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Abstract. We study noncommutative (NC) instantons and vortexes. At first,
we construct instanton solutions which are deformations of instanton so-
lutions on commutative Euclidean four-space. We show that the instanton
numbers of these NC instanton solutions coincide with the commutative so-
lutions. Next, we also deform vortex solutions similarly and we show that
their vortex numbers are unchanged under the NC deformation.

1. Introduction

Instanton connections in the four dimensional Yang-Mills theory are defined by
1

where I is a curvature two-form and * is the Hodge star operator.

The NC instanton solutions were constructed with the ADHM method in [1, 15].
The ADHM construction which generate the instanton U(V) gauge field require a
pair of the two complex vector spaces V = C*, W = CV. Here k is an integer.
Introduce By, Bz € Hom(V,V), I € Hom(W,V) and J € Hom(V, W) called
ADHM data such that

pR = [B1, Bl] + By, By + II' — JJ = ¢ 1di @
pc = [B1,B] + IJ = 0. €))

Here ¢ is a NC parameter and its detail will appear in the following. Using these
ADHM data we can construct NC instanton and call it NC ADHM instanton in the
following. NC ADHM instantons and deformed instantons from the commutative
ADHM construction is unknown.

*Reprinted from JGSP 14 (2009) 85-96.
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It was also shown that instanton numbers of NC ADHM instantons do not depend
on the NC parameter [4, 5,9, 16, 17]. These results may imply that the instanton
numbers in Euclidean four-space are invariant under NC deformation. Furthermore
topological charges might be preserved under the NC deformation for any other
solitons in gauge theories in Euclidean spaces. These problems are main themes
of this article.

In this paper, we construct a NC formal instanton solution which is a deformation
of the commutative instanton. We show that the NC instanton number for this NC
instanton is independent of h (Theorem 4). This result supports our conjecture
on the independence of the NC instanton number for NC R*. In addition, we
also construct a NC vortex solution which is a deformation of commutative vortex
solution and showed that its vortex number is undeformed [11, 12].

2. Notations

Euclidean 2n-space is given by the following commutation relations:
[xH, "], = ¥ *xx¥ — ¥ % 2t = 10" v =12...,2n 4)

where (0#7) is a real, x-independent, skew-symmetric matrix, called the NC pa-
rameters. * is known as the Moyal product [14]. The Moyal product (or star
product) is defined on functions by

[@)g(e) = F@)g(@) = 3 =S @) (55,0770,) o)

Here 0 » and 5),, are partial derivatives with respect to 2* for f(z) and to ¥ for
g{z), respectively.

The curvature two form F' is defined by
1
F:= §Fwdx“ Axdz” =dA+ ANXA 4)
where A« is defined by
1
AN*A = §(Au * Ay)dz! A dx”. (6)

To consider smooth NC deformations, we introduce a parameter h and a fixed
constant 65" < oo with

0" = hoL” . 7

We define the commutative limit by letting i — 0.
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3. NC Deformation of Instantons

In this section, we consider the Yang-Mills theory on the NC R*. Instanton solu-
1
tions satisfy the (NC) instanton equation F'™ = 5(1 + x)F = 0. Formally we

expand the connection as

Ay =" ADHL (8)
1=0
Then
0 1 PN
[4+m-+n m I 4(n
Aux Ay = 37 BT Al (A AR
I,m,n=0 (9)
— i

— —
A E§6M06“/ay.

We introduce the selfdual projection operator P by
1+ % 1

P: 5 P pr = 5(5””6'” — Ouplur + €uupr)- (10)
Then the instanton equation is written as
P, FPT = 0. (11)

In the NC case, the [-th order equation of (11) is given by
prm(9,AD — 9, AV +i[AD, AV + cly =0
m-rn ]' m < n m N n
Cl()lT) = Z pPTmT H(Ag JAYPAM — AL )(A)pAE, )) (12)
(p; m,n)€I(l) '
IO ={(p; mn)eZp+m+n=1pmmn>0 m#Ll n#l}

Note that C'® is a given function when we solve these equations recursively. The

0-th order equation is the commutative instanton equation with solution ALO) a
commutative instanton. The asymptotic behavior of commutative instanton A&O) 18
given by

A® = gdg™' + O(|z7%),  gdg™" = O(l=[™") (13)

where g € (G and G is a gauge group. We introduce covariant derivatives associated
to the commutative instanton connection by

DOf =0, f +iAD, fl,  Dawfi=df+4Onf a4
Using this, (12) is given by
preem (DO AD — AN + cB) <o, (15)
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In the following, we fix a commutative anti-selfdual connection A, We impose
the following gauge fixing condition for AV (1 >1)

A-A9=p%wB, Be? (16)
where D o, is defined by
(D) By, = 84D¥ B, — s#DOB,,,. (17)

We expand B in h as we did with A. Then AD = D%, BO. In this gauge, (15)
is given by

PD 40 D% BY + PCD = 0. (18)
Using the fact that the A is an anti-selfdual connection, (18) simplifies to
2D% B 4 prorrcll) = 0 (19)
where
D{oy = Dfyo) Daw-
We derive some properties of the Green’s function of D%o)' (We restrict ourselves

to U(n) gauge theory.)

We consider the Green’s function for D?O)

DYy Golx,y) = 6(x —y)

where §(x —y) is a four dimensional delta function. Instantons in commutative R*
are given by the ADHM construction [1], and arbitrary commutative instantons are
in one-to-one correspondence with ADHM data. Go(z, y) has been constructed in

[2]:

v1(2) ® vo(2)]T (1 — M) [0y K vg
G, y) = (1) © @] (1= Mo ) & valy)] 0
Ar?(x — y)
Here 21 and vy, vo are determined by the ADHM data and v; is a bounded function.
Using this Green’s function, we solve the equation (19) as

1
Bmwz—gég%mwpwm%Mm&y @1)

and the NC instanton 4 = 3 A® is given by A1) = DZ(O)B(”. The key fact used
in the following proposition is that the asymptotic behavior of Green’s function of
D%O) is given by

Go(w,y) =O0(z—y[™*),  |z—y[>>1. (22)

To list some features of Green’s functions like GG, see some propositions.
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Proposition 1. Let G(z,y) be a Green’s function on R* written as

_ b=y
|z — yl?

G(z,y) (23)

where b(x,y) is a bounded function. Let f(x) be a function such that |f(z)| <

oo where C' is some constant. We define F(x) by

Fla):= [ Glaf@)d'y @4
Then F(x) = O(|z|~2).

We gave a proof of this proposition in [12].

We introduce the notation O’(|z|~™) as in [3]. If s is a function of R* which is
O(|z|~™) as |z| — oo and |D?0)s| = O(|z|~™*), then we denote this natural
growth condition by s € O'(|z|~™).

Examining the proof of Proposition 1, and keeping track of estimates for higher
derivatives, we have the following (see [3, Lemma 3.3.36]).

Proposition 2. If f(z) € O(|z|™™) and |D(20)f(:n)| = O'(|z|7™=2), then f(x) €
O'(lz|™™).

We apply these propositions to our case, then we get the following theorem.
Theorem 3. If C) € O'(|z|~%), then |[B®)| < O'(|z|2).

The proof is given in [12]. In our case, C/()P = O'(z~*) by (13), and so |[BY)| <

O'(||=?) from Theorem 3 and |[A™V| < O'(|z|~%) as AV = DZ(O)B(”. Repeat-
ing the argument / times, we get

|AD| < O' (2|37, for any € > 0. (25)

Now is the time to estimate the instanton number. The instanton number is defined
by

1
Iy = —/tr F A XF. (26)
872
We rewrite (26) as
1 2 1

———/frd@4A*dA+~ﬂ4A*AA*A+)+——i/mji (27)

872 3 872
where P,

1
§{F/\*A/\*A+2A/\*F/\*A+AA*AA*F+AA*AA*AA*A}.
(28)
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The term [ tr P, is O in the commutative limit, but does not vanish in NC space.
The cyclic symmetry of trace is broken by the NC deformation.

The terms in [ tr P, are typically written as

/R (P AXQ — (—=1)"=MQ A +P) (29)

where P and ) be an n-form and a (4 — n)-form (n = 0, . .., 4), respectively, and
let P A @ be O(h*). The lowest order term in h vanishes because of the cyclic

symmetry of the trace, i.e., /tr(P AQ — (=1)™*=™Q A P) = 0. The term of

order h is given by

1 / tr{h0" (9, P A 0,Q))
2 Jp4 (30)

— % R4(n!(4 — n))erH2Esi tr A{(x0) A (Puy.pn AQpupsroa) }

where 0 = €,,,,-0°"dx# A dx¥ /4. These integrals are zero if P, dQpuiy i
is O'(|z|~*=1%9) (¢ > 0). Similarly, higher order terms in % in (29) can be
written as total divergences and hence vanish under the decay hypothesis. This
fact and (25) imply that [ tr P, = 0.

From the above discussion and (25), we get following theorems.

0 . . . . .
Theorem 4. Let AL) be a commutative instanton solution in R* given by the
(o]

ADHM construction. There exists a formal NC instanton solution A,, = Z Ag)hl

=0
such that the instanton number Iy, defined by (26) is independent of the NC param-
eter h, i.e.,

1 1
S?/trF/\*F:S?/trF(O)/\F(O). (31)

4. NC Vortex

In this section we study NC deformation of the vortex solutions. We consider
the Abelian-Higgs model in commutative R? and deform vortex solutions into NC
vortexes.

4.1. Commutative Vortex Solutions

At first, we consider vortexes on commutative R? with a Higgs field ¢, a complex
scalar field. Let G be the group of gauge transformations associated to U(1). For
g € G, the gauge transformation is defined as ¢ — g¢. We introduce the covariant
derivative by V,¢ = 0,4 — iA,,¢.
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For later convenience, we introduce complex coordinates for R? and AM. z =
(x! +ix?)/v/2, 2 = (2! — iz?)/V/2, and define differential operators 0, 0 by
0 = (01 —18)/V2, 0 = (81 + i02)/V/2, and define complex gauge fields by
A = (A; —i42)/V/2, A= (A +iA43)/\/2. The gauge transformations are A —
igog~!' + A, A — —i0gg~! + A. The curvature is expressed in the coordinates z,
zZ as

F.,=Fs =0, F.; =iF;; = 0A — 0A.
We define the magnetic field B by B 1= —iF};.
The vortex equations are given by

D¢ = (0 —iA)p =0, B+¢p—1=0. (32)

Solutions of these equations (32) minimize the energy functional. We list some
facts concerning vortex solutions.

Theorem 5 (Taubes [10]). Let (A, ¢o) be a smooth solution of (32). The vortex
number,

1
No:=— [ d%zBj (33)
27 JR2
is an integer equal to the winding number of | llim oo, where By := B(A).
There is a useful formula.
1 —r{l—e
0< 5 (1~ lpo(@)[*) < M(e)e™ "= (34)

where r = |z|. From (34), the asymptotic behaviors of (Ag, ¢g) for large radius r
are given by

_ 1 1
|go| ~ 1 — Ce ™79, |a¢0|~|a¢0|~c';, |A0|~c”;- (35)

Here, C, C’, C" are some constants.

In the following, we investigate the NC deformations of this theory. In particular,
we will carefully discuss whether the vortex number is constant.

4.2. The NC Abelian Higgs Model

At first, let coordinates of NC Euclidean space Rg be z#, p = 1, 2, with commuta-
tion relations
[z#, x¥] = ihe!”, v =1,2 (36)
where ¥V = —e"*, (¢'? = 1) and his a NC parameter.
The curvature components of the connection A are given by
Fzz - FEZ - Oa in - iF12 - 6zAE - 62Az - I[AZa AE]*
where [A, B], := Ax B — B x A. The magnetic field is defined by B := —iF,;.
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The NC vortex equations are defined by

Dx¢=(0—iA)x¢ =0, B+o¢x¢p—1=0.

We call solutions of these equations NC vortices or NC vortex solutions.

The formal expansions of the fields are
x oo
¢=> R'¢n(z,2), A=) h"A(2,2).
n=0 n=0
The k-th order equations for (37) are

—i(0A), + 0Ag) + drbo + Podr — Oro + Cr(z,2) =0
O¢r, — 1Arpo —1Aogy + Di(2,2) = 0.

37

(38)

(39)
(40)

Here C}(z, %) is the coefficient of ¥ in —[A, A]*—i—gb*qb (Prdo+podr). Similarly,
Dp(z, Z) is the coefficient of A¥ in —iA x ¢ — (—iAp¢g —iAgpy). Therefore when

we solve these equations recursively, then C' and Dy, are given functions.

In particular in the case of £k = 0, (39) and (40) coincide with the commutative
U(1) vortex equations (32),i.e., Dog = (0 —iAg)¢o = 0 and By + oo — 1 = 0,

where B() = —1(0A0 — 6A0)

Setting
D
O 1= O st = 2Re <@> and dj, b
¢0 %o %o Y
(40) and (39) are simplified as
(—A + [¢ol*) o = Ex.
Here A = 90 and
Ey = —-Cp + 0dj, — 5(&-
From (34), there exists a positive constant C' such that
Dy < O—" | < ot By < C
' 1+r3 ' 1+ . L+74

We use (44) to prove some of our main theorems.

4.3. NC Vortex Number

(41)

(42)

(43)

(44)

In this section, we show that the vortex number is constant for vortex solutions that

are given by NC deformations of Taubes’ vortex solutions.
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The Schrodinger Equation and Vortex Solutions

To show that there exists a unique NC vortex solution deformed from the Taubes’
vortex solution, we consider the stationary Schrodinger equation

(A +V(z))u(z) = f(z) (45)
in R?, where V (z) is a real valued C'™ function such that

(al) V(z) >0, for any z C R? (46)
(a2) There exist K C R* and ¢ > 0 such that K is a compact set and

forz € R*\ K, V(z) > ¢ (47)
(a3) Thereexist 2y, ...,zy € R? such that V(z;) = 0, V(z) > 0

forx ¢ {z1,...,zN} (48)
(a4) Forany a = (a1, a2) € Z2 there exists a positive constant C,

such that |0%(V — ¢)| < C, for any = € R (49)

We note that the system (42) satisfies the assumptions (al)—(a4). We set
Hi(n) = {£3 ]l := sup (1 + [2]")]02 f(2)] < oo forany || <1} (50)

z€R?
forn € Z.. Welet C', Cy, etc. denote unimportant positive constants whose value
may change from line to line unless otherwise stated. The next theorem’s proof
was given by using standard techniques of Green’s function [11].

Theorem 6. There exists a unique solution uw € Hi(n) of (45) for any f € Hi(n).

These theorems imply the following main theorem.

Theorem 7. Let Ag and ¢ be a Taubes’ vortex solution stated in Section 4.1, in
other words, (Ag, ¢q) satisfy the equations (32) with the condition (34). Then there
exists a unique solution (A, ¢) of the NC vortex equations (37) with Alp—g = Ay,
®lo=0 = @0, and its vortex number is preserved:

N = N, * d?z B = 1 d?z By. (51)
27 JRr2 21 JRr2

Outline of the Proof: Consider (45) with V(z) = |¢o|? and f(z) = Ey . From
the facts in Section 4.1, we find V' (x) satisfies (al)—(a4). Next, we consider F.
From (44), F1 € H4). f E; € Ho(20 +2) (i = 1,...,k — 1), as a result
of Theorem 6, there exist unique solutions ¢1,...,pr_1. Then we find FEj} €
H(2k + 2). Therefore Ej, € Hy(2k + 2) is proved for arbitrary k. Theorem 6
is applicable to (42) for arbitrary k, then it is shown that each ¢y, is determined

uniquely. Finally, using the asymptotic behavior of ¢q, (44) and so on, we can get
the result N = Nj. [
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5. Conjectures and Open Problems

We conjecture instanton numbers in Euclidean four-space are invariant under NC
deformations. In this article we introduce a gauge condition (16), so this conjecture
is not proved for general instantons. On the other hand, for Taubes’ vortexes, we
proved that vortex number is invariant under NC deformations. Furthermore, it is
natural to expect that topological charges are preserved under NC deformations for
any other solitons in gauge theories in Euclidean spaces.

From these observations, a new question arises: “How to distinguish instantons
(solitons) that preserve their instanton number (topological charges) under NC de-
formation?” From the proofs in [11, 12] we can find that a hint has already ap-
peared. The hint is the volume of the space is oo, in the proofs to show the topo-
logical charges are not deformed. Therefore it is natural to expect that instanton
number depends on the NC parameter in a finite volume NC space.

Here is an example [6—8,13]. An instanton solution on 7' for U (/N?) gauge theory
is given by

1k

D, = 0y, D2262+§ﬁ($11N)®1N
1k

D3:83, D4:64—§ﬁ(x31N)®1N.

The instanton number is given by k2. After NC deformation, the instanton number
is also deformed to

1 k2N?
[ wFAsF= —2
82 /T4 PEARE TN Zkn)

and it depends on the NC parameter. Anyway, it is left as an open problem to find
the way to distinguish instantons whose instanton numbers do not depend on NC
parameter.
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