ̃±(x, t, λ) and the fundamental analytic solutions χ̃±(x, t, λ)

of L̃ are related to the ones for L as follows (here we skip the variable t)

ψ̃+(x, λ) = g−1(x, t)ψ+(x, λ), ψ̃−(x, λ) = g−1(x)ψ−(x, λ)T
−1
0

χ̃+(x, λ) = g−1(x)χ+(x, λ)T−1
0 , χ̃−(x, λ) = g−1(x)χ−(x, λ)T−1

0 .
(29)
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The relations between the scattering matrices and their Gauss factors read

T̃ (λ, t) = T (λ, t)T−1
0 , S̃±(λ, t) = T0S

±(λ, t)T−1
0

D̃±(λ) = D±(λ)T−1
0 , T̃±(λ, t) = T±(λ, t).

(30)

The FAS satisfy slightly different Riemann-Hilbert problem

ψ̃+(x, t, λ) = ψ̃−(x, t, λ)G̃(λ, t), G̃(λ, t) = T0G(λ, t)T
−1
0 . (31)

Next we start and apply consecutively the gauge transformation to all formulae in
Subsection 2.1. This is possible because in all steps above we used explicitly gauge
covariant formulations on all steps.
The minimal sets of scattering data are

T̃1 ≡
{
τ̃±α (λ) ; α > 0, λ ∈ R

}
, τ̃±α (λ) = τ±α (λ)τ±0,α

T̃2 ≡
{
ρ̃±α (λ) ; α > 0, λ ∈ R

}
, ρ̃±α (λ) = ρ±α (λ)

τ±0,α = ⟨T−1
0 E∓αT0, E±α⟩.

(32)

In deriving the Wronskian relations some modifications occurs, which lead to the
necessity of a modified skew-scalar product of the form[[

X̃, Ỹ
]]̃
=

∫ ∞

−∞
dx ⟨X̃(x), [S(x), Ỹ (x)]⟩ (33)

where X̃(x) and Ỹ (x) are smooth functions vanishing for x → ±∞ and taking
values in the co-adjoint orbit of g passing through S(x). We will also need the
projector πS onto the image of ad S

ad SX̃ ≡ [S, X̃], πS = ad−1
S ad S (34)

i.e., X̃ = πSX̃ and Ỹ = πSỸ . We will denote the linear space of all such functions
by M̃Swhich is considered as the phase space of the NLEE related to L̃.
The squared solutions also get modified

ẽ±α (x, λ) = χ̃±Eα(χ̃
±)−1(x, λ). (35)

Each squared solution takes values in g and satisfies the equation

i
∂ẽ±±α

∂x
− λ[S(x), ẽ±±α(x, λ)] = 0 (36)

and can be naturally split into

ẽ±±α(x, λ) = πS ẽ
±
±α(x, λ) + (11 − πS)ẽ

±
±α(x, λ). (37)

Again it is only e±±α(x, λ) = πSe
±
±α(x, λ) that contributes to the skew-scalar prod-

ucts in (38).



Recursion Operators and Reductions of Integrable Equations on Symmetric Spaces 19

With all this from the Wronskian relations there follow
τ̃±α (λ) = −

[[
ad−1

S Sx, ẽ
±
∓α(x, λ)

]]̃
, α > 0

ρ̃±α (λ) =
[[
ad−1

S Sx, ẽ
±
±α(x, λ)

]]̃
, α > 0.

(38)

It remains to derive the recursion operators Λ̃± defined by

Λ̃+ẽ
±
∓α(x, λ) = λẽ±∓α(x, λ), Λ̃−ẽ

±
±α(x, λ) = λẽ±±α(x, λ). (39)

In doing this we will make use not only of the splitting (37) but also of the covariant
derivative [12]

∇x· ≡ ∂x · −[g−1gx, ·] = ∂x · −[ad−1
S Sx, ·]. (40)

The advantage of the covariant derivative is that it commutes with the projector πS .
Skipping the details, we give the answer

Λ̃±X = ad−1
S {i∂X̃

∂x
− iπS [ad

−1
S Sx, X̃]

(41)

−iπS [ad
−1
S Sx, (11 − πS)∇−1

x,±[ad
−1
S Sy, X̃(y)]]}.

At the end of this Section we provide the description of the main series of NLEE,
related to L̃

i
∂S

∂t
+ ck(Λ̃

∗
±)

k−1ad−1
S

∂S

∂x
= 0 (42)

where Λ̃∗
± is conjugate to Λ̃± with respect to the skew-scalar product[[

X̃, Λ̃±Ỹ
]]
=

[[
Λ̃∗
±X̃, Ỹ

]]
, Λ̃∗

± = Λ̃∓. (43)

These NLEE are characterized by dispersion laws f(λ) = ckλ
kJ0 and are equiva-

lent to the following linear evolution equations for the scattering data

i
∂S̃±

∂t
+ ckλ

k[J0, S̃
±(λ, t)] = 0. (44)

For details concerning the derivation of ad−1
J0

and ad−1
S see [13] and Appendix A.

2.3. The Group of Reductions

A very important concept in the theory of integrable equations is that of reduction.
Typically the integrable NLEE with physical applications are not derived from
generic Lax pairs but from those to obey certain extra symmetries. A formalization
of this notion is provided by Mikhailov’s reduction group [18–20]. Let GR is a
finite group acting in the set of fundamental solutions ψ(x, λ) in the following
manner

ψ(x, λ) → ψ̃(x, λ) ≡ C̃
(
ψ
(
x, c−1(λ)

))
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where C̃ is a group automorphism and c : C → C is a conformal mapping. Hence
the induced action on the Lax operators reads

L̃(λ) = C̃L(c−1(λ))C̃−1, Ã(λ) = C̃A(c−1(λ))C̃−1.

It preserves the commutation conditions of L and A

[L̃, Ã] = [L,A] = 0.

From the natural requirement that the set of fundamental solutions is GR-invariant
certain symmetry conditions on U and V are obtained. Thus we have a reduction
of the number of independent equations.

Example 1. Let us consider the following action of Z2 group

ψ → ψ̃(x, λ) = K
[
ψ†(x, λ∗)

]−1
K−1 (45)

where K is a diagonal matrix to satisfy K2 =11. As a result U and V must obey
the equalities

KU †(x, λ∗)K = U(x, λ), ⇒ Kq†K = q, KJ†K = J (46)

KV †(x, λ∗)K = V (x, λ). (47)

3. Reductions of Generalized HF Equation

3.1. Lax Representation

In this section we aim to derive a two-component system of NLEE to represent
a reduction of the generalized Heisenberg ferromagnet equation related to the
SU(3)/S(U(1) × U(2)) symmetric space and study some properties of its Lax
operator L.
In order to obtain a Lax pair related to SU(3)/S(U(1) × U(2)) we start from a
linear bundle Lax representation associated with the algebra sl(3,C)

L ≡ i∂xψ + λL1ψ = 0, A ≡ i∂tψ + (λA1 + λ2A2)ψ = ψC(λ). (48)

Next one extracts the real compact form of sl(3,C) by introducing a Z2 reduction
of the form

ψ → ψ̃(x, λ) =
[
ψ†(x, λ)

]−1
. (49)

It restricts the Lax pair in the following manner

L†(λ∗) = −L̆(λ), A†(λ∗) = −Ă(λ) ⇒ L†
1 = L1, A†

1,2 = A1,2. (50)

Thus the matrix coefficients inL andA are tightly connected with the su(3) algebra
(they differ from the elements of su(3) by an imaginary unit which is not essential
for our further considerations). Further we impose another Z2 reduction

ψ → ψ̃(x, λ) = J1ψ(x,−λ)J1, J1 = diag(−1, 1, 1) (51)
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which leads to the following demand on the Lax operators

J1L(−λ)J1 = L(λ), J1A(−λ)J1 = A(λ). (52)

The latter reduction represents Cartan’s involutive automorphism [16] involved in
the definition of the symmetric space SU(3)/S(U(1)×U(2)). Cartan’s involutive
automorphism induces a Z2 grading in the Lie algebra

g = g0 ⊕ g1, gσ = {X ∈ g; J1XJ1 = (−1)σX}. (53)

As a result of the simultaneous action of (50) and (52) one obtains

L1 =

 0 u v
u∗ 0 0
v∗ 0 0

 , A1 =

 0 a b
a∗ 0 0
b∗ 0 0

 , A2 =

 a11 0 0
0 a22 a23
0 a∗23 a33

 (54)

for the matrix coefficients which are related to the classical Cartan symmetric space
SU(3)/S(U(1)×U(2)).
The NLEE associated with the Lax pair (48) is obtained by comparing the coeffi-
cients before the equal powers of λ

λ3 : [A2, L1] = 0 (55)

λ2 : iA2,x + [L1, A1] = 0 (56)

λ : A1,x − L1,t = 0. (57)

Due to (55) A2 is a polynomial of L1 but since the degree of its characteristic
polynomial is three then A2 is simply a quadratic polynomial of the form

A2 ≡ L2 =
1

3
trL2

111 − L2
1 =

 −1
3 0 0
0 2

3 − |u|2 −u∗v
0 −uv∗ 2

3 − |v|2

 . (58)

In order to find A1 one needs to invert the commutator1 in (56) to get

A1 = −iad−1
L1
L2,x + αL1, α ∈ R. (59)

At this point we impose one additional constraint

|u|2 + |v|2 = 1 (60)

that is the vector (u, v) lives in a three-dimensional sphere in R4. This is quite
analogous to condition (1) in the case of the classical Heisenberg ferromagnet and
simplifies our further calculations. It can be proven (see Appendix A) that the
following equality holds true

ad−1
L1

=
1

4

(
5ad L1 − ad 3

L1

)
. (61)

1One should keep in mind that this operation is well defined only on the quotient space su(3)/
ker ad L1 . This is why one needs to add a term proportional to L1 in order to recover the complete
expression for A1
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After performing all necessary computations one could write A1 in the form (54)
with a and b given by

a ≡ iux + i(uu∗x + vv∗x)u+ αu

b ≡ ivx + i(uu∗x + vv∗x)v + αv.
(62)

Finally one substitutes (62) into (57) and derives the following system of coupled
equations

iut + uxx + (uu∗x + vv∗x − iα)ux + (uu∗x + vv∗x)xu = 0

ivt + vxx + (uu∗x + vv∗x − iα)vx + (uu∗x + vv∗x)xv = 0.
(63)

A slightly more general system of equations than (63) along with its Lax repre-
sentation are found in [14]. The latter system is related to sl(N,R) and the Lax
operators are generic, i.e., they are not reduced.

Remark 1. In what follows we will often need to split given matrix-valued func-
tion into part commuting with L1 and a part ‘orthogonal’ to L1. Note that in our
case L1 does not have Jordan cells and satisfies the characteristic equation

L3
1 = L1. (64)

This means that any matrix-valued function of L1 is at most polynomial of second
order on L1. Therefore for a generic matrix valued function Z(x, λ) the above-
mentioned splitting takes the form

Z(x, λ) =
1

2
L1⟨L1, Z(x, λ)⟩+

3

2
L2⟨L2, Z(x, λ)⟩+ Z⊥(x, λ) (65)

where ⟨X,Y ⟩ = tr(X,Y ) and we have used the relations

L2 = A2, ⟨L1, L1⟩ = 2, ⟨L1, L2⟩ = 0, ⟨L2, L2⟩ =
2

3
· (66)

In addition ⟨Z⊥(x, λ), Lj⟩ = 0, j = 1, 2. Note also that L1 ∈ g(1) and L2 ∈ g(0).

3.2. Spectral Properties of L

The spectral properties of the Lax operator crucially depend on the choice of the
class of admissible potentials. Below we consider the constant boundary conditions

lim
x→±∞

u(x, t) = 0, lim
x→±∞

v(x, t) = eiϕ± . (67)

This choice of boundary conditions ensures that the asymptotic potentialsU±(λ) =
limx→±∞ λL1 satisfy

U±,as(λ) = ψ0,±λJ0ψ
−1
0,±, ψ0,± =

1√
2

 1 0 −eiϕ±

0
√
2 0

e−iϕ± 0 1


J0 = diag(1, 0,−1).

(68)
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The Jost solutions are fundamental solutions defined as follows

lim
x→±∞

ψ±(x, λ)e
−iλJ0xψ−1

0,± = 11. (69)

Due to the existence of reductions the Jost solutions satisfy the symmetry relations[
ψ†
±(x, λ

∗)
]−1

= ψ±(x, λ), (70)

J1ψ±(x,−λ)J1 = ψ±(x, λ), J1 = diag(1,−1,−1). (71)

The Jost solutions are well defined on the real axis in the complex λ-plane. Once
the Jost solutions are introduced one defines their transition matrix T (λ)

ψ−(x, λ) = ψ+(x, λ)T (λ). (72)

As a consequence of symmetries (70) and (71) the scattering matrix T (λ) obeys
the following conditions[

T †(λ∗)
]−1

= T (λ), J1T (−λ)J1 = T (λ). (73)

From the Lax representation there follows, that the scattering matrix evolves ac-
cording to the differential equation

i∂tT + [f(λ), T ] = 0 ⇒ T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t (74)

where
f(λ) = lim

x→±∞
ψ−1
0,±(λA1(x) + λ2A2(x))ψ0,± (75)

is the dispersion law of nonlinear equation. In our case it is

f(λ) =
λ2

3

 −1 0 0
0 2 0
0 0 −1

+ λα

 1 0 0
0 0 0
0 0 −1

 .

In what follows we will restrict ourselves with the special case ϕ+ = ϕ− = 0.
Then we have U+,as = U−,as and U+(x, λ) = U−(x, λ).
The main tools in studying the spectral theory of a Lax operator are fundamental
analytic solutions. We construct the solutions χ+(x, λ) and χ−(x, λ) which are
analytic functions in the upper half plane C+ and lower half plane C− respectively.
In order to construct χ±(x, λ) firstly we introduce the auxiliary functions η±(x, λ)

η±(x, λ) = ψ−1
0,±ψ±(x, λ)e

−iλJ0x. (76)

Obviously η±(x, λ) are solutions to the associated system

i
dη±
dx

+ U±(x, λ)η±(x, λ)− λη±(x, λ)J0 = 0 (77)

where
U±(x, λ) = λψ−1

0,±L1(x)ψ0,± (78)
and satisfies the boundary conditions limx→±∞ η±(x, λ) = 11.
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Equivalently η±(x, λ) are solutions of the following Volterra-type integral equa-
tions

η±(x, λ) = 11 + i

∫ x

±∞
dyeiλJ0(x−y)[U±(y, λ)− λJ0]η±(y, λ)e

−iλJ0(x−y). (79)

Next we introduce ξ+(x, λ) as a solution to the following set of integral equations

ξ+kl(x, λ) = δkl+i

∫ x

−∞
dyeiλ(J0,kk−J0,ll)(x−y)

[
(U−(y, λ)− λJ0)ξ

+(y, λ)
]
kl

(80)

for k ≤ l and

ξ+kl(x, λ) = i

∫ x

∞
dyeiλ(J0,kk(λ)−J0,ll)(x−y)

[
(U−(y, λ)− λJ0)ξ

+(y, λ)
]
kl

(81)

for k > l. It is easy to check that ξ+ has the proper analytic properties in C+ due
to the appropriate choice of the lower integration limits in equations (80) and (81).
The fundamental analytic solution χ+(x, λ) of the Lax operator L is obtained from
ξ+(x, λ) by applying the simple transformation

χ+(x, λ) = ψ0,−ξ
+(x, λ)eiλJ0x. (82)

The fundamental analytic solution χ−(x, λ) analytic for λ ∈ C− is obtained by
applying analogous transformation

χ−(x, λ) = ψ0,−ξ
−(x, λ)eiλJ0x (83)

where ξ−(x, λ) is a solution to the equations

ξ−kl(x, λ) = δkl+i

∫ x

∞
dyeiλ(J0,kk−J0,ll)(x−y)

(
(U−(y, λ)− λJ0)ξ

−(y, λ)
)
kl

(84)

for k ≤ l and

ξ−kl(x, λ) = i

∫ x

−∞
dyeiλ(J0,kk−J0,ll)(x−y)

(
(U−(y, λ)− λJ0)ξ

−(y, λ)
)
kl

(85)

for k > l.
The fundamental analytic solutions are linearly related to the Jost solutions for
λ ∈ R. These relations are expressed through the factors of Gauss decomposition

T (t, λ) = T∓D±(S±)−1 (86)

of T (t, λ) and have the form

χ±(x, λ) = ψ−(x, λ)S
± = ψ+(x, λ)T

∓(λ)D±(λ). (87)

From the reduction conditions (73) and equation (86) there follows

(S+(λ∗))† = (S−(λ))−1, (T+(λ∗))† = (T−(λ))−1

J1S
±(−λ)J1 = S±(λ), J1T

±(−λ)J1 = T±(λ)

(D+(λ∗))† = (D−(λ))−1, D±(−λ)) = D±(λ).

(88)
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The reductions have also impact on the FAS, namely

(χ+)†(x, λ∗) = [χ−(x, λ)]−1, J1χ
+(x,−λ)J1 = χ−(x, λ). (89)

From the relations (82) and (87) one easily obtains that ξ+ and ξ− are interrelated
in the continuous spectrum through a Riemann-Hilbert problem

ξ+(x, λ) = ξ−(x, λ)G(x, λ), G(x, λ) = eiλJ0x(S−)−1S+(λ)e−iλJ0x. (90)

Thus the inverse spectral problem can be reduced to a Riemann-Hilbert problem to
find matrix functions analytic in the upper and lower half plains of λ and satisfying
(90) on the real axis.

Remark 2. The Riemann-Hilbert problem allows singular solutions as well. The
simplest types of singularities are simple poles and zeroes of the FAS and generi-
cally correspond to discrete eigenvalues of the Lax operator L. Due to the reduc-
tion symmetries the discrete eigenvalues must form orbits of the reduction group.
Generic orbits contain quadruplets, so if µ is an eigenvalue, then −µ and ±µ∗, are
eigenvalues too. However, we can have degenerate orbits too. If the eigenvalue
lies on the imaginary axis we will have doublets of eigenvalues.

4. Recursion Operators

4.1. Recursion Operators Through GKS Approach

In this section we aim to construct recursion operator for the NLEE (63), i.e., a
pseudo-differential operator R to map a symmetry of (63) into another symmetry.
For that purpose we are applying the method proposed by Gürses, Karasu and
Sokolov (GKS) [15].
Firstly, let us remark that the zero curvature condition of the Lax operators

L = i∂x + λL1, A = i∂t + V (x, t, λ) (91)

could be written in the following manner

iLt ≡ [L, V ] (92)

where Lt ≡ λL1,t is the Freschét derivative of L. In order to derive the recursion
operator one interrelates two adjacent flows Ǎ and A [15, 26] through the equality

V̌ = κ(λ)V +B. (93)

All quantities above are invariant under the Z2 reductions (50) and (52) and the
function κ(λ) = λ2 is the primitive automorphic function invariant under the
transform λ → −λ. The operator B is chosen to be a quadratic polynomial of
λ in analogy with the second Lax operator in (4)

B = λB1 + λ2B2 (94)
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where the hermitian matrices involved above have the form

B1 ≡
(

0 cT

c∗ 0

)
, B2 ≡

(
d 0
0 D

)
, D ≡

(
α β
β∗ δ

)
. (95)

After substituting (93) in the analog of (92) when the evolution parameter t is
replaced by another evolution parameter τ we obtain the following basic equation

iLτ = iλ2Lt + [L,B]. (96)

At this point we introduce an auxiliary quantity J = α+ δ. Since all matrices are
traceless we have

d = − trD = −(α+ δ) = −J.
Equation (96) splits into the following system of recurrence relations

λ3 : iL1,t + [L1, B2] = 0, ⇒ iut + (D∗ − d)u = 0 (97)

λ2 : iB2,x + [L1, B1] = 0, ⇒ iDx + u∗cT − c∗uT = 0
idx + uT c∗ − cTu∗ = 0

(98)

λ : L1,τ = B1,x, ⇒ uτ = cx. (99)

where u =

(
u
v

)
. The system (97) is linear for the matrix elements of D. A

solution to (97) is given by

α = i(uu∗t + v∗vt) + J(2|v|2 − |u|2), β = i(vu∗t − u∗vt)− 3Ju∗v

δ = −i(uu∗t + v∗vt) + J(2|u|2 − |v|2).
(100)

The system (98) is underdetermined since if c is a solution then c + au for any
a ∈ R represents a solution too. Thus we impose an additional constraint, namely

u∗cT + c∗uT = 0. (101)

It is correct iff the following compatibility condition holds

αx|v|2 + δx|u|2 − βxuv
∗ − β∗xu

∗v = 0. (102)

The answer for c reads

c =

(
c
s

)
=

i

2

(
u(δx − αx)− 2vβ∗

x

−v(δx − αx)− 2uβx

)
. (103)

This can be rewritten in the following matrix form

(
c
c∗

)
= i


0 −v −u 0
−u 0 v 0
v∗ 0 u∗ 0
0 u∗ −v∗ 0

 d

dx


β
β∗
α−δ
2

α+ δ

 . (104)
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One can write relation (99) in a more detailed way by substituting (104) in it as
follows

u
v
u∗

v∗


τ

= A


β
β∗
α−δ
2

α+δ
2

 , A := i
d

dx


0 −v −u 0
−u 0 v 0
v∗ 0 u∗ 0
0 u∗ −v∗ 0

 d

dx
· (105)

What remains is to find the function J involved in the expressions for α, β etc.
For that purpose we make use of (102). After substituting the explicit expressions
needed one derives a linear differential equation for J

2Jx + i(u∗ut + v∗vt)x − i
[
(uu∗t + v∗vt)(|v|2 − |u|2)x (106)

− (uv∗t − v∗ut)(u
∗v)x + (u∗vt − v∗ut)(uv

∗)x] = 0.

But one can verify that

(uu∗t + v∗vt)(|v|2 − |u|2)x − (uv∗t − v∗ut)(u
∗v)x + (u∗vt − v∗ut)(uv

∗)x
(107)

= utu
∗
x + vtv

∗
x − u∗tux − v∗t vx

and therefore J can be written in the form

J =
i

2
(uu∗t + vv∗t ) +

i

2
∂−1
x (utu

∗
x + vtv

∗
x − u∗tux − v∗t vx) (108)

where ∂−1
x :=

∫ x
±∞ dy. Taking into account the explicit expression (108) for the

function J one could easily derive
β
β∗
α−δ
2

α+δ
2

 = (Bloc +Bnonl)


u
v
u∗

v∗


t

(109)

where Bloc and Bnonl are a local and a nonlocal part, namely

Bloc =
i

4


0 −4u∗ 2v(3|v|2 − 1) −6u∗v2

2v∗(1− 3|v|2) 6u(v∗)2 0 4u
−4u∗ 0 3u(|v|2 − |u|2) −v(1 + 6|u|2)
−u∗ −v∗ 0 0


(110)

Bnonl =−3i

4


2u∗v
2uv∗

|u|2 − |v|2
−1/3

 ∂−1
x [(u∗x, v

∗
x,−ux,−vx)] .
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The recursion operator maps the vector (ut,u
∗
t )

T into (uτ ,u
∗
τ )

T . Hence combin-
ing (105), (109) and (110) one obtains the recursion operator R

R = A (Bloc +Bnonl) . (111)

4.2. Recursion Operators Through the Recursion Relations

Consider a general flow Lax pair

L := i∂x + λL1, A := i∂t +

N∑
k=1

λkAk (112)

where L and A are subject to the action of the reductions (50) and (52). Then the
matrix L1 is given by (54) again and the coefficients of A are hermitian matrices
to fulfill

J1A2q−1J1 = −A2q−1 ∈ g(1), J1A2qJ1 = A2q ∈ g(0).

The compatibility condition [L,A] = 0 can be written in a more detailed way as
follows

λN+1 : [L1, AN ] = 0 (113)

. . . . . .

λk : i∂xAk + [L1, Ak−1] = 0, k = 2, . . . , N (114)

. . . . . .

λ : ∂xA1 − ∂tL1 = 0. (115)

It directly follows from (113) that the highest order term is a second order polyno-
mial of L1, see Remark 1. Since L1 ∈ g(1) and L2 ∈ g(0) we have two types of
choices for AN

a) Aa
N =

3

2
f2pL2, for N = 2p

b) Ab
N =

1

2
f2p+1L1, for N = 2p+ 1

(116)

where L2 is given in equation (58).
Each element Ak obeys a splitting (see Remark 1),

A2q−1 = A⊥
2q−1 +

1

2
f2q−1L1, A2q = A⊥

2q +
3

2
f2qL2 (117)

into two mutually orthogonal parts A⊥
2q−1 (respectively A⊥

2q) and f2q−1L1/2 (re-
spectively 3f2qL2/2). Substituting (117) into (114) for k = N and performing the
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splitting of orthogonal parts one convinces himself that fN = cN = const and

a) A⊥
2p−1 = −3i

2
c2p ad

−1
L1
L2,x

b) A⊥
2p = − i

2
c2p+1 ad

−1
L1
L1,x.

(118)

Quite analogously after placing the splitting (117) in (114) we obtain

i

2
f2q−1,xL1 +

i

2
f2q−1L1,x + i

(
A⊥

2q−1

)
x
+ [L1, A

⊥
2q−2] = 0

if2q,xL2 + if2q L2,x + i
(
A⊥

2q

)
x
+ [L1, A

⊥
2q−1] = 0.

(119)

We would like to stress on the fact that
(
A⊥

k

)
x
̸= (Ak,x)

⊥. After taking the Killing
form with L1 (respectively L2) in the left hand side of (119) and performing an
elementary integration one can express the coefficients fk through A⊥

k as follows

f2q−1 = c2q−1 −
1

2
∂−1
x

⟨(
A⊥

2q−1

)
x
, L1

⟩
f2q = c2q −

3

2
∂−1
x

⟨(
A⊥

2q

)
x
, L2

⟩ (120)

where ck are constants of integration.

Remark 3. It is well known that ∂−1
x is determined up to an additional constant.

We have two natural ways to fix it up

∂−1
x Z(x) ≡

∫ x

±∞
dy Z(y) + z±, z± = lim

x→±∞
Z(x). (121)

Therefore strictly speaking each of the recursion operators Λk introduced below is
one of the two: Λ+

k or Λ−
k depending on the choice of the lower limit of the integral

in equation (121). We note also that if the NLEE (126) are local in terms of L1 and
L2 then their explicit form will be the same for both types of recursion operators.

Substituting (120) into (119) we get

A⊥
2q = Λ±

1

(
A⊥

2q+1

)
− i

2
c2q+1ad

−1
L1
L1,x

A⊥
2q−1 = Λ±

2

(
A⊥

2q

)
− 3i

2
c2q ad

−1
L1
L2,x

(122)

where the integro-differential operators Λ1,2 read

Λ±
1 X = −i ad−1

L1

(
∂X

∂x
− 1

2
L1,x∂

−1
x,±

⟨
L1,

∂X

∂y

⟩)
Λ±
2 Y = −iad−1

L1

(
∂Y

∂x
− 3

2
L2,x∂

−1
x,±

⟨
L2,

∂Y

∂y

⟩)
.

(123)
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Finally we consider equation (115). Splitting again A1 = A⊥
1 + f1L1/2 we find

f1 = c1 −
1

2
∂−1
x ⟨(A⊥

1 )x, L1⟩ (124)

and for the corresponding NLEE we get

iad−1
L1
∂tL1 + Λ1A

⊥
1 − i

2
c1L1 = 0. (125)

Next we have to solve the recurrent relations (122) for each of the cases. Skipping
the details we get the following hierarchies of NLEE

a) i ad−1
L1
∂tL1 −

3i

2

p∑
q=1

c2q(Λ1Λ2)
q−1Λ1L2 −

i

2

p−1∑
q=0

c2q+1(Λ1Λ2)
qL1 = 0

(126)

b) i ad−1
L1
∂tL1 −

3i

2

p∑
q=1

c2q(Λ1Λ2)
q−1Λ1L2 −

i

2

p∑
q=0

c2q+1(Λ1Λ2)
qL1 = 0.

We have also used the notations

L1 = ad−1
L1
L1,x, L2 = ad−1

L1
L2,x. (127)

The explicit expressions for L1 and L2 are given by equations (174) and (179)
which can be found in the Appendix.
Acting in analogy with Subsection 3.2, equation (75) we derive the dispersion laws
for these equations

f(λ) = lim
x→∞

ψ−1
0,±

N∑
k=1

λkAk(x)ψ0,± = limψ−1
0,±

N∑
k=1

λkfkAk,assψ0,± (128)

where A2k+1,ass = L1/2 and A2k,ass = 3L2/2. The result is

a) f(λ) =
1

2

p−1∑
q=0

c2q+1λ
2q+1K1 +

3

2

p∑
q=1

c2qλ
2qK2

b) f(λ) =
1

2

p∑
q=0

c2q+1λ
2q+1K1 +

3

2

p∑
q=1

c2qλ
2qK2

K1 = diag(1, 0,−1), K2 = diag(−1/3, 2/3,−1/3).

(129)

One can convince himself through a direct computation that equation (126a) con-
tains as a special case (63) in the case a) with N = 2, p = 1, c2 = −1 and
c1 = α.
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5. Wronskian Relations and ‘Squared Solutions’ of L

Wronskian relations [2,3] provide an important tool for analyzing the relevant class
of NLEE and the mapping F : M → T, where M is the set of allowed potentials
of L (in our case L1) and T is the minimal set of scattering data.

In deriving them we will need along with the first equation in (48) also two other
related equations

i
∂χ̂

∂x
− λχ̂(x, λ)L1(x) = 0, χ̂(x, λ) ≡ χ−1(x, λ) (130)

i
∂δχ

∂x
+ λL1(x)δχ(x, λ) + λδL1(x)χ(x, λ) = 0 (131)

where the variation of χ(x, λ) is due to the variation δL1(x).

The first type of Wronskian relations interrelates the asymptotics of FAS with
L1and its powers as shown in the examples below

i (χ̂J0χ(x, λ)− J0)|∞−∞ = λ

∫ ∞

−∞
dx χ̂[L1, J0]χ(x, λ) (132)

χ̂L1(x)χ(x, λ)|∞−∞ =

∫ ∞

−∞
dx χ̂L1,xχ(x, λ) (133)

χ̂A2(x)χ(x, λ)|∞−∞ =

∫ ∞

−∞
dx χ̂A2,xχ(x, λ). (134)

A second class of Wronskian relations connects the variation δχ(x, λ) with the
variation of L1, i.e.,

χ̂δχ(x, λ)|∞−∞ = iλ

∫ ∞

−∞
dx χ̂δL1χ(x, λ). (135)

In the left hand sides of the Wronskian relations are involved the scattering data
and ts variation while the right hand sides can be viewed as Fourier type integrals.
To make this obvious let us take the Killing form of the Wronskian relation (132)
with a Cartan-Weyl generator Eα and use the invariance of the Killing form

i ⟨χ̂J0χ(x, λ)− J0, Eα⟩|∞−∞ = λ

∫ ∞

−∞
dx ⟨[L1, J0], eα(x, λ)⟩ . (136)

The quantity eα(x, λ) = χEαχ̂(x, λ) introduced above is called a ‘squared solu-
tion’. Due to the fact that we have two FAS χ+(x, λ) and χ−(x, λ) we obtain two
types of ’squared solutions’ e±α (x, λ). Similarly, taking the Killing form in (133)
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and (134) we find

⟨χ̂L1χ(x, λ), Eα⟩|∞−∞ =

∫ ∞

−∞
dx ⟨L1,x, eα(x, λ)⟩

⟨χ̂A2χ(x, λ), Eα⟩|∞−∞ =

∫ ∞

−∞
dx ⟨A2,x, eα(x, λ)⟩ (137)

⟨χ̂δχ(x, λ), Eα⟩|∞−∞ = iλ

∫ ∞

−∞
dx ⟨δL1, eα(x, λ)⟩ .

We are interested more specifically in variations that are due to the time evolution
of L1(x), i.e.,

δL1(x) = L1(x, t+ δt)− L1(x, t) ≃ δt
∂L1

∂t
·

Therefore up to first order terms of δt we obtain

⟨χ̂χt(x, λ), Eα⟩|∞x=−∞ = iλ

∫ ∞

−∞
dx ⟨L1,t, eα(x, λ)⟩ . (138)

Now we can explain why the Wronskian relations are important for analyzing the
mapping F : ML1 → T. Indeed, taking χ(x, λ) to be a fundamental analytic solu-
tion of L we can express the left hand sides of (137) through the Gauss factors S±,
T∓ andD± (respectively through the Gauss factors and their variations). The right
hand side of (137) can be interpreted as a Fourier-like transformation of the poten-
tial L1(x) (respectively of the variation δL1(x)). As a natural generalization of the
usual exponents there appear the ‘squared solutions’. The ‘squared solutions’ are
analytic functions of λ. This fact underlies the proof of their completeness in the
space of allowed potentials, see e.g. [5, 6, 9, 11].

5.1. The Skew-Scalar Product

It is obvious, that only some of the matrix elements of the squared solutions eα(x, λ)
contribute to the right-hand sides of the Wronskian relations. To make this more
clear we will use the Z2-grading of the Lie algebra (see (53) and (54)) which hint
that we should use the splitting

eα(x, λ) = Hα(x, λ) +Kα(x, λ), Hα(x, λ) ∈ g0, Kα(x, λ) ∈ g1. (139)

In addition each components Hα(x, λ) and Kα(x, λ) can be split according to
Remark 1 into

Hα(x, λ) = H⊥
α (x, λ) +

3

2
hαL2(x), hα = ⟨L2(x),Hα(x, λ)⟩

Kα(x, λ) = K⊥
α (x, λ) +

1

2
kαL1(x), kα = ⟨L1(x),Kα(x, λ)⟩

(140)
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where H⊥
α (x, λ) and K⊥

α (x, λ) do not commute with L1(x). It is not difficult to
realize that only H⊥

α (x, λ) and K⊥
α (x, λ) contribute to the right-hand sides of the

Wronskian relations.
In what follows we will make use also of the skew-scalar product[[

X,Y
]]
=

∫ ∞

−∞
dy ⟨X(y), [L1(y), Y (y)]⟩ (141)

whereX and Y are matrix-valued functions that belong to g1, vanish for x→ ±∞
and such that X = X⊥ and Y = Y ⊥, or equivalently

⟨L1, X⟩ = 0, ⟨L1, Y ⟩ = 0. (142)

We will denote the linear space of such functions by ML1 . Note, that we can ex-
press the right hand sides of the Wronskian relations using the skew-scalar product

⟨χ̂L1χ(x, λ), Eα⟩|∞x=−∞ =
[[
eα(x, λ), ad

−1
L1
L1,x

]]
⟨χ̂A2χ(x, λ), Eα⟩|∞x=−∞ =

[[
eα(x, λ), ad

−1
L1
A2,x

]]
⟨χ̂δχ(x, λ), Eα⟩|∞x=−∞ = iλ

[[
eα(x, λ), ad

−1
L1
δL1

]]
⟨χ̂χt(x, λ), Eα⟩|∞x=−∞ = iλ

[[
eα(x, λ), ad

−1
L1
L1,t

]]
.

(143)

We should also point out that the skew-scalar product is non-degenerate on ML1 .

5.2. The Mapping ML1 → Tj

Here we first calculate the left hand sides of (137)–(138). Inserting the asymptotic
behavior of χ±(x, λ)

lim
x→−∞

χ±(x, λ)Ŝ±(λ)e−iλK1xψ̂0,− = 11

lim
x→∞

χ±(x, λ)D̂±(λ)T̂∓(λ)e−iλK1xψ̂0,+ = 11.
(144)

We make use also of the basic properties of the Cartan-Weyl basis [16]. The results
are

τ (k),±α (λ) ≡ ⟨E∓α, Ŝ
±KkS

±(λ)⟩ =
[[
ad−1

L1
Lk,x, e

±
∓α(x, λ)

]]
ρ(k),±α (λ) ≡ ⟨E±α, D̂

±T̂∓KkT
∓D±(λ)⟩ =

[[
e±±α(x, λ), ad

−1
L1
Lk,x

]] (145)

where k = 1, 2 and the diagonal matrices Kk were introduced in equation (129).
From the second type Wronskian relations we get

δτ±α (λ) ≡ ⟨E∓α, Ŝ
±δS±(λ)⟩ = iλ

[[
ad−1

L1
δL1, e

±
∓α(x, λ)

]]
δρ±α (λ) ≡ ⟨E±α, D̂

±T̂∓δ(T∓D±(λ))⟩ = iλ
[[
e±±α(x, λ), ad

−1
L1
δL1

]] (146)

τ±α, t(λ) ≡ ⟨E∓α, Ŝ
±S±

t (λ)⟩ = iλ
[[
ad−1

L1
L1,t, e

±
∓α(x, λ)

]]
ρ±α, t(λ) ≡ ⟨E±α, D̂

±T̂∓T∓
t D

±(λ)⟩ = iλ
[[
e±±α(x, λ), ad

−1
L1
L1,t

]]
.

(147)
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These formulae can be used in the analysis of the mapping ML1 → Tk, k = 1, 2.
Indeed L1,x ∈ ML1 , while the sets of coefficients

T1 ≡ T
(1)
1 ∪ T

(2)
1 , T

(k)
1 ≡

{
τ (k),±α (λ) ; λ ∈ R α > 0

}
T2 ≡ T

(1)
2 ∪ T

(2)
2 , T

(k)
2 ≡

{
ρ(k),±α (λ) ; λ ∈ R α > 0

} (148)

are candidates for the minimal sets of scattering data of the Lax operator on the
continuous spectrum. The ‘squared solutions’ can be viewed as generalized expo-
nents and as a result (145) and (146) become analogous of the generalized Fourier
transform.
Of course, the justifications of the above statements must be based on a proof of
the completeness relation for the ‘squared solutions’. We will outline that proof
elsewhere.

6. Recursion Operators – An Alternative Approach

We will derive in this section the recursion operators using an alternative defini-
tion. We are to introduce them as operators, whose eigenfunctions are the ‘squared
solutions’, i.e.,

Λ±K
±,⊥
α (x, λ) = λ2K±,⊥

α (x, λ). (149)
We start from equation

i∂xeα + λ[L1(x), eα(x, λ)] = 0 (150)

satisfied by each of the ‘squared solutions’. Then Hα and Kα introduced in (139)
have to be solutions to the following system

i∂xHα + λ[L1(x),Kα(x, λ)] = 0

i∂xKα + λ[L1(x),Hα(x, λ)] = 0.
(151)

Now we insert the splittings (140), multiply the first (respectively the second) of
the equation (140) by L2(x) (respectively by L1(x)) and take the Killing form.
This gives two equations⟨

L2, ∂xH
⊥
α

⟩
+ ∂xhα = 0 ⇒ hα = hα,0 − ∂−1

x

⟨
L2, ∂xH

⊥
α

⟩
⟨
L1, ∂xK

⊥
α

⟩
+ ∂xkα = 0 ⇒ kα = kα,0 − ∂−1

x

⟨
L1, ∂xK

⊥
α

⟩ (152)

where hα,0 and kα,0 are constants. On the other hand from (151) it follows the
equations below hold true

i∂xH
⊥
α +

3i

2
hαL2,x = −λ[L1(x),K

⊥
α ]

i∂xK
⊥
α +

i

2
kαL1,x = −λ[L1(x),H

⊥
α ].

(153)
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After substituting (152) in (153) and applying ad−1
L1

in both hand sides of the latter
one gets equations, which involve H⊥

α and K⊥
α only

Λ1K
⊥
α = λH⊥

α +
i

2
kα,0L2, Λ2H

⊥
α = λK⊥

α +
3i

2
hα,0L1 (154)

where Λ1 and Λ2 are given by (123). Finally we obtain

Λ2Λ1K
⊥
α = λ2K⊥

α +
3i

2
λhα,0L1 +

i

2
kα,0Λ2L2

Λ1Λ2H
⊥
α = λ2H⊥

α +
i

2
λkα,0L2 +

3i

2
hα,0Λ1L2.

(155)

Note that the recursion operators Λk (125) may be factorized as follows

Λ1X = −i ad−1
L1

J1
∂X

∂x
, Λ2Y = −i ad−1

L1
J2
∂Y

∂x
(156)

where the integral operators Jk are given by

J1X = X − 1

2
L1,x∂

−1
x ⟨L1, X⟩, J2Y = X − 3

2
L2,x∂

−1
x ⟨L2, X⟩. (157)

Note also that the operators Jk can be inverted

J−1
1 X = X +

1

2
L1,x∂

−1
x ⟨L1, X⟩, J−1

2 Y = X +
3

2
L2,x∂

−1
x ⟨L2, X⟩. (158)

These facts allow us to derive also the inverse of the recursion operators

Λ−1
1 X = i ∂−1

x J−1
1 ad L1X, Λ−1

2 X = i ∂−1
x J−1

2 ad L1Y. (159)

It is appropriate here to remember that the constants hα,0 and kα,0 are determined
by the asymptotic of the relevant ‘squared solution’ for x → ∞ or for x → −∞,
depending on the proper definition of the recursion operator, see Remark 3. For
each of the recursion operators Λ±

1 (respectively Λ±
2 ) there exist special choices of

the roots α for which the constants kα,0 (respectively hα,0) vanish, namely

Λ+
1 K

±,⊥
∓α (x, λ) = λH±,⊥

∓α (x, λ), Λ−
1 K

±,⊥
±α (x, λ) = λH±,⊥

±α (x, λ)

Λ+
2 H

±,⊥
∓α (x, λ) = λK±,⊥

∓α (x, λ), Λ−
2 K

±,⊥
±α (x, λ) = λK±,⊥

±α (x, λ)
(160)

for all positive roots α > 0 and therefore

Λ+
2 Λ

+
1 K

±,⊥
∓α (x, λ) = λ2K±,⊥

∓α (x, λ), Λ−
2 Λ

−
1 K

±,⊥
±α (x, λ) = λ2K±,⊥

±α (x, λ)

Λ+
1 Λ

+
2 H

±,⊥
∓α (x, λ) = λ2H±,⊥

∓α (x, λ), Λ−
1 Λ

−
2 H

±,⊥
±α (x, λ) = λ2H±,⊥

±α (x, λ).
(161)
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7. The Class of NLEE and the Recursion Operators

In this last Section we briefly outline an alternative wave for constructing the hi-
erarchy of NLEE based on the Wronskian relations and the properties of the re-
cursion operators. Let us start with a particular dispersion law which provides the
following linear time evolution of the reflection coefficients

i∂tS
± +

3

2
c2kλ

2k[K2, S
±(λ)] = 0. (162)

Comparing (143), (144), (145) and (147) we find

1

i

⟨
E∓α, iŜ

±∂tS
± +

3

2
c2kλ

2kŜ±K2S
±(λ)− 3

2
c2kλ

2kK2

⟩
= λ

[[
i ad−1

L1
L1,t, e

±
∓α(x, λ)

]]
+

3

2
c2kλ

2k
[[
L2, e

±
∓α

]]
= λ

[[
i ad−1

L1
L1,t,K

±,⊥
∓α (x, λ)

]]
+

3

2
c2kλ

2k
[[
L2,H

±,⊥
∓α

]]
= λ

{[[
i ad−1

L1
L1,t,K

±,⊥
∓α (x, λ)

]]
+

3

2
c2kλ

2k−1
[[
L2,H

±
∓α

]]}
= λ

{[[
i ad−1

L1
L1,t,K

±,⊥
∓α (x, λ)

]]
− 3i

2
c2k

[[
L2, (Λ

+
1 Λ

+
2 )

k−1Λ1 ∗+K±,⊥
∓α

]]}
= λ

{[[
i ad−1

L1
L1,t,K

±,⊥
∓α (x, λ)

]]
− 3i

2
c2k

[[
L2, (Λ

+
1 Λ

+
2 )

k−1Λ1 ∗+K±,⊥
∓α

]]}
= λ

{[[
i ad−1

L1
L1,t −

3i

2
c2k(Λ

−
1 Λ

−
2 )

k−1Λ−
1 L2,K

±,⊥
∓α

]]}
= 0.

(163)

In deriving the above relations we made use of several useful facts. First, from
the basic properties of the Killing form, namely that ⟨X,Y ⟩ = 0 if X ∈ g(1) and
Y ∈ g(0) there follows that[[

X1, X2

]]
= 0,

[[
Y1, Y2

]]
= 0

for any pair of elements X1, X2 ∈ g(1) and Y1, Y2 ∈ g(0). This allowed us to
identify

[[
L2, e

±
∓α

]]
=

[[
L2,H

±,⊥
∓α

]]
. Second, we made use of equations (160) and

(161) and identified the factor λ2k by the action of the recursion operators. Third,
we used the adjoint properties of the recursion operators derived in Appendix B.
As a consequence of equation (163) we find that if L1(x, t) satisfies the NLEE

i ad−1
L1
L1,t −

3i

2
c2k(Λ

−
1 Λ

−
2 )

k−1Λ−
1 L2 = 0 (164)

then the scattering data of the Lax operator must satisfy the linear evolution equa-
tion (162).
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Obviously we can repeat the above arguments for any generic dispersion law of the
form (129).
One can check that the result for the nonlinear part of the NLEE with polynomial
dispersion laws are local, and therefore both pairs of recursion operators Λ+

1 , Λ+
1

and Λ−
1 , Λ−

1 lead to the same NLEE.

8. Conclusions

A system of coupled equations which generalize Heisenberg ferromagnet equa-
tions have been obtained. The system is associated with a polynomial bundle Lax
operator L related to the symmetric space SU(3)/S(U(1) × U(2)), see also [7].
The spectral properties of the operatorL in the case of the simplest constant bound-
ary condition (67) have been studied. The continuous spectrum of L fills up the
real axis in the complex λ-plane and divides it into two regions: the upper half
plane C+ and the lower half plane C−. Each region is an analyticity domain of
a fundamental analytic solution to the auxiliary linear problem. The FAS can be
constructed solutions of a set of integral equations, see (80), (81) and (84), (85)
respectively. Wronskian relations for L1 and its variation have been derived. Us-
ing the Wronskian relations one is able to construct ‘squared solutions’ and an
integro-differential operator called recursion operator whose eigenfunctions they
are. There exists another viewpoint on recursion operator — they generate hier-
archy of symmetries of NLEEs. Thus one can derive the recursion operator of a
NLEE from purely symmetry considerations.
Our results can be extended in several directions. Firstly one can consider operator
L related to the generic Cartan symmetric space of the type A.III ∼= SU(n +
k)/S(U(n)×U(k)) or more generally related to other types of symmetric spaces.
This will allow us to treat multi-component generalizations of our NLEE.
The second direction of generalization concerns developing the theory in the case
of a rational bundle L, namely

L = i∂x + λL1 +
1

λ
L−1.

That modification is required when one imposes an additional Z2 reduction of the
form λ → 1/λ. This case is more complicated and much richer than the one
we have exploited here, see [10]. It requires the construction of automorphic Lie
algebras and studying their properties following the ideas of [17, 23, 26].
The third direction of our investigations involves the construction of the spectral
decompositions for the recursion operators. More precisely, one can derive the
completeness relation for the ‘squared solutions’ which will allow us to prove rig-
orously the equivalence of the equations (162) and (164). Next this completeness
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relation can be used to derive on a common basis all fundamental properties of the
NLEE, including their hierarchy of Hamiltonian structures, see [11].
Of course, using the dressing method [27,28] one can construct explicitly the soli-
ton solutions to the above equations. These generalizations will be considered
elsewhere.
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Appendix A. Derivation of ad −1
L1

Here we outline the derivation of the operator ad−1
L1

following the ideas in [13].
First we note that L1 has as eigenvalues ±1, 0 and satisfies the characteristic equa-
tion

L3
1 = L1. (165)

Therefore ad L1 has eigenvalues ±2,±1, 0 and satisfies the characteristic equation

(ad 2
L1

− 4)(ad 2
L1

− 1)ad L1 = 0. (166)

Projecting out the kernel of ad L1 from (166) we get

ad−1
L1

=
1

4

(
5ad L1 − ad 3

L1

)
. (167)

Using (165) we get

ad 3
L1
X = [L1, [L1, [L1, X]]] = [L3

1, X]− 3

4
[L1, L1XL1]

(168)

= [L1, X − 3

4
L1XL1].

If we choose X in the form

X =

 0 a b
a∗ 0 0
b∗ 0 0

 (169)

then we have

L1XL1 =

 0 uw vw
u∗w∗ 0 0
v∗w∗ 0 0

 (170)
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where w = ua∗ + vb∗ and therefore

ad−1
L1
X = [L1, X +

3

4
L1XL1]

=

 w − w∗ 0 0
0 u∗a− a∗u u∗b− va∗

0 v∗a− ub∗ v∗b− b∗v

+
3

4
(w − w∗)

 −1 0 0
0 |u|2 u∗v
0 v∗u |v|2

 .

Then one can check that ⟨L2, ad
−1
L1
X⟩ = 0. In other words we can consider the

condition

w + w∗ = ua∗ + vb∗ + au∗ + bv∗ = 0 (171)

as a constraint that X = X⊥.
The operator ad−1

L1
is defined only on the image of ad L1 , i.e., acting by ad−1

L1
on

X we should recover its projection X⊥

X⊥ = X − 1

2
L1⟨L1, X⟩ = X − 1

2
(w + w∗)L1. (172)

One can check that

[L1, ad
−1
L1
X⊥] = X⊥. (173)

In particular, choosing X = L1,x we find

L1 ≡ ad−1
L1
L1,x

=

 1
2w0 0 0
0 u∗ux − u∗xu+ 3

2w0|u|2 u∗vx − vu∗x +
3
2w0u

∗v
0 v∗ux − uv∗x +

3
2w0uv

∗ v∗vx − v∗xv +
3
2w0|v|2

 (174)

where w0 = uu∗x + vv∗x.
Next we can choose

Y =

 −k − n 0 0
0 k m
0 m∗ n

 (175)

and derive ad−1
L1
Y . In what follows we will need also

L1Y L1 =

W 0 0
0 −(k + n)|u|2 −(k + n)u∗v
0 −(k + n)uv∗ −(k + n)|v|2


Y ⊥ = Y −

(
k|v|2 + n|u|2 −muv∗ −m∗u∗v

)
L2

W = k|u|2 + n|v|2 + vm∗u∗ + umv∗.

(176)
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Then as above

ad−1
L1
Y = [L1, Y +

3

4
L1Y L1]

=
1

4

 0 uα0 + vm∗ vα1 + um
−u∗α0 −mv∗ 0 0
−v∗α1 − u∗m∗ 0 0


α0 = 5k + n− 3W, α1 = k + 5n− 3W.

(177)

Again we have the condition

k|v|2 + n|u|2 −muv∗ −m∗u∗v = 0 (178)

which ensures that Y = Y ⊥. In particular, choosing Y = L2,x we find

L2 ≡ ad−1
L1
L2,x

=

 0 −u|u|2x − v(uv∗)x −v|v|2x − u(v∗u)x
u∗|u|2x + v∗(u∗v)x 0 0
v|v|2x + u(u∗v)x 0 0

 (179)

=

 0 −ux − u(uu∗x + vv∗x) −vx − v(uu∗x + vv∗x)
u∗x + u∗(u∗ux + v∗vx) 0 0
v∗x + v∗(u∗ux + v∗vx) 0 0


by comparing with the respective expressions for a and b in equation (62).

Appendix B. Derivation of the ‘Adjoint’ Recursion Operators

Here we derive the recursion operators, that are adjoint with respect to the skew-
scalar product, i.e., we define Λ∗

1,2 by the relations[[
X2,Λ1,±X1

]]
=

[[
Λ∗
1,±X2, X1

]]
,

[[
Y2,Λ2,±Y1

]]
=

[[
Λ∗
2,±Y2, Y1

]]
(180)

where X1,2 = X⊥
1,2 ∈ g1 and Y1,2 = Y ⊥

1,2 ∈ g0.

In doing this we use several times integration by parts and the following properties
of the operator ad−1

L1

[L1, ad
−1
L1
X1,2] = X1,2, ⟨X1, ad

−1
L1
X2⟩ = −⟨ad−1

L1
X1, X2⟩

[L1, ad
−1
L1
Y1,2] = Y1,2, ⟨Y1, ad−1

L1
Y2⟩ = −⟨ad−1

L1
Y1, Y2⟩.

(181)
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The derivation of Λ∗
1,± goes as follows

[[
X2,Λ1,±X1

]]
= −

∫ ∞

−∞
dx

⟨
X2,

[
L1, iad

−1
L1

∂X1

∂x

]⟩
+

i

2

∫ ∞

−∞
dx

⟨
X2,

[
L1, iad

−1
L1
L1,x

]⟩ ∫ x

±∞
dy

⟨
L1,

∂X1

∂y

⟩
= i

∫ ∞

−∞
dx

⟨
∂X2

∂x
,X1

⟩
− i

2

∫ ∞

−∞
dx ⟨X2, L1,x⟩

∫ x

±∞
dy ⟨X1, L1,y⟩

= −i

∫ ∞

−∞
dx

⟨
ad−1

L1

∂X2

∂x
, [L1, X1]

⟩
− i

2

∫ ∞

−∞
dx

⟨
ad−1

L1
L1,x

⟩(∫ x

±∞
dy

⟨
L1,y,

∂X2

∂y

⟩)
=

[[
Λ∗
1,±X2, X1

]]
.

The other recursion operators are treated analogously. Thus we obtain

Λ∗
1,± = Λ1,∓, Λ∗

2,± = Λ2,∓. (182)
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