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HINTS FOR SOLUTIONS OF PROBLEMS

Chapter 1

1. The derivation for (a) is similar to the proof of Corollary 1.3. For (b), let E
be a nonempty set that is bounded above. Start with a member s; of E. Choose if
possible an s, in E with s, — s; > 1. Continue with s3 — sy > 1, 54 — s3 > 1, etc.,
until this is no longer possible; the existence of an upper bound forces the process to
stop at some stage. Suppose that s; has been constructed at this stage. Define si,
inductively for n > 1 to be a member of E with sxy, — Sg+n—1 > 27" if possible;
otherwise define g+, = Sg+n—1. Then {s,} is bounded and monotone increasing.
To complete the problem, one has only to show that lim, s, is the least upper bound
of E. Doing so makes use of (a).

2. Show that x; > /a and that «/a < x,1| < x, forn > 1. Then lim, x, = ¢
exists by Corollary 1.6, and ¢ must satisfy ¢ = %(02 +a)/c.

3. Write out a few cases and guess that the pattern is ap, = %(1 —2=(=D) for
n > 1and ay,+1 =1 —27" for n > 0. Prove each of these statements by induction.
Since ap, — % and ap,+1 — 1 and since these two subsequences use all the terms of

the sequence, the only subsequential limits of {ay } are % and 1. Thereforelim sup ax =

1 and liminfa; = 3.

4. The argument without paying attention to finiteness is thata, +b, < sup,-; a,+
SUp, > b, for n > k, then that SUp, > (ar +by) < SUP, >k Gr + SUD, >4 b, for all r, and
then that the limit of the sum is the sum of the limits.

5. Only (ii) converges uniformly, the reason being that 0 < x"/n < 1/n and
that lim1/n = 0. There is uniform convergence in (i) on [0, 1 — €] because 0 <
x" < (1 — €)", and there is uniform convergence in (iii) on [0, 1 — €] because the
Weierstrass M test applies with |x*|/k < (1 — €)* and Yol = eF < 4o00.

6. The uniform convergence of ) -, a, (x) follows from Corollary 1.18, and the
pointwise convergence of Z;’O:O la, (x)| follows because (1 — x) ZZO:() x" =1 for
0 < x < 1 and because every a,(x) is O for x = 1. The convergence of Zi’,io |a, (x)|
cannot be uniform because the sum is discontinuous and Theorem 1.21 says that it
would have to be continuous.

7. Put g, = f — fu, so that g, is continuous and decreases pointwise to the O
function. Let x = x, be a point where g, (x) is a maximum, and let M,, = g, (x,).
We are to prove that M,, tends to 0. Suppose it does not. If k > n, then M} =

715
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gr(xr) = gr(xy) = gn(xy,) = M. So M, decreases to some M > 0. Passing to a
subsequence if necessary, we may assume by the Bolzano—Weierstrass Theorem that
lim, x, = x’. For k > n, we have g¢(x,) > gn(x,) = M, > M. Letting n tend to
infinity gives gx(x") > M since gi is continuous. This inequality for all k contradicts
the assumption that limy g (x") = 0.

8. The idea is to prove the four inequalities

2m 2m+1
D DR @k 4+ 1! > sinx, D (=¥ /(2k)! < cosx,
k=0 k=0
2m+1 2m—+2
Z (=DFxZ+1 2k + 1! < sinx, Z (—=D*x%* /(2k)! > cos x
k=0 k=0

together by an induction. They are to be proved in order for m = 0, then in order for
m = 1, and so on. In each case of the inductive step, the left side minus the right
side is 0 at x = 0 and has derivative equal to the previous left side minus right side.
The Mean Value Theorem says that each left side minus right side at x > 0 equals
the product of x and the left side minus right side at £ with 0 < & < x. Substituting
the previously proved inequality at £ then gives the result. In other words, everything
comes down to proving the first inequality, namely x > sinx for x > 0. Arguing in
the same style, we have x —sinx = 1—cos & with0 < £ < x. Soatleastx—sinx > 0.
For 0 < x < m, we actually obtain x — sinx > 0. Since f—x(x —sinx) > 0, we have
x —sinx > —sinx form < x. Thus x —sinx > 0 forall x > 0.

9. The thing to prove is that the remainder term ’% fox (x — )" £ D (1) dt tends to
0 for each x as n tends to co. If x > 0, the absolute value is < (n!)~! fox (x—t)"dt =
xntl /(n + 1)!, which tends to O for any fixed x. If x < 0, one argues in a similar
fashion.

10. By a diagonal process we can find a subsequence {F}, } convergent for each
rational x. Let F be the resulting limit function, carrying the rationals in [—1, 1] into
[0, 1]. If » and s are rationals with r < s, then F (r) = limy F,, (r) < limy F,, (s) =
F(s). Thus F is nondecreasing on the rationals. For each real x with —1 < x < 1,
define F'(x™) to be the limit of F'(r) with r rational as r increases to 1, and define
F (x1) tobe the limit of F () withr rational as r decreasesto 1. Then F(x ™) < F(x™)
for each x, and F(x*) < F(y™) if x < y. Foreach N > 0, it follows that there can
be only finitely many x’s for which F(x*) — F(x~) > 1/N, and hence there can be
at most countably many x’s for which F(x~) # F(xT). Let this exceptional set be
denoted by C. For x notin C, define F(x) = F(xT) = F(x™).

For x not in C, let us show that limy F,, (x) exists and equals F(x). If r < x
is rational, we have F(r) = liminfy F,, (r) < liminf; F;, (x); taking the supre-
mum over r gives F(x) = F(x7) < liminfy F,, (x). Arguing similarly with s
rational and x < s, we have limsup; F,, (x) < limsup, Fy, (s) = F(s), and hence



Chapter 1 717

lim supy, Fp,, (x) < F(x") = F(x). Combining these two conclusions, we see that
liminfy Fy, (x) = limsup; F,, (x) and that the common value of these limits is F (x).

Thus {F,,(x)} converges except possibly for x in C. At each point of C, the
sequence is bounded. Since C is countable, another use of a diagonal process produces
asubsequence of F},, that converges atevery pointof C, hence atevery pointof [—1, 1].

11. If |x| > 1/limsup %/]a,|, then %/]a,] > 1/|x| for infinitely many n. Thus
|apx"| > 1 for infinitely many n, and the terms of the series do not tend to O.
Hence the series cannot converge. In the reverse direction we want to see that the
inequality |x| < 1/limsup %/]a,| implies convergence of the series. We rewrite this
as limsup #/]a,| < 1/|x|. Choose a number r with limsup %/[a,] < r < 1/|x|.
Then %/|a,| < r forall sufficiently large n, #/]a,| |x| < r|x| < 1 forall n sufficiently
large, and |a,x"| < (r|x|)" for all n sufficiently large. Thus ) |a,x"| is dominated
term-by-term (from some point on) by the geometric series ) _ s”, where s = r|x]|.
Since s < 1, the geometric series converges, and hence so does Y _ |a,x"|.

12. 1/(1 —x)2 = 302 o(n + Dx", log(1 —x) = = Y02 x"/n, 1/(1 +x?) =
3% o(=1)"x?", and arctanx = Y o0 (—1)"x?"*!1/(2n + 1). All these series have
radius of convergence 1.

13. The proof of existence of arccosx uses the proposition in Section A3 of
Appendix A. The result of the calculation of the derivative is that % arccosx =
—1/+/1 — x2 for |x| < 1. Then arcsin x + arccos x has derivative 0 on (—1, 1) and
hence is constant. The constant is evaluated by putting x = 0, and the result is that
arcsinx + arccosx = mw/2on (—1, 1).

14. The uniform version of Abel’s Theorem is this: Let {a,(x)},>0 be a sequence
of complex-valued functions with Y >~ ; a, (x) converging uniformly to the limit s (x).
Thenlim, 41 Y~ @ (x)r" = s(x) uniformly inx. The proofis just a matter of seeing
that the estimates in the proof of Theorem 1.48 can be made uniform in x under the
stated assumptions. The result about Cesaro sums is handled similarly.

15. Write cosnd = 1(e" + ¢7") and sinnd = (" — ¢="%). Then

_ Li(N+D8 _ —i(N+D)E

Yoo cosnd =530 e 4 LY et = 1 16_61'9 +3 1 1e_e—i9
Each numerator is bounded by 2, and each denominator gets close to O only as 6 tends
to a multiple of 27r. This proves the estimate for the cosines, and the estimate for the
sines works in the same way.

17. For (a), the relevant result is that when all a, are O, Z;il |5 | equals
L [r 2 = 2 o 1 L [” 2
— | f(x)|“dx. Here |bu|” is (4/m) ——,and —/ | f(x)|"dx
n/_,, ,; ! ;(Zn—1)2 7).

1 w?

27 >
is just — = 2. H —_— = —
is just — ence ’; T

18. We have F(x) f(y) = [y f(O)f(dt = [§ f@t+y)dt = fy”y f@)ydt =
F(x+y)—F(y). If F(x) # 0forsome x, we can divide and use the Fundamental The-
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orem of Calculus to see that f(y) has a continuous derivative everywhere. (If F(x) =
0 for all x, then differentiation gives f(x) = O for all x.) Differentiating the original
identity in x gives f/(x) f(y) = f'(x + y). When x = 0, we obtain f/(0) f(y) =
F'). Then & (F (e~ @) = f(e 7O 4+ f(1)(=f'(©)e @) = 0, and
hence f(y)e=/'©Y is constant. Thus f(y) = ae/ @Y. In the original identity
fX)f() = f(x +y),if we put x = 0 and choose y such that f(y) # 0, then we
see that f(0) = 1. Hence f(y) = e/ ©Y if f is not identically 0.

19. We may assume that f is not identically 0. As in Problem 18, we have
f(0) = 1. By continuity of f, choose xg such that | f(x) — 1] < % when |x| < |xg].
Then Re f(xp) > 0, and we can choose a unique ¢ with |Im(cxg)| < w/2 such
that e = f(xp). The equation for f shows that f (%xo)2 = f(xp), and hence
f(%xo) equals e¥/2 or —e*0/2_ From |f(%x0) -1 < %, we have Re f(%xo) > 0.
Since | Im(cxo/2)| < /2, e“*0/2 is the choice of square root of e“* with positive
real part, and we conclude that f (%xo) = ¢“¥0/2_ Tterating this argument, we obtain
fQ2™"x9) = €2 "% foralln > 0. The equation for f shows that f(kx) = f(x)* for
all integers k > 0, and thus f(gxo) = e“?™ for every rational ¢ of the form k /2" with
k an integer > 0. From f(x) f(—x) = f(0) = 1, we have f(x~!) = f(x)~', and
thus f(gxp) = €“9* for every rational number of the form k/2" with k any integer.
Using continuity and passing to the limit, we obtain f(r) = ¢ for all real r.

21. This uses the discussion at the end of Section A2 of Appendix A. For x # 0,
we compute that g’ (x) = (R(x)/S(x))e™ !/ * for polynomials R and S with S not the

0 polynomial. Then lim,_o g’(x) = 0 by Problem 20, and the appendix shows that
g’ (0) exists and equals 0.

22. Use Problem 21 and induction.
23. Since {s,} is convergent, it is bounded. Say [s,| < K for all n. Lete > 0

be given, and choose N such that n > N implies |s, — s| < €/2. Write t, — s =
Zj M,js;j —s = Zj M,j(sj —s) by (i). A second application of (i) gives

N 00
|tn—S|§ZMnj(|Sj|+|s|)+ Z Myjlsj — s|
Jj=0 J=N+1

N 00 N
<2K E M,; + E M,je/2 < 2K E M,; +€/2.
j=0 j=N+1 Jj=0

Since N is fixed, (ii) shows that 2K Z;v: o Myj < €/2 for n sufficiently large. For
those n, |t, — s| < €.

24. For Cesaro summability the i th row, for i > 1, has its first i entries equal to
1/i and its remaining entries equal to 0. For Abel summability the row going with r;
has j® entry (1 —r;)(r;)/ for j > 0.
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25. Certainly M;; > O foralli and j. The power series in Problem 12a shows that
Y=; Mij = 1foralli,and (ii) holds because lim, 41 (j+ 1)/ (1-r)* = (j+1)-1:0 = 0.

26. Check that M as in the previous problem transforms the Cesaro sums into the
Abel sums, and apply Problem 23.

27. This is handled by the same kind of computation as with the Fejér kernel.

28. The formulafor P, (6) comes from summing the two geometric series forn > 0
and n < 0 and then adding the results. Properties (i) and (iii) are then immediate
by inspection. For property (ii) we use the series expansion of P,.(6). Theorem 1.31
allows the integration to be done term by term, and the result follows.

29. This is proved in the same way as Fejér’s Theorem (Theorem 1.59).

30. Corollary 1.38 shows that f{(x) = Y 7, cninx"1 and that filx) =
Zfiio cnpn(n — 1)x"~2 for |x| < R. The point is to show that { f{(x)} is uniformly
bounded and uniformly equicontinuous for |x| < r, and then Ascoli’s Theorem
produces the required subsequence. For proving the equicontinuity, it is enough to
prove that { f’(x)} is uniformly bounded for |x| <.

Fix r < R,andchooser; withr < r; < R. Sincelim f;(x) = f(x) uniformly for
|x| < ry, there is an M such that | f;(r1)| < M for all k. Thus | ), c,xr{'| < M for
allk. Sincec, x > Oforallnandk, c, x < Mrf” foralln and k. Sincer < ry, choose
N such that n > N implies n(r/r)"~' < land n(n — 1)(r/r1)"~> < 1 forn > N.
Since ¢, x > 0 for all n and &, cmkn|x|”_l < c,,,knr”_l < (cn,krf_l)(n(r/rl)”_l) <
cn,kr{'_l forn > N and |x| < r. Summing on n > N and taking Corollary 1.38 into
account, we see that

N—1 N—1
—1 ~1 ~1 —1
‘fk/(x) - E ney g x" ‘ <r (fk(m) - E Cn,kr?) <r fir) =rp M
n=0 n=0

f <r.Th < r implies that | f;(x)| i
or|x|_rN_1us|x|_r1mples a |f11(](_xl)|1s

< rflM—I- Z ncn,k|x|"_1 < rflM—l— Z nc,,,kr?*1 < rflM—l— N(N — l)Mrfl,
n=0 n=0
and { f;(x)} is uniformly bounded for |x| < r.
A similar argument with fk”N SPIOWS that

‘fk”(X) - nn— l)cn,kx”_z‘ <r’M,
n=0
and we find similarly that { f;’(x)} is uniformly bounded for |x| < r. This completes

the proof.

31. Theorem 1.23 shows that the limit of the subsequence of first derivatives is
the first derivative of the limit, the limit being differentiable. In other words, f is
differentiable for x| < r, and the subsequence converges to f’(x) there. Sincer < R
is arbitrary, f is differentiable for |x| < R. Now we can induct, replacing f and the
sequence f in Problem 30 by f” and a subsequence of f; on a smaller disk, then
passing to f”, and so on. The result is that f is infinitely differentiable for |x| < R.
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32. This is proved in the same way as in Problem 9.

33, |l = PV 2] < ryand Y20 PN TR = #N /(1 — 1) Thus |32V +
72V 4| tends uniformly to O for |z| < r. Since 7 > exp(t) is continuous at

t = 0, the required convergence follows.
34. Corollary 1.38 shows from the behavior for z real that all ¢, are 0.

35. Write
exp (24327 4+ 520+ ) = (TS expGa) exp (72 + gz ++-).

Problem 33 shows that the left side is the uniform limit of ]_[,]{\1;11 exp(%zk) for|z] <r
if r < 1. Each factor of the finite product is given by a convergent power series
with nonnegative coefficients, and Theorem 1.40 shows that the finite product is
given by a convergent power series with nonnegative coefficients. By Problem 32,
exp (z + 322+ 123 + - - ) is given by a convergent power series for |z| < 1. Hence
exp(z + 322+ 323 +--+) — 1/(1 — 2) is given by a convergent power series for
|z] < 1. For z = x real with |x| < 1, the series expansion of Problem 12b shows that
our expression is exp ( —log(1 — x)) —1/(1 — x) = 0. Thus our power series sums
to 0 on the real axis. By Problem 34, it sums to 0 everywhere.

Chapter 11

1. Let us compare d(x, y) withd(x, z) +d(z, y). If j contributes to d(x, y), then
xj # yj. Hence x; # z; or z; # y;. Thus j contributes to at least one of d(x, z) and
d(z, y). In other words, the contribution of j to d(x, y) is < the contribution of j to
d(x,z)+d(z,y). Summing on j gives the desired result.

2. Let (X, d) be the given separable metric space, define E to be the subset of
members x of X such that every neighborhood of x is uncountable, and let F' be the
complement of E. If x is in F, we can associate to x some open neighborhood N
containing at most countably many elements, and N, is entirely contained in F. As
x varies in F, the sets N, form an open cover of F'. By Proposition 2.32b, some
subcollection of the N, that is at most countable covers F. The union of these sets is
open and is at most countable, and it equals F.

3. Let f(x) =1/xfor0 <x < 1,andlet f(0) =0.

4. Suppose that x is in U. Since A is dense, the set A N B(1/n; x) is nonempty
for each n > 1. Let x,, be a member of it. Since U is open, B(1/n; x) is contained
in U if n is > N for a suitable N. Thus x,, isin A N U for n > N and converges to
x. By Proposition 2.22b, either x,, = x infinitely often, in which case x isin AN U,
or x is a limit point of A N U. In either case, U C (AN U)°.

5. For (a), the sets E}, are compact by the Heine—Borel Theorem. Theneach E,, —U
is compact. Theirintersectionis (5| (E,NU¢) = ((Npey Ex)NUC S UNUC = 2.
By Proposition 2.35 the system { E,, — U } does not have the finite-intersection property.
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Thus ﬂflv:l (E, — U) = & for some N. Since E; O E, 2 ---, we find that
Eny — U = @. Therefore Ey C U.
For (b), let U be empty, and let E, = Q N [v/2, V2 + 1/n].

6. Inboth parts of the problem, let the metrics be dy, dy, dz. For (a), use continuity
of F to choose for each (x¢, y) some 61,y > 0 and 8,y > 0O such that the two inequal-
ities dx (x, xo) < 81,y anddy(y’, y) < &2, together imply dz(F (x, y'), F(xo, y)) <
€/2. As y varies, the open balls B(d>y; y) cover Y. Since Y is compact, a fi-
nite number of them suffice to cover Y, say B(d2,y,; y1),..., B(82,y,; y»). Put
8y = min{dyy,,...,81,y,}. Suppose now that dx(x,xp) < & and that vy is in
Y. Then y’ is in some B(82.y;; yj). Hence we have dx (x, xg) < & < 1.y, and
d(y’, yj) < 82,”, and we therefore obtain dz (F(x, y'), F (xo, ¥j)) < €/2. Since also
dx (x0, x0) = 0andd(y’, y;) < 82.y,, weobtainalsodz (F (xo, y'), F (xo, y;)) < €/2.
Combining these two results gives dz (F (x, y'), F(xo, y")) < €.

For (b), consider dz (F (x, y), F (xo0, Y0)), and let e > 0 be given. By uniform con-
vergence, choose 81 > 0 such that dy (x, xo) < 8; implies dz(F (x, y), F(xg,y)) <
€/2 for all y. Proposition 2.21 gives us continuity of F(xp, -), and thus there
exists 8o > 0 such that dy(y, yo) < 8 implies dz(F (xo,y), F(x0, y0)) < €/2.
Then dx (x, xo) < &1 and dy (y, yo) < &3 together imply dz (F (x, y), F(xo, y0)) <
dz(F(x,y), F(xo, y)) +dz(F(xo, y), F(xo0, y0)) < €/2+€/2 =e.

7. Let f : (0,1) — R be defined by f(x) = 1/x. Then the Cauchy sequence
{1/n} is carried to a sequence that is not Cauchy in R.

8. Define inductively f© to be the identity and f® = f o f&=D for k > 0.
For existence we see inductively that d(f® (x), f® (y)) < rkd(x, y) for all x and
y. If n > m and if x is arbitrary but fixed, we then have d(f™ (x), £ (x)) <

i d(fED @), fOW) < YD, rkd(F (), ) < A0, x)/( = 7).
Hence the sequence { f ) (x)} is Cauchy. Let x” be its limit. Since

d(f(f™x)), f™x) =d(f" D (x), £™x) <r"d(f(x),x)/(1 —r)

and since d and f are continuous, d(f (x"), x") < limsup,, r"d(f (x), x)/(1—r) = 0.
Thus f(x') = x'.

For uniqueness, let f(x”) = x” also. Then d(x”, x") = d(f ("), f(x')) since f
fixes x" and x”, and d (f (x”), f(x")) < rd(x", x’) by the contraction property. Then
(1 —7r)d(x"”, x") <0 and we conclude that d(x”, x’) = 0. Thus x” = x’.

9. If no point s isolated, each one-point set is closed nowhere dense. The countable
union of these sets is the whole space, in contradiction to the Baire Category Theorem.
An alternative argument is to appeal to Problem 2.

10. The set is closed and bounded, hence compact, and it is pathwise connected,
hence connected. It is not, however, locally connected. Take, for example, the point
p = [c,1/2] in X, where c is in C. The open ball of radius 1/4 around p has the
property that no open subneighborhood of p is connected.
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11. Fix xo in X, and let U be the set of all points in X that can be connected to
xo by paths. The set U is nonempty, and we prove that it is open and closed. Being
connected, it must then be all of X. Itis open because the local pathwise connectedness
means that any x in U can be connected to every point in some neighborhood of x
by a path; hence U contains a neighborhood of each of its points and is open. To
see that U is closed, let y be a limit point of U. If V is a pathwise connected open
neighborhood of y, the set U N V is nonempty because y is a limit point of U. Let z
bein U NV. Then xo can be connected to z by a path because of the defining property
of U, and z can be connected to y by a path because V is pathwise connected. Hence
Xo can be connected to y by a path, and y isin U.

12. Any open subset of R" is locally pathwise connected. So the desired conclusion
follows from the previous problem.

13. Let the open set be U. For each x in U, let U, be the union of all connected
subsets of U containing x. It was shown in Section 8 that this is connected. For x and
yin U, either U, = Uy or U, N U, = & for the same reason. Then U is the disjoint
union of its subsets Uy, which are connected. These are intervals, being connected,
and they must be open in order not to be contained in larger connected subsets of U.

14. Same as for Proposition 2.21.

15. Suppose { f;} is totally bounded. Let € > 0 be given. Find, by total bound-
edness, real numbers ?1, ..., #, such that for any ¢, there is an index j = j(¢) with
I fe = fi; || < €. Put L/2 = max{|t1|, ..., |t,]}. If we are given an interval of length
> L, take t to be its center, so that the interval contains [t — L/2, ¢t + L/2]. Choose
J by total boundedness with || f; — fi;} < €. Then | fi—; — foll < €. Sot —1; is an
€ almost period, and this lies in [t — L/2, t + L/2]. Thus the Bohr condition holds.

Conversely suppose that the Bohr condition holds and f is uniformly continuous.
Let e > 0 be given, and find L as in the Bohr condition for € /2 almost periods. Also,
find some § for uniform continuity of f and the number €/2. Choose 71, ..., ¢, in
I =[—L/2, L/2] such that any point in / is within § of one of #1, ..., #,,. Let us see
that the open balls of radius € around f; , ..., f; together cover the set {f;} of all
translates. If 7 is given, find an L/2 almost period ¢t — s in [t — L/2,t 4+ L/2]. Here
Is| < L/2,sothat || fi—s — foll < €/2and || f; — fs|l < €/2. Since |s — t;| < & for
some j, we have || fs — f; || < €/2 by uniform continuity. Thus || f; — f; || < €.

16. Let Ty be the closure of the set of translates of f. This is complete by
Problem 14. Theorem 2.36 shows that 7 is compact if and only if every sequence in it
has a convergent subsequence, and this is the definition of Bochner almost periodicity.
Theorem 1.46 shows that T¢ is compact if and only if it is totally bounded, and this
is equivalent to Bohr almost periodicity by Problem 15.

17. This is easier with the Bochner definition. For an example of closure under
the various operations, consider closure under multiplication. Suppose that f and g
are given and that we want a convergent subsequence from the sequence of translates
(f8):,. First choose a subsequence of {#,} such that those translates of f converge
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uniformly, and then choose a subsequence of that such that the translates of g converge
uniformly. These sequences of translates of f and g will be uniformly bounded, and
then it follows that the sequence of products converges uniformly.

For closure under uniform limits, we argue similarly with translates of each of the
functions { f,} when lim f, = f uniformly. A Cantor diagonal process is used to
extract the sequence of translates to use for f.

18. If € > 0 is given, let U, be the set where | f(x) — f,,(x)| < €. This is open
by the assumed continuity, and | ;2 U, = X by the assumed convergence. Since
X is compact, some finite collection of U,’s suffices. Since the f,’s are pointwise
increasing with n, the U,,’s are increasing, and thus X = Uy for some N. For that
N, |f(x) — fn(x)| < €. Then |f(x) — fu(x)] < € for n > N since the f,’s are

pointwise increasing.

19. If 0 < Py(x) < /x < 1, then x > P,,(x)2 and the recursion shows that
Pry1(x) = Py(x). Also, Py1(x) = Pu(x) + %(«/f+ Py(0)(Vx — Py(x)) <
Pu(x) + 3(1 4+ DX — Py(x)) = /x.

20. By Problem 19, P,(x) increases pointwise to some f(x). Passing to the
limit in the recursion gives f(x) = f(x) + %(x — f(x)?), and thus f(x)® = x
and f(x) = 4/x. Since /x is continuous and [0, 1] is compact, Dini’s Theorem
(Problem 18) shows that the convergence is uniform.

21. If x and y are given with x # y, then we are given three relevant functions in
A, possibly not all distinct. They are k| with i1 (x) # h1(y), hy with h(x) # 0, and
h3 with h3(y) # 0. If Ay (x) or h((y) is O, we can add a multiple of A, or h3 to h
to obtain an A4 with hs(x) #£ ha(y), ha(x) # 0, and ha(y) # 0. The restrictions of
h4 and hﬁ to the two-element set {x, y} are linearly independent and therefore form a
basis for the 2-dimensional space of restrictions. Hence some linear combination of
h4 and hi equals the given f atx and y.

22. Let f be in Cr(S) with f(so) = 0. Since B = Cg(S), there exists a
sequence {g,} in B with limg, = f uniformly. Then limg,(so) = f(so) = O
in particular. Put f,(s) = gn(s) — gn(s0). Then f,(so) = 0. The inequality
1 £2(8) = £ ()] = 18n(8) = £(5) — a(50)] < () — F(5)|+|2n(50)| shows that { f;)
converges uniformly to f. The members of A are the members of B that vanish at
so- The functions f;, have this property, and thus { f,,} is a sequence in .4 converging
uniformly to f.

24. For (a), we identify Cy([0, +00), R) with the subalgebra of C ([0, +o00], R)
of continuous functions equal to 0 at +0o. The function e™ separates points on
[0, +00]. Apply Problem 22 to the algebra it generates, namely the algebra of all
finite linear combinations of e~ for n a positive integer.

For (b), let ¢ > 0 be given, and choose g(x) = Y c,e ™ by (a) such that
SUPg<y <+00 | (¥) —g(x)| < €. The hypothesis forces fob f(x)g(x)dx = 0, and this
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is foh fx)?dx — fob F@)(f(x) — g(x)) dx. Thus
b b
0= [ reran=| [ s - gw) .

So foh f(x)2dx <e fob | f(x)| dx. Since € is arbitrary, foh f(x)?2dx = 0. Therefore
f=0.
25. Isometries are uniformly continuous. Applying Proposition 2.47 to the uni-

formly continuous function ¢, o ((pl_ ! |(p1 ( X)) of the dense subset ¢ (X) of X7 into X3,

we obtain an isometry W : X7 — X extending ¢ o ((,01_1 | . Reversing the roles

(pz(x)l)|. Then

¢1(X))
of X7 and X3, we obtain an isometry ® : X5 — X7 extending ¢; o (<p2_1 |
@ oW is a continuous extension of the composition ¢ o (@5 ! |§02 ( X)) opro(p; o€ X)),
which is the identity map on ¢1(X). Hence ® o W is the identity on X7}. Similarly
W o @ is the identity on X73. Thus W is onto. This proves existence.

For uniqueness let ¥ and W* be two such maps. Then W ~! o W* is a continuous

extension of the identity map on the dense subset ¢;(X) of X7, and hence it is the
identity. Therefore ¥ = W*.

26. Theorem 2.60 says that X is dense in X*. Then X = X™* if and only if X is
closed, and this happens if and only if X is complete, by Proposition 2.43.

27. The only one of these that requires explanation is (iv). We may assume
that none of r, s, and r + s is 0. Write r = mp*/n and s = up'/v with p not
dividing any of r, s, u, v. Without loss of generality, we may assume k < [, so that
max{|r|p, sy} =1Irlp = p~k. We have

1—k —k
r4s = mpk/n +upl/v — pk(% + upv ) — pk(mv+5v nu).
The denominator nv is not divisible by p. The part of the numerator within the
parentheses is an integer, and we factor out any factors of p from it as p® witha > 0.
Then we have |r + 5|, = p~** and this is < p~* as required.

28. For the triangle inequality, letr, s, ¢ be given. Then Problem 27 gives d(r, t)
Ir—tlp =10r —s)+ (s —0)|p < max{|r —slp,|s —tlp} < |r —slp+Is—tlp
d(r,s) +d(s,t).

29. Part (a) will be illustrated by the more difficult (b) and (c). Multiplication by a
member r of Q is a uniformly continuous function from Q into Q,; in fact, the equality
|7 (s —s0)|p = |r|pls — solp shows that if € is given, then the § of uniform continuity
can be taken as |r |;1e. Proposition 2.47 then tells us how to form products 7s for r in
Qand s in Q,. For fixed s, the result is a uniformly continuous map of QQ into Q,, since
| - |, extends continuously to Q, and we have |(r —ro)s|, = |r —rolpls|,. A second
application of Proposition 2.47 extends the operation to a mapping of Q, X Q,, into Q,,
that is uniformly continuous in each variable when the other variable is held fixed. In
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fact, it is continuous in both variables since |rs —roSol, = [(r —ro)s +ro(s —s0)|p <
lr —rolplslp + lrolpls — sol < |r —rolpls —solp + [ —rolplsolp + lrolpls — sol-
For (c), take a shell Ay, = {r e Q, | p k< [l < p"}. This is a closed
subset of @, hence complete. Reciprocal is a mapping from A, N Q into Ag,
that is uniformly continuous because r and s in A,; N Q implies [r~' — 57| p =
(s = r)/rsly = Is = rlplrl, sl < p*"|s — rl,. Hence reciprocal extends to
a uniformly continuous mapping from A to Ag,. These mappings are consistent
as n and k tend to infinity, and thus reciprocal is a well-defined function from (@;
to itself. It is continuous because the same computation as just given shows that

_ -1 _ _ .
r=t =gt = I —r0|p|r|p1|r0|p1. If we write |r|, > |lrolp — Ir — rolp| and

require that [r — 7o, < %|r0|p, then [r—! — r0_1|,, =1r - r0|p(%|r0|p)_l|m|_l, and
continuity of reciprocal at ro follows.

The abelian group axioms in (c) are associativity, commutativity, existence of the
two-sided identity 1, and existence of two-sided reciprocals. To complete (c), we
need associativity and commutativity. We can regard associativity as asserting the
equality of two continuous functions from Q, x Q, x Q, to Q,. These are equal on
Q x Q x @Q, and this subset is dense. Hence the two functions are equal everywhere.
Commutativity is proved similarly.

The distributive law in (d) is proved by the same technique used for associativity
in (c). Thus Q,, is a field.

30. For (a), it is enough to prove that § = {t eQ | 1]y < 1} is totally bounded.
For x in Q, let C(§; x) = {t € Q| [t —x|p < 5}. It is enough to show for each

integer [ > 0 that § € Uf;l C(p_l; r). If tis given in S, ¢ is of the form t = m/n
with m and n in Z and n nondivisible by p. Let n~! denote the integer from 0 to
p' — 1 suchthat nn=! = 1 mod p’, and let r denote the integer from 0 to p/ — 1 such
that n~'m = r mod p'. Then m — nr = 0 mod p', and so |m — nrl, < p~L. Since
Inl, =1, |2 —r|p < p~t. Thustisin C(p~;r).

For (b), compact sets are closed and bounded by Proposition 2.34a. Conversely
let E be closed and bounded. The set T = {t € Q, | lt]p < 1} is certainly closed.
Since Q, is complete, T is complete. Part (a) shows that T is totally bounded.
By Theorem 2.46, T is compact. The given set E is contained in some set 7,, =
{t € Q| It], < p"}. Multiplication by the member p~ of Q,, carries T continu-
ously onto T;,, and T, is compact by Proposition 2.38. Since E is a closed subset of
the compact set 7,,, Proposition 2.34b shows that E is compact.

31. The first two assertions are routine consequences of (ii), (iii), and (iv). Let
us consider the quotient Z,/P. We show that P is a maximal ideal. In fact, if I is
an ideal in Z,, properly containing P, then I contains some element ¢ with |¢], = 1.
Then (iii) shows that ! has [t~!|, = 1 and lies in Z,. Since ¢ isin 7 and ¢~ ! is
in Zp, their product 1 is in I. Thus / = Z,. In other words, P is a maximal ideal.
Hence Z,/ P is a field. To complete the argument, we show that Z, / P has exactly p
elements. Given x in Zj,, choose m/n in Q with |x — % |p < p’l, by denseness of
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Qin Q,. Here |% |p < 1, and we may assume that n is nondivisible by p. Arguing

as in Problem 30a, we can find r in {0, 1, ..., p — 1} such that |% — r}p < p’l.

2= |p} < p~! by the ultrametric inequality. So

Then |[x —r], < max{|x— o o |
x = (x—r)+rwithx—rin P. Thus {0, 1, ..., p—1} represents all cosets of Z,/ P.
Finally no two distinct elements r and " in {0, 1, ..., p — 1} have |r —r'|, < p!

because this inequality would entail having r — r’ divisible by p.

Chapter III

1. For (a), ITS|* = Y, ITS(e))I* = X;12:(S(e), e)T(e;)|*. Use of the
triangle inequality and then the Schwarz inequality shows that this expression is <

2 1/2 1/242

35 (1S enl1Tenl)® < X, (X 16S(ep). enl?) (X 1T enl?) %) =
> 1S(ep)PIT > = |S|* |T[*. Part (b) is routine.

2. The member of L(R"”, R™) with matrix A.

3. limsup, _ (Jh|~'[f(h) — 0 — 0]) < limsup, o (|1 ~"[A]*) = 0.

4. The formula is %f(x + t”)‘zzo = Zj u; %(x). The argument is written out
within the proof of Theorem 3.11.

5 (e’ 0 ) ot (1 t) ( cost sint) (cost isint) (cosht sinhz)

N0 et ) 01)> \ —sint cost J” \isint cost /° \ sinht cosht /°

7. The equality is false because the left side is positive and the right side is negative.
In fact, the left side is fol [lim le(e_xy — 2¢7) dx]dy, which equals fol lim[ —
ey + e‘z"y/y]llV dy = 01 %[e‘y — e ] dy; since e > 7Y on (0, 1), the
left side is > 0. Meanwhile, the right side is floo [ —e ™V /x + e_2xy/x](l) dx =
floo %[6_2)( — e"‘] dx; since e=2* < ¢~* on (1, 00), the right side is < O.

8. Define || - |, as in Section I.10, and let f;(z) = f(x — t); the latter definition
is not the one used earlier in the book. For (a), the Schwarz inequality gives

|f % g(x) — fxgxo)| = |5 [T [f(x — 1) — fxo — )]g(t) dt|
= /s = fullallgly < lgllasup | f(x =) = f o =D,

and the right side tends to 0 as x tends to xo by uniform continuity of f. This proves
that f * g is continuous. The periodicity is evident. The proof that f x g = g % f is
the same as the proof in Section I.10 that f x Dy = Dy * f.

For (b), an application of Fubini’s Theorem (Corollary 3.33) and a change of
Variag)les gives % fjf fxg(x)e " dx = (%)j f: f; f(x —gt)e ™ dtdx =
() 7T fx = nge ™ dxdt = ()" [T [T fx)gt)e "D dx dt =
(L) [T [T Fg@e e ™ dx di = cod,.
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For (c), we apply the Weierstrass M test. It is enough to prove that ), |c,dy| <
+00, and the Schwarz and Bessel inequalities together do this:

Y lendal < (3 1eal?) (31 ? < 11 £ 1 llgll < +oo.
n n n

9. Write out each side as an iterated integral, and apply Fubini’s Theorem (Corol-

lary 3.33).
10. For the partial derivatives, 5:0,0) = ( ﬁo)| = 0 and %(O, 0)=0

similarly. The fact that f is not continuous at (0 O)isa spemal case of Problem 11a.

11. For (a), the homogeneity says in particular that f(rx) = f(x) forr > 0 and
|x| = 1. Then supy_ | f (¥)| = supjy\=; | f(x)|, and the right side is finite, being the
maximum value of a continuous function on a compact set. If f(y) is continuous at
y =0, then f(0) = lim, o f(rx) = f(x) forevery x with |x| = 1 and so f must be
constantly equal to f(0).

For (b), limsup, ,_,¢ | f(rx)| = limsup,,_,q ré|f(x)] = 0if d > 0 since f(x) is
bounded for [x| = 1. Thus f is continuous at 0 if d > 0 and f(0) = 0. If d < 0,
then limsup,, o 7| f(x)| = +ooifd < 0and f(x) # 0.

For (c), we have f(rx) = rdf(x) for any x = (x1,...,x,) # 0. Put g =
f o m,, where m, refers to multiplication by r. The homogeneity gives g = r? f,
and thus ?—g(x) = rdi(x) On the other hand, the chain rule gives ?—g(x) =

Yr (rx)a(rx’)(x) =rgL(rx). Sor 3L (x) = r L (rx), and (o) follows

For (d), the given condmons say that f (tx) =tf (x) for all real 7. Then < 8x' (0) =
J
lim/ 017" (f(0 + te;) — 0) = lim—ot~'tf(ej) = f(ej). On the other hand, (c)
says that 9f/0x; is homogeneous of degree 0, and (a) says that 9f/dx; cannot be
continuous at 0 unless it is constant.

12. Part (a) follows from Problem 11b. In (b), s (0) = f(O +t(1,0)) |z 0=
E |t=0 = 1 and %(O) = dtf(0+ty)|t o=@ 0| = 0. The failure of continuity
is by parts (a) and (c) of Problem 11.

For (c), we have %f(O + tu)|t 0= dz
tiable at x = 0, the chain rule would give 7 f(O + tu) |t o = Ul ax (O) + uz (0)
cos 6. Since cos’ 6 is not identically equal to cos 6, f is not differentiable at 0.

13. Part (a) follows from (a), (b), and (c) of Problem 11. About 0, the function
f iseven in x and even in y, and hence the first partial derivatives are odd about 0.
Then part (b) follows from Problem 11d. To calculate the results for (c), we need to
compute %(x, 0) for x # 0 and %(O, y) for y # 0. The first of these is x, and the
second is —y. The formulas for the second partial derivatives follow.

14. Forn > 0,r"e"? (x+zy)" isofclass C*, and soisr"e "¢ (x—zy)" For
the first of these functions, -> ax_2 x+iy)* =nn—1)(x+iy)" 2 whlle = (x +iy)"' =

i’n(n — 1)(x +iy)"~2. Hence A(x + iy)" = 0. The result for (x — ly)” follows

4t cos 0| = cos® 4. If f were differen
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by taking complex conjugates. The final conclusion is a routine consequence of
Theorem 1.37, the complex-valued version of Theorem 1.23, and the fact that each
term is harmonic.

15. This follows by direct calculation.

x4y +x
X+ y3
(2,2). One checks that ¢'(1,1) = (? 1). The locally defined inverse function f

3
_ 3/14 —1/14
near (2,2) has f/(2,2) = ¢'(1, )~! = (_ljm Sfm

entry of this, namely 3/14.

16. In the notation of Theorem 3.17, ¢(x, y) is ( ), ais (1,1),and b is

), and 22, 2) is the upper left

17. All 6 derivatives of possible interest are given by the matrix product

2-10\ t/0 o 0 —n/2
2 20 0-m/2) = 1[0 - | Then 3 (7/2,0) = 0 and ¥ (/2,0) =
1 11 0 0 0 37/2

—m/12. The function x(u, v) is of class C* by Corollary 3.21.

18. The map in question is X — X2 and is the composition of X — (X, X)
followed by (U, V) — UV. Here we can write UV = L(U)V = R(V)U, where
L(U) is the linear function “left multiplication by U” on matrix space and R(V) is
the linear function “right multiplication by V.” The derivative of (U, V) = UV is
then (R(V) L(U)) by Problem 2. Hence the derivative of X > X2, by the chain
rule, is

(R(V) L)) (}) = (R(V) + LUY)| y_y_y = ROX) + L(X).

U=vV=X

At X = 1, this is R(1) 4+ L(1), which is “multiplication by 2 and is invertible. The
Inverse Function Theorem thus applies.

19. We may assume that g’'(xo) # 0, thus that g—fi(xo) # 0 for some i. We
take this i to be i = n; the other cases involve only notational changes. Write
x = (x/,x,) with x’ € R*"!, and write xy = (a, b) similarly. Then the Implicit
Function Theorem produces a real-valued C! function 4 (x’) defined on an open set
V about the point a in R"~! such that h(a) = b, g(x’, h(x’)) = 0 for all x" in V,
and g_)g(a) = —(%(a,b))‘l(g—g(a,b)) for1 < j < n. Let Hx) = (x', h(x')).
Form f o H, which has a local maximum or minimum at x’ = a in V. All the first
partial derivatives of this function must be 0 at x’ = a. Thus,for1 < j <n—1,0=

%(cz) =37, g—i(xo)%—i{]f(a). Since H;(x) = x; fori < n, all the terms of this

sum are 0 except possibly for the jth and the n', Thus 0 = 2L (x0) + i(xo) % (a)
J

T 0x; 0x,
= 3L 00 - (35) o) (3£ @, )~ (3 (a, b)) for j < n. Theright side is 0 trivially

for j = n, and thus the result follows with A = —(E?Tg(a, b))_l.
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20. The difficulty in handling this inequality as a maximum-minimum problem is
the question of existence. Lagrange multipliers can constrain matters to a compact
set, and then existence is no longer an obstacle. The domain D initially will be

the set where a; > 0,...,a, > 0. Fix a number c, and let g(ay,...,a,) =
%(al 4+ ---4+a,) —cand f(ay,...,a,) = 2/ai---a,. The subset of D where
g(ay,...,a,) = 0is compact, and f must have an absolute maximum on it. This

maximum cannot occur where any a; equals O since f is O at such points. So it
is at a point in the set U where all a; are > 0. Apply Lagrange multipliers on U.
The resulting equations are %(al ~~-an)1/”/aj = 1/nfor 1 < j < n, as well as the
constraint equation %(al + ---+a,) = c. The first n equations show that all a;’s
must be equal, and the constraint equation shows that they must equal c. The desired
inequality is true in this case and hence is true in all cases.

21. Write x(8) = r(f)cosf and y(@) = r(0)sin6, differentiate with respect
to 0, and form x’(0)> 4+ y'(9)?. The result is that x'(6)> + y'(0)*> = r'(6)> + r.
Substitution into the result of Theorem 3.42 gives the desired formula.

22. For (a), s(t) = [, \/(j—u cos u)2 + (£ sin u)2 + (%u)zdu = V2 [y du
V2.

For (b), s(x) = [y \/(j—uu)z + (dd—u%(e“ + e*”))zdu. Here %(%(6“ +e™) =
%(e“ — e™"), and the sum of 1 and the square of this is the square of %(e” + 7).
Thus s(x) = f; %(e” +e ) du = %(ex —e ).

For (¢), s(x) = [y \/(%u)z + (%1&/2)2 du = fol J1+ %u du, and this equals
Sla+50" -1

For (d), the integral in question is s(x) = f(f V14 @)?2dt. Since y'(t) = 2t,
the right side is equal to f; /1 +4:2dt. The substitution 2t = tanu leads to an
integral of a multiple of sec®u = cosu/cos*u = (cosu)(l — sin®u)~2. Then the
substitution v = sin u leads to a definite integral of (1 — v2)~2, which can be handled
by partial fractions.

For (e), we have r(t) = t and r’(t) = 1. Problem 21 shows that the integral is
s(t) = fg) A/t2 4 1dt. This is treated the same way as in (d).

For (f), we have x(8) = 6 cos6 and y(#) = 6 sin6. These are both C' functions
in an interval about 0, and thus x’(6) and y’ (@) have finite limits at & = 0. Hence the
curve is tamely behaved at 0.

23. (y) = [y N+ 1di+ [L N2di+ [5 T+ 4( —2)% di, and if one wants,

these integrals can be evaluated exactly.

24. The first line of inequalities is proved in the same way as for Lemmas 1.24
and 1.25. Any two partitions have a common refinement, and thus the second line
of inequalities follows. Taking the infimum over P; and then the infimum over P,
yields the third inequality.
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25. Let € > 0 be given. Choose § > 0 so that | f(x) — f(x')| < € whenever

|lx —x'| <68. If u(P) <48,then max f(x)— min f(x) <e. Hence
Xj—1 =X =X X

<X -1 SX X

3

U(Pv fa a) - L(Pv f,O{) = Z ( max f(-x) _X',?li)ng' f(x))(a(xj)_a(-xj—l))

i—1 Xji-1=XY=X;

~

=<

e(axj) —alxj—1) = e(a(d) — a(a)).

s

J

26. Let A = supp, L(P’, f, @). From Problem 24 it follows that U(P, f, o) >
A > L(P, f, a) for every P. Combining this inequality with Problem 25 shows that
lim,py—o U(P, f,a) = A = limypy—o L(P, f, a).

27. With y(t) = (1 — t)(x1, y1) + t(x2, y2), we have x(t) = x1 + t(x2 — x1),
dx = (x —x1)dt, y(t) = y1 + (y2 — y1)t,and dy = (y» — y1) dt. Then fy xdy =
fol (14 (2 —x)O (2 — y) dt = x1(y2 — y1) + 3 (x2 — x1)(y2 — y1), and similarly
fy ydx = yi(xy — x1) + %(xz — x1)(y2 — y1). Subtraction gives fy xdy —ydx =
x1(y2 — y1) — y1(x2 — x1) = x1y2 — x2)1-

28. In (b), take f(x, y) = 1 log(x? + y?).

29. In (b), fy F.-ds = 02”(P(cost, sint)(—sint) + Q(cost, sint)(cost)) dt =

(= sin? 1 —cos? 1) dt = [T (=1)dt = 2.

In (c), if there were such a function, then Proposition 3.46 would say that

f v F - ds = 0, in contradiction to the result of (b).

30. fol tdt—i—fol 219 dt+f0‘ 3¢ dt, etc.
31. Since ( ‘. Cosy) = V(e* cos ), the line integral equals [, (7") .ds =

—e“siny
02” ((sint)(—sint) + (—cost)(cost)) dt = —2m.

32. In Green’s Theorem with P(x,y) = —%y and Q(x,y) = %x, we have
% - % =1. Thusfy Ixdy —Ltydx = [[, (% - %)dxdy = [f, ldxdy =
Area(U).

33. The integral over the polygon of %(x dy — ydx) is the sum of terms as in
Problem 27, and this expression equals Z;';O(xj Yj+1 — YjXj+1). Green’s Theorem
applies in this situation, according to Corollary 3.50, and the line integral therefore
equals the double integral over the inside of the polygon. The integrand is 1, according
to Problem 32, and thus the double integral gives the area of the inside.

Chapter IV

1. For (a), %yz = —%tz + ¢. Adjusting ¢, we have y> = —t2 + ¢. Then
y(t) = £+/c — 2. For (b), the exceptional points are (z, 0). For (c), a solution with
y(to) = yo is y(t) = sgn(yo),/y§ + 15 — 1%.
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2. In Theorem4.1,takea =1l andb = 1. Then M =2 and a’ = % The theorem
therefore gives a solution for |#| < 1/2.

3. To be an integral curve, (x(), y(t)) must satisfy x'(¢) = +/x and y'(¢) = 1/2.
Then 24/x(f) = ¢ +c¢1 and y(r) = 3¢ + c5. At some unspecified time fo, the curve
is to pass through (1, 1). Then x(zp) = 1 and y(#9) = 1; these force 2 = #9 + ¢y
and 1 = 310 + c2. So (x(1), y()) = (¢t — 10 + 22, 3(t — 19 +2)). If 19 = 0, for
example, the curve is (x(1), y()) = (3t +2)2, 3t +2)).

4. This uses the multivariable chain rule, Proposition 3.28b, and the Fundamental
Theorem of Calculus. The derivative in question is

= @201/ sin(3) + [ @/91)(s~ " sin(s)) ds = /1) sin(t) + [ cos(st) ds
= /1) sin(t®) + [t sin(st)]io = (2/1) sin(#?) + 1~ sin(s?).

5. 9(t) =24 cre’ + cre?.

31 1 0 Lo 0
6. For (a), J = and B = for the first,and J={ 0 i 0
0 3 2 1 0 0 —i

0 i —i
and B = ( 1 0 0) for the second. For (b), the bases are e’ (;) and
0 1 1

0 i —i
e¥ (((1)) +1 (;)) for the first, and ¢’ (1),6” <0>,€_” ( 0) for the second.
0 1 1

Part (b) can be solved directly without solving part (a) first. Consider the 2-by-2
example. The only root of the characteristic polynomial is 3, and it has multiplicity 2.
c

We solve (A—3-1)ko = 0 and get kg = (20)' Then we solve (A—3-1)lp = <2Cc>

and get [y = <c _:sz). Choose any ¢ # 0 and any d, say ¢ = 1 and d = 0. Then

ko = ( ;), and [y = <(1)>, and we obtain the solutions in the form given above.

For more complicated examples, the choice of these constants can get tricky, but this
method works quickly for easy examples.

7. Forn = 1, det(A — (—ap)) = A 4 ag. Assume the result for n — 1, and expand
the n-order determinant by cofactors about the first column. Then
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A—-10 0 0 0
A -1 0 0 0
r -1 0 0
det(Al — A) = det :
A =10
A -1
ap ay az ap—1
A-10 - 0 0 -1 o
A =1 0 0 -
= Adet ot (=D ag det
A =10
r -1
ES .
ay ap an—1 —1

=2 d @ AT an) + (=D ag (=)
=M+ ap- A" -t ao,

the next-to-last equality following by induction.

8. In (a), let | f,,(#) < M for all t and n. Then | F,, () — F, ()| = | frt fn(s) ds‘ <
M|t — t'|. Thus equicontinuity holds with § = ¢/M.

In (b), we solve the equation explicitly, using variation of parameters. The solutions
of the homogeneous equation are cj cost + ¢ sint, and computation shows that
the unique solution of the inhomogeneous equation with the given initial condition
is y*(t) = —(cost) [y (sins) f(s)ds + (sint) fy(coss) f(s)ds. Each integral is
equicontinuous by the same argument as in (a), and the operations of multiplication
by a bounded continuous function and addition preserve the equicontinuity.

In (c), we do not know explicit formulas for the solutions of the homogeneous
equation, but the same argument as in (b) with variation of parameters will work
anyway.

10. For any C? periodic function f, the n™ Fourier coefficient ¢, of f has
lcn| < n~2sup|f”|. The function v(r, 8), being a composition of two C? functions,
isC2for0 <r < 1and |6] < m, and hence sup |%| is bounded by some M for
0 <r <1 —34. Then we obtain |c,(r)| < M/n?.

11. The function (u o Ry)(x, y)e ¢ is of class C? jointly in x, y, ¢. By Proposi-
tion 3.28 we can pass the second derivatives with respect to x and y under the given

integral sign with respect to ¢. The integrand is harmonic in (x, y) for each ¢, and
therefore the integral itself is harmonic. The integral itself is given by

% ffﬂ v(r, 0 + @)e k¢ dp = % ffﬂ Y o o Cn (1)l =0 gy,

The series in the integrand is uniformly convergent as a function of ¢, by the estimate in
Problem 10 and by the Weierstrass M-test. Theorem 1.31 says that we can interchange
sum and integral, and then the right side above collapses to cx (e,
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12. Starting from v(r, 8) = u(r cos @, r sinf), we compute g—f and g—‘e’ by the chain
rule and obtain

dv _ 4 ging du W _ging du du
5y = cost 5 +sin6 3y and 55 = —rsinf 5 +rcost 3y
. . 2 9y . . o
Using the same technique, we form % and 3712’ in terms of the partial derivatives of

u, and we find that
9% 1 dv 1 9%
Au = kPl + ror + 72 902"

Substituting v(r, ) = ck (r)etk? and taking into account that Au = 0, we obtain

0=e*(c) +r7"c| — k*r2cp).

Thus rzc,/(/ +re; — k*c; = 0. This is an Euler equation. The solutions are c; () =
ar™ 4 brr =1 if k £ 0 and are ag + bo logr if k = 0. Taking into account that
ck(r) is differentiable at r = 0, we obtain ¢ (r) = a1 for all k. Substitution gives
v(r, 0) =Y 00 cprinlein?,

13. Since fr(0) = > 00 cuR™Me" and P jp(0) = 300 (r/R)"ei" the

result follows immediately from Problem 8b at the end of Chapter II1.

15. For (a), substitute y = uv, y’ = v'v+uv’,and y” = u”v+2u’v' +uv” into the
equation for y, take into account thatu” 4+ Pu’+ Qu = 0, and get 2u’v'+uv”+ Puv’ =
0. Put w = v’. We can rewrite our equation as w’ = (—P — 2u’/u)w since u is
assumed nonvanishing. Then Problem 14 gives w(t) = ce S Pa=2 f@mdr _
ce_detel"g”“‘_z) = cu(t)_ze_fp(t)d’.

For (b), the formula in (a) gives v'(¢) = ce”z/z, and hence y(t) = u(t)v(t) =
e’/? IN =12 ds.

16. The substitution leads to uv” + 2u’ + Pu)v' + (u” + Pu’ + Qu)v = 0. Thus
the condition is 2u’ 4+ Pu = 0. By Problem 14, u(t) is a multiple of ¢~ Jer 9 The
computation of R(?) is then routine.

17. Substitution of v = ur~'/2 shows that L(v) = r'/2Lo(u) with Lg of the
indicated form.

18. For (a), the formula is d, = — Y ;_, cxdn—k, With dp = 1. For (b), we have
dy = —ci1dy = —cy, so that |di| = |e;| < Mr'. Thus |d,| < M(M + 1)"~'" for
n = 1. Assume that |dy| < Mr¥ for 1 < k < n. Then |d,| < ZZ;& lcn—klldr] <
lenl + 3021 (M= ) (M(M + D}='rKy < My + M2r" Y021 (M + DF=!. This is

= Mr"(14+ M Y21 (M + DET)
=Mr"A4+M(M+D""—1/(M+1)—1)
=Mr"1+M+1D)""—1)= MM+ 1) 1",
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For (c), we may assume that f(0) = 1. Write f(x) = Z;io c,x", and define d,, as in
the answer to (a). The estimate in (b) shows that the power series g(x) = Z;’,C’:O dyx"
has positive radius of convergence, and Theorem 1.40 shows that f(x)g(x) = 1 on
the common region of convergence. Then g(x) = 1/f(x), and 1/f(x) is exhibited
as the sum of a convergent power series.

19. The indicial equation is s(s — 1) + aps + bg = 0, where a9 = P(0) and
by = Q(0). Thus s1 +sp = 1 — agp.
In (a), we apply Problem 15a with u(¢) = %! Z;’;O cpt". The expression P(t) in

that problem has become r ! P (¢) here, and we obtain v’ (1) = u(t) 2e” f P 4 n

the integrand of the exponent, we separate the term —agp /¢ from the power series, and
we see that v/ (f) = u(r) 2~ 92" x power series = r~%u(t) "> x power series, the
power series having nonzero constant term since exponentials are nowhere vanishing.
This is of the form 772'~% x power series as a consequence of Problem 18 and
Theorem 1.40, the power series having nonzero constant term. When this expression
is integrated to form v(z), the # ~! produces a logarithm, and the rest produces powers
of . Thus v(z) equals ¢ log ¢ 4 =291 7%F1 x power series; here the power series has
nonzero constant term. Then u(#)v(t) = cu(t) logt + ¢ t2i—aotl power series;
once again the power series has nonzero constant term. The exponent of ¢ in the
second term is —s; + 1 — ag = —s1 + (51 + s2) = 52, and (a) is done.

In (b), we know that there is only one solution beginning with #°!, and thus we
must have ¢ # 0 in (a). Another way to see this conclusion is to recognize that the
exponent of #~217% in v/(¢) is just —1 since 2s; = 51 + s2. Thus the coefficient of
! in integrating to form v(¢) is not 0, and the logarithm occurs.

In (c), we know from a computation in the text that no series solution begins with
1~ except when p = 0, and thus the first argument for (b) applies.

20. When ¢ = t;_ is substituted into the formula valid for #;,_| < ¢ < #;, we get
y(t) = y(tx—1); so the formula is valid also at #;_;.

We induct on k. For k = 0, y(t9) = yo. Assume inductively for k > O that
ly(t—1) — y(00)| < Mltr_1 — 19| < Ma’ < b. For ty_; <t < 1, the displayed
formula in the problem implies |y(¢) —y(tx—1)| = |F (tx—1, Y(tx—1))| |t —tx—1]. Since
(tx—1, y(te—1) lies in R, |F| is < M on it. Thus [y(t) — y(t_1)| < M|t — t5_y| <
Ma < b. Ify_; <t < 1, then adding such inequalities gives |y(¢) — y(to)| <
Mty —tol + -+ Mlti—1 — ti—2| + M|t — ti—1| = M|t — ty] as required. Since
|t — 19| < a’, wehave M|t — tg] < Ma’ < b. Thus (¢, y(t)) isin R'.

21. We may assume that ¢’ < ¢. If ¢’ and ¢ lie in the same interval [#;_1, #] of the
partition, then y(¢) — y(¢') = F(tx_1, y(tx_1))(t — t’). Taking absolute values gives
ly(t) =y < M|t —1'|.

Otherwise let ¢/ < #; < f_; < t. Then each pair of points (¢', #;),(t1, t7+1),
oo s(tk—2, ti—1),(tx—1, t) lies in a single interval of the partition. Adding the estimates
for each and taking into account that each difference of ¢ values is > 0, we obtain
ly(t) =y < M|t —1'|.
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22. Letty_1 <t < t. Then ft; y(s)ds = Zf;ll t;j_l y'(s)ds + f;_l y(s)ds =
(@) — y)) + -+ + tk=1) — y(t—2)) + (y@) — y(tx—1)) = y() — y(to),
by an application of the Fundamental Theorem of Calculus on each interval. If
fie1 < s < tr, we have |y'(s) — F(s, y(s))| = |F (tx—1, y(tx—1)) — F (s, y(s))|. Here
|s —tr—1| < |tx — tx—1] < & by the choice of the partition. Again by the choice of the
partition, |y(s) — y(tx—1)| < M|s — tx—1] < M(6/M) = 6. By the definition of § in
terms of € and the uniform continuity of F, we conclude that | y'(s) — F (s, y(s))| < €.

23. We have [y(t) — (yo + [; F(s,y())ds)| = | [i[y'(s) = F(s, y(s)]ds| <
Jo 1Y) = F(s, y(s))lds < [y eds < elt — 1| < ed’.

24. The statement of Problem 21 proves uniform equicontinuity with § = € /M.
If we specialize to ' = 1y, it implies uniform boundedness.

25. Let y(t) = lim yp, (¢) uniformly. The functions y,, (¢) are continuous, and the
uniform limit of continuous functions is continuous. Hence y(¢) is continuous. By
Problem 23 we have ’ynk (t) — (yo + ft(t) F(s, yn, (s)) ds)‘ < €,,a’ for each k. We
take the limsup of this expression as k tends to infinity. We know that y,, (¢) tends
uniformly to y(¢). Then yj, (s) tends uniformly to y(s) uniformly forz) < s <. By
uniform continuity of F, F(s, y, (s)) tends uniformly to F (s, y(s)). By Theorem
131, fi F(s, yn,(5))ds tends to [; F(s, y(s)) ds.

26. For some analytic f(z), we can write u(x, y) = Re f(z) in the unit disk by
Problem 70 in Appendix B. Also f(z) = Y oo, Cyz" in the unit disk by Taylor’s
Theorem (Theorem B.21). In polar coordinates, C,z" takes the form Cyrei?
and Re(C,r"e!"®) = ReC,cosnd —ImC,sinnd = (1 ReC, — 5 ImC,)e™? +
(3ReCy + 5 ImC,)e?, as required.

27. The function f(z) is analytic for |z|] < R and is nonzero at z = 0. If f(z) is
nowhere O for |z] < ¢ with ¢ < R, then 1/ (z) is analytic for |z| < ¢ and equals the
sum of its Taylor series for |z| < ¢.

28. (a) This is an instance of Corollary B.15.

(b) For the expansion we have €25 = Z;O:O #(iz)p(e"g — e 0YPQiHTP =
ety % (z/2)? (€' — e~1%)P. For each fixed z, the series is uniformly convergent in
6. Thus when we integrate the product of the two sides with e~ | we can interchange
the sum and integral to get the asserted expression for ¢, (z).

(c) Since the only integer power of ¢/ that has nonzero integral is the 0™ power,
% J7 (' — e7?)Pein js nonzero only forn = p, p —2,..., p — 2p, i.e., only
when n is of the form p — 2k with k = 0,1,..., p. When n = p — 2k with
k > 0, we have (eiG _ e—i9)p€—in9 — ei(p—n)é)(l _ e—2i9)p — e2ik9(1 _ e—2i9)p —
2iko Zf:o (—=1)le—2i0 (1; ) . The only term that contributes to the integral is the one for
I = k, and its contribution is (—1)¥ (f) Thus I, ,, is nonzero except when p —n = 2k
with 0 < k < p, and then it contributes (—l)k(g). This formula for I, , remains
correct when p —n = 2k for all k > 0 because the binomial coefficient (f(’) is O when
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k> p. Thus ¢,(2) = Y020 21@/2DP hp = Y020 Graamr 272" (= DF (M),
and the desired formula for ¢, (z) follows.

(d) For n > 0, the series for ¢, (z) matches that for J,,(z). For n < 0, we replace 0
by —6 in the integral defining c_,(z) and find that c_,(z) = ¢,(—z) = J,(—2), and
this equals (—1)" J,(z) by inspection.

(e) The function ¢’ *"? has a uniformly convergent Fourier series by Proposition
1.56 since ¢’ $"? has a continuous derivative in 6, and it converges to the function by
Dini’s test (Theorem 1.57) or by Fejér’s Theorem (Theorem 1.59).

Chapter V

1. For (a) and (c), the answer is 2¥ for 1 < k < n. However, the assertion in (d)
is false; for a counterexample, take X = {1, 2, 3, 4}, and let B3 consist of all sets with
an even number of elements. For (b), the associativity is proved by observing that
A A B AC is the set of all elements that lie in an odd number of the sets A, B, C.

2. Let X = {1, 2, 3} with the o-algebra consisting of all subsets. Take p({1}) =
p({3h) =42, 0({2}) = -3, A={1,2},and B = {2, 3}.

4. This can be worked out carefully, but it is easier to use Problem 3 and apply
dominated convergence to see that the measure of the left side is lim sup u(E,), and
the measure of the right side is liminf w(E,).

5. Part (a) is proved the same way as for Lebesgue measure. In (b), the interval /
of rationals from O to 1 has (/) = 1, and it is a countable union of one-point sets
{p}, each of which has u({p}) = 0.

6. Argue by contradiction. If E€ is not dense, then there is a nonempty open
interval U in [0, 1] with U N E¢ = @ and hence U C E. Since u(U) > 0, we must
have u(E) > 0.

7. As soon as sup (A) is known to be finite, B can be constructed as the union
of a sequence of sets whose measures increase to the supremum. Thus assume that
the supremum of w(A) over all sets of finite measure is infinite. Then we can choose
a disjoint sequence of sets A, with each w(A,) finite and with > u(A,) = +oo. A
little argument allows us to partition the terms of the series into two subsets, with the
series obtained from each subset divergent. Say the terms of one subset are 1 (B;)
and the terms of the other are (C;). Since ) u(B;) = +00, the hypothesis makes
u((U; Bi)") finite. A contradiction arises because (|J; Bi)* 2 |U; C; and U; C;
has infinite measure.

8. Consider the set A of all Borel sets E such that f —1(E) is measurable. The set

A is closed under complements and countable unions, and it contains all intervals.
So it is a o -algebra containing all intervals and must consist of all Borel sets.

10. This problem can be done via dominated convergence, but let us do it from
scratch in order to be able to quote it in solving Problem 18 and other problems. We
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have

| [x fadi — [y fdu| < [x | fa— fldp < w(X) sup, | fu(x) = £,

and the right side tends to O by the uniform convergence. Thus limy f,du =
[y f du, the limit existing.

11. In (a) the approximating sets are finite unions of intervals, and we can add
their lengths to obtain ]_[,11\;] (1 = ry). Then apply Corollary 5.3. For (b), the set C¢
is open, and every point of C¢ has an open interval about it where /¢ is identically O;
this proves the continuity at points of C¢. To have continuity of /¢ at a point xo of
C, we would need Ic > 1/2 on some interval about xq, and this would mean that
Ic equals 1 on that interval and hence that the interval is contained in C. But C
contains no intervals of positive length. Part (c) is handled by the same argument as
(b). For (d), part (c) says that /¢ cannot be redefined on a Lebesgue measurable set
of measure 0 so as to be continuous except on a set of measure 0. Theorem 3.29 says
that no f obtained by redefining /¢ on a set of Lebesgue measure 0 can be Riemann
integrable. On the other hand, /¢ is measurable, being the indicator function of a
compact set, and hence it is Lebesgue integrable.

12. Argue for indicator functions and then simple functions. Then pass to the
limit to handle nonnegative functions.

13. Let BB be the set of all subsets E of X x X such that there exists a set Sg in A
with E, = S for all but countably many x in X. Every rectangle in A x A is in B. In
fact, there are two kinds of sets to check, sets £ = A x B with A countable, in which
case E, is empty except for x in the countable set A, and sets A€ x B with A countable,
in which case E, = B except for x in A. Also Bis a o-algebra. In fact, let sets E, in
B be given with associated sets Sg,. Then (U E")x = |JW(Ewx) = U SEg, except
when x is in the countable exceptional set for some 7; also if E and Sg are given,
then (E€), = (Ex)¢ = (Sg)¢ except when x lies in the exceptional set for E. Finally
the diagonal D is not in BB and therefore cannot be in A x A. In fact, D, = {x} for
each x, and there can be at most one x with D, = Sp, whatever Sp is.

14. To prove that R is measurable, one first proves the assertion for simple functions
> 0 and then passes to the limit. For the rest Fubini’s Theorem gives

Sutosoo TRAG X m) = [ [ fig 100y TREE 3) dm(3)] dpa(x)
= Jx Lo, rep dm]dpx) = [y f0) dpx).

15. This is proved in the same way as Proposition 5.52a.

16. The measure space is the unit interval with Lebesgue measure, and each f;, is
an indicator function. The set of which f;, is the indicator function is the subset of R
between ZZ;% ar and Y} _; ax written modulo 1, i.e., the set of fractional parts of
each of these rational numbers. The divergence of the series forces these sets to cycle
through the unit interval infinitely often, and thus f,(x) is 1 infinitely often and O
infinitely often.
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17. From the definition of Epy, we see that  Jy Eyy = X and [y Ef;y =
&. The sets Epn are increasing as a function of N, and their complements are
decreasing with empty intersection. Corollary 5.3 produces an integer C (M) such
that /JL(EK,[’C(M)) <e/2M Pt E = U EKLC(M)' Then u(E) < € by Proposition
5.1g. If € > 0 is given, we are to produce K such that | fx(x) — f(x)| < € for
all k > K and all x in E€. Choose My with 1/My < €. The integer K will be
C(Mp). Since x is in E¢ = (), Em.c(m), x is in Ep, c(mp) in particular. Then
| fr(x) — f(x)] < 1/My < € for k > C(Mp).

18. In (a), we may take the set of integration to be X. Let S be the set of
measure 0 on which any of f, and f is infinite, and redefine all the functions to be O
on S. Given € > 0, choose § > 0 by Corollary 5.24 such that w(F) < § implies
Jrgdu < €. Let E be as in Egoroff’s Theorem for the number 8. Problem 10 shows
that lim [ fudu = [ f dpu, the limit existing. Also, | [ fudu| < [ | fuldp <
[z gdu < € forall n, and similarly for f. Hence limsup,, | [y fudu — [y fdu| <
2¢. Since € is arbitrary, the result follows.

In (b), consider the measure g d i and the sequence of functions {4, } with i, (x) =
fa(x)/g(x) when g(x) > 0, h,(x) = 0 when g(x) = 0. After checking that A, is
measurable, use Corollary 5.28 and apply (a). The constant that bounds the sequence
is 1.

19. By Fatou’s Lemma, (. fdu < liminf, [, f, du. Subtracting this from
Jx fdu = lim [y fudp gives [ fdu > limsup, [, fudu. Another applica-
tion of Fatou’s Lemma gives liminf, [ f,du > [ fdu, and we conclude that
liminf, [ f,dw =limsup, [ fudp = [ f du, from which the result follows.

20. Let € > 0 be given. Choose § > 0 by Corollary 5.24 such that u(F) < §
implies |’ r fdp < €. Then choose E with u(E) < § such that f, converges to f
uniformly off E. Problem 10 shows that there is an N such that f pelfn— fldu < €
for n > N, and Problem 19 shows that there is an N’ such that f plfn— fldu <
Jg fadu+[p fdn <2 [, fdu+eforn> N'. Since u(E) < 8,2 [, fdu+e
3e. Then n > max{N, N'} implies [y | f, — fldu < 4e.

21. Suppose that lim [y fdu = [y fdp. Given € > 0, choose § > 0 by
Corollary 5.24 such that u(E) < & implies || g fdu < €. Then choose N such that
N=!( [y fdu+e€) < 8. Forany n, the convergence of [, f,du to [y f dp implies
that Nu({x | fu(x) = N}) < f{x\fn(x)ZN} Sudp < fX fodu < fX fdu+eifnis
sufficiently large. Hence u({x | f,(x) > N}) < N_l(fx fdu+ e) < ¢ for large
n, and therefore f{XIfn(x)zN} fdu < €. Problem 20 shows that [y |f, — fldpn < €
if n is large enough, and then also f{xlfn(x)zN} |fn — fldu < €. So we have
St pizmy T die < Jiy oz Mo = Fldi+ [ ooy fdi < e +e =2
for n large, say n > N’. By increasing N and taking the integrability of f1, ..., far—1
into account, we can achieve the inequality f{x | £ ()= N} fandu < 2e for all n.

Conversely suppose that { f;,} is uniformly integrable. Given ¢ > 0, find the N of

IA
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uniform integrability, put § = €/N, and choose E( by Egoroff’s Theorem such that
n(Eg) < & and f, converges uniformly off Eg. Then lim [y f, du = [ f du by
0 0

Problem 10. Fatou’s Lemma gives [, fdu < liminf [, f,d, and we have

Jeo frdiv = gt uo=ny Fn @i+ Jgo—ie) o=y Jndit:

The first term on the right side is < f{x | F ()= N} fandp, which is < € by uniform
integrability, and the second term on the right side is < Né = € because u(Ep) < 8§
and f,,(x) < N on the set of integration. Thus lim sup f o fndu < 2e, and we obtain
limsupn | fEO Sudp — fEO fd/,L| < 4e.

22. In the notation of Section 5, K = U = A since A is now assumed to be
a o-algebra. Thus u.(E) = SUPg e A KCE w(K) and p*(E) = infyeq yor w(U).
Take a sequence of sets K, in A with lim u(K,) = u.(E); without loss of generality,
the sets K, may be assumed increasing. Then we may take K to be the union of the
K. The construction of U is similar.

The set K is any member of A such that ;(K) is the supremum of u(S) for all §
in A with S C E. Then w(K¢) is the infimum of all £ (S€) = u(X) — w(S) for all
S¢in A with §¢ 2 E°. A similar argument applies to U and U€¢. The result is that
U C ECC K u(E) = n(U°), and uw*(E€) = p(K°).

23. Lemma 5.33 gives u(ANK) < u (AN E), u(A°NK) < us(A°N E), and
px(E) = w(K) = p(ANK)+pu(A°NK) < ux(ANE)+ 1 (A°NE) < i (E), from
which we obtain u(ANE) = n(ANK). The argument that u*(ANE) = n(ANU)
is similar.

24. The right side of the definition of o depends only on AN E and B N E€, and
hence o is well defined. The formulas

U [(AnE)U B, nE)] = ((Lﬂj A,,) n E) U ((LnJBn> n EC)

n

and [(ANE)U (BN E)] = (AN E) U (B° N E) show that the sets in question
form a o -algebra C. Taking A = B shows that 4 C C, and taking A = X and B = &
shows that E is in C. Therefore B C C, and o is defined on all of 1.

The complete additivity of o results from the complete additivity of each of the four
terms in the definition of o. Specifically let a disjoint sequence (A, N E) U (B, NE)
be given, and let A = | J, A, and B = | J,, B,. We have (A, N E) = u(4, N K),
and the sets A, N K are disjoint; thus Y (A, N E) = s« (A N E). The next term
is W*(A, N E) = n(A, NU), and the sets A, N U may not be disjoint. However,
W (An VE) + p*(An NE) = p(Ap NU) + n(Ay NU) = pn(An N A, N E)+
w((AfU A)NE),and u(A, NA,NU) = u*(A, N A, NE) = u*(@) =0. Thus
the term with u*(A, N E) behaves in additive fashion. Consequently u*(A N E) >
w*((Ukey Ak) NE) = Y3y w*(Ax N E). Letting n tend to infinity gives p*(A N
E) > Z,fil w*(Ag N E). The reverse inequality follows from Lemma 5.33a, and
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thus the term p* (A, N E) is completely additive. The terms with the B,’s are handled
similarly, and o is completely additive.

Taking A = X and B = O, we see immediately that the formula for o (E) is as
asserted.

To prove that 0(A) = u(A) for A in A, we take A = B. Then we see that
o(A) =tp(ANK)+ (A —-Du(ANU) +tn(ANK) + (1 —-nHu(ANUS) =
t(A) + (1 = p(A) = u(A).

25. Each member of the countable set has only countably many ordinals less than
it, and the countable union of countable sets is countable. Therefore some member
of €2 is not accounted for and is an upper bound for the countable set. Application of
(iii) completes the argument.

27. For (a),if U, Y Uand V,, ¢ V,thenU, UV, 1t UUV and U, NV, + UNV.
Similar remarks apply to KCy. Then the assertion follows by transfinite induction.

For (b), we know that /C, is closed under finite unions and intersections, and we
readily see that the complement of any set occurs at most one step later. Now let
an increasing sequence of sets in various /C,’s be given. Say that U, is in /.
Problem 25 shows that there is a countable ordinal g that is > all the «,,, and then all
the U, are in Ky,. The union is then in Uy,+1 and necessarily in Ky, +1. Hence the
union is in the union of the Cy’s. So the union of the /Cy’s is a o -algebra and must
contain 5. All the set-theoretic operations take place within 3, and thus the union
must actually equal B.

28. Proposition 5.2 and Corollary 5.3 show that the value of the measure is deter-
mined on all the new sets that are constructed in terms of the values on the previous
sets. Problem 27 shows that all members of B are obtained by the construction, and
hence p is completely determined on B.

29. Same argument as for Problem 27b.

30. At every stage of taking limits, we have closure under addition and scalar
multiplication. Pointwise decreasing limits produce the indicator functions of finite
unions of closed intervals, and pointwise increasing limits of them produce the
indicator functions of arbitrary finite unions of intervals. Since the constants are
present as continuous functions, we have the indicator function of every elementary
set and its complement. These sets form an algebra. Going through the construction
of Problem 27, we obtain the indicator function of every Borel set. Since we have
closure under addition and scalar multiplication at each step, we obtain all simple
functions. One increasing limit gives us all nonnegative Borel measurable functions,
and a subtraction (allowable without another passage to the limit) gives us all Borel
measurable functions.

32. To see that C has the same cardinality as R, we can make an identification of
the disjoint union of R and a countable set. To do so, we write C as the members of
[0, 1] whose base-3 expansions involve no 1’s. For each such infinite sequence of 0°s
and 2’s, we change all the 2’s to 1’s and regard the result as the base-2 expansion of
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some real number. This identification is onto [0, 1], and it is one-one if we discard
from C all the sequences of 0’s and 2’s that end in all 2’s.

The standard Cantor set has Lebesgue measure O, and thus any subset of it is
Lebesgue measurable of measure 0. The cardinality of this set of subsets is the same
as the cardinality of the set of subsets of R. In Section A.10 of Appendix A, it is
shown for any set S that the cardinality of S is less than the cardinality of the set of
all subsets of S. So the cardinality of the set of Lebesgue measurable sets is at least
that of the set of all subsets of R.

33. Since C€ is open, any member x of C¢ has the property that /¢ is 0 on some
open interval about x. Thus I¢r is continuous at x. Since C has Lebesgue measure 0,
I¢ is continuous except on a Lebesgue measurable set of measure 0. Theorem 3.29
shows that I¢s is Riemann integrable. Hence the cardinality of the set of Riemann
integrable functions is at least that of the set of all subsets of R.

35. If Fis the given filter, form the partially ordered set consisting of all filters
on X containing F, with inclusion as the partial ordering. The union of the members
of a chain is readily verified to be an upper bound for the chain, and Zorn’s Lemma
produces a maximal element. This maximal element is readily seen to be an ultrafilter.

36. The filter in question consists of all supersets of finite intersections of members
of C.

37-38. Suppose that F is an ultrafilter, A U B is in F, A is not in F, and B is not
in F. Let ' consist of all sets in F and all sets B N F with F in F. Since B is not
in F, ' properly contains F. Since F is an ultrafilter, 7' must fail to be a filter. On
the other hand, by inspection, F’ satisfies properties (i) and (ii) in the definition of
filter. We conclude that @ is in F’, hence that there is aset F in Fwith BN F = &.
Since F satisfies (ii), the set (AUB)NF = (AN F)U(BNF) = AN Fisin F.
By (i), A is in F, contradiction.

Conversely suppose that F is a filter such that either A or A€ is in F for each
subset A of X. If F is not maximal, let B be a set that lies in some filter 7’ properly
containing F while B is not itself in 7. By hypothesis, B¢ is in F and hence is in F".
But then B N B¢ = & lies in F’, in contradiction to (iii).

39. If an ultrafilter F is given, define u(E) = 1 if E is in F and define u(E) =0
otherwise. Then u is defined on all subsets, and we have (<) = 0 and u(X) = 1.
If E and E’ are disjoint, we are to show that

w(E) + n(E") = n(EU E').

If E U E’ is not in F, then all terms in the displayed equation are 0 since F is closed
under supersets. If E U E’ is in F, then Problem 37 shows that E or E’ is in F; on the
other hand, they cannot both be in F because F is closed under finite intersections
and the empty set is not in F. Thus exactly one term on the left side of the displayed
equation is 1, and the right side is 1. This proves additivity.

Conversely if an additive set function w is given on all subsets of X that takes only
the values O and 1 and is not the O set function, let F consist of the sets E for which
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Ww(E) = 1. Itis immediate that (i) and (iii) hold in the definition of filter. For (ii), let E
and E'bein F. Then EUE’isin F. Hence u(ENE)+1 = pu(E)+u(E) =1+1,
and u(E N E’) = 1. Hence Fis closed under finite intersections and (ii) holds. Thus
Fis afilter. If A is given, we have 1 = u(X) = u(A) + u(A°), and hence exactly
one of the sets A and A€ is in F. By Problem 38, F is an ultrafilter.

The statement that complete additivity is equivalent to closure of the ultrafilter
under countable intersections is a routine consequence of Corollary 5.3.

40. This follows from Problems 34d and 35.

41. Let S, be the set of all integers > n. Since S| = X, S is in the ultrafilter.
Since the ultrafilter is not trivial, {n} is not in it, and thus Problem 37 shows that §,, is
initif §,,_; isin it. Hence S, is in the ultrafilter for all n. The countable intersection
(), S» is empty, and the empty set is not in any filter. Hence the ultrafilter is not
closed under countable intersections. Corollary 5.3 shows that the corresponding set
function is not completely additive.

43. The proof of Proposition 5.26 shows that the result holds for simple functions
> 0. If f > Oand g > 0, choose the standard sequences #, and u,, of simple functions
increasingto f and g. These converge uniformly. Hence so does the sums,, = t,+u,,.
The same argument as for Problem 10 shows that lim [ s, du = fE (f+gdu,
lim [, tydp = [, fdu, and lim [ u,dpn = [ gdu. Thus the result holds for
bounded nonnegative f and g. The passage to general bounded f and g is achieved
as in Proposition 5.26.

Chapter VI

1. In additive notation, the sets E + ¢ for ¢ in T are disjoint, and their countable
union is S!. Since Lebesgue measure is translation invariant, these sets all have the
same measure c. Then complete additivity gives ¢ co = 2, which is impossible.

2. Parts (b) and (c) are easy. For (a), expand the Jacobian determinant J(N)
in cofactors about the first row, obtaining two terms—one each from the first two
entries of the first row. The first term is cos 8; times a determinant of size N — 1
whose first column has a common factor of » cos §; and whose second column has
a common factor of sin 6, the remaining part of the determinant being J(N — 1);
thus the first term gives (r cos? ) sin6;)J (N — 1). The second term is —(—r sin 6;)
times a determinant of size N — 1 whose first column has a common factor of sin ;
and whose second column has a common factor of r sin 61, the remaining part of the
determinant being J (N — 1); thus the second term gives (r sin’ 6, )J(N —1). Adding
the two terms gives J (N) = (r sinf)J (N — 1), and an induction readily proves the
formula.

3. Replace f in Theorem 6.32 by f o L, and use ¢ = L~'. Since ¢'(x) = L~!
for each x, the result follows.
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4. In the result of Problem 3, use L(x) = yx and replace f(z) by f(z)/|detz|".
Then the left side in Problem 3 is f My f(yx)/|det(yx)|V dx, while the right side

is |detL|™" [}, f(x)/Idetx|N dx. Thus |dety|™Nl [}, ~f(yx)/|det(0)|V dx =
|det L|~! Juy O/ det x|V dx, and the problem reduces to showing that det L =

(det y)V. One way of doing this is to verify that this formula is true if y is the matrix
of an elementary row operation and then to multiply the results. But a faster way is
toletxy, ..., x, be the columns of x, so that L(x1, ..., x,) = (yx1,..., yx,). Then
L as a matrix is given in block diagonal form by a copy of y in each block. Hence
det L = (dety)". In a little more detail, the matrix of L is being formed relative to
the following basis of My: if E;; is the N-by-N matrix with 1 in the (i, j )M entry
and O elsewhere, the basis is E11, E21, ..., EN1, E12, ..., ENN.

5. For (a), we have, for n # 0,
2rc, = [T fx)eT "™ dx = f‘xlfll_l fx)e ™ dx + _[‘I_‘S‘XISH Fx)e " dx.
Let us call these terms 7 and /1. Since | f(x)| < C|x|* for |x| <1,

|1] Sf\xlgﬁ | f(x)|dx Scfmfﬁ x| dx = 26 _1

T+a Jai+e”

For 11, we use integration by parts and take into account that the terms at 7 and —x
cancel by periodicity:

-1
1= ("4 f7,) f &) dx
_ [f(x)e—mx]—l/‘rﬂ + [f(x)g””x]i[/‘n‘ + #‘/‘ﬁs‘xlfﬂ f/(x)efinx dx

—in -1 —in

(e = f(= D)t ™My 4 5 1 gz £/ dx.

Let us call the terms on the right /77 and V. Since | f(x)| < C|x|* for |x]| < 1,
1111 < g (F G+ (= D) =2C e

The derivation of the formula for 11, when applied to f’ instead of f, gives the
following value for IV:

1V = _%{f/(%)e—i"/lnl _ f/( _ %)e+iﬂ/\n\} _ nLZ |,],—|§|x\§ﬂ f//(x)e—inx dx.

Let us call the terms on the right V and V1. Since | f'(x)| < C|x|*~! for |x| < 1,

Vi< (P I+1(=3)]) =2€ gw-
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Since f”(x) is bounded for 1 < |x| < 7, we can write | f”(x)] < C’|x|*"? for
0 < |x| < 7, in view of the assumption on f”. Therefore

1 Il jo—2 _2C' a—2
|VI|§n_2fﬁ5|x\5nC|x| dx_n—2fl/|n|x dx

= ]25,1 nlz (ln‘}x—l - na_l) = ]2501 ‘nl}ﬂx .
Since 27t |c,| < |I| + [I11| + |V |+ |VI|, we obtain |c,| < K /|n|'*%.
For (b), the uniform convergence follows by applying the Weierstrass M-test, and
the limit is f as a consequence of the uniqueness theorem.
In (c), a proof is called for. The crux of the matter is to show, under the assumption
that f isreal valued, that the variation V, of f on[e, 1], which gets larger as ¢ decreases
to 0, is bounded. If xo < - -+ < x, is a partition P of [, 1], then

Y 1f @) = fOi-Dl = X0 1/ EDI — xim) < C X &7 (i — xim1)
with x;_1 < & < x;. With ¢ fixed, the right side is a Riemann sum for the bounded
function x*~! on[e, 1]and s < the corresponding upper sum U (P, x* ! |[8, 1]). Aswe
insert points into the partition, the left sides increase and the right sides decrease to the
limit [ x*~1dx = = (1—¢%). Hence V. < Ca™'(1—&%),and sup,_ Ve < C/a.

6. The distribution function F of u must have F'(b) — F'(a) equalto O or 1 for all a
and b. If c is the supremum of the x’s for which there exists y > x with F(x) < F(y),
then F has to be k on (—o0, ¢) and k + 1 on [c¢, +00) for the value of k that makes
F(0) = 0. Hence u is a point mass at ¢ with u({c}) = 1.

7. Let K be compact, and let f and g both be equal to the members of a sequence
{ fn} of continuous functions of compact support decreasing to the indicator function
Ix of K. Applying the identity to f, and passing to the limit, we obtain v(K) =
v(K)?. Thus v(K) is 0 or 1 for each compact set. By regularity v takes on only the
values 0 and 1 on Borel sets. Then the argument (but not the statement) of Problem 6
applies, and there is some ¢ with v equal to a point mass at ¢ with v({c}) = 1.

8. In (a), if the complement of the set in question is not dense, it omits an open
set. However, nonempty open sets have positive measure.

In (b), form le [ fR, Ig(x —1) dt] du(x). The inner integral equals the Lebesgue
measure of E for every x since Lebesgue measure is invariant under translations and
the map ¢t — —t. Hence the iterated integral is 0. The integral in the other order is
0= for [ Jo, IEGx=0)dpx)]dt = [ [ [, TE+(x) dp(x)]dt = [ u(E+1)dt,
and Corollary 5.23 shows that w(E + t) is 0 almost everywhere.

In (c), the same computation applies, and p(E +¢) is 0 almost everywhere. Under
the assumption that lim,_,o w(E + ¢t) exists, the limit must be 0, by (a).

9. Write 1/|x| asasum F; + Foo, Where F; is 1/|x]| for |x| < 1 andis O for |x| > 1.
Then fR3 Foo(x —y)du(y) is bounded by w(R?), and it is enough to handle the con-
tribution from F}. For that we have [ps [ fgs Fi(x—y) du(y)]dx = [ps [ fps Fi(x—
Vdx]du(y) = [ps [ fgs Frx) dx]du(y) = n(@®?) fIXISI |x|~! dx, and this is finite
in R3. Hence the inner integral fR3 Fi1(x — y)du(y) is finite almost everywhere.
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10. We proceed by induction on 7, the case n = 1 following since finite sets have
Lebesgue measure 0. Assume the resultin n — 1 variables, and let P(xy, ..., x,) #£0
be given. Let E be the set where P = 0. This is closed, hence Borel measurable
in R". Fix (x],...,x,) with P(x],...,x;) # 0. The polynomial in one variable
R(x) = P(x{,...,x,_,,x) is not identically 0, being nonzero at x = x,, and
hence it vanishes only finitely often, say for x in the finite set F. Fix x’ ¢ F.
Then the polynomial Q(xy,...,X,—1) = P(x1,...,%s—1,x’) in n — 1 variables
is not identically O, being nonzero at (xi, R x;l_l), and its set £, of zeros has
measure 0 by inductive hypothesis. If m, denotes n-dimensional Lebesgue measure,
then Fubini’s Theorem applied to /g gives

mp(E) = f]R my—1(Ey)dx = fp my,_1(Ey)dx’' +ch my_1(Ey)dx’.

On the right side the first term is O since the 1-dimensional measure of F' is 0, while
the second term is O since the integrand is 0. Thus m(E) = 0.

1L T+ ) fo 27 0 =007 dr = [0 e s ds [ =11 = 1)¥ L dr
L™ s —w e dulds = [ [ u " s — w)? e ds]du
S oS uwts? e e ds] du = T (x)I'(y).

12. In Cartesian coordinates we obtain 1V, hence 1. In spherical coordinates we
obtain Qy_1 [;° pN=le=mr? gy Putting 772 = s shows that fooorN_le_’”2 dr =
Joo(s/m)N=22e=s L g5 = Lx=N/2D(N/2). Hence Qy—; = 27V/2/ T(N/2).

13. Part (a) is carried out by showing by induction on k that Zf'(:l X;
1 — 15, (1 — u;). The case k = n is the desired result.

In (b),let 0 < u; < 1 foralli. Then x; > O for all i, and (a) makes it clear that
Y ' i xi < 1. Therefore ¢ carries I into S. Define u = ¢(x) by the formula in (b).

Ifall x; > 0and 377, x; < 1, then certainly u; > 0. Also, 3_;_; x; < 1 implies

xi < 1=YZ|xj,sothatu; = x; /(1= Y/_} x;) < 1. Therefore & carries S into /.
To complete the proof, we show that ¢ o ¢ is the identity on I and ¢ o ¢ is the identity
on S. For ¢ o ¢, we pass from u to x to v. Thus we start with v;, substitute the x’s,
use the inductive version of (a) to substitute the u#’s, and then sort matters out to see
that v; = u;. For ¢ o @, we pass from x to u to y. Then we start with y; and substitute
the u’s to obtain y; = ( ]_[E;i (1 —u;))u;. To substitute for the u’s in terms of the x’s,
we use the inductive version of (a) in the form Z;;]l y=1- ;;11 (1 — uy). This
gives (]_[;;i 1- u,-))ui = (1 — Z;;i y[)xi/(l — Z;;% xl). Then an induction on
i shows that y; = x;, and hence ¢ o ¢ is the identity on S.

In (¢), routine computation shows that ¢’(u) is lower triangular with diagonal

entries 1, (1 —uy), 1 —u)(l —up), ..., (I —uy)---(1 — u,_1), and hence
the determinant is the product of these diagonal entries. Similarly ¢’(x) is lower
triangular with diagonal entries 1, (1 — x1) ™', (1 —x; —x2) 7!, ..., (1 —x] —x2 —

-+« — xy_17L, and its determinant is the product of these diagonal entries.
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14. The change of variables in Problem 13 gives

Joxi T e = [ u A = uual e [ =) - (= s 1!
X (1 =u)"' o (1= up1) du
_fl a—1 1_ul)az+-~+an—(n—1)+(n—1)u;2*1
x (1 _ )a3+-~-+an—(n—2)+(n—2)
X oo XU a” ] 1(1 — U, )an*1+1u2n_1du
=fo1 ui~la —u1>“2+'"+“n duy - fy u‘éz‘l(l —up) st duy
o1 —1 -1
f() . l (I —up_1)* duy—_1 - f() duy.
The right side is the product of 1-dimensional integrals of the kind treated in Prob-

lem 11. Substitution of the values from that problem leads to the desired result.

15. The monotonicity makes possible the estimate of uniform convergence, and
the continuity then makes the limit continuous. A continuous function is determined
by its values on a dense set, and C€ is dense.

16. Foreachn, F, (x) = 1—F,(1—x). Thus [} F,(x)dx = 1— [} F,(1-x)dx =
1 - fol F,(x)dx and fol F,(x)dx = l Passing to the limit and using uniform or
dominated convergence, we obtain fo F (x)dx = 2

18. Use Proposition 6.47. Then u is harmonic by Problem 14 at the end of
Chapter I11.

19. Since P, has L' norm 1, the inequality [u(r, ~)||p < ||f||p follows from
Minkowski’s inequality for integrals. For the limiting behavior as r increases to 1,
we extend f periodically and write

u(r,0) — f(0) = 5= [ Po(9) f(O — @) dp — f()
=L [T P@)f(6 — ) — fO)]dg,

the second step following since % ff - Prdp = 1. Applying Minkowski’s inequality
for integrals, we obtain

lutr, ) = £l < 2 S 70 B@IFO =) = FO)l,,

since P- > 0. The integration on the right is broken into two sets, S1 = (—§, §) and
S = [—m, —§] U [§, 7], and the integral is

2[5, Pr@)(supyes, 10 — @) = FO, ) do + 2 [y P @211, d
sup [Lf 0 — @) — FO)l, + 21 £1, sup Pr(p).

QeS| QES)

IA

IA

Let € > 0 be given. If § is sufficiently small, Proposition 6.16 shows that the first
term is < €. With § fixed, we can then choose r close enough to 1 to make the second
term < €.



Chapter VI 747

20. For (a), we argue as in Problem 19, taking S; and S, to be as in that solution.
Then
u(r,0) — FO)] < = [T P (@) f O — ) — f(O)de
=[5, Pr@|f(6 — ) — f(O)dg
+ 5 Jo, Pr @) flloo + supgeg | £ 0)]1d
< SUpyes, | (0 — @) — f(O)]
+ (supyes, Pr@)LIlflloo + supger [ £ O],

IA

and the uniform convergence follows.

For (b), the Poisson integral of f is of the form Z;O:—oo c,r™ein?  where the ¢,
are the Fourier coefficients of f. Any other harmonic function in the disk is of the
form ) 02 ch'"'e"”G. Suppose this tends uniformly to f asr increases to 1. Then
the difference is a series Z:i_ 0o
integral of the product of this series and e ¥ tends to 0. Interchanging integral and
sum, we see that dir ¥ tends to 0 for each k. Therefore d; = 0 for each k.

In (¢) since P, is even,

d,r'"ei"® that converges uniformly to 0. Then the

I7 (P £)(0)g©0)do = [T [T P (6 — ¢) f(9)g(0) dpdb
= [T [T P60 — @) f(@)g®)dody
= [T [T Po—0)f(@)g®)dbdy,

and thus [* (P, * £)(0)g(0)d6 = [" (P, x g)(0) f () df. Therefore

| [ (Pr % ))(©)8(0)d0— [T f(©)g(©)do| = | [T [(Pr +g)(6) — g(®)]f(0)db|
=27 ||Prx g — gl 11 flloo-

By the previous problem the right side tends to 0 as r increases to 1, and the weak-star
convergence follows.

21. Let My and M, be upper bounds for | f| and |g| on [a, b]. Then

Do 1 (i)g(xi) — fxim1)g(xi—1)]
<D fGga) — fdgi-D| + 3 [f (xi)g(xi—1) — f(xi—1)g(xi-1)|
S My ilg(xi) — gD+ Mg Y 1f (xi) — f(xi—1)|
< Mf”g”BV + Mg“f”gv-
22. Let us rewrite the given equation f(x) = f(a) + gi1(x) — g2(x) as

() + f(x)— f(a) = g1(x). If x; > x;_1, then subtraction of the values at x = x;
and at x = x;_1 gives g2(x;) — g2(xi—1) + f(x) — f(xi—1) = g1(x;) — g1 (xi-1).
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If f(x;) — f(xi—1) = 0, then f(x;) — f(xi—1) < g1(x;) — g1(xi—1) because g
is monotone; if f(x;) — f(xi—1) < 0, then 0 < g1(x;) — g1(x;—1) because g1 is
monotone. Therefore (f(x,-) — f()c,-_l))+ < g1(x;) — g1(x;—1). Summing on i for
a partition of [a, x] gives Y /_, (f(x,-) - f()c,-,l))Jr < g1(x) — gi1(a). If we take
the supremum of the left side and recall that g;(a) > 0, we obtain VT (f)(x) <
g1(x) — g1(a) < gi(x). Starting similarly from g;(x) — f(x) + f(a) = g2(x) and
arguing in the same way, we obtain V= (f)(x) < g2(x) — g2(a) < g2(x).

23. Suppose that VT (f) and V~(f) are both discontinuous at some x. Then
VIHG)+e < VI(HEH and V= (f)(x7) +€ < V7 (f)(xT) for some € > 0.

Define
VEH©G) fory < x,
g1y =13 VH(HE) fory = x,
VH(H(y) —e  fory>x,

and define g,(y) similarly except that V™~ replaces V. Then g; and g, are both
nonnegative, and g1 — g2 = VY (f) — V7 (f) = f — f(a). If g; and g, are shown
to be monotone, Then Problem 22 leads to the contradiction g;(y) < V1 (f)(y) for
y > x, and we conclude that V¥ (f) and V~(f) could not have been discontinuous.

In proving monotonicity for g1, it is necessary to make comparisons only of x with
other points y. Let # > 0. For points y > x, we have g1 (x +h) = VT (f)(x +h) —¢
> VH()(xT) —e > VT (f)(x™) = g1(x). For points y < x, we have g (x — h) =
V() (x —h) < VT(f)(x~) = g1(x). Monotonicity for g, is proved in the same
way.

24. The proof is similar in spirit to the proof of Proposition 6.54.

25. For f,lety, = (n+ 3)~'7~!, so that f(y,)is +(n + 3)~'7~1if niseven
and is —(n + %)_17[—1 if n is odd. Compute the sum of the absolute values of the
difference of values of f at yn, yn—1,..., y1 and see that this is unbounded as a
function of N. The function g has a bounded derivative (even though the derivative
is discontinuous), and this is enough to imply bounded variation.

26. Conclusions (a) and (b) can be handled by variants of Lemma B.12 and
Corollary B.15. Fix o9 > 0, and let U = {Res > op} € C. The set X =
[0, +00) U {400} is a compact metric space, and 7~ !e~"/2 dt is a finite measure on
it. Also the function (¢, s) > #*~%¢~"/? is continuous on U x X and is analytic in the
first variable. The argument of Lemma B.12 goes through to prove the continuity of
I'(s) for Res > o9, and the argument as in Corollary B.15 using Morera’s Theorem
and an interchange of integrals applies to prove the analyticity of I'(s) for Res > ay.
Since op > 0 is arbitrary, the conclusions first of continuity and then of analyticity
apply to I'(s) for Re s > 0.

One can also argue directly with "¢ ,,(s) = fsn t5~le~! dt for Res > 0. Lemma
B.12 and then Corollary B.15 apply directly, and then a passage to the limit is needed.
For this purpose the relevant tools are Proposition 2.21 for continuity and Problem
55 in Appendix B for analyticity.



Chapter VII 749

27. We enlarge the domain of definition first from {Re s > 0} to {Res > —1}—{0},
then to {Res > —2} — {0, —1}, thento {Res > —3} — {0, —1, —2}, and so on, using
the identity I'(s) = s~'I'(s 4 1) to define the extended function at each stage. The
result is analytic except for isolated singularities at the nonpositive integers, and the
functional equation I'(s 4+ 1) = sT"(s) is valid for the extension. One readily checks
that the isolated singularities are all poles of order 1.

Chapter VII

1. If g(ax) = g(by), then a; would have to be in E. For the second part an example
is g(x) = x on [0, 1]; there is only one interval (ax, bx), and it is (0, 1).

2. No. Corollary 7.4 applied to Ir shows for almost all x that the quotient
m(EN(x —h,x+h))/m((x —h,x + h)) has to tend to O or 1 as & decreases to 0.

3. We may work on a bounded interval /. Let € > 0 be given. If x is in E, then
|h~'(F(x + h) — F(x)| < € whenever || < 8, for some 8, depending on x. For
each such x, fix a positive number ry with r, < ééx. Associate the set B(ry; x) to x.
Then

W(BOGry; x)) < u((x —5ry, x +5ry]) = F(x 4+ 5ry) — F(x — 5ry) < 10r €.

Applying Wiener’s Covering Lemma, we can find disjoint sets B(ry;; x;) with E C
U2, B(5ry,; xi). Then

W(E) <) u(B(5ry; %)) <5€ Y 2ry, =5€ Y m(B(ry; X)) < Sem(l).
i=1 i=1 i=l

Since [ is fixed and € is arbitrary, u(E) = 0.

4. If F is the function in question, F — F(0) is the distribution function of
some Stieltjes measure p containing no point masses. Proposition 7.8 shows that
w(E) = 0 for some countable set E. Since u({p}) = 0 for each point p, u(E) =0
by complete additivity. Thus u = 0, and F must be constant.

5. For (a), the construction shows that F/(x) = 0 for all x € C¢. Then Proposition
7.8 allows us to conclude that p is singular.

For (b), let F, be the n™ constructed approximation to F (using straight-line
interpolations), and let f; be its derivative (defined except on a finite set and put
equal to O there). The function f, is a multiple ¢, of the indicator function of the
subset C,, of [0, 1] that remains after the first n steps of the construction, and also
m(Cp) = [Tizy (1 —rp). Since F,(x) = [y f,(t) dt for all x, we have 1 = F,(1) =
Cn fol Ic,(t)dt = cq [[f—; (1 —r%). Therefore f, = (i, (1 —rk))_llcn. Put f =
P~!'I¢. The functions f, converge pointwise to f, and they are uniformly bounded
by the constant function P~'. By dominated convergence, F(x) = f(f f (@) dt for
0 < x < 1. Therefore F is the distribution function of the measure f () dt.



750 Hints for Solutions of Problems

6. Let E be the second described set. The complement of E has measure 0 by
Corollary 7.4. Fix x in E, and let € > 0 be given. Choose a rational r such that
r — f(x)| <€. Forh >0,

RV @) = footde < i S p@) = rlde 407t S = o)

The second term on the right side equals |[r — f(x)| < €, and the first term tends to
|f(x) —r)| < esince x is in E. A similar argument applies if 4 < 0.

7. Part (a) is routine, and part (b) follows by adapting part of the argument for
Theorem 6.48. In (c), the assumption that x is in the Lebesgue set implies that
f‘l|<h |f(x —1) — f(x)|dt < hcx(h) for h > 0, where ¢, (-) is a function that
tends to O as h decreases to 0. For each of the described pieces of the integral
f\t|<n K,@®)|f(x —t) — f(x)|dt, we use one of the two estimates in (a), specifi-
cally the estimate Ky (f) < N + 1 for the piece with |[¢| < 1/N and the estimate
Kn(t) < c¢/(Nt?) for all the other pieces. The piece for 1/N then contributes
< (N + D-/\tl<1/N |f(x — 1) — f(x)|dt < 2c,(1/N), the piece for 2=-1/N <
|t] < 2%/N contributes < < (25~1/N)~2 Jot Ny [ f 2 = 1) = fo)ldr <
< N2 /N e @K /N) = 4 - 27%¢,(2F/N), and finally the piece for
N=Y% < |t] < 7 contributes < & N2 [\ 1o [f (6 = 1) = fQ0)ldr <
< N2z (|l £, 4 | f(x)]). The sum of the estimates is

[N74]
<2 (I/N)+ Y 4275 @*/N) +22eNT 2 fIly + 1 f (D)
k=1

<4 sup () +INT2ALN +1FOD,
O<h<N-1/4

and this tends to 0 as & decreases to 0. (The use of the shells with 27 is a device
that appears frequently in Zygmund’s Trigonometric Series and may be regarded as
a kind of manual integration by parts.)

8. Since u is singular, find a Borel set £ with u(E) = 0 and m(E€) = 0. Let
€ > 0 be given. By regularity of m + u, choose an open set U containing E such
that (m + w)(U — E) < €. Then u(U) < w(U — E)+ pu(E) = u(U — E) < €, and
mU°) <m(E°) =0.

9. About each x in U, there is some &(x) such that (x — h,x + h) C U for
h <8(x). Thenv((x — h,x + h)) = 0 for h < §(x), and the limit of this is 0 as &
decreases to 0.

11. Since U is open and 2 (U) = 0, Problem 9 gives

%1 Ch  pua((x —h,x+h) =0
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for all x in U. Since m(U¢) = 0, limh¢0(2h)_lu2((x — h, x + h)) = 0 for almost
every x in R!. The measure 1 has RYH = u(U) < €, and Problem 10 shows that

m{x | limsup u((x — h, x + h)) > 5}
10

< mfx | suppui(Ce = hx + 1) > £} = S ®1/5 < Sefe.

12. It is enough to handle the case that ;« vanishes outside some interval and hence
has p(R!) finite. Combining the estimates for 1 and p; gives

m{x| limsup u((x —h,x +h)) > &} < 5¢/&.
hl0

Since € is arbitrary, m{x | limsup,, o u((x — h, x +h)) > £} = 0. Taking the union
for & = 1/n, we conclude that the set where limsupy, o u((x — &, x + h)) > 0 has
measure 0.

To get the better conclusion, the main step is to obtain a bound 10e¢/& for the
maximal function formed from the supremum of v((x, x + &)) or v((x — k, x)). The
proof of Corollary 6.40 shows how to derive this from Problem 10.

Chapter VIII

1. Let F be the Fourier transform as defined in the text. In each part of the
problem, o can be computed by relating matters to the known facts about F, and g
can be computed directly from the definitions and Fubini’s Theorem.

In (a), we have f(y)= [ f(x)e™*Vdy=[ f(x)e 2*0/C) gy =Ff (y/(27)).
To obtain f(x) = aff(y)e”"y dy, we want f(x) = o [ Ff(y/@2n))e™V dy =
Q@o)Va [ Ff (e 0 dy' = @m)Vaf (x). With fxg(x) = B [ f(x—1)g(1) dt,
wehave fxg(y) = B [] fx—t)g@)e ™ Vdtdx = B [[ f(x—1)g(t)e ™ Vdx dt =
B[ f(x)g®)e &tV dx di = BF(y)&(y). Thusa = 27) N and g = 1.

In (b), we find similarly that f(y) = 7)) NFf(y/(@2r)), and we are led to
QoN@r) Na=1. Soa = 1. Also, B2n)N = 27)*N and B = 2m)V.

In (c), we find similarly that o« = (27'[)”\’/2 and 8 = (27T)N/2. This normalization
has the property that  and 8 are both 1 if dx is replaced by dx /(27)N/? throughout.

2. This is an operation called “polarization” in linear algebra, and it will be
explained further in Chapter XII. Application of the Plancherel formula to f + cg,
f.and cg gives || f + cgll5 = IIF(f) + cF I3 I £1I5 = IFHI3, and [cgl =
lcF(g) ||%. We expand the first one in terms of the inner product and subtract the
other two to obtain

(fs c8) + (g, [ = (F(f). cF(g))y + (cF(8), F(f))s-
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Then c(f, g), + c(f, &)y = c(F(f), F(8), + c(F(f), F(g)),. Taking ¢ =1
gives 2Re(f, g), = 2Re(F(f), F(g)),, whereas taking ¢ = i gives 2Im(f, g), =
2Im(F(f), F(g)),. The result follows.

3. Forany f in L', we have Q; * (Qy * f) = P.,¢ % f because the Fourier
transforms are equal. Also, (Q * Q¢) * f = Q * (Q * f) since we have finiteness
when the functions are replaced by their absolute values. Moreover, the functions
Q% Q¢ and P, are bounded and continuous. Letting f run through an approximate
identity formed with respect to dilations and applying Theorem 6.20c, we see that

Q% Qc(x) = Peyer(x) forall x.

4. Since Py iseven, [ (P f)(x)g(x) dx = [pn [pn Pr(x—y) f(»)g(x)dydx =
Jev Joy Pix = ) f()gx) dxdy = [pn [gv Pi(y — x) f(y)g(x) dx dy, and thus
Jan (P f)(x)g(x)dx = [n (P; * g)(x) f (x) dx. Therefore

| Jon (Prx )(x)g(x) dx— [ f(x)g(x)dx|= | [pn [(Pr* g)(x) — g(x)] f(x) dx|
<NPrxg—glhllfllo

By Theorem 8.19c the right side tends to O as ¢ decreases to 0, and (a) follows.

For (b), part (a) shows for each g with |lg|l;, < 1 that fRN f(x)g(x)dx}
limgyo | fn (P £)(x)g(x) dx|. Since | fn Prx f(x)g(x) dx| < IIPrx fllolglly
| P: * fllo, we have

IA

| faw F()g(x)dx| < liminf,yo | P * £l

whenever ||g||; < 1. Forany € > 0 with || f |, —€ > 0, let S¢ be the set where | f is
> || flloo—€. Thenm(Se) > 0. Take E to be any subset of S¢ withO < m(E) < 400,
and let g(x) be m(E)~! f(x)/|f(x)] on E and zero elsewhere. This function has
lglly < 1. Then | fpn fedx| = [pv fedx = m(E)™" [p|fldx = [|fllo — €
Hence || fllo, —€ < |ffg dx| < liminf; o | P; * fl o Since € is arbitrary, || flo, <
liminf; o || P; * f|l5. On the other hand, Theorem 8.19b shows that || P; * f||, <

[ fllo- Sowehave || flo, < liminf o || P flloo < limsup, o | P flloe < 1| fll o
Equality must hold throughout, and (b) is thereby proved.

5. In (a), the set function is a measure by Corollary 5.27. It has 1 (R") equal to
w1 (RM) o (RN) and is therefore a Borel measure. If 1 = f dx and uo = u, then

(f*)(E) = [pn(fdx)(E —x)du(x) = [pn [p_, f)dydu(x)
= Jon Joy IE—xO fF ) dy dp(x) = [on [pv IE(x 4+ ¥) f(y) dy dju(x)
= Janv Joy IEO) f(y = x)dy dp(x) = [pn [ £y —x)dy dp(x)
= [p [ Jan O —x)dp(x)]dy.
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In (b), we start with an indicator function and compute that

Jev Jpy IEG+ y) dpn (x) dpua(y) = [ [ fan TE—y () di ()] dpa(y)
= Jan H1(E — y)dua(y)
= (1 * w2)(E) = [pv T d(py * p12).

Then we pass to simple functions > 0, use monotone convergence, and finally take
linear combinations to get [py fen §(x + ¥) du1(x) dpa(y) = [ &d (11 * p2).
In (¢), we actually have || P+ |, = w(RN) for every t > 0 by Fubini’s Theorem.
Part (d) is handled in the same way as Problem 4a. First one shows that
S (Pr % ) (0)g(x) dx = [ (Pr % g)(x) dpu(x) for g in Ceom(RY). The resulting
estimate is | fpn [(Pr % g)(x) — g(x)]du(x)| < || P, % g — gllgyp #(RY), and then (a)
follows from Theorem 8.19d.

6. Part (a) follows from the same argument as f/gr Proposition 8.1a. In (b), the
measure 8 with §({0}) = 1 and §(RY —{0}) =0 hasé(y) =1 fqr all y. In (c), we use
the result of Problem 5b with g(x) = e~ 2" and get fe’zr”x'td(m * w2)(x) =
[f e dpy (x) dpa(y) = (D@2 (1). In(d), leto(x) = Pi(x). Thenjz =0
implies @, * /1 = 0 for every ¢ > 0. Since ¢, * u is a function, Corollary 8.5 gives
s * . = 0 for every ¢ > 0. By Problem 5d, ¢, * u converges weak-star to p against
Ceom(RY). Therefore [py gdu = 0 for every g in Ceom(R"), and Corollary 6.3
shows that u = 0.

7. This is the same kind of approximation argument as was done in Corollary 6.17.

8. We calculate that Y, ; i(x; — x))&& = Y ; [e N DgE du(r) =
f (Zi,j (e—Znit-xi%-i)(e—Zﬂit-x_,-Ej)) du(l‘) — f ‘ Zj e—2ﬂit~x,§j’2du(t) > 0.

9. For the set {0}, the condition is that F (0)|&; |2 > O forall &;; thus F(0) > 0. For
the set {x, 0}, the condition is that F (0)|&; |24 F (x)&1&+F (—x)&E&+F (0)|£]? > 0.
Taking & = & = 1 shows that F(x) 4+ F(—x) is real; taking §; = i and & = 1
shows that i (F(x) — F(—x)) is real. Therefore F(x) + F(—x) = F(x) + F(—x)
and F(x)_— F(—x) = —F(x) + F(—x). Adding we obtain F'(—x) = F(x). Hence
—F0)&& — F(x) &5 < FO)(&1* + &%), If F(x) # 0, we put & = —1 and
& = F(x)/|F(x)| and obtain |F (x)| < F(0).

10. 37, F(xi—xj)q>(xiij)gi_g_j =3, [ F(xi—x))e "= o (1)EE; dt =
J IS Flai = xp) (e 205 o) (e di = 0.

11. Part (a) follows from the boundedness of F obtained in Problem 9.

In (b), every g in Ceom(RY) satisfies 0 < [ Fo(x — y)g(x)g(y)dxdy =
J(Fox))g(x)= [ Fox g(g(y)dy=[ Fo(EEy) dy= [ Fo(IZg)I*dy.

For (c), if f is in L%, we can approximate f as closely as we like by a
member g of Ceom(RY). Then fo[2|* = fol F(f)I* + 2foRe(F(f)(€ — F(/)+
folg—F(f)|>. We integrate and use the resulting formula to compare I folgl? dy with
S fol F(f) |>dy. By the Schwarz inequality and the Plancherel formula, the absolute
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value of the difference of these is < 2|l follspll F 218 — fll, + L follgpllg — f||%.
Since [ fylgl*dy is > 0, it follows that [ fy|F(f)I*dy > 0 for all £ in L?. Since
F(f) is an arbitrary L? function and f; is continuous, we conclude that f; is > 0.

The integrability in (d) is immediate from Lemma 8.7, and the formula [ fo dy =
F (0) follows from the Fourier inversion formula.

12. Let g, be a sequence decreasing to 0, let ® in Problem 11 be the function
e weylx |2, and write F), for the function F®. Then Problem 11d shows that u, =
F, () dy is a finite Borel measure with 1, (RY) = F,(0) = F(0). The Helly-Bray
Theorem applies and produces a subsequence of {u,} convergent to a finite Borel
measure ;1 weak-star against Ceom (RY). We shall prove that F (x) = f Y du(y),
i.e., that v with v(E) = u(—FE) is the desired measure. (The interested reader may
wish to compare this argument with the proof of the Portmanteau Lemma (Lemma
9.14) in the companion volume, Advanced Real Analysis.) R

For each n, the Fourier inversion formula gives F,(x) = f TV E (y)dy =
f e2™XY du, (v). Since F,(x) tends to F(x) pointwise, the result would follow if
we could say that the weak-star convergence implies that | e¥ Y d, (y) tends to
i 2™y du(y). However, e*™* is not compactly supported, and an additional
argument is needed.

First we extend the weak-star convergence so that it applies to continuous functions
vanishing at infinity. If f is such a function, we can find a sequence { f¢ } in Ccom (RM)
converging to f uniformly. Then

| [ fdun— [ fdu
<|[fdun—/ fidun| +| [ frdun—[ frdu|+| [ fidu—[ fdu]
< Mk = Fllsup tn RN + | [ frdpn— [ fidie] + 1| fi = fllgup #@RY).

Choose k to make || fy — flls,, small. With k fixed, choose n to make the middle
term small. Then the right side is small since the numbers 11, (R") are bounded.

This is not quite good enough by itself because ¢>*** does not vanish at infinity.
However, averages of it by L' functions (i.e., Fourier transforms of L! functions)
vanish at infinity, and that will be enough for us.

Define F#(x) = fezmx'y diu(y). We prove that F”(x) = F(x) for all x. It
is enough to prove that [ F¥ydx = [ Fy dx for all ¢ in L'. Define ¥V (y) =
fezmx'yw(x) dx. The multiplication formula (for (-)" instead of (-)) and the
Riemann-Lebesgue Lemma give

JF"dx = [y du(y) =lim, [ ¢ du, = lim, [¢"F, dy
=1lim, [ Y F, dy=1lim, [ F,dy.

The right side equals f ¥ F dy by dominated convergence since | F,,(y)| < |F(y)| for
all y.
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13. Part (a) is easy.

In (b), if x is a character, then > x(x) = >, x(gx) = x(g) X_, x(x). Thus
> x(x) = 0 if there is some g with x(g) # 1, i.e., if x is not trivial. If x and x’
are distinct characters, then x x’ is not trivial, and therefore DX (x)x'(x) = 0. The
orthogonality implies the linear independence.

In (c), the element 1 of J,, has order m under the group operation of addition.
Thus each character x of J,, must have (1) equal to an m™ root of unity. Since 1
generates J,,,, x (1) determines x. Thus the listed characters are the only ones.

In (d), any tuple (n1,...,n,) with 0 < n; < m; for 1 < j < r defines a
character by (ki, ..., k) — ]_[;:1(5,':,’})"-7’. There are ]_[;:1 m; distinct characters
in this list, and they are linearly independent by (b). Since dim L*(G) = I—[;=1 mj,
these characters form a vector-space basis.

14. Since the characters form a basis of L2(G) as a consequence of Problem 13d,
we have f(t) = Zx’ ¢y x'(¢) for some constants ¢,,. Multiply by x () and sum over
rtoget f(x) = Zx’ >, ¢y x' () x (t). The orthogonality in Problem 13b shows that
this equation simplifies to f(x) =cy Yy, lx()]? = |Glcy.

15, fOO=2hea fOXD =216 Lhen [ +MX(O) =Y gy FOX@)
= F(x).

16. The characters of G are the ones with x,(1) = ¢, forO < n < m. Such a
character is trivial on H if and only if x,(¢) = 1, i.e., if and only if £,? = 1; this
means that nq is a multiple of m, hence that n is a multiple of p.

The element 1 of H is the element g of G. Thus the question about the identification
of the descended characters asks the value of x, (1) when n is a multiple jp of p. The
value is x,(1) = ¢ = 1{5 = qu.

If we have computed F on G/H and want to compute F from the definition of
Fourier transform, we have to multiply each of the g values of F by the values of
each of the ¢ characters of G/H and then add. The number of multiplications is g°.
The actual computation of F' from f involves p additions for each of the g values of
1, hence pq additions.

17. F@l ™y = Yrt £ = 305 (£ )¢k 6! . The variant of f for
the number k is theni — f (i){,’;f. Handling each value of k involves m = pgq steps
to compute the variant of f and then the ¢> + pg steps of Problem 16. Thus we have
g* + 2pq steps for each k, which we regard as on the order of g> 4+ pg. This means
p(g® + pq) steps when all k’s are counted, hence pg(p + q) steps.

19. For Res > 1, we have

s—1

o
L= [ sdr = 21 [ s ar.
n=
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Thus Res > 1 implies
o0 o0
t(s) = L+ Z (K= eYar =L+ % e S ar
n=1 n=1
20. Suppose that Res > o > 0, and let |s| < C. We then have the estimate

n+1, _ — n+1 — — C
| s =] < n= =1 dr < s < G

the next-to-last inequality following from the computation

[n=* —t75| < sup |%t‘s| < sup
n<t<n+l n<t<n+l

In combination with the Weierstrass M test, the estimate shows that the series

o0
> f n"H (n™* — t7%) dt is uniformly convergent for s in any compact subset of the

half plane Res > 0, and analyticity of {(s) — A%l follows from Problem 55 at the
end of Appendix B.

21. We have |ei”2”’| = ¢~™%_and the sum on n of the expression on the right
is certainly convergent if o > 0. The analyticity follows by using the Weierstrass M
test and Problem 55 at the end of Appendix B. The identity (t 4+ 2) = 6(z) is clear
by inspection.

22. Taker = o'/ and o > 0 in the formula of Corollary 8.16. Then 6(—1/7) and
(7/i)/?6(t) are equal on the imaginary axis. Also both are analytic forIm ¢ > 0. By
the Identity Theorem (Proposition B.23 of Appendix B), they are equal everywhere.

23. The change of variables is x = n’7o.

24. The sum over n of the right side in the previous problem is {(s)F(%s)n_%s.
The sum over n of the left side is Z 2 e’ nlio)g 35~1 do forRes > 1. If absolute

value signs are inserted inside the mtegral sign then the whole expression is finite.
Hence Fubini’s Theorem is applicable to interchange sum and integral, and the desired
formula results.

25. Putc(o) = %[9 (io)—1]. Itsseriesis c(o) = io: e‘"z’w, and its product with
n=1
25~ is a continuous function of the pair (o, s) that is entire in s for each fixed 0. By
Lemma B.12 and Corollary B.15, le c(o)o 3=1 is entire in s for any fixed N. Since
f 130 |c(o)o 351 | do tends to O uniformly on compact subsets of s values, the entire
function f lN c(o)o 35-1 converges uniformly on compact sets to f 100 clo)o %s_l. The
limit has to be entire by Problem 55 in Appendix B.



Chapter IX 757

26. Let Res > 1. In view of Problem 22, we have
L 10Go)o T do = [ Lo (1) 20 do
1 1y _lg.3
= i 16Ghobtao
1 — 13
=Jo 710(G) — o> "2 do + &
The change of variables o +> 1/0 shows that the above expression is

= [ 660) = 11630797 do — - = n(1 —5) — L.

27. The conclusion of Problem 24 gives

AGs) = [° 416G0) — 110751 ds
= i L6Gio)yords — L [ o3 do + [° L[6Gi0) — 11075 ds
= fol %9(1’0)0%5_1 ds — % + h(s).
Substituting from Problem 26 shows that
AGs) =h(1—s)— 15 =L+ hs).

Since ¢(s) extends to be meromorphic in Res > 0 with its only pole at s = 1,
A(s) is meromorphic for Res > 0. On the other hand, the above expression for
A(s) shows that A(s) = A(1 —s) for0 < Res < 1, hence that A(s) extends to be
meromorphic on C. Since / is entire, the only possible poles of A(s) are at 0 and
1. Since ¢(s) = A(s)F(%s)"n%S and since I'(s)~! by assumption has no poles,
£ (s) can have poles at most at 0 and 1, and any pole is at most simple. Looking at
the formula for A(s) in terms of ¢ (s) shows that o (s) cannot have a pole at s = 0.

Chapter IX

1. Letr = g/ p, and letr’ be the dual index. Regard | f|” as a product | f|? - 1, and
apply Holder’s inequality with | f|? to be raised to the r power and 1 to be raised to
the ' power. Compare with Problem 3 below, which is a more complicated version
of the same thing.

2. The inequality is routine if any of the indices is co. Otherwise, we have

Sifghldu < (f1fgl" duw)"" ([ 1nlmdp)"”
< ((SAFrH?r an) ™) ((Fagirye daw) )Y n,
= I £1l, gl Il
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3. Letus say that || f,Il, < C. Lete > 0 be given. By Egoroff’s Theorem, find
E with u(E) < € such that f, tends to f uniformly on E€. Application of Holder’s
inequality with the exponentr = p/g and dual indexr’ = p/(p—q) to fE [ ful?-1du
1
gives | fulelly < ([ 1ful?®/9 dp) """ ([ 1dp) """ < Cpu(E)r-o/vo) <
Celr— ‘1)/(1"1). Meanwhile, we have

Ifo = Fllg < W fw— falbelly + 1 fulee — fIeell, + 1 Iee — £,
= fulelly + 1 = DIpcl, + 1 FIE],:

The first term on the right is < CeP=D/(Pad)  and so is the third term, by Fatou’s
Lemma. The middle term tends to O as n tends to infinity because of the uniform
convergence. Thus limsup, || f, — fll, < 2CeP=9/(P®) Since € is arbitrary,
limsup, || f, — fll, =

4. L' is 0, and L consists of the constant functions. All the constant functions
give the same linear functional on L' because the integral of the product of any
constant function and the O function is 0.

5.Put P/ = {f(x) >0}, N ={f(x) <0},and Z' = {f(x) = 0}. If E is any
measurable subsetof Z’,then X = PUN with P = PUEand N = N'U(Z'—E) s
a Hahn decomposition. All other Hahn decompositions are obtained by adjusting P
and N by taking the symmetric difference of P and of N with any set of ; measure 0.

6. In (a), let X be the positive integers, and let the algebra consist of all finite
subsets and their complements; let v of a finite set be the number of elements in the
set, and let v of the complement of a finite set ¥ be —v(F). In (b), use the same
X and algebra, define v({2k}) = 2% and v({2k — 1}) = —27%, and extend v to be
completely additive. In (c), let X = [0, 1], let the o -algebra consist of the Borel sets,
and take v to be Lebesgue measure and u to be counting measure.

7. Since P, has L' norm 1, the inequality ||u(r, ~)||p < ||f||p follows from
Minkowski’s inequality for integrals. For the limiting behavior as r increases to 1,
we extend f periodically and write

u(r,0) — f0) = 5= [ Pr(9) f(O — @) dp — ()
=2+ [T P(@If0—9) — fO]de,

the second step following since 2 - f P. dp = 1. Applying Minkowski’s inequality
for integrals, we obtain

lutr, ) = fll, < 5= /7 B@IFO —9) — fFO, 4

since P, > 0. The integration on the right is broken into two sets, S; = (—4, §) and
Sy = [—m, —8] U [8, m], and the integral is

< 5= [5, Pr(@)(supyes, 1./ 6 — ) = f O, ) do + 5= [5, Pr(@)21If1l, dg

sup £ =)= fO,0+21fll, sup Pr(p).
(250 PES2

IA
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Let € > 0 be given. If § is sufficiently small, Proposition 9.11 shows that the first
term is < €. With § fixed, we can then choose 7 close enough to 1 to make the second
term < €.

8. Let p be the dual index to p’. Put r/R = r’ in Problem 13 at the end of
Chapter IV, so that

u(r'R,0) = 5= [* fr(@) P (0 — ¢) dg

forr’ < 1. Take a sequence of R’s increasing to 1, and let { R,,} be a subsequence such
that { fr,} converges weak-star in L? relative to L”. Let the limit be f. For each 6
andr’, P (0 — -)isin LP, and the equality u(r'R,,, ) = % ffn SR, (@ P (0—¢)dy

thus gives u(r’, ) = % ffﬂ f (@) P (0 — ¢) de, which is the desired result.

9. If v is a measure with 0 < v < u, then v({n}) = 0 for every n, and hence
v({integers}) = 0. Sov = 0.

10. Let u be given on the space X, and consider the set S of all completely additive
v with O < v < pu. This contains 0 and hence is nonempty. Order S by saying that
V1 < ifvi(E) < v (E)forall E. If we are given a chain {v, }, let C = sup,, vy (X).
This is < @(X) and hence is finite. Choose a sequence {vy, } from the chain with
Vg, (X) monotone increasing with limit C.

If m < n, let us see that vy, < v,,. Since the v,’s form a chain, the only way
this can fail is to have v,,, (E) > v,, (E) for some E and also v, (E€) > v, (E€).
But then vy, (X) > vg,(X) by additivity, and this contradicts the fact that vy, (X) is
monotone increasing. So m < n implies vy, < Vg, .

Define vo(E) = limy vy, (E). Corollary 1.14 shows that vy is completely additive,
and certainly vg < p. So vy is an upper bound for the chain. Zorn’s Lemma therefore
shows that S has a maximal element v.

Write 0 = p — v. This is bounded nonnegative additive as a result of the
construction. If there were a completely additive A such that 0 < A < o, then
v 4+ A would contradict the construction of v from Zorn’s Lemma. Thus o is purely
finitely additive.

11. It is enough to prove that w is completely additive. If the contrary is the case,
then there exists an increasing sequence of sets E,, with union E in the algebra such
that the monotone increasing sequence {(t(E,)} does not have limit p(E). Since
is nonnegative additive, u(E,) < w(E) for all n. Thus lim, w(E,) < w(E). Since
v — i is nonnegative additive, v — u similarly has lim, (v — u)(E,) < (v — u)(E).
Adding, we obtain lim, v(E,) < v(E), in contradiction to the complete additivity
of v.

12. Suppose u is nonnegative bounded additive. Let u = vi 4 p1 = v + pp with
vy and v nonnegative completely additive and with p; and p; nonnegative purely
finitely additive. Then vy — vy = pp — p1. Let v+ — v~ be the Jordan decomposition
of v; — va. Since v; — v, is completely additive, so are vt and v™~. The equality
vt — v~ = pp — p; and the minimality of the Jordan decomposition together imply
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that 0 < v < ppand 0 < v~ < p;. Problem 11 then shows that v = v~ = 0.
Hence V) — V) = 0, V1 = VvV, and pP1 = P2.

13. Let R = I x J be centered at (x,y). Then e [f5|f(u, v)|dvdu =
ain Ji Lt [y 1 f @ v)ldv]du < ot [ i, y)du = fa(x,y). Taking the
supremum over R gives f**(x, y) < fa(x, y).

4. [[1f*x, P dxdy < [[1fo(x, »IPdxdy = [[ [|fa(x, )IPdx]dy <
AL [[ [ 1fi(x, )P dx]dy by Corollary 9.21. If we interchange integrals and apply
Corollary 9.21 a second time, we see that this is < A,z,p [S1fG& »IPdy]dx =

2p p
AL fllp-

15. This is done in the style of Corollary 6.39.

16. Let ®; > 0 be a decreasing C! function on [0, 1] with CID’1 0)=0,9(1) =1,
and @} (1) = —1. Define ®¢(x) on [0, 1] to be ®;(x) /(7 (1 + x?)) on [0, 1] and to
be 1/(7rx(1 + xz)) on [1, +00). Then ®(x) = Pp(|x|) has the required property.

17. sup, o [(Ve * ()] = sup_ oYl * [ fD(x) < sup,.o(Ps * | fD(x), and
then sup,_ |(¥e * f)(x)| < Cf*(x) by Corollary 6.42. Since le Y(x)dx =0, the
last part of the proof of Corollary 6.42 shows that lim,~q (¥, * f)(x) =0 a.e. for f
in L'(RY). If £ isin L°(R") and a bounded interval is specified, we can write f as
the sum of an L' function carried on that interval and an L™ function vanishing on
that interval. The L' part is handled by the previous case, and the L part is handled
on that bounded interval by Theorem 6.20c.

18. We use the fact that O, = h, + v, where ¥ is integrable with integral 0.
Since h, * f and ¥, * f are in L?, sois Q * f. Convolution by an L' function
such as P, is continuous on L” by Proposition 9.10. With all limits being taken in
LP ase’ | 0, we have P,  (Hf) = P * (lim(hy * f)) = im Py % (hy * f) =
lim Py % (Qg * f — Ve * f) =1im P % (Qy x f) — (lim P; % ) * f. The second
term on the right side is 0. If we think of P, as in L' and Q. asin L”/, then we have
Pex (Qe* f) =(Pex Qe)x f = Qeqe * [ = (P * Q) * f = P % (Q¢ * [).
Thus Iim P % (Q¢ * f) = lim Py % (Q, * f) = Q. * f, and we conclude that
Pex (Hf) = Q¢ f.

19, sup,_ (ke % )@ < supeq [(Qe * L] + Supesg (e ¥ ()] <
SUp,-o [(Pe x Hf)(x)| + Cf*(x) < C'(Hf)*(x) + Cf*(x), the last inequality
following from Corollary 6.42 for P.. Let 1 < p < oo. Then it follows from
Corollary 9.21 that || sup,.q ke * f11l, < Cp(IIHf I, + Il fl,), and we conclude
from Theorem 9.23c that || sup,.q e * f] ||p < Dp||f||p. Lemma 9.24 shows that
limg o (ke * f)(x) = f(x) everywhere if f is in a certain dense subspace of L?, and
it follows as in Problem 15 that limg o (h, * f)(x) = f(x) almost everywhere if f is
arbitrary in L?.

20. Imitating the proof of parts (a) and (b) of Fejér’s Theorem (Theorem 6.48), we
readily prove that K, x f — f in L?, where K, is the Fejér kernel. Therefore finite
linear combinations of the exponentials are dense in L?([—x, 7]). For each such
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linear combination f of exponentials, we have S, f = f for all sufficiently large n,
and hence S, f — f in L? for a dense subset of L?. Using the given estimate on
1S» f I, and the convergence of S, f on the dense set, we argue as in the proof of
Theorem 9.23b to deduce convergence for all f in L?.

i 1
21. Let F,(t) = w for 0 < |t|] < m, and extend F, periodically.
Then % F,(t) = sin(n + )t = (sin 3)D,(¢). Since (+/2)/sin3t = 1+ tyr(t)

with ¥ (#) bounded above and below by positive constants on [—, 7], we see that
D,(t) — F,(t) = [ A l]Fn(t) = 29y (t)sin(n + %)t. Then the functions

sin 57
Ya(t) = 249 (¢)sin(n + %)t have D, — F, = ¥, and |||, bounded. By in-

2 sin(n+%)t 1
t

spection, F,, — E, equals the function that is for || < 5,05 and is O for

ﬁ < |t| < . These functions are < 2(n + %) for |7] < ﬁ and are O otherwise;
so their L' norms are bounded. This proves that D, — E,, = ¢, with |@, I, < C for

some C.
I T f 1, < Byl fll, thenwehave S, £1l, = [ Duxfll, = [ Ent f+gux f1l, <
IEn* fll, + lgn* fll, < Bpll fIl, + ll@nll; I f1I ,, and we can take A, = B, + C.
22. We have 2i sin(n + )t = ¢! (D! _ o=(1+3)1 Thys the effect of the operator
T, on f is the sum of two terms Tn(l) f+ T,,(z) f, one of which is

TV f () = / ]

1 t
2n+1 Slt‘fﬂ

—if(x — t)e—i(n+%)(x—t)ei(n+%)x
dt.

If we regard f as continued periodically to the interval [—37, 3] and we put f equal
to O outside that interval, then

. 1
TV f(x) = "% ((Hy — Hijans1))9)(x)  forx € [—m, 7],

where g(y) = —inf(y)e_i("Jr%)(y) on [—3m,3m]. With A, as the constant from
Theorem 9.23, Theorem 9.23 gives

P < (ST Folr dx)?
< (/R |Hyg|? dx)l/p + (fR |H1/(2n+1)g|pdx)l/p
<24,(fnlglPdx)""? < 2w A, (3 [7_ | fIP dx)"".

(ST 1D f oo dx) "

We get a similar estimate for Tn(z) [, and the desired estimate for 7}, f follows.

23. Define a signed measure v on B by v(B) = f fdp. Then v is absolutely
continuous with respect to the restriction of u to 13, and the Radon—-Nikodym Theorem
yields a function g measurable with respect to 3 such that v(B) = f g &du forall B
in B. This function g is E[f|B]. Uniqueness is built into the uniqueness aspect of
the Radon-Nikodym Theorem.
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24. For those n’s such that u(X,) # 0, E[f|B] may be defined to be equal
everywhere on X,, to the constant (X ,,) ™! f X, f du. For definiteness, E[ f|B] may
be defined to be 0 on each X,, with u(X,) = 0.

25. The function f satisfies the defining properties (i) and (ii) of E[ f|.A].

26. In (a), we identify E[E[f|B] | C] as E[ f|C]. It is measurable with respect to C
and hence satisfies (i) toward being E[ f|C]. Any C € C has fc E[E[fIB] | Cldu =
Jc ELf1Bldu. In turn this equals [ f du since C is in B. Hence E[E[f|B) | C]
satisfies (ii) toward being E[ f|C].

In (b), we identify E[ f|B]+ E[g|B] as E[ f+g | B]. It is measurable with respect
to BB and hence satisfies (i). For (ii), each B in B has fB(E[f|B] + E[g|B)du =
[ ELfIBldu+ (5 Elg|Bldpn = [ fdu+ [pedn = [(f +g)dpu.

In(c), itisenoughtohandle f > 0, and thenitisenoughtohandleg > 0. If g = I
with B € B, then we shall identify Iz E[ f|B] as E[fIp | B]. Certainly I E[f|B]
satisfies (i). For (ii), each B" in B has [, IgE[f|Bldn = [pp E[fIBldn =
Jpnp fdn = [z Ipfdu. This handles g equal to an indicator function. Part (b)
allows us to handle g equal to a simple function, and monotone convergence allows
us to handle g equal to any nonnegative integrable function. (For this last conclusion
one needs to use that f > 0 implies E[ f|B] > 0, but this is built into the construction
via the Radon—-Nikodym Theorem.)

In (d), the important thing is that X is a set in 3. Then (ii) and (c) successively
give [y fE[g|Bldu = [y E[fE[g|Bl | Bldu = [y E[fIBIE[g|B]ldu. The right
side is symmetric in f and g, and hence the left side is also.

27. For fin L' N L?, we compute from the definition of F that F(8, f)(y) =
r8-Y(Ff)(y). It follows for all L? functions f that F(8, f) = r8 ' (Ff) as an
equality of L? functions. Let A : L?> — L? be bounded linear commuting with
translations and dilations. Theorem 8.14 produces an L°° function m such that
F(Af) = m(Ff) forall fin L?. Using the commutativity of A with dilations, we
have

(m)(Ff) = FAf) = F&,  As, f) = r 7' 8,(F(AS, £)) = r~ 16, (mF(6, f))
=776 m) (S (F(Sr 1)) = r = (S,m) (8, (r8,  (F 1)) = (8m)(F).

Consequently §,m = m for all » > 0. It follows that m is constant a.e. on each half
line. The result follows.

28. Lemma 8.13 relies on Proposition 6.16 and Corollary 6.17. Proposition 9.11
extends Proposition 6.16 to 1 < p < oo and is to be quoted in place of Proposition
6.16.

To generalize Corollary 6.17 appropriately, one can use any number p with 1 <
p < 00, and it is important to allow the p associated to g to depend on k. In other
words the statement of the corollary concerns functions g in LP*, and the norm on
the expression involving gy istobe || - || 5,. The same kinds of adjustments are needed
in the proof of the corollary, and then the proof goes through.
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The statement of Lemma 8.13 remains valid for any bounded linear operator
A : L? — L9 commuting with translations, provided 1 < p < ocoand 1 < g < oo.
Corollary 6.17 is to be applied with g1 = g, p1 = p, g2 = Ag, and p» = ¢, and then
the argument goes through.

29. In (a), the simple functions f and g are in L', LP and L9, and also L? and LY
for the dual indices p’ and ¢’. Problem 28 gives (Af)*g = A(f *g) as an equality of
L7 functions, and it similarly gives A(f xg) = f * (Ag). Thus (Af)xg = f *(Ag)
as L9 functions. On the other hand, (Af * g) is a bounded continuous function by
Proposition 9.12 because Af isin L? and g isin LY. Similarly f *(Ag) is a bounded
continuous function. Then we must have (Af *g) = f * (Ag) pointwise. Evaluating
both sides at 0 yields (a).

In (b), we take the supremum of the absolute value of both sides of (a) over all
simple f with || f]l, < 1. The right side becomes ||Ag|l,/, and the left side, by
Holder’s inequality, is < [[Af|l,llgll,y < Al gl where IAll, , is the norm
of A: LP — LP. Thus each simple g has ||Agll,y < lAll, ,liglly. Since the

space of simple functions is dense, A extends to a bounded linear operator from L?
into itself with || Al oo S [|A]| pop The extension commutes with translations by a

continuity argument. Reversing roles of p and p’, we see that || A|| op = 1Al o
Thus [[All, , = | All, . o
In (c), the bounded operator obtained by the dual construction is from L? to L? .

30. Problem 29 shows that A is also bounded from L' to itself. By the Riesz
Convexity Theorem (Theorem 9.19A), it is bounded also from L? to itself, since
2 is between p and p’. Being bounded from L? into itself and commuting with
translations, it is given, according to Theorem 8.14, by multiplication on the Fourier
transform side by an L* function m. Thus F(Af) = mF(f) for that same m on a
dense subspace of L?. Since both sides are continuous linear operators, this equality
extends to all of L.

31. In(a), thereal and imaginary parts of p are treated separately and come from the
L' functions A¢; letus ignore the imaginary parts, which are handled in the same way
as the real parts. Since A is bounded from L! to itself, || A, I, < IlAlll@ell, = 1Al
Take a sequence of ¢’s tending to O and apply the Helly-Bray Theorem to extract a
subsequence {¢;} such that {(Ag,, )t dx} and {(Age, )~ dx} both converge weak-star
against Ccom(RY). Let p be the difference of the limits of these sequences. This is a
signed measure on the Borel sets R, and its positive and negative parts p* and p~
in the Jordan decomposition (Theorem 9.14) have p*(RY) 4+ p~(RY) < || A].

In (b), g is uniformly continuous and p is finite. The continuity of g * p is
immediate.

In (¢), we have

(AR 5 0o ) () = A" 5 90)(3) = (B % Age)(v)
= [an M (v — X)(Agy,) (x) dx
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= [gv h(x — y)(Age,) (x) dx
= [an (Tyh) (X) (Age,) (x) dx,

and this tends by (a) to

Jan (G () dp(x) = [pn h(x = y)dp(x) = fon B (y = x) dp(x) = (h" % p)(y).

In (d), we observe that the equality in (c) is a pointwise equality. Since {¢,} is an
approximate identity, Ah* % 9. — Ah* n L'. Thus we have Ah* = h' % p as an
equality of L' functions whenever 7 is in Com(RY). The operators on the two sides,
A and (-) * p, are continuous on L'; this fact is given in the case of A and is easily
checked in the case of (-) % p. By continuity the equality Ah* = h* % p valid on
Ceom(RY) extends to an equality Af = f * p valid on all of L.

32. Definer by 1 — } = % — %. Young’s inequality (Corollary 9.19D) shows that
convolution with an L” function /4 is bounded from L? to L4, and it commutes with
translations. To obtain a nonzero convolution operator of this kind, we take 4 to be
nonzero, simple, and real-valued. Putting K (x) = h(—x), we observe that & * h* is
a bounded continuous function and has & x h*(0) = fRN h(x)?>dx > 0.

33. For (a), if f is in Ceom(RY), then ||t f + fII5 = [pn | f(x —h) + f(X)|P dx,
and for i sufficiently large, this equals fRN |f(x — )P dx + fRN |[f(x)|Pdx =
2 £ Z . Thus (a) is proved in this special case. The general case follows from a 3¢
argument, Ceom(BRM) being dense in L”.

For (b), we have ||z, (Af) + Afll, = A )+ Afll, = Mltn f + fll,. Letting
h tend to infinity and applying (a) to both sides, we obtain 2'/7|| Af ||q <2Vrm| f I,
and thus [|Af]l, < 21/P’1/‘1M||f||p. Since M is the norm of ||A| and since
2Vp=lipM < M, we can find an f # O with || Af]l, > M|/ f],, and then we
have a contradiction.

Chapter X

1. For (a), the diagonal A = {(y,y) € Y x Y} is a closed subset of ¥ x Y since
Y is Hausdorff, and the function F : X — Y x Y given by F(x) = (f(x), g(x)) is
continuous. Therefore F~1(A) is closed.

2. The argument is the same as for Problem 18 in Chapter II.

3. We argue as in the proof of Theorem 2.53. Taking complements, we see that it is
enough to prove that the intersection of countably many open dense sets is nonempty.
Suppose that U, is open and dense for n > 1. Let x; be in U;. Since Uj is open,
local compactness and regularity together allow us to find an open neighborhood B
of x; with Bfl compact and Bfl C U;. We construct inductively points x,, and open
neighborhoods B,, of them such that B, € UiN---NU, and B,ﬁl C By_1. Suppose By,
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with n > 1 has been constructed. Since U, is dense and B, is nonempty and open,
U,+1 N By, is not empty. Let x,, 11 be a point in U, N B,. Since U, N By, is open,
we can find an open neighborhood B, 41 of x,,1 in U, 11 such that B,‘?H C Uy+1NB,.
Then B, has the required properties, and the inductive construction is complete.
The sets Bﬁl have the finite-intersection property, and they are closed subsets of BICI,
which is compact. By Proposition 10.11 their intersection is nonempty. Let x be in
the intersection. For any integer N, the inequality n > N implies that x,, is in By 4.

Thus x is in BIC\}H C By CU;N---NUy. Since N is arbitrary, x is in ﬂ:":] U,.

4. Let Y be a locally compact dense subset of the Hausdorff space X. If y is in
Y, let N be a relatively open neighborhood of y such that N € K with K compact in
Y. Since N is relatively open, N = U N Y for some open U in X. It will be proved
that N = U, so that each point of Y has an X open neighborhood, and then Y will
be open. The set K is compact in X and must be closed since X is Hausdorff. The
points of U N K arein Y since K € Y, and hence U N K € U NY = N. Consider
a point x of the open set U — K. Suppose x is not in Y. Then x is a limit point of ¥
since Y is dense. Hence the open neighborhood U — K of y contains a point y" of Y.
Then y'isin U NY = N C K and cannot be in U — K, contradiction. We conclude
thatxisin Y. ThenxisinUNY = N,and U = N.

5. First consider any continuous function f : Y* — [0, 1] with f(ys) = 0. The
set of y’s with f(y) > 1/k is open and contains y, thus is a compact subset of ¥
and must be finite. Hence the set of y’s with f(y) = 0 has a countable complement.

If Z is normal, apply Urysohn’s Lemma to A and B, obtaining a continuous
F :Z — [0,1] with f(A) = 1 and f(B) = 0. Enumerate the members of X as
X1, X2, .... For fixed n, f(y) = F(xy, y) is continuous from Y* to [0, 1] and is O at
Yoo- Thus F(x,,y) > 0 only on a countable set S, of y’s, and F (x,, y) > 0 for some
n at most on the countable set § = UZO=1 Sp. If yo is not in S, then x — F(x, yo)
is continuous from X* to [0, 1], is O for every x other than x, and is 1 at xo,. This
contradicts the continuity, and we conclude that Z is not normal.

6. If E is an infinite set with no limit point, then E is closed and each x in E is
relatively open. Hence each x has an open set Uy in X with U, N E = {x}. These
open sets and E€ cover X, and there is no finite subcover. Thus X compact implies
that each infinite subset has a limit point.

8. Part (a) follows from Problem 7b and Proposition 10.34. For (b), f (=00, q)
is@ifa < 0,isR—{0}if0 <a < 1, and is R if @ > 1; hence it is open in
every case. Part (d) follows from (a). For (e), there exists an upper semicontinuous
function > f(x), namely the constant function everywhere equal to sup | f (x)|. Then
(d) shows that the pointwise infimum over all upper semicontinuous functions > f (x)
meets the conditions on f~.

9. For (a), we have Qr(x) = f~(x) + (—f) " (x). Both terms on the right are
upper semicontinuous, and the sum is upper semicontinuous by Problem 8c. For (c),

f(0) < f@) < f7(0) = Qp(x) + f—(x). If @y =0, then f_ = f = f~ shows

that f is continuous with respect to all sets {x < b} and all sets {x > a}. Hence
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f~a, b) is open for every a and b, and f is continuous with respect to the metric
topology. Conversely if f is continuous, then the definition makes f~ = f and
(—=f)" =—f. Therefore f~ = f_ = fand Oy = f~ — f_ =0.

10. In (a), that subset of pairsis (A x A) U (B x B) U {(x, x) | x € X}, which is
the union of three closed sets and hence is closed. In (b), let X be a Hausdorff space
that is not normal, and take A and B to be disjoint closed sets that cannot be separated
by open sets.

11. In (a), g~ 'g(x) = p2(({x} x X) N R), where p is the projection to the
second coordinate of X x X. Since {x} is closed and X is compact and R is closed,
({x} x X) N R is compact. Then g~ 'g(x) is compact, hence closed, being the
continuous image of a compact set.

In (b), we have po (U x X)NR) ={y e X | (x,y) € Rforsomex € U} =
yeX|qg'lqyNU#2)={yeX|qg 'q(y) C U} = V. Since U is open,
the left side is closed, by the same considerations as in (a). Thus V¢ is closed, and V
is open.

In (c), let g(x) and g (y) be distinct points of X/ ~. By (a), the disjoint subsets
g~ 'q(x) and g~ 'q(y) are closed. Since X is normal, find disjoint open sets U1 and Uy
containing ¢ ~'g(x) and ¢ ~'q(y), respectively. Let Vi = {z € X | ¢ 'q(z) € Uy}
and Vo = {z € X | ¢"'q(z) € Uy}. These are disjoint sets, and they are open by
(b). Then g(V7) is open in X/ ~ because q’lq(Vl) = V] is open, and similarly
q(V») is open. The sets (V1) and g(V3) are disjoint because q_lq(Vl) = V; and
g 'q(V2) = V, are disjoint. Thus ¢(V;) and g(V>) are the required open sets
separating g (x) and g (y).

For (d), part (c) shows that X/~ is Hausdorff, and therefore its compact subsets
are closed. The image of any closed set is X is the image of a compact set, hence
is compact and must be closed. For (e), the answer is “no,” and part (f) supplies a
counterexample. For (f), the function p : X — S! is continuous, and Proposition
10.38a produces a continuous function pg : X/~ — S' such that p = pg o g, where
q is the quotient map. Then pg is continuous and one-one from a compact space onto
a Hausdorff space and must be a homeomorphism.

12—13. The proofs are the same as in Section II.8.
14. This is proved in the same way as in Problems 13 and 11 in Chapter II.

15. For (a), call the relation ~. This is certainly reflexive and symmetric. For
transitivity let x ~ y and y ~ z. Then x and y lie in a connected set E, and y and
z lie in a connected set . The sets £ and F have y in common, and Problem 13a
shows that £ U F is connected. Thus x ~ z. Part (b) is immediate from Problem
13b. For (c), let x be given, and let U be a connected neighborhood of x. Then U
lies in the component of x. Thus the component of x is a neighborhood of each of its
points and is therefore open.

16. Form the class C of all functions F' as described, including the empty function,
and order the class by inclusion; for the purposes of the ordering, each function is
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to be regarded as a set of ordered pairs. The class C is nonempty since the empty
function is in it. If we have a chain in C, we form the union F of the functions in the
chain. We show that F is an upper bound for the chain. To do so, we need to see
that the indicated sets cover X. Thus let x € X be given. Only finitely many sets U
in U contain x, by assumption. Say these are Uy, ..., U,. If one of these fails to be
in the domain of F', then x lies in UVeu, V ¢domain(F) V, and x is covered. Thus all
of Uy, ..., U, may be assumed to be in the domain of F'. Each U; is in the domain
of some function F; in the chain, and all of them are in the domain of the largest of
the Fj’s, say Fo. Since x is not in Uy ¢y, v gdomain(r) V' it is not in the larger union
Uveu V ¢domain(Fo) V- Thus it must be in Uv cdomains, (U)- Since Fo(U)®' C U for
each U, x must lie in some Fo(U;). Then x lies in F'(U;), and F is an upper bound
for the chain.

By Zorn’s Lemma let F be a maximal element in C. To complete the argument,
we show that every set in I/ lies in domain(F'). Suppose that Uy is a set in U/ that is not
in domain(F). Let U’ be the union of all F(U) for U in domain(F) and all V other
than Up that are not in domain(F). Since F isin C, U' U Uy = X. Hence U’“ is a
closed subset of the open set Up. Since X is normal, we can find an open set W such
that U’ € W € WS C U. If we define F(U) = W, then we succeed in enlarging
the domain of F, in contradiction to the maximality of . Hence every member of I/
lies in domain(F), as asserted.

17. Form the open sets Vi as in the previous problem. For each U in U, apply
Urysohn’s Lemma to find a continuous function gy : X — [0, 1] with gy equal to 1
on Vy and equal to 0 on U°. The open cover {Vy;} is locally finite since ¢ is locally
finite. Therefore g = ), ,&v is a continuous function on X. Since gy is positive
on Vy and the sets Vi cover X, g is everywhere positive. Therefore the functions
fu = gu/g have the required properties.

18. If ¢p = 0, take Fy = 0. If cg # 0, apply Urysohn’s Lemma to obtain a
continuous function A with values in [0, 1] that is 1 on Py and is O on Ny, and then
put Fop = %coh — %CQ.

19. On PhN C, go is > co/3 and Fy is cp/3. Therefore gg — Fp is > 0 and
< 2¢p/3. Similarly on No N C, go — Fo is < 0 and > —2¢o/3. Elsewhere on C,
go and Fy are both between —c(/3 and ¢¢/3, and hence |gg — Fo| < 2co/3. Thus
|go — Fol < 2co/3 everywhere on C. The function Fj is continuous from X into R,
has |F;| < %(%co), and takes a value ¢; < %(%co) on{x € C | gi(x) > c1/3} and
the value —c;on {x € C | g1(x) < —c1/3}.

20. Iteration produces continuous functions F,, : X — Rwith |F,(x)] < %(%)nco
for all x in X and |f(x) — Z?:_ol F,-(x)| < (%)"co for all x in C. Let F(x) =
Y oo Fn(x). The series converges uniformly on X by the estimate on F;, (x) and the
Weierstrass M test, and Proposition 10.30 shows that F' is continuous on X. If we let
n tend to infinity in the estimate on f(x) — Z;:ol F;(x), we see that F' and f agree
on C. Finally for x in X,
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IF) <Y 1F)] <Y 3(3)"co=co=sup | £ ).
n=0 n=0 yEC

Thus |F| and | f| have the same supremum.

21. Every open interval is in the base and hence is open. The closed interval
{a < x < b} is the complement of the open set {x < a}U {b < x} and is therefore
closed.

22. Leta < b be given. If there exists a ¢ with a < ¢ < b, then the open sets
{x < c} and {c¢ < x} separate a and b; otherwise the open sets {x < b} and {a < x}
separate them. Hence X is Hausdorff.

Let a and a closed set F be given with @ not in F. Since F° is a neighborhood
of a, there exists a basic open set B containing a that is disjoint from F. If B has
some element larger than a, let d be such an element; otherwise let d be undefined.
If B has some element smaller than a, let ¢ be such an element; otherwise let ¢ be
undefined. If ¢ and d are both defined, then F C {x < ¢} U {d < x}, while a is in
{c < x < d}. If c is not defined but d is defined, then F C {x < a}U{d < x}, while
aisin B N{x < d}. If d is not defined but c is defined, we argue symmetrically. If
neither ¢ nor d is defined, then B = {a} is open and closed; hence B¢ and B are the
required open sets separating F' and a.

23. Suppose that any nonempty set with an upper bound has a least upper bound,
and let £ be a set with a lower bound. We are to produce a greatest lower bound. Let
F be the set of all lower bounds for E. This is nonempty, and all elements of F are
< e, where e is an element of E. So F has an upper bound. Let c be a least upper
bound. We show that c is a greatest lower bound for E.

If ¢ is not a lower bound for E, then E has some e with e < ¢, e # c, i.e., with
e < c. All fin F have f < e < c¢. Soeisasmallerupper bound for F', contradiction.
Thus c is a lower bound for E. If there is some greater lower bound, say d, then
¢ <d < eforall ein E. This implies that d is in F, and hence c is not an upper
bound for F.

24. In (a), suppose that Y is nonempty closed and has an upper bound and a lower
bound. We are to prove that Y is compact. It is enough to handle a set Y = [a, b].
Let an open cover U of Y be given, and suppose there is no finite subcover. Let E be
the set of all x in [a, b] such that some finite subcollection from I/ covers [a, x]. Then
aisin E. Since E is nonempty and has b as an upper bound, the order completeness
shows that E has a least upper bound c. Since we are assuming that I{ has no finite
subcover of [a, b], E€ N [a, b] is nonempty. This set has a lower bound, namely a,
and therefore it has a greatest lower bound d.

Ifeisin E and fisin E°NJ[a, b],thene < f. Soe < d, and then ¢ < d. Suppose
¢ < d. Then ¢ must be in E. Any x with ¢ < x < d cannot be in E or E€, and
hence there is no such x. Then a finite subclass of U that covers [a, c], together with
a member of U that contains d, is a finite open subcover for [a, d] and contradicts the
fact that d isnotin E. Thus c =d.
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Now suppose that ¢ is in £€ N [a, b]. Since ¢ = d, E has no largest element.
Choose a member U of U containing ¢, and find a basic open neighborhood B of ¢
contained in U. Then B N E must contain some ¢’ with ¢’ < ¢. A finite subclass of
U covers [a, ¢'], and U covers [/, ¢]. Thus c is in E, and we have a contradiction.

We conclude that ¢ is in E. Since ¢ = d, E€ N [a, b] has no smallest element.
Choose a member U of U containing ¢, and find a basic open neighborhood B of ¢
contained in U. Then B N (E° N [a, b]) must contain an element ¢’ with ¢ < ¢/,
and then there must be some ¢” with ¢ < ¢” < ¢’. A finite subclass of I/ that covers
[a, c], together with the set U, then covers [a, ¢”'] and shows that ¢” is in E. This
contradicts the fact that ¢ is an upper bound of E.

In (b), let x be given in X. If a < x < b for some a and b, then [a, b] is the
required compact neighborhood of x. If x is a lower bound for X and there exists b
with x < b, then [x, b] is the required compact neighborhood. If x is an upper bound
for X and there exists a witha < x, then [a, x] is the required compact neighborhood.
Since X has at least two members, there are no other possibilities. So X is locally
compact.

25. In (a), the sets {x < b} and {a < x} are open and disjoint, contain a and b
respectively, and have union X. Thus X is disconnected.

In (b), suppose that X is order complete and has no gaps. Assume, on the contrary,
that U and V are disjoint nonempty open sets with union X. Say that u < v for some
uin U and v in V. It will be convenient to assume that u is not the smallest element in
X and v is not the largest; when this assumption is not in place, the same line of proof
works except that one may below have to use basic open sets of the form {r < x} and
{x <s},aswellas {r < x < s}.

Form the set S of all x € X with x < v and (x,v] € V. This set has u as a
lower bound, and we let b be the greatest lower bound. Then u < b < v. First
suppose that b is in V. Choose a basic open set (r,s) C V withr < b < s; this is
possible by our temporary assumption because V is open. Then (max{u,r}, v] C V.
If max{u,r} < b, then max{u,r} is in S and b is not a lower bound for S; thus
b < max{u,r}, i.e., b = u. This is impossible since b is assumed to be in V. We
conclude that b is in U. Choose a basic open set (r, s) € U withr < b < s; again
this is possible by our temporary assumption because U is open. Since there are no
gaps, we can find s’ with b < s’ < s. Then minfv, s’} is a lower bound for S, and
b cannot be the greatest lower bound unless min{v, s’} < b, i.e., b = v. This is
impossible since b is assumed to be in U, and we have arrived at a contradiction.

26. As an ordered set, X is the same as R, and hence its order topology is the same
as for R, which is connected. In its relative topology, X is disconnected, being the
disjoint union of the open sets [0, 1) and [2, 3).

27. The subset [0, 1) is closed, being the intersection of all sets {x | x < y}
for y € (1,2]. Similarly (1, 2] is closed. Hence they are both open, and X is
disconnected. It follows immediately from the definition that there are no gaps.

28. If a nonempty subset of points (x, y) is given, let xo be the least upper bound
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of the x’s. If no (xg, y) is in the set, then (xg, 0) is the least upper bound for the set.
If some (xg, y) is in the set, let yy be the least upper bound of the y’s. Then (xo, o)
is the least upper bound of the set. We conclude that X is order complete. Problem
24a then shows that X is compact. This proves the compactness in (a). There are no
gaps, and Problem 25b thus proves the connectedness. For each x € [0, 1], the set
{(x,y) | 0 < y < 1} is open. Thus we have an uncountable disjoint union of open
sets, and X cannot be separable. Part (b) is handled in the same way.

Chapter XI

1. In (a), every compact subset of X is compact when viewed as in X*, and this
gives inclusion in one direction. In the reverse direction it is enough to show that
when U is open in X*, then U — {oo} is a Borel set in X. Since X is o-compact,
we can choose an increasing sequence of compact sets K, with K, € K | and
Un=i K» = X. Then U N K7, is open and bounded, hence is a Borel subset of X.
The countable union of these sets is U, and hence U is a Borel set. In (b), the Borel
sets of X are the countable sets and their complements. However, every subset U of
X is open in X and therefore open in X*. Its complement in X* is compact and is a
Borel set in X*. Thus U is a Borel set in X*.

2. Part (a) of the previous problem shows that every open subset of X is a Borel
set, and hence every continuous function is a Borel function.

3. Use the regularity to show that the conclusion holds for indicator functions and
hence simple functions. Then pass to the limit.

4. Let Ig be an indicator function. Given € > 0, find by regularity a compact set
L and an open set U with L € E C U and u(U — L) < €. The compact set K will
be K = (U — L) = L N U¥€. Thus consider the restriction of /g to the compact set
K. Letxbein K. If x isin E, then x isin L. The set U N K = L is a relatively
open neighborhood of x, and /g is identically 1 on this. Hence the restriction of /g
to K is continuous at the points of E. Similarly if x is in E¢, then x is in U°. The set
L° N K = U¢ is arelatively open neighborhood of x, and we argue similarly. This
handles indicator functions, and the result for simple functions follows immediately.

Next suppose that f is a real-valued Borel function > 0. Choose an increasing
sequence of simple functions s, > 0 with limit f. Let € > 0 be given, and find,
by Egoroff’s Theorem, a Borel set E with w(E“) < € such that lims,(x) = f(x)
uniformly for x in E. Next find, for each n, a compact subset K,, of X with u(K;) <
€/2" such that s,,| . is continuous. The set F = E N (1,2, K,) has complement of
measure < 2¢, and the restriction of every s, to F is continuous. Since {s, } converges
to f uniformly on E, the restriction of f to F is continuous. Using regularity once
more, we can find a compact subset Ko of F such that u(F — Ko) < €. Then
w(K§) < 3e, and the restriction of f to K is continuous.
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5. In (a), any rotation preserves Euclidean distances and fixes the origin. Since
Sap 1s exactly the set of points whose distance d from the origin has a < d <
b, Sap is mapped to itself. Part (b) follows from the change-of-variables formula
(Theorem 6.32). The determinant that enters the formula is the determinant of the
matrix of the rotation and is 1. The first conclusion of (c) is what the change-of-
variables formula gives for the transformation to spherical coordinates when applied
to the set S, if we take Fubini’s Theorem into account. It yields f Sup LFdx =

([2r2dr)(fo Lf do) = ([ r2dr)( [o Lf do). Since [*r2dr is not zero, we
can divide by it and obtain the second conclusion of (c). Part (d) is proved by setting
it up to be a special case of the uniqueness in Theorem 11.1.

6. In (a), monotonicity of u gives u(K) < infy u(Ky). Suppose that < holds.
Choose by regularity an open set U containing K such that u(U) < infy p(Ky). The
sets K¢ form an open cover of the compact set U, and there is a finite subcover. The
intersection of the complements is one of the sets K, and it has the property that
Kq, € U. Monotonicity then gives p(Kg,) < n(U), and thus infy, n(Ky) < n(U),
contradiction.

For (b), consider all compact subsets K of X for which £ (K) = 1. The intersection
of any two of these is again one by Lemma 11.9. If K is the intersection of all of them,
then K is compact, and (a) shows that £ (K¢) = 1. If K¢ contains two distinct points x
and y, find disjoint open neighborhoods U, and Uy,. Then Ky = (Ko—U,)U(Ko—Uy)
exhibits Ky as the union of two proper compact sets. At least one of them must have
measure 1, and then Ky is shown not to be the intersection of all compact subsets of
measure 1.

In (c) let K¢ be any compact G, and choose a decreasing sequence { f,,} in C(X)
with limit /. Passing to the limit from the formula [, f2du = ( [y fud u)z, we
obtain w(Kp) = ,LL(KO)2. Thus ©(Kp) is 0 or 1. By regularity, u takes only the
values 0 and 1, and (b) shows that p is a point mass.

For (d), apply Theorem 11.1 and obtain the regular Borel measure p corresponding
to £. Then w has the property in (c) and must be a point mass.

7. The statement for (a) is that u (r, 8) is the Poisson integral of a signed or complex
Borel measure on the circle if and only if supy . .1 [lu(r, 0) |, 4 is finite. The necessity
is proved in the same way as in Problem 7 at the end of Chapter IX. The sufficiency
is proved in the same way as in Problem 8 in that group, except that the weak-star
convergence is in M (circle) relative to C (circle). For (b), expand u(r, 6) in series as
in Problem 13 at the end of Chapter IV. Since u is nonnegative, the L' norm over any
circle centered at the origin is just the integral, and the result of integrating in 6 is
that the n = 0 term is picked out. Thus ||u(r, 0)|| 1o = €0 for every r. The condition
in (a) is satisfied, and u is therefore the Poisson integral of a Borel complex measure.
Examination of the proof of (a) shows that the complex measure is a measure.

8. Order topologies are always Hausdorff. Since * has a smallest element and a
largest element, Problems 23 and 24 of Chapter X show that Q* is compact if every
nonempty subset has a least upper bound. Since the ordering for Q* has the property
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that every nonempty subset has a least element, the existence of least upper bounds
is satisfied.

9. First we prove that the intersection of any two uncountable relatively closed
sets C and D is uncountable. Assume the contrary. Since C N D is countable and
the countable union of countable sets is countable, there is some countable ordinal w
greater than all members of C N D. Since C and D are uncountable, we can find a
sequence w < a1 < B < az < By < --- such that each ¢; is in C and each «; is in
D. The least ordinal y greater or equal to all members of the sequence is a countable
ordinal and has to be a limit point of both C and D. Since C and D are closed, y
isin C N D. But C N D was supposed to have no ordinals greater than w. This
contradiction shows that C N D is uncountable, and of course it is relatively closed
also.

Now let a sequence of uncountable relatively closed sets C, be given. By the
previous step we may assume that they are decreasing with n. If (;2, C, = C is
countable, then there is some countable ordinal @ greater than all members of C.
Replacing C,, by C, N {x > w} we may assume that the C,, have empty intersection.
Let o, be the least member of C,,. The result is a monotone increasing sequence since
the C,, are decreasing. If « is the least ordinal > all «,, then « is a countable ordinal.
It is a limit point of each C,, hence lies in each C,. The existence of « contradicts
the fact that the C,, have been adjusted to have empty intersection. This contradiction
shows that ()2, C, is uncountable.

10. For additivity the question is whether the union of two sets that fail to meet
the condition of the previous problem can meet the condition. The answer is no
because the previous problem shows that the intersection of any two sets meeting the
condition again meets the condition. The complete additivity is then a consequence
of Corollary 5.3 and the result of the previous problem. The measure u takes on only
the values 0 and 1 and yet is not a point mass because one-point sets do not satisfy
the defining property for measure 1. Problem 6b therefore allows us to conclude that
W is not regular.

11. Let u be a Borel measure on X, and let S be the set of all regular Borel
measures v with v < p. This contains 0 and hence is nonempty. Order S by
saying that v; < vy if V{(E) < v(FE) for all E. If we are given a chain {v,}, let
C = sup, ve(X). This is < u(X) and hence is finite. Choose a sequence {v,, } from
the chain with vy, (X) monotone increasing with limit C. Then v,, (E) is monotone
increasing for every Borel set E, and we define v(E) to be its limit. The complete
additivity of v follows from Corollary 1.14, and it is easy to check that vy, < v < u
for all «. We have to check that v is regular. Let € > 0 be given, and choose v,, with
Vg, (X) > v(X) — €. If E is given, find K and U with K € E C U, K compact, U
open, and vy, (U — K) < €. Then

Vo (U — K) +v((U = K)) + € 2 v, (U — K) + v, (U = K)) + €
= vy (X) +€ = v(X) =v(U — K) +v((U — K),
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and hence vy, (U — K) + € > v(U — K). Since vy, (U — K) < €, we obtain
v(U — K) < 2¢. Thus v is regular. The decomposition readily follows.

12. This follows immediately from Proposition 11.20.

13. Let w = py + 1p = vy + v, with u, and v, regular and with w, and v,
purely irregular. Write 0 = p, — v, = v, — 4, in terms of its Jordan decomposition
asoc =07 —o~. Thenot < pu, and 0~ < v,, and hence o™ and o~ are regular
by Proposition 11.20. Also, ot < vp and 0~ < up, and the definition of “purely

irregular” forces ot and o~ to be 0. Then , = v, and pup, = v)p.

14. Let p be as in Problem 10, and suppose that v is a regular Borel measure with
v < . Since v({oc}) = 0, Problem 6a shows that limy oo v({x > a}) = 0. For each
n, let «;, be the least ordinal such that v({x > «,}) < 1/n. The least ordinal > all
o, is a countable ordinal 8, and v({x > B}) = 0. Since {x < B} is a countable set,
w({x < B}) = 0. Therefore v({x < B}) =0, and we conclude that v = 0.

16. For the regularity any set in F is in some F,. The sets in F,, are of the form
E=E x (X, . Xn) with E € Q® and v(E) = v,(E). Given e > 0, choose
K compact and U open in Q™ with K € E C U and vV (U—-K) <e€. InQ, K is
compact, Uis open, K - E - 17, and v(l7 — I?) < €.

17. Let E = |J;2, E, disjointly in F. Since v is nonnegative additive, we
have Zflozl v(E,) < v(E). For the reverse inequality let € > 0 be given. Choose K
compactand U, openwithK C E, E, C U,,v(U,—E,) < €/2",andv(E—K) < €.
Then K C UZOZI U,, and the compactness of K forces K Uflvzl U, for some N.
Then v(E) < v(K) +e€ < v(UN_ Uy) +e < N v +e < XN v(E,) +
2¢ <Y 2 v(E,) + 2¢. Since € is arbitrary, v(E) < > 02 | V(Ey).

18. The key is that 2 is a separable metric space. Every open set is therefore the
countable union of basic open sets, which are in the various F,’s.

Chapter XII

1. In (a), the closed ball is closed and contains the open ball; also every point
of the closed ball is a limit point of the open ball since || x; — xo|| = r implies that
L= 1 =x0)+x0] =0l = (1—3) 1 —xol| < r andlimy, [(1—3) (x1—x0)+x0] =
X1.

For (b), let the closed balls be B(ry; x,,)°. If m > n, then X — xu|| < r, since
B(rm; xm) € B(rp: x,)°%. Letr = lim,, r,. If r = 0, then {x,,} is Cauchy and hence
is convergent. In this case if x = lim x,,, then ||x — x,|| < r, for all n, and hence x is
in B(ry; x,)% forall n. If r > 0, fix ng large enough so that r,, < 3r/2. It is enough
to show that x,, is in B(r,; x,,)Cl for n > ng. We may assume that x,, # x,. The
members of B(r,; x,) are the vectors of the form x,, + v with ||v|| < r,, and these are
assumed to lie in B(ry,; x,,). Therefore ||x, — x,, 4+ v|| < ry, for all such v. Take

v = rn_(]lrn(xn — Xno). Thenrp, > |[xy — xp, + 0| = |1 +rn01rn)(xn — Xl =



774 Hints for Solutions of Problems

1 1

- - 3 N— 2 2v—
(1+rnolrn)||xn_xn0”- Herer, ‘'rn = (5r)"'r = 5. So [lxp —xpy || = (143%) Yy =
3 33

<

Srng < 557 <r <rp,as required.
2. Reduce to the real-valued case, and there use Theorem 1.23 and the remarks at
the end of Section A3 of Appendix A.

3. Convergence in either case is uniform convergence. For H (D), suppose
therefore that { Yo c,({")zk} is a Cauchy sequence in H°° (D) indexed by n. Write
z = re'?, multiply by e=%  and integrate in @ from —x to 7. The result is that
{c,(,?)rm} is Cauchy in n for each r < 1 and each m. Then lim, c{"r™ = cpr™
exists for each r and m. Taking r = 1/2, we see that lim,, c,(,? ) = ¢y, exists for
each m. Arguing as in the proof of Theorem 1.37, we see that f(z) = Y e CkZk
is convergent for |z| < 1 and that the sequence of functions f,(z) = Z,fozo c,E")zk
converges to it pointwise. Since { f,} is uniformly Cauchy and pointwise convergent
to f, it converges uniformly to f. For the vector subspace A(D), we have A(D) =

H>®(D) N C(D). Hence A(D) is a closed subspace of H>(D).

4. In (a), let us check the triangle inequality. For y € Y, we have |la + b + y| <
la+ 'l + 116+ (y — y) | forall y € Y. Comparing the definition of ||a + b + Y ||
with the left side, we obtain |la + b+ Y| < |la + y'|| + |Ib + (y — ¥')|| for all y and
yinY. Thus la+b+ Y| < |la+y'|| + ||1b+ y”| forall y’ and y” in Y. Taking the
infimum over y’ and y” gives the desired conclusion.

In (b), let a Cauchy sequence in X/Y be given. It is enough to prove that some
subsequence in convergent. Thus it is enough to prove that if {x,} is a sequence in
X with ||x, — x,41 + Y| < 27", then {x, + Y} is convergent in X/Y. We define a
sequence {X,} in X with X, = x,, — y, and y,, in Y such that || X, — X,+1]| <2-27". It
is then easy to check that {X;,} is Cauchy in X and that if x’ is its limit, then {x, + Y}
tends to x’ + Y. To define the y,’s, we proceed inductively, starting with y; = 0.
If y1, ..., ya have been defined such that ||X; — Xq1]| < 2-27% for k < n, choose
Yn+1in Y such that [|X, — xpt1 + Y1l < %0 — Xp1 + Y[ +27" <2-27". Then
Xnt1 = Xpt1 — Yne1 has || X, — Xpa1]] < 2-27", and the induction is complete.

5. In (a), we have c"G(vy, ..., v,)C = > ci(i, e = 3 (v, ¢juy) =
(Zi Civ;, Zj cjvj) = ” >oicivi ”2 In (b), G(vy, ..., v,) is Hermitian, and thus
the finite-dimensional Spectral Theorem says that there exists a unitary matrix
u = [u;;] with u Gy, ..., vu diagonal, say = diag(dy, ...,d,). Thend; =
u'Gy, ..., vy)ue;, and this, by (a), equals ” v ”2 with ¢ = ue;. Hence
d; > 0. In (c), we have det G (vy, ..., vy) = detu='G vy, ..., v)u) = dids - - - d,
> 0 with equality if and only if some d; is 0. If dj = 0O, then ), cjv; = 0
for ¢ = uej, and hence vy, ..., v, is dependent. Conversely if vy, ..., v, is de-
pendent, then Zi ¢iv; = 0 for some nonzero tuple (ci,...,c,), and therefore
0= (Zl ci Vi, vj) =3 ci(v, v;) forall j; this equality shows that a nontrivial linear
combination of the rows of G(vy, ..., v,) is 0, and hence det G (vy, ..., v,) = 0.

~

6. A single induction immediately shows the following: span{vi,...,v;} =
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span{uy, ..., ux}, v,’< is # 0, and vy is defined. Then each vy has norm 1. If k < [,
then (v}, v) = (u; — Zj;ll (ur, vj)uj, vr) = (uz, vg) — (uz, vp) = 0. This proves
the orthogonality.

7. Define F on each u, to be the vector vg given in the statement of the problem,
and extend F linearly to a mapping defined on the linear span V of {uy}. Corollary
12.8c shows that ||F(u)||h,2 = ||14||HI for u in V. Corollary 12.8b shows that V is
dense. Proposition 2.47 shows that F' extends to a bounded linear operator from H;
into H, satisfying I1F@ g, = lully, for u in H|. Arguing in the same way with
F~! proves that F is onto H,. The second conclusion follows by using Proposition
12.11.

8. In (a), the boundedness is elementary, and the operator norm is || f|l . In (b),
the adjoint is multiplication by the complex conjugate of f.

9. The linear span V of {x,} is a separable vector subspace. Suppose that it is not
dense. Choose by Corollary 12.15 a member x* # 0 of X* with x*(V) = 0. Since
{x,} is dense, choose a subsequence {x,; } with x,;, — x*. Then

1
e = xk 2 10 = x5 Gl = b ()] = 1

Since the left side tends to 0, so does the right side. Thus x,’;k tends to 0, and x* = 0,
contradiction.

10. The dual of C(X) is M(X). Define a linear functional x* on M(X) by
x*(p) = p({s0}). Then ||x*|| = 1, so that x* is in M (S)*. Let §; denote a point mass
at 5. If x* were given by integration with a continuous function f, then we would
have I, (s) = 85({so}) = x*(85) = fod(SS = f(s). Thus the only possibility
would be f = i), and this is discontinuous.

11. Let X and Y be normed linear with X complete, and let {L,} be a family of
bounded linear operators L, : X — Y such that ||L,(x)|| < Cy for each x in X.
For each y* in Y* with ||y*|| < 1, the linear functional y* o L,, on X is bounded and
has |y*(L,(x))| < C,. Since X is complete, the Uniform Boundedness Theorem for
linear functionals shows that |y*(L,(x))| < C|x| for all x. Taking the supremum
over y* and applying Corollary 12.17, we obtain ||L,(x)| < C|/x||, as required.

12. For x in X and y in Y, we have

I1Ln(x) = L Ol < 1Ln(x = W+ 1La(y) = LinO) I 4+ 1L (y — )l
=2C[x =yl + 1La(Y) = Ln M.

Given x € X and € > 0, choose y in Y to make the first term < €, and then
choose n and m large enough to make the second term < €. It follows that {L,(x)}
is Cauchy for each x. Since X’ is complete, L(x) = lim, L,(x) exists for all
x. Continuity of addition and scalar multiplication implies that L is linear. Then
L) =lim || L, (x)|| < liminfy, [[L,|lllx]| < Cllx|l. Hence ||L] < C.
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13. Proposition 12.1 shows that X* is a Banach space. We identify the ele-
ments x, in X with their images t(xy) under the canonical map ¢ : X — X™*.
Corollary 12.18 shows that the element ¢(x,) of X™* has [|t(xq)] = [lx«ll. The
hypothesis shows for each x* that |(¢(x4))(x*)| = |x*(xy)| < Cy+ for a constant
C,+ independent of «. Since X* is complete, the Uniform Boundedness Theorem
(Theorem 12.22) shows that ||t (xy) || < C foraconstant C independentof «. Applying
Corollary 12.18 a second time, we conclude that ||x, || < C independently of .

14. For (a), let u and v have ||lu — x|| < r and ||v — x|| < r. Then the estimate
[A=Du+tv—x|| =[[A-D)@—x)+1t(—x)| < A=) —x)+lt(v—x)|| =
(1 —=0|u —x|| +t]lv—x|| < —t)r 4+ tr = r proves the convexity.

For (b), let X be the space of sequences s = {s,} with [[s|| = >_, [s|. Let Ex be
the set of sequences with all s, > 0, with ||s|| = 1, and with s; = O for j < k. If s
and ¢ are two sequences with terms > 0, then ||s + ¢#|| = ||s|| + ||z]|. The convexity
follows, and everything else is easy.

15. Denote open balls in X by By and open ballsin Y by By. The Interior Mapping
Theorem says that L(Bx(1;0)) is open. Hence it contains a ball By(e; 0). Put
C=¢l By linearity, L(Bx(Cr; 0)) 2 By(r; 0) foreveryr > 0. Since Lisonto Y,
we can choose xg in X with L(xo) = yo. Linearity gives L(Bx (Cr; x0)) 2 By (r; yo0)-
For each y,, we can take r = 2|y, — yo|| and choose x,, in Bx (C2||y, — yoll; xo) with
L(x,) = yn. Since y, — yo, x, — xo. Also, we have ||x,, — xo|| < 2C|ly, — yoll.

In this construction if yg = 0, we could choose xp = 0, and then the result follows
with M = 2C.

If yo # 0, then [y, — [Iyoll # O says that [yl < $llyoll only finitely often.
For these exceptional n’s, we can adjust x, when y, = 0 so that x,, = 0, and then we
have ||x,|| < M||y,| for a suitable M and the exceptional n’s. For the remaining n’s,
an inequality ||x,|| < M||y,| is valid as soon as {x,} is bounded, and {x,} has to be
bounded since it is convergent.

16. It will be proved that the distance from e to X¢ is > 1. The set Xgg of all
sequences s, §2 — §2, §3 — 82, ... such that {s,} is in X is closed under addition and
scalar multiplication. Hence it is a dense vector subspace of X, and it is enough to
prove that ||le — s|| > 1 for all s in X¢p. Let s be in Xqp, and let ¢ = ¢ — 5. Adding
the first n entries gives ¢; + -+ -+ ¢, = n —s,. Hence [c] +--- 4+ ¢,| = n — ||s]. If,
by way of contradiction, |[c|| = 1 — € withe > 0, then |c;j| < 1 — € forall j, and we
have |c; + -+ ¢y| < n —ne. Thusn — ||s|| < n — ne, and we get ne < ||s||, in
contradiction to the finiteness of ||s||.

17. This is immediate from Corollary 12.15 and the previous problem.

18. For (a), let s > 0 have ||s|| = 1. Then |le — s|| < 1, and so |x*(e — s)| < 1.
Since x*(e) = 1, this says that |1 — x*(s)| < 1. On the other hand, |x*(s)| < 1 since
sl < 1. Thus O < x*(s) < 1. We can scale this inequality to handle general s.

For (b), the two sequences differ by a member of X, on which the Banach limit
vanishes identically; then (c) follows by iterated application of (b) since the Banach
limit of the 0 sequence is 0.
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In (d), let € > O be given. By applying (c), we see that we may adjust the
sequence so that sup, s, — inf, s, < € and so that the Banach limit is unchanged.
By (a), Banach limits preserve order. Since (infs,)e < s < (sups,)e, we have
infs, < LIM,_ 0 S, < sups,. Since sups, = (sups, — limsups,) + limsups, <
(sup,, —inf,) + limsup, < limsup, +€, we obtain LIM, s, < limsup, +e.
Since € is arbitrary, LIM,,, oo 5, < limsup,. Similarly liminfs, < LIM,_, « S,.
Conclusion (e) is immediate from (d).

20. The parallelogram law gives
2 2y _ 2 2
2(lx +y + 217 + Iy = 2l = llx + 231 + llx + 22|

If we set z = O in this identity and then set y = 0 in it, we get two relations,
one involving an expression for ||x + 2y||> and the other involving an expression
for ||x 4+ 2z||>. If we substitute these relations into the displayed equation for the
terms ||x + 2y||? and ||x + 2z, we obtain the formula ||x + y + z||> + ||y — z||* =
v+ 117 + [l + 211> = 1>+ Y[ + |1z Substitution of 2{|y|1* +2[|z]|* — ||y +z[|?
for ||y — z||? in this formula gives the desired identity.

21. We have

. .
(1 +x2,y) = Y Fllxr +x2 + i*y|?

ES

k
=2 Fllxr 4+ x20? = xal? = 2l = 1y 11%)
k

+

<k . .k .
Sl + 5y 012+ > Sllxa + %y )12
k

Each term of the first line on the right is 0 because ), i k/4 = 0, and thus the right
side simplifies to (x1, y) + (x2, ), as required.

22. Induction with the result of the previous problem gives (nx, y) = n(x,y)
for every integer n > 0. Replacing nx by z, we obtain %(z, y) = (% z,y). Hence
(rx,y) = r(x, y) for every rational r > 0. It follows from the definition of (-, -)
that (—x,y) = —(x,y) and that if the scalars are complex, (ix,y) = i(x,y).
Consequently (rx, y) = r(x, y) if r is in the set D.

23. We are to prove that |(x, y)| < |lx|||ly|l, and we may assume that y # 0. If r
is in D, we have

0<lx—ryl*=@—ry,x—ry)=lIxI*=r(y, x) —F(x,y) + Ir*lyl>
Letting r tend to (x, y) / lylI? through members of D, we obtain
0 < [lxI* = 21Ce, W12/ I + 16 MEIVIE /I = xl? = 16 /I,

and it follows that |(x, y)| < |||
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24. The Schwarz inequality gives

Ir(x, y) = (cx, )| = [rx —cx, y)| < 1" = oxllyll = Ir = cllxlIy]l-

As r tends to c through D, the right side tends to 0, and the left side tends to
le(x, y) — (cx, y)|. Hence c(x, y) = (cx, y).

25. If L, — L in B(X,Y) and x, — x in X, then the triangle inequality gives
|Ln(xn) = L(xX)| < [Lp(xp) = L) |+ |L(X0) =L < [ILy = LIXn |+ L X0 —x].
The first term on the right side tends to 0 because |x,| is bounded (being convergent to
|x])and lim, |L, — L] = 0, and the second term tends to O because lim,, |x, —x| = 0.

26. Since | - | is a continuous function on Y, the equality L(x) = lim, L, (x)
implies |L(x)] = limsup, |L,(x)| < limsup,(ILalllx) = (imsup, [|L,])Ix].
Taking the supremum of this inequality for [x| < 1 yields ||[L| < limsup, [|L,]l.
The inequality sup,, ||L,|| < oo follows from the Uniform Boundedness Theorem
(Theorem 12.22).

For an example with strict inequality, let X = ¥ = L' (R), and let L, be multi-
plication by the indicator function of [n, 00). Then the limit operator is L = 0O but
IL, || = 1 for every n.

27. We have |L,(u,) — L(u)| < |L,(u,) — L,(u)| + |L, () — L(u)|. The first
term on the right side is < ||L,|||u,, — u/||, and this tends to 0, since || L, || is bounded
(according to Problem 26) and u,, — u. The second term on the right side tends to 0
because L,(u) — L(u) by hypothesis.

Appendix B

1. For (a), the answer is yes. An example is f(z) = [z]?> = x? 4+ y2. Itis
a differentiable function on all of R2, and its first partial derivatives are both O at
z = 0. So it has a complex derivative at 0 by Proposition B.1. At a general point
(x,y), f(2) = u(x,y) with v(x, y) = 0. Thus the first partial derivatives of v are O
everywhere, but the first partial derivatives of u vanish together only at z = 0; so the
Cauchy—Riemann equations are satisfied only whenx = y = 0.

For (b), the answer is yes. An example is f(z) = y?. The argument is similar to
the argument for (a).

2. We can parametrize y ast + t(1 4 i) for 0 < ¢ < 1. Then the integral equals
Jot(+iyde =11 +i).

3. Let Rbegivenbya <x <bandc <y <d, and write f(z) = u(x,y) +
iv(x, y). Making use of the continuity of the first partial derivatives of # and v, we
have



Appendix B 779

fop F@dz = [" u(x,c) +iv(x, ) dx + [* b, y) +iv(b, y))i dy
— [P wx, d) + ivx, d)) dx — [4 (w(a, y) +iv(a, y))i dy
= — [ S Gr iy dydx + [ [ i(3 4 i5Y) dxdy
= [fr (5 = 5) — (5 + 3)) dxdy.

with the last equality following from Fubini’s Theorem (Corollary 3.33). In the
double integral on the right side, the two terms within the inner parentheses are O by
the Cauchy—Riemann equations. Thus the integrand is identically 0, and the double
integral is 0.

4. For (a), write z = x + iy with x and y given by the column vectors x =
(x1,...,xy)and y = (y1, ..., yn), and identify the column vector z = (zy, ..., Z,)
with x = (x1,..., X, Y1,..., V). Also write f(z) = u(x,y) +iv(x,y). A
candidate for f’(zo) is a certain n-dimensional row vector with n complex entries,
write we write as a + i b, the sum of its real and imaginary parts. Temporarily we put
7 — zo0 = h + ik. We calculate exactly as in the proof of Proposition B.1 except that
Z, 20, h, and k are now column vectors rather than numbers. The expression that is to
tend to O in the definition of f’(zo) is

12171 (f @) = f(z0) = f'(20)(z — 20))
=127 (f @) = f(z0) — (a + ib)(h + ik))
= |x + iy (u(x, ) — u(xo, yo) + iv(x, y) — iv(xo, yo) — (a + ib)(h + ik))
= Jx + iy (u(x, y) — ulxo, yo) — (a =b) (523))
+lx + iy (v, y) — v(xo, yo) — (b @) (330)),

and this tends to O in C if and only if
—1( (uCx,y)=ulxo.yo) \ _ (a —=bY) (x—%Xo
G I (v(x,y)—vuo,yo)) (b a> <Y*y0 ) )

tends to 0 in R2. Here <Z _Z) is a real 2-by-2n matrix, and the fact that the above

expression tends to O says exactly that the function (x, y) — (u(x, y), v(x,y)) is

Z 72 ) The condition that J be

of this form is exactly the condition that J satisfy the matrix equation in the statement
of (a).

For the two equivalences in (b), first suppose that f is complex differentiable at
every point of an open set. Then (a) shows that f is real differentiable at every
point of the open set and that the Cauchy—Riemann equations hold in each variable.
Therefore f is analytic in each variable and by definition is holomorphic on the open
set. Next if f is holomorphic on the open set, then fg is C°° by Theorem B.50. Since

differentiable at (xg, yp) with Jacobian matrix J = (
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f is analytic in each complex variable, the Cauchy—Riemann equations hold in each
variable. The matrix equation in (a) follows, and then (a) shows that f is complex
differentiable at every point of the open set. Finally if fr is C* and its Jacobian
matrix satisfies the equality in (a), then (a) shows that f is complex differentiable at
every point of the open set.

5. Wehave |z]* = (x{ +x3)/(1 —x3)> = (1 =x3)/(1 —x3)% = (1 +x3)/(1 = x3).
Then the formulas for x;, x,, x3 are routine.

6. The line through (0, 0, 1) and (x, y, 0) can be parametrized as t — (x, y,0) +
t(—x,—y,1). For the value + = x3, this line passes through the point
(x(1 — x3), y(I — x3),x3) = (x1,x2,x3), and hence the three points in question
are collinear.

7. Stereographic projection and the coordinate function of its inverse are manifestly
continuous.

8. A plane in R3 is of the form a;x] + aax2 + a3x3 = ap with a12 + a% + a% =1
and 0 < op. Suppose it meets S. Specializing the equation to (x1, x2, x3) of the form
¢~ (2) gives

21z +7) —omiz—2) +a3(zP =D =ao(zP + 1)

and thus
(a0 — a3)(x? + y?) — 201 x — 200y + ap + a3 = 0,

which is trying to be the equation of a circle in the z plane if o # «3. However, a little
computation shows that the circle degenerates if and only if (cg + «3) (g — @3) <
ozlz + oz%, i.e., if and only if a% + oz% + a% > a(z). So we must have o9 < 1. In
this case we do have a circle in the z plane. In the case that g = o3, we obtain
201x + 200y = ag + a3, which is the equation of a line in the z plane. Conversely if
we have a line or a circle in the z plane, we can choose parameters as above and see

that it comes from a the intersection of S with a plane in R>.

—0 = 1.

10. For (a), the function f(z) = sin(2mz) is a counterexample.

For (b), by the Identity Theorem, f(z 4+ 1) = f(z) forallz € Cand f(iz +i) =
f(iz) for all z € C. The latter implies that f(z + i) = f(z) for all z. If M denotes
the supremum of f(z) for 0 < Rez < 1 and 0 < Imz < 1, then it follows that
| f(2)| < M everywhere. Liouville’s Theorem implies that f is a constant function.

9. By the Cauchy Integral Formula this is flz|=1 % dz = ez|

11. False, false, false, true, as follows:

(@) f(z) = e* with z, = —n.

(b) f(z) = €* withf = .

© fla) =€

(d) The limit relation forces f to be bounded, Liouville’s Theorem says that f is
constant, and the limit relation says that the constant must be zero.
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12. Apply Theorem B.11 to the interior point —1 withn = 1 and f(z) = e*. Then
the integral equals 27i f'(—1) = 2mie™!.
13. The points in question have a limit point at 0. For z = 1/n, we have n = 7!,

n—1=z1-1= IZ;Z Thus ﬁ = f(z) = lz—jz for those values of z. By the
Z

. 2 . . .
Identity Theorem, f(z) = 7= everywhere. But the result is not an entire function.
So f does not exist.

14. No. Asaneven entire function, f(z) satisfies f(—z) = f(z). The power series
expansion ) a,z" of f(z) mustthen have ), a,(—z)" = )_, a,z", and uniqueness
of coefficients forces a, = 0 for n odd. Since f””(0) equals 6 times the coefficient
of 3, f”(0) must be 0.

: ‘o0 — o — 1 _ 1 (1 1
15. First solution: For m = n = 1, we have =507 = m(zfa — sz)
Only the term with 1/(z — a) contributes to the integral, and the result is that
f\z\:l (z_a‘;ﬁ = 2mi/(a — b). For general m and n, we can differentiate this
result m — 1 times in @ and n — 1 times in b, using Corollary B.15. We obtain

Jii=1 Ty = 2= e = DY = DY/ (@ = o)™

7=l z—a)"
Second solution. Use Theorem B.11 for a function f(¢) of the form
the point z = a.

16. For (a), let f(z) = u(x,y) + iv(x,y) and f(7) = u’(x,y) + iv*(x, y)
be the decompositions of f(z) and f(z) into real and imaginary parts, and denote
by subscripts 1 and 2 the first partial derivatives of these functions in the first
and second variables. The formulas for u* and v* are u”(x, y) = u(x,—y) and

1
W and

vi(x,y) = —v(x,—y). Then uf(x,y) = ui(x,—y), uh(x,y) = —uz(x, —y),
v’f(x, y) = —v1(x, —y), and vg(x, y) = va2(x, —y), and the equations u; = v, and
uy = —vp imply u#lf = vg and ug = —vf. Since analytic functions have continuous

first partial derivatives, the result follows from Corollary B.2.
For (b), if f(z) has a Taylor series expansion f(z) = Y a,(z — zo)" about zp,
then g(z) near Zg is given by g(z) = Y _ a,(z — Zo)" and hence is analytic near Zg.

17. Apply Problem 16. The entire functions f (z) and f(Z) are equal on the real axis
and hence are equal everywhere, by the Identity Theorem. Also the entire functions
f(z) and f(—z) are equal on the imaginary axis and hence are equal everywhere, by
the Identity Theorem. Putting these conclusions together gives f(z) = f(—z), from
which we see that f(z) = f(—z) everywhere and f(z) = f(—z) everywhere.

18. Apply Problem 16. The condition for real z says that f(Z) = f(z) for real z
and therefore for all z, while the condition for imaginary z says that f(z) = — f(—z)
for imaginary z and therefore for all z. Putting these results together gives f(z) =
—f(=z) forall z.

19. This would be immediate from Corollary B.42 except that the stated version
of the corollary assumes the domain of F to be bounded. Nevertheless, the same
proof works: Any line integral . v F'(¢)/F(¢) d¢ over a piecewise smooth C! closed
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curve y is equal to O by the Cauchy Integral Theorem, and Corollary B.6 shows that
F’'(2)/F(z) = g’(z) for some analytic function g(z). Hence

d%(F(Z)e_g(Z)) = F'(2)e #9 4+ F(2)e 9 (—g'(2)) =0,

and it follows that F(z)e 4% is a constant, say c. Then F(z) = ce2®. If we write
¢ = ek for some constant k, then we obtain F(z) = e/@ with f(z) = k + g(2).

20. For any R < 2, we have | f/(z)| < R™! for |z| = R and therefore also for
|z| < R by the Maximum Modulus Theorem. Consequently | f'(z)| < % for |z| < 2.
If y is a straight line segment from O to 1, then f(1) — f(0) = fy f'(2) dz. Taking
absolute values gives | f(1) — f(0)| < maXimage(y) | f'(2)[€(y) < 1/2.

21. The function 1/(zf(z)) is analytic for |z| < 1 and has |1/(zf(2))] < 1
everywhere and 1/ (% f (%)) = 1. By the Maximum Modulus Theorem 1/(zf (z)) = 1
everywhere. Thus f(z) = 1/z everywhere.

22. For any positive integer K, the given estimate implies that | f(z)| < A(KR)“
for |z] = K R. Thus we cantake C = A(K R)* in Cauchy’s estimate (Corollary B.16)
and get | f™(0)] < A(KR)*n!r~" aslong as r < KR. Thus forr = J(KR), we
have | £ (0)| < 2"n! A(K R)*™". Letting K tend to infinity shows that £ (0) =0
for n > «. Since f is given by a convergent power series, all the terms are 0 except
at most the terms Cij with j < «, and f(z) is a polynomial of degree at most the
integer part of «.

23. If f(z) is analytic in a region containing the closed disk of center O and
radius r, then Cauchy’s estimate (Corollary B.16) gives | f ™ (0)| < Kn!r ™", where
K =sup,_, | f(z)]. Thus all that is required is that Kr~" < M", and this happens
if M = r~'max{1, K}.

24. (a) Essential singularity, just as with — sin(1/w) at w = 0.

(b) Pole of order 1, just as with ﬁ atz =0.

(c) Pole of order 1. Write w = z — /4, so that sinz = sin(w + 7/4) =
sinw cos(7/4) 4 cos w cos(rw/4) = 1 V/2(sinw + cosw)). Still with z = w + /4,
we have cosz = cos(w 4+ mw/4) = coswcos(w/4) — sinwsin(r/4) =
%ﬁ(eos w — sinw). Thus sinz — cosz = ﬁsin w. This has a simple zero at
w = 0, and thus sin z — cos z has a simple zero at z = /4.

25. We investigate the isolated singularity of f(z) at infinity, i.e., the isolated
singularity of f(1/z) at z = 0. If the singularity is removable, then f is constant (by
Liouville’s Theorem) and is not one-one.

If the singularity is essential, then the Weierstrass result (Proposition B.25) shows
that there exists a sequence {z,,} tending to oo with w, = f(z,) tending to 0. If f~!
exists, then f~!(w,) = z,, and continuity of £~! at 0 forces f~!(0) = limz, = oo,
so that F~! has a singularity at 0, contradiction.

So the singularity must be a pole. Then Cauchy’s estimate shows that f is a
polynomial, and the Fundamental Theorem of Algebra shows f has degree at most
one.
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26.Forj=1,...,r,let P; ( ) be the singular part of P(z)/Q(z) aboutz = r;.

) has no pole at any of ry, ..., r¢, and there are no

Then P(2)/Q(2) — z Pi(2

i—r;
Jj=1
other possibilities for a pole. Hence it is an entire function g(z). It is also the quotient
of polynomials. Its denominator can have no root, and the Fundamental Theorem of
Algebra shows that the denominator is constant. Therefore g(z) is a polynomial.

28. The right side is the sum of the singular parts at each of the poles of P(z)/Q(z).
Thus the difference of the two sides is an entire function that vanishes at infinity. Hence
itis 0.

29. Put Q(z) = (z—r1)-...-(z —ry), and define P(z) = Q(z) Z TET (rk)(z e

In view of the previous problem, Z QP rO—cc _ — (), The singular parts at ry for the

"(ri)(z—7%)
two sides must match, and thus P(rk) =cforl <k <n.

30. Use Proposition B.34, or argue as follows: We may assume that f is not the
0 function. Since f has isolated zeros, we can choose r > 0 so that f(z) # O for
0 < |z| < r. Define ¢ > 0 to be the minimum value of | f(z)| for |z| = r. For each
twith0 <t <1, |f(z) —tc/2| # 0 for |z|] = r. By the Argument Principle the
integral 2m flz|=r f}(‘z’;z_)[(i% is a nonnegative integer that varies continuously with ¢
forO <t <1.1Itis> 2 fort = 0, and thus it is > 2 for t = 1. Then it follows that

there are two points z with |z| < r such that f(z) = ¢/2.

31. Near z9, where f}(z0) = 0, f; is not one-one. Since f)(z) = 1 + 2Az,
fi(z0) = 0 for some |z| < 1if zo = —(23) "' has [24| 7! < L, ie., [A| > 3. Thusa
necessary condition for f; to be one-one is that |A| < l Conversely we show that the
condition |A| < 1s also sufficient. Argumgbycontradlctlon suppose f1(z) = fr(z)
with z # 7. Thenz+kz =7 +x1% Soz—)+Az—2Nz+7) =0,
14+ A(z+7) =0, and 2}»%(2 + 7)) = —1. Taking the absolute value of both
sides shows that 1 = 2[A|5|z + 2| < 3z +2/| < 3zl + 1) < 31+ 1) =1,
contradiction.

32. The condition on f implies that f'(z) is real for all z. By the open mapping
property of analytic functions (Corollary B.35), f’ is constant. Thus f’(z) = az +b.

33. Arguing by contradiction, suppose f is not constant. Let 9 denote boundary
and (-)° denote interior. Since f is continuous, f(E) is compact in C. Since a
nonconstant analytic function is an open mapping, f (E®) is openin C. By continuity,
d(f(E®) C f(0E) C iR. Let H be the open right half plane. Then it follows that
d(f(E°) N H) = @, and hence the open set f(E®) N H is closed in H. Since H is
connected, f(E®) N H is empty or equals H. It cannot equal H, being contained in
the compact set f(E). Thus f(E°)N H is empty. Arguing similarly with H replaced
by the open left half plane, we conclude that f(E°) C iR. This shows that f(E®) is
not open, contradiction.
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34. The tangent function has tanz = —i(e'? — e7/%)/(e/? + ¢7i7) Sqlving w =
—i(e'* — e7'%)/(e'* + e7'%) for z in terms of w yields z = 21_1 log (_w“:;’) for some

branch of the logarithm. We readily check that the derivative of this expression with
respect to w is 1/(w? + 1), consistently with the case that w is a real number in
(—00, 00), known from Corollary 1.46b. As with the case of arcsine let us try for
the principal branch of the logarithm. Then the argument of the logarithm must
not be real and < 0. The exceptional case is that _ww;;" =r < 0. If we write
w = u + iv, this equation says that u +iv = i(1 —r)/(1 4+ r), hence that u = 0 and
v=(1—-r)/(14+r). Forr <0, this has |v| > 1. Hence we can use the principal
branch Log as long as we cut out from the plane the pieces of the imaginary axis
corresponding to |v| > 1. In other words, the branch of arctangent that we seek is
—w+i

given by arctanw = %Log(w—H) on C —{w ’ Imw| > 1}.

35. For (a), set a9 = by = 1. For n > 0, the coefficient of z" in the power series
expansion of f(z)g(z) = 11is

by +bp_1a1+---+brag—1 +1=0.

Thus the desired recursive formula is b, = —b,_1a; —--- — bja,— — 1.

o0
For (b), the series Y a,z" is absolutely convergent for |z| < ro, and therefore
n=1
o0

c(r) = ). |ay|r" is finite-valued for r < rg. As the sum of a power series, ¢(r)
n=1

is continuous as a function of . Under the assumption that f(z) is not a constant

function, it is strictly increasing with ¢(0) = 0. Thus there exists a positive number p

such that c(p) < 1. For any such p, f(z) is nonvanishing for |z| < p, and therefore

o0
14+ Y b,7" is convergent for |z| < p.
n=1

36. The given conditions and the Maximum Modulus Theorem imply that the
function f(z)/z is analytic for |z] < 1 and has for each r < 1, |f(2)/z] <
Supj¢ = | f(£)|/r whenever |z| < r. The condition |f(z)|] =< 1 implies that
supjz<- 1f(¢)| = 1, and thus | f(z)/z| < 1 for |z| < 1. Since lim;—¢ f(2)/z =
/' (0), this inequality forces | f'(0)| < 1.

If equality holds, i.e., if either | f(z)| = |z| somewhere or |f'(0)] = 1, then
| f (z)/z)] attains its maximum somewhere in the interior of the unit disk, and f(z)/z
must be constant. Thus f(z) = cz. Taking absolute values shows that |c| = 1.

37. The Maximum Modulus Theorem shows that | f(z)| < |e*| everywhere for
|z] < 1. Schwarz’s Lemma therefore applies to e % f(z) on the open unit disk and
shows that |e™* f(z)| < |z| for |z] < 1. Hence |f(2)| < |z|le*|, and | f(log2)| <
(log2)le'°2?| = 2log 2.

38. Arguing by contradiction, suppose that « > 1. Since f carries open sets
to open sets, ! is an analytic function from f(D) onto D with f~'(0) = 0 and
(f~1(0) = 1. By assumption the domain of f~! contains {|z| < «}. Thus the
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domain of the analytic function g(z) = f~!(az) contains D, and we have g(0) =
f~10) =0and |g(z)| < 1for|z| < 1. By Schwarz’s Lemma |g’(0)| < 1. However,
direct computation gives g’(0) = a(f~!)'(0) = a > 1, contradiction.

39. From the condition | f (ei9)| < M for0 < 0 < 27 and the Maximum Modulus
Theorem, | f(z)| < M for |z| < 1. Since f(0) = f'(0) =0, z_zf(z) is analytic.
This function has |72 f(z)| < M for |z| = 1. By the Maximum Modulus Theorem,
272 f(z)] < M for |z| < 1,and | f(2)| < M|z|>.

40. For (a), the inequality follows by dividing | f (z) — g(2)| < | f(z)| through by
| f(2)|. Then |F(z) — 1] < 1 for z in the image of y, and (a) is proved. From (a), it
follows that O lies in the unbounded component of the complement of the image of T,
and n(T", 0) = 0 by Proposition B.29. For (c), the Argument Principle says precisely
that n(I", 0) = Zj hjn(y,aj) = kin(y, by). Since the left side is 0, so is the right
side.

41. The Argument Principle shows that the integral equals 2i times the number
of zeros of g(z) inside |z| = 1. To compute the number of zeros, we can use Rouché’s
Theorem. For |z| = 1, the term f(z) = 10z8 has | f(z) — g()| < |f(2)|, and both
f(z) and g(z) are nonvanishing for |z = 1. Thus f(z) and g(z) have the same
number of zeros for |z| < 1, counting multiplicities. For f(z), this number is 8, and
thus it is 8 for g(z) also. Hence the given integral equals 167i.

42. For |z| = 1, the term 4z> dominates the sum of the others. Thus | f (z) —g(z)| <
|f(2)] for |z| = 1if f(z) = 473, Neither f(z) nor g(z) vanishes anywhere with
|z| = 1. The conditions of Rouché’s Theorem are satisfied, and f(z) and g(z) have
the same number of zeros inside |z|] = 1. Since f(z) has 5 zeros inside |z] = 1,
counting multiplicities, so does g(z).

43. When |z| = 2, the term 2z> dominates the sum of the others in absolute value.
Thus f(z) = 27> and g(z) = 227 —6z%+z+1have | f(z)—g(2)| < | f(2)|for |z| = 2.
In addition, neither f(z) nor g(z) vanishes anywhere for |z| = 2. The conditions of
Rouché’s Theorem are satisfied, and f(z) and g(z) have the same number of zeros
inside |z] = 2. Since f(z) has 5 zeros inside |z| = 2, counting multiplicities, so
does g(z). For |z| = 1, we argue similarly, using fi(z) = —622. Again we have
| f1(z) — g(@)| < |fi(z)] for |z] = 1 with neither f] nor g vanishing anywhere for
|z] = 1. Since fi has 2 zeros inside |z| = 1, so does g. Thus the number of zeros for
g withl < |z|] < |2]|is5—-2=3.

44. Let P(z) = 2" + ap—12" ' + - - - 4 ap be a polynomial of degree n > 0, and
write P(z) as 2" + Q(z). Since lim|;jo Q(z)/|z]" = 0, there exists R > 0 such
that |Q(2)|/1z"| < 1 for |z|| > R. Then |z" — P(z)| < |z"| for |z| > R. Applying
Rouché’s Theorem to the standard circle about O of radius R and taking f(z) = 7"
and g(z) = P(z), we see that P(z) and z" have the same number of zeros, counting
multiplicities, inside the circle |z| = R. That is, P(z) has n zeros inside the circle.

45. By the residue theorem, f_,_, zfﬁ = Zni(Reszz,-(#)+Resz=,i(#)) =
i+ | ) =2 + ) =0.

Z—1
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46. The factorization 27> +3z—2 = (2z — 1)(z+2) shows that the only pole inside

C is at z = 5. The Residue Theorem gives [, s = 2mResz=% e =

_1

1 m = 2m’#%) = 2mi/5. This problem can also be done more
directly by using the Cauchy Integral Formula.

27i lim

47. This integral is of the type of Example 1 in Section B11, and the answer is 2ri
times the sum of the residues in the open upper half plane. The roots of z* + 3z% 42
are :I:iﬁ and %i. We need to compute the residues at i~/2 and i. These are

1 1

1. =

Hl% Z+iv2)(E2+1)  Qiv2)(=2+1)
1

7] =1i = = —

) = I CHNE@ 12 - ehisy A

= iv2/4,

Res; 3 (z3752) =

Res; (

Thus the integral equals (27i)(iv/2/4 —i/2) = 27(1/2 — +/2/4) = in(2 — V2).

48. The denominator factors as (x> 4+ 9)(x2 + 1), and its roots in the upper half
plane are 3i and i. The degree of the denominator is 2 greater than the degree of
the numerator. This is of the type of Example 1 in Section B11. Thus the integral
equals 2mi times the sum of the residues at 3i and i. These residues are respectively

2—z42 22—z42 —9-3i+2 __ =-7-3i —1—i+2 __
(z+31)(z D) lz=3i and (Z+0)(2249) lz=i* » which equal === = —Z= and —5= =

The integral is 27§ times the sum of these two complex numbers, namely 57 /12.

]61
49. This is similar to Examples 2 and 3 in Section B11, and the qualitative
conclusion there applies here. The polynomial z> — 2z + 2 has roots 1 = i+/2, with

z = 1 +i+/2 as the only root in the upper half plane. The results of those examples

(1+z)e'* )) _ Im( (1+z)e’

show that the integral equals Im(Res1 i ﬂ(22—2z ) i f))z l4iE =

(2_1-\/5)(,,'(14\/5)
Im( 2iy/2 )
50. This is 2 0277 Mﬁ’%, which is of the form in Ex.ample 5in Secpion B11. If
C denotes the standard unit circle the substitution z = e’e and dz = ize'?, in which

_ zdz dz 2dz
do = , changes it into 5 [~ ppER T 5 Jc biressp- The roots of

a:l:«/—

the denominator in the integrand are z = , and the one and only root in

Y
the unit disk is %"b. Thus

T dx . . 1
0 aFbooss — 127 Z)Resz:b‘l(—a+«/a2—b2)(1722+201+b)

1
T (b(z_bfl (—a—~/a—b?) ) iz:b*l (—a++/a?—b?)

1 b4
— 27 —
2wa-p a2 —p?
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o
5@y =-(+z+2 4+ +..0. S0 f@=-1 -3 7.
n=0

(b) %_Z = Z_lz_ll_l = —z! 1_12_1 =zl 4+z"4+z24+z3+...). So
o0
f@=>z"
n=2

52. For (a), there are three such expansions, valid in the disk |z| < 1, the annulus
1 < |z] < 3, and the annulus 3 < |z].

For (b) we treat the expansion in the annulus |z] < 1, writing # =
1+22424 4+ ... and ﬁ = %(1 + 5+ (%)2 + (%)3 4+ ...). Then the
series has

0 forn <O,
cp =4 3-0t+D for n > 0 and odd,
1 4+ 3-@+Dh for n > 0 and even.
53. The function
T 14 lZ . z—ez+1+%zez—%z _ %z—ez+1+%ze7
el—1 2 - 61/2(61/2_671/2) - 61/2(61/2—671/2)
%Zefz/2_62/2+efz/2+%zez/2 . %Z(ez/2+e—z/2)_(61/2_6—1/2)
- /2 —e=2/2 - ei/2—e—2/2

is the quotient of two odd functions and hence is an even function. Also it is analytic

oo
is a disk about 0. Therefore 5 — 1 + %Z = 3" b,z?", and the result follows if we

n=0
set by = (—1)k! (f,j),.
54. The solution of Problem 53 shows that —iir + liz = L€k nh)
%z cot(z/2) and hence z cotz = ez,zzi . 7 +iz. From the result of Problem 53,

. oo 00
Ay = 205~y X (D gl Qia ) = izt R (D gl i)

and
— B 2%
zeotz=1— )" (z—k")!(k) .
k=1
The desired Laurent series is therefore
o0
_ 2 _ 1 Bi2*  2k—1
otz =g +z=7;— ) ot 2

55. The function f(z) is continuous on each compact subset of U by Proposition
2.21. Hence f(z) is continuous on U. Fix attention on an open disk D in U. If y
is any piecewise C! closed curve in D, then fy fn(2) dz = 0 by the Cauchy Integral
Theorem. Since the image of y is compact and the convergence of integrands is
uniform on compact sets, we can pass to the limit by Theorem 1.31 and obtain
f v f(z) = 0. Since f(z) is known to be continuous, Morera’s Theorem shows that
f(z) is analytic in D. Since D is an arbitrary open disk in U, f(z) is analytic in U.
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56. Let K € U be compact, and let d be the distance from K to U°¢, i.e., the
positive minimum of the distance from x to U for x in the compact set K. Let K’
be the larger compact set {z € U | distance fromzto K is < %d}. By assumption
lim,, f,(z) = Ouniformlyforz € K’. Lete > Obe given, and choose N sothatn > N
implies | f,(¢)| < e forall ¢ € K'. If zis in K, let y be a standard circle of radius
%d about z. The complex derivative f/(z) is given by f/(z) = (2mi)~! fC ({”(o de,

2)?
according to Theorem B.11. Since y has radius %d , each point ¢ in the integration
lies in K’. Thus n > N implies | f, (z)| < % Zn(%d) = 2¢/d, and {f,(z)}

€
(3d)?
indeed tends uniformly to O for z € K.
57. Arguing by contradiction, suppose that f is not identically O and that f(zo9) =
0. Choose r > 0 small enough so that {|z — zo| < r} is contained in U and so that f

vanishes for |z — zo| < r only when z = zg. Let y be the standard circle about z( of

radius r. For each n, 271” Y }CZ/ 8 dz = 0 by the Argument Principle, since each f;

is nowhere vanishing. Since {f,,(z)} converges uniformly to f(z) on the compact set
image(y) and since f(z) is nowhere O on image(y), {1/f,(z)} converges to 1/f(z)
uniformly on image(y). Also Problem 56 shows that { f, (z)} converges uniformly to

£ (@) f @

f'(z) on image(y). Thus {75} converges uniformly to /5, and
1 fu @ 4 '@ 4
lim o7 [, 76 42 = o J, 75 47

We have seen that the left side is 0, and the right side is positive by the Argument
Principle, since f(zo) has been assumed to be 0. This contradiction shows that f(z)
is indeed either nowhere O or identically O.

58. Let K € U be compact, and let d be the distance from K to U, i.e., the
positive minimum of the distance from x to U¢ for x in the compact set K. Let K’ be
the larger compact set {z € U | distance from z to K is < %d }. By assumption there
is some constant ¢k such that | f(z)| < cg/ forallz € K'. If zisin K, let y be a
standard circle of radius %d about z. For f in E, the complex derivative f'(z) is given

by f'(z) = @ri)~! [ (;f@z))Z d¢ ,according to Theorem B.11. Since y has radius %d,

each point ¢ in the integration lies in K’. Thus | f/(z)| < E (65322 (%d) = 2ck//d,

and the derivative f’(z) of each member f(z) of E is bounded by 2cg//d for z € K.
59.
(a) K’ is certainly bounded, and it is closed by Proposition 2.16. Hence it is
compact. If zp is in K and |z — zg| < r, then ' is in K’ and hence is in U.
(b) From

f@ = f@0) =55 Jie=zol=r (z%z_ 2)f (@) dz =5 F Jie—zo=r (zfg();d—zz‘w

we obtain | f(z) — f(Z)| < %Iz’ — z|2ﬂr(r/21)”w =@AM/r)|z —7|.
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(c) We can apply (b) with zo = z/ = z; and z = z because |z — 7/| =
|z —z1] <8 <r/2. Then we obtain | f(z1) — f(z2)| <4M|zp —z1|/r <4Mé/r <
4M(er /AM) = .

60. We shall combine Ascoli’s Theorem with a diagonal process. We can choose
an increasing sequence {K,} of compact sets with union U such that K, is contained
in the interior of K, 4 for each n; namely for each n, we let K,, be the intersection
of the closed disk of radius n about O with the set of points at distance > 1/n from
U°. Let a sequence {f;} of members of E be given. Problem 59 shows that { f;}
is uniformly equicontinuous on K1, and { fx} is by assumption uniformly bounded
on Ki. By Ascoli’s Theorem it has a subsequence that is uniformly convergent
on K. Repeating this process with K, we can find a further subsequence that is
uniformly convergent on K, as well. Continuing in this way, we can find successive
subsequences that are uniformly convergent on K, for each n. Then the sequence
whose n™ term is the 7™ member of the n™ subsequence converges uniformly on
each K,. This subsequence in fact converges uniformly on every compact subset of
U because each compact subset of U lies in some K,,. Indeed, the construction was
arranged so that the interiors of the K,,’s form an open cover of U, hence of any given
compact subset K of U; a finite subcover suffices to cover K, and since the K,,’s are
nested, one single such interior covers K.

65. Conclusion (a) is a routine computation. For the first part of (b), take L(z) =

2—23 22—24
7—24 22—23 "

66. ST~ carries T'zo, Tz3, Tz4 into (1,0, 0o). Then
(Tz1,Tz2, Tz3, Tza) = (ST~ )(Tz1) = Sz1 = (21, 22, 23, 24).

67. For (a), we compute Im (%) = Im((az +b)(cz + d)) = Im(azd + bcz) =
(ad — bc)Imz.

For (b) let the transformation be given by the complex matrix (‘: 2). This trans-

formation carries R U {oo} into R U {oo}, sending O to b/d and co to a/c. Also the

at] : ar+b :h o ad—=bc
real derivative with respecttor of r pr which is el has to be real for real

r. Therefore the polynomial function r +— (ad — be) "N (c*r? + 2cdr + d?), which
is the reciprocal of the derivative, has real coefficients.

Suppose for the moment that d # 0. Adjusting the given matrix by a scalar, we
may assume thatd > 0. Then (ad —bc)~'d real implies ad — bc real, (ad —bc) ™' 2cd
real implies c real, b/d real implies b real, and ad — bc real implies a real. Also
the computation in (a) shows that ad — bc > 0. This completes the argument when
d #0.

Now suppose that d = 0. Adjusting the given matrix by a scalar, we may assume
that ¢ > 0. Then (ad — be)~'¢? real implies —bc real and therefore also b real. Also
a/c real implies a real. Again the computation in (a) shows that ad — bc > 0. This
completes the argument when d = 0.
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68. This problem can be reduced to Problem 67 by making use of the unique
linear fractional transformation that sends 0, —1, 1 into i, 0, oo in this order, namely
7 f;“_ll , verifying that it carries the unit disk onto the upper half plane.

71. For the last part of (b), the property of being C* in a region U is local, and
it holds in any open set where the harmonic function is the real part of an analytic
function. Every point of U has a filled disk about it that lies in U that satisfies this

condition, and hence the harmonic function is C* everywhere.

72. The idea is that although v is unknown, its first partial derivatives are known
because of the Cauchy—Riemann equations. Therefore the first partial derivatives are
known for the unknown analytic function F(z) whose real part is u(x, y). Write u;
for g—)’j and u, for g—: Along any horizontal segment that lies in U, we must have

F(x2,y) — F(x1,y) = f;f(ul —iuz)(s,y)ds,
and along any vertical segment that lies in U, we must have
Fx,y2) = F(x,y1) = [37 (w2 — iup)(x, 1) dt.

Fix the base point z9 = (xg, o), define F (z9) = u(xo, Yo), let o be any polygonal
path from zop to z in U with sides parallel to the axes, and define F' along o one
segment at a time, using one or the other of the above two formulas. The main step
is to prove that F(z) is well defined. Once this step is done, we find as in the proof
of Theorem B.40 that F is continuous and has %—f = uy —iup and %—5 =uy —iuj.
These partial derivatives are continuous and satisfy %—g =—i %—f By Corollary B.2/,
F has a complex derivative at each point and is therefore analytic. (The value of the
complex derivative is f(z) = % = u| — iup.) The real part of F has first partial
derivatives u#| and u, and therefore equals u except for an additive constant. The
imaginary part of F is a well defined conjugate harmonic function throughout U.

Thus we are to prove that F'(z) is well defined. The combinatorial part of the proof
of Theorem B.40 works without change: We take two polygonal paths o1 and o7 in
U from zg to z with sides parallel to the axes and work with y = o1 — 0». We are
then able to show that y has a decomposition

y =2 n(y,ai)oR;.

1

Using that U is simply connected, we argue exactly as in the last paragraph of the
proof of Theorem B.40 to show that the interior of each R; for which n(y, a;) # 0
lies completely in U. From this fact we can see as follows that f3 R f(@dz =0,
where f(z) = % = uy — iuy: we simply write out faR[ f(z) dz as the sum of the
complex line integrals over each side and proceed as in the solution to Problem 3.
The equality |; ar (@) dz = 0 follows. Summing over i the product of n(y, a;) by
this equality, we obtain fy f(2)dz = 0. Thus fa] fdz = faz f(z)dz, and F(z)
is well defined.
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73. Problem 71b shows that « has a conjugate harmonic function v defined on R?.
Then (u + iv) o A is analytic as the composition of two analytic functions, and its
real part, namely u o A, is harmonic.

74. Since U is assumed connected, the image of U is connected. Letu(xg, yo) = ¢,
and let D be an open disk about (xg, yo) lying in D. On D, u is the real part of an
analytic function f, by Problem 71b. If f(z) is not constant on D, then f(z) is an
open mapping, by Corollary B.35. The intersection of f(D) with the real axis is
therefore an open subset of R containing c.

75. If u has a local maximum at (xo, yo), then on some open disk D about (xg, yo),
u has an absolute maximum at (xo, yo). By the previous problem, u is constant on D.
Thus the interior E of the subset of U where u(x, y) = c¢ is nonempty, as well as open.
Let (xg, yo) be a limit point of E in U, and choose an open disk D’ about (xg, yo) that
lies in U. Since (xp, yo) is a limit point of E, there exists a member (x, y;) of E in
D'. Since (x1, y;) is in the open set E, there is a disk D" about (x1, y;) contained in
E and D’. On this disk, u(x, y) = c. Thus the analytic function on D’ of which u is
the real part is constant on D” and necessarily also on D’. In other words, (xo, o) is
in E, and E is closed within U. Since U is connected, £ = U.

76. By Problem 71b, u(x, y) is the real part of an analytic function f(z) on all of
C. Then e~/@ is an entire function that takes values in the unit disk. By Liouville’s
Theorem, e~/ @ is constant. Therefore f(z) is constant, and so is its real part u (x, y).

77. Problem 71b shows that u(x, y) is the real part of an analytic function f(z)
for |z] < 1. Forr < 1, the Cauchy Integral Formula gives

fO) =55 [l f@dz = 5 [T e fre®)ire? do

= % OZH(u(r cosd,rsinf) +iv(rcosh,rsinh))do.
Taking the real part of both sides gives u(0,0) = % f02” u(rcos6,rsinf)do.
We apply the operation lim,4; to both sides. Since u is continuous as a func-
tion of two variables, the convergence of u(r cos @, r sin6) to u(cos @, sin ) is uni-
form in 6. Thus we can put the limit lim,4; under the integral sign and obtain

u(0,0) = 5 02” u(cos @, sin@) dh, as required.
78. In (a), the matrix equation follows by applying the matrix equation of Problem
4a to each component function f; and lining up the results.

In (b), the (k, )" entry of Jc is 32 This equals 3% = 2R/t 4 1Mk which is

3X[ Xe

the sum of the (k, £)" entry of J and i times the (k + m, £)™ entry. Thus in block
Re Jo ) If we write J = (Re se }g), apply (a), and

Im J(C Im J(C
multiply out the block matrices, we find that y = —Im J¢ and § = Re Jc.

79. This is a matter of combining Problems 4 and 79 with the chain rule (Theorem
3.10) in the real-variable theory. The functions fr and gr are C* by Problem 4, and
(g o f)R = gr o fr from the definitions. Since gr o fr is C* with Jacobian matrix

form the first column of J is (
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the product of the Jacobian matrices for gr and fgr, (g o f)r is C*°, and we have
a formula for its Jacobian matrix. Applying Problem 78, we see that the Jacobian
matrix of g o f satisfies the equation in Problem 78a. Then it follows from Problem 4
that each entry of go f is holomorphic; by definition g o f is holomorphic. Combining
the formula for (g o f)r with Problem 78b, we see that the complex Jacobian matrix
of g o f is the product of the complex Jacobian matrices.

80. Statement: Suppose that f is a holomorphic function from an open set E of
C" into C", and suppose that the complex derivative of f is invertible for some a in
E. Putb = f(a). Then

(a) there existopen sets U € E € C" and V € C" such thata isin U, b is in
V, f is one-one from U onto V, and
(b) the inverse function g : V — U is holomorphic.

Consequently, the complex Jacobian matrix of g at f(z) is the inverse of the complex
Jacobian matrix of f at z forz € U.

The proof consists in reducing matters to Theorem 3.17 by using Problems 4, 78,
and 79.

81. The statement is just the analog of Theorem 3.16 with complex variables
replacing real variables. The proof comes by imitating the proof that Theorem 3.17
implies Theorem 3.16.





