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HINTS FOR SOLUTIONS OF PROBLEMS

Chapter I

1. The derivation for (a) is similar to the proof of Corollary 1.3. For (b), let E
be a nonempty set that is bounded above. Start with a member s1 of E . Choose if
possible an s2 in E with s2 − s1 ∏ 1. Continue with s3 − s2 ∏ 1, s4 − s3 ∏ 1, etc.,
until this is no longer possible; the existence of an upper bound forces the process to
stop at some stage. Suppose that sk has been constructed at this stage. Define sk+n
inductively for n ∏ 1 to be a member of E with sk+n − sk+n−1 ∏ 2−n if possible;
otherwise define sk+n = sk+n−1. Then {sn} is bounded and monotone increasing.
To complete the problem, one has only to show that limn sn is the least upper bound
of E . Doing so makes use of (a).
2. Show that x1 ∏

p
a and that

p
a ≤ xn+1 ≤ xn for n ∏ 1. Then limn xn = c

exists by Corollary 1.6, and c must satisfy c = 1
2 (c

2 + a)/c.

3. Write out a few cases and guess that the pattern is a2n = 1
2 (1 − 2−(n−1)) for

n ∏ 1 and a2n+1 = 1− 2−n for n ∏ 0. Prove each of these statements by induction.
Since a2n → 1

2 and a2n+1 → 1 and since these two subsequences use all the terms of
the sequence, the only subsequential limits of {ak} are 12 and 1. Therefore lim sup ak =
1 and lim inf ak = 1

2 .
4. The argumentwithout paying attention tofiniteness is thatan+bn ≤ supr∏k ar+

supr∏k br for n ∏ k, then that supr∏k(ar + br ) ≤ supr∏k ar + supr∏k br for all r , and
then that the limit of the sum is the sum of the limits.
5. Only (ii) converges uniformly, the reason being that 0 ≤ xn/n ≤ 1/n and

that lim 1/n = 0. There is uniform convergence in (i) on [0, 1 − ≤] because 0 ≤
xn ≤ (1 − ≤)n , and there is uniform convergence in (iii) on [0, 1 − ≤] because the
Weierstrass M test applies with |xk |/k ≤ (1− ≤)k and

P
k(1− ≤)k < +∞.

6. The uniform convergence of
P∞

n=0 an(x) follows from Corollary 1.18, and the
pointwise convergence of

P∞
n=0 |an(x)| follows because (1 − x)

P∞
n=0 xn = 1 for

0 ≤ x < 1 and because every an(x) is 0 for x = 1. The convergence of
P∞

n=0 |an(x)|
cannot be uniform because the sum is discontinuous and Theorem 1.21 says that it
would have to be continuous.
7. Put gn = f − fn , so that gn is continuous and decreases pointwise to the 0

function. Let x = xn be a point where gn(x) is a maximum, and let Mn = gn(xn).
We are to prove that Mn tends to 0. Suppose it does not. If k ∏ n, then Mk =

715
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gk(xk) ∏ gk(xn) ∏ gn(xn) = Mn . So Mn decreases to some M > 0. Passing to a
subsequence if necessary, we may assume by the Bolzano–Weierstrass Theorem that
limn xn = x 0. For k ∏ n, we have gk(xn) ∏ gn(xn) = Mn ∏ M . Letting n tend to
infinity gives gk(x 0) ∏ M since gk is continuous. This inequality for all k contradicts
the assumption that limk gk(x 0) = 0.
8. The idea is to prove the four inequalities

2mX

k=0
(−1)k x2k+1/(2k + 1)! > sin x,

2m+1X

k=0
(−1)k x2k/(2k)! < cos x,

2m+1X

k=0
(−1)k x2k+1/(2k + 1)! < sin x,

2m+2X

k=0
(−1)k x2k/(2k)! > cos x

together by an induction. They are to be proved in order for m = 0, then in order for
m = 1, and so on. In each case of the inductive step, the left side minus the right
side is 0 at x = 0 and has derivative equal to the previous left side minus right side.
The Mean Value Theorem says that each left side minus right side at x > 0 equals
the product of x and the left side minus right side at ξ with 0 < ξ < x . Substituting
the previously proved inequality at ξ then gives the result. In other words, everything
comes down to proving the first inequality, namely x > sin x for x > 0. Arguing in
the same style, we have x−sin x = 1−cos ξ with 0 < ξ < x . So at least x−sin x ∏ 0.
For 0 < x ≤ π , we actually obtain x − sin x > 0. Since d

dx (x − sin x) ∏ 0, we have
x − sin x ∏ π − sinπ for π ≤ x . Thus x − sin x > 0 for all x > 0.
9. The thing to prove is that the remainder term 1

n!
R x
0 (x − t)n f (n+1)(t) dt tends to

0 for each x as n tends to∞. If x ∏ 0, the absolute value is≤ (n!)−1
R x
0 (x− t)n dt =

xn+1/(n + 1)!, which tends to 0 for any fixed x . If x ≤ 0, one argues in a similar
fashion.
10. By a diagonal process we can find a subsequence {Fnk } convergent for each

rational x . Let F be the resulting limit function, carrying the rationals in [−1, 1] into
[0, 1]. If r and s are rationals with r ≤ s, then F(r) = limk Fnk (r) ≤ limk Fnk (s) =
F(s). Thus F is nondecreasing on the rationals. For each real x with −1 < x < 1,
define F(x−) to be the limit of F(r) with r rational as r increases to 1, and define
F(x+) to be the limit of F(r)withr rational as r decreases to 1. Then F(x−) ≤ F(x+)

for each x , and F(x+) ≤ F(y−) if x < y. For each N > 0, it follows that there can
be only finitely many x’s for which F(x+) − F(x−) ∏ 1/N , and hence there can be
at most countably many x’s for which F(x−) 6= F(x+). Let this exceptional set be
denoted by C . For x not in C , define F(x) = F(x+) = F(x−).
For x not in C , let us show that limk Fnk (x) exists and equals F(x). If r < x

is rational, we have F(r) = lim infk Fnk (r) ≤ lim infk Fnk (x); taking the supre-
mum over r gives F(x) = F(x−) ≤ lim infk Fnk (x). Arguing similarly with s
rational and x < s, we have lim supk Fnk (x) ≤ lim supk Fnk (s) = F(s), and hence
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lim supk Fnk (x) ≤ F(x+) = F(x). Combining these two conclusions, we see that
lim infk Fnk (x) = lim supk Fnk (x) and that the common value of these limits is F(x).
Thus {Fnk (x)} converges except possibly for x in C . At each point of C , the

sequence is bounded. SinceC is countable, another use of a diagonal process produces
a subsequenceof Fnk that converges at everypoint ofC , henceat everypoint of [−1, 1].
11. If |x | > 1/ lim sup n

p
|an| , then n

p
|an| ∏ 1/|x | for infinitely many n. Thus

|anxn| ∏ 1 for infinitely many n, and the terms of the series do not tend to 0.
Hence the series cannot converge. In the reverse direction we want to see that the
inequality |x | < 1/ lim sup n

p
|an| implies convergence of the series. We rewrite this

as lim sup n
p

|an| < 1/|x |. Choose a number r with lim sup n
p

|an| < r < 1/|x |.
Then n

p
|an| ≤ r for all sufficiently large n, n

p
|an| |x | ≤ r |x | < 1 for all n sufficiently

large, and |anxn| ≤ (r |x |)n for all n sufficiently large. Thus
P

|anxn| is dominated
term-by-term (from some point on) by the geometric series

P
sn , where s = r |x |.

Since s < 1, the geometric series converges, and hence so does
P

|anxn|.
12. 1/(1− x)2 =

P∞
n=0(n + 1)xn , log(1− x) = −

P∞
n=1 xn/n, 1/(1+ x2) =P∞

n=0(−1)nx2n , and arctan x =
P∞

n=0(−1)nx2n+1/(2n + 1). All these series have
radius of convergence 1.
13. The proof of existence of arccos x uses the proposition in Section A3 of

Appendix A. The result of the calculation of the derivative is that d
dx arccos x =

−1/
p
1− x2 for |x | < 1. Then arcsin x + arccos x has derivative 0 on (−1, 1) and

hence is constant. The constant is evaluated by putting x = 0, and the result is that
arcsin x + arccos x = π/2 on (−1, 1).
14. The uniform version of Abel’s Theorem is this: Let {an(x)}n∏0 be a sequence

of complex-valued functionswith
P∞

n=0 an(x) converging uniformly to the limit s(x).
Then limr↑1

P
n∏0 an(x)rn = s(x) uniformly in x . The proof is just amatter of seeing

that the estimates in the proof of Theorem 1.48 can be made uniform in x under the
stated assumptions. The result about Cesàro sums is handled similarly.
15. Write cos nθ = 1

2 (e
inθ + e−inθ ) and sin nθ = 1

2i (e
inθ − e−inθ ). Then

PN
n=1 cos nθ = 1

2
PN

n=1 einθ + 1
2
PN

n=1 e−inθ = 1
2
1− ei(N+1)θ

1− eiθ
+ 1
2
1− e−i(N+1)θ

1− e−iθ
.

Each numerator is bounded by 2, and each denominator gets close to 0 only as θ tends
to a multiple of 2π . This proves the estimate for the cosines, and the estimate for the
sines works in the same way.
17. For (a), the relevant result is that when all an are 0,

P∞
n=1 |bn|2 equals

1
π

Z π

−π
| f (x)|2 dx . Here

∞X

n=1
|bn|2 is (4/π)2

∞X

n=1

1
(2n − 1)2

, and
1
π

Z π

−π
| f (x)|2 dx

is just
2π
π

= 2. Hence
∞X

n=1

1
(2n − 1)2

=
π2

8
.

18. We have F(x) f (y) =
R x
0 f (t) f (y) dt =

R x
0 f (t + y) dt =

R x+y
y f (t) dt =

F(x+y)−F(y). If F(x) 6= 0 for some x , we candivide anduse theFundamentalThe-
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orem of Calculus to see that f (y) has a continuous derivative everywhere. (If F(x) =
0 for all x , then differentiation gives f (x) = 0 for all x .) Differentiating the original
identity in x gives f 0(x) f (y) = f 0(x + y). When x = 0, we obtain f 0(0) f (y) =
f 0(y). Then d

dy
°
f (y)e− f 0(0)y¢ = f 0(y)e− f 0(0)y + f (y)(− f 0(0)e− f 0(0)y) = 0, and

hence f (y)e− f 0(0)y is constant. Thus f (y) = ae f 0(0)y . In the original identity
f (x) f (y) = f (x + y), if we put x = 0 and choose y such that f (y) 6= 0, then we
see that f (0) = 1. Hence f (y) = e f 0(0)y if f is not identically 0.
19. We may assume that f is not identically 0. As in Problem 18, we have

f (0) = 1. By continuity of f , choose x0 such that | f (x) − 1| ≤ 1
10 when |x | ≤ |x0|.

Then Re f (x0) > 0, and we can choose a unique c with | Im(cx0)| < π/2 such
that ecx0 = f (x0). The equation for f shows that f

° 1
2 x0

¢2
= f (x0), and hence

f
° 1
2 x0

¢
equals ecx0/2 or−ecx0/2. From | f

° 1
2 x0

¢
− 1| ≤ 1

10 , we have Re f
° 1
2 x0

¢
> 0.

Since | Im(cx0/2)| < π/2, ecx0/2 is the choice of square root of ecx0 with positive
real part, and we conclude that f

° 1
2 x0

¢
= ecx0/2. Iterating this argument, we obtain

f (2−nx0) = ec2−n x0 for all n ∏ 0. The equation for f shows that f (kx) = f (x)k for
all integers k ∏ 0, and thus f (qx0) = ecqx0 for every rational q of the form k/2n with
k an integer ∏ 0. From f (x) f (−x) = f (0) = 1, we have f (x−1) = f (x)−1, and
thus f (qx0) = ecqx0 for every rational number of the form k/2n with k any integer.
Using continuity and passing to the limit, we obtain f (r) = ecr for all real r .
21. This uses the discussion at the end of Section A2 of Appendix A. For x 6= 0,

we compute that g0(x) = (R(x)/S(x))e−1/x2 for polynomials R and S with S not the
0 polynomial. Then limx→0 g0(x) = 0 by Problem 20, and the appendix shows that
g0(0) exists and equals 0.
22. Use Problem 21 and induction.
23. Since {sn} is convergent, it is bounded. Say |sn| ≤ K for all n. Let ≤ > 0

be given, and choose N such that n ∏ N implies |sn − s| < ≤/2. Write tn − s =P
j Mnj sj − s =

P
j Mnj (sj − s) by (i). A second application of (i) gives

|tn − s| ≤
NX

j=0
Mnj (|sj | + |s|) +

∞X

j=N+1
Mnj |sj − s|

≤ 2K
NX

j=0
Mnj +

∞X

j=N+1
Mnj≤/2 ≤ 2K

NX

j=0
Mnj + ≤/2.

Since N is fixed, (ii) shows that 2K
PN

j=0 Mnj < ≤/2 for n sufficiently large. For
those n, |tn − s| < ≤.
24. For Cesàro summability the i th row, for i ∏ 1, has its first i entries equal to

1/ i and its remaining entries equal to 0. For Abel summability the row going with ri
has j th entry (1− ri )(ri ) j for j ∏ 0.
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25. Certainly Mi j ∏ 0 for all i and j . The power series in Problem 12a shows thatP
j Mi j = 1 for all i , and (ii) holds because limr↑1( j+1)r j (1−r)2 = ( j+1)·1·0 = 0.
26. Check that M as in the previous problem transforms the Cesàro sums into the

Abel sums, and apply Problem 23.
27. This is handled by the same kind of computation as with the Fejér kernel.
28. The formula for Pr (θ) comes fromsumming the two geometric series for n ∏ 0

and n < 0 and then adding the results. Properties (i) and (iii) are then immediate
by inspection. For property (ii) we use the series expansion of Pr (θ). Theorem 1.31
allows the integration to be done term by term, and the result follows.
29. This is proved in the same way as Fejér’s Theorem (Theorem 1.59).
30. Corollary 1.38 shows that f 0

k(x) =
P∞

n=0 cn,knxn−1 and that f 00
k (x) =P∞

n=0 cn,kn(n − 1)xn−2 for |x | < R. The point is to show that { f 0
k(x)} is uniformly

bounded and uniformly equicontinuous for |x | ≤ r , and then Ascoli’s Theorem
produces the required subsequence. For proving the equicontinuity, it is enough to
prove that { f 00

k (x)} is uniformly bounded for |x | ≤ r .
Fix r < R, and choose r1 with r < r1 < R. Since lim fk(x) = f (x) uniformly for

|x | ≤ r1, there is an M such that | fk(r1)| ≤ M for all k. Thus |
P

n cn,kr
n
1 | ≤ M for

all k. Since cn,k ∏ 0 for all n and k, cn,k ≤ Mr−n
1 for all n and k. Since r < r1, choose

N such that n ∏ N implies n(r/r1)n−1 ≤ 1 and n(n − 1)(r/r1)n−2 ≤ 1 for n ∏ N .
Since cn,k ∏ 0 for all n and k, cn,kn|x |n−1 ≤ cn,knrn−1 ≤ (cn,krn−11 )(n(r/r1)n−1) ≤
cn,krn−11 for n ∏ N and |x | ≤ r . Summing on n ∏ N and taking Corollary 1.38 into
account, we see that

Ø
Ø
Ø f 0
k(x) −

N−1X

n=0
ncn,k xn−1

Ø
Ø
Ø ≤ r−1

1

≥
fk(r1) −

N−1X

n=0
cn,krn1

¥
≤ r−1

1 fk(r1) ≤ r−1
1 M

for |x | ≤ r . Thus |x | ≤ r implies that | f 0
k(x)| is

≤ r−1
1 M +

N−1X

n=0
ncn,k |x |n−1 ≤ r−1

1 M +
N−1X

n=0
ncn,krn−11 ≤ r−1

1 M + N (N − 1)Mr−1
1 ,

and { f 0
k(x)} is uniformly bounded for |x | ≤ r .

A similar argument with f 00
k shows thatØ

Ø
Ø f 00
k (x) −

N−1X

n=0
n(n − 1)cn,k xn−2

Ø
Ø
Ø ≤ r−2

1 M,

and we find similarly that { f 00
k (x)} is uniformly bounded for |x | ≤ r . This completes

the proof.
31. Theorem 1.23 shows that the limit of the subsequence of first derivatives is

the first derivative of the limit, the limit being differentiable. In other words, f is
differentiable for |x | < r , and the subsequence converges to f 0(x) there. Since r < R
is arbitrary, f is differentiable for |x | < R. Now we can induct, replacing f and the
sequence fk in Problem 30 by f 0 and a subsequence of f 0

k on a smaller disk, then
passing to f 00, and so on. The result is that f is infinitely differentiable for |x | < R.
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32. This is proved in the same way as in Problem 9.
33. | 1

N+k z
k | ≤ r N+k if |z| ≤ r , and

P∞
k=0 r N+k = r N/(1 − r). Thus | 1N z

N +
1

N+1 z
N+1 + · · · | tends uniformly to 0 for |z| ≤ r . Since t 7→ exp(t) is continuous at

t = 0, the required convergence follows.
34. Corollary 1.38 shows from the behavior for z real that all cn are 0.
35. Write

exp
°
z + 1

2 z
2 + 1

3 z
3 + · · ·

¢
=

°QN−1
k=1 exp(

1
k z

k)
¢
exp

° 1
N z

N + 1
N+1 z

N+1 + · · ·
¢
.

Problem 33 shows that the left side is the uniform limit of
QN−1

k=1 exp(
1
k z

k) for |z| ≤ r
if r < 1. Each factor of the finite product is given by a convergent power series
with nonnegative coefficients, and Theorem 1.40 shows that the finite product is
given by a convergent power series with nonnegative coefficients. By Problem 32,
exp

°
z + 1

2 z
2 + 1

3 z
3 + · · ·

¢
is given by a convergent power series for |z| < 1. Hence

exp
°
z + 1

2 z
2 + 1

3 z
3 + · · ·

¢
− 1/(1 − z) is given by a convergent power series for

|z| < 1. For z = x real with |x | < 1, the series expansion of Problem 12b shows that
our expression is exp

°
− log(1− x)

¢
− 1/(1− x) = 0. Thus our power series sums

to 0 on the real axis. By Problem 34, it sums to 0 everywhere.

Chapter II

1. Let us compare d(x, y) with d(x, z)+ d(z, y). If j contributes to d(x, y), then
xj 6= yj . Hence xj 6= zj or zj 6= yj . Thus j contributes to at least one of d(x, z) and
d(z, y). In other words, the contribution of j to d(x, y) is ≤ the contribution of j to
d(x, z) + d(z, y). Summing on j gives the desired result.
2. Let (X, d) be the given separable metric space, define E to be the subset of

members x of X such that every neighborhood of x is uncountable, and let F be the
complement of E . If x is in F , we can associate to x some open neighborhood Nx
containing at most countably many elements, and Nx is entirely contained in F . As
x varies in F , the sets Nx form an open cover of F . By Proposition 2.32b, some
subcollection of the Nx that is at most countable covers F . The union of these sets is
open and is at most countable, and it equals F .
3. Let f (x) = 1/x for 0 < x ≤ 1, and let f (0) = 0.
4. Suppose that x is in U . Since A is dense, the set A ∩ B(1/n; x) is nonempty

for each n ∏ 1. Let xn be a member of it. Since U is open, B(1/n; x) is contained
in U if n is ∏ N for a suitable N . Thus xn is in A ∩U for n ∏ N and converges to
x . By Proposition 2.22b, either xn = x infinitely often, in which case x is in A ∩U ,
or x is a limit point of A ∩U . In either case, U ⊂ (A ∩U)cl.
5. For (a), the sets En are compact by theHeine–BorelTheorem. Then each En−U

is compact. Their intersection is
T∞

n=1 (En∩Uc) =
°T∞

n=1 En
¢
∩Uc ⊆ U∩Uc = ∅.

ByProposition2.35 the system {En−U} does not have thefinite-intersectionproperty.
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Thus
TN

n=1 (En − U) = ∅ for some N . Since E1 ⊇ E2 ⊇ · · · , we find that
EN −U = ∅. Therefore EN ⊆ U .
For (b), let U be empty, and let En = Q ∩ [

p
2,

p
2+ 1/n].

6. In both parts of the problem, let themetrics bedX , dY , dZ . For (a), use continuity
of F to choose for each (x0, y) some δ1,y > 0 and δ2,y > 0 such that the two inequal-
ities dX (x, x0) < δ1,y and dY (y0, y) < δ2,y together imply dZ (F(x, y0), F(x0, y)) <

≤/2. As y varies, the open balls B(δ2,y; y) cover Y . Since Y is compact, a fi-
nite number of them suffice to cover Y , say B(δ2,y1; y1), . . . , B(δ2,yn ; yn). Put
δ1 = min{δ1,y1, . . . , δ1,yn }. Suppose now that dX (x, x0) < δ1 and that y0 is in
Y . Then y0 is in some B(δ2,yj ; yj ). Hence we have dX (x, x0) < δ1 ≤ δ1,yj and
d(y0, yj ) < δ2,yj , and we therefore obtain dZ (F(x, y0), F(x0, yj )) < ≤/2. Since also
dX (x0, x0) = 0 and d(y0, yj ) < δ2,yj , we obtain also dZ (F(x0, y0), F(x0, yj )) < ≤/2.
Combining these two results gives dZ (F(x, y0), F(x0, y0)) < ≤.
For (b), consider dZ (F(x, y), F(x0, y0)), and let ≤ > 0 be given. By uniform con-

vergence, choose δ1 > 0 such that dX (x, x0) < δ1 implies dZ (F(x, y), F(x0, y)) <

≤/2 for all y. Proposition 2.21 gives us continuity of F(x0, · ), and thus there
exists δ2 > 0 such that dY (y, y0) < δ2 implies dZ (F(x0, y), F(x0, y0)) < ≤/2.
Then dX (x, x0) < δ1 and dY (y, y0) < δ2 together imply dZ (F(x, y), F(x0, y0)) ≤
dZ (F(x, y), F(x0, y)) + dZ (F(x0, y), F(x0, y0)) < ≤/2+ ≤/2 = ≤.
7. Let f : (0, 1) → R be defined by f (x) = 1/x . Then the Cauchy sequence

{1/n} is carried to a sequence that is not Cauchy in R.
8. Define inductively f (0) to be the identity and f (k) = f ◦ f (k−1) for k > 0.

For existence we see inductively that d( f (k)(x), f (k)(y)) ≤ rkd(x, y) for all x and
y. If n ∏ m and if x is arbitrary but fixed, we then have d( f (n)(x), f (m)(x)) ≤Pn−1

k=m d( f (k+1)(x), f (k)(x)) ≤
Pn−1

k=m rkd( f (x), x) ≤ rmd( f (x), x)/(1 − r).
Hence the sequence { f (n)(x)} is Cauchy. Let x 0 be its limit. Since

d( f ( f (n)(x)), f (n)(x)) = d( f (n+1)(x), f (n)(x)) ≤ rnd( f (x), x)/(1− r)

and since d and f are continuous, d( f (x 0), x 0) ≤ lim supn rnd( f (x), x)/(1−r) = 0.
Thus f (x 0) = x 0.
For uniqueness, let f (x 00) = x 00 also. Then d(x 00, x 0) = d( f (x 00), f (x 0)) since f

fixes x 0 and x 00, and d( f (x 00), f (x 0)) ≤ rd(x 00, x 0) by the contraction property. Then
(1− r)d(x 00, x 0) ≤ 0 and we conclude that d(x 00, x 0) = 0. Thus x 00 = x 0.
9. If no point is isolated, each one-point set is closednowhere dense. The countable

union of these sets is thewhole space, in contradiction to theBaire Category Theorem.
An alternative argument is to appeal to Problem 2.
10. The set is closed and bounded, hence compact, and it is pathwise connected,

hence connected. It is not, however, locally connected. Take, for example, the point
p = [c, 1/2] in X , where c is in C . The open ball of radius 1/4 around p has the
property that no open subneighborhood of p is connected.
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11. Fix x0 in X , and let U be the set of all points in X that can be connected to
x0 by paths. The set U is nonempty, and we prove that it is open and closed. Being
connected, itmust thenbe all of X . It is openbecause the local pathwise connectedness
means that any x in U can be connected to every point in some neighborhood of x
by a path; hence U contains a neighborhood of each of its points and is open. To
see that U is closed, let y be a limit point of U . If V is a pathwise connected open
neighborhood of y, the set U ∩ V is nonempty because y is a limit point of U . Let z
be inU ∩V . Then x0 can be connected to z by a path because of the defining property
ofU , and z can be connected to y by a path because V is pathwise connected. Hence
x0 can be connected to y by a path, and y is in U .
12. Anyopen subset ofRn is locallypathwiseconnected. So thedesiredconclusion

follows from the previous problem.
13. Let the open set be U . For each x in U , let Ux be the union of all connected

subsets ofU containing x . It was shown in Section 8 that this is connected. For x and
y in U , either Ux = Uy or Ux ∩Uy = ∅ for the same reason. Then U is the disjoint
union of its subsets Ux , which are connected. These are intervals, being connected,
and they must be open in order not to be contained in larger connected subsets of U .
14. Same as for Proposition 2.21.
15. Suppose { ft } is totally bounded. Let ≤ > 0 be given. Find, by total bound-

edness, real numbers t1, . . . , tn such that for any t , there is an index j = j (t) with
k ft − ftj k < ≤. Put L/2 = max{|t1|, . . . , |tn|}. If we are given an interval of length
∏ L , take t to be its center, so that the interval contains [t − L/2, t + L/2]. Choose
j by total boundedness with k ft − ftj } < ≤. Then k ft−tj − f0k < ≤. So t − tj is an
≤ almost period, and this lies in [t − L/2, t + L/2]. Thus the Bohr condition holds.
Conversely suppose that the Bohr condition holds and f is uniformly continuous.

Let ≤ > 0 be given, and find L as in the Bohr condition for ≤/2 almost periods. Also,
find some δ for uniform continuity of f and the number ≤/2. Choose t1, . . . , tn in
I = [−L/2, L/2] such that any point in I is within δ of one of t1, . . . , tn . Let us see
that the open balls of radius ≤ around ft1, . . . , ftn together cover the set { ft } of all
translates. If t is given, find an L/2 almost period t − s in [t − L/2, t + L/2]. Here
|s| < L/2, so that k ft−s − f0k < ≤/2 and k ft − fsk < ≤/2. Since |s − tj | < δ for
some j , we have k fs − ftj k < ≤/2 by uniform continuity. Thus k ft − ftj k < ≤.
16. Let Tf be the closure of the set of translates of f . This is complete by

Problem14. Theorem2.36 shows that Tf is compact if and only if every sequence in it
has a convergent subsequence, and this is the definition of Bochner almost periodicity.
Theorem 1.46 shows that Tf is compact if and only if it is totally bounded, and this
is equivalent to Bohr almost periodicity by Problem 15.
17. This is easier with the Bochner definition. For an example of closure under

the various operations, consider closure under multiplication. Suppose that f and g
are given and that we want a convergent subsequence from the sequence of translates
( f g)tn . First choose a subsequence of {tn} such that those translates of f converge
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uniformly, and then choose a subsequence of that such that the translates of g converge
uniformly. These sequences of translates of f and g will be uniformly bounded, and
then it follows that the sequence of products converges uniformly.
For closure under uniform limits, we argue similarly with translates of each of the

functions { fn} when lim fn = f uniformly. A Cantor diagonal process is used to
extract the sequence of translates to use for f .

18. If ≤ > 0 is given, let Un be the set where | f (x) − fn(x)| < ≤. This is open
by the assumed continuity, and

S∞
n=1Un = X by the assumed convergence. Since

X is compact, some finite collection of Un’s suffices. Since the fn’s are pointwise
increasing with n, the Un’s are increasing, and thus X = UN for some N . For that
N , | f (x) − fN (x)| < ≤. Then | f (x) − fn(x)| < ≤ for n ∏ N since the fn’s are
pointwise increasing.

19. If 0 ≤ Pn(x) ≤
p
x ≤ 1, then x ∏ Pn(x)2 and the recursion shows that

Pn+1(x) ∏ Pn(x). Also, Pn+1(x) = Pn(x) + 1
2 (

p
x + Pn(x))(

p
x − Pn(x)) ≤

Pn(x) + 1
2 (1+ 1)(

p
x − Pn(x)) =

p
x .

20. By Problem 19, Pn(x) increases pointwise to some f (x). Passing to the
limit in the recursion gives f (x) = f (x) + 1

2 (x − f (x)2), and thus f (x)2 = x
and f (x) =

p
x . Since

p
x is continuous and [0, 1] is compact, Dini’s Theorem

(Problem 18) shows that the convergence is uniform.

21. If x and y are given with x 6= y, then we are given three relevant functions in
A, possibly not all distinct. They are h1 with h1(x) 6= h1(y), h2 with h2(x) 6= 0, and
h3 with h3(y) 6= 0. If h1(x) or h1(y) is 0, we can add a multiple of h2 or h3 to h1
to obtain an h4 with h4(x) 6= h4(y), h4(x) 6= 0, and h4(y) 6= 0. The restrictions of
h4 and h24 to the two-element set {x, y} are linearly independent and therefore form a
basis for the 2-dimensional space of restrictions. Hence some linear combination of
h4 and h24 equals the given f at x and y.

22. Let f be in CR(S) with f (s0) = 0. Since B cl = CR(S), there exists a
sequence {gn} in B with lim gn = f uniformly. Then lim gn(s0) = f (s0) = 0
in particular. Put fn(s) = gn(s) − gn(s0). Then fn(s0) = 0. The inequality
| fn(s)− f (s)| = |gn(s)− f (s)−gn(s0)| ≤ |gn(s)− f (s)|+|gn(s0)| shows that { fn}
converges uniformly to f . The members of A are the members of B that vanish at
s0. The functions fn have this property, and thus { fn} is a sequence in A converging
uniformly to f .

24. For (a), we identify C0([0,+∞), R) with the subalgebra of C([0,+∞], R)

of continuous functions equal to 0 at +∞. The function e−x separates points on
[0,+∞]. Apply Problem 22 to the algebra it generates, namely the algebra of all
finite linear combinations of e−nx for n a positive integer.
For (b), let ≤ > 0 be given, and choose g(x) =

P
cne−nx by (a) such that

sup0≤x<+∞ | f (x)− g(x)| ≤ ≤. The hypothesis forces
R b
0 f (x)g(x) dx = 0, and this
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is
R b
0 f (x)2 dx −

R b
0 f (x)

°
f (x) − g(x)

¢
dx . Thus

0 ∏
Z b

0
f (x)2 dx −

Ø
Ø
Ø
Z b

0
f (x)

°
f (x) − g(x)

¢
dx

Ø
Ø
Ø.

So
R b
0 f (x)2 dx ≤ ≤

R b
0 | f (x)| dx . Since ≤ is arbitrary,

R b
0 f (x)2 dx = 0. Therefore

f = 0.
25. Isometries are uniformly continuous. Applying Proposition 2.47 to the uni-

formly continuous function ϕ2 ◦
°
ϕ−1
1

Ø
Ø
ϕ1(X)

¢
of the dense subset ϕ1(X) of X∗

1 into X
∗
2 ,

we obtain an isometry9 : X∗
1 → X∗

2 extending ϕ2 ◦
°
ϕ−1
1

Ø
Ø
ϕ1(X)

¢
. Reversing the roles

of X∗
1 and X

∗
2 , we obtain an isometry8 : X∗

2 → X∗
1 extendingϕ1◦

°
ϕ−1
2

Ø
Ø
ϕ2(X)

¢
. Then

8◦9 is a continuous extension of the compositionϕ1◦
°
ϕ−1
2

Ø
Ø
ϕ2(X)

¢
◦ϕ2◦

°
ϕ−1
1

Ø
Ø
ϕ1(X)

¢
,

which is the identity map on ϕ1(X). Hence 8 ◦ 9 is the identity on X∗
1 . Similarly

9 ◦ 8 is the identity on X∗
2 . Thus 9 is onto. This proves existence.

For uniqueness let 9 and 9∗ be two such maps. Then 9−1 ◦ 9∗ is a continuous
extension of the identity map on the dense subset ϕ1(X) of X∗

1 , and hence it is the
identity. Therefore 9 = 9∗.
26. Theorem 2.60 says that X is dense in X∗. Then X = X∗ if and only if X is

closed, and this happens if and only if X is complete, by Proposition 2.43.
27. The only one of these that requires explanation is (iv). We may assume

that none of r , s, and r + s is 0. Write r = mpk/n and s = upl/v with p not
dividing any of r, s, u, v. Without loss of generality, we may assume k ≤ l, so that
max{|r |p, |s|p} = |r |p = p−k . We have

r + s = mpk/n + upl/v = pk
°m
n + upl−k

v

¢
= pk

°mv+pl−knu
nv

¢
.

The denominator nv is not divisible by p. The part of the numerator within the
parentheses is an integer, and we factor out any factors of p from it as pa with a ∏ 0.
Then we have |r + s|p = p−(k+a) and this is ≤ p−k as required.
28. For the triangle inequality, let r, s, t be given. Then Problem 27 gives d(r, t) =

|r − t |p = |(r − s) + (s − t)|p ≤ max{|r − s|p, |s − t |p} ≤ |r − s|p + |s − t |p =
d(r, s) + d(s, t).
29. Part (a) will be illustrated by the more difficult (b) and (c). Multiplication by a

member r ofQ is a uniformly continuous function fromQ intoQp; in fact, the equality
|r(s − s0)|p = |r |p|s − s0|p shows that if ≤ is given, then the δ of uniform continuity
can be taken as |r |−1p ≤. Proposition 2.47 then tells us how to form products rs for r in
Q and s inQp. For fixed s, the result is a uniformly continuousmap ofQ intoQp since
| · |p extends continuously toQp and we have |(r − r0)s|p = |r − r0|p|s|p. A second
application of Proposition 2.47 extends the operation to amapping ofQp×Qp intoQp
that is uniformly continuous in each variable when the other variable is held fixed. In
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fact, it is continuous in both variables since |rs−r0s0|p = |(r−r0)s+r0(s− s0)|p ≤
|r − r0|p|s|p + |r0|p|s − s0| ≤ |r − r0|p|s − s0|p + |r − r0|p|s0|p + |r0|p|s − s0|.
For (c), take a shell Akn =

©
r ∈ Qp

Ø
Ø p−k ≤ |r |p ≤ pn}. This is a closed

subset of Qp, hence complete. Reciprocal is a mapping from Ank ∩ Q into Akn
that is uniformly continuous because r and s in Ank ∩ Q implies |r−1 − s−1|p =
|(s − r)/rs|p = |s − r |p|r |−1p |s|−1p ≤ p2n|s − r |p. Hence reciprocal extends to
a uniformly continuous mapping from Ank to Akn . These mappings are consistent
as n and k tend to infinity, and thus reciprocal is a well-defined function from Q×

p
to itself. It is continuous because the same computation as just given shows that
|r−1 − r−1

0 |p = |r − r0|p|r |−1p |r0|−1p . If we write |r |p ∏
Ø
Ø|r0|p − |r − r0|p

Ø
Ø and

require that |r − r0|p ≤ 1
2 |r0|p, then |r−1 − r−1

0 |p = |r − r0|p
° 1
2 |r0|p

¢−1
|r0|−1p , and

continuity of reciprocal at r0 follows.
The abelian group axioms in (c) are associativity, commutativity, existence of the

two-sided identity 1, and existence of two-sided reciprocals. To complete (c), we
need associativity and commutativity. We can regard associativity as asserting the
equality of two continuous functions fromQp × Qp × Qp toQp. These are equal on
Q × Q × Q, and this subset is dense. Hence the two functions are equal everywhere.
Commutativity is proved similarly.
The distributive law in (d) is proved by the same technique used for associativity

in (c). Thus Qp is a field.
30. For (a), it is enough to prove that S =

©
t ∈ Q

Ø
Ø |t |p ≤ 1

™
is totally bounded.

For x in Q, let C(δ; x) =
©
t ∈ Q

Ø
Ø |t − x |p ≤ δ

™
. It is enough to show for each

integer l ∏ 0 that S ⊆
Spl−1

r=0 C(p−l; r). If t is given in S, t is of the form t = m/n
with m and n in Z and n nondivisible by p. Let n−1 denote the integer from 0 to
pl − 1 such that nn−1 ≡ 1 mod pl , and let r denote the integer from 0 to pl − 1 such
that n−1m ≡ r mod pl . Then m − nr ≡ 0 mod pl , and so |m − nr |p ≤ p−l . Since
|n|p = 1,

Ø
Øm
n − r

Ø
Ø
p ≤ p−l . Thus t is in C(p−l; r).

For (b), compact sets are closed and bounded by Proposition 2.34a. Conversely
let E be closed and bounded. The set T =

©
t ∈ Qp

Ø
Ø |t |p ≤ 1

™
is certainly closed.

Since Qp is complete, T is complete. Part (a) shows that T is totally bounded.
By Theorem 2.46, T is compact. The given set E is contained in some set Tn =©
t ∈ Qp

Ø
Ø |t |p ≤ pn

™
. Multiplication by the member p−n of Qp carries T continu-

ously onto Tn , and Tn is compact by Proposition 2.38. Since E is a closed subset of
the compact set Tn , Proposition 2.34b shows that E is compact.
31. The first two assertions are routine consequences of (ii), (iii), and (iv). Let

us consider the quotient Zp/P . We show that P is a maximal ideal. In fact, if I is
an ideal in Zp properly containing P , then I contains some element t with |t |p = 1.
Then (iii) shows that t−1 has |t−1|p = 1 and lies in Zp. Since t is in I and t−1 is
in Zp, their product 1 is in I . Thus I = Zp. In other words, P is a maximal ideal.
Hence Zp/P is a field. To complete the argument, we show that Zp/P has exactly p
elements. Given x in Zp, choose m/n in Q with

Ø
Øx − m

n
Ø
Ø
p ≤ p−1, by denseness of
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Q in Qp. Here
Ø
Øm
n
Ø
Ø
p ≤ 1, and we may assume that n is nondivisible by p. Arguing

as in Problem 30a, we can find r in {0, 1, . . . , p − 1} such that
Ø
Øm
n − r

Ø
Ø
p ≤ p−1.

Then |x − r |p ≤ max
©ØØx − m

n
Ø
Ø
p,

Ø
Øm
n − r

Ø
Ø
p
™

≤ p−1 by the ultrametric inequality. So
x = (x−r)+r with x−r in P . Thus {0, 1, . . . , p−1} represents all cosets ofZp/P .
Finally no two distinct elements r and r 0 in {0, 1, . . . , p − 1} have |r − r 0|p ≤ p−1

because this inequality would entail having r − r 0 divisible by p.

Chapter III

1. For (a), |T S|2 =
P

j |T S(ej )|2 =
P

j |
P

i (S(ej ), ei )T (ei )|2. Use of the
triangle inequality and then the Schwarz inequality shows that this expression is ≤
P

j
°P

i |(S(ej ), ei )| |T (ei )|
¢2

≤
P

j
°°P

i |(S(ej ), ei )|2
¢1/2°P

i |T (ei )|2
¢1/2¢2

=
P

j |S(ej )|2|T |2 = |S|2 |T |2. Part (b) is routine.
2. The member of L(Rn, Rm) with matrix A.
3. lim suph→0

°
|h|−1| f (h) − 0− 0|

¢
≤ lim suph→0 (|h|−1|h|2) = 0.

4. The formula is d
dt f (x + tu)

Ø
Ø
t=0 =

P
j u j

@ f
@xk (x). The argument is written out

within the proof of Theorem 3.11.

5.
≥
et 0
0 e−t

¥
, et

≥
1 t
0 1

¥
,

≥
cos t sin t

− sin t cos t

¥
,

≥
cos t i sin t
i sin t cos t

¥
,

≥
cosh t sinh t
sinh t cosh t

¥
.

7. The equality is false because the left side is positive and the right side is negative.
In fact, the left side is

R 1
0

£
lim

R N
1 (e−xy − 2e−xy) dx

§
dy, which equals

R 1
0 lim

£
−

e−xy/y + e−2xy/y
§N
1 dy =

R 1
0
1
y
£
e−y − e−2y

§
dy; since e−y > e−2y on (0, 1), the

left side is > 0. Meanwhile, the right side is
R ∞
1

£
− e−xy/x + e−2xy/x

§1
0 dx =

R ∞
1

1
x
£
e−2x − e−x

§
dx ; since e−2x < e−x on (1,∞), the right side is < 0.

8. Define k · k2 as in Section I.10, and let fx (t) = f (x − t); the latter definition
is not the one used earlier in the book. For (a), the Schwarz inequality gives

| f ∗ g(x) − f ∗ g(x0)| =
Ø
Ø 1
2π

R π
−π [ f (x − t) − f (x0 − t)]g(t) dt

Ø
Ø

= k fx − fx0k2kgk2 ≤ kgk2 sup
t

| f (x − t) − f (x0 − t)|,

and the right side tends to 0 as x tends to x0 by uniform continuity of f . This proves
that f ∗ g is continuous. The periodicity is evident. The proof that f ∗ g = g ∗ f is
the same as the proof in Section I.10 that f ∗ DN = DN ∗ f .
For (b), an application of Fubini’s Theorem (Corollary 3.33) and a change of

variables gives 1
2π

R π
π f ∗ g(x)e−inx dx =

° 1
2π

¢2 R π
π

R π
π f (x − t)g(t)e−inx dt dx =

° 1
2π

¢2 R π
π

R π
π f (x − t)g(t)e−inx dx dt =

° 1
2π

¢2 R π
π

R π
π f (x)g(t)e−in(x+t) dx dt =

° 1
2π

¢2 R π
π

R π
π f (x)g(t)e−inx e−int dx dt = cndn .
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For (c), we apply the Weierstrass M test. It is enough to prove that
P

n |cndn| <

+∞, and the Schwarz and Bessel inequalities together do this:
X

n
|cndn| ≤

°X

n
|cn|2

¢1/2°X

n
|dn|2

¢1/2
≤ k f k2kgk2 < +∞.

9. Write out each side as an iterated integral, and apply Fubini’s Theorem (Corol-
lary 3.33).
10. For the partial derivatives, @x

@x (0, 0) = d
dx f

° x0
x2+0

¢ØØ
x=0 = 0 and @ f

@y (0, 0) = 0
similarly. The fact that f is not continuous at (0, 0) is a special case of Problem 11a.
11. For (a), the homogeneity says in particular that f (r x) = f (x) for r > 0 and

|x | = 1. Then supy 6=0 | f (y)| = sup|x |=1 | f (x)|, and the right side is finite, being the
maximum value of a continuous function on a compact set. If f (y) is continuous at
y = 0, then f (0) = limr↓0 f (r x) = f (x) for every x with |x | = 1 and so f must be
constantly equal to f (0).
For (b), lim supr x→0 | f (r x)| = lim supr x→0 rd | f (x)| = 0 if d > 0 since f (x) is

bounded for |x | = 1. Thus f is continuous at 0 if d > 0 and f (0) = 0. If d < 0,
then lim supr x→0 rd | f (x)| = +∞ if d < 0 and f (x) 6= 0.
For (c), we have f (r x) = rd f (x) for any x = (x1, . . . , xn) 6= 0. Put g =

f ◦ mr , where mr refers to multiplication by r . The homogeneity gives g = rd f ,
and thus @g

@xj (x) = rd @ f
@xj (x). On the other hand, the chain rule gives

@g
@xj (x) =

Pn
i=1

@ f
@xi (r x)

@(r xi )
@xj (x) = r @ f

@xj (r x). So r
d @ f

@xj (x) = r @ f
@xj (r x), and (c) follows.

For (d), the given conditions say that f (t x) = t f (x) for all real t . Then @ f
@xj (0) =

limt→0 t−1
°
f (0 + tej ) − 0

¢
= limt→0 t−1t f (ej ) = f (ej ). On the other hand, (c)

says that @ f/@xj is homogeneous of degree 0, and (a) says that @ f/@xj cannot be
continuous at 0 unless it is constant.
12. Part (a) follows from Problem 11b. In (b), @ f

@x (0) = d
dt f (0 + t (1, 0))

Ø
Ø
t=0 =

d
dt t

Ø
Ø
t=0 = 1 and @ f

@y (0) = d
dt f (0+ t y)

Ø
Ø
t=0 = d

dt 0
Ø
Ø
t=0 = 0. The failure of continuity

is by parts (a) and (c) of Problem 11.
For (c), we have d

dt f (0+ tu)
Ø
Ø
t=0 = d

dt t cos
3 θ

Ø
Ø
t=0 = cos3 θ . If f were differen-

tiable at x = 0, the chain rule would give d
dt f (0+ tu)

Ø
Ø
t=0 = u1 @ f

@x (0) + u2 @ f
@y (0) =

cos θ . Since cos3 θ is not identically equal to cos θ , f is not differentiable at 0.
13. Part (a) follows from (a), (b), and (c) of Problem 11. About 0, the function

f is even in x and even in y, and hence the first partial derivatives are odd about 0.
Then part (b) follows from Problem 11d. To calculate the results for (c), we need to
compute @ f

@y (x, 0) for x 6= 0 and @ f
@x (0, y) for y 6= 0. The first of these is x , and the

second is −y. The formulas for the second partial derivatives follow.
14. Forn ∏ 0, rneinθ = (x+iy)n is of classC∞, and so is rne−inθ = (x−iy)n . For

the first of these functions, @2

@x2 (x+iy)n = n(n−1)(x+iy)n−2, while @2

@y2 (x+iy)n =

i2n(n − 1)(x + iy)n−2. Hence 1(x + iy)n = 0. The result for (x − iy)n follows
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by taking complex conjugates. The final conclusion is a routine consequence of
Theorem 1.37, the complex-valued version of Theorem 1.23, and the fact that each
term is harmonic.
15. This follows by direct calculation.

16. In the notation of Theorem 3.17, ϕ(x, y) is
µ
x4y + x
x + y3

∂
, a is (1, 1), and b is

(2, 2). One checks that ϕ0(1, 1) =
≥
5 1
1 3

¥
. The locally defined inverse function f

near (2, 2) has f 0(2, 2) = ϕ0(1, 1)−1 =
≥

3/14 −1/14
−1/14 5/14

¥
, and @F

@u (2, 2) is the upper left
entry of this, namely 3/14.
17. All 6 derivatives of possible interest are given by the matrix product√
2 −1 0
2 2 0
1 1 1

!−1 √
0 0
0 −π/2
0 0

!

= 1
6

√
0 −π/2
0 −π

0 3π/2

!

. Then @x
@u (π/2, 0) = 0 and @x

@v (π/2, 0) =

−π/12. The function x(u, v) is of class C∞ by Corollary 3.21.
18. The map in question is X 7→ X2 and is the composition of X 7→ (X, X)

followed by (U, V ) 7→ UV . Here we can write UV = L(U)V = R(V )U , where
L(U) is the linear function “left multiplication by U” on matrix space and R(V ) is
the linear function “right multiplication by V .” The derivative of (U, V ) 7→ UV is
then ( R(V ) L(U) ) by Problem 2. Hence the derivative of X 7→ X2, by the chain
rule, is

( R(V ) L(U) )

µ
1
1

∂ Ø
Ø
Ø
Ø
Ø
U=V=X

= (R(V ) + L(U))
Ø
Ø
U=V=X = R(X) + L(X).

At X = 1, this is R(1) + L(1), which is “multiplication by 2” and is invertible. The
Inverse Function Theorem thus applies.

19. We may assume that g0(x0) 6= 0, thus that @g
@xi (x0) 6= 0 for some i . We

take this i to be i = n; the other cases involve only notational changes. Write
x = (x 0, xn) with x 0 ∈ Rn−1, and write x0 = (a, b) similarly. Then the Implicit
Function Theorem produces a real-valued C1 function h(x 0) defined on an open set
V about the point a in Rn−1 such that h(a) = b, g(x 0, h(x 0)) = 0 for all x 0 in V ,
and @h

@xj (a) = −
° @g

@xn (a, b)
¢−1° @g

@xj (a, b)
¢
for 1 ≤ j < n. Let H(x) = (x 0, h(x 0)).

Form f ◦ H , which has a local maximum or minimum at x 0 = a in V . All the first
partial derivatives of this function must be 0 at x 0 = a. Thus, for 1 ≤ j ≤ n− 1, 0 =
@( f ◦H)

@xj (a) =
Pn

i=1
@ f
@xi (x0)

@Hi
@xj (a). Since Hi (x) = xi for i < n, all the terms of this

sum are 0 except possibly for the j th and the nth. Thus 0 = @ f
@xj (x0) + @ f

@xn (x0)
@h
@xj (a)

= @ f
@xj (x0)−

° @ f
@xn

¢
(x0)

° @g
@xn (a, b)

¢−1° @g
@xj (a, b)

¢
for j < n. The right side is 0 trivially

for j = n, and thus the result follows with ∏ = −
° @g

@xn (a, b)
¢−1.
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20. The difficulty in handling this inequality as a maximum-minimum problem is
the question of existence. Lagrange multipliers can constrain matters to a compact
set, and then existence is no longer an obstacle. The domain D initially will be
the set where a1 ∏ 0, . . . , an ∏ 0. Fix a number c, and let g(a1, . . . , an) =
1
n (a1 + · · · + an) − c and f (a1, . . . , an) = n

pa1 · · · an . The subset of D where
g(a1, . . . , an) = 0 is compact, and f must have an absolute maximum on it. This
maximum cannot occur where any aj equals 0 since f is 0 at such points. So it
is at a point in the set U where all aj are > 0. Apply Lagrange multipliers on U .
The resulting equations are 1n (a1 · · · an)1/n

±
aj = 1/n for 1 ≤ j ≤ n, as well as the

constraint equation 1
n (a1 + · · · + an) = c. The first n equations show that all aj ’s

must be equal, and the constraint equation shows that they must equal c. The desired
inequality is true in this case and hence is true in all cases.
21. Write x(θ) = r(θ) cos θ and y(θ) = r(θ) sin θ , differentiate with respect

to θ , and form x 0(θ)2 + y0(θ)2. The result is that x 0(θ)2 + y0(θ)2 = r 0(θ)2 + r2.
Substitution into the result of Theorem 3.42 gives the desired formula.

22. For (a), s(t) =
R t
0

q° d
du cos u

¢2
+

° d
du sin u

¢2
+

° d
du u

¢2 du =
p
2
R t
0 du =

t
p
2.
For (b), s(x) =

R x
0

q° d
du u

¢2
+

° d
du
1
2 (eu + e−u)

¢2 du. Here d
du

° 1
2 (e

u + e−u)
¢

=
1
2 (e

u − e−u), and the sum of 1 and the square of this is the square of 12 (e
u + e−u).

Thus s(x) =
R x
0
1
2 (e

u + e−u) du = 1
2 (e

x − e−x ).

For (c), s(x) =
R x
0

q° d
du u

¢2
+

° d
du u3/2

¢2 du =
R t
0

q
1+ 9

4u du, and this equals
8
27

£°
1+ 9

4 t
¢3/2

− 1
§
.

For (d), the integral in question is s(x) =
R x
0

p
1+ y0(t)2 dt . Since y0(t) = 2t ,

the right side is equal to
R x
0

p
1+ 4t2 dt . The substitution 2t = tan u leads to an

integral of a multiple of sec3 u = cos u/ cos4 u = (cos u)(1 − sin2 u)−2. Then the
substitution v = sin u leads to a definite integral of (1−v2)−2, which can be handled
by partial fractions.
For (e), we have r(t) = t and r 0(t) = 1. Problem 21 shows that the integral is

s(t) =
R θ
θ0

p
t2 + 1 dt . This is treated the same way as in (d).

For (f), we have x(θ) = θ cos θ and y(θ) = θ sin θ . These are both C1 functions
in an interval about 0, and thus x 0(θ) and y0(θ) have finite limits at θ = 0. Hence the
curve is tamely behaved at 0.

23. `(∞ ) =
R 1
0

p
4t2 + 1 dt+

R 2
1

p
2 dt+

R 3
2

p
1+ 4(t − 2)2 dt , and if one wants,

these integrals can be evaluated exactly.
24. The first line of inequalities is proved in the same way as for Lemmas 1.24

and 1.25. Any two partitions have a common refinement, and thus the second line
of inequalities follows. Taking the infimum over P1 and then the infimum over P2
yields the third inequality.
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25. Let ≤ > 0 be given. Choose δ > 0 so that | f (x) − f (x 0)| ≤ ≤ whenever
|x − x 0| ≤ δ. If µ(P) ≤ δ, then max

xj−1≤x≤xj
f (x) − min

xj−1≤x≤xj
f (x) ≤ ≤. Hence

U(P, f,α) − L(P, f,α) =
mP

j=1

°
max

xj−1≤x≤xj
f (x) − min

xj−1≤x≤xj
f (x)

¢°
α(xj )−α(xj−1)

¢

≤
mP

j=1
≤
°
α(xj ) − α(xj−1)

¢
= ≤

°
α(b) − α(a)

¢
.

26. Let A = supP 0 L(P 0, f,α). From Problem 24 it follows that U(P, f,α) ∏
A ∏ L(P, f,α) for every P . Combining this inequality with Problem 25 shows that
limµ(P)→0U(P, f,α) = A = limµ(P)→0 L(P, f,α).
27. With ∞ (t) = (1 − t)(x1, y1) + t (x2, y2), we have x(t) = x1 + t (x2 − x1),

dx = (x2 − x1) dt , y(t) = y1 + (y2 − y1)t , and dy = (y2 − y1) dt . Then
R
∞ x dy =

R 1
0 (x1+ (x2− x1)t)(y2− y1) dt = x1(y2− y1)+ 1

2 (x2− x1)(y2− y1), and similarlyR
∞ y dx = y1(x2 − x1) + 1

2 (x2 − x1)(y2 − y1). Subtraction gives
R
∞ x dy − y dx =

x1(y2 − y1) − y1(x2 − x1) = x1y2 − x2y1.
28. In (b), take f (x, y) = 1

2 log(x
2 + y2).

29. In (b),
R
∞ F · ds =

R 2π
0 (P(cos t, sin t)(− sin t) + Q(cos t, sin t)(cos t)) dt =

R 2π
0 (− sin2 t − cos2 t) dt =

R 2π
0 (−1) dt = −2π .

In (c), if there were such a function, then Proposition 3.46 would say thatR
∞ F · ds = 0, in contradiction to the result of (b).

30.
R 1
0 t dt +

R 1
0 2t

5 dt +
R 1
0 3t

11 dt , etc.

31. Since
≥

ex cos y
−ex sin y

¥
= ∇(ex cos y), the line integral equals

R
∞

≥
y

−x

¥
· ds =

R 2π
0 ((sin t)(− sin t) + (− cos t)(cos t)) dt = −2π .
32. In Green’s Theorem with P(x, y) = −1

2 y and Q(x, y) = 1
2 x , we have

@Q
@x − @P

@x = 1. Thus
R
∞
1
2 x dy − 1

2 y dx =
RR

U
° @Q

@x − @P
@x

¢
dx dy =

RR
U 1 dx dy =

Area(U).
33. The integral over the polygon of 12 (x dy − y dx) is the sum of terms as in

Problem 27, and this expression equals
Pm

j=0(xj yj+1 − yj xj+1). Green’s Theorem
applies in this situation, according to Corollary 3.50, and the line integral therefore
equals the double integral over the inside of the polygon. The integrand is 1, according
to Problem 32, and thus the double integral gives the area of the inside.

Chapter IV

1. For (a), 12 y
2 = − 1

2 t
2 + c. Adjusting c, we have y2 = −t2 + c. Then

y(t) = ±
p
c − t2. For (b), the exceptional points are (t0, 0). For (c), a solution with

y(t0) = y0 is y(t) = sgn(y0)
q
y20 + t20 − t2.
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2. In Theorem 4.1, take a = 1 and b = 1. Then M = 2 and a0 = 1
2 . The theorem

therefore gives a solution for |t | < 1/2.

3. To be an integral curve, (x(t), y(t)) must satisfy x 0(t) =
p
x and y0(t) = 1/2.

Then 2
p
x(t) = t + c1 and y(t) = 1

2 t + c2. At some unspecified time t0, the curve
is to pass through (1, 1). Then x(t0) = 1 and y(t0) = 1; these force 2 = t0 + c1
and 1 = 1

2 t0 + c2. So (x(t), y(t)) =
° 1
4 (t − t0 + 2)2, 12 (t − t0 + 2)

¢
. If t0 = 0, for

example, the curve is (x(t), y(t)) =
° 1
4 (t + 2)2, 12 (t + 2)

¢
.

4. This uses the multivariable chain rule, Proposition 3.28b, and the Fundamental
Theorem of Calculus. The derivative in question is

= (2t)(1/t2) sin(t3) +
R t2
0 (@/@t)(s−1 sin(st)) ds = (2/t) sin(t3) +

R t2
0 cos(st) ds

= (2/t) sin(t3) +
£
t−1 sin(st)

§t2
s=0 = (2/t) sin(t3) + t−1 sin(t3).

5. y(t) = 2+ c1et + c2e2t .

6. For (a), J =

µ
3 1
0 3

∂
and B =

µ
1 0
2 1

∂
for the first, and J=

√ 1 0 0
0 i 0
0 0 −i

!

and B =

√ 0 i −i
1 0 0
0 1 1

!

for the second. For (b), the bases are e3t
µ
1
2

∂
and

e3t
µµ

0
1

∂
+ t

µ
1
2

∂∂
for the first, and et

√ 0
1
0

!

, eit
√ i
0
1

!

, e−i t
√ −i

0
1

!

for the second.

Part (b) can be solved directly without solving part (a) first. Consider the 2-by-2
example. The only root of the characteristic polynomial is 3, and it has multiplicity 2.

We solve (A−3 ·1)k0 = 0 and get k0 =

µ
c
2c

∂
. Thenwe solve (A−3 ·1)l0 =

µ
c
2c

∂

and get l0 =

µ
d

c + 2d

∂
. Choose any c 6= 0 and any d, say c = 1 and d = 0. Then

k0 =

µ
1
2

∂
, and l0 =

µ
0
1

∂
, and we obtain the solutions in the form given above.

For more complicated examples, the choice of these constants can get tricky, but this
method works quickly for easy examples.

7. For n = 1, det(∏ − (−a0)) = ∏ + a0. Assume the result for n − 1, and expand
the nth-order determinant by cofactors about the first column. Then
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det(∏1− A) = det









∏ −1 0 0 ··· 0 0
∏ −1 0 ··· 0 0

∏ −1 ··· 0 0
...

...
...

...
∏ −1 0

∏ −1
a0 a1 a2 ··· an−1









= ∏ det








∏ −1 0 ··· 0 0
∏ −1 ··· 0 0

...
...

...
...

∏ −1 0
∏ −1

a1 a2 ··· an−1








+ (−1)n−1a0 det









−1
−1 ··· 0

...

∗ ···
...

−1









= ∏(∏n−1 + an−1∏n−2 + · · · + a1) + (−1)n−1a0(−1)n−1

= ∏n + an−1∏n−1 + · · · + a0,

the next-to-last equality following by induction.

8. In (a), let | fn(t) ≤ M for all t and n. Then |Fn(t) − Fn(t 0)| =
Ø
Ø R t

t 0 fn(s) ds
Ø
Ø ≤

M|t − t 0|. Thus equicontinuity holds with δ = ≤/M .
In (b), we solve the equationexplicitly, usingvariationof parameters. The solutions

of the homogeneous equation are c1 cos t + c2 sin t , and computation shows that
the unique solution of the inhomogeneous equation with the given initial condition
is y∗(t) = −(cos t)

R t
0 (sin s) f (s) ds + (sin t)

R t
0 (cos s) f (s) ds. Each integral is

equicontinuous by the same argument as in (a), and the operations of multiplication
by a bounded continuous function and addition preserve the equicontinuity.
In (c), we do not know explicit formulas for the solutions of the homogeneous

equation, but the same argument as in (b) with variation of parameters will work
anyway.
10. For any C2 periodic function f , the nth Fourier coefficient cn of f has

|cn| ≤ n−2 sup | f 00|. The function v(r, θ), being a composition of two C2 functions,
is C2 for 0 ≤ r < 1 and |θ | ≤ π , and hence sup

Ø
Ø @2v
@θ2

Ø
Ø is bounded by some M for

0 ≤ r ≤ 1− δ. Then we obtain |cn(r)| ≤ M/n2.
11. The function (u ◦ Rϕ)(x, y)e−ikϕ is of class C2 jointly in x, y,ϕ. By Proposi-

tion 3.28 we can pass the second derivatives with respect to x and y under the given
integral sign with respect to ϕ. The integrand is harmonic in (x, y) for each ϕ, and
therefore the integral itself is harmonic. The integral itself is given by

1
2π

R π
−π v(r, θ + ϕ)e−ikϕ dϕ = 1

2π
R π
−π

P∞
n=−∞ cn(r)einθei(n−k)ϕ dϕ.

The series in the integrand is uniformlyconvergent as a functionofϕ, by the estimate in
Problem10 and by theWeierstrassM-test. Theorem1.31 says thatwe can interchange
sum and integral, and then the right side above collapses to ck(r)einθ .
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12. Starting from v(r, θ) = u(r cos θ, r sin θ), we compute @v
@r and

@v
@θ by the chain

rule and obtain

@v
@r = cos θ @u

@x + sin θ @u
@y and @v

@θ = −r sin θ @u
@x + r cos θ @u

@y .

Using the same technique, we form @2v
@r2 and

@2v
@θ2

in terms of the partial derivatives of
u, and we find that

1u = @2v
@r2 + 1

r
@v
@r + 1

r2
@2v
@θ2

.

Substituting v(r, θ) = ck(r)eikθ and taking into account that 1u = 0, we obtain

0 = eikθ
°
c00k + r−1c0k − k2r−2ck).

Thus r2c00k + rc0k − k2ck = 0. This is an Euler equation. The solutions are ck(r) =
akr |k| + bkr−|k| if k 6= 0 and are a0 + b0 log r if k = 0. Taking into account that
ck(r) is differentiable at r = 0, we obtain ck(r) = akr |k| for all k. Substitution gives
v(r, θ) =

P∞
n=−∞ cnr |n|einθ .

13. Since fR(θ) =
P∞

n=−∞ cn R|n|einθ and Pr/R(θ) =
P∞

n=−∞(r/R)|n|einθ , the
result follows immediately from Problem 8b at the end of Chapter III.
15. For (a), substitute y = uv, y0 = u0v+uv0, and y00 = u00v+2u0v0+uv00 into the

equation for y, take into account thatu00+Pu0+Qu = 0, andget 2u0v0+uv00+Puv0 =
0. Put w = v0. We can rewrite our equation as w0 = (−P − 2u0/u)w since u is
assumed nonvanishing. Then Problem 14 gives w(t) = ce−

R
P dt−2

R
(u0/u) dt =

ce−
R
P dt elog(|u|−2) = cu(t)−2e−

R
P(t) dt .

For (b), the formula in (a) gives v0(t) = ce−t2/2, and hence y(t) = u(t)v(t) =
et2/2

R t
0 e

−s2/2 ds.
16. The substitution leads to uv00 + (2u0 + Pu)v0 + (u00 + Pu0 + Qu)v = 0. Thus

the condition is 2u0 + Pu = 0. By Problem 14, u(t) is a multiple of e−
R

(P/2) dt . The
computation of R(t) is then routine.
17. Substitution of v = ur−1/2 shows that L(v) = r1/2L0(u) with L0 of the

indicated form.
18. For (a), the formula is dn = −

Pn
k=1 ckdn−k , with d0 = 1. For (b), we have

d1 = −c1d0 = −c1, so that |d1| = |c1| ≤ Mr1. Thus |dn| ≤ M(M + 1)n−1rn for
n = 1. Assume that |dk | ≤ Mrk for 1 ≤ k < n. Then |dn| ≤

Pn−1
k=0 |cn−k ||dk | ≤

|cn| +
Pn−1

k=1(Mrn−k)(M(M + 1)k−1rk) ≤ Mrn + M2rn
Pn−1

k=1(M + 1)k−1. This is

= Mrn
°
1+ M

Pn−1
k=1(M + 1)k−1

¢

= Mrn(1+ M((M + 1)n−1 − 1)/((M + 1) − 1)

= Mrn(1+ (M + 1)n−1 − 1) = M(M + 1)n−1rn.
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For (c), wemay assume that f (0) = 1. Write f (x) =
P∞

n=0 cnxn , and define dn as in
the answer to (a). The estimate in (b) shows that the power series g(x) =

P∞
n=0 dnxn

has positive radius of convergence, and Theorem 1.40 shows that f (x)g(x) = 1 on
the common region of convergence. Then g(x) = 1/ f (x), and 1/ f (x) is exhibited
as the sum of a convergent power series.

19. The indicial equation is s(s − 1) + a0s + b0 = 0, where a0 = P(0) and
b0 = Q(0). Thus s1 + s2 = 1− a0.
In (a), we apply Problem 15a with u(t) = t s1

P∞
n=0 cntn . The expression P(t) in

that problemhas become t−1P(t)here, andweobtainv0(t) = u(t)−2e−
R
t−1P(t) dt . In

the integrand of the exponent, we separate the term−a0/t from the power series, and
we see that v0(t) = u(t)−2e−a0 log t × power series = t−a0u(t)−2 × power series, the
power series having nonzero constant term since exponentials are nowhere vanishing.
This is of the form t−2s1−a0 × power series as a consequence of Problem 18 and
Theorem 1.40, the power series having nonzero constant term. When this expression
is integrated to form v(t), the t−1 produces a logarithm, and the rest produces powers
of t . Thus v(t) equals c log t + t−2s1−a0+1 × power series; here the power series has
nonzero constant term. Then u(t)v(t) = cu(t) log t + ts1 t−2s1−a0+1 × power series;
once again the power series has nonzero constant term. The exponent of t in the
second term is −s1 + 1− a0 = −s1 + (s1 + s2) = s2, and (a) is done.
In (b), we know that there is only one solution beginning with t s1 , and thus we

must have c 6= 0 in (a). Another way to see this conclusion is to recognize that the
exponent of t−2s1−a0 in v0(t) is just −1 since 2s1 = s1 + s2. Thus the coefficient of
t−1 in integrating to form v(t) is not 0, and the logarithm occurs.
In (c), we know from a computation in the text that no series solution begins with

t−p except when p = 0, and thus the first argument for (b) applies.

20. When t = tk−1 is substituted into the formula valid for tk−1 < t ≤ tk , we get
y(t) = y(tk−1); so the formula is valid also at tk−1.
We induct on k. For k = 0, y(t0) = y0. Assume inductively for k > 0 that

|y(tk−1) − y(t0)| ≤ M|tk−1 − t0| ≤ Ma0 ≤ b. For tk−1 ≤ t ≤ tk , the displayed
formula in the problem implies |y(t)− y(tk−1)| = |F(tk−1, y(tk−1))| |t−tk−1|. Since
(tk−1, y(tk−1)) lies in R0, |F | is ≤ M on it. Thus |y(t) − y(tk−1)| ≤ M|t − tk−1| ≤
Ma0 ≤ b. If tl−1 ≤ t ≤ tl , then adding such inequalities gives |y(t) − y(t0)| ≤
M|t1 − t0| + · · · + M|tl−1 − tl−2| + M|t − tl−1| = M|t − t0| as required. Since
|t − t0| ≤ a0, we have M|t − t0| ≤ Ma0 ≤ b. Thus (t, y(t)) is in R0.

21. We may assume that t 0 ≤ t . If t 0 and t lie in the same interval [tk−1, tk] of the
partition, then y(t) − y(t 0) = F(tk−1, y(tk−1))(t − t 0). Taking absolute values gives
|y(t) − y(t 0)| ≤ M|t − t 0|.
Otherwise let t 0 ≤ tl ≤ tk−1 ≤ t . Then each pair of points (t 0, tl),(tl , tl+1),

. . . ,(tk−2, tk−1),(tk−1, t) lies in a single interval of the partition. Adding the estimates
for each and taking into account that each difference of t values is ∏ 0, we obtain
|y(t) − y(t 0)| ≤ M|t − t 0|.
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22. Let tk−1 ≤ t ≤ tk . Then
R t
t0 y

0(s) ds =
Pk−1

j=1
R tj
tj−1 y

0(s) ds +
R t
tk−1 y

0(s) ds =
(y(t1) − y(t0)) + · · · + (y(tk−1) − y(tk−2)) + (y(t) − y(tk−1)) = y(t) − y(t0),
by an application of the Fundamental Theorem of Calculus on each interval. If
tk−1 < s < tk , we have |y0(s)− F(s, y(s))| = |F(tk−1, y(tk−1))− F(s, y(s))|. Here
|s− tk−1| ≤ |tk − tk−1| ≤ δ by the choice of the partition. Again by the choice of the
partition, |y(s) − y(tk−1)| ≤ M|s − tk−1| ≤ M(δ/M) = δ. By the definition of δ in
terms of ≤ and the uniform continuity of F , we conclude that |y0(s)−F(s, y(s))| ≤ ≤.

23. We have
Ø
Øy(t) −

°
y0 +

R t
t0 F(s, y(s)) ds

¢ØØ =
Ø
Ø R t

t0 [y
0(s) − F(s, y(s))] ds

Ø
Ø ≤

R t
t0 |y0(s) − F(s, y(s))| ds ≤

R t
t0 ≤ ds ≤ ≤|t − t0| ≤ ≤a0.

24. The statement of Problem 21 proves uniform equicontinuity with δ = ≤/M .
If we specialize to t 0 = t0, it implies uniform boundedness.
25. Let y(t) = lim ynk (t) uniformly. The functions ynk (t) are continuous, and the

uniform limit of continuous functions is continuous. Hence y(t) is continuous. By
Problem 23 we have

Ø
Øynk (t) −

°
y0 +

R t
t0 F(s, ynk (s)) ds

¢ØØ ≤ ≤nk a0 for each k. We
take the limsup of this expression as k tends to infinity. We know that ynk (t) tends
uniformly to y(t). Then ynk (s) tends uniformly to y(s) uniformly for t0 ≤ s ≤ t . By
uniform continuity of F , F(s, ynk (s)) tends uniformly to F(s, y(s)). By Theorem
1.31,

R t
t0 F(s, ynk (s)) ds tends to

R t
t0 F(s, y(s)) ds.

26. For some analytic f (z), we can write u(x, y) = Re f (z) in the unit disk by
Problem 70 in Appendix B. Also f (z) =

P∞
n=0 Cnzn in the unit disk by Taylor’s

Theorem (Theorem B.21). In polar coordinates, Cnzn takes the form Cnrneinθ ,
and Re(Cnrneinθ ) = ReCn cos nθ − ImCn sin nθ =

° 1
2 ReCn − 1

2i ImCn
¢
einθ +° 1

2 ReCn + 1
2i ImCn

¢
e−inθ , as required.

27. The function f (z) is analytic for |z| < R and is nonzero at z = 0. If f (z) is
nowhere 0 for |z| < ε with ε < R, then 1/ f (z) is analytic for |z| < ε and equals the
sum of its Taylor series for |z| < ε.
28. (a) This is an instance of Corollary B.15.
(b) For the expansion we have eiz sin θ =

P∞
p=0

1
p! (i z)

p(eiθ − e−iθ )p(2i)−p =
P∞

p=0
1
p! (z/2)

p(eiθ − e−iθ )p. For each fixed z, the series is uniformly convergent in
θ . Thuswhenwe integrate the product of the two sideswith e−inθ , we can interchange
the sum and integral to get the asserted expression for cn(z).
(c) Since the only integer power of einθ that has nonzero integral is the 0th power,

1
2π

R π
−π (eiθ − e−iθ )pe−inθ is nonzero only for n = p, p − 2, . . . , p − 2p, i.e., only

when n is of the form p − 2k with k = 0, 1, . . . , p. When n = p − 2k with
k ∏ 0, we have (eiθ − e−iθ )pe−inθ = ei(p−n)θ (1− e−2iθ )p = e2ikθ (1− e−2iθ )p =
e2ikθ

Pp
l=0(−1)

l e−2ilθ
°p
l
¢
. The only term that contributes to the integral is the one for

l = k, and its contribution is (−1)k
°p
k
¢
. Thus In,p is nonzero except when p−n = 2k

with 0 ≤ k ≤ p, and then it contributes (−1)k
°p
k
¢
. This formula for In,p remains

correct when p−n = 2k for all k ∏ 0 because the binomial coefficient
°p
k
¢
is 0 when
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k > p. Thus cn(z) =
P∞

p=0
1
p! (z/2)

p In,p =
P∞

k=0
1

(n+2k)! (z/2)
n+2k(−1)k

°n+2k
k

¢
,

and the desired formula for cn(z) follows.
(d) For n ∏ 0, the series for cn(z)matches that for Jn(z). For n ≤ 0, we replace θ

by −θ in the integral defining c−n(z) and find that c−n(z) = cn(−z) = Jn(−z), and
this equals (−1)n Jn(z) by inspection.
(e) The function ei sin θ has a uniformly convergent Fourier series by Proposition

1.56 since ei sin θ has a continuous derivative in θ , and it converges to the function by
Dini’s test (Theorem 1.57) or by Fejér’s Theorem (Theorem 1.59).

Chapter V

1. For (a) and (c), the answer is 2k for 1 ≤ k ≤ n. However, the assertion in (d)
is false; for a counterexample, take X = {1, 2, 3, 4}, and let B consist of all sets with
an even number of elements. For (b), the associativity is proved by observing that
A1 B1C is the set of all elements that lie in an odd number of the sets A, B,C .
2. Let X = {1, 2, 3} with the σ -algebra consisting of all subsets. Take ρ({1}) =

ρ({3}) = +2, ρ({2}) = −3, A = {1, 2}, and B = {2, 3}.
4. This can be worked out carefully, but it is easier to use Problem 3 and apply

dominated convergence to see that the measure of the left side is lim supµ(En), and
the measure of the right side is lim infµ(En).
5. Part (a) is proved the same way as for Lebesgue measure. In (b), the interval I

of rationals from 0 to 1 has µ(I ) = 1, and it is a countable union of one-point sets
{p}, each of which has µ({p}) = 0.
6. Argue by contradiction. If Ec is not dense, then there is a nonempty open

interval U in [0, 1] with U ∩ Ec = ∅ and hence U ⊆ E . Since µ(U) > 0, we must
have µ(E) > 0.
7. As soon as supµ(A) is known to be finite, B can be constructed as the union

of a sequence of sets whose measures increase to the supremum. Thus assume that
the supremum of µ(A) over all sets of finite measure is infinite. Then we can choose
a disjoint sequence of sets An with each µ(An) finite and with

P
µ(An) = +∞. A

little argument allows us to partition the terms of the series into two subsets, with the
series obtained from each subset divergent. Say the terms of one subset are µ(Bi )
and the terms of the other are µ(Cj ). Since

P
µ(Bi ) = +∞, the hypothesis makes

µ
°°S

i Bi
¢c¢ finite. A contradiction arises because

°S
i Bi

¢c
⊇

S
j Cj and

S
j Cj

has infinite measure.
8. Consider the setA of all Borel sets E such that f −1(E) is measurable. The set

A is closed under complements and countable unions, and it contains all intervals.
So it is a σ -algebra containing all intervals and must consist of all Borel sets.
10. This problem can be done via dominated convergence, but let us do it from

scratch in order to be able to quote it in solving Problem 18 and other problems. We
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have
Ø
Ø R

X fn dµ −
R
X f dµ

Ø
Ø ≤

R
X | fn − f | dµ ≤ µ(X) supx | fn(x) − f (x)|,

and the right side tends to 0 by the uniform convergence. Thus limX fn dµ =R
X f dµ, the limit existing.
11. In (a) the approximating sets are finite unions of intervals, and we can add

their lengths to obtain
QN

n=1 (1− rn). Then apply Corollary 5.3. For (b), the set Cc

is open, and every point of Cc has an open interval about it where IC is identically 0;
this proves the continuity at points of Cc. To have continuity of IC at a point x0 of
C , we would need IC > 1/2 on some interval about x0, and this would mean that
IC equals 1 on that interval and hence that the interval is contained in C . But C
contains no intervals of positive length. Part (c) is handled by the same argument as
(b). For (d), part (c) says that IC cannot be redefined on a Lebesgue measurable set
of measure 0 so as to be continuous except on a set of measure 0. Theorem 3.29 says
that no f obtained by redefining IC on a set of Lebesgue measure 0 can be Riemann
integrable. On the other hand, IC is measurable, being the indicator function of a
compact set, and hence it is Lebesgue integrable.
12. Argue for indicator functions and then simple functions. Then pass to the

limit to handle nonnegative functions.
13. Let B be the set of all subsets E of X × X such that there exists a set SE inA

with Ex = SE for all but countablymany x in X . Every rectangle inA×A is inB. In
fact, there are two kinds of sets to check, sets E = A× B with A countable, in which
case Ex is empty except for x in the countable set A, and sets Ac×B with A countable,
in which case Ex = B except for x in A. Also B is a σ -algebra. In fact, let sets En in
B be given with associated sets SEn . Then

°S
En

¢
x =

S
((En)x ) =

S
SEn except

when x is in the countable exceptional set for some n; also if E and SE are given,
then (Ec)x = (Ex )c = (SE )c except when x lies in the exceptional set for E . Finally
the diagonal D is not in B and therefore cannot be in A×A. In fact, Dx = {x} for
each x , and there can be at most one x with Dx = SD , whatever SD is.
14. Toprove that R ismeasurable, onefirst proves the assertion for simple functions

∏ 0 and then passes to the limit. For the rest Fubini’s Theorem gives
R
X×[0,+∞] IR d(µ × m) =

R
X

£ R
[0,+∞] IR(x, y) dm(y)

§
dµ(x)

=
R
X

£ R
[0, f (x)) dm(y)

§
dµ(x) =

R
X f (x) dµ(x).

15. This is proved in the same way as Proposition 5.52a.
16. The measure space is the unit interval with Lebesgue measure, and each fn is

an indicator function. The set of which fn is the indicator function is the subset of R
between

Pn−1
k=1 ak and

Pn
k=1 ak written modulo 1, i.e., the set of fractional parts of

each of these rational numbers. The divergence of the series forces these sets to cycle
through the unit interval infinitely often, and thus fn(x) is 1 infinitely often and 0
infinitely often.
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17. From the definition of EMN , we see that
S

N EMN = X and
T

N E
c
MN =

∅. The sets EMN are increasing as a function of N , and their complements are
decreasing with empty intersection. Corollary 5.3 produces an integer C(M) such
that µ(EcM,C(M)) < ≤/2M . Put E =

S
M EcM,C(M). Then µ(E) < ≤ by Proposition

5.1g. If ≤0 > 0 is given, we are to produce K such that | fk(x) − f (x)| < ≤0 for
all k ∏ K and all x in Ec. Choose M0 with 1/M0 < ≤0. The integer K will be
C(M0). Since x is in Ec =

T
M EM,C(M), x is in EM0,C(M0) in particular. Then

| fk(x) − f (x)| < 1/M0 < ≤0 for k ∏ C(M0).
18. In (a), we may take the set of integration to be X . Let S be the set of

measure 0 on which any of fn and f is infinite, and redefine all the functions to be 0
on S. Given ≤ > 0, choose δ > 0 by Corollary 5.24 such that µ(F) < δ impliesR
F g dµ < ≤. Let E be as in Egoroff’s Theorem for the number δ. Problem 10 shows
that lim

R
Ec fn dµ =

R
Ec f dµ, the limit existing. Also,

Ø
Ø R

E fn dµ
Ø
Ø ≤

R
E | fn| dµ ≤R

E g dµ < ≤ for all n, and similarly for f . Hence lim supn
Ø
Ø R

X fn dµ −
R
X f dµ

Ø
Ø ≤

2≤. Since ≤ is arbitrary, the result follows.
In (b), consider themeasure g dµ and the sequence of functions {hn}with hn(x) =

fn(x)/g(x) when g(x) > 0, hn(x) = 0 when g(x) = 0. After checking that hn is
measurable, use Corollary 5.28 and apply (a). The constant that bounds the sequence
is 1.
19. By Fatou’s Lemma,

R
Ec f dµ ≤ lim infn

R
Ec fn dµ. Subtracting this fromR

X f dµ = lim
R
X fn dµ gives

R
E f dµ ∏ lim supn

R
E fn dµ. Another applica-

tion of Fatou’s Lemma gives lim infn
R
E fn dµ ∏

R
E f dµ, and we conclude that

lim infn
R
E fn dµ = lim supn

R
E fn dµ =

R
E f dµ, from which the result follows.

20. Let ≤ > 0 be given. Choose δ > 0 by Corollary 5.24 such that µ(F) ≤ δ

implies
R
F f dµ ≤ ≤. Then choose E with µ(E) < δ such that fn converges to f

uniformly off E . Problem 10 shows that there is an N such that
R
Ec | fn − f | dµ < ≤

for n ∏ N , and Problem 19 shows that there is an N 0 such that
R
E | fn − f | dµ ≤R

E fn dµ+
R
E f dµ ≤ 2

R
E f dµ+≤ for n ∏ N 0. Sinceµ(E) < δ, 2

R
E f dµ+≤ ≤

3≤. Then n ∏ max{N , N 0} implies
R
X | fn − f | dµ ≤ 4≤.

21. Suppose that lim
R
X fn dµ =

R
X f dµ. Given ≤ > 0, choose δ > 0 by

Corollary 5.24 such that µ(E) < δ implies
R
E f dµ < ≤. Then choose N such that

N−1° R
X f dµ+ ≤

¢
< δ. For any n, the convergence of

R
X fn dµ to

R
X f dµ implies

that Nµ({x | fn(x) ∏ N }) ≤
R
{x | fn(x)∏N } fn dµ ≤

R
X fn dµ ≤

R
X f dµ + ≤ if n is

sufficiently large. Hence µ({x | fn(x) ∏ N }) ≤ N−1° R
X f dµ + ≤

¢
< δ for large

n, and therefore
R
{x | fn(x)∏N } f dµ < ≤. Problem 20 shows that

R
X | fn − f | dµ ≤ ≤

if n is large enough, and then also
R
{x | fn(x)∏N } | fn − f | dµ ≤ ≤. So we have

R
{x | fn(x)∏N } fn dµ ≤

R
{x | fn(x)∏N } | fn − f | dµ +

R
{x | fn(x)∏N } f dµ ≤ ≤ + ≤ = 2≤

for n large, say n ∏ N 0. By increasing N and taking the integrability of f1, . . . , fN 0−1
into account, we can achieve the inequality

R
{x | fn(x)∏N } fn dµ ≤ 2≤ for all n.

Conversely suppose that { fn} is uniformly integrable. Given ≤ > 0, find the N of
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uniform integrability, put δ = ≤/N , and choose E0 by Egoroff’s Theorem such that
µ(E0) < δ and fn converges uniformly off E0. Then lim

R
Ec0

fn dµ =
R
Ec0

f dµ by
Problem 10. Fatou’s Lemma gives

R
E0 f dµ ≤ lim inf

R
E0 fn dµ, and we have

R
E0 fn dµ =

R
E0∩{x | fn(x)∏N } fn dµ +

R
E0−{x | fn(x)∏N } fn dµ.

The first term on the right side is ≤
R
{x | fn(x)∏N } fn dµ, which is ≤ ≤ by uniform

integrability, and the second term on the right side is ≤ Nδ = ≤ because µ(E0) < δ

and fn(x) ≤ N on the set of integration. Thus lim sup
R
E0 fn dµ ≤ 2≤, and we obtain

lim supn
Ø
Ø R

E0 fn dµ −
R
E0 f dµ

Ø
Ø ≤ 4≤.

22. In the notation of Section 5, K = U = A since A is now assumed to be
a σ -algebra. Thus µ∗(E) = supK∈A, K⊆E µ(K ) and µ∗(E) = infU∈A,U⊇E µ(U).
Take a sequence of sets Kn inAwith limµ(Kn) = µ∗(E); without loss of generality,
the sets Kn may be assumed increasing. Then we may take K to be the union of the
Kn . The construction of U is similar.
The set K is any member of A such that µ(K ) is the supremum of µ(S) for all S

in A with S ⊆ E . Then µ(Kc) is the infimum of all µ(Sc) = µ(X) − µ(S) for all
Sc in A with Sc ⊇ Ec. A similar argument applies to U and Uc. The result is that
Uc ⊆ Ec ⊆ Kc, µ∗(Ec) = µ(Uc), and µ∗(Ec) = µ(Kc).
23. Lemma 5.33 gives µ(A ∩ K ) ≤ µ∗(A ∩ E), µ(Ac ∩ K ) ≤ µ∗(Ac ∩ E), and

µ∗(E) = µ(K ) = µ(A∩K )+µ(Ac∩K ) ≤ µ∗(A∩E)+µ∗(Ac∩E) ≤ µ∗(E), from
which we obtainµ∗(A∩E) = µ(A∩K ). The argument thatµ∗(A∩E) = µ(A∩U)

is similar.
24. The right side of the definition of σ depends only on A ∩ E and B ∩ Ec, and

hence σ is well defined. The formulas
[

n

£
(An ∩ E) ∪ (Bn ∩ Ec)

§
=

≥≥[

n
An

¥
∩ E

¥
∪

≥≥[

n
Bn

¥
∩ Ec

¥

and [(A ∩ E) ∪ (B ∩ Ec)]c = (Ac ∩ E) ∪ (Bc ∩ Ec) show that the sets in question
form a σ -algebra C. Taking A = B shows thatA ⊆ C, and taking A = X and B = ∅
shows that E is in C. Therefore B ⊆ C, and σ is defined on all of B.
The complete additivity ofσ results from the complete additivity of each of the four

terms in the definition of σ . Specifically let a disjoint sequence (An ∩ E) ∪ (Bn ∩ E)

be given, and let A =
S

n An and B =
S

n Bn . We have µ∗(An ∩ E) = µ(An ∩ K ),
and the sets An ∩ K are disjoint; thus

P
µ∗(An ∩ E) = µ∗(A ∩ E). The next term

is µ∗(An ∩ E) = µ(An ∩ U), and the sets An ∩ U may not be disjoint. However,
µ∗(Am ∩ E) + µ∗(An ∩ E) = µ(Am ∩ U) + µ(An ∩ U) = µ(Am ∩ An ∩ E)+
µ((A1 ∪ A2) ∩ E), and µ(Am ∩ An ∩U) = µ∗(Am ∩ An ∩ E) = µ∗(∅) = 0. Thus
the term with µ∗(An ∩ E) behaves in additive fashion. Consequently µ∗(A ∩ E) ∏
µ∗

°°Sn
k=1 Ak

¢
∩ E

¢
=

Pn
k=1 µ∗(Ak ∩ E). Letting n tend to infinity gives µ∗(A ∩

E) ∏
P∞

k=1 µ∗(Ak ∩ E). The reverse inequality follows from Lemma 5.33a, and
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thus the termµ∗(An∩E) is completely additive. The terms with the Bn’s are handled
similarly, and σ is completely additive.
Taking A = X and B = ∅, we see immediately that the formula for σ (E) is as

asserted.
To prove that σ (A) = µ(A) for A in A, we take A = B. Then we see that

σ (A) = tµ(A ∩ K ) + (1 − t)µ(A ∩ U) + tµ(A ∩ Kc) + (1 − t)µ(A ∩ Uc) =
tµ(A) + (1− t)µ(A) = µ(A).
25. Each member of the countable set has only countably many ordinals less than

it, and the countable union of countable sets is countable. Therefore some member
ofƒ is not accounted for and is an upper bound for the countable set. Application of
(iii) completes the argument.
27. For (a), ifUn ↑ U and Vn ↑ V , thenUn ∪ Vn ↑ U ∪ V andUn ∩ Vn ↑ U ∩ V .

Similar remarks apply to Kα . Then the assertion follows by transfinite induction.
For (b), we know that Kα is closed under finite unions and intersections, and we

readily see that the complement of any set occurs at most one step later. Now let
an increasing sequence of sets in various Kα’s be given. Say that Un is in Kαn .
Problem 25 shows that there is a countable ordinal α0 that is∏ all the αn , and then all
the Un are in Kα0 . The union is then in Uα0+1 and necessarily in Kα0+1. Hence the
union is in the union of the Kα’s. So the union of the Kα’s is a σ -algebra and must
contain B. All the set-theoretic operations take place within B, and thus the union
must actually equal B.
28. Proposition 5.2 and Corollary 5.3 show that the value of the measure is deter-

mined on all the new sets that are constructed in terms of the values on the previous
sets. Problem 27 shows that all members of B are obtained by the construction, and
hence µ is completely determined on B.
29. Same argument as for Problem 27b.
30. At every stage of taking limits, we have closure under addition and scalar

multiplication. Pointwise decreasing limits produce the indicator functions of finite
unions of closed intervals, and pointwise increasing limits of them produce the
indicator functions of arbitrary finite unions of intervals. Since the constants are
present as continuous functions, we have the indicator function of every elementary
set and its complement. These sets form an algebra. Going through the construction
of Problem 27, we obtain the indicator function of every Borel set. Since we have
closure under addition and scalar multiplication at each step, we obtain all simple
functions. One increasing limit gives us all nonnegative Borel measurable functions,
and a subtraction (allowable without another passage to the limit) gives us all Borel
measurable functions.
32. To see that C has the same cardinality as R, we can make an identification of

the disjoint union of R and a countable set. To do so, we write C as the members of
[0, 1] whose base-3 expansions involve no 1’s. For each such infinite sequence of 0’s
and 2’s, we change all the 2’s to 1’s and regard the result as the base-2 expansion of
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some real number. This identification is onto [0, 1], and it is one-one if we discard
from C all the sequences of 0’s and 2’s that end in all 2’s.
The standard Cantor set has Lebesgue measure 0, and thus any subset of it is

Lebesgue measurable of measure 0. The cardinality of this set of subsets is the same
as the cardinality of the set of subsets of R. In Section A.10 of Appendix A, it is
shown for any set S that the cardinality of S is less than the cardinality of the set of
all subsets of S. So the cardinality of the set of Lebesgue measurable sets is at least
that of the set of all subsets of R.
33. Since Cc is open, any member x of Cc has the property that IC 0 is 0 on some

open interval about x . Thus IC 0 is continuous at x . Since C has Lebesgue measure 0,
IC 0 is continuous except on a Lebesgue measurable set of measure 0. Theorem 3.29
shows that IC 0 is Riemann integrable. Hence the cardinality of the set of Riemann
integrable functions is at least that of the set of all subsets of R.
35. If F is the given filter, form the partially ordered set consisting of all filters

on X containingF, with inclusion as the partial ordering. The union of the members
of a chain is readily verified to be an upper bound for the chain, and Zorn’s Lemma
produces amaximal element. Thismaximal element is readily seen to be an ultrafilter.
36. The filter in question consists of all supersets of finite intersections ofmembers

of C.
37–38. Suppose that F is an ultrafilter, A ∪ B is in F, A is not in F, and B is not

in F. Let F 0 consist of all sets in F and all sets B ∩ F with F in F. Since B is not
in F, F 0 properly contains F. Since F is an ultrafilter, F 0 must fail to be a filter. On
the other hand, by inspection, F 0 satisfies properties (i) and (ii) in the definition of
filter. We conclude that∅ is in F 0, hence that there is a set F in F with B ∩ F = ∅.
Since F satisfies (ii), the set (A ∪ B) ∩ F = (A ∩ F) ∪ (B ∩ F) = A ∩ F is in F.
By (i), A is in F, contradiction.
Conversely suppose that F is a filter such that either A or Ac is in F for each

subset A of X . If F is not maximal, let B be a set that lies in some filter F 0 properly
containingF while B is not itself in F. By hypothesis, Bc is in F and hence is in F 0.
But then B ∩ Bc = ∅ lies in F 0, in contradiction to (iii).
39. If an ultrafilter F is given, define µ(E) = 1 if E is in F and define µ(E) = 0

otherwise. Then µ is defined on all subsets, and we have µ(∅) = 0 and µ(X) = 1.
If E and E 0 are disjoint, we are to show that

µ(E) + µ(E 0) = µ(E ∪ E 0).

If E ∪ E 0 is not in F, then all terms in the displayed equation are 0 since F is closed
under supersets. If E ∪ E 0 is inF, then Problem 37 shows that E or E 0 is inF; on the
other hand, they cannot both be in F because F is closed under finite intersections
and the empty set is not in F. Thus exactly one term on the left side of the displayed
equation is 1, and the right side is 1. This proves additivity.
Conversely if an additive set functionµ is given on all subsets of X that takes only

the values 0 and 1 and is not the 0 set function, let F consist of the sets E for which
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µ(E) = 1. It is immediate that (i) and (iii) hold in the definition of filter. For (ii), let E
and E 0 be inF. Then E ∪E 0 is inF. Henceµ(E ∩E 0)+1 = µ(E)+µ(E 0) = 1+1,
and µ(E ∩ E 0) = 1. HenceF is closed under finite intersections and (ii) holds. Thus
F is a filter. If A is given, we have 1 = µ(X) = µ(A) + µ(Ac), and hence exactly
one of the sets A and Ac is in F. By Problem 38, F is an ultrafilter.
The statement that complete additivity is equivalent to closure of the ultrafilter

under countable intersections is a routine consequence of Corollary 5.3.
40. This follows from Problems 34d and 35.
41. Let Sn be the set of all integers ∏ n. Since S1 = X , S1 is in the ultrafilter.

Since the ultrafilter is not trivial, {n} is not in it, and thus Problem 37 shows that Sn is
in it if Sn−1 is in it. Hence Sn is in the ultrafilter for all n. The countable intersectionT

n Sn is empty, and the empty set is not in any filter. Hence the ultrafilter is not
closed under countable intersections. Corollary 5.3 shows that the corresponding set
function is not completely additive.
43. The proof of Proposition 5.26 shows that the result holds for simple functions

∏ 0. If f ∏ 0 and g ∏ 0, choose the standard sequences tn and un of simple functions
increasing to f and g. These converge uniformly. Hence so does the sum sn = tn+un .
The same argument as for Problem 10 shows that lim

R
E sn dµ =

R
E ( f + g) dµ,

lim
R
E tn dµ =

R
E f dµ, and lim

R
E un dµ =

R
E g dµ. Thus the result holds for

bounded nonnegative f and g. The passage to general bounded f and g is achieved
as in Proposition 5.26.

Chapter VI

1. In additive notation, the sets E + t for t in T are disjoint, and their countable
union is S1. Since Lebesgue measure is translation invariant, these sets all have the
same measure c. Then complete additivity gives c∞ = 2π , which is impossible.
2. Parts (b) and (c) are easy. For (a), expand the Jacobian determinant J (N )

in cofactors about the first row, obtaining two terms—one each from the first two
entries of the first row. The first term is cos θ1 times a determinant of size N − 1
whose first column has a common factor of r cos θ1 and whose second column has
a common factor of sin θ1, the remaining part of the determinant being J (N − 1);
thus the first term gives (r cos2 θ1 sin θ1)J (N − 1). The second term is −(−r sin θ1)
times a determinant of size N − 1 whose first column has a common factor of sin θ1
and whose second column has a common factor of r sin θ1, the remaining part of the
determinant being J (N−1); thus the second term gives (r sin3 θ1)J (N−1). Adding
the two terms gives J (N ) = (r sin θ1)J (N − 1), and an induction readily proves the
formula.
3. Replace f in Theorem 6.32 by f ◦ L , and use ϕ = L−1. Since ϕ0(x) = L−1

for each x , the result follows.
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4. In the result of Problem 3, use L(x) = yx and replace f (z) by f (z)/| det z|N .
Then the left side in Problem 3 is

R
MN

f (yx)/| det(yx)|N dx , while the right side
is | det L|−1

R
MN

f (x)/| det x |N dx . Thus | det y|−N |
R
MN

f (yx)/| det(x)|N dx =

| det L|−1
R
MN

f (x)/| det x |N dx , and the problem reduces to showing that det L =

(det y)N . One way of doing this is to verify that this formula is true if y is the matrix
of an elementary row operation and then to multiply the results. But a faster way is
to let x1, . . . , xn be the columns of x , so that L(x1, . . . , xn) = (yx1, . . . , yxn). Then
L as a matrix is given in block diagonal form by a copy of y in each block. Hence
det L = (det y)n . In a little more detail, the matrix of L is being formed relative to
the following basis of MN : if Ei j is the N -by-N matrix with 1 in the (i, j)th entry
and 0 elsewhere, the basis is E11, E21, . . . , EN1, E12, . . . , ENN .
5. For (a), we have, for n 6= 0,

2πcn =
R π
−π f (x)e−inx dx =

R
|x |≤ 1

|n|
f (x)e−inx dx +

R
1
|n| ≤|x |≤π f (x)e−inx dx .

Let us call these terms I and I I . Since | f (x)| ≤ C|x |α for |x | ≤ 1,

|I | ≤
R
|x |≤ 1

|n|
| f (x)| dx ≤ C

R
|x |≤ 1

|n|
|x |α dx = 2C

1+α
1

|n|1+α .

For I I , we use integration by parts and take into account that the terms at π and−π

cancel by periodicity:

I I =
° R −1/|n|

−π +
R π
1/|n|

¢
f (x) dx

=
£ f (x)e−inx

−in
§−1/|n|
−π

+
£ f (x)e−inx

−in
§π
1/|n| + 1

in
R
1
|n| ≤|x |≤π f 0(x)e−inx dx

= 1
in

©
f
° 1
n
¢
e−in/|n| − f

°
− 1

n
¢
e+in/|n|

™
+ 1

in
R
1
|n| ≤|x |≤π f 0(x)e−inx dx .

Let us call the terms on the right I I I and I V . Since | f (x)| ≤ C|x |α for |x | ≤ 1,

|I I I | ≤ 1
|n|

°ØØ f
° 1
n
¢ØØ +

Ø
Ø f

°
− 1

n
¢ØØ¢ ≤ 2C 1

|n|1+α .

The derivation of the formula for I I , when applied to f 0 instead of f , gives the
following value for I V :

I V = − 1
n2

©
f 0

° 1
n
¢
e−in/|n| − f 0

°
− 1

n
¢
e+in/|n|

™
− 1

n2
R
1
|n| ≤|x |≤π f 00(x)e−inx dx .

Let us call the terms on the right V and V I . Since | f 0(x)| ≤ C|x |α−1 for |x | ≤ 1,

|V | ≤ 1
n2

°ØØ f 0
° 1
n
¢ØØ +

Ø
Ø f 0

°
− 1

n
¢ØØ¢ ≤ 2C 1

|n|1+α .
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Since f 00(x) is bounded for 1 ≤ |x | ≤ π , we can write | f 00(x)| ≤ C 0|x |α−2 for
0 < |x | ≤ π , in view of the assumption on f 00. Therefore

|V I | ≤ 1
n2

R
1
|n| ≤|x |≤π C

0|x |α−2 dx = 2C 0

n2
R π
1/|n| x

α−2 dx

= 2C 0

1−α
1
n2

° 1
|n|α−1 − πα−1¢ ≤ 2C 0

1−α
1

|n|1+α .

Since 2π |cn| ≤ |I | + |I I I | + |V | + |V I |, we obtain |cn| ≤ K/|n|1+α .
For (b), the uniform convergence follows by applying the Weierstrass M-test, and

the limit is f as a consequence of the uniqueness theorem.
In (c), a proof is called for. The crux of the matter is to show, under the assumption

that f is real valued, that the variationVε of f on [ε, 1], whichgets larger as ε decreases
to 0, is bounded. If x0 < · · · < xn is a partition P of [ε, 1], then
Pn

i=1 | f (xi ) − f (xi−1)| =
Pn

i=1 | f 0(ξi )|(xi − xi−1) ≤ C
Pn

i=1 ξα−1
i (xi − xi−1)

with xi−1 < ξi < xi . With ε fixed, the right side is a Riemann sum for the bounded
function xα−1 on [ε, 1] and is≤ the correspondingupper sumU(P, xα−1ØØ

[ε,1]). Aswe
insert points into the partition, the left sides increase and the right sides decrease to the
limit

R 1
ε x

α−1 dx = α−1(1−εα). Hence Vε ≤ Cα−1(1−εα), and supε>0 Vε ≤ C/α.
6. The distribution function F ofµmust have F(b)−F(a) equal to 0 or 1 for all a

and b. If c is the supremumof the x’s for which there exists y > x with F(x) < F(y),
then F has to be k on (−∞, c) and k + 1 on [c,+∞) for the value of k that makes
F(0) = 0. Hence µ is a point mass at c with µ({c}) = 1.
7. Let K be compact, and let f and g both be equal to the members of a sequence

{ fn} of continuous functions of compact support decreasing to the indicator function
IK of K . Applying the identity to fn and passing to the limit, we obtain ∫(K ) =
∫(K )2. Thus ∫(K ) is 0 or 1 for each compact set. By regularity ∫ takes on only the
values 0 and 1 on Borel sets. Then the argument (but not the statement) of Problem 6
applies, and there is some c with ∫ equal to a point mass at c with ∫({c}) = 1.
8. In (a), if the complement of the set in question is not dense, it omits an open

set. However, nonempty open sets have positive measure.
In (b), form

R
R1

£ R
R1 IE (x− t) dt

§
dµ(x). The inner integral equals the Lebesgue

measure of E for every x since Lebesgue measure is invariant under translations and
the map t 7→ −t . Hence the iterated integral is 0. The integral in the other order is
0 =

R
R1

£ R
R1 IE (x− t) dµ(x)

§
dt =

R
R1

£ R
R1 IE+t (x) dµ(x)

§
dt =

R
R1 µ(E+ t) dt ,

and Corollary 5.23 shows that µ(E + t) is 0 almost everywhere.
In (c), the same computation applies, andµ(E+ t) is 0 almost everywhere. Under

the assumption that limt→0 µ(E + t) exists, the limit must be 0, by (a).
9. Write 1/|x | as a sum F1+F∞, where F1 is 1/|x | for |x | < 1 and is 0 for |x | ∏ 1.

Then
R

R3 F∞(x − y) dµ(y) is bounded by µ(R3), and it is enough to handle the con-
tribution from F1. For thatwe have

R
R3

£ R
R3 F1(x−y) dµ(y)

§
dx =

R
R3

£ R
R3 F1(x−

y) dx
§
dµ(y) =

R
R3

£ R
R3 F1(x) dx

§
dµ(y) = µ(R3)

R
|x |≤1 |x |−1 dx , and this is finite

in R3. Hence the inner integral
R

R3 F1(x − y) dµ(y) is finite almost everywhere.
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10. We proceed by induction on n, the case n = 1 following since finite sets have
Lebesguemeasure 0. Assume the result in n−1 variables, and let P(x1, . . . , xn) 6≡ 0
be given. Let E be the set where P = 0. This is closed, hence Borel measurable
in Rn . Fix (x 0

1, . . . , x
0
n) with P(x 0

1, . . . , x
0
n) 6= 0. The polynomial in one variable

R(x) = P(x 0
1, . . . , x

0
n−1, x) is not identically 0, being nonzero at x = x 0

n , and
hence it vanishes only finitely often, say for x in the finite set F . Fix x 0 /∈ F .
Then the polynomial Q(x1, . . . , xn−1) = P(x1, . . . , xn−1, x 0) in n − 1 variables
is not identically 0, being nonzero at (x 0

1, . . . , x
0
n−1), and its set Ex 0 of zeros has

measure 0 by inductive hypothesis. If mn denotes n-dimensional Lebesgue measure,
then Fubini’s Theorem applied to IE gives

mn(E) =
R

R mn−1(Ex 0) dx =
R
F mn−1(Ex 0) dx 0 +

R
Fc mn−1(Ex 0) dx 0.

On the right side the first term is 0 since the 1-dimensional measure of F is 0, while
the second term is 0 since the integrand is 0. Thus m(E) = 0.

11. 0(x + y)
R 1
0 t

x−1(1 − t)y−1 dt =
R ∞
0 e−ssx+y−1 ds

R 1
0 t

x−1(1 − t)y−1 dt =R ∞
0

£ R s
0 u

x−1(s − u)y−1e−s du
§
ds =

R ∞
0

£ R ∞
u ux−1(s − u)y−1e−s ds

§
du =R ∞

0
£ R ∞
0 ux−1sy−1e−se−u ds

§
du = 0(x)0(y).

12. In Cartesian coordinates we obtain 1N , hence 1. In spherical coordinates we
obtain ƒN−1

R ∞
0 r N−1e−πr2 dr . Putting πr2 = s shows that

R ∞
0 r N−1e−πr2 dr =R ∞

0 (s/π)(N−2)/2e−s 12π ds = 1
2π

−N/20(N/2). Hence ƒN−1 = 2πN/2/0(N/2).

13. Part (a) is carried out by showing by induction on k that
Pk

i=1 xi =
1−

Qk
i=1 (1− ui ). The case k = n is the desired result.

In (b), let 0 < ui < 1 for all i . Then xi > 0 for all i , and (a) makes it clear thatPn
i=1 xi < 1. Therefore ϕ carries I into S. Define u = eϕ(x) by the formula in (b).

If all xi > 0 and
Pn

i=1 xi < 1, then certainly ui > 0. Also,
Pi

j=1 xi < 1 implies
xi < 1−

Pi−1
j=1 xj , so that ui = xi

±°
1−

Pi−1
j=1 xj

¢
< 1. Thereforeeϕ carries S into I .

To complete the proof, we show thateϕ ◦ϕ is the identity on I and ϕ ◦eϕ is the identity
on S. For eϕ ◦ ϕ, we pass from u to x to v. Thus we start with vi , substitute the x’s,
use the inductive version of (a) to substitute the u’s, and then sort matters out to see
that vi = ui . For ϕ ◦eϕ, we pass from x to u to y. Then we start with yi and substitute
the u’s to obtain yi =

°Qi−1
l=1 (1−ui )

¢
ui . To substitute for the u’s in terms of the x’s,

we use the inductive version of (a) in the form
Pi−1

l=1 yl = 1−
Qi−1

l=1 (1− ul). This
gives

°Qi−1
l=1 (1− ui )

¢
ui =

°
1−

Pi−1
l=1 yl

¢
xi

±°
1−

Pi−1
l=1 xl

¢
. Then an induction on

i shows that yi = xi , and hence ϕ ◦ eϕ is the identity on S.
In (c), routine computation shows that ϕ0(u) is lower triangular with diagonal

entries 1, (1 − u1), (1 − u1)(1 − u2), . . . , (1 − u1) · · · (1 − un−1), and hence
the determinant is the product of these diagonal entries. Similarly eϕ 0(x) is lower
triangular with diagonal entries 1, (1− x1)−1, (1− x1 − x2)−1, . . . , (1− x1 − x2 −
· · · − xn−1)−1, and its determinant is the product of these diagonal entries.
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14. The change of variables in Problem 13 gives
R
S x

a1−1
1 · · · xan−1n dx =

R
I u

a1−1
1 [(1− u1)u2]a2−1· · · [(1− u1) · · · (1− un−1)un]an−1

× (1− u1)n−1 · · · (1− un−1) du

=
R
I u

a1−1
1 (1− u1)a2+···+an−(n−1)+(n−1)ua2−12

× (1− u2)a3+···+an−(n−2)+(n−2)

× · · · × uan−1−1n−1 (1− un−1)an−1+1uan−1n du

=
R 1
0 u

a1−1
1 (1−u1)a2+···+an du1 ·

R 1
0 u

a2−1
2 (1−u2)a3+···+an du2

· . . . ·
R 1
0 u

an−1−1
n−1 (1− un−1)an dun−1 ·

R 1
0 u

an−1
n dun.

The right side is the product of 1-dimensional integrals of the kind treated in Prob-
lem 11. Substitution of the values from that problem leads to the desired result.
15. The monotonicity makes possible the estimate of uniform convergence, and

the continuity then makes the limit continuous. A continuous function is determined
by its values on a dense set, and Cc is dense.
16. For eachn, Fn(x) = 1−Fn(1−x). Thus

R 1
0 Fn(x) dx = 1−

R 1
0 Fn(1−x) dx =

1 −
R 1
0 Fn(x) dx and

R 1
0 Fn(x) dx = 1

2 . Passing to the limit and using uniform or
dominated convergence, we obtain

R 1
0 F(x) dx = 1

2 .
18. Use Proposition 6.47. Then u is harmonic by Problem 14 at the end of

Chapter III.
19. Since Pr has L1 norm 1, the inequality ku(r, · )kp ≤ k f kp follows from

Minkowski’s inequality for integrals. For the limiting behavior as r increases to 1,
we extend f periodically and write

u(r, θ) − f (θ) = 1
2π

R π
−π Pr (ϕ) f (θ − ϕ) dϕ − f (θ)

= 1
2π

R π
−π Pr (ϕ)[ f (θ − ϕ) − f (θ)] dϕ,

the second step following since 1
2π

R π
−π Pr dϕ = 1. ApplyingMinkowski’s inequality

for integrals, we obtain

ku(r, · ) − f kp ≤ 1
2π

R π
−π Pr (ϕ)k f (θ − ϕ) − f (θ)kp,θ

since Pr ∏ 0. The integration on the right is broken into two sets, S1 = (−δ, δ) and
S2 = [−π,−δ] ∪ [δ,π], and the integral is

≤ 1
2π

R
S1 Pr (ϕ)

°
supϕ∈S1 k f (θ − ϕ) − f (θ)kp,θ

¢
dϕ + 1

2π
R
S2 Pr (ϕ)2k f kp dϕ

≤ sup
ϕ∈S1

k f (θ − ϕ) − f (θ)kp,θ + 2k f kp sup
ϕ∈S2

Pr (ϕ).

Let ≤ > 0 be given. If δ is sufficiently small, Proposition 6.16 shows that the first
term is< ≤. With δ fixed, we can then choose r close enough to 1 to make the second
term < ≤.
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20. For (a), we argue as in Problem 19, taking S1 and S2 to be as in that solution.
Then

|u(r, θ) − f (θ)| ≤ 1
2π

R π
−π Pr (ϕ)| f (θ − ϕ) − f (θ)| dϕ

≤ 1
2π

R
S1 Pr (ϕ)| f (θ − ϕ) − f (θ)| dϕ

+ 1
2π

R
S2 Pr (ϕ)[k f k∞ + supθ∈E | f (θ)|] dϕ

≤ supϕ∈S1 | f (θ − ϕ) − f (θ)|

+
°
supϕ∈S2 Pr (ϕ)

¢
[k f k∞ + supθ∈E | f (θ)|],

and the uniform convergence follows.
For (b), the Poisson integral of f is of the form

P∞
n=−∞ cnr |n|einθ , where the cn

are the Fourier coefficients of f . Any other harmonic function in the disk is of the
form

P∞
n=−∞ c0nr |n|einθ . Suppose this tends uniformly to f as r increases to 1. Then

the difference is a series
P∞

n=−∞ dnr |n|einθ that converges uniformly to 0. Then the
integral of the product of this series and e−ikθ tends to 0. Interchanging integral and
sum, we see that dkr |k| tends to 0 for each k. Therefore dk = 0 for each k.
In (c) since Pr is even,

R π
−π (Pr ∗ f )(θ)g(θ) dθ =

R π
−π

R π
−π Pr (θ − ϕ) f (ϕ)g(θ) dϕ dθ

=
R π
−π

R π
−π Pr (θ − ϕ) f (ϕ)g(θ) dθ dϕ

=
R π
−π

R π
−π Pr (ϕ − θ) f (ϕ)g(θ) dθ dϕ,

and thus
R π
−π (Pr ∗ f )(θ)g(θ) dθ =

R π
−π (Pr ∗ g)(θ) f (θ) dθ . Therefore

Ø
Ø R π

−π (Pr ∗ f )(θ)g(θ)dθ−
R π
−π f (θ)g(θ) dθ

Ø
Ø =

Ø
Ø R π

−π

£
(Pr ∗ g)(θ) − g(θ)

§
f (θ) dθ

Ø
Ø

≤ 2πkPr ∗ g − gk1k f k∞.

By the previous problem the right side tends to 0 as r increases to 1, and the weak-star
convergence follows.
21. Let Mf and Mg be upper bounds for | f | and |g| on [a, b]. Then

P
i | f (xi )g(xi ) − f (xi−1)g(xi−1)|

≤
P

i | f (xi )g(xi ) − f (xi )g(xi−1)| +
P

i | f (xi )g(xi−1) − f (xi−1)g(xi−1)|
≤ Mf

P
i |g(xi ) − g(xi−1)| + Mg

P
i | f (xi ) − f (xi−1)|

≤ Mf kgkBV + Mgk f kBV .

22. Let us rewrite the given equation f (x) = f (a) + g1(x) − g2(x) as
g2(x) + f (x) − f (a) = g1(x). If xi > xi−1, then subtraction of the values at x = xi
and at x = xi−1 gives g2(xi ) − g2(xi−1) + f (xi ) − f (xi−1) = g1(xi ) − g1(xi−1).
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If f (xi ) − f (xi−1) ∏ 0, then f (xi ) − f (xi−1) ≤ g1(xi ) − g1(xi−1) because g2
is monotone; if f (xi ) − f (xi−1) < 0, then 0 ≤ g1(xi ) − g1(xi−1) because g1 is
monotone. Therefore

°
f (xi ) − f (xi−1)

¢+
≤ g1(xi ) − g1(xi−1). Summing on i for

a partition of [a, x] gives
Pn

i=1
°
f (xi ) − f (xi−1)

¢+
≤ g1(x) − g1(a). If we take

the supremum of the left side and recall that g1(a) ∏ 0, we obtain V+( f )(x) ≤
g1(x) − g1(a) ≤ g1(x). Starting similarly from g1(x) − f (x) + f (a) = g2(x) and
arguing in the same way, we obtain V−( f )(x) ≤ g2(x) − g2(a) ≤ g2(x).
23. Suppose that V+( f ) and V−( f ) are both discontinuous at some x . Then

V+( f )(x−) + ≤ < V+( f )(x+) and V−( f )(x−) + ≤ < V−( f )(x+) for some ≤ > 0.
Define

g1(y) =






V+( f )(y) for y < x,
V+( f )(x−) for y = x,
V+( f )(y) − ≤ for y > x,

and define g2(y) similarly except that V− replaces V+. Then g1 and g2 are both
nonnegative, and g1 − g2 = V+( f ) − V−( f ) = f − f (a). If g1 and g2 are shown
to be monotone, Then Problem 22 leads to the contradiction g1(y) < V+( f )(y) for
y > x , and we conclude that V+( f ) and V−( f ) could not have been discontinuous.
In provingmonotonicity for g1, it is necessary to make comparisons only of x with

other points y. Let h > 0. For points y > x , we have g1(x+h) = V+( f )(x+h)−≤

∏ V+( f )(x+) − ≤ ∏ V+( f )(x−) = g1(x). For points y < x , we have g1(x − h) =
V+( f )(x − h) ≤ V+( f )(x−) = g1(x). Monotonicity for g2 is proved in the same
way.
24. The proof is similar in spirit to the proof of Proposition 6.54.
25. For f , let yn = (n + 1

2 )
−1π−1, so that f (yn) is +(n + 1

2 )
−1π−1 if n is even

and is −(n + 1
2 )

−1π−1 if n is odd. Compute the sum of the absolute values of the
difference of values of f at yN , yN−1, . . . , y1 and see that this is unbounded as a
function of N . The function g has a bounded derivative (even though the derivative
is discontinuous), and this is enough to imply bounded variation.
26. Conclusions (a) and (b) can be handled by variants of Lemma B.12 and

Corollary B.15. Fix σ0 > 0, and let U = {Re s > σ0} ⊆ C. The set X =
[0,+∞) ∪ {+∞} is a compact metric space, and tσ0−1e−t/2 dt is a finite measure on
it. Also the function (t, s) 7→ t s−σ0e−t/2 is continuous onU×X and is analytic in the
first variable. The argument of Lemma B.12 goes through to prove the continuity of
0(s) for Re s > σ0, and the argument as in Corollary B.15 using Morera’s Theorem
and an interchange of integrals applies to prove the analyticity of 0(s) for Re s > σ0.
Since σ0 > 0 is arbitrary, the conclusions first of continuity and then of analyticity
apply to 0(s) for Re s > 0.
One can also argue directly with 0ε,n(s) =

R n
ε t

s−1e−t dt for Re s > 0. Lemma
B.12 and then Corollary B.15 apply directly, and then a passage to the limit is needed.
For this purpose the relevant tools are Proposition 2.21 for continuity and Problem
55 in Appendix B for analyticity.
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27. We enlarge the domain of definitionfirst from {Re s > 0} to {Re s > −1}−{0},
then to {Re s > −2} − {0,−1}, then to {Re s > −3} − {0,−1,−2}, and so on, using
the identity 0(s) = s−10(s + 1) to define the extended function at each stage. The
result is analytic except for isolated singularities at the nonpositive integers, and the
functional equation 0(s + 1) = s0(s) is valid for the extension. One readily checks
that the isolated singularities are all poles of order 1.

Chapter VII

1. If g(ak) = g(bk), then ak would have to be in E . For the second part an example
is g(x) = x on [0, 1]; there is only one interval (ak, bk), and it is (0, 1).
2. No. Corollary 7.4 applied to IE shows for almost all x that the quotient

m(E ∩ (x − h, x + h))/m((x − h, x + h)) has to tend to 0 or 1 as h decreases to 0.
3. We may work on a bounded interval I . Let ≤ > 0 be given. If x is in E , then

|h−1(F(x + h) − F(x)| ≤ ≤ whenever |h| ≤ δx for some δx depending on x . For
each such x , fix a positive number rx with rx ≤ 1

6δx . Associate the set B(rx ; x) to x .
Then

µ(B(5rx ; x)) ≤ µ((x − 5rx , x + 5rx ]) = F(x + 5rx ) − F(x − 5rx ) ≤ 10rx≤.

Applying Wiener’s Covering Lemma, we can find disjoint sets B(rxi ; xi ) with E ⊆S∞
i=1 B(5rxi ; xi ). Then

µ(E) ≤
∞X

i=1
µ(B(5rxi ; xi )) ≤ 5≤

∞X

i=1
2rxi = 5≤

∞X

i=1
m(B(rxi ; xi )) ≤ 5≤m(I ).

Since I is fixed and ≤ is arbitrary, µ(E) = 0.
4. If F is the function in question, F − F(0) is the distribution function of

some Stieltjes measure µ containing no point masses. Proposition 7.8 shows that
µ(Ec) = 0 for some countable set E . Since µ({p}) = 0 for each point p, µ(E) = 0
by complete additivity. Thus µ = 0, and F must be constant.
5. For (a), the construction shows that F 0(x) = 0 for all x ∈ Cc. Then Proposition

7.8 allows us to conclude that µ is singular.
For (b), let Fn be the nth constructed approximation to F (using straight-line

interpolations), and let fn be its derivative (defined except on a finite set and put
equal to 0 there). The function fn is a multiple cn of the indicator function of the
subset Cn of [0, 1] that remains after the first n steps of the construction, and also
m(Cn) =

Qn
k=1 (1− rk). Since Fn(x) =

R x
0 fn(t) dt for all x , we have 1 = Fn(1) =

cn
R 1
0 ICn (t) dt = cn

Qn
k=1 (1−rk). Therefore fn =

°Qn
k=1 (1−rk)

¢−1 ICn . Put f =
P−1 IC . The functions fn converge pointwise to f , and they are uniformly bounded
by the constant function P−1. By dominated convergence, F(x) =

R x
0 f (t) dt for

0 ≤ x ≤ 1. Therefore F is the distribution function of the measure f (t) dt .
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6. Let E be the second described set. The complement of E has measure 0 by
Corollary 7.4. Fix x in E , and let ≤ > 0 be given. Choose a rational r such that
|r − f (x)| < ≤. For h > 0,

h−1 R x+h
x | f (t) − f (x)| dt ≤ h−1 R x+h

x | f (t) − r | dt + h−1 R x+h
x |r − f (x)| dt.

The second term on the right side equals |r − f (x)| < ≤, and the first term tends to
| f (x) − r)| < ≤ since x is in E . A similar argument applies if h < 0.
7. Part (a) is routine, and part (b) follows by adapting part of the argument for

Theorem 6.48. In (c), the assumption that x is in the Lebesgue set implies thatR
|t |≤h | f (x − t) − f (x)| dt ≤ hcx (h) for h > 0, where cx ( · ) is a function that
tends to 0 as h decreases to 0. For each of the described pieces of the integralR
|t |≤π Kn(t)| f (x − t) − f (x)| dt , we use one of the two estimates in (a), specifi-
cally the estimate KN (t) ≤ N + 1 for the piece with |t | ≤ 1/N and the estimate
KN (t) ≤ c/(Nt2) for all the other pieces. The piece for 1/N then contributes
≤ (N + 1)

R
|t |≤1/N | f (x − t) − f (x)| dt ≤ 2cx (1/N ), the piece for 2k−1/N ≤

|t | ≤ 2k/N contributes ≤ c
N (2k−1/N )−2

R
2k−1/N≤|t |≤2k/N | f (x − t) − f (x)| dt ≤

c
N (2k−1/N )−2(2k/N )cx (2k/N ) = 4 · 2−kcx (2k/N ), and finally the piece for
N−1/4 ≤ |t | ≤ π contributes ≤ c

N N 1/2
R
N−1/4≤|t |≤π | f (x − t) − f (x)| dt ≤

c
N N 1/22π(k f k1 + | f (x)|). The sum of the estimates is

≤ 2cx (1/N ) +
[N 3/4]X

k=1
4 · 2−kcx (2k/N ) + 2πcN−1/2(k f k1 + | f (x)|)

≤ 4 sup
0<h<N−1/4

cx (h) + c0N−1/2(k f k1 + | f (x)|),

and this tends to 0 as h decreases to 0. (The use of the shells with 2−k is a device
that appears frequently in Zygmund’s Trigonometric Series and may be regarded as
a kind of manual integration by parts.)
8. Since µ is singular, find a Borel set E with µ(E) = 0 and m(Ec) = 0. Let

≤ > 0 be given. By regularity of m + µ, choose an open set U containing E such
that (m+ µ)(U − E) < ≤. Then µ(U) ≤ µ(U − E) + µ(E) = µ(U − E) < ≤, and
m(Uc) ≤ m(Ec) = 0.
9. About each x in U , there is some δ(x) such that (x − h, x + h) ⊆ U for

h ≤ δ(x). Then ∫((x − h, x + h)) = 0 for h ≤ δ(x), and the limit of this is 0 as h
decreases to 0.
11. Since U is open and µ2(U) = 0, Problem 9 gives

lim
h↓0

(2h)−1µ2((x − h, x + h)) = 0
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for all x in U . Since m(Uc) = 0, limh↓0(2h)−1µ2((x − h, x + h)) = 0 for almost
every x inR1. The measureµ1 hasµ1(R1) = µ(U) < ≤, and Problem 10 shows that

m
©
x

Ø
Ø lim sup

h↓0
µ1((x − h, x + h)) > ξ

™

≤ m
©
x

Ø
Ø sup
h>0

µ1((x − h, x + h)) > ξ
™

≤ 5µ1(R1)/ξ < 5≤/ξ.

12. It is enough to handle the case thatµ vanishes outside some interval and hence
has µ(R1) finite. Combining the estimates for µ1 and µ2 gives

m
©
x

Ø
Ø lim sup

h↓0
µ((x − h, x + h)) > ξ

™
< 5≤/ξ.

Since ≤ is arbitrary, m
©
x

Ø
Ø lim suph↓0 µ((x − h, x + h)) > ξ

™
= 0. Taking the union

for ξ = 1/n, we conclude that the set where lim suph↓0 µ((x − h, x + h)) > 0 has
measure 0.
To get the better conclusion, the main step is to obtain a bound 10≤/ξ for the

maximal function formed from the supremum of ∫((x, x + h)) or ∫((x − h, x)). The
proof of Corollary 6.40 shows how to derive this from Problem 10.

Chapter VIII

1. Let F be the Fourier transform as defined in the text. In each part of the
problem, α can be computed by relating matters to the known facts about F, and β

can be computed directly from the definitions and Fubini’s Theorem.
In (a), we have bf (y)=

R
f (x)e−i x ·ydy=

R
f (x)e−2π i x ·(y/(2π)) dy=F f (y/(2π)).

To obtain f (x) = α
R bf (y)eix ·y dy, we want f (x) = α

R
F f (y/(2π))eix ·y dy =

(2π)Nα
R
F f (y0)eix ·(2πy0) dy0 = (2π)Nα f (x). With f ∗g(x) = β

R
f (x−t)g(t) dt ,

we have df ∗g(y) = β
RR

f (x−t)g(t)e−i x ·ydt dx = β
RR

f (x−t)g(t)e−i x ·ydx dt =
β

RR
f (x)g(t)e−i(x+t)·y dx dt = β bf (y)bg(y). Thus α = (2π)−N and β = 1.

In (b), we find similarly that bf (y) = (2π)−NF f (y/(2π)), and we are led to
(2π)N (2π)−Nα = 1. So α = 1. Also, β(2π)N = (2π)2N and β = (2π)N .
In (c), we find similarly that α = (2π)−N/2 and β = (2π)N/2. This normalization

has the property that α and β are both 1 if dx is replaced by dx/(2π)N/2 throughout.
2. This is an operation called “polarization” in linear algebra, and it will be

explained further in Chapter XII. Application of the Plancherel formula to f + cg,
f , and cg gives k f + cgk22 = kF( f ) + cF(g)k22, k f k

2
2 = kF( f )k22, and kcgk22 =

kcF(g)k22. We expand the first one in terms of the inner product and subtract the
other two to obtain

( f, cg)2 + (cg, f )2 = (F( f ), cF(g))2 + (cF(g),F( f ))2.
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Then c̄( f, g)2 + c( f, g)2 = c̄(F( f ),F(g))2 + c(F( f ),F(g))2. Taking c = 1
gives 2Re( f, g)2 = 2Re(F( f ),F(g))2, whereas taking c = i gives 2 Im( f, g)2 =
2 Im(F( f ),F(g))2. The result follows.

3. For any f in L1, we have Qε ∗ (Qε0 ∗ f ) = Pε+ε0 ∗ f because the Fourier
transforms are equal. Also, (Qε ∗Qε0)∗ f = Qε ∗ (Qε0 ∗ f ) since we have finiteness
when the functions are replaced by their absolute values. Moreover, the functions
Qε∗Qε0 and Pε+ε0 are boundedand continuous. Letting f run throughan approximate
identity formed with respect to dilations and applying Theorem 6.20c, we see that
Qε ∗ Qε0(x) = Pε+ε0(x) for all x .
4. Since Pt is even,

R
RN (Pt∗ f )(x)g(x) dx =

R
RN

R
RN Pt (x−y) f (y)g(x) dy dx =R

RN

R
RN Pt (x − y) f (y)g(x) dx dy =

R
RN

R
RN Pt (y − x) f (y)g(x) dx dy, and thusR

RN (Pt ∗ f )(x)g(x) dx =
R

RN (Pt ∗ g)(x) f (x) dx . Therefore

Ø
Ø R

RN (Pt ∗ f )(x)g(x) dx−
R

RN f (x)g(x) dx
Ø
Ø=

Ø
Ø R

RN

£
(Pt ∗ g)(x) − g(x)

§
f (x) dx

Ø
Ø

≤ kPt ∗ g − gk1k f k∞.

By Theorem 8.19c the right side tends to 0 as t decreases to 0, and (a) follows.
For (b), part (a) shows for each g with kgk1 ≤ 1 that

Ø
Ø R

RN f (x)g(x) dx
Ø
Ø =

limt↓0
Ø
Ø R

RN (Pt ∗ f )(x)g(x) dx
Ø
Ø. Since

Ø
Ø R

RN Pt ∗ f (x)g(x) dx
Ø
Ø ≤ kPt ∗ f k∞kgk1 ≤

kPt ∗ f k∞, we have

Ø
Ø R

RN f (x)g(x) dx
Ø
Ø ≤ lim inft↓0 kPt ∗ f k∞

whenever kgk1 ≤ 1. For any ≤ > 0 with k f k∞ − ≤ > 0, let S≤ be the set where | f | is
∏ k f k∞−≤. Thenm(S≤) > 0. Take E to be any subset of S≤ with 0 < m(E) < +∞,
and let g(x) be m(E)−1 f (x)/| f (x)| on E and zero elsewhere. This function has
kgk1 ≤ 1. Then

Ø
Ø R

RN f g dx
Ø
Ø =

R
RN f g dx = m(E)−1

R
E | f | dx ∏ k f k∞ − ≤.

Hence k f k∞ −≤ ≤
Ø
Ø R f g dx

Ø
Ø ≤ lim inft↓0 kPt ∗ f k∞. Since ≤ is arbitrary, k f k∞ ≤

lim inft↓0 kPt ∗ f k∞. On the other hand, Theorem 8.19b shows that kPt ∗ f k∞ ≤
k f k∞. So we have k f k∞ ≤ lim inft↓0 kPt ∗ f k∞ ≤ lim supt↓0 kPt ∗ f k∞ ≤ k f k∞.
Equality must hold throughout, and (b) is thereby proved.
5. In (a), the set function is a measure by Corollary 5.27. It has µ(RN ) equal to

µ1(RN )µ2(RN ) and is therefore a Borel measure. If µ1 = f dx and µ2 = µ, then

( f ∗ µ)(E) =
R

RN ( f dx)(E − x) dµ(x) =
R

RN

R
E−x f (y) dy dµ(x)

=
R

RN

R
RN IE−x (y) f (y) dy dµ(x) =

R
RN

R
RN IE (x + y) f (y) dy dµ(x)

=
R

RN

R
RN IE (y) f (y − x) dy dµ(x) =

R
RN

R
E f (y − x) dy dµ(x)

=
R
E

£ R
RN f (y − x) dµ(x)

§
dy.
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In (b), we start with an indicator function and compute that
R

RN

R
RN IE (x + y) dµ1(x) dµ2(y) =

R
RN

£ R
RN IE−y(x) dµ1(x)

§
dµ2(y)

=
R

RN µ1(E − y) dµ2(y)
= (µ1 ∗ µ2)(E) =

R
RN IE d(µ1 ∗ µ2).

Then we pass to simple functions ∏ 0, use monotone convergence, and finally take
linear combinations to get

R
RN

R
RN g(x + y) dµ1(x) dµ2(y) =

R
RN g d(µ1 ∗ µ2).

In (c), we actually have kPt ∗µk1 = µ(RN ) for every t > 0 by Fubini’s Theorem.
Part (d) is handled in the same way as Problem 4a. First one shows thatR

RN (Pt ∗ µ)(x)g(x) dx =
R

RN (Pt ∗ g)(x) dµ(x) for g in Ccom(RN ). The resulting
estimate is

Ø
Ø R

RN [(Pt ∗ g)(x) − g(x)] dµ(x)
Ø
Ø ≤ kPt ∗ g− gksup µ(RN ), and then (a)

follows from Theorem 8.19d.
6. Part (a) follows from the same argument as for Proposition 8.1a. In (b), the

measure δ with δ({0}) = 1 and δ(RN − {0}) = 0 hasbδ(y) = 1 for all y. In (c), we use
the result of Problem 5b with g(x) = e−2π i x ·t and get

R
e−2π i x ·t d(µ1 ∗ µ2)(x) =RR

e−2π i(x+y)·t dµ1(x) dµ2(y) = cµ1(t)cµ2(t). In (d), let ϕ(x) = P1(x). Thenbµ = 0
implies \ϕε ∗ µ = 0 for every ε > 0. Since ϕε ∗ µ is a function, Corollary 8.5 gives
ϕε ∗ µ = 0 for every ε > 0. By Problem 5d, ϕε ∗ µ converges weak-star to µ against
Ccom(RN ). Therefore

R
RN g dµ = 0 for every g in Ccom(RN ), and Corollary 6.3

shows that µ = 0.
7. This is the same kind of approximation argument as was done in Corollary 6.17.
8. We calculate that

P
i, j bµ(xi − xj )ξiξj =

P
i, j

R
e−2π i t ·(xi−xj )ξiξj dµ(t) =

R °P
i, j (e−2π i t ·xi ξi )(e−2π i t ·xj ξj )

¢
dµ(t) =

R Ø
ØP

j e−2π i t ·xj ξj
Ø
Ø2 dµ(t) ∏ 0.

9. For the set {0}, the condition is that F(0)|ξ1|2 ∏ 0 for all ξ1; thus F(0) ∏ 0. For
the set {x, 0}, the condition is that F(0)|ξ1|2+F(x)ξ1ξ2+F(−x)ξ2ξ1+F(0)|ξ2|2 ∏ 0.
Taking ξ1 = ξ2 = 1 shows that F(x) + F(−x) is real; taking ξ1 = i and ξ2 = 1
shows that i(F(x) − F(−x)) is real. Therefore F(x) + F(−x) = F(x) + F(−x)
and F(x) − F(−x) = −F(x) + F(−x). Adding we obtain F(−x) = F(x). Hence
−F(x)ξ1ξ2 − F(x) ξ1ξ2 ≤ F(0)(|ξ1|2 + |ξ2|2). If F(x) 6= 0, we put ξ1 = −1 and
ξ2 = F(x)/|F(x)| and obtain |F(x)| ≤ F(0).
10.

P
i, j F(xi−xj )8(xi−xj )ξiξj =

P
i, j

R
F(xi−xj )e−2π i t ·(xi−xj )ϕ(t)ξiξj dt =

R £P
i, j F(xi − xj )

°
ξi e−2π i t ·xi

¢°
ξj e−2π i t ·xj

¢§
ϕ(t) dt ∏ 0.

11. Part (a) follows from the boundedness of F obtained in Problem 9.
In (b), every g in Ccom(RN ) satisfies 0 ≤

RR
F0(x − y)g(x)g(y) dx dy =

R
(F0 ∗ g)(x)g(x)=

R \F0 ∗ g(y)bg(y) dy=
R bF0(y)bg(y)bg(y) dy=

R bF0(y)|bg(y)|2 dy.
For (c), if f is in L2, we can approximate f as closely as we like by a

member g of Ccom(RN ). Then f0|bg|2 = f0|F( f )|2 + 2 f0 Re(F( f )(bg − F( f ))+
f0|bg−F( f )|2. We integrate anduse the resulting formula to compare

R
f0|bg|2 dywithR

f0|F( f )|2 dy. By the Schwarz inequality and the Plancherel formula, the absolute
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value of the difference of these is ≤ 2k f0ksupk f k2kg − f k2 + k f0ksupkg − f k22.
Since

R
f0|bg|2 dy is ∏ 0, it follows that

R
f0|F( f )|2 dy ∏ 0 for all f in L2. Since

F( f ) is an arbitrary L2 function and f0 is continuous, we conclude that f0 is ∏ 0.
The integrability in (d) is immediate from Lemma 8.7, and the formula

R
f0 dy =

F(0) follows from the Fourier inversion formula.
12. Let εn be a sequence decreasing to 0, let 8 in Problem 11 be the function

e−πε2n |x |2 , and write Fn for the function F8. Then Problem 11d shows that µn =
cFn(y) dy is a finite Borel measure with µn(RN ) = Fn(0) = F(0). The Helly–Bray
Theorem applies and produces a subsequence of {µn} convergent to a finite Borel
measureµweak-star againstCcom(RN ). We shall prove that F(x) =

R
e2π i x ·y dµ(y),

i.e., that ∫ with ∫(E) = µ(−E) is the desired measure. (The interested reader may
wish to compare this argument with the proof of the Portmanteau Lemma (Lemma
9.14) in the companion volume, Advanced Real Analysis.)
For each n, the Fourier inversion formula gives Fn(x) =

R
e2π i x ·ybFn(y) dy =R

e2π i x ·y dµn(y). Since Fn(x) tends to F(x) pointwise, the result would follow if
we could say that the weak-star convergence implies that

R
e2π i x ·y dµn(y) tends toR

e2π i x ·y dµ(y). However, e2π i x ·y is not compactly supported, and an additional
argument is needed.
First we extend theweak-star convergence so that it applies to continuous functions

vanishing at infinity. If f is such a function, we can find a sequence { fk} inCcom(RN )

converging to f uniformly. Then
Ø
Ø R f dµn −

R
f dµ

Ø
Ø

≤
Ø
Ø R f dµn−

R
fk dµn

Ø
Ø +

Ø
Ø R fk dµn−

R
fk dµ

Ø
Ø +

Ø
Ø R fk dµ−

R
f dµ

Ø
Ø

≤ k fk − f ksup µn(RN ) +
Ø
Ø R fk dµn−

R
fk dµ

Ø
Ø + k fk − f ksup µ(RN ).

Choose k to make k fk − f ksup small. With k fixed, choose n to make the middle
term small. Then the right side is small since the numbers µn(RN ) are bounded.
This is not quite good enough by itself because e2π i x ·y does not vanish at infinity.

However, averages of it by L1 functions (i.e., Fourier transforms of L1 functions)
vanish at infinity, and that will be enough for us.
Define F#(x) =

R
e2π i x ·y dµ(y). We prove that F#(x) = F(x) for all x . It

is enough to prove that
R
F#√ dx =

R
F√ dx for all √ in L1. Define √∨(y) =R

e2π i x ·y√(x) dx . The multiplication formula (for ( · )∨ instead of ( · )b) and the
Riemann–Lebesgue Lemma give

R
F#√ dx =

R
√∨ dµ(y) = limn

R
√∨ dµn = limn

R
√∨cFn dy

= limn
R

√cFn
∨ dy = limn

R
√Fn dy.

The right side equals
R

√F dy by dominated convergence since |Fn(y)| ≤ |F(y)| for
all y.
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13. Part (a) is easy.
In (b), if χ is a character, then

P
x χ(x) =

P
x χ(gx) = χ(g)

P
x χ(x). ThusP

x χ(x) = 0 if there is some g with χ(g) 6= 1, i.e., if χ is not trivial. If χ and χ 0

are distinct characters, then χχ 0 is not trivial, and therefore
P

x χ(x)χ 0(x) = 0. The
orthogonality implies the linear independence.
In (c), the element 1 of Jm has order m under the group operation of addition.

Thus each character χ of Jm must have χ(1) equal to an mth root of unity. Since 1
generates Jm , χ(1) determines χ . Thus the listed characters are the only ones.
In (d), any tuple (n1, . . . , nr ) with 0 ≤ nj < mj for 1 ≤ j ≤ r defines a

character by (k1, . . . , kr ) 7→
Qr

j=1(≥
nj
mj )

kj . There are
Qr

j=1mj distinct characters
in this list, and they are linearly independent by (b). Since dim L2(G) =

Qr
j=1mj ,

these characters form a vector-space basis.

14. Since the characters form a basis of L2(G) as a consequence of Problem 13d,
we have f (t) =

P
χ 0 cχ 0χ 0(t) for some constants cχ 0 . Multiply by χ(t) and sum over

t to get bf (χ) =
P

χ 0

P
t cχ 0χ 0(t)χ(t). The orthogonality in Problem 13b shows that

this equation simplifies to bf (χ) = cχ
P

t |χ(t)|2 = |G|cχ .

15. bf (χ)=
P

t∈G f (t)χ(t)=
P

.
t∈G/H

P
h∈H f (t + h) .

χ(
.
t) =

P
.
t∈G/H F(

.
t) .

χ(
.
t)

= bF(
.
χ).

16. The characters of G are the ones with χn(1) = ≥ nm for 0 ≤ n < m. Such a
character is trivial on H if and only if χn(q) = 1, i.e., if and only if ≥

nq
m = 1; this

means that nq is a multiple of m, hence that n is a multiple of p.
The element 1 of H is the elementq ofG. Thus the question about the identification

of the descended characters asks the value of χn(1)when n is a multiple j p of p. The
value is χn(1) = ≥ nm = ≥

j p
pq = ≥

j
q .

If we have computed F on G/H and want to compute bF from the definition of
Fourier transform, we have to multiply each of the q values of F by the values of
each of the q characters of G/H and then add. The number of multiplications is q2.
The actual computation of F from f involves p additions for each of the q values of
.
t , hence pq additions.

17. bf (≥ j p+k
m ) =

Pm−1
i=0 f (i)≥ ( j p+k)i

m =
Pm−1

i=0 ( f (i)≥ kim )≥
j p
m . The variant of f for

the number k is then i 7→ f (i)≥ kim . Handling each value of k involves m = pq steps
to compute the variant of f and then the q2+ pq steps of Problem 16. Thus we have
q2 + 2pq steps for each k, which we regard as on the order of q2 + pq. This means
p(q2 + pq) steps when all k’s are counted, hence pq(p + q) steps.

19. For Re s > 1, we have

1
s−1 =

R ∞
1 t−s dt =

∞P

n=1

R n+1
n t−s dt.
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Thus Re s > 1 implies

≥(s) = 1
s−1 +

∞P

n=1

° 1
ns −

R n+1
n t−s

¢
dt = 1

s−1 +
∞P

n=1

R n+1
n (n−s − t−s) dt.

20. Suppose that Re s ∏ σ > 0, and let |s| ≤ C . We then have the estimate

Ø
Ø R n+1

n (n−s − t−s)
Ø
Ø ≤

R n+1
n |n−s − t−s | dt ≤ |s|

n1+Re s ≤ C
n1+σ ,

the next-to-last inequality following from the computation

|n−s − t−s | ≤ sup
n≤t≤n+1

Ø
Ø d
dt t

−sØØ ≤ sup
n≤t≤n+1

|s|
|t1+s | ≤ C

n1+σ .

In combination with the Weierstrass M test, the estimate shows that the series
∞P

n=1

R n+1
n (n−s − t−s) dt is uniformly convergent for s in any compact subset of the

half plane Re s > 0, and analyticity of ≥(s) − 1
s−1 follows from Problem 55 at the

end of Appendix B.

21. We have |ein2πτ | = e−πn2σ , and the sum on n of the expression on the right
is certainly convergent if σ > 0. The analyticity follows by using the Weierstrass M
test and Problem 55 at the end of Appendix B. The identity θ(τ + 2) = θ(τ ) is clear
by inspection.
22. Take r = σ 1/2 and σ > 0 in the formula of Corollary 8.16. Then θ(−1/τ ) and

(τ/ i)1/2θ(τ ) are equal on the imaginary axis. Also both are analytic for Im τ > 0. By
the Identity Theorem (Proposition B.23 of Appendix B), they are equal everywhere.
23. The change of variables is x = n2πσ .

24. The sum over n of the right side in the previous problem is ≥(s)0( 12 s)π
− 1
2 s .

The sum over n of the left side is
∞P

n=1

R ∞
0 ein2π(iσ )σ

1
2 s−1 dσ for Re s > 1. If absolute

value signs are inserted inside the integral sign then the whole expression is finite.
Hence Fubini’s Theorem is applicable to interchange sumand integral, and the desired
formula results.

25. Put c(σ ) = 1
2 [θ(iσ )−1]. Its series is c(σ ) =

∞P

n=1
e−n2πσ , and its product with

σ
1
2 s−1 is a continuous function of the pair (σ, s) that is entire in s for each fixed σ . By

Lemma B.12 and Corollary B.15,
R N
1 c(σ )σ

1
2 s−1 is entire in s for any fixed N . Since

R ∞
N |c(σ )σ

1
2 s−1| dσ tends to 0 uniformly on compact subsets of s values, the entire

function
R N
1 c(σ )σ

1
2 s−1 converges uniformly on compact sets to

R ∞
1 c(σ )σ

1
2 s−1. The

limit has to be entire by Problem 55 in Appendix B.
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26. Let Re s > 1. In view of Problem 22, we have
R 1
0
1
2θ(iσ )σ

1
2 s−1 dσ =

R 1
0
1
2θ(−1

iσ )( iσi )−1/2σ
1
2 s−1 dσ

=
R 1
0
1
2θ(−1

iσ )σ
1
2 s−

3
2 dσ

=
R 1
0
1
2 [θ(−1

iσ ) − 1] σ
1
2 s−

3
2 dσ + 1

s−1

The change of variables σ 7→ 1/σ shows that the above expression is

=
R ∞
1

1
2 [θ(iσ ) − 1] σ

1
2 (1−s)−1 dσ − 1

1−s = h(1− s) − 1
1−s .

27. The conclusion of Problem 24 gives

3(s) =
R ∞
0

1
2 [θ(iσ ) − 1] σ

1
2 s−1 ds

=
R 1
0
1
2θ(iσ ) σ

1
2 s−1 ds − 1

2
R 1
0 σ

1
2 s−1dσ +

R ∞
1

1
2 [θ(iσ ) − 1] σ

1
2 s−1 ds

=
R 1
0
1
2θ(iσ ) σ

1
2 s−1 ds − 1

s + h(s).

Substituting from Problem 26 shows that

3(s) = h(1− s) − 1
1−s − 1

s + h(s).

Since ≥(s) extends to be meromorphic in Re s > 0 with its only pole at s = 1,
3(s) is meromorphic for Re s > 0. On the other hand, the above expression for
3(s) shows that 3(s) = 3(1− s) for 0 < Re s < 1, hence that 3(s) extends to be
meromorphic on C. Since h is entire, the only possible poles of 3(s) are at 0 and
1. Since ≥(s) = 3(s)0( 12 s)

−1π
1
2 s and since 0( 12 s)

−1 by assumption has no poles,
≥(s) can have poles at most at 0 and 1, and any pole is at most simple. Looking at
the formula for 3(s) in terms of ≥(s) shows that σ (s) cannot have a pole at s = 0.

Chapter IX

1. Let r = q/p, and let r 0 be the dual index. Regard | f |p as a product | f |p ·1, and
apply Hölder’s inequality with | f |p to be raised to the r power and 1 to be raised to
the r 0 power. Compare with Problem 3 below, which is a more complicated version
of the same thing.
2. The inequality is routine if any of the indices is∞. Otherwise, we have

R
| f gh| dµ ≤

° R
| f g|r 0 dµ

¢1/r 0° R
|h|r dµ

¢1/r

≤
°° R

(| f |r 0
)p/r

0 dµ
¢r 0/p¢1/r 0°° R

(|g|r 0
)q/r 0 dµ

¢r 0/q¢1/r 0

khkr
= k f kpkgkqkhkr .
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3. Let us say that k fnkp ≤ C . Let ≤ > 0 be given. By Egoroff’s Theorem, find
E with µ(E) < ≤ such that fn tends to f uniformly on Ec. Application of Hölder’s
inequalitywith the exponent r = p/q and dual index r 0 = p/(p−q) to

R
E | fn|q ·1 dµ

gives k fn IEkq ≤
° R

E | fn|q(p/q) dµ
¢1/p° R

E 1 dµ
¢(p−q)/(pq)

≤ Cµ(E)(p−q)/(pq) ≤

C≤(p−q)/(pq). Meanwhile, we have

k fn − f kq ≤ k fn − fn IEckq + k fn IEc − f IEckq + k f IEc − f kq
= k fn IEkq + k( fn − f )IEckq + k f IEkq .

The first term on the right is ≤ C≤(p−q)/(pq), and so is the third term, by Fatou’s
Lemma. The middle term tends to 0 as n tends to infinity because of the uniform
convergence. Thus lim supn k fn − f kq ≤ 2C≤(p−q)/(pq). Since ≤ is arbitrary,
lim supn k fn − f kq = 0.
4. L1 is 0, and L∞ consists of the constant functions. All the constant functions

give the same linear functional on L1 because the integral of the product of any
constant function and the 0 function is 0.
5. Put P 0 = { f (x) > 0}, N 0 = { f (x) < 0}, and Z 0 = { f (x) = 0}. If E is any

measurable subset of Z 0, then X = P∪N with P = P 0 ∪E and N = N 0 ∪(Z 0−E) is
a Hahn decomposition. All other Hahn decompositions are obtained by adjusting P
and N by taking the symmetric difference of P and of N with any set ofµmeasure 0.
6. In (a), let X be the positive integers, and let the algebra consist of all finite

subsets and their complements; let ∫ of a finite set be the number of elements in the
set, and let ∫ of the complement of a finite set F be −∫(F). In (b), use the same
X and algebra, define ∫({2k}) = 2−k and ∫({2k − 1}) = −2−k , and extend ∫ to be
completely additive. In (c), let X = [0, 1], let the σ -algebra consist of the Borel sets,
and take ∫ to be Lebesgue measure and µ to be counting measure.
7. Since Pr has L1 norm 1, the inequality ku(r, · )kp ≤ k f kp follows from

Minkowski’s inequality for integrals. For the limiting behavior as r increases to 1,
we extend f periodically and write

u(r, θ) − f (θ) = 1
2π

R π
−π Pr (ϕ) f (θ − ϕ) dϕ − f (θ)

= 1
2π

R π
−π Pr (ϕ)[ f (θ − ϕ) − f (θ)] dϕ,

the second step following since 1
2π

R π
−π Pr dϕ = 1. ApplyingMinkowski’s inequality

for integrals, we obtain

ku(r, · ) − f kp ≤ 1
2π

R π
−π Pr (ϕ)k f (θ − ϕ) − f (θ)kp,θ

since Pr ∏ 0. The integration on the right is broken into two sets, S1 = (−δ, δ) and
S2 = [−π,−δ] ∪ [δ,π], and the integral is

≤ 1
2π

R
S1 Pr (ϕ)

°
supϕ∈S1 k f (θ − ϕ) − f (θ)kp,θ

¢
dϕ + 1

2π
R
S2 Pr (ϕ)2k f kp dϕ

≤ sup
ϕ∈S1

k f (θ − ϕ) − f (θ)kp,θ + 2k f kp sup
ϕ∈S2

Pr (ϕ).
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Let ≤ > 0 be given. If δ is sufficiently small, Proposition 9.11 shows that the first
term is< ≤. With δ fixed, we can then choose r close enough to 1 to make the second
term < ≤.
8. Let p be the dual index to p0. Put r/R = r 0 in Problem 13 at the end of

Chapter IV, so that

u(r 0R, θ) = 1
2π

R π
−π fR(ϕ)Pr 0(θ − ϕ) dϕ

for r 0 < 1. Take a sequence of R’s increasing to 1, and let {Rn} be a subsequence such
that { fRn } converges weak-star in L p

0 relative to L p. Let the limit be f . For each θ

and r 0, Pr 0(θ− · ) is in L p, and the equality u(r 0Rn, θ) = 1
2π

R π
−π fRn (ϕ)Pr 0(θ−ϕ) dϕ

thus gives u(r 0, θ) = 1
2π

R π
−π f (ϕ)Pr 0(θ − ϕ) dϕ, which is the desired result.

9. If ∫ is a measure with 0 ≤ ∫ ≤ µ, then ∫({n}) = 0 for every n, and hence
∫({integers}) = 0. So ∫ = 0.
10. Letµ be given on the space X , and consider the set S of all completely additive

∫ with 0 ≤ ∫ ≤ µ. This contains 0 and hence is nonempty. Order S by saying that
∫1 ≤ ∫2 if ∫1(E) ≤ ∫2(E) for all E . If we are given a chain {∫α}, letC = supα ∫α(X).
This is ≤ µ(X) and hence is finite. Choose a sequence {∫αk } from the chain with
∫αk (X) monotone increasing with limit C .
If m < n, let us see that ∫αm ≤ ∫αn . Since the ∫α’s form a chain, the only way

this can fail is to have ∫αm (E) > ∫αn (E) for some E and also ∫αm (Ec) ∏ ∫αn (Ec).
But then ∫αm (X) > ∫αn (X) by additivity, and this contradicts the fact that ∫αk (X) is
monotone increasing. So m < n implies ∫αm ≤ ∫αn .
Define ∫0(E) = limk ∫αk (E). Corollary 1.14 shows that ∫0 is completely additive,

and certainly ∫0 ≤ µ. So ∫0 is an upper bound for the chain. Zorn’s Lemma therefore
shows that S has a maximal element ∫.
Write σ = µ − ∫. This is bounded nonnegative additive as a result of the

construction. If there were a completely additive ∏ such that 0 ≤ ∏ ≤ σ , then
∫ + ∏ would contradict the construction of ∫ from Zorn’s Lemma. Thus σ is purely
finitely additive.
11. It is enough to prove that µ is completely additive. If the contrary is the case,

then there exists an increasing sequence of sets En with union E in the algebra such
that the monotone increasing sequence {µ(En)} does not have limit µ(E). Since µ

is nonnegative additive, µ(En) ≤ µ(E) for all n. Thus limn µ(En) < µ(E). Since
∫ − µ is nonnegative additive, ∫ − µ similarly has limn(∫ − µ)(En) ≤ (∫ − µ)(E).
Adding, we obtain limn ∫(En) < ∫(E), in contradiction to the complete additivity
of ∫.
12. Suppose µ is nonnegative bounded additive. Let µ = ∫1+ ρ1 = ∫2+ ρ2 with

∫1 and ∫2 nonnegative completely additive and with ρ1 and ρ2 nonnegative purely
finitely additive. Then ∫1− ∫2 = ρ2−ρ1. Let ∫+ − ∫− be the Jordan decomposition
of ∫1 − ∫2. Since ∫1 − ∫2 is completely additive, so are ∫+ and ∫−. The equality
∫+ − ∫− = ρ2 − ρ1 and the minimality of the Jordan decomposition together imply
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that 0 ≤ ∫+ ≤ ρ2 and 0 ≤ ∫− ≤ ρ1. Problem 11 then shows that ∫+ = ∫− = 0.
Hence ∫1 − ∫2 = 0, ∫1 = ∫2, and ρ1 = ρ2.
13. Let R = I × J be centered at (x, y). Then 1

m(R)

RR
R | f (u, v)| dv du =

1
m(I )

R
I
£ 1
m(J )

R
J | f (u, v)| dv

§
du ≤ 1

m(I )
R
I f1(u, y) du = f2(x, y). Taking the

supremum over R gives f ∗∗(x, y) ≤ f2(x, y).
14.

RR
| f ∗∗(x, y)|p dx dy ≤

RR
| f2(x, y)|p dx dy =

R £ R
| f2(x, y)|p dx

§
dy ≤

App
R £ R

| f1(x, y)|p dx
§
dy by Corollary 9.21. If we interchange integrals and apply

Corollary 9.21 a second time, we see that this is ≤ A2pp
R £ R

| f (x, y)|p dy
§
dx =

A2pp k f kpp .
15. This is done in the style of Corollary 6.39.
16. Let81 ∏ 0 be a decreasingC1 function on [0, 1] with80

1(0) = 0,81(1) = 1,
and 80

1(1) = −1. Define 80(x) on [0, 1] to be 81(x)
±
(π(1+ x2)) on [0, 1] and to

be 1
±
(πx(1+ x2)) on [1,+∞). Then 8(x) = 80(|x |) has the required property.

17. supε>0 |(√ε ∗ f )(x)| ≤ supε>0(|√ε| ∗ | f |)(x) ≤ supε>0(8ε ∗ | f |)(x), and
then supε>0 |(√ε ∗ f )(x)| ≤ C f ∗(x) by Corollary 6.42. Since

R
R1 √(x) dx = 0, the

last part of the proof of Corollary 6.42 shows that limε>0(√ε ∗ f )(x) = 0 a.e. for f
in L1(R1). If f is in L∞(R1) and a bounded interval is specified, we can write f as
the sum of an L1 function carried on that interval and an L∞ function vanishing on
that interval. The L1 part is handled by the previous case, and the L∞ part is handled
on that bounded interval by Theorem 6.20c.
18. We use the fact that Qε = hε + √ε, where √ is integrable with integral 0.

Since hε ∗ f and √ε ∗ f are in L p, so is Qε ∗ f . Convolution by an L1 function
such as Pε is continuous on L p by Proposition 9.10. With all limits being taken in
L p as ε0 ↓ 0, we have Pε ∗ (H f ) = Pε ∗ (lim(hε0 ∗ f )) = lim Pε ∗ (hε0 ∗ f ) =
lim Pε ∗ (Qε0 ∗ f − √ε0 ∗ f ) = lim Pε ∗ (Qε0 ∗ f ) − (lim Pε ∗ √ε0) ∗ f . The second
term on the right side is 0. If we think of Pε as in L1 and Qε0 as in L p0 , then we have
Pε ∗ (Qε0 ∗ f ) = (Pε ∗ Qε0) ∗ f = Qε0+ε ∗ f = (Pε0 ∗ Qε) ∗ f = Pε0 ∗ (Qε ∗ f ).
Thus lim Pε ∗ (Qε0 ∗ f ) = lim Pε0 ∗ (Qε ∗ f ) = Qε ∗ f , and we conclude that
Pε ∗ (H f ) = Qε ∗ f .
19. supε>0 |(hε ∗ f )(x)| ≤ supε>0 |(Qε ∗ f )(x)| + supε>0 |(√ε ∗ f )(x)| ≤

supε>0 |(Pε ∗ H f )(x)| + C f ∗(x) ≤ C 0(H f )∗(x) + C f ∗(x), the last inequality
following from Corollary 6.42 for Pε. Let 1 < p < ∞. Then it follows from
Corollary 9.21 that k supε>0 |hε ∗ f | kp ≤ Cp(kH f kp + k f kp), and we conclude
from Theorem 9.23c that k supε>0 |hε ∗ f | kp ≤ Dpk f kp. Lemma 9.24 shows that
limε↓0(hε ∗ f )(x) = f (x) everywhere if f is in a certain dense subspace of L p, and
it follows as in Problem 15 that limε↓0(hε ∗ f )(x) = f (x) almost everywhere if f is
arbitrary in L p.
20. Imitating the proof of parts (a) and (b) of Fejér’s Theorem (Theorem 6.48), we

readily prove that Kn ∗ f → f in L p, where Kn is the Fejér kernel. Therefore finite
linear combinations of the exponentials are dense in L p([−π,π]). For each such
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linear combination f of exponentials, we have Sn f = f for all sufficiently large n,
and hence Sn f → f in L p for a dense subset of L p. Using the given estimate on
kSn f kp and the convergence of Sn f on the dense set, we argue as in the proof of
Theorem 9.23b to deduce convergence for all f in L p.

21. Let Fn(t) =
2 sin(n+ 1

2 )t
t for 0 < |t | ≤ π , and extend Fn periodically.

Then t
2 Fn(t) = sin(n + 1

2 )t = (sin 12 t)Dn(t). Since (t/2)
±
sin 12 t = 1 + t√(t)

with √(t) bounded above and below by positive constants on [−π,π], we see that
Dn(t) − Fn(t) =

£ t
2

sin 12 t
− 1

§
Fn(t) = 2√(t) sin(n + 1

2 )t . Then the functions

√n(t) = 2√(t) sin(n + 1
2 )t have Dn − Fn = √n and k√nk1 bounded. By in-

spection, Fn − En equals the function that is
2 sin(n+ 1

2 )t
t for |t | < 1

2n+1 and is 0 for
1

2n+1 ≤ |t | ≤ π . These functions are≤ 2(n+ 1
2 ) for |t | < 1

2n+1 and are 0 otherwise;
so their L1 norms are bounded. This proves that Dn − En = ϕn with kϕnk1 ≤ C for
some C .
If kTn f kp ≤ Bpk f kp, thenwehave kSn f kp = kDn∗ f kp = kEn∗ f +ϕn∗ f kp ≤

kEn ∗ f kp + kϕn ∗ f kp ≤ Bpk f kp + kϕnk1k f kp, and we can take Ap = Bp + C .

22. We have 2i sin(n+ 1
2 )t = ei(n+

1
2 )t − e−(n+ 1

2 )t . Thus the effect of the operator
Tn on f is the sum of two terms T (1)

n f + T (2)
n f , one of which is

T (1)
n f (x) =

Z

1
2n+1≤|t |≤π

−i f (x − t)e−i(n+
1
2 )(x−t)ei(n+

1
2 )x

t
dt.

If we regard f as continued periodically to the interval [−3π, 3π] and we put f equal
to 0 outside that interval, then

T (1)
n f (x) = ei(n+

1
2 )x ((Hπ − H1/(2n+1))g)(x) for x ∈ [−π,π],

where g(y) = −iπ f (y)e−i(n+
1
2 )(y) on [−3π, 3π]. With Ap as the constant from

Theorem 9.23, Theorem 9.23 gives
° R π

−π |T (1)
n f (x)|p dx

¢1/p
≤

° R
R |T (1)

n f (x)|p dx
¢1/p

≤
° R

R |Hπg|p dx
¢1/p

+
° R

R |H1/(2n+1)g|p dx
¢1/p

≤ 2Ap
° R

R |g|p dx
¢1/p

≤ 2π Ap
°
3
R π
−π | f |p dx

¢1/p
.

We get a similar estimate for T (2)
n f , and the desired estimate for Tn f follows.

23. Define a signed measure ∫ on B by ∫(B) =
R
f dµ. Then ∫ is absolutely

continuouswith respect to the restriction ofµ toB, and theRadon–NikodymTheorem
yields a function g measurable with respect to B such that ∫(B) =

R
B g dµ for all B

in B. This function g is E[ f |B]. Uniqueness is built into the uniqueness aspect of
the Radon–Nikodym Theorem.
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24. For those n’s such that µ(Xn) 6= 0, E[ f |B] may be defined to be equal
everywhere on Xn to the constant µ(Xn)−1

R
Xn f dµ. For definiteness, E[ f |B] may

be defined to be 0 on each Xn with µ(Xn) = 0.
25. The function f satisfies the defining properties (i) and (ii) of E[ f |A].
26. In (a), we identify E[E[ f |B] | C] as E[ f |C]. It is measurable with respect to C

and hence satisfies (i) toward being E[ f |C]. Any C ∈ C has
R
C E[E[ f |B] | C] dµ =R

C E[ f |B] dµ. In turn this equals
R
C f dµ since C is in B. Hence E[E[ f |B] | C]

satisfies (ii) toward being E[ f |C].
In (b), we identify E[ f |B]+ E[g|B] as E[ f+g | B]. It is measurable with respect

to B and hence satisfies (i). For (ii), each B in B has
R
B(E[ f |B] + E[g|B]) dµ =R

B E[ f |B] dµ +
R
B E[g|B] dµ =

R
B f dµ +

R
B g dµ =

R
B( f + g) dµ.

In (c), it is enough to handle f ∏ 0, and then it is enough to handle g ∏ 0. If g = IB
with B ∈ B, then we shall identify IB E[ f |B] as E[ f IB | B]. Certainly IB E[ f |B]
satisfies (i). For (ii), each B0 in B has

R
B 0 IB E[ f |B] dµ =

R
B 0∩B E[ f |B] dµ =R

B 0∩B f dµ =
R
B 0 IB f dµ. This handles g equal to an indicator function. Part (b)

allows us to handle g equal to a simple function, and monotone convergence allows
us to handle g equal to any nonnegative integrable function. (For this last conclusion
one needs to use that f ∏ 0 implies E[ f |B] ∏ 0, but this is built into the construction
via the Radon–Nikodym Theorem.)
In (d), the important thing is that X is a set in B. Then (ii) and (c) successively

give
R
X f E[g|B] dµ =

R
X E[ f E[g|B] | B] dµ =

R
X E[ f |B]E[g|B] dµ. The right

side is symmetric in f and g, and hence the left side is also.
27. For f in L1 ∩ L2, we compute from the definition of F that F(δr f )(y) =

rδ−1
r (F f )(y). It follows for all L2 functions f that F(δr f ) = rδ−1

r (F f ) as an
equality of L2 functions. Let A : L2 → L2 be bounded linear commuting with
translations and dilations. Theorem 8.14 produces an L∞ function m such that
F(A f ) = m(F f ) for all f in L2. Using the commutativity of A with dilations, we
have

(m)(F f ) = F(A f ) = F(δ−1
r Aδr f ) = r−1δr (F(Aδr f )) = r−1δr (mF(δr f ))

= r−1(δrm)(δr (F(δr f ))) = r−1(δrm)(δr (rδ−1
r (F f ))) = (δrm)(F f ).

Consequently δrm = m for all r > 0. It follows that m is constant a.e. on each half
line. The result follows.
28. Lemma 8.13 relies on Proposition 6.16 and Corollary 6.17. Proposition 9.11

extends Proposition 6.16 to 1 ≤ p < ∞ and is to be quoted in place of Proposition
6.16.
To generalize Corollary 6.17 appropriately, one can use any number p with 1 ≤

p < ∞, and it is important to allow the p associated to gk to depend on k. In other
words the statement of the corollary concerns functions gk in L pk , and the norm on
the expression involving gk is to be k · kpk . The same kinds of adjustments are needed
in the proof of the corollary, and then the proof goes through.
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The statement of Lemma 8.13 remains valid for any bounded linear operator
A : L p → Lq commuting with translations, provided 1 ≤ p < ∞ and 1 ≤ q < ∞.
Corollary 6.17 is to be applied with g1 = g, p1 = p, g2 = Ag, and p2 = q, and then
the argument goes through.
29. In (a), the simple functions f and g are in L1, L p, and Lq , and also L p0 and Lq 0

for the dual indices p0 and q 0. Problem 28 gives (A f )∗g = A( f ∗g) as an equality of
Lq functions, and it similarly gives A( f ∗ g) = f ∗ (Ag). Thus (A f )∗ g = f ∗ (Ag)
as Lq functions. On the other hand, (A f ∗ g) is a bounded continuous function by
Proposition 9.12 because A f is in Lq and g is in Lq 0 . Similarly f ∗ (Ag) is a bounded
continuous function. Then we must have (A f ∗g) = f ∗ (Ag) pointwise. Evaluating
both sides at 0 yields (a).
In (b), we take the supremum of the absolute value of both sides of (a) over all

simple f with k f kp ≤ 1. The right side becomes kAgkp0 , and the left side, by
Hölder’s inequality, is ≤ kA f kpkgkp0 ≤ kAkp,pkgkp0 , where kAkp,p is the norm
of A : L p → L p. Thus each simple g has kAgkp0 ≤ kAkp,pkgkp0 . Since the
space of simple functions is dense, A extends to a bounded linear operator from L p0

into itself with kAkp0,p0 ≤ kAkp,p. The extension commutes with translations by a
continuity argument. Reversing roles of p and p0, we see that kAkp,p ≤ kAkp0,p0 .
Thus kAkp0,p0 = kAkp,p.
In (c), the bounded operator obtained by the dual construction is from Lq 0 to L p0 .
30. Problem 29 shows that A is also bounded from L p0 to itself. By the Riesz

Convexity Theorem (Theorem 9.19A), it is bounded also from L2 to itself, since
2 is between p and p0. Being bounded from L2 into itself and commuting with
translations, it is given, according to Theorem 8.14, by multiplication on the Fourier
transform side by an L∞ function m. Thus F(A f ) = mF( f ) for that same m on a
dense subspace of L p. Since both sides are continuous linear operators, this equality
extends to all of L p.
31. In (a), the real and imaginaryparts ofρ are treated separately and come from the

L1 functions Aϕε; let us ignore the imaginaryparts, which are handled in the sameway
as the real parts. Since A is bounded from L1 to itself, kAϕεk1 ≤ kAkkϕεk1 = kAk.
Take a sequence of ε’s tending to 0 and apply the Helly–Bray Theorem to extract a
subsequence {εk} such that {(Aϕεk )

+ dx} and {(Aϕεk )
− dx} both converge weak-star

against Ccom(RN ). Let ρ be the difference of the limits of these sequences. This is a
signed measure on the Borel sets RN , and its positive and negative parts ρ+ and ρ−

in the Jordan decomposition (Theorem 9.14) have ρ+(RN ) + ρ−(RN ) ≤ kAk.
In (b), g is uniformly continuous and ρ is finite. The continuity of g ∗ ρ is

immediate.
In (c), we have

(Ah# ∗ ϕεk )(y) = A(h# ∗ ϕεk )(y) = (h# ∗ Aϕεk )(y)

=
R

RN h#(y − x)(Aϕεk )(x) dx
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=
R

RN h(x − y)(Aϕεk )(x) dx
=

R
RN (τyh)(x)(Aϕεk )(x) dx,

and this tends by (a) to
R

RN (τyh)(x) dρ(x) =
R

RN h(x − y) dρ(x) =
R

RN h#(y − x) dρ(x) = (h# ∗ ρ)(y).

In (d), we observe that the equality in (c) is a pointwise equality. Since {ϕε} is an
approximate identity, Ah# ∗ ϕε → Ah# n L1. Thus we have Ah# = h# ∗ ρ as an
equality of L1 functions whenever h is in Ccom(RN ). The operators on the two sides,
A and ( · ) ∗ ρ, are continuous on L1; this fact is given in the case of A and is easily
checked in the case of ( · ) ∗ ρ. By continuity the equality Ah# = h# ∗ ρ valid on
Ccom(RN ) extends to an equality A f = f ∗ ρ valid on all of L1.
32. Define r by 1− 1

r = 1
p − 1

q . Young’s inequality (Corollary 9.19D) shows that
convolution with an Lr function h is bounded from L p to Lq , and it commutes with
translations. To obtain a nonzero convolution operator of this kind, we take h to be
nonzero, simple, and real-valued. Putting h#(x) = h(−x), we observe that h ∗ h# is
a bounded continuous function and has h ∗ h#(0) =

R
RN h(x)2 dx > 0.

33. For (a), if f is in Ccom(RN ), then kτh f + f kpp =
R

RN | f (x − h)+ f (x)|p dx ,
and for h sufficiently large, this equals

R
RN | f (x − h)|p dx +

R
RN | f (x)|p dx =

2k f kpp . Thus (a) is proved in this special case. The general case follows from a 3≤
argument, Ccom(RN ) being dense in L p.
For (b), we have kτh(A f )+ A f kq = kA(τh f )+ A f kq ≤ Mkτh f + f kp. Letting

h tend to infinity and applying (a) to both sides, we obtain 21/qkA f kq ≤ 21/pMk f kp
and thus kA f kq ≤ 21/p−1/qMk f kp. Since M is the norm of kAk and since
21/p−1/qM < M , we can find an f 6= 0 with kA f kq > Mk f kp, and then we
have a contradiction.

Chapter X

1. For (a), the diagonal 1 = {(y, y) ∈ Y × Y } is a closed subset of Y × Y since
Y is Hausdorff, and the function F : X → Y × Y given by F(x) = ( f (x), g(x)) is
continuous. Therefore F−1(1) is closed.
2. The argument is the same as for Problem 18 in Chapter II.
3. We argue as in the proof of Theorem2.53. Taking complements, we see that it is

enough to prove that the intersection of countably many open dense sets is nonempty.
Suppose that Un is open and dense for n ∏ 1. Let x1 be in U1. Since U1 is open,
local compactness and regularity together allow us to find an open neighborhood B1
of x1 with Bcl1 compact and B

cl
1 ⊆ U1. We construct inductively points xn and open

neighborhoods Bn of them such that Bn ⊆ U1∩· · ·∩Un and Bcln ⊆ Bn−1. Suppose Bn
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with n ∏ 1 has been constructed. SinceUn+1 is dense and Bn is nonempty and open,
Un+1 ∩ Bn is not empty. Let xn+1 be a point inUn+1 ∩ Bn . SinceUn+1 ∩ Bn is open,
we can find an open neighborhood Bn+1 of xn+1 inUn+1 such that Bcln+1 ⊆ Un+1∩Bn .
Then Bn+1 has the required properties, and the inductive construction is complete.
The sets Bcln have the finite-intersection property, and they are closed subsets of Bcl1 ,
which is compact. By Proposition 10.11 their intersection is nonempty. Let x be in
the intersection. For any integer N , the inequality n > N implies that xn is in BN+1.
Thus x is in BclN+1 ⊆ BN ⊆ U1 ∩ · · · ∩UN . Since N is arbitrary, x is in

T∞
n=1Un .

4. Let Y be a locally compact dense subset of the Hausdorff space X . If y is in
Y , let N be a relatively open neighborhood of y such that N ⊆ K with K compact in
Y . Since N is relatively open, N = U ∩ Y for some open U in X . It will be proved
that N = U , so that each point of Y has an X open neighborhood, and then Y will
be open. The set K is compact in X and must be closed since X is Hausdorff. The
points of U ∩ K are in Y since K ⊆ Y , and hence U ∩ K ⊆ U ∩ Y = N . Consider
a point x of the open set U − K . Suppose x is not in Y . Then x is a limit point of Y
since Y is dense. Hence the open neighborhoodU − K of y contains a point y0 of Y .
Then y0 is inU ∩ Y = N ⊆ K and cannot be inU − K , contradiction. We conclude
that x is in Y . Then x is in U ∩ Y = N , and U = N .
5. First consider any continuous function f : Y ∗ → [0, 1] with f (y∞) = 0. The

set of y’s with f (y) > 1/k is open and contains y∞, thus is a compact subset of Y
and must be finite. Hence the set of y’s with f (y) = 0 has a countable complement.
If Z is normal, apply Urysohn’s Lemma to A and B, obtaining a continuous

F : Z → [0, 1] with f (A) = 1 and f (B) = 0. Enumerate the members of X as
x1, x2, . . . . For fixed n, f (y) = F(xn, y) is continuous from Y ∗ to [0, 1] and is 0 at
y∞. Thus F(xn, y) > 0 only on a countable set Sn of y’s, and F(xn, y) > 0 for some
n at most on the countable set S =

S∞
n=1 Sn . If y0 is not in S, then x 7→ F(x, y0)

is continuous from X∗ to [0, 1], is 0 for every x other than x∞, and is 1 at x∞. This
contradicts the continuity, and we conclude that Z is not normal.
6. If E is an infinite set with no limit point, then E is closed and each x in E is

relatively open. Hence each x has an open set Ux in X with Ux ∩ E = {x}. These
open sets and Ec cover X , and there is no finite subcover. Thus X compact implies
that each infinite subset has a limit point.
8. Part (a) follows from Problem 7b and Proposition 10.34. For (b), f −1(−∞, a)

is ∅ if a < 0, is R − {0} if 0 ≤ a < 1, and is R if a ∏ 1; hence it is open in
every case. Part (d) follows from (a). For (e), there exists an upper semicontinuous
function∏ f (x), namely the constant function everywhere equal to sup | f (x)|. Then
(d) shows that the pointwise infimumover all upper semicontinuous functions∏ f (x)
meets the conditions on f −.
9. For (a), we have Qf (x) = f −(x) + (− f )−(x). Both terms on the right are

upper semicontinuous, and the sum is upper semicontinuous by Problem 8c. For (c),
f−(x) ≤ f (x) ≤ f −(x) = Qf (x) + f−(x). If Qf = 0, then f− = f = f − shows
that f is continuous with respect to all sets {x < b} and all sets {x > a}. Hence
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f −1(a, b) is open for every a and b, and f is continuous with respect to the metric
topology. Conversely if f is continuous, then the definition makes f − = f and
(− f )− = − f . Therefore f − = f− = f and Qf = f − − f− = 0.
10. In (a), that subset of pairs is (A× A) ∪ (B × B) ∪ {(x, x) | x ∈ X}, which is

the union of three closed sets and hence is closed. In (b), let X be a Hausdorff space
that is not normal, and take A and B to be disjoint closed sets that cannot be separated
by open sets.
11. In (a), q−1q(x) = p2(({x} × X) ∩ R), where p2 is the projection to the

second coordinate of X × X . Since {x} is closed and X is compact and R is closed,
({x} × X) ∩ R is compact. Then q−1q(x) is compact, hence closed, being the
continuous image of a compact set.
In (b), we have p2((Uc × X) ∩ R) = {y ∈ X | (x, y) ∈ R for some x ∈ Uc} =

{y ∈ X | q−1q(y) ∩Uc 6= ∅} = {y ∈ X | q−1q(y) ⊆ U}c = V c. Since U is open,
the left side is closed, by the same considerations as in (a). Thus V c is closed, and V
is open.
In (c), let q(x) and q(y) be distinct points of X/ ∼. By (a), the disjoint subsets

q−1q(x) and q−1q(y) are closed. Since X is normal, find disjoint open setsU1 andU2
containing q−1q(x) and q−1q(y), respectively. Let V1 = {z ∈ X | q−1q(z) ⊆ U1}
and V2 = {z ∈ X | q−1q(z) ⊆ U2}. These are disjoint sets, and they are open by
(b). Then q(V1) is open in X/ ∼ because q−1q(V1) = V1 is open, and similarly
q(V2) is open. The sets q(V1) and q(V2) are disjoint because q−1q(V1) = V1 and
q−1q(V2) = V2 are disjoint. Thus q(V1) and q(V2) are the required open sets
separating q(x) and q(y).
For (d), part (c) shows that X/∼ is Hausdorff, and therefore its compact subsets

are closed. The image of any closed set is X is the image of a compact set, hence
is compact and must be closed. For (e), the answer is “no,” and part (f) supplies a
counterexample. For (f), the function p : X → S1 is continuous, and Proposition
10.38a produces a continuous function p0 : X/∼ → S1 such that p = p0 ◦ q, where
q is the quotient map. Then p0 is continuous and one-one from a compact space onto
a Hausdorff space and must be a homeomorphism.
12–13. The proofs are the same as in Section II.8.
14. This is proved in the same way as in Problems 13 and 11 in Chapter II.
15. For (a), call the relation ∼. This is certainly reflexive and symmetric. For

transitivity let x ∼ y and y ∼ z. Then x and y lie in a connected set E , and y and
z lie in a connected set F . The sets E and F have y in common, and Problem 13a
shows that E ∪ F is connected. Thus x ∼ z. Part (b) is immediate from Problem
13b. For (c), let x be given, and let U be a connected neighborhood of x . Then U
lies in the component of x . Thus the component of x is a neighborhood of each of its
points and is therefore open.
16. Form the class C of all functions F as described, including the empty function,

and order the class by inclusion; for the purposes of the ordering, each function is
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to be regarded as a set of ordered pairs. The class C is nonempty since the empty
function is in it. If we have a chain in C, we form the union F of the functions in the
chain. We show that F is an upper bound for the chain. To do so, we need to see
that the indicated sets cover X . Thus let x ∈ X be given. Only finitely many sets U
in U contain x , by assumption. Say these are U1, . . . ,Un . If one of these fails to be
in the domain of F , then x lies in

S
V∈U, V /∈domain(F) V , and x is covered. Thus all

of U1, . . . ,Un may be assumed to be in the domain of F . Each Uj is in the domain
of some function Fj in the chain, and all of them are in the domain of the largest of
the Fj ’s, say F0. Since x is not in

S
V∈U, V /∈domain(F) V , it is not in the larger unionS

V∈U, V /∈domain(F0) V . Thus it must be in
S

U∈domainF0(U). Since F0(U)cl ⊆ U for
each U , x must lie in some F0(Uj ). Then x lies in F(Uj ), and F is an upper bound
for the chain.
By Zorn’s Lemma let F be a maximal element in C. To complete the argument,

we show that every set in U lies in domain(F). Suppose thatU0 is a set in U that is not
in domain(F). Let U 0 be the union of all F(U) for U in domain(F) and all V other
than U0 that are not in domain(F). Since F is in C, U 0 ∪ U0 = X . Hence U 0c is a
closed subset of the open setU0. Since X is normal, we can find an open set W such
that U 0c ⊆ W ⊆ W cl ⊆ U . If we define F(U) = W , then we succeed in enlarging
the domain of F , in contradiction to the maximality of F . Hence every member of U
lies in domain(F), as asserted.

17. Form the open sets VU as in the previous problem. For each U in U, apply
Urysohn’s Lemma to find a continuous function gU : X → [0, 1] with gU equal to 1
on VU and equal to 0 on Uc. The open cover {VU } is locally finite since U is locally
finite. Therefore g =

P
U∈U gU is a continuous function on X . Since gU is positive

on VU and the sets VU cover X , g is everywhere positive. Therefore the functions
fU = gU/g have the required properties.

18. If c0 = 0, take F0 = 0. If c0 6= 0, apply Urysohn’s Lemma to obtain a
continuous function h with values in [0, 1] that is 1 on P0 and is 0 on N0, and then
put F0 = 2

3c0h − 1
3c0.

19. On P0 ∩ C , g0 is ∏ c0/3 and F0 is c0/3. Therefore g0 − F0 is ∏ 0 and
≤ 2c0/3. Similarly on N0 ∩ C , g0 − F0 is ≤ 0 and ∏ −2c0/3. Elsewhere on C ,
g0 and F0 are both between −c0/3 and c0/3, and hence |g0 − F0| ≤ 2c0/3. Thus
|g0 − F0| ≤ 2c0/3 everywhere on C . The function F1 is continuous from X into R,
has |F1| ≤ 2

3 (
1
3c0), and takes a value c1 ≤ 2

3 (
1
3c0) on {x ∈ C | g1(x) ∏ c1/3} and

the value −c1 on {x ∈ C | g1(x) ≤ −c1/3}.

20. Iteration produces continuous functions Fn : X → Rwith |Fn(x)| ≤ 1
3
° 2
3
¢nc0

for all x in X and
Ø
Ø f (x) −

Pn−1
i=0 Fi (x)

Ø
Ø ≤

° 2
3
¢nc0 for all x in C . Let F(x) =P∞

n=0 Fn(x). The series converges uniformly on X by the estimate on Fn(x) and the
Weierstrass M test, and Proposition 10.30 shows that F is continuous on X . If we let
n tend to infinity in the estimate on f (x) −

Pn−1
i=0 Fi (x), we see that F and f agree

on C . Finally for x in X ,
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|F(x)| ≤
∞X

n=0
|Fn(x)| ≤

∞X

n=0

1
3
° 2
3
¢nc0 = c0 = sup

y∈C
| f (y)|.

Thus |F | and | f | have the same supremum.
21. Every open interval is in the base and hence is open. The closed interval

{a ≤ x ≤ b} is the complement of the open set {x < a} ∪ {b < x} and is therefore
closed.
22. Let a < b be given. If there exists a c with a < c < b, then the open sets

{x < c} and {c < x} separate a and b; otherwise the open sets {x < b} and {a < x}
separate them. Hence X is Hausdorff.
Let a and a closed set F be given with a not in F . Since Fc is a neighborhood

of a, there exists a basic open set B containing a that is disjoint from F . If B has
some element larger than a, let d be such an element; otherwise let d be undefined.
If B has some element smaller than a, let c be such an element; otherwise let c be
undefined. If c and d are both defined, then F ⊆ {x < c} ∪ {d < x}, while a is in
{c < x < d}. If c is not defined but d is defined, then F ⊆ {x < a} ∪ {d < x}, while
a is in B ∩ {x < d}. If d is not defined but c is defined, we argue symmetrically. If
neither c nor d is defined, then B = {a} is open and closed; hence Bc and B are the
required open sets separating F and a.
23. Suppose that any nonempty set with an upper bound has a least upper bound,

and let E be a set with a lower bound. We are to produce a greatest lower bound. Let
F be the set of all lower bounds for E . This is nonempty, and all elements of F are
≤ e, where e is an element of E . So F has an upper bound. Let c be a least upper
bound. We show that c is a greatest lower bound for E .
If c is not a lower bound for E , then E has some e with e ≤ c, e 6= c, i.e., with

e < c. All f in F have f ≤ e < c. So e is a smaller upper bound for F , contradiction.
Thus c is a lower bound for E . If there is some greater lower bound, say d, then
c < d ≤ e for all e in E . This implies that d is in F , and hence c is not an upper
bound for F .
24. In (a), suppose that Y is nonempty closed and has an upper bound and a lower

bound. We are to prove that Y is compact. It is enough to handle a set Y = [a, b].
Let an open cover U of Y be given, and suppose there is no finite subcover. Let E be
the set of all x in [a, b] such that some finite subcollection from U covers [a, x]. Then
a is in E . Since E is nonempty and has b as an upper bound, the order completeness
shows that E has a least upper bound c. Since we are assuming that U has no finite
subcover of [a, b], Ec ∩ [a, b] is nonempty. This set has a lower bound, namely a,
and therefore it has a greatest lower bound d.
If e is in E and f is in Ec∩ [a, b], then e ≤ f . So e ≤ d, and then c ≤ d. Suppose

c < d. Then c must be in E . Any x with c < x < d cannot be in E or Ec, and
hence there is no such x . Then a finite subclass of U that covers [a, c], together with
a member of U that contains d, is a finite open subcover for [a, d] and contradicts the
fact that d is not in E . Thus c = d.



Chapter X 769

Now suppose that c is in Ec ∩ [a, b]. Since c = d, E has no largest element.
Choose a member U of U containing c, and find a basic open neighborhood B of c
contained in U . Then B ∩ E must contain some c0 with c0 < c. A finite subclass of
U covers [a, c0], and U covers [c0, c]. Thus c is in E , and we have a contradiction.
We conclude that c is in E . Since c = d, Ec ∩ [a, b] has no smallest element.

Choose a member U of U containing c, and find a basic open neighborhood B of c
contained in U . Then B ∩ (Ec ∩ [a, b]) must contain an element c0 with c < c0,
and then there must be some c00 with c < c00 < c0. A finite subclass of U that covers
[a, c], together with the set U , then covers [a, c00] and shows that c00 is in E . This
contradicts the fact that c is an upper bound of E .
In (b), let x be given in X . If a < x < b for some a and b, then [a, b] is the

required compact neighborhood of x . If x is a lower bound for X and there exists b
with x < b, then [x, b] is the required compact neighborhood. If x is an upper bound
for X and there exists a with a < x , then [a, x] is the required compact neighborhood.
Since X has at least two members, there are no other possibilities. So X is locally
compact.
25. In (a), the sets {x < b} and {a < x} are open and disjoint, contain a and b

respectively, and have union X . Thus X is disconnected.
In (b), suppose that X is order complete and has no gaps. Assume, on the contrary,

thatU and V are disjoint nonempty open sets with union X . Say that u < v for some
u inU and v in V . It will be convenient to assume that u is not the smallest element in
X and v is not the largest; when this assumption is not in place, the same line of proof
works except that one may below have to use basic open sets of the form {r < x} and
{x < s}, as well as {r < x < s}.
Form the set S of all x ∈ X with x ≤ v and (x, v] ⊆ V . This set has u as a

lower bound, and we let b be the greatest lower bound. Then u ≤ b ≤ v. First
suppose that b is in V . Choose a basic open set (r, s) ⊆ V with r < b < s; this is
possible by our temporary assumption because V is open. Then (max{u, r}, v] ⊆ V .
If max{u, r} < b, then max{u, r} is in S and b is not a lower bound for S; thus
b ≤ max{u, r}, i.e., b = u. This is impossible since b is assumed to be in V . We
conclude that b is in U . Choose a basic open set (r, s) ⊆ U with r < b < s; again
this is possible by our temporary assumption because U is open. Since there are no
gaps, we can find s0 with b < s0 < s. Then min{v, s0} is a lower bound for S, and
b cannot be the greatest lower bound unless min{v, s 0} ≤ b, i.e., b = v. This is
impossible since b is assumed to be in U , and we have arrived at a contradiction.
26. As an ordered set, X is the same asR, and hence its order topology is the same

as for R, which is connected. In its relative topology, X is disconnected, being the
disjoint union of the open sets [0, 1) and [2, 3).
27. The subset [0, 1) is closed, being the intersection of all sets {x | x ≤ y}

for y ∈ (1, 2]. Similarly (1, 2] is closed. Hence they are both open, and X is
disconnected. It follows immediately from the definition that there are no gaps.
28. If a nonempty subset of points (x, y) is given, let x0 be the least upper bound
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of the x’s. If no (x0, y) is in the set, then (x0, 0) is the least upper bound for the set.
If some (x0, y) is in the set, let y0 be the least upper bound of the y’s. Then (x0, y0)
is the least upper bound of the set. We conclude that X is order complete. Problem
24a then shows that X is compact. This proves the compactness in (a). There are no
gaps, and Problem 25b thus proves the connectedness. For each x ∈ [0, 1], the set
{(x, y) | 0 < y < 1} is open. Thus we have an uncountable disjoint union of open
sets, and X cannot be separable. Part (b) is handled in the same way.

Chapter XI

1. In (a), every compact subset of X is compact when viewed as in X∗, and this
gives inclusion in one direction. In the reverse direction it is enough to show that
when U is open in X∗, then U − {∞} is a Borel set in X . Since X is σ -compact,
we can choose an increasing sequence of compact sets Kn with Kn ⊆ Ko

n+1 andS∞
n=1 Kn = X . Then U ∩ Ko

n+1 is open and bounded, hence is a Borel subset of X .
The countable union of these sets is U , and hence U is a Borel set. In (b), the Borel
sets of X are the countable sets and their complements. However, every subset U of
X is open in X and therefore open in X∗. Its complement in X∗ is compact and is a
Borel set in X∗. Thus U is a Borel set in X∗.

2. Part (a) of the previous problem shows that every open subset of X is a Borel
set, and hence every continuous function is a Borel function.

3. Use the regularity to show that the conclusion holds for indicator functions and
hence simple functions. Then pass to the limit.

4. Let IE be an indicator function. Given ≤ > 0, find by regularity a compact set
L and an open set U with L ⊆ E ⊆ U and µ(U − L) < ≤. The compact set K will
be K = (U − L)c = L ∩Uc. Thus consider the restriction of IE to the compact set
K . Let x be in K . If x is in E , then x is in L . The set U ∩ K = L is a relatively
open neighborhood of x , and IE is identically 1 on this. Hence the restriction of IE
to K is continuous at the points of E . Similarly if x is in Ec, then x is inUc. The set
Lc ∩ K = Uc is a relatively open neighborhood of x , and we argue similarly. This
handles indicator functions, and the result for simple functions follows immediately.
Next suppose that f is a real-valued Borel function ∏ 0. Choose an increasing

sequence of simple functions sn ∏ 0 with limit f . Let ≤ > 0 be given, and find,
by Egoroff’s Theorem, a Borel set E with µ(Ec) < ≤ such that lim sn(x) = f (x)
uniformly for x in E . Next find, for each n, a compact subset Kn of X with µ(Kc

n) <

≤/2n such that sn
Ø
Ø
Kn
is continuous. The set F = E ∩

°T∞
n=1 Kn

¢
has complement of

measure< 2≤, and the restriction of every sn to F is continuous. Since {sn} converges
to f uniformly on E , the restriction of f to F is continuous. Using regularity once
more, we can find a compact subset K0 of F such that µ(F − K0) < ≤. Then
µ(Kc

0) < 3≤, and the restriction of f to K0 is continuous.
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5. In (a), any rotation preserves Euclidean distances and fixes the origin. Since
Sab is exactly the set of points whose distance d from the origin has a < d <

b, Sab is mapped to itself. Part (b) follows from the change-of-variables formula
(Theorem 6.32). The determinant that enters the formula is the determinant of the
matrix of the rotation and is 1. The first conclusion of (c) is what the change-of-
variables formula gives for the transformation to spherical coordinates when applied
to the set Sab if we take Fubini’s Theorem into account. It yields

R
Sab LF dx =

° R b
a r

2 dr
¢° R

S2 L f dω
¢

=
° R b

a r
2 dr

¢° R
S2 L f dω

¢
. Since

R b
a r

2 dr is not zero, we
can divide by it and obtain the second conclusion of (c). Part (d) is proved by setting
it up to be a special case of the uniqueness in Theorem 11.1.
6. In (a), monotonicity of µ gives µ(K ) ≤ infα µ(Kα). Suppose that < holds.

Choose by regularity an open setU containing K such thatµ(U) < infα µ(Kα). The
sets Kc

α form an open cover of the compact setUc, and there is a finite subcover. The
intersection of the complements is one of the sets Kα0 , and it has the property that
Kα0 ⊆ U . Monotonicity then gives µ(Kα0) ≤ µ(U), and thus infα µ(Kα) ≤ µ(U),
contradiction.
For (b), consider all compact subsets K of X forwhichµ(K ) = 1. The intersection

of any two of these is again one byLemma11.9. If K0 is the intersection of all of them,
then K0 is compact, and (a) shows thatµ(K0) = 1. If K0 contains twodistinct points x
and y, finddisjoint openneighborhoodsUx andUy . ThenK0 = (K0−Ux )∪(K0−Uy)
exhibits K0 as the union of two proper compact sets. At least one of them must have
measure 1, and then K0 is shown not to be the intersection of all compact subsets of
measure 1.
In (c) let K0 be any compact Gδ , and choose a decreasing sequence { fn} in C(X)

with limit IK0 . Passing to the limit from the formula
R
X f 2n dµ =

° R
X fn dµ

¢2, we
obtain µ(K0) = µ(K0)2. Thus µ(K0) is 0 or 1. By regularity, µ takes only the
values 0 and 1, and (b) shows that µ is a point mass.
For (d), apply Theorem11.1 and obtain the regular Borelmeasureµ corresponding

to `. Then µ has the property in (c) and must be a point mass.
7. The statement for (a) is that u(r, θ) is the Poisson integral of a signed or complex

Borelmeasure on the circle if and only if sup0<r<1 ku(r, θ)k1,θ is finite. The necessity
is proved in the same way as in Problem 7 at the end of Chapter IX. The sufficiency
is proved in the same way as in Problem 8 in that group, except that the weak-star
convergence is in M(circle) relative to C(circle). For (b), expand u(r, θ) in series as
in Problem 13 at the end of Chapter IV. Since u is nonnegative, the L1 norm over any
circle centered at the origin is just the integral, and the result of integrating in θ is
that the n = 0 term is picked out. Thus ku(r, θ)k1,θ = c0 for every r . The condition
in (a) is satisfied, and u is therefore the Poisson integral of a Borel complex measure.
Examination of the proof of (a) shows that the complex measure is a measure.
8. Order topologies are always Hausdorff. Sinceƒ∗ has a smallest element and a

largest element, Problems 23 and 24 of Chapter X show that ƒ∗ is compact if every
nonempty subset has a least upper bound. Since the ordering forƒ∗ has the property
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that every nonempty subset has a least element, the existence of least upper bounds
is satisfied.
9. First we prove that the intersection of any two uncountable relatively closed

sets C and D is uncountable. Assume the contrary. Since C ∩ D is countable and
the countable union of countable sets is countable, there is some countable ordinal ω
greater than all members of C ∩ D. Since C and D are uncountable, we can find a
sequence ω < α1 < β1 < α2 < β2 < · · · such that each αj is in C and each αj is in
D. The least ordinal ∞ greater or equal to all members of the sequence is a countable
ordinal and has to be a limit point of both C and D. Since C and D are closed, ∞
is in C ∩ D. But C ∩ D was supposed to have no ordinals greater than ω. This
contradiction shows that C ∩ D is uncountable, and of course it is relatively closed
also.
Now let a sequence of uncountable relatively closed sets Cn be given. By the

previous step we may assume that they are decreasing with n. If
T∞

n=1 Cn = C is
countable, then there is some countable ordinal ω greater than all members of C .
Replacing Cn by Cn ∩ {x ∏ ω} we may assume that the Cn have empty intersection.
Let αn be the least member ofCn . The result is a monotone increasing sequence since
the Cn are decreasing. If α is the least ordinal∏ all αn , then α is a countable ordinal.
It is a limit point of each Cn , hence lies in each Cn . The existence of α contradicts
the fact that theCn have been adjusted to have empty intersection. This contradiction
shows that

T∞
n=1 Cn is uncountable.

10. For additivity the question is whether the union of two sets that fail to meet
the condition of the previous problem can meet the condition. The answer is no
because the previous problem shows that the intersection of any two sets meeting the
condition again meets the condition. The complete additivity is then a consequence
of Corollary 5.3 and the result of the previous problem. The measureµ takes on only
the values 0 and 1 and yet is not a point mass because one-point sets do not satisfy
the defining property for measure 1. Problem 6b therefore allows us to conclude that
µ is not regular.
11. Let µ be a Borel measure on X , and let S be the set of all regular Borel

measures ∫ with ∫ ≤ µ. This contains 0 and hence is nonempty. Order S by
saying that ∫1 ≤ ∫2 if ∫1(E) ≤ ∫2(E) for all E . If we are given a chain {∫α}, let
C = supα ∫α(X). This is ≤ µ(X) and hence is finite. Choose a sequence {∫αk } from
the chain with ∫αk (X) monotone increasing with limit C . Then ∫αk (E) is monotone
increasing for every Borel set E , and we define ∫(E) to be its limit. The complete
additivity of ∫ follows from Corollary 1.14, and it is easy to check that ∫α ≤ ∫ ≤ µ

for all α. We have to check that ∫ is regular. Let ≤ > 0 be given, and choose ∫αk with
∫αk (X) ∏ ∫(X) − ≤. If E is given, find K and U with K ⊆ E ⊆ U , K compact, U
open, and ∫αk (U − K ) < ≤. Then

∫αk (U − K ) + ∫((U − K )c) + ≤ ∏ ∫αk (U − K ) + ∫αk ((U − K )c) + ≤

= ∫αk (X) + ≤ ∏ ∫(X) = ∫(U − K ) + ∫((U − K )c),
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and hence ∫αk (U − K ) + ≤ ∏ ∫(U − K ). Since ∫αk (U − K ) < ≤, we obtain
∫(U − K ) < 2≤. Thus ∫ is regular. The decomposition readily follows.
12. This follows immediately from Proposition 11.20.
13. Let µ = µr + µp = ∫r + ∫p with µr and ∫r regular and with µp and ∫p

purely irregular. Write σ = µr − ∫r = ∫p −µp in terms of its Jordan decomposition
as σ = σ+ − σ−. Then σ+ ≤ µr and σ− ≤ ∫r , and hence σ+ and σ− are regular
by Proposition 11.20. Also, σ+ ≤ ∫p and σ− ≤ µp, and the definition of “purely
irregular” forces σ+ and σ− to be 0. Then µr = ∫r and µp = ∫p.
14. Let µ be as in Problem 10, and suppose that ∫ is a regular Borel measure with

∫ ≤ µ. Since ∫({∞}) = 0, Problem 6a shows that limα↑∞ ∫({x ∏ α}) = 0. For each
n, let αn be the least ordinal such that ∫({x ∏ αn}) ≤ 1/n. The least ordinal ∏ all
αn is a countable ordinal β, and ∫({x ∏ β}) = 0. Since {x < β} is a countable set,
µ({x < β}) = 0. Therefore ∫({x < β}) = 0, and we conclude that ∫ = 0.
16. For the regularity any set in F is in some Fn . The sets in Fn are of the form

eE = E ×
°×∞

n=N+1Xn) with E ⊆ ƒ(n) and ∫(eE) = ∫n(E). Given ≤ > 0, choose
K compact and U open in ƒ(n) with K ⊆ E ⊆ U and ∫n(U − K ) < ≤. In ƒ, eK is
compact, eU is open, eK ⊆ eE ⊆ eU , and ∫(eU − eK ) < ≤.
17. Let E =

S∞
n=1 En disjointly in F. Since ∫ is nonnegative additive, we

have
P∞

n=1 ∫(En) ≤ ∫(E). For the reverse inequality let ≤ > 0 be given. Choose K
compact andUn openwith K ⊆ E , En ⊆ Un , ∫(Un−En) < ≤/2n , and ∫(E−K ) < ≤.
Then K ⊆

S∞
n=1Un , and the compactness of K forces K ⊆

SN
n=1Un for some N .

Then ∫(E) ≤ ∫(K ) + ≤ ≤ ∫
°SN

n=1Un
¢
+ ≤ ≤

PN
n=1 ∫(Un) + ≤ ≤

PN
n=1 ∫(En) +

2≤ ≤
P∞

n=1 ∫(En) + 2≤. Since ≤ is arbitrary, ∫(E) ≤
P∞

n=1 ∫(En).
18. The key is that ƒ is a separable metric space. Every open set is therefore the

countable union of basic open sets, which are in the various Fn’s.

Chapter XII

1. In (a), the closed ball is closed and contains the open ball; also every point
of the closed ball is a limit point of the open ball since kx1 − x0k = r implies that
k[(1− 1

n )(x1−x0)+x0]−x0k = (1− 1
n )kx1−x0k < r and limn[(1− 1

n )(x1−x0)+x0] =
x1.
For (b), let the closed balls be B(rn; xn)cl. If m ∏ n, then kxm − xnk ≤ rn since

B(rm; xm)cl ⊆ B(rn; xn)cl. Let r = limn rn . If r = 0, then {xn} is Cauchy and hence
is convergent. In this case if x = lim xn , then kx − xnk ≤ rn for all n, and hence x is
in B(rn; xn)cl for all n. If r > 0, fix n0 large enough so that rn0 ≤ 3r/2. It is enough
to show that xn0 is in B(rn; xn)cl for n ∏ n0. We may assume that xn0 6= xn . The
members of B(rn; xn) are the vectors of the form xn +v with kvk ≤ rn , and these are
assumed to lie in B(rn0; xn0). Therefore kxn − xn0 + vk ≤ rn0 for all such v. Take
v = r−1

n0 rn(xn − xn0). Then rn0 ∏ kxn − xn0 + vk = k(1 + r−1
n0 rn)(xn − xn0)k =
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(1+r−1
n0 rn)kxn−xn0k. Here r−1

n0 rn ∏ ( 32r)
−1r = 2

3 . So kxn−xn0k ≤ (1+ 2
3 )

−1rn0 =
3
5rn0 ≤ 3

5
3
2r < r ≤ rn , as required.

2. Reduce to the real-valued case, and there use Theorem 1.23 and the remarks at
the end of Section A3 of Appendix A.
3. Convergence in either case is uniform convergence. For H∞(D), suppose

therefore that
©P∞

k=0 c
(n)
k zk

™
is a Cauchy sequence in H∞(D) indexed by n. Write

z = reiθ , multiply by e−imθ , and integrate in θ from −π to π . The result is that©
c(n)m rm

™
is Cauchy in n for each r < 1 and each m. Then limn c(n)m rm = cmrm

exists for each r and m. Taking r = 1/2, we see that limn c(n)m = cm exists for
each m. Arguing as in the proof of Theorem 1.37, we see that f (z) =

P∞
k=0 ckzk

is convergent for |z| < 1 and that the sequence of functions fn(z) =
P∞

k=0 c
(n)
k zk

converges to it pointwise. Since { fn} is uniformly Cauchy and pointwise convergent
to f , it converges uniformly to f . For the vector subspace A(D), we have A(D) =
H∞(D) ∩ C(Dcl). Hence A(D) is a closed subspace of H∞(D).
4. In (a), let us check the triangle inequality. For y ∈ Y , we have ka + b + yk ≤

ka + y0k + kb+ (y − y0)k for all y0 ∈ Y . Comparing the definition of ka + b+ Yk
with the left side, we obtain ka + b+ Yk ≤ ka + y0k + kb+ (y − y0)k for all y and
y0 in Y . Thus ka+ b+ Yk ≤ ka+ y0k + kb+ y00k for all y0 and y00 in Y . Taking the
infimum over y0 and y00 gives the desired conclusion.
In (b), let a Cauchy sequence in X/Y be given. It is enough to prove that some

subsequence in convergent. Thus it is enough to prove that if {xn} is a sequence in
X with kxn − xn+1 + Yk ≤ 2−n , then {xn + Y } is convergent in X/Y . We define a
sequence {exn} in X withexn = xn − yn and yn in Y such that kexn −exn+1k ≤ 2 ·2−n . It
is then easy to check that {exn} is Cauchy in X and that if x 0 is its limit, then {xn + Y }
tends to x 0 + Y . To define the yn’s, we proceed inductively, starting with y1 = 0.
If y1, . . . , yn have been defined such that kexk − exk+1k ≤ 2 · 2−k for k < n, choose
yn+1 in Y such that kexn − xn+1 + yn+1k ≤ kxn − xn+1 + Yk + 2−n ≤ 2 · 2−n . Then
exn+1 = xn+1 − yn+1 has kexn −exn+1k ≤ 2 · 2−n , and the induction is complete.
5. In (a), we have ctrG(v1, . . . , vn)c̄ =

P
i, j ci (vi , vj )c̄j =

P
i, j (civi , cjvj ) =

°P
i civi ,

P
j cjvj

¢
=

∞
∞P

i civi
∞
∞2. In (b), G(v1, . . . , vn) is Hermitian, and thus

the finite-dimensional Spectral Theorem says that there exists a unitary matrix
u = [ui j ] with u−1G(v1, . . . , vn)u diagonal, say = diag(d1, . . . , dn). Then dj =

etrj u
−1G(v1, . . . , vn)uej , and this, by (a), equals

∞
∞P

i civi
∞
∞2 with c̄ = uej . Hence

dj ∏ 0. In (c), we have detG(v1, . . . , vn) = det(u−1G(v1, . . . , vn)u) = d1d2 · · · dn
∏ 0 with equality if and only if some dj is 0. If dj = 0, then

P
i civi = 0

for c̄ = uej , and hence v1, . . . , vn is dependent. Conversely if v1, . . . , vn is de-
pendent, then

P
i civi = 0 for some nonzero tuple (c1, . . . , cn), and therefore

0 =
°P

i civi , vj
¢

=
P

i ci (vi , vj ) for all j ; this equality shows that a nontrivial linear
combination of the rows of G(v1, . . . , vn) is 0, and hence detG(v1, . . . , vn) = 0.
6. A single induction immediately shows the following: span{v0

1, . . . , v
0
k} =
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span{u1, . . . , uk}, v0
k is 6= 0, and vk is defined. Then each vk has norm 1. If k < l,

then (v0
l , vk) =

°
ul −

Pl−1
j=1 (ul , vj )uj , vk

¢
= (ul , vk) − (ul , vk) = 0. This proves

the orthogonality.
7. Define F on each uα to be the vector vβ given in the statement of the problem,

and extend F linearly to a mapping defined on the linear span V of {uα}. Corollary
12.8c shows that kF(u)kH2 = kukH1 for u in V . Corollary 12.8b shows that V is
dense. Proposition 2.47 shows that F extends to a bounded linear operator from H1
into H2 satisfying kF(u)kH2 = kukH1 for u in H1. Arguing in the same way with
F−1 proves that F is onto H2. The second conclusion follows by using Proposition
12.11.
8. In (a), the boundedness is elementary, and the operator norm is k f k∞. In (b),

the adjoint is multiplication by the complex conjugate of f .
9. The linear span V of {xn} is a separable vector subspace. Suppose that it is not

dense. Choose by Corollary 12.15 a member x∗ 6= 0 of X∗ with x∗(V ) = 0. Since
{x∗
n } is dense, choose a subsequence {x∗

nk } with x
∗
nk → x∗. Then

kx∗ − x∗
nkk ∏ |(x∗ − x∗

nk )(xnk )| = |x∗
nk (xnk )| ∏ 1

2kx
∗
nkk.

Since the left side tends to 0, so does the right side. Thus x∗
nk tends to 0, and x

∗ = 0,
contradiction.
10. The dual of C(X) is M(X). Define a linear functional x∗ on M(X) by

x∗(ρ) = ρ({s0}). Then kx∗k = 1, so that x∗ is in M(S)∗. Let δs denote a point mass
at s. If x∗ were given by integration with a continuous function f , then we would
have I{s0}(s) = δs({s0}) = x∗(δs) =

R
S f dδs = f (s). Thus the only possibility

would be f = I{s0}, and this is discontinuous.
11. Let X and Y be normed linear with X complete, and let {Ln} be a family of

bounded linear operators Ln : X → Y such that kLn(x)k ≤ Cx for each x in X .
For each y∗ in Y ∗ with ky∗k ≤ 1, the linear functional y∗ ◦ Ln on X is bounded and
has |y∗(Ln(x))| ≤ Cx . Since X is complete, the Uniform Boundedness Theorem for
linear functionals shows that |y∗(Ln(x))| ≤ Ckxk for all x . Taking the supremum
over y∗ and applying Corollary 12.17, we obtain kLn(x)k ≤ Ckxk, as required.
12. For x in X and y in Y , we have

kLn(x) − Lm(x)k ≤ kLn(x − y)k + kLn(y) − Lm(y)k + kLm(y − x)k
≤ 2Ckx − yk + kLn(y) − Lm(y)k.

Given x ∈ X and ≤ > 0, choose y in Y to make the first term < ≤, and then
choose n and m large enough to make the second term < ≤. It follows that {Ln(x)}
is Cauchy for each x . Since X 0 is complete, L(x) = limn Ln(x) exists for all
x . Continuity of addition and scalar multiplication implies that L is linear. Then
kL(x)k = lim kLn(x)k ≤ lim infn kLnkkxk ≤ Ckxk. Hence kLk ≤ C .
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13. Proposition 12.1 shows that X∗ is a Banach space. We identify the ele-
ments xα in X with their images ∂(xα) under the canonical map ∂ : X → X∗∗.
Corollary 12.18 shows that the element ∂(xα) of X∗∗ has k∂(xα)k = kxαk. The
hypothesis shows for each x∗ that |(∂(xα))(x∗)| = |x∗(xα)| ≤ Cx∗ for a constant
Cx∗ independent of α. Since X∗ is complete, the Uniform Boundedness Theorem
(Theorem12.22) shows thatk∂(xα)k ≤ C for a constantC independentofα. Applying
Corollary 12.18 a second time, we conclude that kxαk ≤ C independently of α.
14. For (a), let u and v have ku − xk ≤ r and kv − xk ≤ r . Then the estimate

k(1− t)u+ tv−xk = k(1− t)(u−x)+ t (v−x)k ≤ k(1− t)(u−x)k+kt (v−x)k =
(1− t)ku − xk + tkv − xk ≤ (1− t)r + tr = r proves the convexity.
For (b), let X be the space of sequences s = {sn} with ksk =

P
n |sn|. Let Ek be

the set of sequences with all sn ∏ 0, with ksk = 1, and with sj = 0 for j ≤ k. If s
and t are two sequences with terms ∏ 0, then ks + tk = ksk + ktk. The convexity
follows, and everything else is easy.
15. Denote open balls in X by BX and open balls inY by BY . The InteriorMapping

Theorem says that L(BX (1; 0)) is open. Hence it contains a ball BY (≤; 0). Put
C = ≤−1. By linearity, L(BX (Cr; 0)) ⊇ BY (r; 0) for every r ∏ 0. Since L is onto Y ,
we can choose x0 in X with L(x0) = y0. Linearity gives L(BX (Cr; x0)) ⊇ BY (r; y0).
For each yn , we can take r = 2kyn − y0k and choose xn in BX (C2kyn − y0k; x0)with
L(xn) = yn . Since yn → y0, xn → x0. Also, we have kxn − x0k ≤ 2Ckyn − y0k.
In this construction if y0 = 0, we could choose x0 = 0, and then the result follows

with M = 2C .
If y0 6= 0, then kynk → ky0k 6= 0 says that kynk ≤ 1

2ky0k only finitely often.
For these exceptional n’s, we can adjust xn when yn = 0 so that xn = 0, and then we
have kxnk ≤ Mkynk for a suitable M and the exceptional n’s. For the remaining n’s,
an inequality kxnk ≤ Mkynk is valid as soon as {xn} is bounded, and {xn} has to be
bounded since it is convergent.
16. It will be proved that the distance from e to X0 is ∏ 1. The set X00 of all

sequences s1, s2 − s2, s3 − s2, . . . such that {sn} is in X is closed under addition and
scalar multiplication. Hence it is a dense vector subspace of X0, and it is enough to
prove that ke − sk ∏ 1 for all s in X00. Let s be in X00, and let c = e − s. Adding
the first n entries gives c1 + · · · + cn = n− sn . Hence |c1 + · · · + cn| ∏ n− ksk. If,
by way of contradiction, kck = 1− ≤ with ≤ > 0, then |cj | ≤ 1− ≤ for all j , and we
have |c1 + · · · + cn| ≤ n − n≤. Thus n − ksk ≤ n − n≤, and we get n≤ ≤ ksk, in
contradiction to the finiteness of ksk.
17. This is immediate from Corollary 12.15 and the previous problem.
18. For (a), let s ∏ 0 have ksk = 1. Then ke − sk ≤ 1, and so |x∗(e − s)| ≤ 1.

Since x∗(e) = 1, this says that |1− x∗(s)| ≤ 1. On the other hand, |x∗(s)| ≤ 1 since
ksk ≤ 1. Thus 0 ≤ x∗(s) ≤ 1. We can scale this inequality to handle general s.
For (b), the two sequences differ by a member of X0, on which the Banach limit

vanishes identically; then (c) follows by iterated application of (b) since the Banach
limit of the 0 sequence is 0.
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In (d), let ≤ > 0 be given. By applying (c), we see that we may adjust the
sequence so that supn sn − infn sn ≤ ≤ and so that the Banach limit is unchanged.
By (a), Banach limits preserve order. Since (inf sn)e ≤ s ≤ (sup sn)e, we have
inf sn ≤ LIMn→∞ sn ≤ sup sn . Since sup sn = (sup sn − lim sup sn) + lim sup sn ≤
(supn − infn) + lim supn ≤ lim supn +≤, we obtain LIMn→∞ sn ≤ lim supn +≤.
Since ≤ is arbitrary, LIMn→∞ sn ≤ lim supn . Similarly lim inf sn ≤ LIMn→∞ sn .
Conclusion (e) is immediate from (d).
20. The parallelogram law gives

2(kx + y + zk2 + ky − zk2) = kx + 2yk2 + kx + 2zk2.

If we set z = 0 in this identity and then set y = 0 in it, we get two relations,
one involving an expression for kx + 2yk2 and the other involving an expression
for kx + 2zk2. If we substitute these relations into the displayed equation for the
terms kx + 2yk2 and kx + 2zk2, we obtain the formula kx + y + zk2 + ky − zk2 =
kx+ yk2+kx+zk2−kxk2+kyk2+kzk2. Substitution of 2kyk2+2kzk2−ky+zk2
for ky − zk2 in this formula gives the desired identity.
21. We have

(x1 + x2, y) =
P

k

ik
4 kx1 + x2 + i k yk2

=
P

k

ik
4 (kx1 + x2k2 − kx1k2 − kx2k2 − kyk2)

+
P

k

ik
4 kx1 + i k yk2 +

P
k
ik
4 kx2 + i k yk2.

Each term of the first line on the right is 0 because
P

k ik/4 = 0, and thus the right
side simplifies to (x1, y) + (x2, y), as required.
22. Induction with the result of the previous problem gives (nx, y) = n(x, y)

for every integer n ∏ 0. Replacing nx by z, we obtain 1
n (z, y) = ( 1n z, y). Hence

(r x, y) = r(x, y) for every rational r ∏ 0. It follows from the definition of ( · , · )
that (−x, y) = −(x, y) and that if the scalars are complex, (i x, y) = i(x, y).
Consequently (r x, y) = r(x, y) if r is in the set D.
23. We are to prove that |(x, y)| ≤ kxkkyk, and we may assume that y 6= 0. If r

is in D, we have

0 ≤ kx − ryk2 = (x − ry, x − ry) = kxk2 − r(y, x) − r̄(x, y) + |r |2kyk2.

Letting r tend to (x, y)
±
kyk2 through members of D, we obtain

0 ≤ kxk2 − 2|(x, y)|2
±
kyk2 + |(x, y)|2kyk2

±
kyk4 = kxk2 − |(x, y)|2

±
kyk2,

and it follows that |(x, y)| ≤ kxkkyk.
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24. The Schwarz inequality gives

|r(x, y) − (cx, y)| = |(r x − cx, y)| ≤ k(r − c)xkkyk = |r − c|kxkkyk.

As r tends to c through D, the right side tends to 0, and the left side tends to
|c(x, y) − (cx, y)|. Hence c(x, y) = (cx, y).

25. If Ln → L in B(X,Y ) and xn → x in X , then the triangle inequality gives
|Ln(xn)−L(x)| ≤ |Ln(xn)−L(xn)|+|L(xn)−L(x)| ≤ kLn−Lk|xn|+kLk|xn−x |.
The first term on the right side tends to 0 because |xn| is bounded (being convergent to
|x |) and limn kLn−Lk = 0, and the second term tends to 0 because limn |xn−x | = 0.

26. Since | · | is a continuous function on Y , the equality L(x) = limn Ln(x)
implies |L(x)| = lim supn |Ln(x)| ≤ lim supn(kLnk|x |) = (lim supn kLnk)|x |.
Taking the supremum of this inequality for |x | ≤ 1 yields kLk ≤ lim supn kLnk.
The inequality supn kLnk < ∞ follows from the Uniform Boundedness Theorem
(Theorem 12.22).
For an example with strict inequality, let X = Y = L1(R), and let Ln be multi-

plication by the indicator function of [n,∞). Then the limit operator is L = 0 but
kLnk = 1 for every n.

27. We have |Ln(un) − L(u)| ≤ |Ln(un) − Ln(u)| + |Ln(u) − L(u)|. The first
term on the right side is ≤ kLnk|un − uk, and this tends to 0, since kLnk is bounded
(according to Problem 26) and un → u. The second term on the right side tends to 0
because Ln(u) → L(u) by hypothesis.

Appendix B

1. For (a), the answer is yes. An example is f (z) = |z|2 = x2 + y2. It is
a differentiable function on all of R2, and its first partial derivatives are both 0 at
z = 0. So it has a complex derivative at 0 by Proposition B.1. At a general point
(x, y), f (z) = u(x, y) with v(x, y) = 0. Thus the first partial derivatives of v are 0
everywhere, but the first partial derivatives of u vanish together only at z = 0; so the
Cauchy–Riemann equations are satisfied only when x = y = 0.
For (b), the answer is yes. An example is f (z) = y2. The argument is similar to

the argument for (a).

2. We can parametrize ∞ as t 7→ t (1+ i) for 0 ≤ t ≤ 1. Then the integral equalsR 1
0 t (1+ i) dt = 1

2 (1+ i).

3. Let R be given by a ≤ x ≤ b and c ≤ y ≤ d, and write f (z) = u(x, y) +
iv(x, y). Making use of the continuity of the first partial derivatives of u and v, we
have
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R
@R f (z) dz =

R b
a (u(x, c) + iv(x, c)) dx +

R d
c (u(b, y) + iv(b, y))i dy

−
R b
a (u(x, d) + iv(x, d)) dx −

R d
c (u(a, y) + iv(a, y))i dy

= −
R b
a

R d
c

°
@u
@y + i @v

@y
¢
dy dx +

R d
c

R b
a i

°
@u
@x + i @v

@x
¢
dx dy

=
RR

R
°
i
°

@u
@x − @v

@y
¢
−

°
@u
@y + @v

@x
¢¢
dx dy.

with the last equality following from Fubini’s Theorem (Corollary 3.33). In the
double integral on the right side, the two terms within the inner parentheses are 0 by
the Cauchy–Riemann equations. Thus the integrand is identically 0, and the double
integral is 0.
4. For (a), write z = x + iy with x and y given by the column vectors x =

(x1, . . . , xn) and y = (y1, . . . , yn), and identify the column vector z = (z1, . . . , zn)
with x = (x1, . . . , xn, y1, . . . , yn). Also write f (z) = u(x, y) + iv(x, y). A
candidate for f 0(z0) is a certain n-dimensional row vector with n complex entries,
write we write as a+ ib, the sum of its real and imaginary parts. Temporarily we put
z − z0 = h + ik. We calculate exactly as in the proof of Proposition B.1 except that
z, z0, h, and k are now column vectors rather than numbers. The expression that is to
tend to 0 in the definition of f 0(z0) is

|z|−1
°
f (z) − f (z0) − f 0(z0)(z − z0)

¢

= |z|−1
°
f (z) − f (z0) − (a + ib)(h + ik)

¢

= |x + iy|−1
°
u(x, y) − u(x0, y0) + iv(x, y) − iv(x0, y0) − (a + ib)(h + ik)

¢

= |x + iy|−1
°
u(x, y) − u(x0, y0) − ( a −b )

° x−x0
y−y0

¢ ¢

+ |x + iy|−1i
°
v(x, y) − v(x0, y0) − ( b a )

° x−x0
y−y0

¢ ¢
,

and this tends to 0 in C if and only if

|(x, y)|−1
° ≥

u(x,y)−u(x0,y0)
v(x,y)−v(x0,y0)

¥
−

≥
a −b
b a

¥ ≥
x−x0
y−y0

¥ ¢

tends to 0 in R2. Here
≥
a −b
b a

¥
is a real 2-by-2n matrix, and the fact that the above

expression tends to 0 says exactly that the function (x, y) 7→ (u(x, y), v(x, y)) is
differentiable at (x0, y0) with Jacobian matrix J =

≥
a −b
b a

¥
. The condition that J be

of this form is exactly the condition that J satisfy the matrix equation in the statement
of (a).
For the two equivalences in (b), first suppose that f is complex differentiable at

every point of an open set. Then (a) shows that f is real differentiable at every
point of the open set and that the Cauchy–Riemann equations hold in each variable.
Therefore f is analytic in each variable and by definition is holomorphic on the open
set. Next if f is holomorphic on the open set, then fR isC∞ by TheoremB.50. Since
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f is analytic in each complex variable, the Cauchy–Riemann equations hold in each
variable. The matrix equation in (a) follows, and then (a) shows that f is complex
differentiable at every point of the open set. Finally if fR is C∞ and its Jacobian
matrix satisfies the equality in (a), then (a) shows that f is complex differentiable at
every point of the open set.
5. We have |z|2 = (x21 + x22)/(1− x3)2 = (1− x23)/(1− x3)2 = (1+ x3)/(1− x3).

Then the formulas for x1, x2, x3 are routine.
6. The line through (0, 0, 1) and (x, y, 0) can be parametrized as t 7→ (x, y, 0) +

t (−x,−y, 1). For the value t = x3, this line passes through the point
(x(1 − x3), y(1 − x3), x3) = (x1, x2, x3), and hence the three points in question
are collinear.
7. Stereographicprojectionand the coordinate functionof its inverse aremanifestly

continuous.
8. A plane in R3 is of the form α1x1 + α2x2 + α3x3 = α0 with α21 + α22 + α23 = 1

and 0 ≤ α0. Suppose it meets S. Specializing the equation to (x1, x2, x3) of the form
ϕ−1(z) gives

α1(z + z̄) − α2i(z − z̄) + α3(|z|2 − 1) = α0(|z|2 + 1)

and thus
(α0 − α3)(x2 + y2) − 2α1x − 2α2y + α0 + α3 = 0,

which is trying to be the equation of a circle in the z plane ifα0 6= α3. However, a little
computation shows that the circle degenerates if and only if (α0 + α3)(α0 − α3) ≤
α21 + α22, i.e., if and only if α21 + α22 + α23 ∏ α20. So we must have α0 < 1. In
this case we do have a circle in the z plane. In the case that α0 = α3, we obtain
2α1x + 2α2y = α0 + α3, which is the equation of a line in the z plane. Conversely if
we have a line or a circle in the z plane, we can choose parameters as above and see
that it comes from a the intersection of S with a plane in R3.
9. By the Cauchy Integral Formula this is

R
|z|=1

ez
z dz = ez

Ø
Ø
z=0 = 1.

10. For (a), the function f (z) = sin(2πz) is a counterexample.
For (b), by the Identity Theorem, f (z + 1) = f (z) for all z ∈ C and f (i z + i) =

f (i z) for all z ∈ C. The latter implies that f (z + i) = f (z) for all z. If M denotes
the supremum of f (z) for 0 ≤ Re z ≤ 1 and 0 ≤ Imz ≤ 1, then it follows that
| f (z)| ≤ M everywhere. Liouville’s Theorem implies that f is a constant function.
11. False, false, false, true, as follows:
(a) f (z) = ez with zn = −n.
(b) f (z) = ez with θ = π .
(c) f (z) = e−z4 .
(d) The limit relation forces f to be bounded, Liouville’s Theorem says that f is

constant, and the limit relation says that the constant must be zero.
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12. Apply TheoremB.11 to the interior point−1 with n = 1 and f (z) = ez . Then
the integral equals 2π i f 0(−1) = 2π ie−1.
13. The points in question have a limit point at 0. For z = 1/n, we have n = z−1,

n − 1 = z−1 − 1 = 1−z
z . Thus

1
n(n−1) = f (z) = z2

1−z for those values of z. By the
Identity Theorem, f (z) = z2

1−z everywhere. But the result is not an entire function.
So f does not exist.
14. No. As an even entire function, f (z) satisfies f (−z) = f (z). The power series

expansion
P
anzn of f (z) must then have

P
n an(−z)n =

P
n anzn , and uniqueness

of coefficients forces an = 0 for n odd. Since f 000(0) equals 6 times the coefficient
of z3, f 000(0) must be 0.
15. First solution: For m = n = 1, we have 1

(z−a)(z−b) = 1
a−b

° 1
z−a − 1

z−b
¢
.

Only the term with 1/(z − a) contributes to the integral, and the result is thatR
|z|=1

dz
(z−a)(z−b) = 2π i/(a − b). For general m and n, we can differentiate this

result m − 1 times in a and n − 1 times in b, using Corollary B.15. We obtainR
|z|=1

dz
(z−a)m(z−b)n = 2π i(−1)m−1(m − 1)!(n − 1)!/(a − b)m+n−1.

Second solution. Use Theorem B.11 for a function f (≥ ) of the form 1
(≥−b)power and

the point z = a.

16. For (a), let f (z) = u(x, y) + iv(x, y) and f (z̄) = u#(x, y) + iv#(x, y)
be the decompositions of f (z) and f (z̄) into real and imaginary parts, and denote
by subscripts 1 and 2 the first partial derivatives of these functions in the first
and second variables. The formulas for u# and v# are u#(x, y) = u(x,−y) and
v#(x, y) = −v(x,−y). Then u#1(x, y) = u1(x,−y), u#2(x, y) = −u2(x,−y),
v#1(x, y) = −v1(x,−y), and v#2(x, y) = v2(x,−y), and the equations u1 = v2 and
u2 = −v1 imply u#1 = v#2 and u

#
2 = −v#1. Since analytic functions have continuous

first partial derivatives, the result follows from Corollary B.2.
For (b), if f (z) has a Taylor series expansion f (z) =

P
an(z − z0)n about z0,

then g(z) near z̄0 is given by g(z) =
P
ān(z − z̄0)n and hence is analytic near z̄0.

17. ApplyProblem16. Theentire functions f (z) and f (z̄) are equal on the real axis
and hence are equal everywhere, by the Identity Theorem. Also the entire functions
f (z) and f (−z̄) are equal on the imaginary axis and hence are equal everywhere, by
the Identity Theorem. Putting these conclusions together gives f (z̄) = f (−z̄), from
which we see that f (z̄) = f (−z̄) everywhere and f (z) = f (−z) everywhere.

18. Apply Problem 16. The condition for real z says that f (z̄) = f (z) for real z
and therefore for all z, while the condition for imaginary z says that f (z̄) = − f (−z)
for imaginary z and therefore for all z. Putting these results together gives f (z) =
− f (−z) for all z.
19. This would be immediate from Corollary B.42 except that the stated version

of the corollary assumes the domain of F to be bounded. Nevertheless, the same
proof works: Any line integral

R
∞ F

0(≥ )/F(≥ ) d≥ over a piecewise smoothC1 closed
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curve ∞ is equal to 0 by the Cauchy Integral Theorem, and Corollary B.6 shows that
F 0(z)/F(z) = g0(z) for some analytic function g(z). Hence

d
dz

°
F(z)e−g(z)

¢
= F 0(z)e−g(z) + F(z)e−g(z)(−g0(z)) = 0,

and it follows that F(z)e−g(z) is a constant, say c. Then F(z) = ceg(z). If we write
c = ek for some constant k, then we obtain F(z) = e f (z) with f (z) = k + g(z).
20. For any R < 2, we have | f 0(z)| ≤ R−1 for |z| = R and therefore also for

|z| ≤ R by the MaximumModulus Theorem. Consequently | f 0(z)| ≤ 1
2 for |z| < 2.

If ∞ is a straight line segment from 0 to 1, then f (1) − f (0) =
R
∞ f 0(z) dz. Taking

absolute values gives | f (1) − f (0)| ≤ maximage(∞ ) | f 0(z)|`(∞ ) ≤ 1/2.
21. The function 1/(z f (z)) is analytic for |z| < 1 and has |1/(z f (z))| ≤ 1

everywhere and 1/( 12 f (
1
2 )) = 1. By theMaximumModulus Theorem1/(z f (z)) = 1

everywhere. Thus f (z) = 1/z everywhere.
22. For any positive integer K , the given estimate implies that | f (z)| ≤ A(K R)α

for |z| = K R. Thuswe can takeC = A(K R)α in Cauchy’s estimate (CorollaryB.16)
and get | f (n)(0)| ≤ A(K R)αn! r−n as long as r ≤ K R. Thus for r = 1

2 (K R), we
have | f (n)(0)| ≤ 2nn! A(K R)α−n . Letting K tend to infinity shows that f (n)(0) = 0
for n > α. Since f is given by a convergent power series, all the terms are 0 except
at most the terms cj z j with j ≤ α, and f (z) is a polynomial of degree at most the
integer part of α.
23. If f (z) is analytic in a region containing the closed disk of center 0 and

radius r , then Cauchy’s estimate (Corollary B.16) gives | f (n)(0)| ≤ Kn!r−n , where
K = sup|z|=r | f (z)|. Thus all that is required is that Kr−n ≤ Mn , and this happens
if M = r−1 max{1, K }.
24. (a) Essential singularity, just as with − sin(1/w) at w = 0.
(b) Pole of order 1, just as with 1

1−ez at z = 0.
(c) Pole of order 1. Write w = z − π/4, so that sin z = sin(w + π/4) =

sinw cos(π/4) + cosw cos(π/4) = 1
2
p
2(sinw + cosw)). Still with z = w + π/4,

we have cos z = cos(w + π/4) = cosw cos(π/4) − sinw sin(π/4) =
1
2
p
2(cosw − sinw). Thus sin z − cos z =

p
2 sinw. This has a simple zero at

w = 0, and thus sin z − cos z has a simple zero at z = π/4.
25. We investigate the isolated singularity of f (z) at infinity, i.e., the isolated

singularity of f (1/z) at z = 0. If the singularity is removable, then f is constant (by
Liouville’s Theorem) and is not one-one.
If the singularity is essential, then the Weierstrass result (Proposition B.25) shows

that there exists a sequence {zn} tending to∞ with wn = f (zn) tending to 0. If f −1

exists, then f −1(wn) = zn , and continuity of f −1 at 0 forces f −1(0) = lim zn = ∞,
so that F−1 has a singularity at 0, contradiction.
So the singularity must be a pole. Then Cauchy’s estimate shows that f is a

polynomial, and the Fundamental Theorem of Algebra shows f has degree at most
one.
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26. For j = 1, . . . , r , let Pj ( 1
z−rj ) be the singular part of P(z)/Q(z) about z = rj .

Then P(z)/Q(z) −
kP

j=1
Pj ( 1

z−rj ) has no pole at any of r1, . . . , rk , and there are no

other possibilities for a pole. Hence it is an entire function g(z). It is also the quotient
of polynomials. Its denominator can have no root, and the Fundamental Theorem of
Algebra shows that the denominator is constant. Therefore g(z) is a polynomial.
28. The right side is the sumof the singular parts at each of the poles of P(z)/Q(z).

Thus thedifferenceof the two sides is an entire function that vanishes at infinity. Hence
it is 0.

29. Put Q(z) = (z − r1) · . . . · (z − rn), and define P(z) = Q(z)
nP

k=1

ck
Q0(rk)(z−rk) .

In view of the previous problem,
nP

k=1

P(rk)−ck
Q0(rk)(z−rk) = 0. The singular parts at rk for the

two sides must match, and thus P(rk) = ck for 1 ≤ k ≤ n.
30. Use Proposition B.34, or argue as follows: We may assume that f is not the

0 function. Since f has isolated zeros, we can choose r > 0 so that f (z) 6= 0 for
0 < |z| ≤ r . Define c > 0 to be the minimum value of | f (z)| for |z| = r . For each
t with 0 ≤ t ≤ 1, | f (z) − tc/2| 6= 0 for |z| = r . By the Argument Principle the
integral 1

2π i
R
|z|=r

f 0(z) dz
f (z)−tc/2 is a nonnegative integer that varies continuously with t

for 0 ≤ t ≤ 1. It is ∏ 2 for t = 0, and thus it is ∏ 2 for t = 1. Then it follows that
there are two points z with |z| < r such that f (z) = c/2.
31. Near z0, where f 0

∏(z0) = 0, f 0
∏ is not one-one. Since f 0

∏(z) = 1 + 2∏z,
f 0
∏(z0) = 0 for some |z| < 1 if z0 = −(2∏)−1 has |2∏|−1 < 1, i.e., |∏| > 1

2 . Thus a
necessary condition for f∏ to be one-one is that |∏| ≤ 1

2 . Conversely we show that the
condition |∏| ≤ 1

2 is also sufficient. Arguingby contradiction, suppose f∏(z) = f∏(z0)
with z 6= z0. Then z + ∏z2 = z0 + ∏z02. So (z − z0) + ∏(z − z0)(z + z0) = 0,
1 + ∏(z + z0) = 0, and 2∏ 12 (z + z0) = −1. Taking the absolute value of both
sides shows that 1 = 2|∏| 12 |z + z0| ≤ 1

2 |z + z0| ≤ 1
2 (|z| + |z0|) < 1

2 (1 + 1) = 1,
contradiction.
32. The condition on f implies that f 0(z) is real for all z. By the open mapping

property of analytic functions (Corollary B.35), f 0 is constant. Thus f 0(z) = az+b.
33. Arguing by contradiction, suppose f is not constant. Let @ denote boundary

and ( · )o denote interior. Since f is continuous, f (E) is compact in C. Since a
nonconstant analytic function is an openmapping, f (Eo) is open inC. By continuity,
@( f (Eo) ⊆ f (@E) ⊆ iR. Let H be the open right half plane. Then it follows that
@( f (Eo) ∩ H) = ∅, and hence the open set f (Eo) ∩ H is closed in H . Since H is
connected, f (Eo) ∩ H is empty or equals H . It cannot equal H , being contained in
the compact set f (E). Thus f (Eo)∩H is empty. Arguing similarly with H replaced
by the open left half plane, we conclude that f (Eo) ⊆ iR. This shows that f (Eo) is
not open, contradiction.
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34. The tangent function has tan z = −i(eiz − e−i z)/(eiz + e−i z) Solving w =
−i(eiz − e−i z)/(eiz + e−i z) for z in terms of w yields z = 1

2i log
°−w+i

w+i
¢
for some

branch of the logarithm. We readily check that the derivative of this expression with
respect to w is 1/(w2 + 1), consistently with the case that w is a real number in
(−∞,∞), known from Corollary 1.46b. As with the case of arcsine let us try for
the principal branch of the logarithm. Then the argument of the logarithm must
not be real and ≤ 0. The exceptional case is that −w+i

w+i = r ≤ 0. If we write
w = u + iv, this equation says that u + iv = i(1− r)/(1+ r), hence that u = 0 and
v = (1 − r)/(1 + r). For r ≤ 0, this has |v| ∏ 1. Hence we can use the principal
branch Log as long as we cut out from the plane the pieces of the imaginary axis
corresponding to |v| ∏ 1. In other words, the branch of arctangent that we seek is
given by arctanw = 1

2i Log
°−w+i

w+i
¢
on C − {w

Ø
Ø |Imw| ∏ 1}.

35. For (a), set a0 = b0 = 1. For n > 0, the coefficient of zn in the power series
expansion of f (z)g(z) = 1 is

bn + bn−1a1 + · · · + b1an−1 + 1 = 0.

Thus the desired recursive formula is bn = −bn−1a1 − · · · − b1an−1 − 1.

For (b), the series
∞P

n=1
anzn is absolutely convergent for |z| < r0, and therefore

c(r) =
∞P

n=1
|an|rn is finite-valued for r < r0. As the sum of a power series, c(r)

is continuous as a function of r . Under the assumption that f (z) is not a constant
function, it is strictly increasing with c(0) = 0. Thus there exists a positive number ρ
such that c(ρ) < 1. For any such ρ, f (z) is nonvanishing for |z| < ρ, and therefore

1+
∞P

n=1
bnzn is convergent for |z| < ρ.

36. The given conditions and the Maximum Modulus Theorem imply that the
function f (z)/z is analytic for |z| < 1 and has for each r < 1, | f (z)/z| ≤
sup|≥ |=r | f (≥ )|/r whenever |z| ≤ r . The condition | f (z)| ≤ 1 implies that
sup|≥ |≤r | f (≥ )| ≤ 1, and thus | f (z)/z| ≤ 1 for |z| < 1. Since limz→0 f (z)/z =
f 0(0), this inequality forces | f 0(0)| ≤ 1.
If equality holds, i.e., if either | f (z)| = |z| somewhere or | f 0(0)| = 1, then

| f (z)/z)| attains its maximum somewhere in the interior of the unit disk, and f (z)/z
must be constant. Thus f (z) = cz. Taking absolute values shows that |c| = 1.
37. The Maximum Modulus Theorem shows that | f (z)| ≤ |ez| everywhere for

|z| ≤ 1. Schwarz’s Lemma therefore applies to e−z f (z) on the open unit disk and
shows that |e−z f (z)| ≤ |z| for |z| < 1. Hence | f (z)| ≤ |z||ez|, and | f (log 2)| ≤
(log 2)|elog 2| = 2 log 2.
38. Arguing by contradiction, suppose that α > 1. Since f carries open sets

to open sets, f −1 is an analytic function from f (D) onto D with f −1(0) = 0 and
( f −1)0(0) = 1. By assumption the domain of f −1 contains {|z| < α}. Thus the
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domain of the analytic function g(z) = f −1(αz) contains D, and we have g(0) =
f −1(0) = 0 and |g(z)| ≤ 1 for |z| < 1. By Schwarz’s Lemma |g0(0)| ≤ 1. However,
direct computation gives g0(0) = α( f −1)0(0) = α > 1, contradiction.
39. From the condition | f (eiθ )| ≤ M for 0 ≤ θ ≤ 2π and theMaximumModulus

Theorem, | f (z)| ≤ M for |z| ≤ 1. Since f (0) = f 0(0) = 0, z−2 f (z) is analytic.
This function has |z−2 f (z)| ≤ M for |z| = 1. By the Maximum Modulus Theorem,
|z−2 f (z)| ≤ M for |z| ≤ 1, and | f (z)| ≤ M|z|2.
40. For (a), the inequality follows by dividing | f (z) − g(z)| < | f (z)| through by

| f (z)|. Then |F(z) − 1| < 1 for z in the image of ∞ , and (a) is proved. From (a), it
follows that 0 lies in the unbounded component of the complement of the image of 0,
and n(0, 0) = 0 by Proposition B.29. For (c), the Argument Principle says precisely
that n(0, 0) =

P
j h j n(∞ , aj ) −

P
l kln(∞ , bl). Since the left side is 0, so is the right

side.
41. The Argument Principle shows that the integral equals 2π i times the number

of zeros of g(z) inside |z| = 1. To compute the number of zeros, we can use Rouché’s
Theorem. For |z| = 1, the term f (z) = 10z8 has | f (z) − g(z)| < | f (z)|, and both
f (z) and g(z) are nonvanishing for |z| = 1. Thus f (z) and g(z) have the same
number of zeros for |z| < 1, counting multiplicities. For f (z), this number is 8, and
thus it is 8 for g(z) also. Hence the given integral equals 16π i .
42. For |z| = 1, the term4z5 dominates the sumof the others. Thus | f (z)−g(z)| <

| f (z)| for |z| = 1 if f (z) = 4z5. Neither f (z) nor g(z) vanishes anywhere with
|z| = 1. The conditions of Rouché’s Theorem are satisfied, and f (z) and g(z) have
the same number of zeros inside |z| = 1. Since f (z) has 5 zeros inside |z| = 1,
counting multiplicities, so does g(z).
43. When |z| = 2, the term 2z5 dominates the sum of the others in absolute value.

Thus f (z) = 2z5 and g(z) = 2z5−6z2+z+1 have | f (z)−g(z)| < | f (z)| for |z| = 2.
In addition, neither f (z) nor g(z) vanishes anywhere for |z| = 2. The conditions of
Rouché’s Theorem are satisfied, and f (z) and g(z) have the same number of zeros
inside |z| = 2. Since f (z) has 5 zeros inside |z| = 2, counting multiplicities, so
does g(z). For |z| = 1, we argue similarly, using f1(z) = −6z2. Again we have
| f1(z) − g(z)| < | f1(z)| for |z| = 1 with neither f1 nor g vanishing anywhere for
|z| = 1. Since f1 has 2 zeros inside |z| = 1, so does g. Thus the number of zeros for
g(z) with 1 < |z| < |2| is 5− 2 = 3.
44. Let P(z) = zn + an−1zn−1 + · · · + a0 be a polynomial of degree n > 0, and

write P(z) as zn + Q(z). Since lim|z|→∞ Q(z)/|z|n = 0, there exists R > 0 such
that |Q(z)|/|zn| < 1 for |z|| ∏ R. Then |zn − P(z)| < |zn| for |z| ∏ R. Applying
Rouché’s Theorem to the standard circle about 0 of radius R and taking f (z) = zn
and g(z) = P(z), we see that P(z) and zn have the same number of zeros, counting
multiplicities, inside the circle |z| = R. That is, P(z) has n zeros inside the circle.
45. By the residue theorem,

R
|z|=2

dz
z2+1 = 2π i

°
Resz=i

° 1
z2+1

¢
+Resz=−i

° 1
z2+1

¢¢
=

2π i
° 1
z+i

Ø
Ø
z=i + 1

z−i
Ø
Ø
z=−i

¢
= 2π i( 12i + 1

−2i
¢

= 0.
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46. The factorization 2z2+3z−2 = (2z−1)(z+2) shows that the only pole inside
C is at z = 1

2 . The Residue Theorem gives
R
C

dz
2z2+3z−2 = 2π iResz= 1

2

1
(2z−1)(z+2) =

2π i limz→ 1
2

z− 1
2

(2z−1)(z+2) = 2π i 1
2( 52 )

= 2π i/5. This problem can also be done more
directly by using the Cauchy Integral Formula.
47. This integral is of the type of Example 1 in Section B11, and the answer is 2π i

times the sum of the residues in the open upper half plane. The roots of z4 + 3z2 + 2
are ±i

p
2 and ±i . We need to compute the residues at i

p
2 and i . These are

Resip2
° 1
z4+3z2+2

¢
= lim

z→i
p
2

1
(z + i

p
2)(z2 + 1)

=
1

(2i
p
2)(−2+ 1)

= i
p
2/4,

Resi
° 1
z4+3z2+2

¢
= lim

z→i

1
(z + i)(z2 + 2)

=
1

(2i)(−1+ 2)
= −i/2.

Thus the integral equals (2π i)(i
p
2/4− i/2) = 2π(1/2−

p
2/4) = 1

2π(2−
p
2).

48. The denominator factors as (x2 + 9)(x2 + 1), and its roots in the upper half
plane are 3i and i . The degree of the denominator is 2 greater than the degree of
the numerator. This is of the type of Example 1 in Section B11. Thus the integral
equals 2π i times the sum of the residues at 3i and i . These residues are respectively

z2−z+2
(z+3i)(z2+1)

Ø
Ø
z=3i and

z2−z+2
(z+i)(z2+9)

Ø
Ø
z=i , which equal

−9−3i+2
6i(−8) = −7−3i

−48i and
−1−i+2
2i(8) =

1−i
16i . The integral is 2π i times the sum of these two complex numbers, namely 5π/12.
49. This is similar to Examples 2 and 3 in Section B11, and the qualitative

conclusion there applies here. The polynomial z2 − 2z + 2 has roots 1± i
p
2, with

z = 1+ i
p
2 as the only root in the upper half plane. The results of those examples

show that the integral equals Im
°
Res1+ip2

° (1+z)eiz
z2−2z+2

¢¢
= Im

° (1+z)eiz
z−(1−i

p
2)

¢
z=1+i

p
2 =

Im
° (2−i

p
2)ei(1−i

p
2)

2i
p
2

¢
.

50. This is 12
R 2π
0

dθ
a+b cos θ , which is of the form in Example 5 in Section B11. If

C denotes the standard unit circle, the substitution z = eiθ and dz = i zeiθ , in which
dθ = −i dz

z , changes it into −i
2

R
C

dz
z(a+ 1

2 b(z+z−1))
= −i

2
R
C

2 dz
bz2+2az+b . The roots of

the denominator in the integrand are z = −a±
p
a2−b2
b , and the one and only root in

the unit disk is −a+
p
a2−b2
b . Thus

R π
0

dx
a+b cos x = −i(2π i)Resz=b−1(−a+

p
a2−b2)

° 1
bz2+2az+b

¢

= 2π
° 1
b(z−b−1(−a−

p
a2−b2)

¢ØØ
z=b−1(−a+

p
a2−b2)

= 2π 1
2
p
a2−b2

= πp
a2−b2
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51. (a) 1
z−1 = −(1+ z + z2 + z3 + . . . ). So f (z) = − 1

z −
∞P

n=0
zn .

(b) 1
1−z = z−1 1

z−1−1 = −z−1 1
1−z−1 = z−1(1 + z−1 + z−2 + z−3 + . . . ). So

f (z) =
∞P

n=2
z−n .

52. For (a), there are three such expansions, valid in the disk |z| < 1, the annulus
1 < |z| < 3, and the annulus 3 < |z|.
For (b) we treat the expansion in the annulus |z| < 1, writing 1

1−z2 =

1 + z2 + z4 + z6 + . . . and 1
3−z = 1

3 (1 + z
3 + ( z3 )

2 + ( z3 )
3 + . . . ). Then the

series has

cn =






0 for n < 0,
3−(n+1) for n > 0 and odd,
1+ 3−(n+1) for n ∏ 0 and even.

53. The function
z

ez−1 − 1+ 1
2 z =

z−ez+1+ 1
2 ze

z− 1
2 z

ez/2(ez/2−e−z/2)
=

1
2 z−e

z+1+ 1
2 ze

z

ez/2(ez/2−e−z/2)

=
1
2 ze

−z/2−ez/2+e−z/2+ 1
2 ze

z/2

ez/2−e−z/2 =
1
2 z(e

z/2+e−z/2)−(ez/2−e−z/2)

ez/2−e−z/2

is the quotient of two odd functions and hence is an even function. Also it is analytic

is a disk about 0. Therefore z
ez−1 − 1+ 1

2 z =
∞P

n=0
bnz2n , and the result follows if we

set bk = (−1)k−1 Bk
(2k)! .

54. The solution of Problem 53 shows that i z
eiz−1 + 1

2 i z = 1
2
i z(eiz/2+e−i z/2)
eiz/2−e−i z/2 =

1
2 z cot(z/2) and hence z cot z = 2i z

e2i z−1 + i z. From the result of Problem 53,

2i z
e2i z−1 = 2i z

° 1
2i z −

1
2+

∞P

k=1
(−1)k−1 Bk

(2k)! (2i z)
2k−1¢ = 1−i z+

∞P

k=1
(−1)k−1 Bk

(2k)! (2i z)
2k

and
z cot z = 1−

∞P

k=1

Bk
(2k)! (2z)

2k .

The desired Laurent series is therefore

cot z = 2
e2i z−1 + z = 1

z −
∞P

k=1

Bk22k
(2k)! z

2k−1.

55. The function f (z) is continuous on each compact subset of U by Proposition
2.21. Hence f (z) is continuous on U . Fix attention on an open disk D in U . If ∞

is any piecewise C1 closed curve in D, then
R
∞ fn(z) dz = 0 by the Cauchy Integral

Theorem. Since the image of ∞ is compact and the convergence of integrands is
uniform on compact sets, we can pass to the limit by Theorem 1.31 and obtainR
∞ f (z) = 0. Since f (z) is known to be continuous, Morera’s Theorem shows that
f (z) is analytic in D. Since D is an arbitrary open disk in U , f (z) is analytic in U .
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56. Let K ⊆ U be compact, and let d be the distance from K to Uc, i.e., the
positive minimum of the distance from x to Uc for x in the compact set K . Let K 0

be the larger compact set {z ∈ U | distance from z to K is ≤ 1
2d}. By assumption

limn fn(z) = 0 uniformly for z ∈ K 0. Let ≤ > 0 be given, and choose N so that n ∏ N
implies | fn(≥ )| ≤ ≤ for all ≥ ∈ K 0. If z is in K , let ∞ be a standard circle of radius
1
2d about z. The complex derivative f

0
n(z) is given by f 0

n(z) = (2π i)−1
R
C

fn(≥ )
(≥−z)2 d≥ ,

according to Theorem B.11. Since ∞ has radius 12d, each point ≥ in the integration
lies in K 0. Thus n ∏ N implies | f 0

n(z)| ≤ 1
2π

≤
( 12 d)2

2π( 12d) = 2≤/d, and { f 0
n(z)}

indeed tends uniformly to 0 for z ∈ K .
57. Arguing by contradiction, suppose that f is not identically 0 and that f (z0) =

0. Choose r > 0 small enough so that {|z − z0| ≤ r} is contained in U and so that f
vanishes for |z − z0| ≤ r only when z = z0. Let ∞ be the standard circle about z0 of
radius r . For each n, 1

2π i
R
∞

f 0
n(z)
fn(z) dz = 0 by the Argument Principle, since each fn

is nowhere vanishing. Since { fn(z)} converges uniformly to f (z) on the compact set
image(∞ ) and since f (z) is nowhere 0 on image(∞ ), {1/ fn(z)} converges to 1/ f (z)
uniformly on image(∞ ). Also Problem 56 shows that { f 0

n(z)} converges uniformly to
f 0(z) on image(∞ ). Thus

© f 0
n(z)
fn(z)

™
converges uniformly to f 0(z)

f (z) , and

lim
n

1
2π i

R
∞

f 0
n(z)
fn(z) dz = 1

2π i
R
∞

f 0(z)
f (z) dz.

We have seen that the left side is 0, and the right side is positive by the Argument
Principle, since f (z0) has been assumed to be 0. This contradiction shows that f (z)
is indeed either nowhere 0 or identically 0.
58. Let K ⊆ U be compact, and let d be the distance from K to Uc, i.e., the

positive minimum of the distance from x toUc for x in the compact set K . Let K 0 be
the larger compact set {z ∈ U | distance from z to K is ≤ 1

2d}. By assumption there
is some constant cK 0 such that | f (z)| ≤ cK 0 for all z ∈ K 0. If z is in K , let ∞ be a
standard circle of radius 12d about z. For f in E , the complex derivative f

0(z) is given
by f 0(z) = (2π i)−1

R
C

f (≥ )
(≥−z)2 d≥ , according toTheoremB.11. Since∞ has radius 12d,

each point ≥ in the integration lies in K 0. Thus | f 0(z)| ≤ 1
2π

cK 0

( 12 d)2
2π( 12d) = 2cK 0/d,

and the derivative f 0(z) of each member f (z) of E is bounded by 2cK 0/d for z ∈ K .
59.
(a) K 0 is certainly bounded, and it is closed by Proposition 2.16. Hence it is

compact. If z0 is in K and |z − z0| ≤ r , then z0 is in K 0 and hence is in U .
(b) From

f (z) − f (z0) = 1
2π i

R
|≥−z0|=r

° 1
≥−z − 1

≥−z0
¢
f (≥ ) dz = z−z

2π i
R
|≥−z0|=r

f (≥ ) d≥
(≥−z)(≥−z0) ,

we obtain | f (z) − f (z0)| ≤ 1
2π |z0 − z| 2πr M

(r/2)(r/2) = (4M/r)|z − z0|.
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(c) We can apply (b) with z0 = z0 = z1 and z = z2 because |z − z0| =
|z2− z1| ≤ δ ≤ r/2. Then we obtain | f (z1)− f (z2)| ≤ 4M|z2− z1|/r ≤ 4Mδ/r ≤
4M(≤r/4M) = ≤.
60. We shall combine Ascoli’s Theorem with a diagonal process. We can choose

an increasing sequence {Kn} of compact sets with unionU such that Kn is contained
in the interior of Kn+1 for each n; namely for each n, we let Kn be the intersection
of the closed disk of radius n about 0 with the set of points at distance ∏ 1/n from
Uc. Let a sequence { fk} of members of E be given. Problem 59 shows that { fk}
is uniformly equicontinuous on K1, and { fk} is by assumption uniformly bounded
on K1. By Ascoli’s Theorem it has a subsequence that is uniformly convergent
on K1. Repeating this process with K2, we can find a further subsequence that is
uniformly convergent on K2 as well. Continuing in this way, we can find successive
subsequences that are uniformly convergent on Kn for each n. Then the sequence
whose nth term is the nth member of the nth subsequence converges uniformly on
each Kn . This subsequence in fact converges uniformly on every compact subset of
U because each compact subset of U lies in some Kn . Indeed, the construction was
arranged so that the interiors of the Kn’s form an open cover ofU , hence of any given
compact subset K of U ; a finite subcover suffices to cover K , and since the Kn’s are
nested, one single such interior covers K .
65. Conclusion (a) is a routine computation. For the first part of (b), take L(z) =

z−z3
z−z4

z2−z4
z2−z3 .

66. ST−1 carries T z2, T z3, T z4 into (1, 0,∞). Then

(T z1, T z2, T z3, T z4) = (ST−1)(T z1) = Sz1 = (z1, z2, z3, z4).

67. For (a), we compute Im
° az+b
cz+d

¢
= Im

°
(az+ b)(cz̄+ d)

¢
= Im(azd + bcz̄) =

(ad − bc)Im z.
For (b) let the transformation be given by the complex matrix

≥
a b
c d

¥
. This trans-

formation carries R ∪ {∞} into R ∪ {∞}, sending 0 to b/d and∞ to a/c. Also the
real derivative with respect to r of r 7→ ar+b

cr+d , which is
ad−bc
(cr+d)2

, has to be real for real
r . Therefore the polynomial function r 7→ (ad − bc)−1(c2r2 + 2cdr + d2), which
is the reciprocal of the derivative, has real coefficients.
Suppose for the moment that d 6= 0. Adjusting the given matrix by a scalar, we

may assume that d > 0. Then (ad−bc)−1d real implies ad−bc real, (ad−bc)−12cd
real implies c real, b/d real implies b real, and ad − bc real implies a real. Also
the computation in (a) shows that ad − bc > 0. This completes the argument when
d 6= 0.
Now suppose that d = 0. Adjusting the given matrix by a scalar, we may assume

that c > 0. Then (ad− bc)−1c2 real implies−bc real and therefore also b real. Also
a/c real implies a real. Again the computation in (a) shows that ad − bc > 0. This
completes the argument when d = 0.
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68. This problem can be reduced to Problem 67 by making use of the unique
linear fractional transformation that sends 0, −1, 1 into i , 0,∞ in this order, namely
z 7→ z+1

i z−i , verifying that it carries the unit disk onto the upper half plane.
71. For the last part of (b), the property of being C∞ in a region U is local, and

it holds in any open set where the harmonic function is the real part of an analytic
function. Every point of U has a filled disk about it that lies in U that satisfies this
condition, and hence the harmonic function is C∞ everywhere.
72. The idea is that although v is unknown, its first partial derivatives are known

because of the Cauchy–Riemann equations. Therefore the first partial derivatives are
known for the unknown analytic function F(z) whose real part is u(x, y). Write u1
for @u

@x and u2 for
@u
@y . Along any horizontal segment that lies in U , we must have

F(x2, y) − F(x1, y) =
R x2
x1 (u1 − iu2)(s, y) ds,

and along any vertical segment that lies in U , we must have

F(x, y2) − F(x, y1) =
R y2
y1 (u2 − iu1)(x, t) dt.

Fix the base point z0 = (x0, y0), define F(z0) = u(x0, y0), let σ be any polygonal
path from z0 to z in U with sides parallel to the axes, and define F along σ one
segment at a time, using one or the other of the above two formulas. The main step
is to prove that F(z) is well defined. Once this step is done, we find as in the proof
of Theorem B.40 that F is continuous and has @F

@x = u1 − iu2 and @F
@y = u2 − iu1.

These partial derivatives are continuous and satisfy @F
@x = −i @F

@y . By Corollary B.2
0,

F has a complex derivative at each point and is therefore analytic. (The value of the
complex derivative is f (z) = @F

@z = u1 − iu2.) The real part of F has first partial
derivatives u1 and u2 and therefore equals u except for an additive constant. The
imaginary part of F is a well defined conjugate harmonic function throughout U .
Thus we are to prove that F(z) is well defined. The combinatorial part of the proof

of Theorem B.40 works without change: We take two polygonal paths σ1 and σ2 in
U from z0 to z with sides parallel to the axes and work with ∞ = σ1 − σ2. We are
then able to show that ∞ has a decomposition

∞ =
P

i
n(∞ , ai )@Ri .

Using that U is simply connected, we argue exactly as in the last paragraph of the
proof of Theorem B.40 to show that the interior of each Ri for which n(∞ , ai ) 6= 0
lies completely in U . From this fact we can see as follows that

R
@Ri f (z) dz = 0,

where f (z) = @F
@x = u1 − iu2: we simply write out

R
@Ri f (z) dz as the sum of the

complex line integrals over each side and proceed as in the solution to Problem 3.
The equality

R
@Ri f (z) dz = 0 follows. Summing over i the product of n(∞ , ai ) by

this equality, we obtain
R
∞ f (z) dz = 0. Thus

R
σ1
f (z) dz =

R
σ2
f (z) dz, and F(z)

is well defined.
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73. Problem 71b shows that u has a conjugate harmonic function v defined onR2.
Then (u + iv) ◦ A is analytic as the composition of two analytic functions, and its
real part, namely u ◦ A, is harmonic.
74. SinceU is assumedconnected, the imageofU is connected. Letu(x0, y0) = c,

and let D be an open disk about (x0, y0) lying in D. On D, u is the real part of an
analytic function f , by Problem 71b. If f (z) is not constant on D, then f (z) is an
open mapping, by Corollary B.35. The intersection of f (D) with the real axis is
therefore an open subset of R containing c.
75. If u has a local maximum at (x0, y0), then on some open disk D about (x0, y0),

u has an absolute maximum at (x0, y0). By the previous problem, u is constant on D.
Thus the interior E of the subset ofU where u(x, y) = c is nonempty, as well as open.
Let (x0, y0) be a limit point of E inU , and choose an open disk D0 about (x0, y0) that
lies in U . Since (x0, y0) is a limit point of E , there exists a member (x1, y1) of E in
D0. Since (x1, y1) is in the open set E , there is a disk D00 about (x1, y1) contained in
E and D0. On this disk, u(x, y) = c. Thus the analytic function on D0 of which u is
the real part is constant on D00 and necessarily also on D0. In other words, (x0, y0) is
in E , and E is closed within U . Since U is connected, E = U .
76. By Problem 71b, u(x, y) is the real part of an analytic function f (z) on all of

C. Then e− f (z) is an entire function that takes values in the unit disk. By Liouville’s
Theorem, e− f (z) is constant. Therefore f (z) is constant, and so is its real part u(x, y).
77. Problem 71b shows that u(x, y) is the real part of an analytic function f (z)

for |z| < 1. For r < 1, the Cauchy Integral Formula gives

f (0) = 1
2π i

R
|z|=r z

−1 f (z) dz = 1
2π i

R 2π
0 (reiθ )−1 f (reiθ )ireiθ dθ

= 1
2π

R 2π
0 (u(r cos θ, r sin θ) + iv(r cos θ, r sin θ)) dθ .

Taking the real part of both sides gives u(0, 0) = 1
2π

R 2π
0 u(r cos θ, r sin θ) dθ .

We apply the operation limr↑1 to both sides. Since u is continuous as a func-
tion of two variables, the convergence of u(r cos θ, r sin θ) to u(cos θ, sin θ) is uni-
form in θ . Thus we can put the limit limr↑1 under the integral sign and obtain
u(0, 0) = 1

2π
R 2π
0 u(cos θ, sin θ) dθ , as required.

78. In (a), the matrix equation follows by applying the matrix equation of Problem
4a to each component function fk and lining up the results.
In (b), the (k, `)th entry of JC is @ fk

@z` . This equals
@ fk
@x`

= @ Re fk
@x`

+ i Im @ fk
@x`

, which is
the sum of the (k, `)th entry of J and i times the (k + m, `)th entry. Thus in block
form the first column of J is

≥
Re JC
Im JC

¥
. If we write J =

≥
Re JC ∞

Im JC δ

¥
, apply (a), and

multiply out the block matrices, we find that ∞ = − Im JC and δ = Re JC.
79. This is a matter of combining Problems 4 and 79 with the chain rule (Theorem

3.10) in the real-variable theory. The functions fR and gR are C∞ by Problem 4, and
(g ◦ f )R = gR ◦ fR from the definitions. Since gR ◦ fR is C∞ with Jacobian matrix
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the product of the Jacobian matrices for gR and fR, (g ◦ f )R is C∞, and we have
a formula for its Jacobian matrix. Applying Problem 78, we see that the Jacobian
matrix of g ◦ f satisfies the equation in Problem 78a. Then it follows from Problem 4
that each entry of g◦ f is holomorphic; by definition g◦ f is holomorphic. Combining
the formula for (g ◦ f )R with Problem 78b, we see that the complex Jacobian matrix
of g ◦ f is the product of the complex Jacobian matrices.
80. Statement: Suppose that f is a holomorphic function from an open set E of

Cn into Cn , and suppose that the complex derivative of f is invertible for some a in
E . Put b = f (a). Then

(a) there exist open sets U ⊆ E ⊆ Cn and V ⊆ Cn such that a is in U , b is in
V , f is one-one from U onto V , and

(b) the inverse function g : V → U is holomorphic.
Consequently, the complex Jacobian matrix of g at f (z) is the inverse of the complex
Jacobian matrix of f at z for z ∈ U .
The proof consists in reducing matters to Theorem 3.17 by using Problems 4, 78,

and 79.
81. The statement is just the analog of Theorem 3.16 with complex variables

replacing real variables. The proof comes by imitating the proof that Theorem 3.17
implies Theorem 3.16.




