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CHAPTER V

Lebesgue Measure and Abstract Measure Theory

Abstract. This chapter develops the basic theory of measure and integration, including Lebesgue
measure and Lebesgue integration for the line.

Section 1 introduces measures, including 1-dimensional Lebesgue measure as the primary ex-
ample, and develops simple properties of them. Sections 2—4 introduce measurable functions and
the Lebesgue integral and go on to establish some easy properties of integration and the fundamental
theorems about how Lebesgue integration behaves under limit operations.

Sections 5-6 concern the Extension Theorem announced in Section 1 and used as the final step in
the construction of Lebesgue measure. The theorem allows o -finite measures to be extended from
algebras of sets to o-algebras. The theorem is proved in Section 5, and the completion of a measure
space is defined in Section 6 and related to the proof of the Extension Theorem.

Section 7 treats Fubini’s Theorem, which allows interchange of order of integration under rather
general circumstances. This is a deep result. As part of the proof, product measure is constructed and
important measurability conditions are established. This section mentions that Fubini’s Theorem will
be applicable to higher-dimensional Lebesgue measure, but the details are deferred to Chapter VI.

Section 8 extends Lebesgue integration to complex-valued functions and to functions with values
in finite-dimensional vector spaces.

Section 9 gives a careful definition of the spaces L!, L%, and L for any measure space,
introduces the notion of a normed linear space, and verifies that these three spaces are examples.
The main theorem of the section about L', L2, and L™ is the completeness of these three spaces as
metric spaces. In addition, the section proves a version of Alaoglu’s Theorem concerning weak-star
convergence.

1. Measures and Examples

In the theory of the Riemann integral, as discussed in Chapter I for R! and in
Chapter III for R”, we saw that Riemann integration is a powerful tool when
applied to continuous functions. Riemann integration makes sense also when
applied to certain kinds of discontinuous functions, but then the theory has some
weaknesses.

Without any change in the definitions, one of these is that the theory applies
only to bounded functions. Thus we can compute fol xPdx = [xP/(p+ D]} =
(p + 1)~! for p > 0, but only the right side makes sense for —1 < p < 0. More
seriously we made calculations with trigonometric series in Section I.10 and found
that 1 log (55-—) = Yoo, % and 2(r — 0) = Y o0 | 2% for 0 < 6 < 2.

2—2cosf n=1 n n=1 n
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268 V. Lebesgue Measure and Abstract Measure Theory

When we tried to explain these similar-looking identities with Fourier series, we
were able to handle the second one because %(7‘[ — ) is a bounded function, but
we were not able to handle the first one because % log (m) is unbounded.

Other weaknesses appeared in Chapters I-1V at certain times: when we always
had to arrange for the set of integration to be bounded, when we had no clue which
sequences {c,} of Fourier coefficients occurred in the beautiful formula given by
Parseval’s Theorem, when Fubini’s Theorem turned out to be awkward to apply
to discontinuous functions, and when the change-of-variables formula did not
immediately yield the desired identities even in simple cases like the change from
Cartesian coordinates to polar coordinates.

The Lebesgue integral will solve all these difficulties when formed with respect
to “Lebesgue measure” in the setting of R”. In addition, the Lebesgue integral
will be meaningful in other settings. For example, the Lebesgue integral will be
meaningful on the unit sphere in Euclidean space, while the Riemann integral
would always require a choice of coordinates. The Lebesgue integral will be
meaningful also in other situations where we can take advantage of some action
by a group (such as a rotation group) that is difficult to handle when the setting has
to be Euclidean. And the Lebesgue integral will enable us to provide a rigorous
foundation for the theory of probability.

There are five ingredients in Lebesgue integration, and these will be introduced
in Sections 1-3 of this chapter:

(i) anunderlying nonempty set, suchasR! in the case of Lebesgue integration
on the line,
(ii) a distinguished class of subsets, called the “measurable sets,” which will
form a “o-ring” or a “o-algebra,”
(iii)) a measure, which attaches a member of [0, +-00] to each measurable set
and which will be “length” in the case of Lebesgue measure on the line,
(iv) the “measurable functions,” those functions with values in R (or some
more general space) that we try to integrate,
(v) the integral of a measurable function over a measurable set.

Let us write X for the underlying nonempty set. The important thing about
whatever sets are measurable will be that certain simple set-theoretic operations
lead from measurable sets to measurable sets. The two main definitions are those
of an “algebra” of sets and a “o -algebra,” but we shall refer also to the notions of
a “ring” of sets and a “o-ring” in order to simplify certain technical problems in
constructing measures. An algebra of sets A is a set of subsets of X containing
@ and X and closed under the operation of forming the union £ U F of two
sets and under taking the complement E° of a set. An algebra is necessarily
closed under intersection E N F and difference £ — F = E N F°. Another
operation under which A is closed is symmetric difference, which is defined by
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EAF = (E — F) U (F — E); we shall make extensive use of this operation! in
Section 6 of this chapter.

In practice, despite the effort often needed to define an interesting measure on
the sets in an algebra, the closure properties” of the algebra are insufficient to deal
with questions about limits. For this reason one defines a o -algebra of subsets of
X to be an algebra that is closed under countable unions (and hence also countable
intersections). Typically a general foundational theorem (Theorem 5.5 below) is
used to extend the constructed would-be measure from an algebra to a o-algebra.

Aring R of subsets of X is a set of subsets closed under finite unions and under
difference. Then R is closed also under the operations of finite intersections,
difference, and symmetric difference.> A o-ring of subsets of X is a ring of
subsets that is closed under countable unions.

EXAMPLES.
(1) A = {@, X}. This is a o -algebra.
(2) All subsets of X. This is a o-algebra.

(3) All finite subsets of X. This is a ring. If the complements of such sets are
included, the result is an algebra.

(4) All finite and countably infinite subsets of X. This is a o-ring. If the
complements of such sets are included, the result is a o-algebra.

(5) All elementary sets of R. These are all finite disjoint unions of bounded
intervals in R with or without endpoints. This collection is a ring. To see the
closure properties, we first verify that any finite union of bounded intervals is a

finite disjoint union; in fact, if Iy, ..., I, are bounded intervals such that none
contains any of the others, then I — Ufn;ll I, is an interval, and these intervals
are disjoint as k varies; also these intervals have the same union as Iy, ..., I,.

Now let E = |J; l; and F = J; J; be given. Since I; N J; is an interval,
the identity £ N F = Ui,j (I; N J;) shows that £ N F is a finite union of
intervals. Since each [; — J; is an interval or the union of two intervals, the
identity E — F = (J; ("); (i — J;) then shows that E — F is a finite union of
intervals.

(6) If C is an arbitrary class of subsets of X, then there is a unique smallest
algebra A of subsets of X containing C. Similar statements apply to o-algebras,

!For some properties of symmetric difference, see Problem 1 at the end of the chapter.

2An algebra of sets really is an algebra in the sense of the discussion of algebras with the
Stone—Weierstrass Theorem (Theorem 2.58). The scalars replacing R or C are the members of the
two-element field {0, 1}, addition is given by symmetric difference, and multiplication is given by
intersection. The additive identity is &, the multiplicative identity is X, and every element is its own
negative. Multiplication is commutative.

3A ring of sets really is a ring in the sense of modern algebra; addition is given by symmetric
difference, and multiplication is given by intersection.
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rings, and o-rings. In fact, consider all algebras of subsets of X containing C.
Example 2 shows that there is one. Let .4 be the intersection of all these algebras,
i.e., the set of all subsets that occur in each of these algebras. If two sets occur
in A, they occur in each such algebra, and their intersection is in each algebra.
Hence their intersection is in .A. Similarly A4 is closed under differences.

If R is aring of subsets of X, a set function is a function p : R — R*, where
R* denotes the extended real-number system as in Section I.1. The set function
is nonnegative if its values are all in [0, +o00], it is additive if p(&) = 0 and if
p(EUF) = p(E)+ p(F) whenever E and F are disjoint sets in R, and it is
completely additive or countably additive if p(@) = 0 and if p(U;2, E,) =
fo:l p(E,) whenever the sets E, are pairwise disjoint members of R with
U2, E, in R. In the definitions of “additive” and “completely additive,” it is
taken as part of the definition that the sums in question are to be well defined in
R*. Observe that completely additive implies additive, since p (&) = 0.

Proposition 5.1. Anadditive setfunction p onaring R of sets has the following
properties:

(a) p( U,]1V=1 E,z) = 22/:1 p(E,) if the sets E, are pairwise disjoint and are
inR.

b) p(EUF)+ p(ENF)=p(E)+ p(F)if E and F are in R.

(c) If E and F arein R and |p(E)| < +00, then |p(E N F)| < +o0.

(d) If E and F are in R and if |[p(E N F)| < 400, then p(E — F) =
p(E) — p(ENF).

(e) If p is nonnegative and if £ and F are in R with E C F, then p(E) <
p(F).

(f) If p is nonnegative and if E, Ey, ..., Ey are sets in R such that £ C
UN_ | E,., then p(E) < 3N p(E).

(g) If p is nonnegative and completely additive and if E, Ey, E,, ... are sets
in R such that E C | J,2 | Ep, then p(E) < Y 2| p(Ey).

PROOF. Part (a) follows by induction from the definition. In (b), we have
EUF =(E—-F)U(ENF)U(F — E) disjointly. Application of (a) gives
P(EUF)=p(E—F)4+p(ENF)+ p(F — E), with 400 and —oo not both
occurring. Adding p(E N F) to both sides, regrouping terms, and taking into
accountthat p(E) = p(E—F)+p(ENF)and p(F) = p(F—E)+p(ENF),
we obtain (b). The right side of the identity p(E) = p(ENF)+ p(E — F) cannot
be well defined if p(E) is finite and p (E N F) is infinite, and thus (c) follows. In
the identity p(E) = p(ENF) + p(E — F), we can subtract p(E N F) from both
sides and obtain (d) if p(E N F) is finite. For (e), the inclusion £ C F forces
F = (F — E) U E disjointly; then p(F) = p(F — E) 4+ p(E), and (e) follows.
In (), put F, = E, —J}Z| Ex. Then E = J\_,(E N F,) disjointly, and (a) and
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(e) give p(E) = Zﬁlvzl p(ENE,) < 2;11\1:1 o(F,) < Zﬁ:’:l p(E,). Conclusion
(g) is proved in the same way as (f). ]

Proposition S5.2. Let p be an additive set function on a ring R of sets. If p
is completely additive, then p(E) = lim p(E,) whenever {E,} is an increasing
sequence of members of R with union E in R. Conversely if p(E) = lim p(E,)
for all such sequences, then p is completely additive.

PROOF. First we prove the direct part of the proposition. For E and E, as in
the statement, let F;y = Eyand F,, = E, — E,_; forn > 2. Then E,, = UZ:] Fy
disjointly, and p(E,) = Y ;_; p(Fy) by additivity. Also, E = |J;=, Fx, and
complete additivity gives p(E) = Y oo, p(F) = lim Y _;_; p(Fx) = lim p(E,).
The direct part of the proposition follows.

For the converse let { F,} be a disjoint sequence in R with union F in R. Put
E, = Uj—; Fx. Then E, is an increasing sequence of sets in R with union F
in R. We are given that p(F) = lim p(E,), and we have p(E,) = Y _;,_, p(Fi)
by additivity and Proposition 5.1a. Therefore p(F) = Z,fil p(Fy), and we
conclude that p is completely additive. O

Corollary 5.3. Let p be an additive set function on an algebra A of subsets of
X such that |p(X)| < 4o0. If p is completely additive, then p(E) = lim p(E,)
whenever {E,} is a decreasing sequence of members of .4 with intersection E
in A. Conversely if lim p(E,) = 0 whenever {E,} is a decreasing sequence of
members of A with intersection empty, then p is completely additive.

PROOF. This follows from Proposition 5.2 by taking complements. g

A measure is a nonnegative completely additive set function on a o -ring of
subsets of X. If no ambiguity is possible about the o-ring, we may refer to a
“measure on X.” When we use measures to work with integrals, the o -ring will
be taken to be a o-algebra; if integration were to be defined relative to a o-ring
that is not a o -algebra, then constant functions would not be measurable.

The assumption that our o -ring is a o -algebra for doing integration is no loss
of generality. Even when the o-ring is not a o -algebra, there is a canonical way
of extending a measure from a o-ring to the smallest o -algebra containing the
o-ring. Proposition 5.37 at the end of Section 5 gives the details.

EXAMPLES.
(1) For {&, X}, define u(X) = a > 0. This is a measure.

(2) For X equal to a countable set and with all subsets in the o -algebra, attach
a weight > 0 to each member of X. Define w(E) to be the sum of the weights
for the members of E. This is a measure.
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(3) For X arbitrary but nonempty, let u(E) be the number of points in E, a
nonnegative integer or +o0o0. We refer to 1 as counting measure.

(4) Lebesgue measure m on the ring R of elementary sets of R. If F is a
finite disjoint union of bounded intervals, we let m(E) be the sum of the lengths
of the intervals. We need to see that this definition is unambiguous. Consider
the special case that / = I} U --- U [, disjointly with I; extending from ay
to by, with or without endpoints. Then we can arrange the intervals in order
so that by = a4y fork = 1,...,r — 1. In this case, m(J) = b, — a; and
Y ey m(l) = >, (b —ax) = b, —ay. Thus the definition is unambiguous in
this special case. If E =1 U---UI, = J; U---U Jg, then the special case gives
m(Jy) = Y;_ym(I;NJ) and hence Y 3, m(Jy) = 3, m(I; N Jy). Reversing
the roles of the /;’s and the Ji’s, we obtain Z;:l m(l;) = 3, m(I; N Jy). Thus
Yooy m(Jy) = Z;zl m(I;), and the definition of m on R is unambiguous. It is
evident that m is nonnegative and additive. We shall prove that m is completely
additive on R. Even so, m will not yet be a measure, since R is not a o-ring.
That step will have to be carried out separately. Proving that m is completely
additive on the ring R uses the fact that m is regular on R in the sense that
if £ is in R and if € > 0 is given, then there exist a compact set K in R
and an open set U in R such that K € E C U, m(K) > m(E) — €, and
m(U) < m(E) + €: In the special case that E is a single bounded interval with
endpoints a and b, we can prove regularity by taking U = (a — €/2,b + €/2)
and by letting K = @ifb—a <eorK =la+€/2,b—¢€/2]ifb—a > €. In
the general case that £ is the union of n bounded intervals /;, choose K; and U;
for I; and for the number €/n, and put K = |Jj_, K; and U = |J;_, U;. Then
m(K) = Z?:l m(K;) > Z;’Z] (m(I)) — €/n) = m(E) — €, and Proposition

5.1f givesm(U) < Z;’zl m(U;) < Z}’:l (m(Ij) + €/n) = m(E) + €.

Proposition 5.4. Lebesgue measure m is completely additive on the ring R
of elementary sets in R,

PROOF. Let {E,} be a disjoint sequence in R with union E in ‘R. Since
m is nonnegative and additive, Proposition 5.1 gives m(E) > m(Jy_; Ex) =
Y i_; m(Ey) for every n. Passing to the limit, we obtain m(E) > Y ;2 m(Ey).
For the reverse inequality, let € > 0 be given. Choose by regularity a compact
member K of R and open members U,, of R such that K C E, U, 2D E, for all
n,m(K) > m(E) — €, and m(U,) < m(E,) +€/2". Then K < |77, U,, and
the compactness implies that K < U,I,vzl U, for some N. Hence m(E) — € <
m(K) < ij:l m(U,) < Zﬁ:/:l (m(E,) +€/2") <Y o2 m(E,) + €. Since € is
arbitrary, m(E) < Z;”;l m(E,), and the proposition follows. ]
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The smallest o-ring containing the ring R of elementary sets in R' is in
fact a o-algebra, since R! is the countable union of bounded intervals. For
Lebesgue measure to be truly useful, it must be extended from R to this o -algebra,
whose members are called the Borel sets of R'. Borel sets of R! can be fairly
complicated. Each open set is a Borel set because it is the countable union of
bounded open intervals. Each closed set is a Borel set, being the complement
of an open set, and each compact set is a Borel set because compact subsets of
R! are closed. In addition, any countable set, such as the set Q of rationals, is a
Borel set as the countable union of one-point sets.

The extension is carried out by the general Extension Theorem that will be
stated now and will be proved in Section 5. The theorem gives both existence
and uniqueness for an extension, but not without an additional hypothesis. The
need for an additional hypothesis to ensure uniqueness is closely related to the
need to assume some finiteness condition on p in Corollary 5.3: even though each
member of a decreasing sequence of sets has infinite measure, the intersection
of the sets need not have infinite measure. To see what can go wrong for the
Extension Theorem, consider the ring R’ of subsets of R! consisting of all finite
unions of bounded intervals with rational endpoints; the individual intervals may
or may not contain their endpoints. If a set function u is defined on this ring
by assigning to each set the number of elements in the set, then x is completely
additive. Each interval in R! can be obtained as the union of two sets—a countable
union of intervals with rational endpoints and a countable intersection of intervals
with rational endpoints. It follows that the smallest o -ring containing R’ is the
o-algebra of all Borel sets. The set function p can be extended to the Borel sets
in more than one way. In fact, each one-point set consisting of a rational must
get measure 1, but a one-point set consisting of an irrational can be assigned any
measure.

The additional hypothesis for the Extension Theorem is that the given nonneg-
ative completely additive set function v on a ring of sets R be o-finite, i.e., that
any member of R be contained in the countable union of members of R on which
v is finite. An obvious sufficient condition for o -finiteness is that v(FE) be finite
for every set in R. This sufficient condition is satisfied by Lebesgue measure on
the elementary sets, and thus the theorem proves that Lebesgue measure extends
in a unique fashion to be a measure on the Borel sets.

The condition of o -finiteness is less restrictive than a requirement that X be the
countable union of sets in R of finite measure, another condition that is satisfied
in the case of Lebesgue measure. The condition of o -finiteness on a ring allows
for some very large measures when all the sets are in a sense generated by the sets
of finite measure. For example, if R is the ring of finite subsets of an uncountable
set and v is the counting measure, the o -finiteness condition is satisfied. In most
areas of mathematics, these very large measures rarely arise.
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Theorem 5.5 (Extension Theorem). Let R be a ring of subsets of a nonempty
set X, and let v be a nonnegative completely additive set function on R that is
o-finite on R. Then v extends uniquely to a measure p on the smallest o-ring
containing R.

A measure space is defined to be a triple (X, A, 1), where X is a nonempty
set, A is a o-algebra of subsets of X, and u is a measure on X. The measure
space is finite if £ (X) < +o0; it is o-finite if X is the countable union of sets
on which p is finite. The real line, together with the o -algebra of Borel sets and
Lebesgue measure, is a o-finite measure space.

2. Measurable Functions

In this section, X denotes a nonempty set, and A is a o -algebra of subsets of X.
The measurable sets are the members of A.
We say that a function f : X — R* is measurable if

(i) f~'([—o0, c)) is a measurable set for every real number c.

Equivalently the measurability of f may be defined by any of the following
conditions:

(i) f~'([—o0, c]) is a measurable set for every real number c,
(iii) f~'((c, +0o0]) is a measurable set for every real number c,
(iv) f~'([c, +00)) is a measurable set for every real number c.

In fact, the implications (i) implies (ii), (ii) implies (iii), (iii) implies (iv), and (iv)
implies (i) follow from the identities*

[N =00, ) = [ £ (=00, c + 1)),
n=1

f7H (e, +oo]) = (f 7 ([=o00, )",

f7 M e, +o0l) =) £ (e — £, 400D,

n=1

F (=00, ) = (f (e, +oo))".

EXAMPLES.

(1) If A = {2, X}, then only the constant functions are measurable.

(2) If A consists of all subsets of X, then every function from X to R* is
measurable.

4Manipulations with inverse images of sets are discussed in Section A1 of Appendix A.
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(3)If X = R! and A consists of the Borel sets of R!, the measurable functions
are often called Borel measurable. Every continuous function is Borel measur-
able by (i) because the inverse image of every open set is open. Any function
that is 1 on an open or compact set and is O off that set is Borel measurable. It is
shown in Problem 33 at the end of the chapter that not every Riemann integrable
function (when set equal to O off some bounded interval) is Borel measurable.
However, let us verify that every function that is continuous except at countably
many points is Borel measurable. In fact, let C be the exceptional countable set.
The restriction of f to the metric space R — C is continuous, and hence the inverse
image in R — C of any open set [—00, ¢) is open in R — C. Hence the inverse
image is the countable union of sets (a, b) — C, and these are Borel sets. The full
inverse image in R of [—o0, ¢) under f is the union of a countable set and this
subset of R — C and hence is a Borel set.

(4) If X = R! and if A consists of the “Lebesgue measurable sets” in a sense
to be defined in Section 5, the measurable functions are often called Lebesgue
measurable. Every Borel measurable function is Lebesgue measurable, and so
is every Riemann integrable function (when set equal to O off some bounded
interval).

The next proposition discusses, among other things, functions f*, f~, and
| | defined by f*(x) = max{f(x),0}, f~(x) = —min{f(x),0}, and | f|(x) =
|f)]. Then f = f* — f~and |f| = fT+ f~.

Proposition 5.6.

(a) Constant functions are always measurable.

(b) If f is measurable, then the inverse image of any interval is measurable.

(c) If f is measurable, then the inverse image of any open set in R* is measur-
able.

(d) If f is measurable, then the functions f*, £, and | f| are measurable.

PROOF. In (a), the inverse image of a set under a constant function is either &
or X and in either case is measurable. In (b), the inverse image of an interval is the
intersection of two sets of the kind described in (i) through (iv) above and hence
is measurable. In (c), any open set in R* is the countable union of open intervals,
and the measurability of the inverse image follows from (b) and the closure of .4
under countable unions. In (d), (f7)~!((c, +00)) equals f~'((c, +00))ifc > 0
and equals X if ¢ < 0. The measurability of £~ and | f| are handled similarly. [J

Next we deal with measurability of sums and products, allowing for values
400 and —oo. Recall from Section I.1 that multiplication is everywhere defined
in R* and that the product in R* of 0 with anything is 0.
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Proposition 5.7. Let f and g be measurable functions, and let a be in R. Then
af and fg are measurable, and f 4 g is measurable provided the sum f(x)+g(x)
is everywhere defined.

PROOF. For f + g, with QQ denoting the rationals,

(f + 87" (e, +o0l = ] f 7+ 7, +ool Ng™" (=1, +o00l.
reQ
If a =0, thenaf = 0, and O is measurable. If a # 0, then
FH(E, +oo ifa >0,
(@f)~"(c, +o0] = { 1( ] .
f‘[—oo,g) ifa < 0.

If f and g are measurable and are > 0, then

Urcgorao £ (6 +00] g™ (r +00]  ife >0,

1 _
(f&) (C’+°°]_{X ifc < 0.

Hence fg is measurable in this special case. In the general case the formula
fe=fTgt+f g — fTg~ — fg" exhibits fg as the everywhere-defined
sum of measurable functions. (]

Proposition 5.8. If {f,} is a sequence of measurable functions, then the
functions

(@) sup, fa,
(b) inf, f,

(c) limsup, fn,
(d) liminf f;,,

are all measurable.

PROOF. For (a) and (b), we have (sup f,) "' (c, +o0] = Uie, £, ' (c, +00]
and (inf f,) "' ([—00,¢) = U2, f;[—00,¢). For (c) and (d), we have
limsup,, f, = inf, sup;., fi and liminf, f, = sup, infy>, fk. g

Corollary 5.9. The pointwise maximum and the pointwise minimum of a
finite set of measurable functions are both measurable.

PROOF. These are special cases of (a) and (b) in the proposition. ]

Corollary 5.10. If { f;,} is a sequence of measurable functions and if f(x) =
lim f, (x) exists in R* at every x, then f is measurable.

PROOF. This is the special case of (c) and (d) in the proposition in which
limsup, f, = liminf, f,. ]
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The above results show that the set of measurable functions is closed under
pointwise limits, as well as the arithmetic operations and max and min. Since
the measurable functions will be the ones we attempt to integrate, we can hope
for good limit theorems from Lebesgue integration, as well as the familiar results
about arithmetic operations and ordering properties.

If E is a subset of X, the indicator function® /5 of E is the function that is 1
on E and is 0 elsewhere. The set (Ir)~!(c, +o0] is @ or E or X, depending
on the value of c. Therefore /g is a measurable function if and only if E is a
measurable set.

A simple function s : X — R* is a function s with finite image contained
in R. Every simple function s has a unique representation as s = Zﬁ:/:l cnlE,,
where the ¢, are distinct real numbers and the E,, are disjoint nonempty sets with
union X. In fact, the set of numbers ¢, equals the image of s, and E, is the
set where s takes the value ¢,. This expansion of s will be called the canonical
expansion of s. The set s~!(c, +00] is the union of the sets E, such that ¢ < c,,
and it follows that s is a measurable function if and only if all of the sets E,, in
the canonical expansion are measurable sets.

Proposition 5.11. For any function f : X — [0, 4-00], there exists a sequence
of simple functions s,, > 0 with the property that for each x in X, {s,(x)} is a
monotone increasing sequence in R with limit f(x) in R*. If f is measurable,
then the simple functions s may be taken to be measurable.

PROOF. For1 <n <ocand 1 < j < n2", let

. . n .
fj=1 - J- ]
E,j=Tf 1[ on ?) Fy = f7ln. +00). S":-XI: o Ley + 0l
J:
Then {s, } has the required properties. (]

By convention from now on, simple functions will always be understood to be
measurable.

3. Lebesgue Integral

Throughout this section, (X, A, 1) denotes a measure space. The measurable sets
continue to be those in .A. Our objective in this section is to define the Lebesgue

5 Asnoted in Chapter I11, indicator functions are called “characteristic functions” by many authors,
but the term “characteristic function” has another meaning in probability theory and is best avoided
as a substitute for “indicator function” in any context where probability might play a role.



278 V. Lebesgue Measure and Abstract Measure Theory

integral. We defer any systematic discussion of properties of the integral to
Section 4.

Just as with the Riemann integral, the Lebesgue integral is defined by means
of an approximation process. In the case of the Riemann integral, the process
is to use upper sums and lower sums, which capture an approximate value of an
integral by adding contributions influenced by proximity in the domain of the
integrand. The process is qualitatively different for the Lebesgue integral, which
captures an approximate value of an integral by adding contributions based on
what happens in the image of the integrand.

Let s be a simple function > 0. By our convention at the end of the previous
section, we have incorporated measurability into the definition of simple function.
Let E be a measurable set, and let s = Zi:/:l cn 14, be the canonical expansion of

s. We define Zg(s) = Z,Izv:1 cant (A, N E). This kind of object will be what we
use as an approximation in the definition of the Lebesgue integral; the formula
shows the sense in which Zg (s) is built from the image of the integrand.

If f > 0 is a measurable function and E is a measurable set, we define the

Lebesgue integral of f on the set £ with respect to the measure  to be

[ ran= [ rerane = swp Zit)
E E 0<s<f,

s simple
This is well-defined as a member of R* without restriction as long as E is a
measurable set and the measurable function f is > 0 everywhere on X. It is
evident in this case that [, f du > 0 and that [, 0dpu = 0.

For a general measurable function f, not necessarily > 0, the integral may or
may not be defined. We write f = f* — f~. The functions f* and f~ are
> 0 and are measurable by Proposition 5.6d, and consequently [, f* du and
[ £~ du are well-defined members of R*. If [ f*du and [ f~ dpu are not
both infinite, then we define

/Efdu=/Ef(X)du(X)=/Ef+du—/Ef‘du.

This definition is consistent with the definition in the special case f > 0, since
suchan f has f~ = 0 and therefore || g S~ dp =0. We say that f is integrable
if [, fTdup and [, f~du are both finite. In this case the subsets of E where
f is +00 and where f is —oo have measure 0. In fact, if S is the subset of E
where f* is 400, then the inequality [, f*du > Zg(Cls) = Cu(S) for every
C > 0 shows that u(S) < Cc~! fE ftdu for every C; hence u(S) = 0. A
similar argument applies to the set where f~ is 4+oo.

We shall give some examples of integration after showing that the definition
of [, fdu reduces to Zg(f) if f is nonnegative and simple. The first lemma
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below will make use of the additivity of w, and the second lemma will make use
of the fact that u is nonnegative.

Lemma 5.12. Lets = Y|
function > 0, and let s = Z%Zl d, I, be another expansion in which the d,, are
> 0 and the B,, are disjoint and measurable. Then Zg(s) = ZM du(B,NE).

m=1

cnI4, be the canonical expansion of a simple
n n

PROOF. Adjoin the term O - I, p,,) to the second expansion, if necessary, to
make Ufle B,, = X. Without loss of generality, we may assume that no B,
is empty. Then the fact that the sets B, are disjoint and nonempty with union
X implies that the image of s is {d), ..., dy}. Thus we can write d,, = cpm)
for each m. Since A, = s~ '({c,}), we see that B,, C Aum). Since the B,, are

disjoint with union X, we obtain

Ac=|J  Ba
{m | n(m)=k}
disjointly. The additivity of u gives w(Ay N E) = Z{m | n(m)=k} w(B, N E), and
thus c i (Ar N E) = Z{m\n(m):k} dyyi (B, N E). Summing on k, we obtain the
conclusion of the lemma. ]

Lemma 5.13. If s and ¢ are nonnegative simple functions and if # < s on E,
then Zg (1) < Zg(s).

PROOF. If s = ij:l cjla, andt = S8, diIp, are the canonical expansions

of s and ¢, then | J i« (Aj N By) = X disjointly. Hence we can write
s = ZCjIAijk and t = deIAijk.
J.k Jk

Lemma 5.12 shows that

Te(s) =Y c¢ju(AjNBNE)  and  Zg(t) =) duu(AjN B NE).
Jk J-k
We now have term-by-term inequality: either 1 (A; N By N E) = 0 for a term, or
AiNByNE # @andany x in A; N By N E has t(x) < s(x) and exhibits d; < c;.
g

Proposition 5.14. If s > 0 is a simple function, then f gsdu = Ig(s) for
every measurable set E.

PROOF. If ¢ is a simple function with 0 < ¢ < s everywhere, then Lemma
5.13 gives Zp (1) < Zg(s). Hence [, sdu = supy_,,Zp(t) < Zg(s). On
the other hand, we certainly have Zg(s) < supy_,; Zg(t) = f g S du, and thus
[psdp =Tg(s). O
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EXAMPLES.

(1) Let A = {@, X} and u(X) = 1. Only the constant functions are measur-
able, and [, cdpu =0and [, cdp =c.

(2) Let X be a nonempty countable set, let A consist of all subsets of X, and
let o be defined by nonnegative finite weights w; attached to each point i in X.
If f = {fi} is a real-valued function, then the integral of f over X is ) fiw;
provided the integrals of f* and f~ are not both infinite, i.e., provided every
rearrangement of the series ) | f;w; converges in R* to the same sum. By contrast,
f is integrable if and only if the series > f;w; is absolutely convergent; this is
a stronger condition since the sum has to be in R. In the special case that all
the weights w; are 1, the theory of the Lebesgue integral over X reduces to the
theory of infinite series for which every rearrangement of the series converges in
R* to the same sum. This is a very important special case for testing the validity
of general assertions about Lebesgue integration.

(3)Let (X, A, 1) be the real line R! with A consisting of the Borel sets and with
w equal to Lebesgue measure m. Recall that real-valued continuous functions on
R! are measurable. For such a function f, the assertion is that

fdm = f £y ar,
la,x) a

the left side being a Lebesgue integral and the right side being a Riemann integral.
Proving this assertion involves using some properties of the Lebesgue integral
that will be proved in the next section. We give the argument now before these
properties have been established, in order to emphasize the importance of each
of these properties: If & > 0, then

! 1
h [fa,x+l1) f " /[;JC) f m] f(x) h /[x,x+h) f m f(x)

1
- E/ Lf — FG)ldm.
[x,x+h)

The absolute value of the left side is then

1 1
< —/[‘ y If — f)|ldm <= sup |f(t) — f)|m(x, x + h))
X, X+

“h h telx,x+h)
= sup [f(D) = f)I,
telx,x+h)
and the right side tends to O as & decreases to 0, by continuity of f atx. If # <O,
then the argument corresponding to the first display is
1

1
- dm — dm| = f(x) = — dm —
] /Wh)f me| 1 m| - f@ = /Mm,ﬂf m— fx)

= — - dm.
] [x—lhl,x)[f fx)ldm
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The absolute value of the left side is then < sup,c(,_p .4 |/ (#) — f(x)], and
this tends to O as 4 increases to 0, by continuity of f at x. We conclude that
f[a,~) f dm is differentiable with derivative f. By the Fundamental Theorem of
Calculus for the Riemann integral, together with a corollary of the Mean Value
Theorem, [, ., fdm = [¥ f(#)dt + ¢ for all x and some constant c. Putting
x = a,weseethatc = 0. Therefore the Riemann and Lebesgue integrals coincide
for continuous functions on bounded intervals [a, b).

4. Properties of the Integral

In this section, (X, A, u) continues to denote a measure space. Our objective
is to establish basic properties of the Lebesgue integral, including properties
that indicate how Lebesgue integration interacts with passages to the limit. The
properties that we establish will include all remaining properties needed to justify
the argument in Example 3 at the end of the previous section.

Proposition 5.15. The Lebesgue integral has these four properties:

(a) If f is a measurable function and u(E) = 0, then fE fdu=0.

(b) If E and F are measurable sets with /' C F and if f is a measurable func-
tion, then [, f*du < [, fTdwand [, f~du < [, f~ du. Consequently, if
[ f du is defined, then so is [,. dp.

(c) If ¢ is a constant function with its value in R*, then f pcdu =cu(E).

(d) If fE fdu is defined and if ¢ is in R, then fE cf du is defined and
[pefdu=c [, fdu. If fisintegrable on E, then so is cf.

PROOF. In (a), it is enough to deal with f* and f~ separately, and then it is
enough to handle s > 0 simple. For such an s, Proposition 5.14 says that the
integral equals Zg (s), and the definition shows that this is 0. In (b), Proposition
5.14 makes it clear that the inequalities are valid for any simple function > 0,
and then the general case follows by taking the supremum first for0 < s < f7
and then for0 < s < f~. In (c), if 0 < ¢ < 400, then c is simple, and the
integral equals Zg(c) = cu(E) by Proposition 5.14. If ¢ = +o0, then the case
w(E) = 0 follows from (a) and the case w(E) > 0 is handled by the observations
that fE cdu > Ig(n) = nu(E) and that the right side tends to 400 as n tends
to +00. For ¢ < 0, we have [, cdu = — [ (—c) du by definition, and then
the result follows from the previous cases. In (d), we may assume, without loss
of generality, that f > 0 and ¢ > 0. Then fE cfdu = SUP)<s<cf Te(s) =
SUPg<¢r<cr LE(CT) = cSupy<, < p LZE(1) = ¢ [ f dp, and (d) is proved. g

Proposition 5.16. If f and g are measurable functions, if their integrals over
E are defined, and if f(x) < g(x) on E, then [, fdu < [, gdu.
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REMARK. Observe that the inequality f(x) < g(x) is assumed only on E,
despite the definitions that take into account values of a function everywhere on
X. This “localization” property of the integral is as one wants it to be.

PROOF. First suppose that f > 0 and g > 0. If s is any simple function with
0 <s < f,define t to equal s on E and to equal O off E. Then0 <t < g, and
Lemma 5.13 gives Zp(s) = Zg(t) < [, gdu. Hence [, fdu < [, gdp when
f>0and g > 0.

In the general case the inequality f(x) < g(x) on E implies that f+(x) <
gt(x) on E and f~(x) > g (E) on E. The special case gives fE frdu <
[rgtduand [, f~du > [, g du. Subtracting these inequalities, we obtain
the desired result. ]

Corollary 5.17. If f and g are measurable functions that are equal on £ and
if [, f dp is defined, then [, gdu is defined and [, fdu = [, gdu.

PROOF. Apply Proposition 5.16 to the following inequalities on E, and then
sort out the results: f+ < gT, fT>g" f~ <g ,and f~ > g". O

Corollary 5.18. If f is a measurable function, then f is integrable on E if
either

(a) there is a function g integrable on E such that | f(x)| < g(x) on E, or
(b) w(E) is finite and there is a real number ¢ such that | f(x)| < con E.

PROOF. For (a), apply Proposition 5.16 to the inequalities f© < gand f~ < g
validon E. For (b), use the formula for [, ¢ d in Proposition 5.15¢ and apply (a).
O

We turn our attention now to properties that indicate how Lebesgue integration
interacts with passages to the limit. These make essential use of the complete
additivity of the measure 1. We shall bring this hypothesis to bear initially through
the following theorem.

Theorem 5.19. Let f be a fixed measurable function, and suppose that | xfdun
is defined. Then the set function p(E) = |, g J du is completely additive.

PROOF. We have p (&) = 0 by Proposition 5.15a, since (&) = 0. We shall
prove that if f > 0, then p is completely additive. The general case follows
from this by applying the result to f* and f~ separately and by using the fact
that [, f*du and [, f~ du are not both infinite. Thus we are to show that if
E =J,2, E, disjointly and if f > 0, then p(E) = > o, p(E,).

For simple s > 0O with canonical expansion s = 2;7:1 cnly,, the identity

Tr(s) = Zflvzl cnit (A, N F) and the complete additivity of u show that Zp(s) is
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a completely additive function of the set F. Thus for s simple with0 < s < f,
we have

Te(s) =) Ti,(s) < Y p(En).
n=1 n=1

oo

Hence p(E) = sup Zp(s) < ) p(Ey).

0<s<f n=1

We now prove the reverse inequality. By Proposition 5.15b, p(E) > p(E,)
for every n, since f = f*. Hence if p(E,) = +o0 for any n, the desired result
is proved. Thus assume that p(E,) < +oo for all n. Let € > 0 be given, and
choose simple functions ¢ and u that are > 0 and are < f and have

I (1) = fdu—e and I, (u) > fdu—e.
E, E;

Let s be the pointwise maximum s = max{t, #}. Then s is simple, and Lemma
5.13 gives Zg, (s) = Ig, (¢t) and Zg,(s) > Zg, (u). Consequently

p(EtUE) = / fduw>TguE,(s) =Tg (s) + Zg,(s)
E\UE,

>Tp, () +Ze,(w) = | fdu+ | fdp—2e
E, E>

= p(E1) + p(E2) — 2e.

Since € is arbitrary, p(E; U E;) > p(E;) + p(E,). By induction, we obtain
p(EyU---UE,) > p(Ey) +--- + p(E,) for every n, and thus p(E) >
p(E1) + --- + p(E,) by another application of Proposition 5.15b. Therefore
p(E) > Z;’;l p(E,), and the reverse inequality has been proved. O

We give five corollaries that are consequences of Corollary 5.17 and Theorem
5.19. The first three make use only of additivity, not of complete additivity.

Corollary 5.20. If [, f du is defined, then [, I f dy is defined and equals
Je fdu.

PROOF. Itis sufficient to handle £+ and f~ separately. Then both integrals are
defined, and [, fdu = [ Ipfdpu+ [,.0du = [ Ipfdu+ [ Iefdu =
fX IEf dpL O
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Corollary 5.21. If [, f du is defined, then | [, fdu| < [, |fldp. If fis
integrable on E, so is | f].

PROOF. Let E; = E N f~1([0, +o0]) and E; = E N f~!([—00,0)). Then
use of the triangle inequality gives

|fEfdM|:ifE] f+dM—fE2f_dM| EIE] f+d/,b—{—fE2f_dM
= Jp 1fldu+ [ | fldu= [ |fldp.

If f is integrable on E, both [, f*du and [, f~dpu are finite. Their sum is
Je 1 fldpu. O

Corollary 5.22. If f is a measurable function and w(E A F) = 0, then
[z fdp = [, fdu, provided one of the integrals exists.

PROOF. Without loss of generality, we may assume that f > 0. Then both
integrals are defined. Since EAF = (E — F)U(F — E),wehave u(E — F) =
w(F — E) = 0. Then Theorem 5.19 and Proposition 5.15a give fE fdp =
Je_p fdu+ [pop fdmn = 0+ [pop fdun = [p g fdu+ [pop fdu =
[r fdp. O

Corollary 5.23. If f isameasurable function and ifthe set A = {x | fx) # 0}
has u(A) = 0, then fx fdu = 0. Conversely if f is measurable, is > 0, and has
[x fdn=0,then A= {x| f(x) # 0} has u(A) = 0.

REMARKS. When a set where some condition fails to hold has measure 0, one
sometimes says that the condition holds almost everywhere, or a.e., or at almost
every point. If there is any ambiguity about what measure is being referred
to, one says “a.e. [di].” Thus the conclusion in the converse half of the above
proposition is that f is zero a.e. [du].

PROOF. For the first statement, Corollary 5.20 gives [y, fdu = [, Iafdu =
[, fdu = 0. Conversely let A, = f~'([1,+0c]). This is a measurable
set. Since f is > 0, A = |72, A,. Proposition 5.1g and complete additivity
of u give u(A) < Z;’;l n(Ay). If w(A,) > 0 for some n, then fX fdu =
fAn fdp+[, fdu= fAn %du = %,u(An) > 0, and we obtain a contradiction.
We conclude that u(A,) = 0 for all n and hence that w(A) = 0. ]

Corollary 5.24. If f > 0 is an integrable function on X, then for any € > 0,
there exists a § > 0 such that f £ [ du < e for every measurable set E with
u(E) < 4.
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PROOF. Let € > 0 be given. If N > 0 is an integer, then the sets Sy =
{x € X| f(x) = N} form a decreasing sequence whose intersection is § =
{x eX { fx) = +oo}. Since f isintegrable, ;1 (S) = 0 and therefore fs fdu =
0. The finiteness of |, x J du, together with Corollary 5.3 and the complete
additivity of E + [ f du given in Theorem 5.19, implies thatlimy [ fdu =
0. Choose N large enough so that fSN fdu < e€/2,and then choose 6 = €/(2N).
If w(E) <6, then

Jp = fstE fd“""fs;\'lmg fdu
< foy Fdr+ [snp Ndn < €/2+ Nu(E) < €/2+¢€/2 =,

and the proof is complete. O

In a number of the remaining results in the section, a sequence { f,,} of mea-
surable functions converges pointwise to a function f. Corollary 5.10 assures
us that f is measurable. Suppose that [, f, du exists for each n. Is it true that
[ fdp exists, is it true that lim, [, f, dju exists, and if both exist, are they
equal? Once again we encounter an interchange-of-limits problem, and there
is no surprise from the general fact: all three answers can be “no” in particular
cases. Examples of the failure of the limit of the integral to equal the integral of
the limit are given below. After giving the examples, we shall discuss theorems
that give “yes” answers under additional hypotheses.

EXAMPLES.

(1) Let X be the set of positive integers, let A consist of all subsets of X, and
let u be counting measure. A measurable function f is a sequence { f (k)} with

values in R*. Define a sequence { f;,} of measurable functions for n > 1 by taking
.00 1/n ifk <n,
o ifk > n.

Then | x Jndp = 1forall n, lim f, = 0 pointwise, and

/ lim f, du < lim/ fadu.
X X

(2) Let the measure space be X = R! with the Borel sets and Lebesgue measure

m. Define
n for0 < x < 1/n,

fo(x) = {

Then the same phenomenon results, and everything of interest is taking place
within [0, 1]. So the difficulty in the previous example does not result from the
fact that X has infinite measure.

0 otherwise.
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Theorem 5.25 (Monotone Convergence Theorem). Let £ be a measurable
set, and suppose that { f,} is a sequence of measurable functions that satisfy

0= fikk) = ) =--- = fuld) =+~

for all x. Put f(x) = lim, f, (x), the limit being taken in R*. Then f g fdpand
lim, [, f, du both exist, and

/fduz lim/fnd,u.
E n—oo E

REMARKS. This theorem generalizes Corollary 1.14, which is the special case
of the Monotone Convergence Theorem in which X is the set of positive integers,
every subset is measurable, and p is counting measure. In the general setting of
the Monotone Convergence Theorem, one of the by-products of the theorem is
that we obtain an easier way of dealing with the definition of | g fdpfor f>0.
Instead of using the totality of simple functions between 0 and f, we may use
a single increasing sequence with pointwise limit f, such as the one given by
Proposition 5.11. The proof of Proposition 5.26 below will illustrate how we can
take advantage of this fact.

PROOF. Since f is the pointwise limit of measurable functions and is > 0, f
is measurable and | g J du exists in R*. Since {f,(x)} is monotone increasing
in n, the same is true of { [, f, dj}. Therefore lim,, [} f, du exists in R*. Let
us call this limit k. For each n, [, f,du < [, f du because f, < f. Therefore
k < f £ J du, and the problem is to prove the reverse inequality.

Let ¢ be any real number with 0 < ¢ < 1, to be regarded as close to 1, and let
s be a simple function with 0 < s < f. Define

E, = {x e E| fa(x) > cs(x)}.

These sets are measurable, and E; € E, € Ez; C --- C E. Let us see that
E =2, E,. If f(x) = 0 for a particular x in E, then f,(x) = 0 for all n
and also ¢s(x) = 0. Thus x is in every E,. If f(x) > 0, then the inequality
f(x) = s(x) forces f(x) > cs(x). Since f,(x) has increasing limit f(x), f,(x)
must be > c¢s(x) eventually, and then x is in E,. In either case x is in Uzozl E,.
Thus E = ()2, E,.

For every n, we have

kZ/fndMZ/ fnduz/ csd,u:c/ sdu.
E En En Eil

Since, by Theorem 5.19, the integral is a completely additive set function, Propo-
sition 5.2 shows that lim fEn sdu = [, sdu. Therefore k > ¢ [, sdu. Since
¢ is arbitrary with 0 < ¢ < 1,k > [, sdu. Taking the supremum over s with
0 <s < f,weconclude thatk > [ fdpu. O
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Proposition 5.26. If f and g are measurable functions, if theirsumh = f+¢g
is everywhere defined, and if [, fdu + [, gdu is defined, then /, ghdp is

defined and
/hd,u:/fdu—i—/gd,u.
E E E

REMARK. It may seem surprising that complete additivity plays a role in the
proof of this proposition, since it apparently played no role in the linearity of the
Riemann integral. In fact, although complete additivity is used when f and g
are unbounded, it can be avoided when f and g are bounded, as will be observed
in Problems 4243 at the end of the chapter. The distinction between the two
cases is that the pointwise convergence in Proposition 5.11 is actually uniform if
the given function is bounded, whereas it cannot be uniform for an unbounded
function because the uniform limit of bounded functions is bounded.

PROOF. The sum # is measurable by Proposition 5.7. For the conclusions
about integration, first assume that f > 0 and g > 0. In the case of simple
functions s = ¢ + u with ¢t > 0 and u > 0, we use Proposition 5.14 and Lemma
5.12. The proposition shows that we are to prove that Zg(s) = Zg(t) + Zg(u),
and the lemma shows that we can use expansions of ¢ and u into sets on which
t and u are both constant and the conclusion about Zg(s) is evident. If f and
g are > 0 and are not necessarily simple, then we can use Proposition 5.11 to
find increasing sequences {#,} and {u,} of simple functions > 0 with limits f
and g. If s, = t, + u,, then s, is nonnegative simple, and {s,} increases to
h. For each n, we have just proved that [ s,du = [, todp + [, u,dp, and
therefore [, hdu = [, f du+ [, g du by the Monotone Convergence Theorem
(Theorem 5.25).

The next case is that f > 0, g < 0,andh = f + g > 0. Then f =
h+ (—g) withh > 0and (—g) > 0,so that [, fdu = [ hdu+ [,(—g)dp.
Hence [, hdu = [, fdu+ [, gdu, provided the right side is defined.

For a general 4 > 0, we decompose E into the disjoint union of three sets,
one where f > 0 and g > 0, one where f > 0 and g < 0, and one where f < 0
and g > 0. The additivity of the integral as a set function (Theorem 5.19), in
combination with the cases that we have already proved, then gives the desired
result. Finally for general &, we have only to write h = h™ — h™ and consider
h* and h~ separately. O

Corollary 5.27. Let E be a measurable set, and let {f,} be a sequence
of measurable functions > 0. Put F(x) = > 77, fy(x). Then [, Fdu =

vt S fadi.

PROOF. Apply Proposition 5.26 to the n' partial sum of the series, and then
use the Monotone Convergence Theorem (Theorem 5.25). O
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The next corollary is given partly to illustrate a standard technique for passing
from integration results about indicator functions to integration results about
general functions. This technique is used again and again in measure theory.

Corollary 5.28. If f > 0 is a measurable function and if v is the measure
V(E) = [, fdu,then [, gdv = [, gf du for every measurable function g for
which at least one side is defined.

REMARKS. The set function v is a measure by Theorem 5.19. In the situation
of this corollary, we shall write v = f dpu.

PROOF. By Corollary 5.20 it is enough to prove that

/ng=/gfdu- (%)
X X

For g = Ig, (%) is true by hypothesis. Proposition 5.26 shows that () extends to
be valid for simple functions g > 0. For general g > 0, Proposition 5.11 produces
an increasing sequence {s, } of simple functions > 0 with pointwise limit g. Then
(x) for this g follows from the result for simple functions in combination with
monotone convergence. For general g, write g = g+ — g™, apply (%) for g* and
g, and subtract the results using Proposition 5.26. (|

Theorem 5.29 (Fatou’s Lemma). If E is a measurable set and if {f,} is a
sequence of nonnegative measurable functions, then

/liminffndu < liminf/ Jadp.
E " n E

In particular, if f(x) = lim, f,(x) exists for all x, then

/fd,ufliminf/ fadp.
E n E

REMARK. Fatou’s Lemma applies to both examples that precede the Monotone
Convergence Theorem (Theorem 5.25), and strict inequality holds in both cases.

PROOF. Set g,(x) = infy>, fi(x). Then lim, g,(x) = liminf f,(x), and the
Monotone Convergence Theorem (Theorem 5.25) gives

/hminff,,d,u:/limg,,duzlim/ gndu.
E n E n n E

But g,(x) < f,(x) pointwise, so that [}, g, du < [ fudu forall n. Thus

lim/ gndu §liminf/ fodu,
E E

and the theorem follows. O
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Theorem 5.30 (Dominated Convergence Theorem). Let £ be a measurable
set, and suppose that { f,} is a sequence of measurable functions such that for
some integrable g, | f,| < g for all n. If f = lim f, exists pointwise, then
lim, [, f, du exists, f is integrable on E, and

/fdu:limffndu.
E " JE

PROOF. The set on which g is infinite has measure 0, since g is integrable. If
we redefine g, f,,, and f to be O on this set, we change no integrals and we affect
the validity of neither the hypotheses nor the conclusion.

By Corollary 5.18, f is integrable on E, and so is f,, for every n. Applying
Fatou’s Lemma (Theorem 5.29) to f, + g > 0, we obtain fE(f +g)dp <
liminf [, (f,+g) du. Since g is integrable and everywhere finite, this inequality

becomes
/ fdu < 1iminf/ fadu.
E E

A second application of Fatou’s Lemma, this time to g — f, > 0, gives
[e(g — f)du < liminf [.(g — fu) du. Thus

~ [ rau <iimint [ gy

E E

and /fd,uzlimsup/fndu.
E E

Therefore lim [ f, du exists and has the value asserted. (]
Corollary 5.31. Let E be aset of finite measure, let ¢ > 0 be in R, and suppose

that { f,,} is a sequence of measurable functions such that | f;,| < ¢ for all n. If
f =lim f, exists pointwise, then lim || g Jndu exists, f is integrable on £, and

/fd,u:lim/fndu.
E nJE

PROOF. This is the special case g = ¢ in Theorem 5.30. g

5. Proof of the Extension Theorem

In this section we shall prove the Extension Theorem, Theorem 5.5. After the
end of the proof, we shall fill in one further detail left from Section 1—to show
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that a measure on a o -ring has a canonical extension to a measure on the smallest
o -algebra containing the given o -ring.

Most of this section will concern the proof of the Extension Theorem in the case
that X is measurable and v(X) is finite. Thus, until further notice, let us assume
that X is a nonempty set, 4 is an algebra of subsets of X, and v is a nonnegative
completely additive set function defined on .4 such that v(X) < 4o0.

In a way, the intuition for the proof is typical of that for many existence-
uniqueness theorems in mathematics: to see how to prove existence, we assume
existence and uniqueness outright, see what necessary conditions each of the
assumptions puts on the object to be constructed, and then begin the proof.

With the present theorem in the case that v(X) is finite, we shall assign to each
subset £ of X an upper bound p*(E) and a lower bound .. (E) for the value of
the extended measure on the set E. If the existence half of the theorem is valid,
we must have . (E) < u*(FE) for E in the smallest o -algebra containing A. In
fact, we shall see that this inequality holds for all subsets E of X. On the other
hand, if u.(E) < w*(E) for some E in the o-algebra of interest and if our upper
and lower bounds are good estimates, we might expect that there is more than one
way to define the extended measure on E, in contradiction to uniqueness. That
thought suggests trying to prove that u,(E) = u*(E) for the sets of interest. One
way of doing so is to try to prove that the class of subsets for which this equality
holds is a o-algebra containing .4, and then the common value of p, and pu* is
the desired extension.

This procedure in fact works, and the only subtlety is in the definitions of
U+ (E) and u*(E). We give these definitions after one preliminary lemma that
will make w, and u* well defined. For orientation, think of the setting as the
unit interval [0, 1], with Lebesgue measure to be extended from the elementary
sets to the Borel sets. In this case the families ¢f and X in the first lemma contain
all the open sets and all the compact sets, respectively, and may be regarded as
generalizations of these collections of sets.

Lemma 5.32. Let U/ be the class of all countable unions of sets in A, and let
KC be the class of all countable intersections of sets in .A. Then p* and . are
consistently defined on I/ and /C, respectively, by letting

w(U) =1limv(A,) and Uy (K) =limv(C,)

whenever {4, } is an increasing sequence of sets in .A with union U and {C,} is a
decreasing sequence of sets in .4 with intersection K. Moreover, u* and u, have
the following properties:

(a) u* and u, agree with v on sets of A,
(b)) w*(U) < u*(V)whenever Uisinlf, VisinU,and U C V,
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(©) u4(K) < u+(L) whenever K isin /C, Lisin /C,and K C L,
(d) limu*(U,) = w*(U) whenever {U,} is an increasing sequence of sets in
U with union U.

PrROOF. If {B,} is another increasing sequence in A with union U, then
Proposition 5.2 and Theorem 1.13 give

limv(A,) = lim (limv(A,, N B,)) = lim (limv(A, N B,)) = limv(B,).
m m n n m n
Hence p* is consistently defined on /. Similarly if {D,} decreases to K, then
Corollary 5.3 and Theorem 1.13 give
v(X) = limv(Cp) = v(X) — lim (limv(C,, N Dy))
=v(X) — lim (limv(C,, N D,)) = v(X) — limv(D,),

and hence lim,, v(C,,) = lim, v(D,,). Thus u, is consistently defined on K. The
set functions p«* and w, are defined on all of ¢/ and K because a set that is a
countable union (or intersection) of sets in an algebra is a countable increasing
union (or decreasing intersection).

Of the four properties, (a) is clear, and (b) and (c) follow from the inequalities

WU)= sup v(A) < sup  v(A) = ©*(V)

ACU, AcA ACV, Ac A
d K)= inf A) < inf A) = p.(L).
an s (K) Ag}l{r}AeAv( )—Agil,lAeAv( ) = s (L)

In (d), U is in U, since the countable union of countable unions is again a
countable union, and (b) shows that lim u*(U,)) < u*(U). For each n, let {Aﬁ,ﬁ')}
be an increasing sequence of sets from .4 with union U,. Arrange all the A% in
a sequence, and let By denote the union of the first K members of the sequence.
Then {B} is an increasing sequence with union U. Let € > 0 be given, and
choose M large enough so that u*(By) > uw*(U) —e. Since the sets U, increase,
since By, is a finite union of sets Aﬁ,’,l) , and since Af,’,z ) C U,, we must have
w*(Uyn) = u*(By) for some N. But then

lim u*(Uy,) = n*(Un) = p*(Bu) = u*(U) — €.

Since € is arbitrary, lim u*(U,) > u*(U). ]

For each subset E of X, we define

p(E)y= _inf p*(U) and  p(E)= sup wu.(K).
UDE,UelU KCE,Kek
Conclusions (b) and (c¢) of Lemma 5.32 show that the new definitions of ©* and 4
are consistent with the old ones. The set functions ©* and ., on arbitrary subsets
E of X may be called the outer measure and the inner measure associated to v.
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Lemma 5.33. If A and B are subsets of X with A C B, then u*(A) < u*(B)
and (. (A) < w4«(B). In addition,
(a) if E C |y~ En, then u*(E) < 302 n*(Ey),
(b) if F and G are disjoint, then pw,(F) + 1.(G) < u(F U G).

PROOF. Since ©*(A) is an infimum over a larger class of sets than pu*(B) is,
we have u*(A) < w*(B). Similarly p,(A) < w.(B).

For (a), let E C Uzozl E,. In the special case in which E,, is in U for all n,
let {F,f{’)} be, for fixed n and varying m, an increasing sequence of sets in .4 with
union E,. For any N, we then have Uan:l(F,g) U---u F,E,N)) =FEU---UEp.
Hence

[e¢) N
By < (| |E,) =1 ( E> L 32
m( )SM(U ) im U by Lemma 5.32d

n=1

—_

n=

00
g () 200527
m=1

= limlim v(FDU-.. U FM) by definition of u* on U
m
N
< limlim Z V(F™M) by Proposition 5.1f
n=

N 00
=lim )y W'(E)) =) u(Ey).
n=1 n=1

For general subsets E, of X, choose U, in U with U, 2 E, and u*(U,) <
w*(E,) +€/2". Then E C |, U,, and the special case applied to the U, shows
that

wE) < ([JUa) Y W) < D u(En) +e.

Hence u*(E) <), n*(E,), and (a) is proved.

For (b), let F and G be disjoint. In the special case in which F and G are in
K, let {F,} and {G,} be decreasing sequences of sets in .4 with intersections F
and G. Then

ws(FUG) =limv(F, UG),) by definition of u, on IC
= lim (v(F,,) +v(Gp) —v(F, N Gn)) by Proposition 5.1b
= w4 (F) + 1(G),

the last step holding by Corollary 5.3, since F' N G is empty. For general disjoint
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subsets F' and G in X, choose K and L in  with K C F, L C G, u«(K) >
ps(F) — €, and 1, (L) > 14(G) — €. Then

Hx(FUG) = pse(KUL) = po(K) + pa(L) = s (F) + s (G) — 2,

the middle step holding by the special case. Hence 1, (FUG) > u,(F)+ . (G),
and (b) is proved. U]

Lemma 5.34. For every subset E of X, w.(E) < u*(E). Equality holds if £
is in U or K.

PROOF. The proof is in three steps.

First we prove that if U is in ¢/ and K is in /C, then u*(U) < w.(U) and
w*(K) < uy(K). In fact, choose C in A with C C U and u*(U) < v(C) + €.
Then u*(U) < v(C) 4+ € < uy(U) + € by Lemma 5.33 since C € U. Hence
w*(U) < uy(U). Similarly choose D in A with D 2 K and u.(K) > v(D) —e.
Then p4(K) > v(D) — e > u*(K) — €, and hence u,.(K) > u*(K).

Second we prove that if K is in /C, then u*(K) = p«(K). In fact, choose C
in A with C 2 K and v(C) — u«(K) < €. Then C — K is in U, and

1« (K) <v(C) < u*(C — K) + u*(K) by Lemma 5.33a
< (+(C = K) 4 p4(K)) — i1 (K) + n*(K) by the previous step
<v(C) — us(K) + u*(K) by Lemma 5.33b
< u*(K)+e by the choice of C.

Combining this inequality with the previous step, we see that u*(K) = 4 (K).
Third we prove that u,(E) < u*(E) for every E. In fact, find K in IC and U
inUwith K C E C U, uu(K) > us(E) —€,and u*(U) < u*(E) + €. Then
Us(E) < puse(K) 4+ € = pu*(K) +€ < u*(U) + € < u*(E) + 2¢, and the proof
is complete. (]

Define a subset E of X to be measurable for purposes of this section if
u+(E) = u*(E), and let B be the class of measurable subsets of X. Lemma 5.34
shows that U/ and /C are both contained in B.

Lemma 5.35. If U is in / and K is in IC with K C U, then
w' (U — K) = pu*(U) — u(K).
If E is measurable, then for any € > 0, there are sets K in /C and U in U/ with

K CFE CUand
uW(E—-K)<u*(U—-K)<e.
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PROOF. For the first conclusion, U — K is in U/ and hence u*(U — K) =
Us(U — K) = pe(U) — pny(K) = pu*(U) — uy(K) by Lemma 5.34, Lemma
5.33b, and Lemma 5.34 again.

For the second conclusion choose K in K and U in U with K € E C U,
wu(K) + 5 > pi(E), and u*(E) > p*(U) — 5. Since u.(E) = p*(E) by
the assumed measurability, we see that u.(K) + % > u*(U) — % hence that
W (U) — us(K) < €. The result now follows from Lemma 5.33 and the first
conclusion of the present lemma. (]

Lemma 5.36. The class 5 of measurable sets is a o -algebra containing .4, and
the restriction of u* to B is a measure.

PROOF. Certainly 5 2 A. The rest of the proof is in three steps.

First we prove that the intersection of two measurable sets is measurable. In
fact, let F and G be in BB, and use Lemma 5.35 to choose K C F and L € G with
W (F—-K)<eandu*(G—L) <e. Since FNG C (F—K)U(KNL)U(G—-L),

W (FNG)
<u(F—-—K)+u*(KNL)+ u*(G—L) byLemma5.33a
<u*(KNL)+2e by definition of K and L
= u«(KNL)+ 2 by Lemma 5.34
< ux(FNG)+2 since KNL C FNG.

Second we prove that the complement of a measurable set is measurable. Let
E be measurable. By Lemma 5.35 choose K in Cand U inUY with K C E C U
and u*(U — K) <e€. Since U C E° C Kand K¢ — U¢ = U — K, we have
W(ES) < u* (K= U + u*(U¢) by Lemma 5.33a
=u"(U — K)+ us(U°)  since U isin K
< €+ ui(E°).
Thus the complement of a measurable set is measurable, and B is an algebra of
sets.
Third we prove that the countable disjoint union of measurable sets is measur-

able, and * is a measure on B. In fact, let { E,,} be a sequence of disjoint sets in
B. Application of Lemma 5.33a, Lemma 5.33b, and Lemma 5.34 gives

o0

w(UE) = S W ED = 3 alEn) = li;vniu*(m
n=1 n=1 n=1 n=1
N 00 00
< 111{,11M*(’1L=J1 En) < /L*< U En> < M*( U En)-

n=1 n=1
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The end members of this chain of inequalities are equal, and thus equality must

hold throughout: u.(l, Ex) = n* (U, Ex) = Y_ n*(E,). Consequently |, E,
is measurable, and ©* is completely additive. O

PROOF OF THEOREM 5.5 UNDER THE SPECIAL HYPOTHESES. We continue to
assume that the given ring of subsets of X is an algebra and that v(X) is finite.
Define B to be the class of measurable sets in the previous construction. Then
Lemma 5.36 shows that 5 is a o-algebra containing .4. Hence B contains the
smallest o -algebra C containing 4. Lemma 5.36 shows also that the restriction
of u* to Cis a measure extending v. This proves existence of the extension under
the special hypotheses.

For uniqueness, suppose that p’ is an extension of v to C. Proposition 5.2
and Corollary 5.3 show that i has to agree with u* on I/ and with u, on . If
K C E C U with K in K and U in U, then we have

wx(K) = ' (K) < W'(E) < /(U) = u*(U).

Taking the supremum over K and the infimum over U gives u,(E) < w'(E) <
w*(E). Since E is in B, u«(E) = u*(E), and we see that u/(E) = u*(E).
Thus u’ coincides with the restriction of u* to C. This proves uniqueness of the
extension under the special hypotheses. (]

Now we return to the general hypotheses of Theorem 5.5 —that R is a ring of
subsets of X, that v is a nonnegative completely additive set function on R, and
that v is o -finite—and we shall complete the proof that v extends uniquely to a
measure on the smallest o -ring C containing R.

PROOF OF THEOREM 5.5 IN THE GENERAL CASE. If S is an element of R with
v(S) finite, define SNR = {SNR| R € R}. Then (S, SN R, v|.) is a set
of data satisfying the special hypotheses of the Extension Theorem considered
above. By the special case, if Cg denotes the smallest o -algebra of subsets of §
containing S N'R, then v’ snp hasa unique extension to a measure pg on Cs. The
measures (s have a certain consistency property because of the uniqueness: if
S’ C S, then 'U“S|S’HR = Ug.

Now let {S,} be a sequence of sets in R with union S in C and with v(S,)
finite for all n. Possibly replacing each set S, by the difference of S, and all
previous Si’s, we may assume that the sequence is disjoint. We define ©g on
the o-algebra S N C of subsets S by us(E) =), us,(ENS,) for E in S NC.
Let us check that pg is unambiguously defined and is completely additive. If
{T,,} is another sequence of sets in R with union S and with v(7},) finite for
all m, then the corresponding definition of a set function on S N Cis u\(E) =
> i1, (E N T,). The consistency property from the previous paragraph gives
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us us, (ENS, NT,) = pur, (ENS, NT,). Then Corollary 1.15 allows us to
write

We(E) =Y pr, (ENT,) =Y > ur,(ENS,NT,)

= ZZ/,LSn(EﬁSanm) ZZZMS,,(EﬂSanm)

=Y us,(ENS,) = pus(E),

and we see that ug is unambiguously defined. To check that pg is completely
additive, let F{, F3, ... be adisjoint sequence of sets in SN C with union F. Then
the complete additivity of pg,, in combination with Corollary 1.15, gives

us(F) =Y s, (FNS) =" > s, (Fu N Sy)

=3 us, (FuNS) =D s(F),

and thus g is completely additive.

The measures g are consistent on their common domains. To see the consis-
tency, let us see that ;g and @7 agree on subsets of SN 7. Let S be the countable
disjoint union of sets S, in R, and let T be the countable disjoint union of sets 7,
in R. Then S N T is the countable disjoint union of the sets S, N 7;,,. If E is in
(SNT)NC, then Corollary 1.15 and the consistency property of the set functions
wur for R in R yield

ps(E) =) us,(ENS) =) s (ENS,NT)
=> > us(ENS,NT) =YY ps,nr,(ENS,NT,)

=3 usan (ENS,NT) =Y > ug, (ENS,NT,)

=Y ur,(ENSNT,) =Y uz,(ENT,) = ur(E).

Hence the measures g are consistent on their common domains.

If M denotes the set of subsets of X that are contained in a countable union
of members of R on which v is finite, then M is closed under countable unions
and differences and is thus a o -ring containing R. It therefore contains C, and we
conclude that every member of C is contained in a countable union of members of
R on which v is finite. It follows that we can define p on all of C as follows: if E
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isin C, then E is contained in some countable union S of members of R on which
v is finite, and we define u(E) = us(E). We have seen that the measures g
are consistently defined, and hence w(E) is well defined. If a countable disjoint
union E = |J5_; E, of sets in C is given, then all the sets in question lie in a
single S, and we then have (E) = pus(E) = > o0 | us(En) = > o0 | w(Ey,). In
other words, u is completely additive. This proves existence.

For uniqueness let E be given in C, and suppose that S is a member of C
containing E and equal to the countable disjoint union of sets S, in R with v(S,)
finite for all n. We have seen that the value of u(E N S,) = ws, (E N S,) is
determined by v| AR hence by v on R. By complete additivity of u, u(E) is
determined by the values of w(E N S,) for all n. Therefore w on C is determined
by v on R. This proves uniqueness. (|

As was promised, we shall now fill in one further detail left from Section 1 —to
show that a measure on a o-ring has a canonical extension to a measure on the
smallest o-algebra containing the given o-ring.

Proposition 5.37. Let R be a o-ring of subsets of a nonempty set X, let R,
be the set of complements in X of the members of R, and let A be the smallest
o -algebra containing R. Then either

(i) R=R.=Aor
() RNR,=@and A =RUR..

In the latter case any measure i on R has a canonical extension to a measure
i1 on A given by 1 (E) = sup {u(F)| F € Rand F C E} for E in R..
This canonical extension has the property that any other extension u, satisfies
M2 = (4.

PROOF. If X is in R, then R is closed under complements, since R is closed
under differences; hence R = R, = A. If X isnotin R, then RNR, = &
because any set E in the intersection has E¢ in the intersection and then also
X = E U E°€ in the intersection. In this latter case it is plain that 4 O R UR..
Thus (ii) will be the only alternative to (i) if it is proved that B = R U R, is
a o-algebra. Certainly B is closed under complements. To see that B is closed
under countable unions, we may assume, because R is a o-ring, that we are to
check the union of countably many sets with at least one in R.. Thus let {E,}
be a sequence of sets in R, and let {F,} be a sequence of sets in R.. Then
E=J,EyisinRand F = (,-, F{ isin R, since R is a o-ring. The union
of the sets £, and F), in question is £ U F¢ = (F — E)°, is exhibited as the
complement of the difference of two sets in R, and is therefore in R.. Thus A is
closed under countable unions and is a o -algebra.
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In the case of (ii), let us see that w; is a measure on A. If we are to check
the measure of a disjoint sequence of sets in .4, there is no problem if all the sets
are in R, since |R = p is completely additive. There cannot be as many as
two of the sets in R, because no two sets F| and F, in R, are disjoint; in fact,
Fi N F, = (F{ U F5)° exhibits the intersection as in R., and the empty set is
not a member of R.. Thus we may assume that the disjoint sequence consists
of a sequence {E,} of sets in R and a single set F' in R.. If E = U;’le E,,
then u1(E) = w(E) = Y o2 n(Ey) = Y oo m1(E,). So it is enough to see
that w1(E U F) = w(E) + w1 (F). If E' is a subset of F that is in R, then
Wi (EUF) > u(EUE') = u(E) + u(E"). Taking the supremum over all such
E’ shows that ;1 (E U F) > w(E) + w1 (F). For the reverse inequality let S be
a member of R contained in £ U F. Thenthesets ENSand FNS =S5 — F¢
are in R, and thus w(S) = u(ENS) + u(FNS) < u(E) + w1 (F). Taking the
supremum over S gives w(E U F) < u(E) + p1(F). Thus u; is completely
additive.

If i is any other extension, any set F in R has p (F) > u(E) = w(E) forall
subsets E of F thatare in R. Taking the supremum over E gives w,(F) > ui(F),
and thus p, > u; as set functions on A. ]

6. Completion of a Measure Space

If (X, A nisa measure space, we define the completion of this space to be the
measure space (X, A, ) defined by

A= {EAZ

Eisin Aand Z C Z for
some Z' € Awithu(Z')=0|"

W(EAZ) = pu(E).

It is necessary to verify that the result is in fact a measure space, and we shall
carry out this step in the proposition below. In the case of Lebesgue measure m
on the line, when initially defined on the o-algebra A of Borel sets, the sets in
o-algebra A are said to be Lebesgue measurable.

Proposition 5.38. If (X, A, ) is a measure space, then the completion
(X, A, ) is a measure space. Specifically

(a) Ais a o-algebra containing A,

(b) the set function & is unambiguously defined on A e, if E\AZ =
E, A Z, as above, then u(E) = n(Ey),

(¢) wis ameasure on A, and t(E) = w(E) for all sets E in A.
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In addition,
(d) if iz is any measure on A such that L(E) = wu(E) for all E in A, then
= onA,
(e) if w(X) < 4ooandiffor E C X, u4(F) and pu*(FE) are defined by

pu«(E)= sup w(A) and  u"(E)= _inf w(A),
ACE, AecA ADE, AcA

then E is in A if and only if w(E) = w*(E).

PROOF. For (a), certainly A C A because we can use Z = Z' = o in the
definition of A. Since (EAZ) = (EAZ)AX =(EAX)AZ=E‘AZ, A
is closed under complements.

To prove closure under countable unions, let us first prove that

z:{Euz ()

Eisin Aand Z C Z for
some Z' € Awithu(Z')=01"

Thus let E U Z be given, with Z C Z'. Then EUZ = E A (Z A (E N Z)) with
ZA(ENZ)C Z'.SoEUZisin A. Conversely if E A Z is in A, we can write
EAZ=(E-Z)YU(ENZ)—Z)U(Z—E))with((ENZ")—Z)U(Z—E)) C Z,
and then we see that E A Z is of the form E” U Z” with E” in Aand Z" C Z'.

Returning to the proof of closure under countable unions, let £, U Z,, be given
in A with Z, € Z; and u(Z},) = 0. Then J,(E, U Z,) = (U, Ex) U (U, Z»)
with U, Z, € U, Z,, and u(U, Z,) = 0. In view of (x), A is therefore closed
under countable unions.

For (b), we take as giventhat E; A Z; = E; A Z, withZ, € Z|,Z, € Z),, and
w(Z}) = u(Zy) = 0. Then (E; A E>) A(Z) AZ,) = @ and hence E| A E, =
Z\ AZ, € Z\UZ). Therefore u(E1—E>) < w(Ey A Ey) < n(Z1UZ5) = 0and
similarly w(E, — E1) = 0. It follows that u(E;) = w(Ey — E2)+p(E1NEy) =
W(ET N Ey)) = uw(E, — Ey) + n(Ey N Ey) = w(Ey), and @ is unambiguously
defined.

For (c), we see from () that iz can be defined equivalently by n(EUZ) = u(E)
if Z € Z' and u(Z’) = 0. If a disjoint sequence E, U Z, is given, then we find
that 72( U, (Ex U Zo)) = (U, En) U (U, Zn)) = (U, En) = 3 n(En) =
> m(E,UZ,), and complete additivity is proved. Taking Z = & in the definition
mw(EUZ) = u(E), we obtain w(E) = w(E) for E in A.

For (d), we use (x) as the description of the sets in A. Let E U Z be in A
with Ein A, Z C Z’, and Z' in A with u(Z’) = 0. Then Proposition 5.1e gives
RENZ) < i(2) < i(Z') = u(Z) = 0,sothat i(E N Z) = ji(Z) = 0.
Meanwhile, Proposition 5.1b gives i(E U Z) + i(E N Z) = u(E) + u(2).
Hence i(E U Z) = p(E) = w(E).
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For (e), it is immediate that u,.(E) < w*(FE) for every subset E of X. Let
E=CUZbein Awith Cin A, Z C Z,and Z' in A with (Z') = 0. Then
p(C) < u(E) < pw*(E) < p(CUZ") < u(C) + u(Z') = n(C). Since the
expressions at the ends are equal, we must have equality throughout, and therefore
ps(E) = u*(E).

In the converse direction let ;4 (E) = w*(E). We can find a sequence of sets
A, € A contained in E with lim x(A,) = u4«(E), and we may assume without
loss of generality that {A,} is an increasing sequence. Similarly we can find a
decreasing sequence of sets B, € A containing E with lim u(B,) = u*(E). Let
A =], Aysand B =), B,. When combined with the equality j..(E) = u*(E),
Proposition 5.2 and Corollary 5.3 show that £(A) = u.(E) = u*(E) = n(B).
Since A C E C B,wehave u(B—A) = u(B)—u(A) =0and E = AU(E—A)
with E — AC B — Aand u(B — A) = 0. By (%), E is in A. O

A variant of Proposition 5.38e and its proof identifies the o -algebra on which
the extended measure is constructed in the proof of the Extension Theorem (The-
orem 5.5) in the special case we considered. In the special case of the Extension
Theorem, the given ring of sets is an algebra A, and v(X) is finite. The set
function v gets extended to a measure ;. on a o -algebra 3 that contains the smallest
o-algebra C containing A. The sets of B are those for which p.(E) = u*(E),
where

wE) = inf W@ and B = sup (K

KC and U having been defined in terms of countable intersections and countable
unions, respectively, from 4. The variant of Proposition 5.38e is that a subset
E of X has u.(E) = u*(FE) if and only if E is of the form C U Z with C in C,
Z C Z',and Z' in C with u(Z’) = 0. In other words, (X, B, u) is the completion
of (X,C, ).

The proof is modeled on the proof of Proposition 5.38e. If E = C U Z is
asetin Cwith CinC, Z € Z/, and Z' in C with u(Z’) = 0, then u(C) <
we(E) < uw(E) < up(CUZ) < u(C)+ u(Zy = u(C). We conclude that
ps(E) = u*(E).

In the converse direction let w.(E) = w*(E). We can find an increasing
sequence of sets A, € I C C contained in E with lim u(A,) = u(E), and
we can find a decreasing sequence of sets B, € U C C containing E with
lim w(B,) = u*(E). Let A=, A, and B = ("), B,. Arguing as in the proof
of Proposition 5.38e, we have (A) = u4(E) = u*(E) = u(B), u(B — A) =
w(B)—u(A) =0,and E = AU(E—A)with E— A C B—Aand u(B—A) =0.
Thus E=CUZwithC=Aand Z = F — A.

This calculation has the following interesting consequence.



7. Fubini’s Theorem for the Lebesgue Integral 301

Proposition 5.39. In R', the Lebesgue measurable sets of measure O are
exactly the subsets E of R! with the following property: for any € > 0, the set E
can be covered by countably many intervals of total length less than €.

PROOF. Within a bounded interval [a, b], the above remarks apply and show
that the Lebesgue measurable sets of measure O are the sets £ with u*(E) = 0,
where u*(E) = infyse, veu ™ (U). The sets U defining u*(E) are countable
unions of intervals, and the proposition follows for subsets of any bounded interval
[a, b].

For general sets E in R!, if the covering condition holds, then Proposition 5.1g
shows that E has Lebesgue measure 0. Conversely if E is Lebesgue measurable
of measure 0, then EN[—N, N]is abounded set of measure 0 and can be covered
by countably many intervals of arbitrarily small total length. Let us arrange that
the total length is < 27V e. Taking the union of these sets of intervals as N varies,
we obtain a cover of E by countably many intervals of total length less than €. [

7. Fubini’s Theorem for the Lebesgue Integral

Fubini’s Theorem for the Lebesgue integral concerns the interchange of order
of integration of functions of two variables, just as with the Riemann integral
in Section II1.9. In the case of Euclidean space R”, we could have constructed
Lebesgue measure in each dimension by a procedure similar to the one we used
for R'. Then Fubini’s Theorem relates integration of a function of k -/ variables
over a set by either integrating in all variables at once or integrating in the first
k variables first or integrating in the last / variables first. In the context of more
general measure spaces, we need to develop the notion of the product of two
measure spaces. This corresponds to knowing R¥ and R/ with their Lebesgue
measures and to constructing R+ with its Lebesgue measure.

In the theorem as we shall state it, we are given two measures spaces (X, A, u)
and (Y, B, v), and we assume that both 1 and v are o -finite. We shall construct a
product measure space(X x Y, A x B, u x v), and the formula in question will
be

Fd(u x v) é/ [/f(m)dv(y)]du(x)
XxY X Y

2 /Y [ fX f ) dut)] dv(y).

This formula will be valid for f > 0 measurable with respect to A x B.

The technique of proof will be the standard one indicated in connection with
proving Corollary 5.28. We start with indicator functions, extend the result to
simple functions by linearity, and pass to the limit by the Monotone Convergence
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Theorem (Theorem 5.25). It is then apparent that the difficult step is the case that
f is an indicator function. In fact, it is not even clear in this special case that the
inside integral fy Ir(x, y)dv(y) is a measurable function of X, and this is the
step that requires some work.

We begin by describing A x B3, the o -algebra of measurable sets for the product
X x Y. Recall from Section A1 of Appendix A that X x Y is defined as a set of
ordered pairs. If A € X and B C Y, then the set of ordered pairs that constitute
A x Bisasubsetof X x Y, and we call A x B arectangle’ in X x Y. The sets
A and B are called the sides of the rectangle.

Proposition 5.40. If A and B are algebras of subsets of nonempty sets X and
Y, then the class C of all finite disjoint unions of rectangles A x B with A in A
and B in Bis an algebra of sets in X x Y. In particular, a finite union of rectangles
is a finite disjoint union.

PROOF. The intersection of the rectangles Ry = A} x By and R, = A; X By is
the rectangle R = (A; N Az) x (B; N By) because both R N R, and R coincide
with the set {(x, yexxY | x €A, xe€eA, yeB, ye Bz}. Therefore

m n

(U x ) n (LU x pp) =J {aincy x B0 Dy,

i=1 j=1 i,j

and the right side is a disjoint union if both | J; (A; x B;) and U,/ (Cj x Dj) are
disjoint unions. Moreover, the right side is in C if both unions on the left are in C.
Therefore C is closed under finite intersections.

Certainly @ and X x Y are in C. The identity

XxY)—(AxB)=((X—A) x B)U(X x (Y — B))

exhibits the complement of a rectangle as a disjoint union of rectangles. Since
the complement of a disjoint union is the intersection of the complements, C is
closed under complementation. Thus C is an algebra of sets, and the proof is
complete. U

If A and B are o-algebras in X and Y, then we denote the smallest o -algebra
containing the algebra C of the above proposition by A x B. The set X x Y,
together with the o -algebra A x B, is called a product space. The measurable
sets of X x Y are the sets of A x B.

5The word “rectangle” was used with a different meaning in Chapter III, but there will be no
possibility of confusion for now. Starting in Chapter VI, both kinds of rectangles will be in play;
the ones in Chapter III can then be called “geometric rectangles” and the present ones can be called
“abstract rectangles.”
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Let E be any set in X x Y. The section E, of E determined by x in X is
defined by

E. = {y| (x, y)isin E}

Similarly the section E” determined by y in Y is
E’ = {x | (x,y)isin E}
The section E |, is a subset of Y, and the section E” is a subset of X.

Lemma 5.41. Let {E,} be a class of subsets of X x Y, and let x be a point of
X. Then

(a) (Ua Eot)x = Uoz (Eoz)xy
(b) (ma Ea)x = ﬂa (Eq)x,
(©) (Eq — Eg)y = (Ey)x — (Eg)yx and, in particular, (Ef;)x =Y — (Ep)x.
PROOF. These facts are special cases of the identities at the end of Section A1 of
Appendix A for inverse images of functions. In this case the function in question

is given by f(y) = (x, y). g

Proposition 5.42. Let A and 5 be o-algebras in X and Y, and let E be a
measurable set in X x Y. Then every section E, is a measurable set in Y, and
every section E? is a measurable set in X.

PROOF. We prove the result for sections E, the proof for EY being completely
analogous. Let & be the class of all subsets E of X x Y all of whose sections E
are in B. Then & contains all rectangles with measurable sides, since a section
of a rectangle is either the empty set or one of the sides. By Lemma 5.41a, £
is closed under finite unions. Hence £ contains the algebra C of finite disjoint
unions of rectangles with measurable sides. By parts (a) and (c) of Lemma 5.41,
£ is closed under countable unions and complements. It is therefore a o -algebra
containing C and thus contains 4 x B. (]

A corollary of Proposition 5.42 is that a rectangle in X x Y is measurable if
and only if its sides are measurable. The sufficiency follows from the fact that
a rectangle with measurable sides is in C, and the necessity follows from the
proposition.

From now on, we shall adhere to the convention that a rectangle is always
assumed to be measurable.

We turn to the implementation of the sketch of proof of Fubini’s Theorem
given earlier in this section. The basic question will be the equality of the iterated
integrals in either order when the integrand is an indicator function. If E is
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a measurable set in X x Y, then we know from Proposition 5.42 that E, is a
measurable subset of Y. In order to form the iterated integral

L[ et mave] anco,
X Y

we compute the inside integral as v(E,), and we have to be able to form the
outside integral, which is f x V(Ex) dp(x). Thatis, we need to know that v(E,)
is a measurable function on X. For the iterated integral in the other order, we
need to know that (E”) is measurable on Y.

The proof of this measurability is the hard step, since the class of sets E for
which v(E,) and n(E”) are both measurable does not appear to be necessarily
a o-algebra, even when p and v are finite measures. To deal with this difficulty,
we introduce the following terminology: a class of sets is called a monotone
class if it is closed under countable increasing unions and countable decreasing
intersections. Itis readily verified that the class of all subsets of a set is a monotone
class and that the intersection of any nonempty family of monotone classes is a
monotone class; hence there is a smallest monotone class containing any given
class of sets.

The proof of the lemma below introduces the notation 4 and | to denote
increasing countable union and decreasing countable intersection, respectively.

Lemma 5.43 (Monotone Class Lemma). The smallest monotone class M
containing an algebra 4 of sets is identical to the smallest o -algebra A contain-
ing A.

PROOF. We have M C Z because Z is a monotone class containing A. To
prove the reverse inclusion, it is sufficient to show that M is closed under the
operations of finite union and complementation, since a countable union can be
written as the increasing countable union of finite unions. The proof is in three
steps.

First we prove that if A isin A and M is in M, then AU M and A N M are
in M. For fixed A in A, let {4 be the class of all sets M in M such that A U M
and A N M are in M. Then U4 D A. If we show that I/ is a monotone class,
then it will follow that /4 2 M. For this purpose let

U, U and V, |V with U,andV, in Uy.

By definition of U4, the sets U, U A, U,, N A, V,, U A, and V,, N A are in M. But

U,UAAUUA and U,NALUNA,
V,UALVUA and V,NA} VNA.

Therefore U and V are in {4, and {4 is a monotone class.
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Second we prove that M is closed under finite unions. For fixed N in M, let
Uy be the class of all sets M in M such that N U M and N N M are in M. Then
Uy D A by the previous step. The same argument as in that step shows that Uy
is a monotone class, and hence Uy = M.

Third we prove that M is closed under complements. Let A be the class of
all sets in M whose complements are in M. Then N2 A, and it is enough to
show that \/'is a monotone class. If

C,1C and D,| D with C,and D, in N,
then C and D are in M since C,, and D,, are in M. Now
C, | C° and D; 1 D,

and by definition of V, C; and D are in M. Therefore C¢ and D¢ are in M,
and C and D must be in . That is, A is a monotone class. O

Lemma 5.44. If (X, A, ) and (Y, BB, v) are o-finite measure spaces, then
v(E,) and u(E?) are measurable functions for every E in A x B.

PROOF IF ;1(X) < 400 AND v(Y) < +00. Let M be the class of all sets £
in A x B for which v(E,) and u(E”) are measurable. We shall show that M is
a monotone class containing the algebra C of finite disjoint unions of rectangles.
If R = A x B is arectangle, then

V(Ry) =v(B)I4  and  w(R”) = u(A)lg,
and so R is in M. If E and F are disjoint sets in M, then
V((EU F)y) = v(Ey U Fy) = v(Ey) + v(Fy)

for each x, and similarly for p for each y. By Proposition 5.7, v((E U F),) and
w((E U F)?) are measurable. Hence E U F is in M, and M contains C. If {E,}
and { F},} are increasing and decreasing sequences of sets in M, then the finiteness
and complete additivity of v imply that

v(UE) ) =v(U @) = timv(E)
and v(N1F) ) = (N ED) = timv((E,

and similarly for p. Since the limit of measurable functions is measurable
(Corollary 5.10), we conclude that M is a monotone class. Therefore M contains
A x B by the Monotone Class Lemma (Lemma 5.43). O



306 V. Lebesgue Measure and Abstract Measure Theory

PROOF FOR 0-FINITE p AND v. Write X = |J>_, X, and Y = (', Y,
disjointly, with 1 (X,;,) < +o00 and v(Y,) < +oo for all m and n. Define A,, and
B, by

.Amz{AﬂXm\AisinA} and an{BﬂYn|BisinB},

and define u,, and v, on A4, and B, by restriction from p and v. Then the triples
Xm> Am, ) and (Y, B,, v,) are finite measure spaces, and the previous case
applies. If E isin A x B, then E,,, = EN (X,, x Y,,) is in A4,, x B,, and so
V((Epn)x) and w((E,,)”) are measurable with respect to A4,, and 15,,, hence with
respect to A and 5. Thus

VE) =Y v((Ew)y)  and  u(EY) =Y u((Epn))

m,n

exhibit v(E,) and p(E”) as countable sums of nonnegative measurable functions.
They are therefore measurable.

The next proposition simultaneously constructs the product measure and es-
tablishes Fubini’s Theorem for indicator functions.

Proposition 5.45. Let (X, A, 1) and (Y, B3, v) be o-finite measure spaces.
Then there exists a unique measure i x v on A x B such that

(u x v)(Ax B) = pn(A)v(B)

for every rectangle A x B. The measure u x v is o -finite, and

(n x v)(E) = /

V(Ex)dM(X)Z/M(Ey)dV(y)
X Y

for every set E in A x B.

PROOF. In view of the measurability of v(E,) given in Lemma 5.44, we can
define a set function p on A x B by

p(E) = / v(Ey) dp(x).
X
Then p (&) = 0, and p is nonnegative. On a rectangle A x B, we have

p(A x B) = n(A)v(B) ()

since V((A x B),) = v(B)I4. We shall show that p is completely additive. If
{E,} is a disjoint sequence in .4 x B, then
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p(UE,,) =/ v((UE) )du(x) by definition of p
n X n *
:/ v(U(En)x> du(x) by Lemma 5.41a
X Ny

= / [Z v((En)x)] du(x) since the sets (E,), are disjoint
X" for each fixed x

:Z / v((Ep)x) di(x) by Corollary 5.27
w JX

=) p(Ew.

Now X x Y = J,,, (X x ¥,,). Since p has just been shown to be completely
additive and since u and v are o-finite, (x) shows that p is o-finite. Also, ()
completely determines p on the algebra C of finite disjoint unions of rectangles.
By the Extension Theorem (Theorem 5.5), p is completely determined on the
smallest o -algebra A x 5 containing C.

Defining o (E) = fY Ww(EY)dv(y) and arguing in the same way, we see that o
is a measure on .4 x B agreeing with p on rectangles and determined on A x B
by its values on rectangles. Thus we have p = o on A x B, and can define
U X v = p = o to complete the proof. (]

Lemma 5.46. If f is a measurable function defined on a product space X x Y,
then for each x in X, y — f(x, y) is a measurable function on Y, and for each
yinY,x — f(x,y)is a measurable function on X.

PROOF. For each fixed x, the formula

Pl fa ) >cl={n]fey>c],

exhibits the set on the left as a section of a measurable set, which must be mea-
surable according to Proposition 5.42. The result for fixed y is proved similarly.
O

Theorem 5.47 (Fubini’s Theorem). Let (X, A, ) and (Y, B, v) be o -finite
measure spaces, and let (X x Y, A x B, u x v) be the product measure space.
If f is a nonnegative measurable function on X x Y, then f y f(x, y)dv(y) and
[y f(x,y)du(x) are measurable, and

| rawsn= [ [ [ rendvm]due
XxY X Y

- /Y [ /X F ) dut)] dv(y).
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PROOF. Lemma 5.46 shows that f(x, y) is measurable in each variable sep-
arately and hence that the inside integrals in the conclusion are well defined. If
f is the indicator function of a measurable subset E of X x Y, then the theorem
reduces to Proposition 5.45. The result immediately extends to the case of a
simple function f > 0.

Now let f be an arbitrary nonnegative measurable function. Find by Propo-
sition 5.11 an increasing sequence of simple functions s, > 0 with pointwise
limit f. The sequence of functions fY sp(x,y)dv(y) is an increasing sequence
of nonnegative functions, and each is measurable by what we have already shown
for simple functions. By the Monotone Convergence Theorem (Theorem 5.25),

li,IZn/IVsn(x,y)dV(y) =/Yli,1lnsn(x,y)dv(y) =/Yf(x,y)dV(y)-

Therefore [, y J(x, y) dv(y) is the pointwise limit of measurable functions and is
measurable. Similarly f x J(x, y) du(x) is measurable.
For every n, the result for simple functions gives

/ s (11 % v>=/ [/snu,y)dv(y)]du(x).
XxY X Y

By a second application of monotone convergence,

/ Fd(uxv)y=lim |  s,d(uxv) :lim/ [/ sn(x,y)dv(y)] du(x).
XxY XxY noJx Y

n

By a third application of monotone convergence,

lim f | f sa(x, y) dv(y) | dx) = f [ 1im / sulr, y) dv () | dp).
noJx Y xt nJy

Putting our results together, we obtain

Fdu x v)=/ [/f(x,y)dv(y)] dp(x).
XxY X Y

The other equality of the conclusion follows by interchanging the roles of X
and Y. U

Fubini’s Theorem arises surprisingly often in practice. In some applications
the theorem is applied at least in part to prove that an integral with a parameter
is finite or is O for almost every value of the parameter. Here is a general result
concerning integral 0.
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Corollary 5.48. Suppose that (X, A, ©) and (Y, BB, v) are o-finite measure
spaces, and suppose that E is a measurable subset of X x Y such that

v({y| .y € E}) =0

for almost every x [du]. Then u({x | (x,y) € E}) = 0 for almost every y [dV].

REMARKS. In words, if the x section of E has v measure O for almost every
x in X, then the y section of E has u measure O for almost every y in Y. For
example, if one-point sets in X and Y have measure 0 and if every x section of
E is a finite subset of Y, then for almost every y in Y, the y section of E has
measure 0 in X.

PROOF. Apply Fubini’s Theorem to /g. The iterated integrals are equal, and
the hypothesis makes one of them be 0. Then the other one must be 0, and the
conclusion follows. g

When one tries to drop the hypothesis in Fubini’s Theorem that the integrand
is nonnegative, some finiteness condition is needed, and the result in the form of
Theorem 5.47 is often used to establish this finiteness. Specifically suppose that
f is measurable with respect to .4 x B but is not necessarily nonnegative. The
assumption will be that one of the iterated integrals

| [ [1reiavm]ane wd [ [ 1renidam]dao)
X Y Y X

is finite. Then the conclusions are that

(a) f isintegrable with respectto p X v;

(b) f y f(x, y)dv(y) is defined for almost every x [du]; if it is redefined to
be 0 on the exceptional set, then it is measurable and is in fact integrable
[dpl;

(c) a similar conclusion is valid for f x J(x, y)du(x);

(d) after the redefinitions in (b) and (c), the double integral equals each
iterated integral, and the two iterated integrals are equal.

These conclusions follow immediately by applying Fubini’s Theorem to f* and
f~ separately and subtracting. The redefinitions in (b) and (c) are what make the
subtractions of integrands everywhere defined.

One final remark is in order: The completion of 4 x B is not necessarily the
same as the product of the completions of A and 15, and thus the statement of
Fubini’s Theorem requires some modification if completions of measure spaces
are to be used. We shall see in the next chapter that Borel sets in Euclidean space
behave well under the formation of product spaces, but Lebesgue measurable sets
do not. Thus it simplifies matters to stick to integration of Borel-measurable sets
in Euclidean space whenever possible.
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8. Integration of Complex-Valued and Vector-Valued Functions

Fix a measure space (X, A, n). In this chapter we have worked so far with
measurable functions on X whose values are in R*, dividing them into two classes
as far as integration is concerned. One class consists of measurable functions with
values in [0, 4+-00], and we defined the integral of any such function as a member
of [0, +o0]. The other class consists of general measurable functions with values
in R*. The integral in this case can end up being anything in R*, and there are
some such functions for which the integral is not defined.

It is important in the theory to be able to integrate functions whose values
are complex numbers or vectors in R” or C”, and it will not be productive to
allow the same broad treatment of infinities as was done for general functions
with values in R*. On the other hand, it is desirable to have the flexibility with
nonnegative measurable functions of being able to treat infinite values and infinite
integrals in the same way as finite values and finite integrals. In order to have
two theories, rather than three, once we pass to vector-valued functions, we shall
restrict somewhat the theory we have already developed for general functions
with values in R*.

Let us label these two theories of integration as the one for scalar-valued non-
negative measurable functions and the one for integrable vector-valued functions.
The first of these theories has already been established and needs no change. The
second of these theories needs some definitions and comments that in part repeat
steps taken with Riemann integration in Sections 1.5, II1.3, and III.7 and in part
are new. In applications of this second theory later, if the term “vector-valued”
is not included in a reference to a function either explicitly or by implication, the
convention is that the function is scalar-valued.

In the theory for vector-valued functions, we shall be assuming integrability,
and the integrability will force the function to have meaningful finite values almost
everywhere. Our convention will be that the values are finite everywhere. This
will not be a serious restriction for any function that can be considered integrable,
since we can redefine such a function on a certain set of measure 0 to be 0, and
then the condition will be met without any changes in the values of integrals.

Thus let a function f : X — C™ be given. Since the function can have
its image contained in R™, we will be handling R"-valued functions at the same
time. Since m can be 1, we will be handling complex-valued functions at the same
time. Since the image can be in R and m can be 1, we will at the same time
be recasting our theory of real-valued functions whose values are not necessarily
nonnegative. We impose the usual Hermitian inner product (-, -) and norm | - |
on C™.

The function f : X — C™ is the composition of f followed by complex
conjugation in each entry of C”. We can write f = Re f + i Im f, where
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Re f = %(f + f)andIm f = zil.(f — f), and then the functions Re f and Im f
take values in R™. Following the convention in Section A7 of Appendix A, let
{uy, ..., u,} be the standard basis of R™.

By a basic open set in C™, we mean a set that is a product in R?" of bounded
open intervals in each coordinate. In symbols, such a set is centered at some
vp € C™, and there are positive numbers &; and 7, such that the set is

{v eC” | [Re(v —vp), uj)| <& and [(Im(v—1vp), u;)| <n; for 1 < j <mj}.

We say that f : X — C™ is measurable if the inverse image under f of each
basic open set in C™ is measurable, i.e., lies in A.

Lemma 5.49. A function f : X — C™ is measurable if and only if the inverse
image under f of each open set in C™ is in A.

PROOF. If the stated condition holds, then the inverse image of any basic open
set is in A, and hence f is measurable. Conversely suppose f is measurable,
and let an open set U in C™ be given. Then U is the union of a sequence of
basic open sets U,, and the measurability of f, in combination with the formula
F~YWw) =U, f~1(U,), shows that f~1(U) is in A. O

Proposition 5.50. A function f : X — C” is measurable if and only if Re f
and Im f are measurable.

PROOF. In view of Lemma 5.49, we can work with arbitrary open sets in place
of basic open sets. If U and V are open sets in R™, then the productset U +iV is
openin C", and f~'(U +iV) = (Re f)""(U) N Am f)~1(V). It is immediate
that measurability of Re f and Im f implies measurability of f. Conversely if we
specialize this formula to V = R, then we see that measurability of f implies
measurability of Re f. Similarly if we specialize to U = R", then we see that
measurability of f implies measurability of Im f. O

Proposition 5.51. The following conditions on a function f : X — C™ are
equivalent:

(a) f is measurable,
(b) (f, v) is measurable for each v in C™,
(c) (f,u;)is measurable for 1 < j < m.

REMARKS. When infinite-dimensional ranges are used in more advanced
texts, (a) is summarized by saying that f is “strongly measurable,” and (b) is
summarized by saying that f is “weakly measurable.”
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PROOF. Suppose (a) holds. The functionin (b) is the composition of f followed
by the continuous function (-, v) from C™ to C. The inverse image of an open
set in C is then open in C™, and the inverse image of the latter open set under f is
in A. This proves (b). Condition (b) trivially implies condition (c¢). If (c) holds,
then Proposition 5.50 shows for each standard basis vector u; that (Re f, u;) and
(Im f, u;) are measurable from X into R. Thus the inverse image of any open
interval under any of these 2m functions on X is in .A. The inverse image of
a basic open set in C™ under f is the intersection of 2m such sets in A and is
therefore in A. Hence (a) holds. ]

Proposition 5.52. Measurability of vector-valued functions has the following
properties:

@If f: X - C"and g : X — C™ are measurable, thensois f + g asa
function from X to C™.

(b) If f : X — C™ is measurable and c is in C, then cf is measurable as a
function from X to C™.

(c)If f : X — C™ is measurable, then so is f : X — C™.

(Iff: X — Candg: X — C are measurable, then sois fg: X — C.

(e) If f: X — C™ is measurable, then | f| : X — [0, 400) is measurable.

(f) If { f,} is a sequence of measurable functions from X into C” converging
pointwise to a function f : X — C™, then f is measurable.

PROOF. Conclusions (a) through (e) may all be proved in the same way. It
will be enough to illustrate the technique with (a). We can write the function
x — f(x)+ g(x) as a composition of x — (f(x), g(x)) followed by addition
(a,b) — a+b. Letanopen setin C” be given. The inverse image under addition
is open in C" x C™, since addition is continuous (Proposition 2.28). The inverse
image of a product U x V of open sets in C" x C™ under x — (f(x), g(x)) is
£~ (U) N g=(V), which is in A because f and g are measurable, and therefore
the inverse image of any open set in C” x C" under x — (f(x), g(x)) is in A.
This handles (a), and (b) through (e) are similar.

For (f), we apply Proposition 5.50 to f, and then we apply the equivalence
of (a) and (c) of Proposition 5.51 for Re f and Im f. In this way the result is
reduced to the real-valued scalar case, which is known from Corollary 5.10. [J

If E is a measurable subset of X, we say that a function f : X — C is
integrable on E if Re f and Im f are integrable on E, and in this case we define

Je fdu= [gRe fdu+i [ Imfdpu.

Proposition 5.53. Let E be a measurable subset of X. Integrability on E of
functions from X to C has the following properties:
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(a) If f and g are functions from X into C that are integrable on E, then f + g
is integrable on E, and [, (f +g)du = [y fdu+ [, gdu.

(b) If £ is a function from X into C that is integrable on E and if ¢ is in C,
then ¢f is integrable on E, and [, cf du = c [}, f du.

(c) If f is a measurable function from X into C such that | f| is integrable on
E, then f is integrable on E, and | [, f(x)du(x)| < [, | f ()| dp(x).

(d) (Dominated convergence) Let f, be a sequence of measurable functions
from X into C integrable on E and converging pointwise to f. If there is a
measurable function g : X — [0, +oc] that is integrable on E and has | f,,(x)| <
g(x) for all x in E, then f is integrable on E, lim, [, f, du exists in C, and

PROOF. Conclusion (a) is immediate from the definitions, and so is (b) for real
scalars. Taking (a) and (b) into account, we see that (b) holds if it holds for ¢ = i.
We have if = —Im f 4+ iRe f. If f is integrable, then —Im f and Re f are
integrable, and hence i f is integrable. Then

ifofdu=i([;Refdu+i[,Imfdu)
= [ (=Im f)du+ [, (iRe fldu= [,if du,

and hence (b) is proved.
In (c), if f : X — C is integrable, choose ¢ with |c| = 1 such that cfE fdu
is real and > 0. Application of (b) and Proposition 5.16 gives | /, ef du| =
Finally (d) follows by applying the Dominated Convergence Theorem (Theo-
rem 5.30) to Re f,, and Im f,, separately and then combining the results. O

We turn now to the matter of integrability of vector-valued functions, together
with the value of the integral. One way of proceeding is to go back and adapt
the theory in Sections 3—4 to work directly with vector-valued functions and
approximations by vector-valued simple functions. This approach is useful if
at some stage one wants systematically to allow infinite-dimensional vectors as
values. Examples of this situation will arise in this book, but there are not enough
examples to justify an abstract treatment. One importantexample arises in the next
section with functions of the form f(x, y), which can be regarded as functions
of x that take values in a space of functions of y.

Thus we use an abstract definition of integrability that is appropriate only to
the case of finite-dimensional range. If E is a measurable subset of X, we say
that a function f : X — C™ is integrable on E if the complex-valued functions
(f, u;) are integrable on E for each u; in the standard basis, and in this case we

define [ fdu =731 ([ (fu)) du)u;.
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Proposition 5.54. Let E be a measurable subset of X. Integrability of vector-
valued functions on E satisfies the following properties:

(a) If f and g are functions from X into C” that are integrable on E, then
f +gisintegrableon E, and [, (f +g)du = [, fdu+ [y gdu.

(b) If f is a function from X into C™ that is integrable on E, then cf is
integrable on E, and [, cf du =c [, fdpu.

(c) A function f : X — C™ is integrable on E if and only if Re f and Im f
are integrable on E, and then [, fdu = [y Re fdu+i [, Im fdpu.

(d) If f is a function from X into C™ that is integrable on E and if v is a
member of C, then x — (f(x), v) is integrable on E and fE(f(x), v)du(x) =
([ FG)du(x).v).

(e) If f is a measurable function from X into C™ such that | f| is integrable on
E, then f is integrable on E, and | [, f(x)du(x)| < [ | f ()| du(x).

(f) (Dominated convergence) Let f,, be a sequence of measurable functions
from X into C™ integrable on E and converging pointwise to f. If there is a
measurable function g : X — [0, +o00] that is integrable on £ and has | f;,(x)]| <
g(x) for all x in E, then f is integrable on E, lim, || g Jndp exists in C", and

llmnfE fnd:u:fE fdu.

PROOF. All of the relevant questions about measurability are addressed by
Propositions 5.50 and 5.52. Conclusions (a), (b), (c), and (f) about integrability
are immediate from Proposition 5.53.

For (d),letv = ) cju;j witheach c; in C. Since f is by assumption integrable,
(fiv) = (f, X cjuj) = Zj ¢j(f, u;) exhibits (f, v) as a linear combination
of functions integrable on E. Therefore (f, v) is integrable on E. To obtain
the formula asserted in (d), we first consider v = wu;. Then the definition of
[e fdw gives ([ fdp,ui) = (X2 ([p(fsup)dp)uj, ui) = [o(f,ui)dp.
Multiplying by ¢; and adding, we obtain ([, fdu,v) = [;(f,v)du. This
proves (d).

For (e), let f : X — C™ be measurable on X with | f| integrable on E. The
asserted inequality is trivial if || g J diu = 0. Otherwise, for every v in C",

|(fEfdM»U)|=UE(f’U)d'““‘ by (d)
< [ I(f,v)ldw by Proposition 5.53¢

< |v|fE | fldun by Proposition 5.16 and
the Schwarz inequality.

Takingv= [, fdugives|[, fdul® < | [, fdu| [;1fldu. Since [, f duhas
been assumed nonzero, we can divide by its magnitude, and then (e) follows. [J
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9. L', L?, L™, and Normed Linear Spaces

Let (X, A, 1) be a measure space. In this section we introduce the spaces LY(X),
L%(X),and L*°(X). Roughly speaking, these will be vector spaces of functions on
X with suitable integrability properties. More precisely the actual vector spaces
of functions will form pseudometric spaces, and the spaces L'(X), L*(X), and
L*>°(X) will be the corresponding metric spaces obtained from the construction
of Proposition 2.12. They will all turn out to be vector spaces over R or C. It
will matter little whether the scalars for these vector spaces are real or complex.
When we need to refer to operations with scalars, we may use the symbol F to
denote R or C, and we call IF the field of scalars. We shall make explicit mention
of R or C in any situation in which it is necessary to insist on a particular one of
RorC.

The three spaces we will construct will all be obtained by introducing “pseudo-
norms” in vector spaces of measurable functions. A pseudonorm on a vector

space V is a function || - || from V to [0, +00) such that’
(i) lx|| > O0forall x € V,
@i1) |lex|l = |clllx|| for all scalars c and all x € V,

(iii) (triangle inequality) ||x 4+ y| < ||lx|| + ||y|| for all x and y in V.

We encountered pseudonorms earlier in connection with pseudo inner-product
spaces; in Proposition 2.3 we saw how to form a pseudonorm from a pseudo
inner product. However, only the pseudonorm for L?(X) arises from a pseudo
inner product in the construction of L', L? and L*°.

The definitions of the pseudonorms in these three instances are

IfIl =[x | fldu for L'(X),
1f o= (Jy I fPdp)"? for L2(X),

| flloo = “essential supremum” of f for L*(X).

Once we have defined “essential supremum,” all the above expressions are mean-
ingful for any measurable function f from X to the scalars, and the vector space V
in each of the cases is the space of all measurable functions from X to the scalars
such that the indicated pseudonorm is finite. In other words, V consists of the
integrable functions on X in the case of L'(X), the square-integrable functions
on X in the case of L2(X), and the “essentially bounded” functions on X in the
case of L*°(X).

We need to check that || - ||, || - |l,,and || - ||, are indeed pseudonorms and
that the spaces V are vector spaces in each case.

"The word “seminorm” is a second name for a function with these properties and is generally
used in the context of a family of such functions. We shall not use the word “seminorm” in this text.
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For L!(X), properties (i) and (ii) are immediate from the definition. For (iii),
we have | f(x) + g(x)| < |f(x)| + |g(x)| for all x and therefore || f + gll, =
Self +gldw < [ 1fldn+ [y 1gldn =11 £l + gl

For L%(X), let V be the space of all square-integrable functions on X. The
space V is certainly closed under scalar multiplication; let us see that it is closed
under addition. If f and g are in V, then we have

()] +1g0)D? < (max{| £ ()], ()]} + max{| f ()], [g(x)]})°
= 4max{|f (), [g()*} < 4l f()* +4lg)

for every x in X. Integrating over X, we see that f 4+ g isin V if f and g are
in V. Also, the left side is > 4| f(x)| |g(x)|, and it follows that fg is integrable
whenever f and g are in V. Then the definition (f, g), = [ g f8du makes V
into a pseudo inner product-space in the sense of Section II.1. Hence Proposition
2.3 shows that the function || - ||, with || f]l, = (f, £)/* is a pseudonorm on V..

For L>*°(X), we say that f is essentially bounded if there is a real number M
suchthat|f(x)| < M almosteverywhere [du]. Letus call such an M an essential
bound for | f|. When f is essentially bounded, we define || ||, to be the infimum
of all essential bounds for | f|. This infimum is itself an essential bound, since the
countable union of sets of measure 0 is of measure 0. The infimum of the essential
bounds is called the essential supremum of | f|. Certainly || - ||, satisfies (i) and
(i1). If | f| is bounded a.e. by M and if |g| is bounded a.e. by N, then | f + g| is
bounded everywhere by | |+ |g|, which is bounded a.e. by M + N. It follows that
f + g is essentially bounded and [| f + glloy < I1/1+ 18]lso < I flloc + 8]l
So (iii) holds for || - || .

A real or complex vector space with a pseudonorm is a pseudo normed linear
space. Such a space V becomes a pseudometric space by the definitiond (f, g) =
Il f — gll, according to the proof of Proposition 2.3. Proposition 2.12 shows that
if we define two members f and g of V to be equivalent whenever d(f, g) =0,
then the result is an equivalence relation and the function d descends to a well-
defined metric on the set of equivalence classes. If we take into account the
vector space structure on V, then we can see that the operations of addition and
scalar multiplication descend to the set of equivalence classes, and the set of
equivalence classes is then also a vector space. The argument for addition is that
if d(f1, f») =0and d(gq, g2) =0, thend(fi + g1, f> + g2) is 0 because

d(fi+g, L+g)=1fi+g)—(2+g)Il=10fi —f)+ (g — &)
<Ifi— 2l + g1 — gl =d(fi1, f2) +d(g1, g) =0.

The argument for scalar multiplication is similar, and one readily checks that the
space of equivalence classes is a vector space.
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This construction is to be applied to the spaces V we formed in connection
with integrability, square integrability, and essential boundedness. The spaces of
equivalence classes in the respective cases are called L' (X), L?(X), and L®(X).
These spaces of equivalence classes are pseudo normed linear spaces with the
additional property that || f|| = O only for the 0 element of the vector space.
If there is any possibility of confusion, we may write L'(u) or L'(X, ) or
L'(X, A, u) in place of L'(X), and similarly for L> and L.

A pseudo normed linear space is called a normed linear space if || f|| = 0
implies f is the O element of the vector space. Thus L!(X), L*>(X), and L*>°(X)
are normed linear spaces.

In practice, in order to avoid clumsiness, one sometimes relaxes the terminol-
ogy and works with the members of L'(X), L?(X), and L>(X) as if they were
functions, saying, “Let the function f bein L!(X)” or “Let f be an L! function.”
There is little possibility of ambiguity in using such expressions.

The 1-dimensional vector space consisting of the field of scalars IF with absolute
value as norm is an example of a normed linear space. Apart from this and F",
we have encountered one other important normed linear space thus far in the
book. This is the space B(S) of bounded functions on a nonempty set S. It
has various vector subspaces of interest, such as the space C(S) of bounded
continuous functions in the case that § is a metric space. The norm for B(S) is
the supremum norm or the uniform norm defined by

I fllqup = sup [f ().
ses
The corresponding metric is

d(f’ g) = “f - g“sup = Su?|f(s) _g(s)|7

and this agrees with the definition of the metric in the example in Chapter II.
Proposition 2.44 shows that the metric space B(S) is complete. Any vector
subspace of B(S) is a normed linear space under the restriction of the supremum
norm to the subspace.

In working with specific normed linear spaces, we shall often be interested in
seeing whether a particular subset of the space is dense. In checking denseness,
the following proposition about an arbitrary normed linear space is sometimes
helpful. The intersection of vector subspaces of X is a vector subspace, and the
intersection of closed sets is closed. Therefore it makes sense to speak of the
smallest closed vector subspace containing a given subset S of X.

Proposition 5.55. If X is a normed linear space with norm || - || and with
as field of scalars, then
(a) addition is a continuous function from X x X to X,
(b) scalar multiplication is a continuous function from F x X to X,
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(c) the closure of any vector subspace of X is a vector subspace,
(d) the set of all finite linear combinations of members of a subset S of X is
dense in the smallest closed vector subspace containing S.

PROOF. The formula [|(x 4+ y) — (xo + yo)ll < llx — xoll + [ly — yoll shows
continuity of addition because it says that if x is within distance € /2 of x¢ and y is
within distance € /2 of yo, then x 4 y is within distance € of xo + yp. Similarly the
formula [lcx —coxoll < lle(x —xo) ||+ [|(c —co)xoll = lelllx —xoll + ¢ — colllxol
shows that ||cx — coxoll < 8(|co| + 1) +8]|x0]| as soonasé < 1, |c —cg| < 8, and
lx —xo|l < 8. Ife withO < € < lis givenandif wesets = (|co|+ 1+ [lxol) e,
then we see that [c — ¢g| < § and ||x — xg|| < § together imply [lcx — coxo|| < €.
Hence scalar multiplication is continuous. This proves (a) and (b).

From (a) and (b) it follows that if x, - x and y, — yin X and ¢, — cinF,
then x,, + y, — x + y and ¢,x,, — cx. This proves (c).

For (d), the smallest closed vector subspace V) containing § certainly contains
the closure V; of the set of all finite linear combinations of members of S. Part (¢)
shows that V; is a closed vector subspace, and hence the definition of V| implies
that V; is contained in V,. Therefore V| = V), and (d) is proved. [l

Proposition 5.56. Let (X, A, 1) be a measure space,and let p = L or p = 2.
Then every indicator function of a set of finite measure is in L?(X), and the
smallest closed subspace of L”(X) containing all such indicator functions is
L?(X) itself.

REMARK. Proposition 5.55d allows us to conclude from this that the the set of
simple functions built from sets of finite measure lies in both L' (X) and L?(X)
and is dense in each. It of course lies in L°°(X) as well, but it is dense in L>(X)
if and only if w(X) is finite.

PROOF. If E is a set of finite measure, then the equality f y UE)Pdp = p(E)
shows that I isin L? for p = 1 and p = 2.

In the reverse direction let V be the smallest closed vector subspace of L”
containing all indicator functions of sets of finite measure. Suppose that s =
>« ¢ckIE, is the canonical expansion of a simple function s > 0 in L” and that
cr > 0. The inequalities 0 < ¢xIg, < s imply that ¢x /g, isin L”. Hence I, isin
L? and pu(Ey) is finite. Thus every nonnegative simple function in L? liesin V.

Let f > 0 bein L?, and let s, be an increasing sequence of simple functions
> 0 with pointwise limit f. Since 0 < s, < f,eachs, isin L?. Since | f — s,|?
has pointwise limit O and is dominated pointwise for every n by the integrable
function | f|?, dominated convergence gives lim f x| f —snl?du = 0. Hence
s, tends to f in LP. Combining this conclusion with the result of the previous
paragraph, we see that every nonnegative L? function is in V. Any L? function
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is a finite linear combination of nonnegative L? functions, and hence every L?
function lies in V. g

Let us digress briefly once more from our study of L', L2, and L™ to obtain
two more results about general normed linear spaces. A linear function between
two normed linear spaces is often called a linear operator. A linear function
whose range space is the field of scalars is called a linear functional. The
following equivalence of properties is fundamental and is often used without
specific reference.

Proposition 5.57. Let X and Y be normed linear spaces that are both real or
both complex, and let their respective norms be || - ||, and || - ||,. Then the
following conditions on a linear operator L : X — Y are equivalent:

(a) L is uniformly continuous on X,

(b) L is continuous on X,

(c) L is continuous at 0,

(d) L is bounded in the sense that there exists a constant M such that

L)y = Mllx|Ix

for all x in X.

PROOF. If L is uniformly continuous on X, then L is certainly continuous on
X. If L is continuous on X, then L is certainly continuous at 0. Thus (a) implies
(b), and (b) implies (c).

If L is continuous at 0, find § > O for ¢ = 1 such that |[x — 0], < §
implies ||L(x) — L(0)|l, < 1. Here L(0) = 0. If a general x # 0 is given,
then || x|l # 0, and the properties of the norm give ||(8/||x||X)x||X = §. Thus
||L((8/||x||X)x)||Y < 1. By the linearity of L and the properties of the norm,
(8/||x||X)||L(x)||Y < 1. Therefore ||L(x)]l, < 57! llx]ly, and L is bounded with
M = 5!, Thus (c) implies (d).

If L is bounded with constant M and if € > 0O is given, let § = ¢/M. Then
lx1 — x2|ly < & implies

L) — L)y = [IL(xi —x2)lly < Mllxr —x2lly <M =e.
Thus (d) implies (a). ([l

If L : X — Y is a bounded linear operator, then the infimum of all constants
M such that || L(x)||y, < M]x|y for all x in X is again such a constant, and it is
called the operator norm ||L|| of L. Thus it in particular satisfies

ILCONy < ILIx N 5 for all x in X.
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As a consequence of the way that L and the norms in X and Y interact with scalar
multiplication, the operator norm is given by the formulas

L] = sup [[Lx)ly = sup [[LX)ly

lxllx=<1 lxllx=1

except in the uninteresting case X = 0. It is easy to check that the bounded linear
operators from X into Y form a vector space, and the operator norm makes this
vector space into a normed linear space that we denote by B(X, Y). When the
domain and range are the same space X, we refer to the members of B(X, X)
as bounded linear operators on X. The normed linear space B(X, X) has a
multiplication operation given by composition.

When Y is the field of scalars IF, the space B(X, F) reduces to the space of con-
tinuous linear functionals on X. This is called the dual space of X and is denoted
by X*. For example, if X = L'(u), then every member g of L>°(u) defines a
member x; of X* by x;(f) = [ fgdpu for fin L'(1); the linear functional Xy
has [lx; [l < lIgllc. We shall be interested in two kinds of convergence in X*.
One is norm convergence, in which a sequence {x;/} converges to an element x*
in X* if ||x; — x*|| tends to 0. The other is weak-star convergence, in which
{x}} converges to x* weak-star against X if lim, x;(x) = x*(x) for each x in X.

Theorem 5.58 (Alaoglu’s Theorem, preliminary form). If X is a separable
normed linear space, then any sequence in X* that is bounded in norm has a
subsequence that converges weak-star against X.

REMARKS. In Chapter VI we shall see that L' and L? are separable in the case
of Lebesgue measure on R! and in the case of many generalizations of Lebesgue
measure to N-dimensional Euclidean space.

PROOF. Let a sequence {x;}7°, be given with |x;|| < M, and let {x;} be a
countable dense set in X. For each &, we have |x (xp)| < [lx}|[lxc]l < M|xcll,
and hence the sequence {x;; (xx)}7 ; of scalars is bounded for each fixed k. By the
Bolzano—Weierstrass Theorem, {x; (xx)};2 | has a convergent subsequence. Since
we can pass to a convergent subsequence of any subsequence for any particular &,
we can use a diagonal process to pass to a single convergent subsequence {x;; }/2,
such that lim; x;; (x¢) exists for all k.

Now let xp be arbitrary in X, let € > O be given, and choose x; in the dense
set with ||x; — xo|| < €. Then

|x,, (X0) — x,, (x0)| < |y, (%0 — x| + |x;, (i) — x, ()| + |x,,, (e — x0)|
< Mllxo — xill + |x,, (xie) — x,, (xi) | + M lxie — xo|

< 2Me + |x;y (xi) — x7, (00|
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Thus lluln sup |x;‘l (x0) — x,fl, (x0)] < 2Me. Since € is arbitrary, we conclude that
=00

{x,, (x0)}72, is a Cauchy sequence of scalars. It is therefore convergent. Denote

the limit by x*(xg), so that limy xj:l (x9) = x*(xp) for all x¢ in X. Since limits

respect addition and multiplication of scalars, x* is a linear functional on X. The

computation |x*(xo)| = |limy x; (xo)| = limy |x5, (xo)| < limsup, [lx;[|[lxoll <
M||xo|l shows that x* is bounded. Hence {x, }]2, converges to x* weak-star
against X. O

Now, as promised, we return to L', L?, and L. The completeness asserted
in the next theorem will turn out to be one of the key advantages of Lebesgue
integration over Riemann integration.

Theorem 5.59. Let (X, A, 1) be any measure space, and let p be 1, 2,
or co. Any Cauchy sequence {f;} in L? has a subsequence {fi,} such that
| fe, — S, p = Cringm,ny With ) C, < 400. A subsequence { f,} with this
property is necessarily Cauchy pointwise almost everywhere. If f denotes the
almost-everywhere limit of { f;,, }, then the original sequence { fx} converges to f
in L?. Consequently these three spaces L”, when regarded as metric spaces, are
complete in the sense that every Cauchy sequence converges.

REMARKS. The broad sweep of the theorem is that the spaces L!, L?, and L>®
are complete. But the detail is important, too. First of all, the detail allows us
to conclude that a sequence convergent in one of these spaces has a subsequence
that converges pointwise almost everywhere. Second of all, the detail allows us
to conclude that if a sequence of functions is convergent in L”! and in L2, then
the limit functions in the two spaces are equal almost everywhere.

PROOF. Let{ f, } be aCauchy sequencein L”. Inductively choose integers n; by
defining ny = 1 and taking n; to be any integer > ny_; such that || f;, — f5,, ||p <
27% for m > ny; we can do so since the given sequence is Cauchy. Then the
subsequence { fnk} has the property that || f,,, — f,, || < 27 ™4 for all k£ > 1
and [ > 1. This proves the first conclusion of the theorem.

Now suppose that we have a sequence {f,} in L? such that || f, — full, =<
Cominm,ny With ) C,, = C < +o00. We shall prove that { f,,} is Cauchy pointwise
almost everywhere and that if f is its almost-everywhere limit, then f,, tends to
finL?.

First suppose that p < co. Let g, be the function from X to [0, +00] given by

g =1Al+ Y 1fi = firl, ()

k=2
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and define g(x) = lim g, (x) pointwise. Then
D 1 &
([ ghd)" = ligall, < 1AM, + > I1fi = fictll,
k=2
< Ifill, + Y Ce1 < IILANl, +C.
k=2

By monotone convergence, we deduce that ( f v 8’d ,u,) r _ lgl, is finite. Thus
g is finite a.e., and consequently the series

Z | fr(x) — fr—1(x)] converges in R for a.e. x [du]. (%)
k=2

By redefining the functions f; as O on a set of u measure 0, we may assume that
the series () converges pointwise to a limit in R for every x. Consequently the
series

D felo) = fior ()
k=2

is absolutely convergent for all x and must be convergent for all x. The partial
sums for the series without the absolute value signs are f,(x) — fj(x), and hence
f(x) =lim f,(x) exists in R for every x. For every n,

o0

f=ful = D 1fi— firrl <. ()

k=n+1

and we have seen that g7 is integrable. By dominated convergence, we conclude
that lim,, fx |f— falPdp = fx lim, | f(x) — fu(x)|? du(x) = 0. In other words,
lim, || f — f,,||p = 0. Therefore f, tendsto f in LP(u).

Next suppose that p = co. Let { f;,} be any Cauchy sequence in L*°. For each
m and n, let E,,, be the subset of X where |f,, — ful > || fix — fulls- and put
E = Um’n E,... This set has measure 0. Redefine all functions to be 0 on E.
The sequence of redefined functions is then uniformly Cauchy, hence uniformly
convergent to some function f, and then f;, tends to f in L*°(X).

For any p, we have shown that the original Cauchy sequence {f,} has a
convergent subsequence {f,, } in L”. Let f be the L? limit of the subsequence.
Given € > 0, choose N such thatn > m > N implies || f, — fmllp < ¢, and then
choose K such that || f;,, — fllp <efork > K. Fixk > K withn; > N. Taking
m = ny, we see that || f, — fll, = Ilfu — full, + I fax — fll, = 2¢ whenever
n > ng. Thus { f,} converges to f. This completes the proof of the theorem. [
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In Section 8 we introduced integration of functions with values in R” or C™.
The definitions of L', L?, and L> may be extended to include such functions,
and we write L! (X, C™), for example, to indicate that the functions in question
take values in C™. In the definitions any expression | f (x)| or | f]| that arises in
the definition and refers to absolute value in the scalar-valued case is now to be
understood as referring to the norm on the vector space where the functions take
their values. The vector-valued L', L2, and L™ spaces are further normed linear
spaces, and one readily checks that Theorem 5.59 with the above proof applies
to them because the range spaces are complete.

The triangle inequality for a pseudo normed linear space says that the norm
of the sum of two elements is less than or equal to the sum of the norms, and of
course the inequality instantly extends to a sum of any finite number of elements.
But what about an integral of elements? In the case that the linear space is one
of the precursor spaces “V” for L', L2, or L®, the setting is that of functions
of two variables. One of the variables corresponds to the measure space under
study, and the other corresponds to the indexing set for the integral of the norms.
Thus we could, if we wanted, force the situation into the mold of vector-valued
functions whose values are in a space of functions. But it is not necessary to do
so, and we do not. Here is the theorem.

Theorem 5.60 (Minkowski’s inequality for integrals). Let (X, A, u) and
(Y, B, v) be o -finite measure spaces, and put p = 1, 2, or co. If f is measurable
on X x Y, then

H/Xf(x,y)du(x)up S/X||f(x,y)||p’dv(y)d,u(x)

,dv(y)
in the following sense: The integrand on the right side is measurable. If the
integral on the right is finite, then for almost every y [dv] the integral on the left
is defined; when it is redefined to be O for the exceptional y’s, then the formula
holds.

REMARK. An extension of this theorem to values of p other than 1, 2, co will
be given in Chapter IX, and that result will have the same name.

PROOF. The right side of the integral formula is unchanged if we replace f by
| f1, and thus we may assume that f > 0 without loss of generality. If p = 1,
then the formula for f > 0 reads

By [ e r v dne]aven < fy [y 1 v dvo] o,

In fact, equality holds, and the result just amounts to Fubini’s Theorem (Theorem
5.47).
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Let p = 2. We have
If By = / | f e, P dv(y),
Y

and this is measurable by Fubini’s Theorem. Hence || f(x, y)|,. dv(y) is measur-
able. The idea for proving the inequality in the statement of the theorem is to
imitate the argument that derives the triangle inequality for L? from the Schwarz
inequality. That earlier argument is

lig + 13 = llgll3 +2Re(g, h) + 1213 < llgl3 + 2llgll, I ll, + 1713,

The adapted argument is

| S £ 9 OO gy = Sy Seex 06 ) dp) [ o O, y) dn(x') dv(y)
= fyux [Jy FG D FE y)dv(n)] dp(x) dp(x)
< Jeex I @D lav 1 F &' ) g vy A1) dpp(x”)
= [ [ 1F @ W guiyy 4]

the second and third lines following from Fubini’s Theorem and the Schwarz
inequality.
Let p = oo. This is the hard case of the proof. We proceed in three steps. The

first step is to prove the asserted measurability of || f (x, y) Il . 4, () and we do so

by first handling simple functions and then passing to the limit. If s = Z,]:]:] cnlEg,
is the canonical expansion of a simple function s > 0 on X x Y and if x is fixed,
then ||s (x, y)||oo’dv(y) = max {cn |v((En)x) > O}. In other words, if k,, is the indi-
cator function of the set {x e X | v((E,)y) > O},thens = max{ciki, ..., cnkn}.
Each function ¢, k,, is measurable by Lemma 5.44, and the pointwise maximum s is
measurable by Corollary 5.9. Returning to our function f > 0, we use Proposition
5.11 to choose an increasing sequence {s,} of nonnegative simple functions with
pointwise limit f. We prove that ||s, (x, y)lloo‘dv(y) increases to || f (x, Y)”oo,du(y)
for each x, and then the measurability follows from Corollary 5.10. Since x is fixed
in this step, let us drop it and consider an increasing sequence {s,} of nonnegative
measurable functions on Y with limit f on Y; we are to show that || f|l, =
lim ||s, || . The numbers ||s, ||, are monotone increasing and are < || f|| .. Thus
lim syl < | fllo- Arguing by contradiction, suppose that equality fails and
thatlim ||s, ||, < M < M+€ < || f]l- Then {y | sp(y) > M+e} has measure 0
for every n, and so does |, { y | sp(y) > M + e}, by complete additivity. On
the other hand, { y | f(y) > M+ 6} is a subset of this union, and it has positive
measure since M + € < || f |- Thus we have a contradiction and conclude that
lim |5yl oo = | fllo- Consequently || f(x, y)lloo’dv(y) is measurable, as asserted.
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The second step is to prove that any measurable function F > 0 on Y has
[Flloe = sup, | fY Fg dv|, where the supremum is taken over all g > 0 with
ligll, < 1. Certainly any such g has | [, Fgdv| < |Fl [y 8dv < |Fl.
and therefore sup, | f y Fed v| < || F|l- For the reverse inequality, let /¢ be the
indicator function of a set of finite positive measure, and put g = v(E)~!Ig. Then
[y Fgdv =v(E)™! [ Fdv > infg(F). If m is less than || F || ., then the set E
where F is > m has positive measure, and the inequality reads m < || y Fgdv
for the associated g. Hence m < sup, | y Fg dv. Taking the supremum of such
m’s, we obtain || F||, < sup, | f y Fgdv|, and the reverse inequality is proved.

The third step is to use the previous two steps to prove the inequality in the
statement of the theorem for f > 0. Let g be any nonnegative function on Y with
[y gdv < 1. Then Fubini’s Theorem, the result of the first step above, and the
result in the easy direction of the second step above give

Jy €[ [x fx, »ydu@)]dv(y) = [y [ [y fx, g dv(y)]du(x)
< [ [ @ D o vy ] A0,

Taking the supremum over g and using the result in the hard direction of the
second step, we obtain the inequality in the statement of the theorem. g

10. Arc Length and Lebesgue Integration

Section III.11 took up the topic of arc length for simple arcs y : [a, b] — R".
For any partition P = {¢; }7‘:0 of [a, b], we wrote £(y (P)) for the sum of the
lengths of the line segments connecting the consecutive points y(#;), namely

L(y(P)) = Z;”Zl ly(tj) — v (tj_1)|, and we defined

ty) = Slfl)Pf(V(P)),

the supremum being taken over all partitions P of [a, b]. We called y rectifiable
if £(y) is finite.

In practice the simple arcs of most interest are the ones for which y is of class
C' on (a, b). We saw in Section III.11 on the one hand that not every simple arc
of this kind is rectifiable but that the simple arcs of this kind with |y’| bounded are
indeed rectifiable. We saw on the other hand that the theory omits vital examples
if we consider only simple arcs in this class for which |y’| is bounded.

To handle this gap, we studied those simple arcs that are “tamely behaved” in
the sense of being of class C! on (a, b) and having the property that near each
endpoint, each entry of y’ is either bounded below or bounded above. These arcs
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were sufficient for our purposes. They were all rectifiable, and we derived the

formula Y
()= lim Y (0] dt.
a'la, b'1b, Ja'
a<a' <b'<b

Armed with Lebesgue integration, we can sort out these matters and see exactly
which simple arcs under study were rectifiable. The answer is as follows.

Proposition 5.61. A simple arc y : y : [a, b] — R” that is of class C' on
(a, b) is rectifiable if and only is |y’| is Lebesgue integrable on [a, b] with respect
to Lebesgue measure m, and then

o) =/ 1y dm.
[a,b]

PROOF. Whenevera < a’ < b’ < b, Theorem 3.42 and Example 3 of Section 2
show that

b/ / !
E(y[a/,b’]) = fa, |)/ (l)'dt = f[u’,b’) |)/ |dm

Since the Lebesgue integral is a completely additive set function (Theorem 3.19)
and since the one-point sets {a} and {b} have Lebesgue measure 0, we obtain

lima/ia’ b'4b, LW b)) = ./(a,b) ly'ldm = f[a,b] ly'| dm.
a<a'<b'<b

Proposition 3.38 shows that the limit on the left side equals £(y) if y is rec-
tifiable, i.e., if £(y) < oo, and the proof will be complete if we show that
Jiapy 171 dm = 0o when £(y) = oo.

Arguing by contradiction, suppose that £(y) = oo and that f[a’ bl ly'|dm =
C < oco. Let M be an upper bound for |y (¢)| fora <t < b. Because £(y) = oo,
we can choose a partition P with £(y(P)) = C +4M + 1,say P = {tj};.":o.
Without loss of generality, we may assume that the points #; are distinct. Put
a =t and b’ = t,,_;. Then we have

m—1

ty(P) =ly@) —y(@|+ Zz ly (@) =y @G-l + [y (b) — y ().
j=

The first and third terms on the right side are each < 2M, and the middle term is
)/[a/ﬁ/](P/) for the partition P = {tl};n=_ll of [a’, b/] Thus

C+4AM +1 < L(y(P)) <4M + LY.} (P') < 4M + (Vo ).

The formula of the proposition has been proved for y|, ), and thus C + 1 <
LW py) = f[a, b1 ly'|dm < f[a b lyldm = C. Since C has been assumed
finite, this inequality is a contradiction, and the result follows. O
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Corollary 5.62. If a simple arc y : [a, b] — R" with y of class C! on (a, b)
is tamely behaved, then |y’| is integrable on [a, b].

PROOF. This is immediate from Theorem 3.42 and Proposition 5.61. O

REMARK. It is instructive to verify Corollary 5.62 by direct calculation. We
omit the details.

11. Problems

1. Let X be a finite set of n > 0 elements.
(a) If Ais an algebra of subsets, what are the possible numbers of sets in A?
(b) Show that symmetric difference AA B = (A — B) U (B — A) is an abelian
group operation on the set of all subsets of X and that every nontrivial
element has order 2.
(c) If Bis aclass of subsets containing @ and X and closed under symmetric
difference, what are the possible numbers of sets in 5?7
(d) Prove or disprove: The class of sets in (c) is necessarily an algebra of sets.
(e) Show that intersection and symmetric difference satisfy the distributive law
AN(BAC)=(ANB)A(ANCQC).
2. Exhibit a completely additive set function p on a o-algebra and two sets A and
B such that p(A) <0Oand p(B) <Obut p(AU B) > 0.

3. Let{E,} be a sequence of subsets of X, and put

oo o0 o0 o0
A:ﬂUEk and B:UﬂEk.

n=1k=n n=1k=n

Prove that the indicator functions of Ej, A, and B satisfy

I, =limsuplg, and Ip =liminflg,.
n n

4. Suppose that u is a finite measure defined on a o-algebra and {E, } is a sequence

of measurable sets with
oo o0 o0 o0
AU==UN5

n=1k=n n=1k=n

Call the set on the two sides of this equation E. Prove that lim,, u(E,) exists and
equals u(E).

5. Let X be the set of rational numbers, and let R be the ring of all finite disjoint
unions of bounded intervals in X, with or without endpoints. For each set E in
R, let u(E) be its length.
(a) Show that p is nonnegative additive.
(b) Show that u is not completely additive.
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10.

11.

12.

13.

14.
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Prove that if E is a Lebesgue measurable subset of [0, 1] of Lebesgue measure 0,
then the complement of E is dense in [0, 1].

Let 1 be a measure defined on a o-algebra. Prove that if the complement of
every set of measure +00 is of finite measure, then sup,, 4y 1 (A) is finite
and there is a set B with u(B) = SUP,,(4) <400 w(A).

If f is a measurable function, prove that f ~!(E) is measurable whenever E is a
Borel subset of the real line.

For the measure space (X, .4, 1) in which X is the positive integers, A consists
of all subsets of X, and u is the counting measure, the theory of Lebesgue
integration becomes a theory of infinite series. Restate Fatou’s Lemma and the
Dominated Convergence Theorem in this context.

Suppose on a finite measure space that { f,,} is a sequence of real-valued integrable
functions tending uniformly to f. Prove that lim, [y f,du = [y fdpu.

This problem involves a Cantor set C in [0, 1] built using fractions r,, as in Section

11.9.

(a) Show that C has Lebesgue measure l—[;’il (1 —rp).

(b) Prove that the indicator function I¢ is discontinuous at every point of C
and only there. Thus the set of discontinuities of /¢ is not of measure O if
[T, (1 —ry) >0.

(c) Show that if the result of redefining /¢ on a set of Lebesgue measure O is a
function f, then the only possible points of continuity of f are those where
fisO.

(d) Conclude that there exists a bounded Lebesgue measurable function on [0, 1]
that is not Riemann integrable and cannot be redefined on a set of measure O
so as to be Riemann integrable.

Let (X, A, ) be any measure space, and let (X, A, 1) be its completion. Prove

that if f is a function measurable with respect to A, then f can be redefined on
a set of r-measure 0 so as to be measurable with respect to A.

Let X be an uncountable set, and let A be the set of all countable subsets of X
and their complements. Prove that the diagonal {(x, x) | x € X} is not a member
of the o-algebra A x A, the smallest o-algebra containing all rectangles with
sides in A.

Let (Rl, BB, m) be the real line with Lebesgue measure on the Borel sets, and let
(X, A, ) be a o-finite measure space. If f > 0 is a measurable function on X,
prove that the “region under the graph of f,” defined by

R={(x,»|0=<y< fm}
is a measurable subset of X x R! and that its measure relative to p x m is

Jx F) dpx).
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15. Let. A be a o-algebra of subsets of a nonempty set X, let F : C" x - - - x C"* —
CN be continuous, and let fi + X — C"% be measurable with respect to A for

1 < j < k. Prove that x — F(f1(x),..., fr(x)) is measurable with respect
to A.

16. This problem complements the proof in Theorem 5.59 that L! is a complete
metric space. For n > 1, suppose that0 < a, < 1 and Y 2, a, = +o0. Find
a measure space (X, A, 1) and a sequence of functions f,, with || f,|l; = a, and
{ fn (x)} convergent for no x.

17. (Egoroff’s Theorem) Let (X, A, 1) be a finite measure space. Suppose that
fn and f are measurable functions with values in R such that lim f,,(x) = f(x)
pointwise. The objective of this problem is to prove that lim f, = f “almost
uniformly.” By considering the sets

Eun = {x € X||fax) = fx)| < 1/M forn zN}

for M fixed and N varying, prove that if € > 0 is given, then there exists a
measurable subset E of X with u(E) < € such thatlim f,(x) = f(x) uniformly
for x in E€.

18. (a) Derive the Dominated Convergence Theorem for a space of finite measure
from Egoroff’s Theorem (Problem 17) and Corollary 5.24.
(b) Derive the Dominated Convergence Theorem for a space of infinite measure
from the Dominated Convergence Theorem for a space of finite measure.

Problems 19-21 use Egoroff’s Theorem (Problem 17) to show how close pointwise
convergence is to L! convergence on a measure space (X, A, u) of finite measure.
Theorem 5.59 shows that if a sequence converges in L!(X), then a subsequence
converges almost everywhere. These problems address the converse direction in a
way different from Problem 16. Suppose that f,, and f are integrable functions with
values in R such that lim f,(x) = f(x) pointwise.

19. Suppose that f, > 0 for all n and that lim [ f,du = [y fdu. Prove that

lim, [ fudw = [ f du for every measurable set E.

20. Supposethat f, > 0forall n and thatlim [, f, du = [y f du. Usethe previous
problem and Egoroff’s Theorem to prove that lim | x| fo— fldu=0.

21. A sequence {g,} of nonnegative integrable functions is called uniformly
integrable if for any € > 0, there is an N such that f{XI £1(0)=N} &n du < €
for all n. Suppose that the members of the given convergent sequence { f,,} are
nonnegative. Using Egoroff’s Theorem in one direction and the previous problem
in the converse direction, prove that lim, [, f,du = [y f du if and only if the
fn are uniformly integrable.

Problems 2224 concern the extension of measures beyond what is given in Theorem

5.5 and Proposition 5.37. Let p be a finite measure on a o -algebra A of subsets of
X, and define . and p* on all subsets of X as in Lemma 5.32 and immediately
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after it. Let E be a subset of X that is not in .4, and let B be the smallest o-algebra
containing E and the members of A.

22. Show that there exist two sets K and U in A suchthat K C E C U, u.(E) =
w(K),and u*(E) = w(U). Show that K and U have the further properties that
U C ECC K, ue(E) = pn(U°), and u*(E®) = p(K°).

23. Show thatthe sets K and U of the previous problem satisfy . (ANE) = u(ANK)
and u*(ANE) = u(ANU) forevery Ain A.

24. Fix t in [0, 1]. Show that the set function o defined for A and B in A by
oc[(ANE)U (BN E"]
=tus(ANE)+ (1 =" (ANE) +tu* (BN E) + (1 — ) (B N EC)

is defined on all of B, is a measure, agrees with y on A, and assigns measure
tits(E) + (1 — t)u*(E) to the set E.

Problems 25-33 concern a construction by “transfinite induction” of all sets in the
smallest o -algebra containing an algebra of sets. In particular, it describes how to
obtain all Borel sets of the interval [0, 1] of the line from the elementary sets in that
interval. Later problems in the set apply the construction in various ways. This set of
problems makes use of partial orderings as described in Section A9 of Appendix A,
but they do not use Zorn’s Lemma. The set of countable ordinals is an uncountable
partially ordered set €2, under a partial ordering <, with the following properties:
(i) 2 has the property that x < y and y < x together imply x = y,
(i) € is “totally ordered” in the sense that any x and y in the set have either
x<yory<ux,
(iii) Qis “well ordered” in the sense that any nonempty subset has a least element,
(iv) for any x in €2, the set of elements < x is at most countable.

Take as known that such a set 2 exists.

25. Prove that any countable subset of €2 has a least upper bound.

26. This problem asks for a proof of the validity of transfinite induction as applied
to Q2. Let 1 be the least element of €2, and let “<” mean “< but not =.” Suppose
that some p(w) is specified for each w in Q. Suppose further that p(1) is true
and that if for each w > 1, p(«’) is true for all " < w, then p(w) is true. Prove
that p(w) is true for all  in Q2.

27. Let X be a nonempty set, let .4 be an algebra of subsets of X, and let 3 be the
smallest o -algebra containing .A. This problem uses €2 to describe “construc-
tively” B in terms of A. We define by transfinite induction two successively
larger classes of sets U, and /Cy for each countable ordinal « > 1. Let U be
the set of all countable increasing unions of members of A, let I, for & > 1 be
the set of all countable decreasing intersections of members of U, and let Uy
for @ > 1 be the set of all countable increasing unions of members of previous
Kp’s.
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29.

30.

31.

32.

33.
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(a) Prove at each stage « that U, and /C,, are both closed under finite unions and
finite intersections.
(b) Prove that B is the union of all /'y, for « in .

For the case that v(X) < o0, prove the uniqueness half of the Extension
Theorem (Theorem 5.5) by using the transfinite construction of Problem 27.
[Educational note: Itis notknownhow to prove the existence half of the Extension
Theorem in this “constructive” way.]

Prove the Monotone Class Lemma (Lemma 5.43) by making use of the transfinite
construction of Problem 27.

Devise a transfinite construction of all finite-valued Borel measurable functions
on R! that starts from continuous functions and alternately allows pointwise
increasing limits and pointwise decreasing limits. The construction is to be in
the spirit of Problem 27. Show that all finite-valued Borel measurable functions
are obtained in this way if the indexing is done with .

This problem “counts” the number of Borel sets of the real line, using Problem 27.
It uses the material on cardinality in Section A10 of Appendix A.
(a) Prove that

(i) €2 has the same cardinality as some subset of R,

(i1) the set of all sequences of members of R has the same cardinality
as R,

(iii) if A € B C C and if A and C have the same cardinality as R, then
so does B,

(iv) if a set A has the same cardinality as R and if for each « in A, B,
is a set with the same cardinality as R, then | J B, has the same
cardinality as R.

acA

(b) Deduce that the set of all Borel sets of R has the same cardinality as R itself.

The standard Cantor set C in [0, 1], built using fractions r,, = 1/3 as in Section
I1.9, is a Borel set of Lebesgue measure 0 by Problem 11. Prove that C has the
same cardinality as R. Conclude that the cardinality of the set of all Lebesgue
measurable sets equals the cardinality of the set of all subsets of R. [Educational
note: From this and Problem 31 it follows that there exists a Lebesgue measurable
set in [0, 1] that is not a Borel set.]

For the standard Cantor set C as in the previous problem, show that the indicator
function I¢+ of any subset C’ of C is continuous on C¢. Conclude that the cardi-
nality of the set of Riemann integrable functions on [0, 1] equals the cardinality
of the set of all subsets of R. [Educational note: From this and Problems 30-31,
it follows that there exists a Riemann integrable function on [0, 1] that is not
Borel measurable. ]

Problems 34—41 show how to produce nontrivial nonnegative additive set functions on
the set of all subsets of an infinite set from Zorn’s Lemma (Section A9 of Appendix A).
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V. Lebesgue Measure and Abstract Measure Theory

A filter F on a nonempty set X is a nonempty class of subsets of X such that

(i) if Eisin Fand F D E, then F is in F, i.e., F is closed under the operation
of forming supersets,

(i1) if E and F are in F,sois ENF,

(iii) @ is notin F.
An ultrafilter is a filter that is not properly contained in any larger filter.

34.

35.
36.

37.

38.

39.

40.

41.

Verify the following:

(a) {X}is afilter.

(b) Any filter is closed under finite intersections.

(c) A one-point set and all of its supersets form an ultrafilter. (Such an ultrafilter
is called a trivial ultrafilter.)

(d) If X is infinite, then the set F of all subsets whose complements are finite
sets is a filter.

Use Zorn’s Lemma to show that every filter is contained in some ultrafilter.

Show that if C is a nonempty class of subsets of X, then there is a filter containing
C if and only if no finite intersection of members of C is empty.

Prove that a filter F is an ultrafilter if and only if A U B in F implies that either
Aisin For Bisin F.

Prove that a filter F is an ultrafilter if and only if for every A C X, either A is in
For A®isin F.

Prove that the nonzero additive set functions defined on the set of all subsets
of a set X and having image {0, 1} stand in one-one correspondence with the
ultrafilters on X, the correspondence being that the sets in the ultrafilter are
exactly the sets on which the set function is 1. Prove that the set function is
a measure if and only if the corresponding ultrafilter is closed under countable
intersections.

Let X be any infinite set. Prove that X has a nontrivial ultrafilter, hence that X
has a nonnegative additive set function p that assumes only the values 0 and 1
and is not a point mass.

Prove that the set Z* of positive integers has no nontrivial ultrafilter closed under
countable intersections, i.e., that the set function w in the previous problem is
not a measure.

Problems 42—43 concern a theory of integration in which complete additivity is
dropped as an assumption. An example is given in Problems 39—41 of a nonnegative
additive set function on the set of all subsets of an infinite set that is not completely
additive. For the present set of problems, let X be a nonempty set, let A be a
o -algebra of subsets, and let 1 be a nonnegative additive set function on A such that
n(X) < +oo. Imagine an integration theory for | g Jf dp with the definitions just
as in the case that u is a measure. All the properties of the integral proved in the
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text before the Monotone Convergence Theorem would still be valid, except that the
integral || g f du as afunction of E would be merely additive, rather than completely
additive, and hence we would have to drop Corollary 5.24 and the converse half of
Corollary 5.23.

42. Let f be > 0, and let s, be the standard pointwise increasing sequence of simple
functions with limit f, as in Proposition 5.11. Show that the convergence of s,
to f is uniform if f is bounded.

43. Use the result of the previous problem to show in this theory that | g (f+9du=
/ gfdu+ /, g &du if f and g are bounded and measurable.





