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CHAPTER VI

Structure Theory of Semisimple Groups

Abstract. Every complex semisimple Lie algebra has a compact real form, as a
consequence of a particular normalization of root vectors whose construction uses the
Isomorphism Theorem of Chapter Il. ¢f is a real semisimple Lie algebra, then the use
of a compact real form ofgo)€ leads to the construction of a “Cartan involutiofof
go. This involution has the property thatdgh = & @ po is the corresponding eigenspace
decomposition or “Cartan decomposition,” thigre i po is a compact real form ofgo)°.

Any two Cartan involutions ofjy are conjugate by an inner automorphism. The Cartan
decomposition generalizes the decomposition of a classical matrix Lie algebra into its
skew-Hermitian and Hermitian parts.

If G is a semisimple Lie group, then a Cartan decomposiiipe:= €, & po of its Lie
algebra leads to a global decomposit@n= K exppo, whereK is the analytic subgroup
of G with Lie algebraty. This global decomposition generalizes the polar decomposition
of matrices. The groufX contains the center d& and, if the center ofs is finite, is a
maximal compact subgroup &.

The lwasawa decompositidd = K AN exhibits closed subgroupsandN of G such
that A is simply connected abeliai is simply connected nilpotenfy normalizesN, and
multiplication fromK x A x N to G is a diffeomorphism onto. This decomposition gen-
eralizes the Gram—Schmidt orthogonalization process. Any two lwasawa decompositions
of G are conjugate. The Lie algebetg of A may be taken to be any maximal abelian
subspace gy, and the Lie algebra dfl is defined from a kind of root-space decomposition
of go with respect taag. The simultaneous eigenspaces are called “restricted roots,” and
the restricted roots form an abstract root system. The Wey! group of this system coincides
with the quotient of normalizer by centralizer @fin K.

A Cartan subalgebra @f is a subalgebra whose complexification is a Cartan subalgebra
of (go)©. One Cartan subalgebra gf is obtained by adjoining to the abowg a maximal
abelian subspace of the centralizeragfin . This Cartan subalgebra ésstable. Any
Cartan subalgebra @f is conjugate by an inner automorphism té atable one, and the
subalgebra built fromu, as above is maximally noncompact among@aitable Cartan
subalgebras. Any two maximally noncompact Cartan subalgebras are conjugate, and so are
any two maximally compact ones. Cayley transforms allow one to pass between ahy two
stable Cartan subalgebras, up to conjugacy.

A Vogan diagram ofyg superimposes certain information about the real fggran the
Dynkin diagram of(go)©. The extra information involves a maximally compacstable
Cartan subalgebra and an allowable choice of a positive system of roots. The effect of
simple roots is labeled, and imaginary simple roots are painted if they are “noncompact,”
left unpainted if they are “compact.” Such a diagram is not uniqugdobut it determines
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348 VI. Structure Theory of Semisimple Groups

go up to isomorphism. Every diagram that looks formally like a Vogan diagram arises from
somegp.

Vogan diagrams lead quickly to a classification of all simple real Lie algebras, the only
difficulty being eliminating the redundancy in the choice of positive system of roots. This
difficulty is resolved by the Borel and de Siebenthal Theorem. Using a succession of
Cayley transforms to pass from a maximally compact Cartan subalgebra to a maximally
noncompact Cartan subalgebra, one readily identifies the restricted roots for each simple
real Lie algebra.

1. Existence of a Compact Real Form

An important clue to the structure of semisimple Lie groups comes from
the examples of the classical semisimple groups in 881.8 and 1.17. In each
case the Lie algebrg is a real Lie algebra of matrices ovigr C, or H
closed under conjugate transpa@sé*. This fact is the key ingredient used
in Proposition 1.59 to detect semisimplicity gf

Using the techniques at the end of §1.8, we can reggas a Lie algebra
of matrices oveR closed under transpose)*. Thengg is the direct sum
of the set, of its skew-symmetric members and theggdf its symmetric
members. The real vector spagg = & @ ip, of complex matrices is
closed under brackets and is a Lie subalgebra of skew-Hermitian matrices.

Meanwhile we can regard the complexificatipof go as the Lie algebra
of complex matriceg = go + i go. Puttingt = (£,)© andp = (po)®, we
write g = £ @ p as vector spaces. The complexificationugis the same
set of matrices(ug)® =t @ p.

Sincegy has been assumed semisimglés semisimple by Corollary
1.53, andy, is semisimple by the same corollary. The claim is tirais
a compact Lie algebra in the sense of §IV.4. In fact, let us introduce the
inner product X, Y) = Re TAKXY*) onuy. The proof of Proposition 1.59
shows that

((@dY)X, Z) = (X, (adY")) Z)

and hence
(6.1) (adY)* = ad(Y").
SinceY* = —Y, adY is skew Hermitian. ThugadY)? has eigenvalues

< 0, and the Killing formB,,, of u, satisfies

By, (Y, Y) = Tr((ady)? < 0.
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Sinceu, is semisimpleB,, is nondegenerate (Theorem 1.45) and must be
negative definite. By Proposition 4.2¢, is a compact Lie algebra.

In the terminology of real forms as in §1.3, the splitting of any of the
classical semisimple Lie algebrgsin 81.8 is equivalent with associating
to go the compact Lie algebng, that is a real form of the complexification
of go. Once we have this splitting afy, the arguments in 81.17 allowed
us to obtain a polar-like decompaosition of the analytic group of matrices
G with Lie algebrag,. This polar-like decomposition was a first structure
theorem for the classical groups, giving insight into the topolog$ ahd
underlining the importance of a certain compact subgiéugf G.

The idea for beginning an investigation of the structure of a general
semisimple Lie groui8s, not necessarily classical, is to look for this same
kind of structure. We start with the Lie algelygand seek a decomposition
into skew-symmetric and symmetric parts. To get this decomposition, we
look for the occurrence of a compact Lie algebsaas a real form of the
complexificationg of go.

Actually not just anyu, of this kind will do. The real forms,, andgo
must be aligned so that the skew-symmetric paaind the symmetric part
po can be recovered & = go N up andpg = go N iug. The condition of
proper alignment fon, is that the conjugations @fwith respect tgy, and
to up must commute with each other.

The first step will be to associate to a complex semisimple Lie algebra
g a real formu, that is compact. This construction will occupy us for the
remainder of this section. In 82 we shall address the alignment question
wheng is the complexification of a real semisimple Lie algebsa The
result will yield the desired Lie algebra decompositign= £, @ o, known
as the “Cartan decomposition” of the Lie algebra. Thenin 83 we shall pass
from the Cartan decomposition of the Lie algebra to a “Cartan decompo-
sition” of the Lie group that generalizes the polar-like decomposition in
Proposition 1.143.

The argument in the present section for constructing a compact real form
from a complex semisimplgwill be somewhat roundabout. We shall use
the Isomorphism Theorem (Theorem 2.108) to show that root vectors can
be selected so that the constants arising in the bracket products of root
vectors are all real. More precisely this result gives us a real forg of
known as a “split real form.” It is not a compact Lie algebra but in a certain
sense is as noncompact as possible. Wtisal(2, C), the real subalgebra
5[(2, R) is a split form, and the desired real form that is compastii®).

In general we obtain the real form that is compact by taking suitable linear
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combinations of the root vectors that define the split real form.

For the remainder of this section, Igtbe a complex semisimple Lie
algebra, let) be a Cartan subalgebra, l&t= A(g, h) be the set of roots
of g with respect tdy, and letB be the Killing form. (The Killing form has
the property that it is invariant under all automorphismg,according to
Proposition 1.119, and this property is not always shared by other forms.
To take advantage of this property, we shall insist Bhat the Killing form
in 881-3. After that, we shall allow more general forms in plac8& 9f

For each paifa, —a} in A, we fix E, € g, andE_, € g_, so that
B(E,, E_,) = 1. Then E,, E_,] = H, by Lemma 2.18a. Lat andg be
roots. Ifa + B isin A, defineC, 4 by

[Eou Eﬁ] = Cot,ﬁ EoH—ﬁ'
If « + B isnotinA, putC, s = 0.

Lemma6.2.C, 3 = —Cp,.

PrOOF. This follows from the skew symmetry of the bracket.
Lemma 6.3.If «, 8, andy are inA anda + 8 + y = 0, then
Cop=6Cs, =C,,.
PROOF. By the Jacobi identity,
[E.. Es]. E,1 + [Es. E,]. E] + [[E,. E.I. Es] = 0.
Thus  C,4[E_,.E, ]+ Cs,[E s, Es] +C,o[E_s Es] =0
and CupH, +Cs,Hy 4+ C,Hs = 0.

SubstitutingH, = —H, — Hg and using the linear independence of
{H., Hz}, we obtain the result.

Lemma 6.4. Let«, B, anda + B be in A, and letg + n«, with
—Pp < n < q, be thex string containing3. Then

CuprCovp = —39(L+ pP)laf’.
ProOOF. By Corollary 2.37,

[E-o. [Ew, Egll = 301+ p)la’B(Eq, E_o)Ey.
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The left side isC_, ,+5C, sEs, and B(E,, E_,) = 1 on the right side.
Therefore

(6.5) Cova+pCap = 301+ Pl
Since(—a) + (¢ + B) + (—B) = 0, Lemmas 6.3 and 6.2 give
Covorp=Cp-o=-Coy,
and the result follows by substituting this formula into (6.5).
Theorem 6.6. Let g be a complex semisimple Lie algebra, bebe a

Cartan subalgebra, and lat be the set of roots. For eache A, it is
possible to choose root vectaxs € g, such that, for ale andg in A,

[Xou Xfa] = H,
[Xa,Xﬂ] = Na,ﬁXaH; |f(¥+,3 e A
[Xa, Xg] =0 ifa+pB#0Oanda+ 8 ¢ A

with constantsN, ; that satisfy
Na,ﬁ == —N,a’,ﬁ.

For any such choice of the systdp, } of root vectors, the constant,
satisfy
NZ, =301+ plaf,
whereg + na, with —p < n < q, is thea string containings.
PROOF. The transpose of the linear map: h — b given bye(h) =
—h carriesA to A, and thusp extends to an automorphisiof g, by
the Isomorphism Theorem (Theorem 2.108). (See Example 3 at the end

of 811.10.) Sinceg(E,) is in g_,, there exists a constant, such that
¢(E,) = c_,E_,. By Proposition 1.119,

B(@X, ¢Y) = B(X,Y) forall X andY in g.
Applying this formula withX = E, andY = E_,, we obtain

C_4Cy = C_4Cy B(E—ou Ea) - B(aEav aE—a) - B(Eou E—Ot) =1
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Thusc_,c, = 1. Because of this relation we can choagéor eachu € A
such that

(6.7a) a, =+1
(6.7b) a’=—c,.

o

For example, fix a paife, —«}, and writec, = re’? andc_, = r~te?;
then we can take, = r¥/?i€?? anda_, = —r Y% e /2,

With the choices of tha,’s in place so that (6.7) holds, defing, =
a, E,. The root vectors,, satisfy

[on, X,a] = aa&a[Eou E,O,] = H, by (673-)

and

9(Xo) = a,@(Ey) = a,C,E_,

=a.c,E, by (6.7a)

=—a,E, by (6.7b)
(6.8) = —X_,.
Define constant\, ; relative to the root vectorX, in the same way that
the constant&, ; are defined relative to the root vectdes. Then (6.8)
gives

—NopXoop = P(Nap Xaip) = @[ Xa, Xg]
= [ Xa, 9Xp] = [ Xa, =X_g] = N s X,

and we find thatN, s = —N_, 4. The formula forNZ, follows by
substituting into Lemma 6.4, and the proof is complete.

Theorem 6.6 has an interpretation in terms of real forms of the complex
Lie algebrag. With notation as in Theorem 6.6, define

(6.9) ho={Hebh|a(H) e Rforalla € A},

and put go = ho ® P RX..

aeA

The formulaNZ , = 20(1+ p)|e|? shows that\, 4 is real. Thereforgy is
asubalgebra af®. Sinceitis clear tha® = go®i go as real vector spaces,
go is areal form ofg. A real form ofg that containg), as in (6.9) for some
Cartan subalgebriis called asplit real form of g. We summarize the

above remarks as follows.
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Corollary 6.10. Any complex semisimple Lie algebra contains a split
real form.

ExAMPLES. It is clear from the computations in §l1.1 th&in, R) and
sp(n, R) are split real forms ofl(n, C) andsp(n, C), respectively. We
shall see in 84 thato(n + 1, n) andso(n, n) are isomorphic to split real
forms ofso(2n + 1, C) andso(2n, C), respectively.

As we indicated at the beginning of this section, we shall study real
semisimple Lie algebras by relating them to other real forms that are
compact Lie algebras. A real form of the complex semisimple Lie algebra
g that is a compact Lie algebra is called@mpact real form of g.

Theorem 6.11.1f g is a complex semisimple Lie algebra, thghas a
compact real fornu.

REMARKS.

1) The compact real forms of the classical complex semisimple Lie
algebras are already familiar. Feli(n, C), so(n, C), andsp(n, C), they
aresu(n), so(n), andsp(n), respectively. In the case gf(n, C), this fact
uses the isomorphisap(n) = sp(n, C) Nu(2n) proved in §l1.8.

2) We denote the compactreal forms of the complex Lie algebras of types
Es, E7, Eg, F4, andG, by ¢, ¢4, ¢g, f4, andg,, respectively. Corollary 6.20
will show that these compact real forms are well defined up toisomorphism.

PROOF Leth be a Cartan subalgebra, and define root vecxgras in
Theorem 6.6. Let

(6.12) o= R(iHy)+ Y R(Xy—Xp)+ » Ri(Xe+ X_o).

aeA aeA aeA

It is clear thatg® = uy @ iug as real vector spaces. Let us see thas
closed under brackets. The tepmMR(i H,) on the right side of (6.12) is
abelian, and we have

[I Hou (on - Xfa)] = |Ol|2i (XOt + Xfa)
[I Hav I (Xa + X—a)] = _|a|2(xa - X—a)~
Therefore the term) _R(i H,) bracketsu, into uo. For the other brackets
of elements ofi,, we recall from Theorem 6.6 th&t, ; = —N_, _4, and
we compute foB # +« that
[(Xa — X_0), (Xg — X_p)]
= Na.ﬂXOHrﬂ + Nfoz,fﬂ Xfafﬂ - thx,ﬂ Xfot+/5 - Na,fﬂ Xafﬂ

- er,ﬁ(XoH—ﬁ - X—(OH—/S)) - N—a,ﬂ(x—oH—ﬁ - X—(—ot-‘rﬂ))
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and similarly that

[(Xa - X,a), [ (X,B + X*/S)]
= Ny gl (Xoip + X_@ip) — Nog gl (Xogip + X_(Catp)

and

[I (Xa + Xfa)7 I (Xﬂ + Xfﬁ)]
= _er,ﬂ(anrﬁ - Xf(aJrﬁ)) - Nfa,ﬂ(xfourﬁ - X,(,aﬁg)).

Finally
[(Xa - Xfa)7 I (on + X,a)] = 2' Hota

and thereforey, is closed under brackets. Consequentlys a real form.

To show thatu, is a compact Lie algebra, it is enough, by Proposition
4.27, to show that the Killing form ai, is negative definite. The Killing
formsB,, of up andB of g are related by,,, = B|,,x.,, accordingto (1.20).
The first term on the right side of (6.12) is orthogonal to the other two terms
by Proposition 2.17a, arglis positive ory _ RH, by Corollary 2.38. Hence
B is negative ord_ Ri H,. Next we use Proposition 2.17a to observe for
B # +a that

B((Xe — X_a). (X5 — X)) =0
B((Xo — X_a). 1 (X5 + X_p)) =0
B(i (X + X_a), 1 (X5 + X_g)) = 0.

Finally we have

B((Xa - X—a)a (XDt - X—a)) = _ZB(XLX7 X—a) = _2
B(I (th + X,a), i(xa + Xfa)) = _ZB(XOZ? Xfa) = -2,

and thereforeB|,, .., is negative definite.

2. Cartan Decomposition on the Lie Algebra Level

To detect semisimplicity of some specific Lie algebras of matrices in
8§1.8, we made critical use of the conjugate transpose mapyirg X*.
Slightly better is the map(X) = —X*, which is actually annvolution,
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i.e., an automorphism of the Lie algebra with square equal to the identity.
To see thab respects brackets, we just write

O[X, Y] = —[X, Y]* = —[Y*, X*] = [ X*, =Y*] = [6(X), O(Y)].

Let B be the Killing form. The involutiond has the property that
By (X,Y) = —B(X, 8Y) is symmetric and positive definite because Propo-
sition 1.119 gives

By(X,Y) = —B(X,0Y) = —B(6X, 6%Y)
= —B@X,Y)=—B(Y,0X) = By(Y, X)

and (6.1) gives

By (X, X) = —B(X, 8X) = —Tr((ad X)(add X))
= Tr((adX)(adX*)) = Tr((adX)(ad X)*) > 0.

An involution 6 of a real semisimple Lie algebgg such that the sym-
metric bilinear form

(6.13) B,(X.Y) = —B(X, 0Y)

is positive definite is called &artan involution. We shall see that any
real semisimple Lie algebra has a Cartan involution and that the Cartan
involution is unigue up to inner automorphism. As a consequence of the
proof, we shall obtain a converse to the arguments of §1.8: Every real
semisimple Lie algebra can be realized as a Lie algebra of real matrices
closed under transpose.

Theorem 6.11 says that any complex semisimple Lie algghras a
compact real form. According to the next proposition, it follows tifat
has a Cartan involution.

Proposition 6.14.Let g be a complex semisimple Lie algebra,igte
a compact real form gf, and letr be the conjugation of with respect to
uo. If gis regarded as a real Lie algelyra thent is a Cartan involution
of g,

REMARK. The real Lie algebrg® is semisimple by (1.61).
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PROOF. Itis clear thatr is an involution. The Killing formsB, of g and
B,x of g* are related by

Bgm(zl, ZZ) = 2ReBg(Zla ZZ),
according to (1.60). Writ&€ € gasZ = X+iY with X andY inu,. Then

By(Z,1Z) = By(X +iY, X —iY)
= By (X, X) + By(Y.Y)
= Buo(x’ X) + Buo(Yv Y)7

and the right side isc 0 unlessZ = 0. In the notation of (6.13), it follows
that

(Bgr)(Z1, Z3) = —Bgz(Z4, 1Z3) = —2ReBy(Z1, 12Z5)

is positive definite og®, and therefore is a Cartan involution of®.

Now we address the problem of aligning a compact real form properly
when we start with a real semisimple Lie algelggaand obtaing by
complexification. Corollaries give the existence and uniqueness (up to
conjugacy) of Cartan involutions.

Lemma 6.15. Let go be a real finite-dimensional Lie algebra, and let
o be an automorphism af, that is diagonable with positive eigenvalues
dy, ..., dn and corresponding eigenspacgs . For—oo < r < oo, define
p" to be the linear transformation @g that isd; on (go)q,. Then{p'} is a
one-parameter group in Ags. If go is semisimple, thep' lies in Intgo.

PROOF. If X'isin (go)q andY isin (go)qy , then
p[X, Y] =1[pX, pY] =did[X, Y]
sincep is an automorphism. Henc&X[ Y] is in (go)q 4, @nd we obtain
PIX. Y] = (A [X, Y] = [df X, d'Y] = [0 X, p" V1.
Consequently' is an automorphism. Therefofe’} is a one-parameter
group in Autg,, hence in the identity componefut go)o. If go is semi-

simple, then Propositions 1.120 and 1.121 show ¢Aait go)o = Int go,
and the lemma follows.
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Theorem 6.16.Let gy be areal semisimple Lie algebra, édbe a Cartan
involution, and letr be any involution. Then there existse Int g, such
thatpfp—! commutes withs .

PROOF. Since#d is given as a Cartan involutiol3, is an inner product
for go. Putw = o6. This is an automorphism @f, and Proposition 1.119
shows that it leaveB invariant. Fronn?2 = 62 = 1, we therefore have

B(wX, 0Y) = B(X, 0 10Y) = B(X, wY)
and hence By(wX,Y) = By(X, wY).
Thusw is symmetric, and its squae = w? is positive definite. Write
p" for the positive-definite ™ power of p, —oco < r < co. Lemma 6.15
shows thaip' is a one-parameter group in it Consideration of» as a
diagonal matrix shows that commutes withw. Now

00 = w’0 = 00000 = 000 = 00000 = 0w > =0p L.

In terms of a basis af, that diagonalizeg, the matrix form of this equation
is

0ii 0i] :Oij,olfjl foralli andj.
Considering separately the caggs= 0 and6;; # 0, we see that
pibh = 6 pj;'
and therefore that
(6.17) p'0=0p".
Puty = p¥“. Then two applications of (6.17) give

(pbp~Ho = p0p™ g = p'%00

1 -1/2 -1
= p pw

2

— pY20"
= p V2 = wp VY

— O,810—1/2 — 0',01/49,0_1/4 — U((p@(p_l),

as required.
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Corollary 6.18. If go is a real semisimple Lie algebra, thgnhas a
Cartan involution.

PROOF. Let g be the complexification ofi;, and choose by Theorem
6.11 a compact real form, of g. Leto andt be the conjugations qgf
with respect tay, andug. If we regardg as a real Lie algebrgf, theno
andz are involutions ofy®, and Proposition 6.14 shows thats a Cartan
involution. By Theorem 6.16 we can find € Int(g®) = Intg such that
pTo~! commutes withy.

Here ptp~! is the conjugation ofy with respect top (i), which is
another compact real form gf Thus

(Bg=)yrp-1(Z1, Zo) = —2ReBy(Zy, 19" Z))

is positive definite org®.
The Lie algebragy is characterized as the fixed setaaf If 0 X = X,
then
(et tX) = gt o X = pre X,

Hencept ! restricts to an involutiod of g,. We have
By (X, Y) = —Bg, (X, 0Y) = —By(X, 919 1Y) = 2(Bga)yrp1 (X, Y).
ThusB; is positive definite orgo, andod is a Cartan involution.

Corollary 6.19. If g, is a real semisimple Lie algebra, then any two
Cartan involutions ofj, are conjugate via Irgo.

PROOF. Let# and6’ be two Cartan involutions. Taking = 6’ in
Theorem 6.16, we can fing € Int g such thatp6¢p ! commutes witho'.
Herepfp~1is another Cartan involution gf. So we may as well assume
thatd andd’ commute from the outset. We shall prove that 6.

Sinced andd’ commute, they have compatible eigenspace decomposi-
tions into+1 and—1 eigenspaces. By symmetry it is enough to show that
no nonzeraX € g, is in the+1 eigenspace far and the—1 eigenspace for
0’. Assuming the contrary, suppose that = X and6’X = —X. Then
we have

0 < By(X, X) = —B(X,0X) = —B(X, X)
0 < By (X, X) = —B(X, 0’'X) = +B(X, X),

contradiction. We conclude théat= 6’, and the proof is complete.
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Corollary 6.20. If gis a complex semisimple Lie algebra, then any two
compact real forms of are conjugate via Ing.

PrROOF. Each compact real form has an associated conjugatign of
that determines it, and this conjugation is a Cartan involutiog®ofoy
Proposition 6.14. Applying Corollary 6.19 tgf, we see that the two
conjugations are conjugate by a member ofgf. Since Intg®) = Int g,
the corollary follows.

Corollary 6.21. If A = (Aj));;_, is an abstract Cartan matrix, then
there exists, up to isomorphism, one and only one compact semisimple Lie
algebrag, whose complexificatioy has a root system witlh as Cartan
matrix.

PROOF. Existence ofy is given in Theorem 2.111, and uniquenesg of
is given in Example 1 of §11.10. The passage frgito g, is accomplished
by Theorem 6.11 and Corollary 6.20.

Corollary 6.22. If g is a complex semisimple Lie algebra, then the only
Cartan involutions ofi* are the conjugations with respect to the compact
real forms ofg.

PROOF. Theorem 6.11 and Proposition 6.14 produce a Cartan involution
of g® that is conjugation with respect to some compact real forgm @y
other Cartan involution is conjugate to this one, according to Corollary
6.19, and hence is also the conjugation with respect to a compact real form
of g.

A Cartan involutiorg of g, yields an eigenspace decomposition
(6.23) 8o = £ D po

of go into +1 and—1 eigenspaces, and these must bracket according to the
rules

(6.24) o, o] < o, [P0, Po] € Po, [P0, Po] < o
sinced is an involution. From (6.23) and (6.24) it follows that
(6.25) to andp, are orthogonal undeB,, and underB,

In fact, if X isin €, andY is in po, then adX adY carriest, to po andp, to
. Thusit has trace 0, arf}, (X, Y) = 0; sincedY = —Y, By,(X,Y) =0
also.
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SinceB; is positive definite, the eigenspadgsindp, in (6.23) have the
property that

negative definite o
(6.26) { ° o

positive definite om.

A decomposition (6.23) of, that satisfies (6.24) and (6.26) is called a
Cartan decompositionof go.
Conversely a Cartan decomposition determines a Cartan involubign

he f I
the formula 9_{+1 ont

-1 Oonpoe.
Here (6.24) shows thatrespects brackets, and (6.25) and (6.26) show that
B, is positive definite. By is symmetric by Proposition 1.119 sinédas
order 2.)

If go = € @ po is a Cartan decomposition @f, thenty @ iy, is a
compact real form off = (go)©. Conversely ify, andq, are the+1 and
—1 eigenspaces of an involutian theno is a Cartan involution only if
the real formh, @ iqo of g = (go)© is compact.

If g is a complex semisimple Lie algebra, then it follows from Corollary
6.22 that the most general Cartan decompositiog'af g* = 1y @ i,
whereuy is a compact real form gf.

Corollaries 6.18 and 6.19 have shown for an arbitrary real semisimple Lie
algebragy that Cartan decompositions exist and are unique up to conjugacy
by Intg,. Letus see as aconsequence that every real semisimple Lie algebra
can be realized as a Lie algebra of real matrices closed under transpose.

Lemma 6.27. If g, is a real semisimple Lie algebra afids a Cartan

involution, then
(adX)* = —ado X forall X € go,

where adjoint - )* is defined relative to the inner produsj.
PrOOF. We have

B,((ado X)Y, Z) = —B([6 X, Y], 62)
= B(Y,[#X, 6Z]) = B(Y, 0[X, Z])
= —By(Y, (@dX)Z) = —B,((@dX)*Y, Z).
Proposition 6.28. If g, is a real semisimple Lie algebra, thegp is
isomorphic to a Lie algebra of real matrices that is closed under transpose.

If a Cartan involutior® of g, has been specified, then the isomorphism may
be chosen so thatis carried to negative transpose.
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PROOF. Letd be a Cartan involution agf, (existence by Corollary 6.18),
and define the inner produB} ongg as in (6.13). Sincg, is semisimple,
go = adge. The matrices of ag, in an orthonormal basis relative ®)
will be the required Lie algebra of matrices. We have only to show that
adg is closed under adjoint. But this follows from Lemma 6.27 and the
fact thatg is closed undef.

Corollary 6.29. If g, is a real semisimple Lie algebra afids a Cartan
involution, then any stable subalgebrg of g, is reductive.

PROOF. Proposition 6.28 allows us to regagglas a real Lie algebra of
real matrices closed under transpose, @rmbcomes negative transpose.
Thensy, is a Lie subalgebra of matrices closed under transpose, and the
result follows from Proposition 1.59.

3. Cartan Decomposition on the Lie Group Level

In this section we turn to a consideration of groups. Gdte a semisim-
ple Lie group, and lefi, be its Lie algebra. The results of §2 established
that go has a Cartan involution and that any two Cartan involutions are
conjugate by an inner automorphism. The theorem in this section lifts the
corresponding Cartan decompositign = & @ po given in (6.23) to a
decomposition of5.

In the course of the proof, we shall consider(&q first, proving the
theorem in this special case. Then we shall use the result f6GAtb
obtain the theorem fo. The following proposition clarifies one detail
about this process.

Proposition 6.30. If G is a semisimple Lie group and is its center,
thenG/Z has trivial center.

REMARK. The centeiZ is discrete, being a closed subgroufzivhose
Lie algebrais 0.

PROOF. Let go be the Lie algebra o65. Forx € G, Ad(x) is the
differential of conjugation bx andis 1ifandonlyikisinZ. ThusG/Z =
Ad(G). If g € Ad(G) is central, we havgAd(x) = Ad(x)gforallx € G.
Differentiation givesg(adX) = (adX)g for X € go, and application of
both sides of this equation¥ € go givesg([ X, Y]) = [X, gY]. Replacing
Y by g~'Y, we obtain §X, Y] = [X, Y]. InterchangingX andY gives
[X,gY] = [X, Y] and hencgy([ X, Y]) = [X, Y]. Since [go, go] = go by
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Corollary 1.55, the linear transformatianis 1 on all ofg, i.e.,g = 1.
Thus AdG) has trivial center.

Theorem 6.31. Let G be a semisimple Lie group, létbe a Cartan
involution of its Lie algebrago, let go = & & po be the corresponding
Cartan decomposition, and I&t be the analytic subgroup @ with Lie
algebrat,. Then

(a) there exists a Lie group automorphi@of G with differential,
and® has®? = 1,

(b) the subgroup o6 fixed by® is K,

(c) the mappindK x pg — G given by (k, X) — kexpX is a diffeo-
morphism onto,

(d) K is closed,

(e) K contains the centef of G,

(H K is compact if and only i is finite,

(g) whenZ is finite, K is a maximal compact subgroup Gf

REMARKS.

1) This theorem generalizes and extends Proposition 1.143, where (c)
reducesto the polar decomposition of matrices. Proposition 1.143 therefore
points to a host of examples of the theorem.

2) The automorphisr® of the theorem will be called thglobal Cartan
involution, and (c) is theglobal Cartan decomposition Many authors
follow the convention of writing for ®, using the same symbol for the
involution of G as for the involution of,, but we shall use distinct symbols
for the two kinds of involution.

PROOF. Let G = Ad(G). We shall prove the theorem f@ and then
deduce as a consequence the theorenBfoFor the case o6, we begin
by constructing® as in (a), calling it®. Then we definéK * to be the
subgroup fixed by, and we prove (c) with replaced byK ". The rest
of the proof of the theorem fdB is then fairly easy.

For G, the Lie algebra is agh, and the Cartan involutiod is +1 on
ad,, (¢o) and—1 on ag, (po). Let us write members of ag with bars over
them. Define the inner produ; on g, by (6.13), and let adjoint- )* be
defined for linear maps af, into itself by means oB,. Lemma 6.27 says
that

(6.32) (adW)* = —adoW forall W € go,
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and therefore
(6.33) 6W = —W"  forall W € adgo.

If gisin Autgo, we shall prove thag* is in Autgy. SinceB, is definite,
we are to prove that

(6.34) B,([9"X, g1, 2) < By(g'[X, Y], 2)
forall X,Y, Z € go. Using (6.32) three times, we have

Bs([9"X, g*Y], Z) = =By (g"Y, [09"X, Z]) = —By(Y, [909" X, 9Z])
= By((adg2)ghg* X, Y) = —By (909" X, [69Z, Y])
= B(g0g*X,[9Z,0Y]) = —By(g* X, g 7' [9Z, 0Y])
= —By(X,[9Z,0Y]) = By(X, (addY)g2)
= By([X,Y].92) = By(g'[X. Y], 2),

and (6.34) is established.

We apply this fact wheg = X is in Ad(G) = G. Thenx*X is a positive
definite element in Augo,. By Lemma 6.15 the positive definité power,
which we write as(x*X)", is in Intgo, = Ad(G) = G for every realr.
Hence

(6.35) (X*X)" = expr X

for someX e adg,. Differentiating with respect to and puttingr = 0,
we see thak = X. By (6.32),X is in ad,, (po).

Specializing to the case = 1, we see tha6 is closed under adjoint.
Hence we may defin®(X) = (x*)~%, and® is an automorphism o6
with ®° = 1. The differential 0® is Y > —Y ", and (6.33) shows that
this is6. This proves (a) fof.

The fixed group fo® is a closed subgroup & that we define to b& .
The member& of K have(k*)~! = k and hence are in the orthogonal
group ong,. SinceG = Int go and since Propositions 1.120 and 1.121 show
that Intgo = (Aut go)o, K" is closed iNGL (go). SinceK " is contained
in the orthogonal groupK# is compact. The Lie algebra & is the
subalgebra of all € adg, whered(T) = T, and this is just ag(t).

Consider the smooth mapping : K= x ad,,(po) — G given by
vs(k, S) = kexpS. Let us prove thapg maps ontdG. Givenx € G,
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defineX € ad,,(po) by (6.35), and pup = expiX. The elemenf is
in Ad(G), andp* = p. Putk = xp~, so thatx = kp. Thenk*k =
(P Hxxpt= (exp——X)(epr)(exp——X) =1, and henc&* = k1.
Consequentlp (k) = (k*)~* = k, and we conclude thafs is onto.

Let us see thapg is one-one. Ik = kexpX, thenx* = (expX )k* =
(expX)k* = (expX)k~t. Hencex*x = exp2X. The two sides of this
equation are equal positive-definite linear transformations. Their positive-
definiter™ powers must be equal for all rea| necessarily to exprX.
Differentiating (X*X)" = exp 2 X with respect to and putting = 0, we
see thak determinesX. Hencex determines alsg, andcpG is one-one.

To complete the proof of (c) (but witki replaced byK ), we are to show
that the inverse map is smooth. Itis enough to prove that the corresponding
inverse map in the case of allby-n real nonsingular matrices is smooth,
wheren = dimgg. In fact, the given inverse map is a restriction of the
inverse map for all matrices, and we recall from §1.10 thit i an analytic
subgroup of a Lie group’, then a smooth map intiel” with image inM
is smooth intoM.

Thus we are to prove smoothness of the inverse for the case of matrices.
The forward map i€O(n) x p(n, R) — GL(n, R) with (k, X) — ke*,
wherep(n, R) denotes the vector spacersby-n real symmetric matrices.

It is enough to prove local invertibility of this mapping n€ar X,). Thus
we examine the differential & = 1 andX = X, of (k, X) > keXe %o,
identifying tangent spaces as follows: Rt= 1, we use the linear Lie
algebra ofO(n), which is the spacen (n) of skew-symmetric real matrices.
NearX = Xq, write X = X, + S, and usg S} = p(n, R) as tangent space.
In GL(n,R), we use the linear Lie algebra, which consists of all real
matrices.

To compute the differential, we consider restrictions of the forward map
with each coordinate fixed in turn. The differential & X;) — k is
(T,0) — T for T € so(n). The map(1, X) — e*e % has derivative at
t = 0 along the curveX = X, + tSequal to

- eXo+t Sef Xo It:O .

dt
Thus we ask whether it is possible to have

(6.36a)

d
0T+ Gt & o
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d
=T+ (1 Xo+19) + 5 (X0 +197 + - e iy

n
=T+ (S+ 2(SXo+ XoS) + -+ + gy D XeSXg ™ + -+ )e .
k=0

(n+

We left-bracket byX,, noting that

n
[Xo. D XESXp™] = X§'s — SXg+.

k=0
Then we have
(6.36b)
0Z [Xo, T]+ ((XoS— SXo) + 4(X2S— SX2)

4+t (n-:-l)! (X8+1S— SX8+1) + .. .)e—Xo

= [Xo, T] + (€S~ Se™)e™™

=[Xo, T] + (€*°Se ™ - 9).
Since p(n, R), so(n)] < p(n, R), we conclude thag* Se=* — Sis sym-
metric. Letv be an eigenvector, and lgétbe the eigenvalue for. Let
(-, -) denote ordinary dot product @&f'. Sincee* andSare symmetric,
e S — Se*o is skew symmetric, and we have

0= ((e°S— Se)e v, e )
= ((€°Se ™ — v, e *v)
= Av, e %op).

But e *° is positive definite, and hence= 0. Thus
(6.37) eSe ™ =S,

This equation forces

(6.38) XoS = SXo.

In fact, there is no loss of generality is assuming tKais diagonal with
diagonal entries. Then (6.37) implieg® §; = S;€%. Considering the
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two casesS; = 0 andS; # 0 separately, we deduce thh§; = S;d;,
and (6.38) is the result. Because of (6.37), (6.36a) collapses to

0ZT4+S,

and we conclude thal = S = 0. Thus the differential is everywhere
an isomorphism, and the proof of local invertibility of the forward map is
complete. This completes the proof of (¢) 8¢ but with K replaced by
—#
K.

The homeomorphisi ~ x ad,, (po) — G of (c) forcesK  to be con-

nected. Thu&K " is the analytic subgroup @ with Lie algebra ag (k),
which we denoté<. This proves (c) foK and also (b).

To complete the proof for the adjoint grou®, we need to verify (d)
through (g) withK in place ofK. SinceK is compact, (d) is immediate.
Proposition 6.30 shows th@thas trivial center, and then (e) and (f) follow.

For (g) suppose on the contrary thatC K, with K; compact. Le&
be inK; but notK, and writex = kexpX as in (c). Then exiX is in K,
and is not 1. The powers of exphave unbounded eigenvalues, and this
fact contradicts the compactnessof. Thus (g) follows, and the proof of
the theorem is complete f@.

Now we shall prove the theorem f@. Writee : G — G for the
covering homomorphism Agl(-). Let K be the analytic subgroup &
with Lie algebra ady, and letk = e *(K). The subgroug is closed in
G sinceK is closed inG.

From the covering homomorphisenwe obtain a smooth mapping of
G/K into G/K by definingy (gK) = e(g)K. The definition ofk makes
Y one-one, andonto makess onto. Letus see that—is continuous. Let
lim g, = §gin G, and chooseg, andg in G with e(g,) = §, ande(g) = §.
Thene(g—*g,) = §'§, tends to 1. Fix an open neighborholidbf 1in G
that is evenly covered bg. Then we can writ@ g, = v,z, with v, € N
andz, € Z, and we have liny, = 1. SinceZ C K by definition of K,
o.K = gv,K tends togK. Thereforey ! is continuous.

HenceG/K is homeomorphic witlG /K. Conclusion (c) foiG shows
thatG/K is simply connected. Hend8/K is simply connected, and it
follows thatK is connected. ThuK is the analytic subgroup @ with
Lie algebrat,. This proves (d) and (e) fos. SinceZ < K, the map
el : K — K has kernelz, and henceK is compact if and only ifZ is
finite. This proves (f) folG.
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Now let us prove (c) folG. Definegg : K x pg — G by ps(k, X) =
kexp; X. From (1.82) we have

eps (k, X) = e(k)e(exp; X) = e(k) exps (ad,, (X)) = ¢g(e(k), ad, (X)),
and therefore the diagram

Kxp, —> G

el xadgol le

K x ad, (po) —— G

commutes. The maps on the sides are covering mapsisireceonnected,
andgg is a diffeomorphism by (c) foG. If we show thatyg is one-one
onto, then it follows thapg is a diffeomorphism, and (c) is proved fGr.

First let us check thaps is one-one. Suppodeexp; X = k' exp; X'.
Applying e, we havee(k) exps(ad,, (X)) = e(k) exps(ad,,(X")). Then
X = X’ from (c) for G, and consequently = k'.

Second let us check thai; is onto. Letx € G be given. Write
e(x) = kexps(ad,, (X)) by (c) for G, and letk be any member o (k).
Thene(x) = e(kexp; X), and we see that = zk exp; X for somez € Z.
SinceZ < K, x = (zk)exp; X is the required decomposition. This
completes the proof of (c) faB.

The next step is to construét. Let Gbea L simply connected covering
group ofG, let K be the analytic subgroup & with Lie algebrat,, let Z
be the center 06, and let§ : G — G be the covering homomorphism.
Since G is simply connected, there exists a unique involutéorof G
with differential 6. Since6 is 1 on &, ®is 1 onK. By (e) for G,

Z c K. Therefore ke < K, and® descends to an involutiod® of G
with differential. This proves (a) fo6.

Suppose thax is a member ofs with ®(x) = x. Using (c), we can
write X = kexp; X and see that

k(exp, X) ™t = kexp; X = k@ (exp; X) = O(x) = x = kexp; X.

Then exgp 2X = 1, and it follows from (c) thaiX = 0. Thusx is in K,
and (b) is proved fof.

Finally we are to prove (g) fos. Suppose thaK is compact and that
K < K; with K; compact. Applyinge, we obtain a compact subgroup
e(K,) of G that containsK. By (g) for G, e(K;) = e(K). Therefore
K; € ZK = K, and we must havi; = K. This completes the proof of
the theorem.
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The Cartan decomposition on the Lie algebra level led in Proposition
6.28 to the conclusion that any real semisimple Lie algebra can be realized
as a Lie algebra of real matrices closed under transpose. There is no
corresponding proposition about realizing a semisimple Lie group as a
group of real matrices. It is true that a semisimple Lie group of matrices
is necessarily closed, and we shall prove this fact in Chapter VII. But the
following example shows that a semisimple Lie group need not be realizable
as a group of matrices.

ExAamMPLE. By Proposition 1.143 the groufL (2, R) has the same
fundamental group aSO(2), namelyZ, while SL(2, C) has the same
fundamental group aSU (2), namely{1}. ThenSL (2, R) has a two-fold
covering groupG that is unique up to isomorphism. Let us see tGat
is not isomorphic to a group of-by-n real matrices. If it were, then its
linear Lie algebrgy, would have the matrix Lie algebga= go + igo as
complexification. LetG® be the analytic subgroup &L (n, C) with Lie
algebrag. The diagram

G —_ G¢

(6.39) l T

SL2,R) —— SL(2,C)

has inclusions at the top and bottom, a two-fold covering map on the
left, and a homomorphism on the right that exists siBcé2, C) is simply
connected and has Lie algebra isomorphig. tdhe corresponding diagram

of Lie algebras commutes, and hence so does the diagram (6.39) of Lie
groups. However, the top map of (6.39) is one-one, while the composition
of left, bottom, and right maps is not one-one. We have a contradiction,
and we conclude th& is not isomorphic to a group of real matrices.

4. lwasawa Decomposition

The Iwasawa decomposition is a second global decomposition of a
semisimple Lie group. Unlike with the Cartan decomposition, the factors
in the Iwasawa decomposition are closed subgroups. The prototype is the
Gram-Schmidt orthogonalization process in linear algebra.
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ExampLE. Let G = SL(m, C). The groupK from Proposition 1.143
or the global Cartan decomposition (Theorem 6.313um). Let A be
the subgroup ofG of diagonal matrices with positive diagonal entries,
and letN be the upper-triangular group with 1 in each diagonal entry.
The lwasawa decomposition@ = K AN in the sense that multiplication
K x Ax N — G is adiffeomorphism onto. To see that this decomposition
of SL (m, C) amounts to the Gram—Schmidt orthogonalization process, let
{e., ..., en} be the standard basis 6", letg € G be given, and form the
basis{ge,, ..., gen}. The Gram—-Schmidt process yields an orthonormal
basisvy, ..., v, such that

sparige, ..., 9§} = spanuy, ..., vj}
v; € R7(gg) + sparfuy, ..., vj_1}

for 1 < j < m. Define a matrixk € U(m) by k*v; = g. Thenk g is
upper triangular with positive diagonal entries. Siigdeas determinant 1
andk has determinant of modulus k,must have determinant 1. Then
kisin K = SU(m), k™ lgis in AN, andg = k(k lg) exhibitsg as in

K (AN). This proves thak x A x N — G is onto. Itis one-one since

K N AN = {1}, and the inverse is smooth because of the explicit formulas
for the Gram—-Schmidt process.

The decomposition in the example extends to all semisimple Lie groups.
To prove such a theorem, we first obtain a Lie algebra decomposition, and
then we lift the result to the Lie group.

Throughout this sectior; will denote a semisimple Lie group. Chang-
ing notation from earlier sections of this chapter, we wgtfor the Lie
algebra ofG. (We shall have relatively little use for the complexification
of the Lie algebra in this section and wrigein place ofgy to make the
notation less cumbersome.) L&be a Cartan involution of (Corollary
6.18), letg = t®p be the corresponding Cartan decomposition (6.23), and
let K be the analytic subgroup & with Lie algebrat.

Insistence on using the Killing form as our nondegenerate symmetric
invariant bilinear form org will turn out to be inconvenient later when we
want to compare the form gnwith a corresponding form on a semisimple
subalgebra ofi. Thus we shall allow some flexibility in choosing a form
B. For now it will be enough to leB be any nondegenerate symmetric
invariant bilinear form ory such thatB(6 X, 8Y) = B(X, Y) for all X and
Y in g and such that the forB, defined in terms oB by (6.13) is positive
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definite. Then itfollows thaB is negative definite on the compact real form

t @ ip. ThereforeB is negative definite on a maximal abelian subspace of
t @ ip, and we conclude as in the remarks with Corollary 2.38 that, for any
Cartan subalgebra gf, B is positive definite on the real subspace where
all the roots are real valued.

The Killing form is one possible choice fd@, but there are others. In
any eventBy is an inner product og, and we use it to define orthogonality
and adjoints.

Let a be a maximal abelian subspaceyof This exists becausg is
finite dimensional. Sinc€adX)* = —ad6X by Lemma 6.27, the set
{adH | H € a} is a commuting family of self-adjoint transformations of
g. Theng is the orthogonal direct sum of simultaneous eigenspaces, all
the eigenvalues being real. If we fix such an eigenspace angiig the
eigenvalue of adH, then the equatiotadH) X = 1y X shows that.y is
linear in H. Hence the simultaneous eigenvalues are members of the dual
spacex*. Fori € a*, we write

g, ={Xeg|@H)X =xr(H)Xforall H € a}.

If g, # 0andix # 0, we callx arestricted root of g or aroot of (g, a). The
set of restricted roots is denot&d Any nonzerag, is called arestricted-
root space and each member gf is called arestricted-root vector for
the restricted rook.

Proposition 6.40. The restricted roots and the restricted-root spaces
have the following properties:

(a) g is the orthogonal direct sug= go ® P, 5 9:.,
(b) g2 9.1 S Gite s

(c) 6g, = g_,, and hence. € T implies—A € %,
(d) go = a ® m orthogonally, wheren = Z,(a).

REMARK. The decomposition in (a) is called thestricted-root space
decompositionof g.

ProoF. We saw (@) in the course of the construction of restricted-root
spaces, and (b) follows from the Jacobi identity. For (cKXdte ing, ; then
[H,0X] =0[0H, X] = —6[H, X] = —A(H)6X.

In (d) we havedgo = go by (€). Hencayo = (N go) & (p N go). Since
a € pNgoandais maximal abelianip, a = pNgo. AlSOtNgo = Ze(a).

This proves (d).
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EXAMPLES.

1) LetG = SL(n,K), whereK is R, C, or H. The Lie algebra is
g = sl(n, K) in the sense of §1.8. For a Cartan decomposition we can take
t to consist of the skew-Hermitian membersgondp to consist of the
Hermitian members. The space of real diagonal matrices of trace 0 is a
maximal abelian subspacemfand we use it as. Note thatdinu = n—1.
The restricted-root space decompositiory &f rather similar to Example 1
in 8lI.1. Let f; be evaluation of thé"™ diagonal entry of members af
Then the restricted roots are all linear functiongls- f; withi # j, and
gr,—1, consists of all matrices with all entries other than thej )" equal
to 0. The dimension of each restricted-root space is 1, 2, or 4 \ithisn
R, C, or H. The subalgebra: of Proposition 6.40d consists of all skew-
Hermitian diagonal matrices ip ForK = R this is 0, and folK = C it
is all purely imaginary matrices of trace 0 and has dimensienl. For
K = H, m consists of all diagonal matrices whose diagonal engjiésve
X; = —X; and is isomorphic to the direct sum ofcopies ofsu(2); its
dimension is 8.

2) LetG = SU(p, q) with p > g. We can write the Lie algebra in
block form as

P q
_(a byp
(6.41) g_<b* d)q

with all entries complex, witha and d skew Hermitian, and with
Tra+ Trd = 0. We taket to be all matrices irg with b = 0, and

we takep to be all matrices ing with a = 0 andd = 0. One way of
forming a maximal abelian subspagef p is to allowb to have nonzero
real entries only in the lower-left entry and the entries extending diagonally
up from that one:

o .-- 0
(6.42) b=|o0 - a]|,
a 0

with p — g rows of 0’s at the top. Lef; be the member af* whose value
on thea matrix indicated in (6.42) is;. Then the restricted roots include
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all linear functionalst f; & fj with i # j and+2f; for alli. Also the= f;
are restricted roots ip # q. The restricted-root spaces are described as
follows: Leti < j, and letd(2), | .(2), andl_(z) be the 2-by-2 matrices

Io=(2). Lo=(;3). 1@=(:2).

Herez is any complex number. The restricted-root spaceg<for+ f; are
2-dimensional and are nonzero only in the 16 entries corresponding to row
and columnindicep — j+1,p—i+1,p+1i, p+ j, where they are

o f:{( I@ —u(z))} o f:{<J<z> |+<z>>}
ST\ -k ) T ke -]

. J2 —1_(2 _ J2 1_-(2
=\l o )0 T e @)

The restricted-root spaces 2 f; have dimension 1 and are nonzero only
in the 4 entries corresponding to row and column indipesi + 1 and
p + i, where they are

. 1 -1 . 1 1
ngi=|R(1 _1> and ngi:|R<_l _1)

The restricted-root spaces trf, have dimension@—q) and are nonzero
only in the entries corresponding to row and column indices ft toq,
p—i+1,andp+i, where they are

0O v —v 0O v v
gfiz{(_v* 0 0)} and gfi={<_v* 0 o)}
—v* 0 0 v 0 0

Herewv is any member of2P~9. The subalgebra of Proposition 6.40d
consists of all skew-Hermitian matrices of trace O that are arbitrary in
the upper left block of sizg — g, are otherwise diagonal, and have the
(p—i+21)%tdiagonal entry equal to thg+i )" diagonal entryfor < i < q;

thusm = su(p — ) @ R?. In the next section we shall see titis an
abstract root system; this example shows that this root system need not be
reduced.

3) Let G = SO(p, q)o with p > g. We can write the Lie algebra in
block form as in (6.41) but with all entries real and wahandd skew
symmetric. As in Example 2, we takeo be all matrices iy with b = 0,
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and we takep to be all matrices irg with a = 0 andd = 0. We again
choosea as in (6.42). Letf; be the member whose value on the matrix
in (6.42) isa. Then the restricted roots include all linear functionals
+fi + fj withi # j. Also the=xf; are restricted roots ip # g. The
restricted-root spaces are the intersections witlp, q) of the restricted-
root spaces in Example 2. Then the restricted-root spacesfiot f; are
1-dimensional, and the restricted-root spacesfrhave dimensiop—d.

The linear functionals=2 f; are no longer restricted roots. The subalgebra
m of Proposition 6.40d consists of all skew-symmetric matrices that are
nonzero only in the upper left block of size— g; thusm = so(p — Q).

Choose a notion of positivity far in the manner of §l1.5, as for example
by using a lexicographic ordering. LEt" be the set of positive roots, and
definen = P, ;- g, By Proposition 6.40ly is a Lie subalgebra gf and
is nilpotent.

Proposition 6.43(Iwasawa decomposition of Lie algebra). With nota-
tion as abovey is a vector-space direct sym= tdadn. Herea is abelian,
nisnilpotenta®nis asolvable Lie subalgebragfand p@n, a®n] = n.

PrOOF. We know thati is abelian and thatis nilpotent. Sinced, g,] =
g, for eacha # 0, we see thatd, n] = n and thata @ n is a solvable
subalgebra withd & n, a @ n] = n.

To prove that + a + n is a direct sum, leX be int N (a ® n). Then
OX = XwithoX € a® 6n. Sincea d n @ 6n is a direct sum (by (a) and
(c) in Proposition 6.40)X is ina. ButthenX isintnp = 0.

The sumt & a @ n is all of g because we can write an¥§ € g, using
someH e a, someX, € m, and elementX; € g,, as

sz+xo+ZxA

reX

= (Xo+ D (X +6X))+H+ () (X —0X),

rext reXt

and the right side is ibh® a @ n.
To prepare to prove a group decomposition, we prove two lemmas.

Lemma 6.44. Let H be an analytic group with Lie algeb#g and
suppose thaj is a vector-space direct sum of Lie subalgeliyas s & t.
If SandT denote the analytic subgroups ldf corresponding te andt,
then the multiplication ma@(s,t) = st of Sx T into H is everywhere
regular.
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PROOF. The tangent space &b, to) in S x T can be identified by left
translation withinSand withinT with s @ t = b, and the tangent space at
Sto In H can be identified by left translation withid with . With these
identifications we compute the different@d at (s, tp). Let X be ins and
Y be int. Then

D (soexpr X, tp) = Soexpr X)ty = Soto exp(Ad(ty Hr X)
and D (s, toexprY) = sptoexpr,
from which it follows that
do(X) = Ad(t;H X
and doY) =Y.
In matrix form,d® is therefore block triangular, and hence

_ detAd,(t;")  detAd(to)

detd® = = .
© detAd(t,")  detAd,(ty)

This is nonzero, and hendeis regular.

Lemma 6.45. There exists a basigX;} of g such that the matrices
representing ag have the following properties:

(a) the matrices of atlare skew symmetric,
(b) the matrices of ad are diagonal with real entries,
(c) the matrices of ad are upper triangular with 0’s on the diagonal.

PROOFE Let {X;} be an orthonormal basis @f compatible with the
orthogonal decomposition g@iin Proposition 6.40a and having the property
that X; € g,, and X; € g,, withi < j implies; > A;. ForX € ¢, we
have(adX)* = —ad6 X = —adX from Lemma 6.27, and this proves (a).
Since eachX; is a restricted-root vector or is igy, the matrices of ad
are diagonal, necessarily with real entries. This proves (b). Conclusion (c)
follows from Proposition 6.40b.

Theorem 6.46(Iwasawa decomposition). L& be a semisimple Lie
group, letg = ¢®adn be an lwasawa decomposition of the Lie algghod
G, and letA andN be the analytic subgroups &fwith Lie algebras: and
n. Then the multiplication maff x Ax N — G givenby(k, a, n) — kan
is a diffeomorphism onto. The grougsandN are simply connected.
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PROOF. Let G = Ad(G), regarded as the closed subgraéjut g), of
GL(g) (Propositions 1.120 and 1.121). We shall prove the theorer® for
and then lift the result t&.

We impose the inner produ@, on g and write matrices for elements
of G and adj relative to the basis in Lemma 6.45. Lt = Ad,(K),

A = Ad,(A), andN = Ad,(N). Lemma 6.45 shows that the matrices
of K are rotation matrices, those férare diagonal with positive entries
on the diagonal, and those fo¥ are upper triangular with 1's on the
diagonal. We know thaK is compact (Proposition 6.30 and Theorem
6.31f). The diagonal subgroup &L (g) with positive diagonal entries is
simply connected abelian, ards an analytic subgroup of it. By Corollary
1.134,Ais closed inGL (g) and hence closed iG. Similarly the upper-
triangular subgroup dBL (g) with 1's on the diagonal is simply connected
nilpotent, andN is an analytic subgroup of it. By Corollary 1.13M, is
closed inGL (g) and hence closed G.

The mapA x N into GL(g) given by(a, i) — an is one-one since
we can recoved from the diagonal entries, and it is onto a subgréull
sinced,n,a,n, = 8,8,(a, 'N,a,)N, and(an)~* = n~'a~! = a-'(ana?).
This subgroup is closed. In fact, if lim,N, = X, let & be the diagonal
matrix with the same diagonal entries»xasThen lima,, = &, anda must
be inAsinceA s closed inGL(g). Also iy, = &, *(&nhy) has limita='x,
which has to be ifN sinceN is closed inG. Thus lima,n., isin AN, and
AN is closed.

Clearly the closed subgroup N has Lie algebrar @ n. By Lemma
6.44,A x N - AN is a diffeomorphism.

The subgrouX is compact, and thus the image I6f x A x N —

K x AN — Gisthe product of acompact setand a closed set and is closed.
Also the image is open since the map is everywhere regular (Lemma 6.44)
and since the equality= ¢® a®n shows that the dimensions add properly.
Since the image d x A x N is open and closed and sinGds connected,

the image is all ofG.

Thus the multiplication map is smooth, regular, and onto. Finally
K N AN = {1} since a rotation matrix with positive eigenvalues is 1.
SinceA x N — AN is one-one, it follows thak x Ax N — G is
one-one. This completes the proof for the adjoint gr@up

We now lift the above result tG. Lete : G — G = Ad(G) be the
covering homomorphism. Using a locally defined inverses,ofve can
write the mapk, a, n) — kan locally as

(k, a,n) ~ (ek), e(@), e(n)) — ek)e(a)e(n) = e(kan) — kan,
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and therefore the multiplication map is smooth and everywhere regular.
Since A and N are connectedg|, ande|y are covering maps té and

N, respectively. Sincé andN are simply connected, it follows thatis
one-one oM and onN and thatA andN are simply connected.

Let us prove that the multiplication map is oro If g € G is given,
write e(g) = kan. Puta = (e|x)"*(@) € Aandn = (e|y) *(N) e N.
Letk be ine (k). Thene(kan) = kan, so thate(g(kan)~*) = 1. Thus
g(kan)~! = zisinthe center o&. By Theorem 6.31&isin K. Therefore
g = (zk)an exhibitsg as in the image of the multiplication map.

Finally we show that the multiplication map is one-one. SiAceN —
ANisone-one,soifx N — AN. The setof productdN is agroup, just
asinthe adjointcase, and therefore itis enough to provétha&N = {1}.
If xisin K N AN, thene(x) isin K N AN = {1}. Hencee(x) = 1. Write
x = an € AN. Then 1= e(x) = e(an) = e(a)e(n), and the result for the
adjoint case implies th&(a) = e(n) = 1. Sinceeis one-one orA and on
N,a=n= 1. Thusx = 1. This completes the proof.

Recall from 81V.5 that a subalgebfjaf g is called &Cartan subalgebra
if h€ is a Cartan subalgebra gf. Therank of g is the dimension of any
Cartan subalgebra; this is well defined since Proposition 2.15 shows that
any two Cartan subalgebrasgf are conjugate via Ing°.

Proposition 6.47. If tis a maximal abelian subspacemf= Z.(a),
thenh = a @ tis a Cartan subalgebra gf

PrROOF. By Proposition 2.13 it is enough to show tHgt is maximal
abelian ing® and that agh h© is simultaneously diagonable.

Certainlyh© is abelian. Let us see that it is maximal abelianZ =
X + 1Y commutes withh®, then so doX andY. Thus there is no loss
in generality in considering onlX. The elemenX commutes withh®,
hence commutes with, and hence is im & m. The same thing is true of
0 X. ThenX + 60X, being int, is inm and commutes witly, hence is in
t, while X — 68X isina. ThusX is in a @ t, and we conclude th&’ is
maximal abelian.

In the basis of Lemma 6.45, the matrices representingaad skew
symmetric and hence are diagonable duewhile the matrices represent-
ing ada are already diagonal. Since all the matrices in question form a
commuting family, the members of §d are diagonable.

With notation as in Proposition 6.4F = a @ tis a Cartan subalgebra of
g, and it is meaningful to speak of the get= A(g®, h*) of roots ofg® with
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respect tdh®. We can write the corresponding root-space decomposition
as

(6.48a) “ =" P @..
aEA
Then itis clear that
(6.48b) g=0n P
a€eA,
alq=A
and
(6.48c) m® =@ @ @)
a€EA,
a|a=0

That is, the restricted roots are the nonzero restrictionsdbthe roots,
andm arises fromt and the roots that restrict to O @an

Corollary 6.49. If tis a maximal abelian subspacemf= Z.(a), then
the Cartan subalgebta= a @ t of g has the property that all of the roots
arerealom @ it. If m = 0, theng is a split real form of°.

PROOF. In view of (6.48) the values of the roots on a membebnf h
are the eigenvalues of &tl. For H € qa, these are real since &tlis self
adjoint. ForH € t, they are purely imaginary since &flis skew adjoint.
The first assertion follows.

If m = 0, thent = 0. So the roots are real dn= a. Thusg contains
the real subspace of a Cartan subalgéfsraf g© where all the roots are
real, andg is a split real form of°.

ExampLE. Corollary 6.49 shows that the Lie algebsagn + 1, n) and
so(n, n) are split real forms of their complexifications, since Example 3
earlier in this section showed that = O in each case. For any and
g, the complexification oko(p, q) is conjugate taso(p + g, C) by a
diagonal matrix whose diagonal consistg#ntries and therg entries 1.
Consequentlyo(n+1, n) isisomorphic to a splitreal form eb(2n+1, C),
andso(n, n) is isomorphic to a split real form afo(2n, C).

With A as above, we can impose a positive systennogo thatA™
extendsx*. Namely we just take beforeit in forming a lexicographic
ordering of(a + it)*. If « € A is nonzero o, then the positivity otx
depends only on the part, and thus positivity fok has been extended
to A.
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5. Unigueness Properties of the lwasawa Decomposition

We continue withG as a semisimple Lie group, withas the Lie algebra
of G, and with other notation as in 84. In this section we shall show that an
Iwasawa decomposition @fis unique up to conjugacy by Ipt therefore
an lwasawa decomposition & is unique up to inner automorphism.

We already know from Corollary 6.19 that any two Cartan decomposi-
tions are conjugate via lgt Hencet is unique up to conjugacy. Next we
show that withe fixed, a is unique up to conjugacy. Finally withanda
fixed, we show that the various possibilities foare conjugate.

Lemma 6.50. If H € a hasA(H) # Oforallx € X, thenZ,(H) =
m @ a. HenceZ,(H) = a.

PrOOF. Let X be inZ,(H), and use Proposition 6.40 to writé =
Ho + Xo + ZAGZ X, with Hy € a, Xg € m, and X, € ga- Then 0=
[H, X] = > A(H)X,, and hence.(H) X, = 0 for all ». Sincer(H) # 0
by assumptionX; = 0.

Theorem 6.51.1f a anda’ are two maximal abelian subspaceg ghen
there is a membek of K with Ad(k)a’ = a. Consequently the spage
satisfiep = U, .« Ad(K)a.

REMARKS.

1) In the case oEL (m, C), this result amounts to the Spectral Theorem
for Hermitian matrices.

2) The proof should be compared with the proof of Theorem 4.34.

PROOFE There are only finitely many restricted roots relativeato
and the union of their kernels therefore cannot exhausBy Lemma
6.50 we can findH € a such thatZ,(H) = a. Similarly we can find
H’ € o such thatZ,(H’) = . Choose by compactness of &) a
memberk = Kk, of K that minimizesB(Ad(k)H’, H). For anyZ € ¢,
r — B(Ad(expr 2)Ad(kg)H’, H) is then a smooth function of that is
minimized forr = 0. Differentiating and setting = 0, we obtain

0= B((@adz)Adkg)H', H) = B(Z, [Ad(ko)H', H]).

Here [Adky)H’, H] is in €, and Z is arbitrary in¢. SinceB(t, p) =
by (6.25) and sincd is nondegenerate, we obtain [Ag)H’, H] = O.
Thus Adko)H" is in Z,(H) = a. Sincea is abelian, this means

a € Zy(Ad(ko))H") = Ad(ko) Z,(H") = Ad(ko)a'.
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Equality must hold since is maximal abelian ip. Thusa = Ad(ky)a’.

If X is any member of, then we can extend X to a maximal abelian
subspace’ of p. As above, we can write' = Ad(k)a, and henceX is in
Ukex Ad(K)a. Thereforep =, .« Ad(K)a.

Now we think oft anda as fixed and consider the various possibilities
forn. The inner producB, ong can be restricted toand transferred to*
to give an inner product and norm denoted{by - ) and| - |, respectively.
We write H;, for the element o# that corresponds tb € a*.

Proposition 6.52. Let A be a restricted root, and I&;, be a nhonzero
restricted-root vector fax.

(a) [Ex, 0E,] = B(E;, 0E,)H,, andB(E;, E,) <O.

(b) RH, & RE, ® ROE,; is a Lie subalgebra gfisomorphic tos((2, R),
and the isomorphism can be defined so that the veldfoe= 2|i|~2H,

corresponds th = (1 0).

0-1
(c) If E, is normalized so thaB(E,,0E;,) = —2/|A|% thenk =
exp3(E, + 6 E,) is a member of the normalizé¥y (a), and Adk) acts as
the reflectiors, on a*.

PROOF

(a) By Proposition 6.40the vectde[, 6 E, ]isin[g;, g_.] < go = adm,
andd[E,, 0E;] =[0E,, E,] = —[E,, 8E,]. Thus [E,, 6E;]isin a. Then
H € a gives

B([Es, 0E;], H) = B(E,, [0E;, H]) = A(H)B(E;, 0E;)
= B(Hx, H)B(EA’OEA) = B(B(EA’GEA)HM H)-
By nondegeneracy oB on a, [E;,0E;] = B(E,,0E;,)H,. Finally

B(E,, 0E;) = —By(E,, E,) < 0 sinceBy is positive definite.
(b) Put

2 2

H/ H,, Ejl=—————E
’ ¥ T APB(E;, 0E,)

— W ') E/_)\ :QE;L

Then (a) shows that
[H,,E]=2E,, [H/,E,]l=-2E, [E,E ]=H,

and (b) follows.
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(c) Note from (a) that the normalizatioB(E,, AE,) = —2/|A|? is
allowable. IfA(H) = 0, then

Ad(k)H = Ad(exp3(E, +0E,))H
= (expad;(E, + 0E,))H

= i 2 (ad%Z(E, +6E))"H
y
On the other hand, for the elemdf, we first calculate that
(@dZ(E, +0E))H, =n(PE, — E;)
and (adZ(E, +0E,))’H, = —n’H,.

Therefore

Ad(H, = ) L(@dZ(E, +6E))"H,

n!

RN

L ((ad%(Ex +0 Ex))z)mH,{

2m)!

3

=0
T Z <2ml+1)! (adZ(E, + 0E,))((@d%(E; + 0E»)))™H,

=0

m:
_ Z e (—7)"H] + Z tEr (=)™ 7 (OE, — E,)
m=0 m=0

= (cosnm)H, + (sinm)(PE; — E,)
= —H,,

and (c) follows.

Corollary 6.53. X is an abstract root system dn.

REMARKS. Examples ofE appear in 84 after Proposition 6.40. The
example ofSU (p, q) for p > g shows that the abstract root syst&n
need not be reduced.

PrROOF. We verify thatX satisfies the axioms for an abstract root system.
To see tha spansa®, letA(H) =O0forallA € £. Then H, g;] = 0O for
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all » and hencelfi, g] = 0. Butg has 0 center, and therefare= 0. Thus
¥ spansi*.

Let us show that @, A)/|A|? is an integer whenever and are inX.
Consider the subalgebra of Proposition 6.52b, calling, it This acts by
ad ong and hence op®. Complexifying, we obtain a representation of
(s1,)¢ = sl(2, C) ong®. We know from Corollary 1.72 that the element
H, = 2|»|7%H,, which corresponds tio, has to act diagonably with integer
eigenvalues. The action dfi, on g, is by the scalan(2|x|7%H,) =
2(i, A)/|A|%. Hence 2u, A)/|A|? is an integer.

Finally we are to show tha, () is in ¥ wheneverw and are inX.
Definek as in Proposition 6.52c, léd be ina, and letX be ing,. Then
we have

[H, Ad(k)X] = Ad(K)[Ad (k) *H, X] = Ad(K)[s;*(H), X]

= (s (H)HAA(K) X = (s,0)(H)Ad(K) X,
and hencgy,, is not 0. This completes the proof.

(6.54)

The possibilities for the subalgebnaare given by all possibl&t’s
resulting from different orderings of, and it follows from Corollary 6.53
that theX*’s correspond to all possible simple systems Yor Any two
such simple systems are conjugate by the Weyl gMi{x) of X, and it
follows from Proposition 6.52c that the conjugation can be achieved by
a member ofNk (a). The same computation as in (6.54) shows that if
k € Nk (a) represents the membsiof W(X), then Adk)g, = gs,. We
summarize this discussion in the following corollary.

Corollary 6.55. Any two choices ofi are conjugate by Ad of a member
of Nk (a).

This completes our discussion of the conjugacy of different Iwasawa
decompositions.

We now examinéNg (a) further. Define

W(G, A) = Nk (a)/Zk (a).
This is a group of linear transformationsmftelling all possible ways that
members oK can act o by Ad. We have already seen thHat(X) C
W(G, A), and we are going to prove that(X) = W(G, A).

We writeM for the groupZk (a). Modulo the center a&, M is acompact
group (being a closed subgroup k) with Lie algebraZ:(a) = m. After
Proposition 6.40 we saw examples of restricted-root space decompositions
and the associated Lie algebras The following examples continue that
discussion.
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EXAMPLES.

1) LetG = SL(n, K), whereK isRR, C, orH. The subgroupM consists
of all diagonal members oK. WhenK = R, the diagonal entries are
+1, but there are onlg — 1 independent signs since the determinant is 1.
Thus M is finite abelian and is the product of— 1 groups of order 2.
WhenK = C, the diagonal entries are complex numbers of modulus 1,
and again the determinant is 1. Thikis a torus of dimensiom — 1.
WhenK = H, the diagonal entries are quaternions of absolute value 1,
and there is no restriction on the determinant. ThNuUg the product oh
copies ofSU (2).

2) LetG = SU(p, q) with p > g. The groupM consists of all unitary
matrices of determinant 1 that are arbitrary in the upper left block of size
p — g, are otherwise diagonal, and have tlpe— i + 1) diagonal entry
equal to the p + i)™ diagonal entry for i< i < . Let us abbreviate such
a matrix as

m = diag(w, €%, ..., &% &%, .. . &%),

wherew is the upper left block of size — q. Whenp = q, the condition
that the determinant be 1 says thef' 6, € =Z. Thus we can take
01, ..., 041 to be arbitrary and usé® = te-'**+%-1  Consequently

M is the product of a torus of dimensian— 1 and a 2-element group.
Whenp > q, M is connected. In fact, the homomorphism that maps the
above matrixn to the 2y-by-2q diagonal matrix

diage®, ..., &% %, ... d%)

has a (connectedj-dimensional torus as image, and the kernel is isomor-
phic to the connected grodfJ (p — q); thusM itself is connected.

3) LetG = SO(p, q)o with p > g. The subgrougM for this example
is the intersection 08O (p) x SO(q) with the M of the previous example.
Thus M here consists of matrices that are orthogonal matrices of total
determinant 1, are arbitrary in the upper left block of sge- g, are
otherwise diagonal, havggdiagonal entriest1 after the upper left block,
and then have thosgdiagonal entriest1 repeated in reverse order. For
the lower rightg entries to yield a matrix ir50(q), the product of the
g entries£1 must be 1. For the upper left entries to yield a matrix in
SO(p), the orthogonal matrix in the upper left block of size g must have
determinant 1. Therefor® is isomorphic to the product SO (p — q)
and the product aff — 1 groups of order 2.
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Lemma 6.56. The Lie algebra ofNk (a) ism. ThereforeW (G, A) is a
finite group.

ProoF. The second conclusion follows from the first, since the first
conclusion implies thaWW (G, A) is 0-dimensional and compact, hence
finite. For the first conclusion, the Lie algebra in questiolNjga). Let
X = Ho+ Xo+ )_,.s X: be a member oN(a), with Hy € a, X € m,
andX; € g,. SinceX is to be int, 6 must fix X, and we see thaX may
be rewritten aX = Xo + >, 5+ (X, + 6X,). When we apply atH for
H € a, we obtain H, X] = ), s+ A(H)(X, — 6X;). This element is
supposed to be in, since we started witkX in the normalizer ofi, and
that meansH, X] is 0. But thenX, = 0O for all A, and X reduces to the
memberX, of m.

Theorem 6.57.The groupW (G, A) coincides withw/(X).
REMARK. This theorem should be compared with Theorem 4.54.

PROOF. Let us observe tha (G, A) permutes the restricted roots. In
fact, letk be in Nk (), letA be inX, and letE, be ing,. Then

[H, Ad(K)E;] = Ad(k)[Ad (k) "*H, E,] = Ad(K)(A(Ad(K) *H)E,)
= A(Ad(k)"*H)Ad(K)E, = (k»)(H)Ad(K)E,

shows thaka is in ¥ and that Adk)E, is a restricted-root vector fde.
ThusW(G, A) permutes the restricted roots.

We have seen thal/(X) € W(G, A). Fix a simple systent* for
. In view of Theorem 2.63, it suffices to show thakife Ny (a) has
Ad(K)X*t = T, thenkis in Zg (a).

The element Ak) = w acts as a permutation &f*. Let 25 denote
the sum of the reduced members Bf, so thatw fixess. If A; is a
simple restricted root, then Lemma 2.91 and Proposition 2.69 show that
2(8, Ai)/|ri|?> = 1. Thereforgs, ) > Oforallr € 7.

Letu = £ @ ip be the compact real form @f associated té, and let
U be the adjoint group af. Then Adc(K) € U, and in particular Ak)
is a member o). FormS = {expiradHs;} C U. HereSis a torus inJ,
and we lets be the Lie algebra 06. The element AKk) is in Zy(S), and
the claim is that every member &f, (S) centralizesu. If so, then Adk)
is 1 ona, andk is in Zg (a), as required.

By Corollary 4.51 we can verify thaf, (S) centralizes: by showing
thatZ,(s) centralizesi. Here

Z,(5) =uNZg(s) =un Zge(Hy).
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To evaluate the right side, we complexify the statement of Lemma 6.50.
Since(x, §) # 0, the centralizeZ - (H;) is justa® @ m®. Therefore

Z.s)=un@em® =iadm.

Every member of the right side centralizesand the proof is complete.

6. Cartan Subalgebras

Proposition 6.47 showed that every real semisimple Lie algebra has a
Cartan subalgebra. But as we shall see shortly, not all Cartan subalgebras
are conjugate. In this section and the next we investigate the conjugacy
classes of Cartan subalgebras and some of their relationships to each other.

We revert to the use of subscripted Gothic letters for real Lie algebras and
to unsubscripted letters for complexifications. pgbe a real semisimple
Lie algebra, lett be a Cartan involution, and lgly = & ® po be the
corresponding Cartan decomposition. hdte the complexification af,
and writeg = £ & p for the complexification of the Cartan decomposition.
Let B be any nondegenerate symmetric invariant bilinear fornggauch
thatB(# X, 8Y) = B(X, Y) and such thaBy, defined by (6.13), is positive
definite.

All Cartan subalgebras aof, have the same dimension, since their
complexifications are Cartan subalgebrag ahd are conjugate via lpt
according to Theorem 2.15.

Let K = Inty, (€o). This subgroup of Inf, is compact.

ExAMPLE. LetG = SL(2, R) andg, = s[(2, R). A Cartan subalgebra
ho complexifies to a Cartan subalgebrati®, C) and therefore has dimen-
sion 1. Therefore let us consider which 1-dimensional subspaesf
5[(2, R) are Cartan subalgebras. The maiihas trace 0, and we divide
matters into cases according to the sign ofXletf det X < 0, thenX has
real eigenvalueg and—u, andX is conjugate viéSL (2, R) to a diagonal
matrix. Thus, for somg € SL(2, R),

RX = {Ad(g)Rh}.

whereh = ; _2 as usual. The subspaRé is maximal abelian i, and

adh acts diagonably op with eigenvector$, e, f. Since (1.82) gives

ad(Ad(g)h) = Ad(g)(adh)Ad(g) *,



6. Cartan Subalgebras 385

ad(Ad(g)h) acts diagonably with eigenvectors &gih, Ad(g)e, Ad(g) f.
ThereforeR X is a Cartan subalgebra when det 0, and it is conjugate
via Intgg to Rh.

If det X > 0, thenX has purely imaginary eigenvalugsand—u, and
X is conjugate vieéBL (2, R) to a real multiple of hg, where

(6.58) he = (_? 6) .

Thus, for someay € SL(2, R),
RX = {Ad(g)Rihg]}.

The subspac®i hg is maximal abelian i and ad hg acts diagonably
on g with eigenvector$g, eg, fg, where

1 1 i 1/1 i
(6.58b) eB:E(—i _1> and fB:E(i _1).

Then adAd(g)i hg) acts diagonably with eigenvectors églhg, Ad(g)es,
Ad(g) fs. ThereforeR X is a Cartan subalgebra when det- 0, and it is
conjugate via Ingj, to Ri hg.

If det X = 0, thenX has both eigenvalues equal to 0, a0 conjugate

via SL (2, R) to areal multiple oé = (g 3) Thus, forsome € SL(2, R),
RX = {Ad(g)Re}.

The subspac®e is maximal abelian i, but the element agldoes not
act diagonably ony. It follows that adAd(g)e) does not act diagonably.
ThereforeR X is not a Cartan subalgebra when tfet 0.

In the above example every Cartan subalgebra is conjugate eitRér to
ortoRi hg, and these two amestable. We shall see in Proposition 6.59 that
this kind of conjugacy remains valid for all real semisimple Lie algebras
do-

Another feature of the above example is that the two Cartan subalgebras
Rh andRihg are not conjugate. In fach has nonzero real eigenvalues,
andi hg has nonzero purely imaginary eigenvalues, and thus the two cannot
be conjugate.
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Proposition 6.59. Any Cartan subalgebiig of g is conjugate via In
to af stable Cartan subalgebra.

PROOF. Leth be the complexification dfy, and leto be the conjugation
of g with respect tay. Letuy be the compact real form constructed from
h and other data in Theorem 6.11, andddte the conjugation of with
respect taiy,. The construction ofiy has the property that(h) = .

The conjugationsr and t are involutions ofg®, andr is a Cartan
involution by Proposition 6.14. Theorem 6.16 shows that the element
¢ of Intg® = Intg given byy = ((o1)?)Y* has the property that the
Cartan involutiony = ¢t of g commutes withr. Sinceos (h) = b
andz (h) = b, it follows thatp(h) = b. Thereforej(h) = b.

Sincen ando commute, it follows thafj(ge) = go. Sinceby = h N go,
we obtaini(ho) = ho.

Putn = 7l,,. SO thaty(ho) = ho. Sincey is the conjugation of with
respect to the compact real fokpiug), the proof of Corollary 6.18 shows
thatn is a Cartan involution ofi,. Corollary 6.19 shows that ando are
conjugate via Ingo, sayd = vyt with ¢ € Intge. Theny (o) is a
Cartan subalgebra @b, and

0¥ (ho)) = Yy ¥ (ho) = ¥ (nho) = ¥ (ho),

shows that it i$ stable.

Thus it suffices to study stable Cartan subalgebras. Wiigis 6 stable,
we canwritdyg = to@agWwith tg C tganday C po. By the same argumentas
for Corollary 6.49, roots ofg, h) are real valued oty @i t,. Consequently
thecompact dimensiondim t, and thenoncompact dimensiondim a, of
ho are unchanged whéjg is conjugated via In§, to anothep stable Cartan
subalgebra.

We say that & stable Cartan subalgebbg = t; ® ao is maximally
compact if its compact dimension is as large as possibtgximally
noncompact if its noncompact dimension is as large as possible. In
s[(2, R), Rh is maximally noncompact, arigli hg is maximally compact.
In any caseng is an abelian subspace p§, and thus Proposition 6.47
implies thath, is maximally noncompact if and only i, is a maximal
abelian subspace .

Proposition 6.60. Let t, be a maximal abelian subspacetgf Then
ho = Z4,(to) is @b stable Cartan subalgebragyfof the formb, = to @ ag
W|th o - po.
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PROOF. The subalgebrg, is 6 stable and hence is a vector-space direct
sumbg = to @ ag, Whereay = ho N po. Sincebhy is 6 stable, Proposition
6.29 shows that it is reductive. By Corollary 1.564,[ho] is semisimple.

We have fjo, ho] = [0, ag], and fag, ag] € toSinceay C poandhoNey =
to. Thus the semisimple Lie algebrgg| ho] is abelian and must be 0.
Consequently, is abelian.

It is clear thath = (ho)© is maximal abelian i, and ad, is certainly
diagonable oy since the members of gdt,) are skew adjoint, the mem-
bers of ag,(ao) are self adjoint, an¢, commutes withi,. By Proposition
2.13,h is a Cartan subalgebra gf and hencdy, is a Cartan subalgebra
Of do-

With any ¢ stable Cartan subalgeblg = ty ® ao, to is an abelian
subspace ot,, and thus Proposition 6.60 implies thigf is maximally
compact if and only iy is a maximal abelian subspacetef

Proposition 6.61. Among 6 stable Cartan subalgebrgs of go, the
maximally noncompact ones are all conjugate Kiaand the maximally
compact ones are all conjugate Wa

PROOF. Let hy andhy be given Cartan subalgebras. In the first case,
as we observed abovig, N po andh, N pe are maximal abelian ipy, and
Theorem 6.51 shows that there is no loss of generality in assuming that
hoNpo = hyNpo. Thushy = to @ ap andhy = t, @ ag, whereag is maximal
abelian inp,. Definemg = Z, (ag). Thent, andt; are inmgy and are
maximal abelian there. Ll = Z (ao). This is a compact subgroup of
K with Lie algebramg, and we letM, be its identity component. Theorem
4.34 says that, andt; are conjugate viav,, and this conjugacy clearly
fixesao. Henceho andhy are conjugate vid .

Inthe second case, as we observed abipyef, andh, N &, are maximal
abelian int,, and Theorem 4.34 shows that there is no loss of generality in
assuming thajo N €y = hy N €. Then Proposition 6.60 shows thgt= by,
and the proof is complete.

If we examine the proof of the first part of Proposition 6.61 carefully,
we find that we can adjust it to obtain root data that determine a Cartan
subalgebra up to conjugacy. As a consequence there are only finitely many
conjugacy classes of Cartan subalgebras.

Lemma 6.62. Let ho andh; bed stable Cartan subalgebrasgfsuch
thatho N po = hy N po. Thenh, andh; are conjugate vik .
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PROOF. Since thep, parts of the two Cartan subalgebras are the same
and since Cartan subalgebras are abeliartothartsh, N €, andh, N €, are
both contained im, = Z;,(hoNpo). The Cartan subalgebras are maximal
abelian ingo, and thereforg, N £, andh, N ¢, are both maximal abelian in
fMo. LetM = Zy (ho N po). This is a compact Lie group with Lie algebra
Mo, and we leM, be its identity component. Theorem 4.34 says bpatt,
andbhg N & are conjugate vidvly, and this conjugacy clearly fixég N po.
Henceh, andh, are conjugate vi& .

Lemma 6.63.Let ay be a maximal abelian subspacegfand letX be
the set of restricted roots 6o, ap). Suppose thdj, is ad stable Cartan
subalgebra such th§ Npy € ao. Let X = {A € T | A(ho N po) = 0}.
Thenbh, N po is the common kernel of all € ¥'.

PrROOF. Leta; be the common kernel of all € X'. Thenho N po C aj,
and we are to prove that equality holds. Sihgés maximal abelian i,
it is enough to prove thdf, + a; is abelian.

Letgo = ag®me®EP, .5 (90);. be the restricted-root space decomposition
of go, and letX = Ho+ Xo+ Y, . X, be an element af, that centralizes
ho N po. Bracketing the formula foX with H € hy N po, we obtain
0=> .5 » A(H)X,, from which we conclude that(H)X; = 0 for all
HebhoNpoandallr € T — ¥'. Since thel’sin ¥ — X" have(ho N po)
not identically O, we see tha{, = 0 forallx € ¥ — ¥’. Thus anyX that
centralized)o N po is of the form

X =Ho+ Xo+ Y _ X;.

rey’

Sincely is abelian, the elemeni$ € b, are of this form, and; commutes
with any X of this form. Hencé+ aj is abelian, and the proofis complete.

Proposition 6.64. Up to conjugacy by Ing,, there are only finitely
many Cartan subalgebras gf

PrROOF. Fix a maximal abelian subspaag of po. Let hy be a Cartan
subalgebra. Proposition 6.59 shows that we may assumigtisat stable,
and Theorem 6.51 shows that we may assumetihatp, is contained in
do. Lemma 6.63 associatestiga subset of the sét of restricted roots that
determine$oNpo, and Lemma 6.62 shows thgtN po determinedo up to
conjugacy. Hence the number of conjugacy classes of Cartan subalgebras
is bounded by the number of subsetsbf
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7. Cayley Transforms

The classification of real semisimple Lie algebras later in this chapter
will use maximally compact Cartan subalgebras, but much useful infor-
mation about a semisimple Lie algelyacomes about from a maximally
noncompact Cartan subalgebra. To correlate this information, we need to
be able to track down the conjugacy via= (go)® of a maximally compact
Cartan subalgebra and a maximally noncompact one.

Cayley transforms are one-step conjugacies stable Cartan subalge-
bras whose iterates explicitly relate afystable Cartan subalgebra with
any other. We develop Cayley transforms in this section and show that
in favorable circumstances we can see past the step-by-step process to
understand the composite conjugation all at once.

There are two kinds of Cayley transforms, essentially inverse to each
other. They are modeled on what happensl(i2, R). In the case of
sl(2, R), we start with the standard basise, f for s((2, C) as in (1.5),
as well as the membehs;, e, fg of 51(2, C) defined in (6.58). The latter
elements satisfy the familiar bracket relations

[he, eg] = 265, [hs, fg] = —2fg, [es, fg] = hs.

The definitions okz and fg makeeg + fg andi(eg — fg) be insl((2, R),
whilei (eg+ fg) andeg — fg areinsu(2). Thefirstkind of Cayley transform
within sl(2, C) is the mapping

V21 i .
Ad (7 (i 1)) = Ad(exp7(fs — €g)),

which carrieshg, ez, fg to complex multiples oh, e, f and carries the
Cartan subalgebr@ ( °, é) toiR (; f’l> When generalized below, this

Cayley transform will be calleds.
The second kind of Cayley transform withif(2, C) is the mapping

V2 (1 i -
Ad (7 <—i 1)) = Ad(expi 7(—f — @),

which carriesh, e, f to complex multiples ohg, ez, fg and carries the
Cartan subalgebr@ (; _f) toiR (_2 ;) In view of the explicit formula
for the matrices of the Cayley transforms, the two transforms are inverse to
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one another. When generalized below, this second Cayley transform will
be calledd,.

The ideais to embed each of these constructions into constructions in the
complexification of our underlying semisimple algebra that depend upon a
single root of a special kind, leaving fixed the part of the Cartan subalgebra
that is orthogonal to the embedded copyigR, C).

Turning to the case of a general real semisimple Lie algebra, we continue
with the notation of the previous section. We extend the inner progyuct
on go to a Hermitian inner product opby the definition

By(Z1, Zo) = —B(Z41,62Z>),

where bar denotes the conjugatiomefith respect t@. Inthis expression
6 and bar commute.

If ho = to @ ao is ab stable Cartan subalgebragf we have noted that
roots of(g, h) are imaginary on, and real ori,. A root isreal if it takes
on real values ol (i.e., vanishes ofy), imaginary if it takes on purely
imaginary values of (i.e., vanishes ony), andcomplexotherwise.

For any rootx, fa is the rootda(H) = «(§~1H). To see thabu is a
root, we letE, be a nonzero root vector far, and we calculate

[H,0E,] =6[07'H, E,] = a(0*H)0E, = (Ba)(H)OE,.

If « is imaginary, theo = «. Thusg, is 6 stable, and we havg, =
(9. NE) ® (g, Np). Sinceg, is 1-dimensionalg, < ¢ org, < p. We call
an imaginary rootx compactif g, < ¢, noncompactif g, < p.

We introduce two kinds of Cayley transforms, starting from a gi#en
stable Cartan subalgebra:

(i) Using an imaginary noncompact roft we construct a new Cartan
subalgebra whose intersection wjihigoes up by 1 in dimension.

(i) Using a real rootr, we construct a new Cartan subalgebra whose
intersection withp, goes down by 1 in dimension.

First we give the construction that starts from a Cartan subalgglarad
uses an imaginary noncompact rgbt Let E; be a nonzero root vector.
Sincep is imaginary,E; is in g_g. Sincep is noncompact, we have

0 < By(Ey, Ep) = —B(Eg, 0E,) = B(Ey, Ep).

Thus we are allowed to normaliZ&; to makeB(Ey, E) be any positive
constant. We choose to maB¢E,, E;) = 2/|8/2. From Lemma 2.18a
we have

[Es, Es] = B(Egs, Eg)Hg = 2|81 *Hs.
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PutH; = 2|8|7*Hg. Then we have the bracket relations
[Hg, Ep] = 2E,, [H,;,E_,g] = —2E;, [Ep E4] = H,.

Also the element&, + E; andi (E; — Ej) are fixed by bar and hence are
in go. In terms of our discussion abovedf2, C), the correspondence is

/ 0i
Hp < (4 0)

Define
(6.65a) s = Ad(expZ (Es — Ep))
and
(6.65b) ho = 8o N cs(h) = ker(Bly,) ® R(E; + Ep).

The vectorE; is not uniquely determined by the conditions on it, and both
formulas (6.65) depend on the particular choice we makésforTo see
that (6.65b) is valid, we can use infinite series to calculate that

(6.66a) cs(H)) = E; + E;
(6.66b) cs(Es —Ep) = Es — Ep

Then (6.66a) implies (6.65b).

Next we give the construction that starts from a Cartan subaldgbra
and uses a real roat. Let E, be a nonzero root vector. Sinaeis real,
E, is in g,. Adjusting E,, we may therefore assume thg} is in go.
Sincew is real,0E, is in g_,, and we know from Proposition 6.52a that
[E., OE,] = B(E., 0E,)H, with B(E,, 9E,) < 0. We normalizeE, by
a real constant to mak®(E,, 0 E,) = —2/|«|?, and putH, = 2|a|2H,.
Then we have the bracket relations

[H,,E,)] =2E,, [H,,0E)]=—-20E,, [E, 6E,]=—H..
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In terms of our discussion above gif2, C), the correspondence is
’ 1 0
H, < (0 —1)
01
00

0B, -E) < (7).
Define
(6.67a) d. = Ad(expi Z(0E, — E,))
and
(6.67b) bo = go N d.(h') = ker(aly,) & R(E, +0E,).

To see that (6.67b) is valid, we can use infinite series to calculate that

(6.68a) dy(H)) =i (E, + 0E,)
(6.68D) do(E, — 0E,) = E, — 0E,
(6.68¢) dy(E, + 0E,) =i H..

Then (6.68a) implies (6.67b).

Proposition 6.69. The two kinds of Cayley transforms are essentially
inverse to each other in the following senses:

(a) If B is a noncompact imaginary root, then in the computation of
dc, (s o Cs the root vectolE,, 4 can be taken to bies; (E4) and this choice
makes the composition the identity.

(b) If « is a real root, then in the the computationaf., o d, the
root vectorEy, ) can be taken to beid,(E,) and this choice makes the
composition the identity.

PrROOF
(2) By (6.66),

Cs(Ep) = 3C5(Ep + Ep) + 365(Ep — Ep) = —3H; + 3(E; — Ep).
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Both terms on the right side are iip,, and hencecs(E;) is in go. Since
H; is in ¢ while E; andE, are inp,

0cs(Eg) = —3H; — 3(Es — Ep).
PUtE., s =ics(Eg). FromB(Eg, E_/g) = 2/|B|%, we obtain
B(Ec, ), 0Ec,i0) = —2/1B1* = —2/Ic4(B)I>.
ThuskE,, 4, is properly normalized. Thed, s becomes
de,p) = Ad(expi (O Ec,s) — Ec,9))
= Ad(exp7(cs(Ep) — 0cs(Ep)))
= Ad(exp%(Es — Ep)),
and this is the inverse of
cs = Ad(expZ (Es — Ep)).
(b) By (6.68),
do(Eo) = 50da(Eq + 0E,) 4 5o (E, — 0E,) = 3iH, + 3(E, — 0E,).
SinceH/, E,, anddE, are ingp,
d.(E,) = —1iH, + 3(E, — 0E,).
PutEy, @ = —id,(E,). FromB(E,, 0E,) = —2/|«|?, we obtain
B(Eq, @ Eq,w) = 2/|a* = 2/|da ().
ThusEqy, ., is properly normalized. Thegy, ., becomes
Ca, @ = Ad(EeXpZ(Eq, @) — Eq,@))

= Ad(expi 2 (d. (E,) + d. (E)))
= Ad(expi 7 (E, — 0E,)),

and this is the inverse of
d, = Ad(expi 7 (O E, — E,)).

Proposition 6.70. Let h, be ad stable Cartan subalgebragf. Then
there are no noncompact imaginary roots if and onli,ifs maximally
noncompact, and there are no real roots if and onlyifs maximally
compact.
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ProoF. The Cayley transform constructian tells us that ifh, has
a noncompact imaginary ro@, thenh, is not maximally nhoncompact.
Similarly the Cayley transform constructidi tells us that if)o has a real
roota, thenhg is not maximally compact.

For the converses writg, = to @ ao, and letA = A(g, b) be the set of
roots. Form the expansion

(6.71) s=b®Po..

Suppose there are no noncompact imaginary roots. Then

Zya)=h® P w=bo P o

a€A, a€eA,
a Imaginary a compact
imaginary

and PoN Zg(ag) = goN (PN Zg(ag) =goN (pNbh) = ao.

Henceq, is maximal abelian ipo, andh, is maximally noncompact.
Suppose there are no real roots. From the expansion (6.71) we obtain

Z,t) =h®Pg. =
aeA,
« real

andé, N Z,(to) = & N h = t,. Thereforety is maximal abelian irf, and
ho is maximally compact.

The Cayley transforms and the above propositions give us a method of
finding all Cartan subalgebras up to conjugacy. In fact, if we start with
a0 stable Cartan subalgebra, we can apply various Cayley transtgrms
as long as there are noncompact imaginary roots, and we know that the
resulting Cartan subalgebra will be maximally noncompact when we are
done. Consequently if we apply various Cayley transfatyia the reverse
order, starting from a maximally noncompact Cartan subalgebra, we obtain
all Cartan subalgebras up to conjugacy.

Alternatively if we start with & stable Cartan subalgebra, we can apply
various Cayley transforn, as long as there are real roots, and we know
that the resulting Cartan subalgebra will be maximally compact when we
are done. Consequently if we apply various Cayley transfaynia the
reverse order, starting from a maximally compact Cartan subalgebra, we
obtain all Cartan subalgebras up to conjugacy.



7. Cayley Transforms 395

ExAMPLE. Letgo = sp(2, R) with 6 given by negative transpose. We
can take the lwasawg to be the diagonal subalgebra

ap = {diag(s, t, —s, —t)}.

Let f; and f, be the linear functionals any that gives andt on the indicated
matrix. For this examplan, = 0. Thus Proposition 6.47 shows thegtis

a maximally noncompact Cartan subalgebra. The roots-@rg, +21,,
+(fy + fp), £(f; — f,). All of them are real. We begin with d, type
Cayley transform, noting thatw give the same thing. The data fof;2and

2 f, are conjugate withigg, and so are the data fdg + f, and f; — f,. So
there are only two essentially different first steps,¢ayandd;,_¢,. After

d,s,, the only real roots are 2 f; (or more preciselg,,(£2f;)). Asecond
Cayley transfornd,y, leads to all roots imaginary, hence to a maximally
compact Cartan subalgebra, and we can go no further. Similarly after
d¢,_+,, the only real roots ar¢:( f; + f,), and the second Cayley transform
di,, 1, leads to all roots imaginary. A little computation shows that we have
produced

s 0O 0 O s O 0 O

0t 0O O 0 0 0 6

0 0 —s 0]} 0 0 —s 0)°

0 0 0 —t 0 —o6 0 0

t 6 0 0 0 0 6 O
-0 t 0 0 0 0O 0 6,

0O 0 -t 0|’ —0; 0O 0 O

0 0 -6 -t 0O -6, 0 O

The second Cartan subalgebra results from the first by apptisingthe
third results from the first by applyindy,_¢,, and the fourth results from
the first by applyingl,,day,.

As in the example, when we pass fréto b, by d,, we can anticipate
what roots will be real foh,. What we need in order to do a succession of
such Cayley transforms is a sequence of real roots that become imaginary
one at a time. In other words, we can do a succession of such Cayley
transforms with ease if we have an orthogonal sequence of real roots.

Similarly when we apply, to pass fronty, to b, we can anticipate what
roots will be imaginary foth,. But a further condition on a root beyond
“imaginary” is needed to do a Cayley transfocpm we need the imaginary
root to be noncompact. The following proposition tells how to anticipate
which imaginary roots are noncompact after a Cayley transform.
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Proposition 6.72. Let « be a noncompact imaginary root. Lgtbe a
root orthogonal tar, so that thex string containing3 is symmetric about
B. Let E, andE; be nonzero roots vectors farandg, and normalizeE,
as in the definition of the Cayley transfoign

(a) If B £ « are not roots, then,(Ez) = Ez. Thus if g is imaginary,
theng is compact if and only it, (8) is compact.

(b) If B & « are roots, thew, (E;) = 1([E,., Es] — [E.. Eg]). Thus if
B is imaginary, therg is compact if and only it, (8) is noncompact.

ProOF. Recall that, = Ad(expZ% (E, — E,)) with [E,, E,] = H_.

(a) In this case, (E;z) = E4 clearly. If g is imaginary, then the equal
vectorsc, (Eg) andEg are both ink or both inp.

(b) Here we use Corollary 2.37 and Proposition 2.48g to calculate that

ad%(E_(x_ Ea)Eﬂ = %([E_a’ Eﬁ] - [Ea’ Eﬂ])

a§(%(E_a - ECt)) Eﬂ = _(%)2([Eav [E_ou Eﬁ]] + [E_ou [Eou Eﬂ]])
= —(3)*(2E4 + 2Ep)
= —(%)ZEﬁ.

Then we have

C.(Ep) = Y Aad"(Z(E, — E)E;
n=0
+ Y sipad 3 (Bl — E)ad" (5 (E, — E.)Eg
n=0

= o (=D"(5)™Ep
n=0

+)  aem (D" G)(El, Egl — [Ea, EgD)
n=0

= (C0s3)Eg + 3(sin7)([E, Eg] — [Eu EgD)

= %([E_ou Eﬁ] - [Eou Eﬁ])

If B is imaginary, therm,(E;) isin tif and only if E4 is in p sinceE, and

E, are inp.

We say that two orthogonal rooésand g arestrongly orthogonal if
B=La are notroots. Proposition 6.72 indicates that we can do a succession of
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Cayley transforms; with ease if we have a strongly orthogonal sequence
of noncompact imaginary roots.
If « andg are orthogonal but not strongly orthogonal, then

(6.73) 1B+ al®=[B1* + |a|?

shows that there are at least two root lengths. Actually we must have
|81? = |a|?, since otherwise (6.73) would produce three root lengths, which
is forbidden within a simple component of a reduced root system. Thus
(6.73) become$B £ «|?> = 2|a|?, and the simple component of the root
system containing andg has a double line in its Dynkin diagram. In other
words, whenever the Dynkin diagram of the root system has no double line,
then orthogonal roots are automatically strongly orthogonal.

8. Vogan Diagrams

To a real semisimple Lie algebig, in the presence of some other
data, we shall associate a diagram consisting of the Dynkin diagram of
g = (go)© with some additional information superimposed. This diagram
will be called a “Vogan diagram.” We shall see that the same Vogan diagram
cannot come from two nonisomorplygs and that every diagram that looks
formally like a Vogan diagram comes from some Thus Vogan diagrams
give us a handle on the problem of classification, and all we need to do is
to sort out which Vogan diagrams come from the saqe

Let go be a real semisimple Lie algebra, lebe its complexification,
let 6 be a Cartan involution, lafy = &, ® po be the corresponding Cartan
decomposition, and lé® be as in §86—7. We introduce a maximally com-
pactd stable Cartan subalgebiig = to @ ao of go, with complexification
h=tda,andwe letA = A(g, ) be the set of roots. By Proposition 6.70
there are no real roots, i.e., no roots that vanisk. on

Choose a positive systenr™ for A that takest, beforea. For example,

AT can be defined in terms of a lexicographic ordering built from a basis
of ity followed by a basis ofi,. Sinced is +1 onty and—1 ona, and
since there are no real root®(A*™) = A*. Therefored permutes the
simple roots. It must fix the simple roots that are imaginary and permute
in 2-cycles the simple roots that are complex.

By theVogan diagram of the triple(go, ho, A™), we mean the Dynkin
diagram ofA* with the 2-element orbits undérso labeled and with the
1-element orbits painted or not, according as the corresponding imaginary
simple root is noncompact or compact.
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For example ifgo = su(3, 3), let us takef to be negative conjugate
transposeh, = t, to be the diagonal subalgebra, and to be determined
by the condition®; > e, > e, > &5 > ;3 > €. The Dynkin diagram is of
type As, and all simple roots are imaginary singe= 0. In particularg
acts as the identity in the Dynkin diagram. The compact rgotse; are
those with andj inthe same sdtl, 2, 3} or {4, 5, 6}, while the noncompact
roots are those withand| in opposite sets. Then among the simple roots,
€, — & IS compacte, — € is noncompacte, — e is compactgs — e; is
noncompact, anég; — €5 is noncompact. Hence the Vogan diagram is

O ® O ® ®

Here are two infinite classes of examples.

EXAMPLES.

1) Letgo = su(p, q) with negative conjugate transpose as Cartan invo-
lution. We takeh, = t, to be the diagonal subalgebra. Thiis 1 on all
the roots. We use the standard ordering, so that the positive ro@s-aee
withi < j. A positive root is compact if andj are both in{1, ..., p} or
bothin{p+1,..., p+q}. Itisnoncompactif isin{l,..., p}and]j
isin{p+1,..., p+q}. Thus among the simple roots— g 4, the root
€, — €p41 IS noncompact, and the others are compact. The Vogan diagram

o—---—0—&—0—---—0

&—& € — Cn1 €pra-1"Cp+q

2) Letgo = sl(2n, R) with negative transpose as Cartan involution, and
define
X1 01
-0 Xg
bo =
Xn Gn
_en Xn

The matrices here are understood to be built from 2-by-2 blocks and to have
Zle X; = 0. The subspacgg corresponds to th& part, 1< j < n,i.e., it

is the subspace where all are 0. The subspaceg similarly corresponds

to thex; part, 1< j < n. We define linear functionaks and f; to depend
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only on thej" block, the dependence being

i =iy, (X Y
ej(iyi X >_yJ and f’<iyi X )_XJ'

Computation shows that
A={xgxeax(fi-fol]j#klU{x2e [1=<] <n}

Roots that involve onlg;’s are imaginary, those that involve onfy's are

real, and the remainder are complex. It is apparent that there are no real
roots, and therefory, is maximally compact. The involutiohacts ast+1

on theg’s and—1 on thef;’s. We define a lexicographic ordering by using
the spanning set

el7"'7en7 fla"'v fn,
and we obtain

g +ea=x(fj—f, alj#k

At = e,—a(:lz(f,—fk), J<k

2,

The Vogan diagram is

en—l_en+( fn—l_ fn)

1<Il<n.

e —e+(fi—f)

O

I

en—l_en_( fn—l_ fn)

O
e—e—(fi—f)

Theorem 6.74. Let go and g, be real semisimple Lie algebras. With
notation as above, if two triplego, ho, A™) and(gg, by, (A")T) have the
same Vogan diagram, thegg andg, are isomorphic.

REMARK. This theorem is an analog for real semisimple Lie algebras of
the Isomorphism Theorem (Theorem 2.108) for complex semisimple Lie
algebras.

PrOOF. Since the Dynkin diagrams are the same, the Isomorphism
Theorem (Theorem 2.108) shows that there is no loss of generality in
assuming thag, andg, have the same complexificatignLetu, = £®ipo
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andug, = €, @ ip, be the associated compact real formg.oBy Corollary
6.20, there existg € Intg such thatkxu; = uy. The real formxgg of g is
isomorphic tog, and has Cartan decompositiag, = x¢;, @ Xp,. Since
X, @ iXpy, = Xuy = ug, there is no loss of generality in assuming that
ug = uo from the outset. Then

(6.75) O(ug) =ug and 0'(ug) = uo.

Let us write the effect of the Cartan decompositions on the Cartan
subalgebras dg = to® ap andhy = ty @ ay. Thenty@iaandty®iag are
maximal abelian subspacesigf By Theorem 4.34 there existse Intu,
with kK(t; @ iag) = to @ iag. Replacingg, by kg, and arguing as above, we
may assume tha} @ iay = to @ i ap from the outset. Thereforg andbhy
have the same complexification, which we derfpt&he space

UQﬂf)Zto@iaozt/o@iag

is a maximal abelian subspaceipf

Now that the complexificationg and h have been aligned, the root
systems are the same. Let the positive systems given in the respective
triples beAt andA*’. By Theorems 4.54 and 2.63 there existg Intug
normalizinguo N h with KA* = A*. Replacingg, by k'g, and arguing as
above, we may assume that’ = A* from the outset.

The next step is to choose normalizations of root vectors relatiye to
For this proof letB be the Killing form ofg. We start with root vector¥,
produced fronh as in Theorem 6.6. Using (6.12), we construct a compact
real formug of g. The subalgebra, contains the real subspacetofvhere
the roots are imaginary, which is jus§ N . By Corollary 6.20, there
existsg € Intg such thapiiy = ug. Thenguy = 1y is built by (6.12) from
g(upNh) and the root vectorgX,. SinceugNh andg(uyNbh) are maximal
abelian inug, Theorem 4.34 producese Intuy with ug(ug N h) = ugNh.
Thenuy is built by (6.12) fromug(u, N h) and the root vectorsg X,,. For
a € A, putY, = ugX,. Then we have established that

(6.76) uo= Y R(iH)+ Y R(Yu—Yo)+ D> Ri(Y,+ Yol
aEA aEA aEA

We have not yet used the information that is superimposed on the Dynkin
diagram ofA*. Since the automorphisms af* defined by andé’ are
the sameg and6d’ have the same effect dyi. Thus

(6.77) O(H) =0'(H) forall H € .
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If o is an imaginary simple root, then
(6.78a) oY) =Y, =0'(Y,) if « is unpainted
(6.78b) 0(Yy) ==Y, =0'(Y,) if  is painted

We still have to deal with the complex simple roots. koe A, write
0Y, = a,Yy,. From (6.75) we know that

0 (uo NsparYe, Y_o}) S uo N spanYoy, Y_gq}-
In view of (6.76) this inclusion means that
ORY, — Yoo) + Ri(Yy + Yo0)) € R(Yoo — Yogo) + Ri (Yoo + Yoga).
If x andy are real and iz = x + yi, then we have
XYy =Y o)+ Vi(Yy+Y ) =2Y, — ZY .

Thus the expressiof(zY, — zZY_,) = za, Y, — Za_,Y_g, Must be of the
formwY,, — wY_g,, and we conclude that

(6.79) a,=a,.

Meanwhile

(6.80) a,a_ = B(a,Ysa, @ oY_ge) = BOY,,0Y_,) = B(Y,,Y_,) = 1.
Combining (6.79) and (6.80), we see that

(6.81) la,| = 1.

Next we observe that

(6.82) By, =1

sinceY, = 62Y, = 0(a,Ys,) = 8,84, Y,.

For each pair of complex simple roatsand6«, choose square roots

a2 anda;/” so that

(6.83) al?a)/? = 1.

[£2 o

This is possible by (6.82).
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Similarly write 'Y, = b, Y,, with

(6.84) Ibe| =1,

and defineb’/2 andb}/? for « andf« simple so that

(6.85) bY/2by? = 1.

By (6.81) and (6.84), we can defie andH’ in up N h by the conditions
thata(H) = a(H’) = 0 for @ imaginary simple and

exp(la(H)) =a¥2  exp(1fa(H)) = a)’.
exp(La(H)) = b2 exp(ifa(H) = b}/

for « andfa complex simple.
We shall show that

(6.86) 6" o Ad(exp3(H — H’)) = Ad(exp3(H — H)) 0 6.

In fact, the two sides of (6.86) are equal lpand also on eaclX, for «
imaginary simple, by (6.77) and (6.78), since the Ad factor drops out from
each side. It is complex simple, then

6" o Ad(expi(H — H))Y, = 6'(ez* "My,
— baal/zb_l/nga
— bY2a-'2Y,
— b,*a;/?0Y, by (6.83) and (6.85)

= Ad(exp3(H — H")) 0 Y.

This proves (6.86).
Applying (6.86) tot and then tg, we see that

Ad(expi(H — H))(®) C ¥

(6.87)
Ad(expz(H — H)(p) S v/,

and then equality must hold in each line of (6.87). Since the element
Ad(exp%(H —H")) carriesay toitself, itmust carrg, = ugNeétot; = upN¥’
andpo = up N p to py = ug N p’. Hence it must carryg, = € @ po to

g = & @ py. This completes the proof.
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Now let us address the question of existence. We defingbatract
Vogan diagram to be an abstract Dynkin diagram with two pieces of
additional structure indicated: One is an automorphism of order 1 or 2
of the diagram, which is to be indicated by labeling the 2-element orbits.
The other is a subset of the 1-element orbits, which is to be indicated by
painting the vertices corresponding to the members of the subset. Every
Vogan diagram is of course an abstract Vogan diagram.

Theorem 6.88.If an abstract Vogan diagram is given, then there exist a
real semisimple Lie algebgg, a Cartan involutio, a maximally compact
0 stable Cartan subalgebhg = t; ® ag, and a positive system* for
A = A(g, h) that takes t, beforeay such that the given diagram is the
Vogan diagram ofgg, ho, A™).

ReEMARK. Briefly the theorem says that any abstract Vogan diagram
comes from somg,. Thus the theorem is an analog for real semisimple
Lie algebras of the Existence Theorem (Theorem 2.111) for complex semi-
simple Lie algebras.

PROOF By the Existence Theorem (Theorem 2.111)lée a complex
semisimple Lie algebra with the given abstract Dynkin diagram as its
Dynkin diagram, and let be a Cartan subalgebra (Theorem 2.9). Put
A = A(g, h), and letA™ be the positive system determined by the given
data. Introduce root vectod§, normalized as in Theorem 6.6, and define a
compact real fornu, of g in terms offy and theX,, by (6.12). The formula
forug is

(6.89) uo=) R(iHy)+ D> R(Xy—X_o)+ > Ri(X,+ X_o).

aeA aeA aeA

The given data determine an automorphrof the Dynkin diagram,
which extends linearly t§* and is isometric. Let us see tiiA) = A. It
is enough to see thatA™) C A. We prove that (A*) C A by induction
on the level)  n; of a positive rootxr = ) nie;. If the level is 1, then the
rootwx is simple and we are given théd is a simple root. Leh > 1, and
assume inductively thate is in A if « € AT has level< n. Leta have
leveln. If we choosex; simple with (e, o) > 0, thens, («) is a positive
root 8 with smaller level thame. By inductive hypothesig) andf«; are
in A. Sinced is isometricfa = S, (68), and thereforédw is in A. This
completes the induction. ThigA) = A.
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We can then transfeérto b, retaining the same name Defined on the
root vectorsx, for simple roots by

Xe if « is unpainted and forms a 1-element orbit
X, =1 —X, if @ is painted and forms a 1-element orbit
Xow if o is in a 2-element orhit

By the Isomorphism Theorem (Theorem 2.1@8gxtends to an automor-
phism ofg consistently with these definitions @nand on theX,’s for «
simple. The uniqueness in Theorem 2.108 impliesdRat 1.

The main step is to prove that, = uy. Let B be the Killing form
of g. Fora € A, define a constard, by 6 X, = a,X,,. Thenag,a_, =
B(ay Xpa, @ o X_ga) = B(OX,, 0X_,) = B(X,, X_) = 1 shows that

(6.90) a,a, =1
We shall prove that
(6.91) a, ==+1 foralla € A.

To prove (6.91), it is enough because of (6.90) to prove the result for
a € At. We do so by induction on the level af If the level is 1, then

a, = 1 by definition. Thus it is enough to prove that if (6.91) holds for
positive rootsx andg and ifa + 8 is aroot, then it holds fax + 8. In the
notation of Theorem 6.6, we have

0 Xatrp = Ny 560 Xar Xg] = N 5[0 X, 6 X]
= Noz_,éaaaﬁ[xea, Xopl = Na_é Noo,0880 88 Xoatap-

Therefore
Ayip = Na_é Noo,0p8:85.
Herea,a; = +1 by assumption, while Theorem 6.6 and the fact éhist
an automorphism oA say thatN, s andN,, ¢; are real with
NZ, = 2a+ plal® = ;01 + p)loal® = Nz, 4.

Hencea,,; = 1, and (6.91) is proved.
Let us see that

(6.92)
Q(R(Xa_ X—ot) + RI (Xa+x—ot)) g R(XOQ - X—Ga) + RI (X6a+ X—9a)-
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If x andy are real and iz = x + yi, then we have
X(Xy = X_g) + YI( Xy + X_g) = z2X, — ZX_,.
Thus (6.92) amounts to the assertion that the expression
0(zXy — ZX_y) = 28, Xgy — Za 4 X_y4

is of the formwX,, — wX_g,, and this follows from (6.91) and (6.90).
Sinced carries roots to roots,

(6.93) 0(Y_R(iH)) =D R(iH,).

aeA aeA

Combining (6.92) and (6.93) with (6.89), we see thaf = u,.
Let ¢ andp be the+1 and—1 eigenspaces farin g, so thatg = ¢ @ p.
Sincefuy = ug, we have

ug = (Ug N E) & (ug N p).
Definety = ug N ¢ andpy = i (ug N p), so that
U = € ® i po.
Sinceu, is a real form ofg as a vector space, so is
go = €0 D po.
Sinceduy = ug and since is an involution, we have the bracket relations
[to, €o] < B0,  [Bo, Po] € Po,  [Po, Po] < to.

Thereforgy, is closed under brackets and is areal forrg aé a Lie algebra.

The involutiond is +1 ont, and is—1 onpy; it is a Cartan involution of

go by the remarks following (6.26), sindég @ ipo = 1o is compact.
Formula (6.93) shows thatmapsu, N § to itself, and therefore

uNh=@wNENH @ weNpNh)
= (o Nh) & (ipoNh)
=& Nh Si(poNh).

The abelian subspaeg N § is a real form ofy, and hence so is

ho= (Lo N bh) & (po N b).
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The subspacé, is contained ingy, and it is therefore & stable Cartan
subalgebra of,.

A real rootu relative tohy has the property tha#tie = —«. Sinced
preserves positivity relative tat, there are no real roots. By Proposition
6.70,h, is maximally compact.

Let us verify thatA™ results from a lexicographic ordering that takes
i (8 N b) beforepo N h. Let {B}l_, be the set of simple roots af* in
1-element orbits undet, and let{y;, 6y}, be the set of simple roots of
AT in 2-element orbits. Relative to bas{m}'”m consisting of all simple
roots, let{w;} be the dual basis defined Wy, ;) = §;;. We shall write
wg, OF w,, O wy,, in place ofw; in what follows. We define a lexicographic
ordering by using inner products with the ordered basis

Wpys v+ Wpy, Wy T+ Whyyy - v ey Oy F Wpys By — Dy vy Oy — D

which taked (¢; N h) beforepy N h. Leta be inA™, and write

Z +Zr1VJ +ZS19V1

Then (a,wg) =n; >0
and (a, 0, +wpy,) =Tj+5 > 0.

Ifallthese inner products are 0, then all coefficientg afe 0, contradiction.
Thusa has positive inner product with the first member of our ordered basis
for which the inner product is nonzero, and the lexicographic ordering
yields A™ as positive system. Consequently, ho, A*) is a triple.

Our definitions ofé on h* and on theX, for « simple make it clear
that the Vogan diagram @fo, ho, A1) coincides with the given data. This
completes the proof.

9. Complexification of a Simple Real Lie Algebra

This section deals with some preliminaries for the classification of simple
real Lie algebras. Our procedure in the next section is to start from a
complex semisimple Lie algebra and pass to all possible real forms that
are simple. In order to use this method effectively, we need to know what
complex semisimple Lie algebras can arise in this way.
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Theorem 6.94. Let go be a simple Lie algebra ové, and letg be its
complexification. Then there are just two possibilities:

(@) go is complex, i.e., is of the form® for some complex, and then
g is C isomorphic tos & s,
(b) go is not complex, and thegis simple overC.

PROOF.

(a) Let J be multiplication bys/—1 in go, and define amR linear map
L:g—>s®dsbyL(X+iY)=(X+JY, X—JY)for XandY in go. We
readily check that. is one-one and respects brackets. Since the domain
and range have the same real dimensioig anR isomorphism.

MoreoverL satisfies

LG (X +iY)) = L(=Y +iX)
— (=Y + IX, =Y = IX)
— (J(X 4+ JY), —=I(X = JY)).

This equation exhibitk as aC isomorphism ofy with s @ s, wheres is the
same real Lie algebra gg but where the multiplication by/—1 is defined
as multiplication by—i.

To complete the proof of (a), we show thais C isomorphic tos. By
Theorem 6.115 has a compact real form. The conjugatiorr of s with
respect tay, is R linear and respects brackets, and the claim isthata
C isomorphism of with s. In fact, if U andV are inug, then

(U +IV)) = 7(=V + JU) = -V — JU
— JU - JV) = —Jt(U + IV),

and (a) follows.

(b) Let bar denote conjugation gfwith respect taye. If a is a simple
ideal ing, thena N a anda + a are ideals iy invariant under conjugation
and hence are complexifications of idealgin Thus they are 0 gr. Since
a#0,a+a=g.

If ana = 0, theng = a ® a. The inclusion ofg, into g, followed
by projection toa, is anR homomorphisny of Lie algebras. If kep is
nonzero, then kes must begy. In this caseg, is contained ina. But
conjugation fixego, and thugy, € ana = 0, contradiction. We conclude
thaty is one-one. A count of dimensions shows ih& anR isomorphism
of go ontoa. But theng, is complex, contradiction.

We conclude thad N a = g and hencer = g. Thereforeg is simple, as
asserted.
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Proposition 6.95.If g is a complex Lie algebra simple ov€; theng®
is simple overR.

PROOF. Suppose that is an ideal ing®. Sinceg® is semisimple,
[a, g%] € a =[a, a] C [a, g®]. Thereforea = [a, g¥]. Let X be ina, and
write X = > [ X;, Yj] with X; € aandY; € g. Then

iX =3 i0%, %] = S I% Y] € [a, g% = a.
j

Soa is a complex ideal irg. Sinceg is complex simplea = 0 ora = g.
Thusg® is simple oveiR.

10. Classification of Simple Real Lie Algebras

Before taking up the problem of classification, a word of caution is in
order. The virtue of classification is that it provides a clear indication of
the scope of examples in the subject. It is rarely a sound idea to prove
a theorem by proving it case-by-case for all simple real Lie algebras.
Instead the important thing about classification is the techniques that are
involved. Techniques that are subtle enough to identify all the examples are
probably subtle enough to help in investigating all semisimple Lie algebras
simultaneously.

Theorem 6.94 divided the simple real Lie algebras into two kinds, and
we continue with that distinction in this section.

The first kind is a complex simple Lie algebra that is regarded as a
real Lie algebra and remains simple when regarded that way. Proposition
6.95 shows that every complex simple Lie algebra may be used for this
purpose. In view of the results of Chapter Il, the classification of this kind
is complete. We obtain complex Lie algebras of the usual typakrough
G,. Matrix realizations of the complex Lie algebras of the classical types
A, throughD,, are listed in (2.43).

The other kind is a noncomplex simple Lie algebsaand its complex-
ification is then simple ove€. Since the complexification is simple, any
Vogan diagram fog, will have its underlying Dynkin diagram connected.
Conversely any real semisimple Lie algebgavith a Vogan diagram having
connected Dynkin diagram hag,)® simple, and thereforg, has to be
simple. We know from Theorem 6.74 that the same Vogan diagram cannot
come from nonisomorphigy’s, and we know from Theorem 6.88 that every
abstract Vogan diagram is a Vogan diagram. Therefore the classification
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of this type of simple real Lie algebra comes down to classifying abstract
Vogan diagrams whose underlying Dynkin diagram is connected.

Thus we want to eliminate the redundancy in connected Vogan diagrams.
There is no redundancy from the automorphism. The only connected
Dynkin diagrams admitting nontrivial automorphisms of order 2 Ase
D,, andEg. In these cases a nontrivial automorphism of order 2 of the
Dynkin diagram is unique up to an automorphism of the diagram (and is
absolutely unique except iD,). A Vogan diagram forg, incorporates a
nontrivial automorphism of order 2 if and only if there exist complex roots,
and this condition depends only gp

The redundancy comes about through having many allowable choices
for the positive system*. The idea, partly but not completely, is that we
can always chang&™ so that at most one imaginary simple root is painted.

Theorem 6.96(Borel and de Siebenthal Theorem). Lgtbe a non-
complex simple real Lie algebra, and let the Vogan diagragy bk given
that corresponds to the tripl@o, ho, A™). Then there exists a simple
systemIl’ for A = A(g, b), with corresponding positive system™’,
such that(go, ho, A™) is a triple and there is at most one painted simple
root in its Vogan diagram. Furthermore suppose that the automorphism
associated with the Vogan diagram is the identity, fhat {«4, ..., o},
and that{w,, ..., o} is the dual basis given biw;, ax) = §;x. Then the
single painted simple roat; may be chosen so that there is ifavith
(a)i — Wi, a)i/) > 0.

REMARKS.

1) The proof will be preceded by two lemmas. The main conclusion of
the theorem is that we can arrange that at most one simple root is painted.
The second conclusion (concernimgand therefore limiting which simple
root can be painted) is helpful only when the Dynkin diagram is exceptional
(EG, E;, Eg, F4, Or Gz)

2) The proof simplifies somewhat when the automorphism marked as
part of the Vogan diagram is the identity. This is the casdiiatcontained
in £, and most examples will turn out to have this property.

Lemma 6.97.Let A be an irreducible abstract reduced root system in a
real vector spac¥, let IT be a simple system, and letandw’ be nonzero
members ol that are dominant relative id. Then(w, «’) > 0.

PROOF. The first step is to show that in the expansioe= ), a.o,
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all thea, are> 0. Let us enumeratl asay, ..., o So that
r S
w:Zaiai — Z boi =t — o
i=1 i=r+1

with all & > 0 and allb; > 0. We shall show thatv~ = 0. Since
o~ =o' —w, we have

r S |
0<lo =0 o)~ 0)=) > ablu a)— Y bjw o)
i=1j=r+1 j=r+1

The first term on the right side is 0 by Lemma 2.51, and the second term
on the right side (with the minus sign included) is term-by-tern® by
hypothesis. Therefore the right sideds0, and we conclude that- = 0.

Thus we can writey = Z'jzlaja,- with all & > 0. The next step is
to show from the irreducibility oA thata; > O for all j. Assuming the
contrary, suppose that = 0. Then

0<(w,ai) = Za-j<05ja0‘i>,
j#i

and every term on the right side s 0 by Lemma 2.51. Thug; = 0
for every«; such that(e;, i) < 0, i.e., for all neighbors oé; in the
Dynkin diagram. Since the Dynkin diagram is connected (Proposition
2.54), iteration of this argument shows that all coefficients are 0 once one
of them is 0.

Now we can complete the proof. For at least one indey;, o') > 0,
sincew’ # 0. Then

(0, 0) =) ajle. o) = alo, o),
j
and the right side is- 0 sincea, > 0. This proves the lemma.

Lemma 6.98. Let g, be a noncomplex simple real Lie algebra, and let
the Vogan diagram af, be given that corresponds to the tripdg, ho, A™).
Write ho = to @ ap as usual. LeV be the span of the simple roots that are
imaginary, letAy be the root system N V, let’H be the subset ot, paired
with V, and letA be the subset of{ where all roots ofA, take integer
values and all noncompact roots Af take odd-integer values. Then

is nonempty. In fact, i, ..., o, is any simple system foA, and if
w1, ..., oy InV are defined byw;, ax) = dj«, then the element
w = Z w;j .
i with o

noncompact

isin A.
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PROOF. Fix a simple systemy, ..., ay for Ay, and letA§ be the
set of positive roots ofA,. Definews, ..., won by (@), k) = Sjk. |If
o= Zim:l N;«; is a positive root ofAy, then(w, «) is the sum of they; for
which «; is noncompact. This is certainly an integer.

We shall prove by induction on the Iev@im:1 n; that(w, o) is even ifa
is compact, odd it is noncompact. When the level is 1, this assertion is
true by definition. In the general case,detindg be in A{ with « + B in
A, and suppose that the assertion is truexfandj. Since the sum of the
n; for which ¢; is noncompact is additive, we are to prove that imaginary
roots satisfy

compact+ compact= compact
(6.99) compactt noncompact noncompact
noncompact- noncompact= compact

But this is immediate from Corollary 2.35 and the bracket relations (6.24).

PrROOF OF THEOREM 6.96. DefineV, Ay, and A as in Lemma 6.98.
Before we use Lemma 6.97, it is necessary to observe that the Dynkin
diagram ofA, is connected, i.e., that the roots in the Dynkin diagram of
fixed by the given automorphism form a connected set. There is no problem
when the automorphism is the identity, and we observe the connectedness
in the other cases one at a time by inspection.

Let A = ATNV. The setA is discrete, being a subset of a lattice, and
Lemma 6.98 has just shown that it is nonempty. Hgbe a member oA
with norm as small as possible. By Proposition 2.67 we can choose a new
positive system\j’ for Ao that makesH, dominant. The main step is to
show that

(6.100) at most one simple root af;” is painted

SupposdH, = 0. Ifaisin Ag, then{Hy, «) is 0 and is not an odd integer.
By definition of A, « is compact. Thus all roots af, are compact, and
(6.100) is true.

Now supposeH, = 0. Letay, ..., oy be the simple roots ok, relative
to A{’, and definewy, ..., om by (0, ) = djx. We can writeH, =
Y1 njoj with nj = (Ho, ;). The numben; is an integer sincé, is in
A, and itis> 0 sinceH, is dominant relative ta\ ;.

SinceHy # 0, we haven; > 0 for somei. ThenHy — w; is dominant
relative toA]’, and Lemma 6.97 shows th@ddy—w;, @) > 0 with equality
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only if Hy = wy;. If strict inequality holds, then the elemeld — 2w; is in
A and satisfies

IHo — 2wi|? = |Ho|? — 4(Ho — @y, i) < |Hol%,

in contradiction with the minimal-norm condition d#y. Hence equality
holds, andHp = ;.

SinceHyisin A, asimple root; in Ag’is noncompactonly ifHo, ;) is
anodd integer. SinogHo, «j) = Ofor j # i, the only possible noncompact
simple root inA{’ is «;. This proves (6.100).

If the automorphism associated with the Vogan diagram is the identity,
then (6.100) proves the first conclusion of the theorem. For the second con-
clusionwe are assuming thidf = w;; then aninequalityw, —w;:, w;/) > 0
would imply that

|Ho — 2wi/ > = |Hol? — Hw; — wir, wir) < [Hol?,

in contradiction with the minimal-norm condition dth,.

To complete the proof of the theorem, we have to prove the first conclu-
sion when the automorphism associated with the Vogan diagram is not the
identity. Choose by Theorem 2.63 an eleneatW(Ag) with A’ = SA{,
and defineA* = sA*. With hy = to P a¢ as usual, the elemesmapsi t,
to itself. SinceA™ is defined by an ordering that takieg beforeay, so is
AT, Letthe simpleroots oA* begy, ..., B with 84, ..., Bmin Ag. Then
the simple roots oA*’ aresg, ..., sB;. Among thesesfs, ..., SBn are
the simple roots;, . . ., o, 0f AJ’ considered above, and (6.100) says that
at most one of them is noncompact. The r@&#s, 1, . . ., S8 are complex
since Bmi1, - - ., B are complex and carries complex roots to complex
roots. ThusA*” has at most one simple root that is noncompact imaginary.
This completes the proof.

Now we can mine the consequences of the theorem. To each connected
abstract Vogan diagram that survives the redundancy tests of Theorem
6.96, we associate a noncomplex simple real Lie algebra. If the underlying
Dynkin diagram is classical, we find a known Lie algebra of matrices with
that Vogan diagram, and we identify any isomorphisms among the Lie
algebras obtained. If the underlying Dynkin digram is exceptional, we
give the Lie algebra a name, and we eliminate any remaining redundancy.

As we shall see, the data at hand from a Vogan diagramyfoeadily
determine the Lie subalgebtgin the Cartan decompositiay = £, ® po.
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This fact makes it possible to decide which of the Lie algebras obtained
are isomorphic to one another.

First suppose that the automorphism of the underlying Dynkin diagram
is trivial. When no simple root is painted, thggis a compact real form.
For the classical Dynkin diagrams, the compact real forms are as follows:

Diagram | Compact Real Form
A, su(n+1)
(6.101) B, s0(2n+1)
Cn sp(n)
Dn s0(2n)

For the situation inwhich one simple rootis painted, we treat the classical
Dynkin diagrams separately from the exceptional ones. Let us begin with
the classical cases. For each classical Vogan diagram with just one simple
root painted, we attach a known Lie algebra of matrices to that diagram.
The resultis that we are associating a Lie algebra of matrices to each simple
root of each classical Dynkin diagram. We can assemble all the information
for one Dynkin diagram in one picture by labeling each root of the Dynkin
diagram with the associated Lie algebra of matrices. Those results are in
Figure 6.1.

Verification of the information in Figure 6.1 is easy for the most part.
For A,, Example 1 in 88 gives the outcome, which is thatp, q) results
whenp + g = n + 1 and thep™ simple root from the left is painted.

For B, suppose thap + q = 2n + 1 and thatp is even. Represent
so(p, q) by real matricea(k?* g) with a andd skew symmetric. Foljo,

01
1 0 of
size 2-by-2 and whose last block is of size 1-by-1. With linear functionals
on (ho)® as in Example 2 of §lI.1 and with the positive system as in that
example, the Vogan diagram is as indicated by Figure 6.1.

For C,, the analysis for the first — 1 simple roots usespy(p, q) with
p + g = n in the same way that the analysis fAy usessu(p, q) with
p 4+ g = n+ 1. The analysis for the last simple root is different. For this
case we take the Lie algebra todpgn, R). Actually it is more convenient
to use the isomorphic Lie algebgg = su(n, n) N sp(n, C), which is
conjugate tap(n, R) by the matrix given in block form as—

A

we use block-diagonal matrices whose findtlocks areR
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A O—O— - —O—0
su(l, n) su2,n—1) su(n—1,2) su(n, 1)
2 2 2 1
Bn O O ---—C—0O
s50(2,2n — 1) s0(4,2n — 3) s0(2n—2,3) so(2n,1)
1 1 1 2
Cn O O ---—C—0O
sp(L,n—1) sp(2,n—2) sp(n—121,1) sp(n,R)
s50%(2n)
Oy O—O— -
s50(2,2n — 2) s0(4,2n — 4) so(2n—4, 4)
s50*(2n)

FIGURE 6.1. Association of classical matrix algebras
to Vogan diagrams with the trivial automorphism

Within go, we take

(6.102) ho = {diag(iys, ..., 1¥n, —1Y1, ..., —i¥n)}

If we defineg of the indicated matrix to bey;, then the roots are those
of typeC, on (2.43), and we choose as positive system the customary one
givenin (2.50). The rootg — e are compact, and the roatse + € ) and
+2g are noncompact. Thugis the unique noncompact simple root.

For D,, the analysis for the first — 2 simple roots uses (p, q) with p
andqg even andp + q = 2n. It proceeds in the same way as wBh. The
analysis for either of the last two simple roots is different. For one of the
two simple roots we takg, = so*(2n). We use the samigy ande; as in
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(6.102). Then the roots are those of typein (2.43), and we introduce the
customary positive system (2.50). The rogts- g are compact, and the
rootsk(g + g) are noncompact. Thus_; + €, is the unigue noncompact
simple root. The remaining Vogan diagram is isomorphic to the one we
have just considered, and hence it too must corresposdt (@n).

For the exceptional Dynkin diagrams we make use of the additional
conclusion in Theorem 6.96; this says that we can disregard the case in
which «; is the unique simple noncompact root{ib, — w;,, w;) > 0
for somei’. First let us see how to apply this test in practice. Write
o = Y, dixawx. Taking the inner product witly; shows thath; = («i, ;).

If we putw; = ), G, then

3 = (o, wj) = Zdikclj(wk,m) = Zdikckj-
K K

Thus the matriXc;) is the inverse of the matri¢d;;). Finally the quantity
of interest is justw;, wj/) = Cjj.

The Cartan matrix will serve a@l;) if all roots have the same length
because we can assume that? = 2 for alli; then the coefficients;; are
obtained by inverting the Cartan matrix. When there are two root lengths,
(di;) is a simple modification of the Cartan matrix.

Appendix C gives all the information necessary to make the compu-
tations quickly. Let us indicate details f&f. Let the simple roots be
a1,...,0asin (2.86¢). Then Appendix C gives

601:%(40l1+30€2+ Saz + 6as + 4os + 206)
wy = log+ 205+ 203+ 3as+ 205+ lag
w3=%(5a1+6a2+10a3+12a4+ 8as + 4ate)
ws = 201+ 302+ daz+ 6as+ das + 206
ws = 3(4oy + 62 + 8az + 1204 + 1005 + 5ere)
we = (201 + 302+ daz+ 6os+ Sas + dag).

Let us use Theorem 6.96 to rule dut 3, 4, and 5. For = 3, we take
i’ =1;we havglws, w1) = g and{w, 1) = %, so that{ws — w1, w1) > 0.
Fori = 4, we takd’ = 1; we have(w,, w,) = 2 and{w;, w1) = ‘5‘ so that
(w4 — w1, w1) > 0. Fori =5, we takd’ = 6; we have{ws, ws) = 2 and
(wg, we) = g so that{ws — we, we) > 0. Although there are six abstract
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Ell ? £ = s1(6) © su(2)
O O
O
E Il bhb=s50(10®R
@ O
EV ? £ = su(8)
O O
E VI 7 £ = 50(12) @ su(2)
O @
E VI T fo=es DR
[ O
@]
E VIl to = 50(16)
O L J
E IX Ey = e; D su(2)
@ O
Fl r1r 22 t = sp(3) @ su(2)
Fll e 2 to = 50(9)
G Ll t = su(2) @ su(2)
0= su su

FIGURE 6.2. Noncompact noncomplex exceptional simple real Lie
algebras with the trivial automorphism in the Vogan diagram
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Vogan diagrams oEg with trivial automorphism and with one noncom-
pact simple root, Theorem 6.96 says that we need to consider only the
three where the simple root ig, «»,, or ag. Evidentlyas yields a result
isomorphic to that for; and may be disregarded.

By similar computations for the other exceptional Dynkin diagrams, we
find that we may take; to be an endpoint vertex of the Dynkin diagram.
Moreover, inG,, «; may be taken to be the long simple root, whileGg
we do not have to consides, (the endpoint vertex on the short branch).
Thus we obtain the 10 Vogan diagrams in Figure 6.2. We have given
each of them its name from the Cartan listing [1927a]. Computjrig
fairly easy. As a Lie algebrd&, is reductive by Corollary 4.25. The root
system of its semisimple part is the system of compact roots, which we can
compute from the Vogan diagram if we remember (6.99) and use the tables
in Appendix C that tell which combinations of simple roots are roots. Then
we convert the result into a compact Lie algebra using (6.101), and we add
R as center if necessary to make the dimension of the Cartan subalgebra
work out correctly. A glance at Figure 6.2 shows that when the Vogan
diagrams for twagyy's have the same underlying Dynkin diagram, then the
to’s are different; by Corollary 6.19 thg'’s are nonisomorphic.

Now we suppose that the automorphism of the underlying Dynkin dia-
gram is nontrivial. We already observed that the Dynkin diagram has to be
of type A, Dy, or Ee.

For typeA,, we distinguisin even fromn odd. Forn even there is just
one abstract Vogan diagram, namely

It must correspond tel(n + 1, R) since we have not yet found a Vogan
diagram fois[(n+1, R) and since the equaligf(n+1, R)® = sl(n+1, C)
determines the underlying Dynkin diagram as beig

For A, with n odd, there are two abstract Vogan diagrams, namely
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and

The first of these, according to Example 2 in 88, comes fstm+ 1, R).
The second one comes froa”f(%(n + 1), H). In the latter case we take

bo = {diagxy +iy1. ..., Xanry) +1Yinra) | me = 0}.

If e, and f,, on the indicated member &f areiy,, andx,, respectively,
then A is the same as in Example 2 of 88. The imaginary roots are the
+2e,, and they are compact. (The root vectors fee,, generate the
complexification of theu(2) in the j" diagonal entry formed by the skew-
Hermitian quaternions there.)

For type D,,, the analysis useso(p, q) with p andq odd and with
p+ g = 2n. Represengo(p, q) by real matrices(ti 3) with a andd
skew symmetric. Fdfj, we use block-diagonal matrices with all blocks of

size 2-by-2. Thefirs}(p—1) and the lasf (q—1) blocks areR _(1) é *

and the remaining one 8 ((1) é) The blocksR ( _(1) é) contribute

to to, while R ((1) c1)> contributes toas. The linear functional®, for

j # (p+1) are as in Example 4 of §I1.1, arg,,,;, on the embedded

t O 10
those involving inde>§(p + 1) are complex.

Supposel = 1. Then the standard ordering takeég beforea,. The
simple roots as usual are

(0 t) € R(O 1) is justt. The roots arete + g withi # j, and

€—©, ..., 62— 6_1, 61— €, €_1+ 6.

The last two are complex, and the others are compact imaginary. Similarly
if p =1, we can use the reverse of the standard ordering and conclude that
all imaginary roots are compact.
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Now suppose > 1 andg > 1. In this case we cannot use the standard
ordering. To havet, beforeq, in defining positivity, we také( p+1) last,
and the simple roots are

C1—=&, ..oy Bpn-1 CLp-1 Bl T Bprnas
€1 (p+1+1 — CLprn+2s o0 Bl — €y €0 — €1piyys G F BL(piyy-

The last two are complex, and the others are imaginary. Among the imag-
inary simple rootsey,_1, — 151141 IS the unique noncompact simple
root.

We can assemble our results 1y in a diagram like that in Figure 6.1.
As we observed above, the situation with all imaginary roots unpainted
corresponds teo(1,2n — 1) = so(2n — 1, 1). If one imaginary root is
painted, the associated matrix algebra may be seen from the diagram

O—O— - 1

50(3,2n — 3) s0(5,2n — 5) s50(2n—3, 3)

For type Es, Theorem 6.96 gives us three diagrams to consider. As
in (2.86¢) leta, be the simple root corresponding to the endpoint vertex
of the short branch in the Dynkin diagram, anddgtcorrespond to the
triple point. The Vogan diagram in whialy, is painted gives the same
go (up to isomorphism) as the Vogan diagram withpainted. In fact,
the Weyl group elemerd,,s,, carries the one witk, painted to the one
with a4 painted. Thus there are only two Vogan diagrams that need to be
considered, and they are in Figure 6.3. The figure also gives the names of
the Lie algebrag, in the Cartan listing [1927a] and identifiés

To computet, for each case of Figure 6.3, we regroup the root-space
decomposition of as

i=(te P e P X +6X))

« imaginary complex pairs
compact {o, 00}
(6.103)
e P we P X-0X)),
« imaginary complex pairs
noncompact {o,00}

and it is clear that the result is= ¢ @ p. Therefore the roots i (¢, t)
are the restrictions toof the imaginary compact roots (g, b), together
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with the restrictions ta of each paifw, 6} of complex roots inA(g, b).
Also the dimension ofi, is the number of 2-element orbits in the Vogan
diagram and is therefore 2 in each case.

We can tell which roots are complex, and we need to know how to decide
which imaginary roots are compact. This determination can be carried out
by induction on the level in the expansion in terms of simple roots. Thus
suppose that andg are positive roots witl8 simple, and

El FK(EE & = sp(4)
EIV Q_@ to="fa

FIGURE 6.3. Noncompact noncomplex exceptional simple real Lie
algebras with a nontrivial automorphism in the Vogan diagram

supposex + B is an imaginary root. If8 is imaginary, then (6.99) set-
tles matters. Otherwisg is complex simple, and Figure 6.3 shows that
(B, 0B) = 0. Therefore the following proposition settles mattersgipas

in Figure 6.3 and allows us to complete the induction.

Proposition 6.104. For a connected Vogan diagram involving a non-
trivial automorphism, suppose thatand g are positive roots, that is
complex simple, thas is orthogonal t@g, and thatx + g is an imaginary
root. Thene — 68 is an imaginary root, and — 68 anda + 8 have the
same type, compact or noncompact.

PrOOF. Taking the common length of all roots to be 2, we have

1=2-1=(B.B)+ (B.a) = (B.a + B)
=(0B,0(B+a)) = (0B, a+ B) = (0B, a) + (6B, B) = (6B, ).

Thusa — 68 is a root, and we have
a+B =08+ (a—0B)+B.

Sincea + B is imaginary,e — 68 is imaginary. Therefore we can write
QXa_gﬂ - Sxa_gﬂ W|th S= Zl:l erte@Xﬁ — th,g and9 X0/3 - tX/g W|th
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t = +1. Then we have

ol Xé‘ﬁs Xa—é‘ﬁ]9 Xﬂ] =[[¢ X@ﬁ: exa—eﬂ]’ QX/S]
= st?[[ Xs, Xa—g5], Xog]
= —S[[ Xo—08, Xopgl, Xg] — S[[ Xop, Xp], Xa—osl
= _S[[ on—(?ﬁy Xeﬂ], Xf}]
= S[[ Xop, Xa-as], Xgl,

and the proof is complete.
Let us summarize our results.

Theorem 6.105(classification). Up to isomorphism every simple real
Lie algebra is in the following list, and everything in the list is a simple
real Lie algebra:

(a) the Lie algebra®, whereg is complex simple of typé,, forn > 1,
B, forn> 2,C,forn> 3, D, forn > 4, Eg, E;, Eg, Fs4, 0or Gy,

(b) the compact real form of anyas in (a),

(c) the classical matrix algebras

su(p, q) with  p>q>0, p+gq=>2

s0(p, q) with p>q=>0, p+qodd p+q=>5
or with p>q>0, p+geven p+q=>38

sp(p, q) with  p>q>0, p+q=>3

sp(n, R) with n>3

50*(2n) with n>4

sl(n, R) with n>3

sl(n, H) with n> 2,

(d) the 12 exceptional noncomplex noncompact simple Lie algebras
given in Figures 6.2 and 6.3.

The only isomorphism among Lie algebras in the above list$8) =
50(6, 2).

REMARKS. The restrictions on rank in (a) prevent coincidences in
Dynkin diagrams. These restrictions are maintained in (b) and (c) for
the same reason. In the casefgh, R) andsl(n, H), the restrictions on
force the automorphism to be nontrivial. In (c) there are no isomorphisms
within a series because tligls are different. To have an isomorphism
between members of two series, we need at least two series with the same
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Dynkin diagram and automorphism. Then we examine the possibilities
and are led to compase* (8) with so(6, 2). The standard Vogan diagrams

for these two Lie algebras are isomorphic, and hence the Lie algebras are
isomorphic by Theorem 6.74.

11. Restricted Roots in the Classification

Additional information about the simple real Lie algebras of 810 comes
by switching from a maximally compact Cartan subalgebra to a maximally
noncompact Cartan subalgebra. The switch exposes the system of restricted
roots, which governsthe lwasawa decomposition and some further structure
theory that will be developed in Chapter VII.

According to 87 the switch in Cartan subalgebra is best carried out
when we can find a maximal strongly orthogonal sequence of noncompact
imaginary roots such that, after application of the Cayley transforms, no
noncompact imaginary roots remain gifis a noncomplex simple real Lie
algebra and if we have a Vogan diagram ggias in Theorem 6.96, such a
sequence is readily at hand by an inductive construction. We start with a
noncompact imaginary simple root, form the set of roots orthogonal to it,
label their compactness or noncompactness by means of Proposition 6.72,
and iterate the process.

EXAMPLE. Letgo = su(p, n — p) with p < n — p. The distinguished
Vogan diagram is of typé\,_; with e, — ey, as the uniqgue noncompact
imaginary simple root. Since the Dynkin diagram does not have a double
line, orthogonality implies strong orthogonality. The above process yields
the sequence of noncompact imaginary roots

2f, =€, — €51

2fp 1 =€1— €2
(6.106)

2f, =€ — ey

We do a Cayley transform with respect to each of these. The order is
irrelevant; since the roots are strongly orthogonal, the individual Cayley
transforms commute. It is helpful to use the same names for roots before
and after Cayley transform but always to remember what Cartan subalgebra
is being used. After Cayley transform the remaining imaginary roots are
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those roots involving only indices®2+ 1, .. ., n, and such roots are com-
pact. Thus a maximally noncompact Cartan subalgebra has noncompact
dimensionp. The restricted roots are obtained by projectinggalt g on

the linear span of (6.106). If £ k < | < p, we have

(8 — &pr1-1) — 3(8 — €p11) + (Orthogonal to (6.106)
= (fx — f) 4+ (orthogonal to (6.106)

& —8

Thus fi — f; is arestricted root. For the sarkandl, e, — €,,.1_ restricts
to fy + f,. Inaddition, ifk+1 = 2p+ 1, thene, — g restricts to &, while

if kK < pandl > 2p, theng, — g restricts tof,. Consequently the set of
restricted roots is

| (e flU {21 if2p=n.

ThusX is of type(BC), if 2p < nand of typeC, if 2p = n.

We attempt to repeat the construction in the above example for all of the
classical matrix algebras and exceptional algebras in Theorem 6.105, parts
(c) and (d). There is no difficulty when the automorphism in the Vogan
diagramistrivial. However, the cases where the automorphism is nontrivial
require special comment. Except &df2n + 1, R), which we can handle
manually, each of these Lie algebras Igasrthogonal t®¥8 whenevers
is a complex simple root. Then it follows from Proposition 6.104 that any
positive imaginary root is the sum of imaginary simple roots and a number
of pairsg, 68 of complex simple roots and that the complex simple roots can
be disregarded in deciding compactness or noncompactness. In particular,
sl(n, H)) and E IV have no noncompact imaginary roots.

EXAMPLE. Letgo = E I. The Vogan diagram is

o3 o

oo |l |

as 673
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Let o, be the first member in the orthogonal sequence of imaginary
noncompact roots. From the theory 05, a nonobvious root orthogonal
to oz IS g = an + 204 + a3 + as. This root is imaginary, and no smaller
imaginary rootis orthogonal tg,. We can disregard the complex p&it as
in deciding compactness or noncompactness (Proposition 6.104), and we
see thaty, is noncompact. Following our algorithm, we can expand our
list to o, ag. The Vogan diagram of the system orthogonalids

o1 a3
Qo I ]
&7} a5

This is the Vogan diagram afl(6, R), and we therefore know that the
list extends to

o2, Ao, 01 + g+ g, 03+ (Olj_ + o + 016) + os.

Thus the Cayley transforms increase the noncompact dimension of the
Cartan subalgebra by 4 from 2 to 6, and it follows that E | is a split real
form.

It is customary to refer to the noncompact dimension of a maximal
noncompact Cartan subalgebraggfas thereal rank of go. We are led to
the following information about restricted roots. In the case of the classical
matrix algebras, the results are

(6.107)
g0 Condition| Real Rank Restricted Roots

su(p,q) | p>(q q (BC)qif p>dq, Cqif p=q
so(p,q) | p=qQ q Byif p>0q, Dqif p=gq
sp(p,Q) | pP=q q (BC)qif p>dq, Cqif p=q
sp(n, R) n Cn
50*(2n) [5] Ci,if neven (BC)y(,_y if nodd
sl(n, R) n—-1 A1
sl(n, H) n—1 A1
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For the exceptional Lie algebras the results are

do Real Rank | Restricted Roots
El 6 Ee
Ell 4 F4
E 2 (BC)»
EIV 2 A,
EV 7 E;
(6.108) EVI 4 Fy
E VI 3 Cs
E VI 8 Es
EIX 4 F4
Fl 4 F4
Fll 1 (BC),
G 2 G>

For the Lie algebras in Theorem 6.105a, the above analysis simplifies.
Hereg is complex simple, and we takg = g®. Let J be multiplication
by +/—1 within g®. If ¢ is a Cartan involution of®, then Corollary 6.22
shows that comes from conjugation af with respect to a compact real
formug. In other wordsg® = up @ Jug with (X + JY) = X — JY. Let
ho = to @ ao be ad stable Cartan subalgebra gf. Sincet, commutes
with ag, to commutes withJag. Also ap commutes withJa,. Sincehq
is maximal abelianJay C t,. Similarly Jt; € ag. ThereforeJt, = ao,
andbh, is actually a complex subalgebra g@f By Proposition 2.7}, is a
(complex) Cartan subalgebragf Let

g:bO@®ga

acA

be the root-space decomposition. Here eadh complex linear on the
complex vector spadg. Thus distincte’s have distinct restrictions ta,.
Hence

' =adttd@Pa.

aeA

is the restricted-root space decomposition, each restricted-root space being
2-dimensional oveR. Consequently the real rank gf equals the rank
of g, and the system of restricted rootsgsfis canonically identified (by
restriction or complexification) with the system of rootgyofin particular
the systen® of restricted roots is of the same typ&,(throughG,) as the
systemA of roots.
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The simple real Lie algebras of real-rank one will play a special role in
Chapter VII. From Theorem 6.105 and our determination above of the real
rank of each example, the full list of such Lie algebras is

su(p, 1) with p > 1

so(p, 1) with p > 3

sp(p, 1) with p > 2
Fll

(6.109)

Low-dimensional isomorphisms show that other candidates are redundant:

51(2,C) = 50(3,1)
50(2,1) = su(l, 1)
sp(1,1) Es0(4,1)
sp(1L, R) = su(l, 1)
50"(4) = su(2) @ su(l, 1)
50%(6) = su(3, 1)
s[(2,R) = su(l, 1)
s[(2, H) = s0(5,1).

(6.110)

12. Problems

1. Prove that ifg is a complex semisimple Lie algebra, then any two split real
forms ofg are conjugate via Auf.

2. Letgo = £ @ po be a Cartan decomposition of a real semisimple Lie algebra.
Prove thatg is compactly embedded iy and that it is maximal with respect
to this property.

3. LetG be semisimple, lefip = &, @ po be a Cartan decomposition of the Lie
algebra, and IeX andY be inpg. Prove that exiX expY expX is in exppo.

4. Letg € SL(m, C) be positive definite. Prove thgtcan be decomposed as
g = lu, wherel is lower triangular and is upper triangular.

5. In the development of the lwasawa decomposition & (p, 1)o and
SU (p, 1), make particular choices of a positive system for the restricted roots,
and computeN in each case.

6. (a) Prove thafiy = so*(2n) consists in block form of all complex matrices

(_g g) with a skew Hermitian andb skew symmetric.
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(b) Ingo, letho be the Cartan subalgebrain (6.102). Assuming that the roots
arexe =+ g, find the root vectors. Show that — g is compact and
& + g is noncompact.

(c) Show that a choice of maximal abelian subspags)d$ to takea to be
0 and takeb to be block diagonal and real with blocks of sizes .2, 2
if nisevenand 12, ..., 2 if nis odd.

(d) Find the restricted-root space decompositioguatlative to the maximal
abelian subspace ¢§ given in (c).

Lethy = to @ ap be a maximally noncompaét stable Cartan subalgebra,
and leth = t @ a be the complexification. Fix a positive systéit for the
restricted roots, and introduce a positive syst&rm for the roots so that a
nonzero restriction tap of a member ofA™ is always inz .

(a) Prove that every simple restricted root¥or is the restriction of a simple
root for A™.

(b) LetV be the span of the imaginary simple roots. Prove for each simple
notinV that—0¢; isin o + V for a unique simpley;/, so thaty; — o
defines a permutation of order 2 on the simple roots n¥t.in

(c) Foreach orbiti, i’} of one or two simple roots not i, define an element
H = Hgiiy e hbyai(H) = i (H) = 1 ande; (H) = 0 for all otherj.
Prove thatH is in a.

(d) Using the elements constructed in (c), prove that the linear span of the
restrictions toag of the simple roots has dimension equal to the number
of orbits.

(e) Conclude from (d) that the nonzero restrictiormgaf a simple root for
AT is simple forz+.

The grouK for G = SL(3, R) is K = SO(3), which has a double covés.
ThereforeG itself has a double coveéB. The groupM = Zk (A) is known
from Example 1 of 85 to be the direct sum of two 2-element groups. Prove
thatM = Zz(A) is isomorphic to the subgroyg:1, +i, &, £k} of the unit
guaternions.

Suppose thaD and D’ are Vogan diagrams corresponding gg and gj,
respectively. Prove that an inclusi@ C D’ induces a one-one Lie algebra
homomorphisngg — g

LetG be a semisimple Lie group with Lie algehya Fix a Cartan involution

6 and Cartan decompositigry = €, @ po, and letk be the analytic subgroup

of G with Lie algebraty. Suppose thajy has a Cartan subalgebra contained

in £o.

(a) Prove that there exiskse K such that = Ad(k).

(b) Prove that if is the system of restricted roots gf, then—1 is in the
Weyl group ofZ.
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LetG be a semisimple Lie group with Lie algelg@ Fix a Cartan involution

0 and Cartan decompositigig = £ @ po, and letk be the analytic subgroup
of G with Lie algebraty. Prove that ifgg does not have a Cartan subalgebra
contained irtg, then there does not existe K such that) = Ad(k).

Letty @ ag be a maximally noncompasét stable Cartan subalgebra. Prove

that if « is a root, thenr + 6« is not a root.

Forgo = sl(2n, R), Ietbg) consist of all block-diagonal matrices whose first

i blocks are of size 2 of the for+( ;‘ fj )} forl < j <i, and whose

-

remaining blocks are(® — i) blocks of size 1.

(a) Prove that thebf)'), 0 <i < n, form a complete set of nonconjugate
Cartan subalgebras g§.

(b) Relatehé" to the maximally compacé stable Cartan subalgebra of
Example 2 in 88, using Cayley transforms.

(c) Relatehf)') to the maximally noncompaét stable Cartan subalgebra of
diagonal matrices, using Cayley transforms.

The example in 87 constructs four Cartan subalgebraspi@; R). The

first one b is maximally noncompact, and the last ofygis maximally
compact. The second one has noncompact part contairigdaimd compact

part contained iy, but the third one does not. Show that the third one is not
even conjugate to a Cartan subalgebra whose noncompact part is contained in
ho and whose compact part is containedjn

V2(1 i

Let a(2n)-by-(2n) matrix be given in block form by72 . Define

i 1
a mappingX — Y of the set of(2n)-by-(2n) complex matrices to itself by

1 i 1 i\

Y_<i1>x<il)'

(a) Prove that the map carries(n, n) to an image whose membeYsare
characterized by TY = 0andJY +Y*J = 0, whereJ is asin Example 2
of §1.8.

(b) Prove that the mapping exhibits(n, n) N sp(n, C) as isomorphic with
sp(n, R).

(c) Within go = su(n, n) N sp(n, C), letd be negative conjugate transpose.
Definehg to be the Cartan subalgebra in (6.102). Referring to Example 3
in 8l11.1, find all root vectors and identify which are compact and which
are noncompact. Interpret the above mappindgi® as a product of
Cayley transformsg. Which rootsg are involved?

(a) Prove that every element 8f (2, R) is conjugate to at least one matrix
of the form
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a o0 1t -1 t or cosf sind
0 al)’ 0 1)’ 0o -1)’ —sind cosh )’

Herea is nonzero, antl andé are arbitrary inR.
(b) Prove that the exponential map fraitid2, R) into SL (2, R) has image

{(X|TrX > -2} uU{-1}.
Letg be a simple complex Lie algebra. Describe the Vogan diagragti .of

This problem examines the effect on the painting in a Vogan diagram when
the positive system is changed front to s, A", wherea is an imaginary
simple root.

(&) Show that the new diagram is a Vogan diagram with the same Dynkin di-
agram and automorphism and with the painting unchanged at the position
of « and at all positions not adjacentdo

(b) If @ is compact, show that there is no change in the painting of imaginary
roots in positions adjacent ta

(c) If « is noncompact, show that the painting of an imaginary root at a
position adjacent ta is reversed unless the root is connected by a double
line toa and is long, in which case it is unchanged.

(d) Devise an algorithm for a Vogan diagram of typg for a step-by-step
change of positive system so that ultimately at most one simple root is
painted (as is asserted to be possible by Theorem 6.96).

In the Vogan diagram from Theorem 6.96 for the Lie algebra F Il of 810, the

simple root% (1 — & — 63 — &) is noncompact, and the simple roets— e,

€3 — €4, andey are compact.

(a) Verify that%(el — €& + €3 + €4) is noncompact.

(b) The roots}(e; — &; — €3 — e4) and3(e; — & + €3 + &) are orthogonal
and noncompact, yet (6.108) says that F Il has real rank one. Explain.

The Vogan diagram of F |, as given by Theorem 6.96ehases; as its one and
only noncompact simple root. What strongly orthogonal set of noncompact
roots is produced by the algorithm of §11?

Verify the assertion in (6.108) that E VII has real rank 3 and restricted roots
of typeCs.

Problems 22-24 give further information about the Cartan decompogiien
to @ po of a real semisimple Lie algebra. LBtbe the Killing form ofgo.

22.

Letp, be an ad, invariant subspace qfp, and defingpy* to be the set of
all X € po such thatB(X, py) = 0. Prove thaB([py, py*], €0) = 0, and
conclude thatif, py*] = 0.
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23. If py is an ad invariant subspace g, prove that pg, po] @ p; is an ideal
in go.
24. Under the additional assumption tpais simple but not compact, prove that

(@) [po, po] = to
(b) tois a maximal proper Lie subalgebramf

Problems 25-27 deal with low-dimensional isomorphisms.

25. Establish the following isomorphisms by using Vogan diagrams:
(a) theisomorphisms in (6.110)
(b) sl(4,R) = s0(3, 3), su(2, 2) = s0(4, 2), sp(2, R) = 50(3, 2)
(c) sp(2) = s0(5), su(d) = s0(6), su(2) ® su(2) = so(4).

26. (a) Provethatthe mapping of Problem 36 of Chapter Il gives an isomorphism
of 5[(4, R) ontoso(3, 3).

(b) Prove thatthe mapping of Problem 38 of Chapter Il gives anisomorphism
of sp(2, R) ontoso(3, 2).

27. Prove that the Lie algebra isomorphisms of Problem 25b induce Lie group
homomorphismsSL (4, R) — SO(3,3)p, SU(2,2) — SO(4, 2)y, and
Sp(2, R) — SO(3, 2)¢. What is the kernel in each case?

Problems 28-35 concern quasisplit Lie algebras and inner forms. They use facts
about Borel subalgebras, which are defined in Chapter Vg.&e a real semi-
simple Lie algebra with complexificatign and letos be the conjugation aof with
respecttgo: o(X+iY) = X—iY for XandY in go. The Lie algebrag is said to
bequasisplitif g has a Borel subalgebbesuch that (b) = b. Any split real form

of g is quasisplit. Two real formgo andg, of g, with respective conjugations
ando’, are said to benner forms of one another if there existge Int g such that

o’ = Ad(g) o o; this is an equivalence relation. This sequence of problems shows
that any real form ofy is an inner form of a quasisplit form, the quasisplit form
being unique up to the action of lgt The problems also give a useful criterion
for deciding which real forms are quasisplit.

28. Show that the conjugatiost, , of sl(m + n, C) with respect tosu(m, n)
iS omn(X) = —lmnX*Imn. Deduce thasu(m, n) andsu(m’, n’) are inner
forms of one anotherihn+n=m +n'.

29. Letgg be a real form ofy, and leto be the corresponding conjugation gf
Prove that there exists an automorphisnof Int(g®) whose differential is .

30. Problem 35 of Chapter V dealt with a tripgke b, { X, }) consisting of a Borel
subalgebra of g, a Cartan subalgebifaof g that lies inb, and a system
of nonzero root vectors for the simple roots in the positive system of roots
definingb. Let (b, b/, {X«}) be another such triple. Under the assumption
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thatthere is acompact Lie algehygthat is areal form of and has the property
thatho = h Nug is a maximal abelian subalgebrawgf that problem showed
that there exists an elemegte Intg such that Adg)b = b’, Ad(g)h = K/,
and Adg){X,} = {X,}. Prove that the assumption about the existenag of
is automatically satisfied and that the elemgig unique.

Letgo be a real form ofg, let o be the corresponding conjugation @f
and let(b, b, {X,}) be a triple as in Problem 30. Choogeec Intg as in
that problem carrying the tripl€b, b, {X,}) to the tripleo (b, b, {X,}) =

(0(b),0(h), 0{X,}), and leto’ = Ad(g)~* o 0. Prove thaio’)? is in Intg,

deduce thato’)?> = 1, and conclude that’ is the conjugation ofj with

respect to a quasisplit real forgy of g such thagg andgg are inner forms of
one another.

Letgo be a quasisplit real form gf, let o be the corresponding conjugation
of g, and letb be a Borel subalgebra gfsuch that (b) = b. Writeb = hdn
for a Cartan subalgebigpof g, wheren = [b, b]. Let Hs be the member of
corresponding to half the sum of the positive roots, anty leé the centralizer
Zy(Hs + o (Hs)). Using Problem 34 of Chapter V, prove thgtis a Cartan
subalgebra of such thab = §’ @ nando (h') = §'.

Letgo be a real form ofy, and letd be a Cartan involution ofg. Prove that
the following are equivalent:
(a) The real fornyg is quasisplit.
(b) If ho = ap B to is @ maximally noncompaét stable Cartan subalgebra
of go and ifh = b§, thenA(g, h) has no imaginary roots.
(c) If go = & @ po is the Cartan decomposition g§ with respect t@ and
if ap is maximal abelian ipo, thenmg = Z,(ap) is abelian.

Letgo be a quasisplit real form @f, leto be the corresponding conjugation of
g, and letb be a Borel subalgebra gfsuch that (b) = b. Using Problem 32,
write b = § @ n for a Cartan subalgebri of g with o(h) = b, where

n = [b, b]. Prove that the seftX,} of root vectors for simple roots can be
chosen so that{X,} = {X,}.

Let go and g; be quasisplit real forms of, let o and o’ be their corre-
sponding conjugations @f, and suppose thab, b, {X,}) and (b, ', {Xu'})
are triples as in Problem 30 such thatb, b, {X.}) = (b, 5, {X,}) and
o' (b, 0, { X)) = (0,0, {Xy}). Chooseg € Intg by that problem such
that Ad(@)(b, b, {X,}) = (b, b, {X«}). Prove that ifgo andgg are inner
forms of one another, then the automorphism@d o o Ad(g)~* o o’ of
g sends(t’, iy, {Xy}) to itself and is inner, and conclude thatandgg are
conjugate via Ing.








