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CHAPTER X

Topological Spaces

Abstract. This chapter extends considerably the framework for discussing convergence, limits, and
continuity that was developed in Chapter II: topological spaces replace metric spaces.
Section 1makes various definitions, including definitions for the terms topology, open set, closed

set, continuous function, base for a topology, separable, and subspace. It introduces two general
kinds of constructions useful in analysis and other fields for forming new topological spaces out of
old ones—weak topologies and quotient topologies. The section gives several examples of each.
Sections 2–3 develop standard facts, mostly elementary, about how certain combinations of

properties of topological spaces imply others. Examples show some limitations to such implications.
Properties that are studied include Hausdorff, regular, normal, dense, compact, locally compact,
Lindelöf, and σ -compact.
Section 4 discusses product topologies on arbitrary product spaces, an example of a weak

topology. The main theorem, the Tychonoff Product Theorem, says that the product of compact
spaces is compact.
Section 5 introduces nets, a generalizationof sequences. Sequences by themselves are inadequate

for detecting convergence in general topological spaces, and nets are a substitute. The use of nets in
many cases provides an easier way of establishing properties of subsets of a topological space than
direct arguments with open and closed sets.
Section 6 elaborates on quotient topologies as introduced in Section 1. Conditions under which

a quotient space is Hausdorff are of particular interest.
Sections 7–8 prove and apply Urysohn’s Lemma, which says that any two disjoint closed sets

in a normal topological space may be separated by a real-valued continuous function. This result
is fundamental to serious uses of topological spaces in analysis. One application is to showing that
every separable Hausdorff regular topology arises from a metric.
Section 9 extends Ascoli’s Theorem and the Stone–Weierstrass Theorem from their settings in

compact metric spaces in Chapter II to the wider setting of compact Hausdorff spaces.

1. Open Sets and Constructions of Topologies

In applications involving metric spaces, we have seen several times that the
explicit form of a metric may not at all be one of objects of interest for the space.
Instead, wemay be interested in the open sets, or in convergence, or in continuity,
or in some other aspect of the space. The same open sets, convergence, and
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1. Open Sets and Constructions of Topologies 491

continuity may come from two different metrics, and we have even encountered
notions of convergence that are not associated with any metric at all. We saw in
Section II.5, for example, that we could associate three different natural-looking
metrics to the product X × Y of two metric spaces, and the three metrics led to
the same open sets, the same convergence of sequences, and the same continuous
functions. On the other hand, the notions in Chapter V of pointwise convergence,
convergence almost everywhere, andweak-star convergencewere definedwithout
reference to a metric, and depending on the details of the situation, there need
not be metrics yielding these notions of convergence. We have brushed against
further, more subtle situations with one or the other of these phenomena—no
special distinguished metric or no metric at all—but there is no need to produce
a complete list. The present chapter introduces and studies an abstract gener-
alization of the notion of a metric space, namely a “topology,” that makes it
unnecessary to have the kind of explicit formula demanded by the definition of
metric space.
The framework for a “topological space” consists of a nonempty set and a

collection of “open sets” satisfying the conditions of Proposition 2.5. Thus let X
be a nonempty set. A set T of subsets of X is called a topology for X if

(i) X and ∅ are in T,
(ii) any union of members of T is a member of T,
(iii) any finite intersection of members of T is a member of T.

The members of T are called open sets, and (X, T ) is called a topological space.
When there is no chance for ambiguity, we may refer to X itself as a topological
space.
Every metric space furnishes an example of a topological space by virtue of

Proposition 2.5; we refer to the topology in question as the metric topology for
the space. Two other examples of general constructions leading to topological
spaces will be given later in this section, and some specific examples of other
kinds will be given in Section 2.
Neighborhoods, open neighborhoods, interior, closed sets, limit points, and

closure may be defined in the same way as in Section II.2. As remarked after
Corollary 2.11, the proofs of certain results relating these notions depended only
on the definitions and the three properties of open sets listed above. These
results are Proposition 2.6 and Corollary 2.7 characterizing interior, Proposition
2.8 giving properties of the family of all closed sets, Proposition 2.9 relating
closed sets to limit points, and Proposition 2.10 and Corollary 2.11 characterizing
closure. Thus we may take all those results as known for general topological
spaces, and it is not necessary to repeat their statements here.
The notion of continuity extends to topological spaces in straightforward

fashion. Specifically the definition of continuity at a point is extracted from
the statement of Proposition 2.13: if X and Y are topological spaces, a function
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X → Y is continuous at a point x ∈ X if for any open neighborhood V of
f (x) in Y , there is a neighborhoodU of x such that f (U) ⊆ V . Then Corollary
2.14 is immediately available, saying that if f : X → Y is continuous at x and
g : Y → Z is continuous at f (x), then the composition g ◦ f is continuous at x .
Proposition 2.15 and its proof are available also, saying that the function

f : X → Y is continuous at every point of X if and only if the inverse image
under f of every open set in Y is open in X , if and only if the inverse image under
f of every closed set in Y is closed in X . We say that f : X → Y is continuous
if these equivalent conditions are satisfied. The function f : X → Y is said to be
a homeomorphism if f is continuous, f is one-one and onto, and f −1 : Y → X
is continuous. The relation “is homeomorphic to” is an equivalence relation.
Now let us come to the two general constructions of topological spaces, known

as “weak topologies” and “quotient topologies.” Both of these have many appli-
cations in real analysis.
The notion of “weak topology” starts from the fact that the intersection of a

nonempty collection of topologies for a set is a topology; this fact is evident from
the very definition. The prototype of a weak topology is the “product topology”
for the product of a nonempty set of topological spaces. In the terminology of
Section A1 of Appendix A, if S is a nonempty set and if Xs is a nonempty set for
each s in S, then the Cartesian product X = ×s∈S Xs is the set of all functions f
from S into

S
s∈S Xs such that f (s) is in Xs for all s ∈ S. Now suppose that each

Xs is a topological space, and let ps : X → Xs be the sth coordinate function,
givenby ps( f ) = f (s). If X is given thediscrete topologyD, inwhich every sub-
set of X is open, then each ps is continuous; in fact, the inverse imageof anopen set
in Xs is some subset of X , and every subset of X is inD. Form the collection of all
topologies Tα on X such that each ps : X → Xs is continuous relative to Tα. The
collection is nonempty sinceD is one. LetT be their intersection. The inverse im-
age of any open set in Xs under ps lies in Tα for each α and hence lies in T. There-
fore each ps is continuous relative to T. We speak of T as the “weakest topology”
on X such that all ps are continuous, and this topology for X is called the product
topology for X . We shall study product topologies in more detail in Section 4.
More generally let X be a nonempty set, let S be a nonempty set, let Xs be

a topological space for each s in S, and suppose that we are given a function
fs : X → Xs for each s in S. If X is given the discrete topology, then every fs
is continuous. Arguing as in the previous paragraph, we see that there exists a
smallest topology for X making all the functions fs continuous. This is called
the weak topology for X determined by { fs}s∈S .
EXAMPLES.
(1) Let (X, d) be a metric space. Then the weak topology for X determined

by all functions x 7→ d(x, y) as y varies through X is the usual metric topology
on X , as we readily check from the definitions.
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(2) Let X be a normed linear space with field of scalars F, such as an L p space
for 1 ≤ p ≤ ∞, and let X∗ be the vector space of continuous linear functionals
on X , as introduced in Section V.9. (For X = L p with 1 ≤ p < ∞ and with the
assumption that the underlying measure is σ -finite, Theorem 9.19 identified X∗

explicitly as L p0 , where p0 is the dual index to p.) Each member x of X defines
a function fx : X∗ → F by the formula fx(x∗) = x∗(x). The weak topology
on X∗ determined by X is called the weak-star topology on X∗ relative to X .
The words “relative to X” are included in the terminology because two normed
linear spaces X might have the same set X∗ of continuous linear functionals.
In Section V.9 we introduced a notion of weak-star convergence but no metric
associated to it. In problems at the ends of Chapters VI, VIII, and IX, this kind
of convergence became a powerful tool for working with harmonic functions,
Poisson integrals, and positive definite functions. Later in the present chapter
we shall relate topologies to convergence of sequences,1 and it will be apparent
that weak-star convergence as defined in Section V.9 is the appropriate notion of
convergence for the newly defined weak-star topology.
(3) The construction in Example 2 can be transposed to other situations in

which a topology is to be imposed on a vector space. For example, let X be a
normed linear space with field of scalars F equal to R or C, and let X∗ be the
vector space of continuous linear functionals on X . Then X∗ indexes a set of
functions x∗ : X → F. The weak topology on X determined by X∗ is known as
the weak topology on X . This topology arises in some advanced situations, but
we shall not have occasion to make use of it in the present volume.
(4)We have encountered three vector spaces of scalar-valued smooth functions

on open sets of Euclidean space—in Section III.2 the spaceC∞(U) of all smooth
functions onU , in Section VIII.4 the spaceC∞

com(U) of all smooth functions onU
with compact support contained in U , and in Section VIII.4 the space S(RN ) of
Schwartz functions defined on RN . The subject of partial differential equations
makes extensive use of functions of all three of these kinds, and it is necessary to
be able to discuss convergence for them. The easiest convergence to describe is for
C∞(U), where convergence is to mean uniform convergence of the function and
all of its partial derivatives on each compact subset of U . Uniform convergence
by itself is captured by the supremum norm, and somehow we want to work here
with the supremum norms of the function and each of its partial derivatives on
each compact subset. The appropriate topology turns out to be the weak topology
determined by all the functions f 7→ k f − gk, where k · k is the supremum of
some iterated partial derivative on some compact subset of U . This construction
is carried out in detail in the companion volume, Advanced Real Analysis. A
topology for the Schwartz space S(RN ) is obtained in a qualitatively similar way.

1And to “nets,” which are a generalization of sequences.
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A topology forC∞
com(U) is more subtle, and it too is constructed in the companion

volume.

The second general construction of topological spaces is the “quotient topol-
ogy” for the set of equivalence classes on X when X is a topological space and
some equivalence relation2 has been specified on X . If the relation is written as∼,
the set of equivalence classes may be written as X/∼, and the quotientmap, i.e.,
passage fromeachmember of X to its equivalence class, is awell-defined function
q : X → X/∼. With a topology in place on X , define a subset U of X/∼ to be
open if q−1(U) is open. Since inverse images of functions preserve set-theoretic
operations, it is immediate that the resulting collection of open subsets of X/∼
is a topology for X/∼ and that this topology makes q continuous. This topology
is called the quotient topology for X/∼. In any other topology T 0 on X/∼, any
subset V of X/∼ that is open in T 0 but not open in the quotient topology must
have the property that q−1(V ) is not open; this condition implies that q is not
continuous when T 0 is the topology on X/ ∼. Therefore the quotient topology
is the finest topology on X/∼ that makes the quotient map continuous—in the
sense that it contains all topologies making q continuous.

EXAMPLES.
(1) Let (X, d) be a pseudometric space such as the set of all integrable functions

on some measure space (S,A, µ) with d(g, h) =
R
S |g − h| dµ. The pseudo-

metric on X gives X a topology. For x and y in X , define x ∼ y if d(x, y) = 0.
The result is an equivalence relation, and we know from Proposition 2.12 that the
pseudometric d descends to be a metric on the set X/∼ of equivalence classes.
The quotient topology on X/∼ coincideswith the topology defined by thismetric.
(2) Let X be the interval [−π,π] with its usual topology from the metric onR,

let S1 be the unit circle in C with its usual topology from the metric on C, and let
q : X → S1 be given by q(x) = eix . We can consider S1 as the set of equivalence
classes of X under the relation that lets −π and π be the only nontrivial pair of
elements of X that are equivalent. The function q is continuous, and it carries
compact sets to compact sets. In Problem 11 at the end of the chapter, we shall
see that q exhibits S1 as having the quotient topology.
(3) Let X be the line R with its usual metric, let S1 be the unit circle as in the

previous example, and let q : X → S1 be given by q(x) = eix . The domain X
is a group, and the function q identifies S1 set-theoretically as the quotient group
R/2πZ, where Z is the subgroup of integers. This example illustrates the natural

2Equivalence relations and their connection with equivalence classes are discussed in Section A6
of Appendix A.
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topology to impose on any quotient of a group when the group has a topology for
which all translations are homeomorphisms.3

In many situations the problem of describing what sets are to be open sets in a
topological space is simplified by the notion of a base for a topology. By a base
B for the topology T on X is meant a subfamily of members of T such that every
member of T is a union of sets in B. In Chapter II the topology for a metric space
was really introduced by specifying that the family of all open balls is to be a
base. Arguing as with Proposition 2.31, we obtain the following result.

Proposition 10.1. A family B of subsets of a nonempty set X is a base for
some topology T on X if and only if

(a) X =
S

B∈B B and
(b) wheneverU and V are in B and x is inU ∩V , then there is a B in B such

that x is in B and B ⊆ U ∩ V .
In this case the topology T is necessarily the set of all unions of members of
B, and hence T is determined by B. A family B of subsets of X is a base for a
particular given topology T0 on X if and only if (a) holds and
(b0) for each x ∈ X and memberU of T0 containing x , there is some member

B of B such that x is in B and B is contained in U .

REMARK. Condition (b) is satisfied if B is closed under finite intersections.
Thus any family of subsets of X that is closed under finite intersections and has
union X is a base for some topology on X .

A topological space (X, T ) is said to be separable if T has a base consisting
of only countably many sets.4 A separable metric space has a countable base
consisting entirely of open balls.
As with metric spaces, there is a natural definition of subspaces for general

topological spaces. If (X, T ) is a topological space and if A is a nonempty subset
of X , then the relative topology for A is the family of all sets U ∩ A with U in
T. We can write T ∩ A for this family. It is a simple matter to check that T ∩ A is
indeed a topology for A, and we say that (A, T ∩ A) is a topological subspace
of (X, T ). If there is no possibility of confusion and if the relative topology is
understood, we may say that “A is a subspace of X .”

3The definition of “topological group,” which is given in the companion volume, Advanced Real
Analysis, imposes further conditions beyond the fact that every translation is a homeomorphism.

4Some authors use the word “separable” to mean that X has a countable dense set, but the
meaning in the text here is becoming more and more common. The existence of a countable dense
set is not a particularly useful property for a general topological space.
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Proposition 10.2. If A and B are subspaces of a topological space X with
B ⊆ A ⊆ X , then the relative topology of B considered as a subspace of X is
identical to the relative topology of B considered as a subspace of A.

PROOF. The relative topology of B considered as a subspace of X consists of
all sets U ∩ B with U open in X , and the relative topology of B considered as a
subspace of A consists of all sets (U ∩ A)∩ B withU open in X . Thus the result
follows from the identity (U ∩ A) ∩ B = U ∩ (A ∩ B) = U ∩ B. §

The next two propositions are proved in the same way as Proposition 2.26 and
Corollary 2.27.

Proposition 10.3. If A is a subspace of a topological space X , then the closed
sets of A are all sets F ∩ A, where F is closed in X . Consequently B is closed
in A if and only if B = Bcl ∩ A.

Proposition 10.4. If X and Y are topological spaces and f : X → Y is
continuous at a point a of a subspace A of X , then the restriction f

Ø
Ø
A : A → Y

is continuous at a. Also, f is continuous at a if and only if the function
f0 : X → f (X) obtained by redefining the range to be the image is continuous
at a.

2. Properties of Topological Spaces

Proposition 2.30 listed certain properties of metric spaces as “separation prop-
erties.” These properties are not shared by all topological spaces, and instead
we list them in this section as definitions. After giving the definitions, we shall
examine implications among them and some roles that they play. The disproofs of
certain implications provide an opportunity to introduce some further examples
of topological spaces beyond those obtained from the constructions in Section 1.
Let (X, T ) be a topological space. We say that
(i) X is a T1 space if every one-point set in X is closed,
(ii) X is Hausdorff if for any two distinct points x and y of X , there are

disjoint open sets U and V with x ∈ U and y ∈ V ,
(iii) X is regular if for any point x ∈ X and any closed set F ⊆ X with

x /∈ F , there are disjoint open sets U and V with x ∈ U and F ⊆ V ,
(iv) X is normal if for any two disjoint closed subsets E and F of X , there

are disjoint open sets U and V such that E ⊆ U and F ⊆ V .
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Proposition2.30 listed one further property of an arbitrarymetric space X , namely
that any two disjoint closed sets can be separated by a continuous function from
X into [0, 1]. Urysohn’s Lemma in Section 7 will establish this property for any
normal topological space.

Proposition 10.5. If (X, T ) is a topological space, then
(a) X is T1 if and only if for any pair of distinct points x and y, there are

open sets U and V such that x ∈ U , y /∈ U , x /∈ V , and y ∈ V ,
(b) X is regular if and only if for any point x and any closed set F with x /∈ F ,

there is an open set U such that x ∈ U and U cl ∩ F = ∅,
(c) X is normal if and only if for any pair of disjoint closed sets E and F ,

there is an open set U such that E ⊆ U and U cl ∩ F = ∅.

PROOF. If X is T1 and if x and y are given, we can choose U = {y}c and
V = {x}c. In the reverse direction, if x is given, choose, for each y 6= x , an open
set Vy such that x /∈ Vy and y ∈ Vy; then {x}c =

S
y Vy is open, and hence {x}

is closed.
If X is regular and if x and F are given, we can choose disjoint open setsU and

V with x ∈ U and F ⊆ V . Then the closed set V c has V c ⊇ U and V c∩ F = ∅;
therefore also V c ⊇ U cl and U cl ∩ F = ∅. In the reverse direction, suppose
that x and F are given and that U is an open set with x ∈ U and U cl ∩ F = ∅;
choosing V = (U cl)c, we see that x ∈ U , F ⊆ V , and U ∩ V = ∅.
If X is normal and if E and F are given, we can choose disjoint open setsU and

V with E ⊆ U and F ⊆ V . Then the closed set V c has V c ⊇ U and V c∩F = ∅;
therefore also V c ⊇ U cl andU cl ∩ F = ∅. In the reverse direction, suppose that
E and F are given and that U is an open set with E ⊆ U and U cl ∩ F = ∅;
choosing V = (U cl)c, we see that E ⊆ U , F ⊆ V , and U ∩ V = ∅. §

Proposition 10.6. If (X, T ) is a topological space and
(a) if X is T1 and normal, then X is regular,
(b) if X is T1 and regular, then X is Hausdorff,
(c) if X is Hausdorff, then X is T1.

PROOF. In (a), if x and a disjoint closed set F are given, then {x} is closed, and
the fact that X is normal implies that we can separate the closed sets {x} and F
by disjoint open sets. In (b), if x and y are distinct points in X , then {y} is closed
and the fact that X is regular implies that we can separate the point x and the
disjoint closed set {y} by disjoint open sets. In (c), the fact that X is Hausdorff
means that for any two distinct points x and y, there are disjoint open setsU and
V with x ∈ U and y ∈ V . Then X satisfies the condition in Proposition 10.5a
that was shown to be equivalent to the T1 property. §
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EXAMPLES.
(1) A space that is not T1, regular, or normal. Let X = {a, b, c}, and let

T = {∅, {a}, {a, b}, {a, c}, {a, b, c}}.
(2) A space that is T1 but not Hausdorff. Let X be an infinite set, and let T

consist of the empty set and all complements of finite sets.
(3) A Hausdorff space that is not regular. Let X be the real line. A subset U

of X is to be in T if for each point x ofU , there is an open interval Ix containing
x such that every rational number in Ix is in U . Then every open interval is in
T, and hence X is certainly Hausdorff. On the other hand, the set of rationals is
open in this topology, and therefore the set of irrationals is closed. The set of
irrationals cannot be separated from the point 0 by disjoint open sets.
(4) A Hausdorff regular space that is not normal. Let X be the closed upper

half plane {Im z ∏ 0} in C. A base for T consists of all open disks in X that do
not meet the x axis, together with all open disks in X that are tangent to the x
axis; the latter sets are to include the point of tangency. It is easy to see that X is
Hausdorff, but a little argument is needed to see that X is regular. To begin with,
every open set in the usual metric topology for X is in T, and hence every closed
set in the usual metric topology for X is closed relative to T. Let p be a point in
X , and let F be a T closed subset of X not containing p. There is no difficulty in
separating p and F by disjoint open sets if p has y coordinate positive, and we
therefore assume that p lies on the x axis. Since F is closed, Proposition 10.1
produces a basic open set U tangent to the x axis at p such that U ∩ F = ∅.
If D denotes a strictly smaller basic open set tangent to the x axis at p, then
the only point of the ordinary boundary of U that lies in Dcl is p itself. Thus
F ∩ Dcl = ∅, and it follows that D and (Dcl)c are disjoint open sets separating
p and F . Consequently X is regular. We postpone the argument that X is not
normal until Section 7, when Urysohn’s Lemma will be available.
(5) A normal space that is not regular. Let X = {a, b}, and let T consist of∅,

{a}, and {a, b}.

We shall see in Section 5 that the Hausdorff property is exactly the right condi-
tion to make limits be unique, hence to allow a reasonable notion of convergence.
Also, in the construction of a quotient space, it is often a subtle matter to decide
whether the quotient space is Hausdorff; we shall obtain sufficient conditions in
Section 6.
The property of regularity makes possible a generalization of the passage from

a pseudometric space of points to a metric space of equivalence classes. The
point of departure is the following proposition; we shall examine the resulting
quotient space further in Section 6.



2. Properties of Topological Spaces 499

Proposition 10.7. Let X be a regular topological space. For points x and y in
X , define x ∼ y if x is in {y}c. Then ∼ is an equivalence relation.

PROOF. Certainly x lies in {x}cl, and if x lies in {y}cl and y lies in {z}cl, then
x lies in {z}cl. For the symmetry property, we argue by contradiction and use the
regularity of X . Suppose that x lies in {y}cl but y does not lie in {x}cl. Regularity
allows us to find disjoint open sets U and V such that y ∈ U and {x}cl ⊆ V .
Then the closed set V c contains y and hence also {y}cl. Since x lies in {y}cl, x
lies in V c. But this relationship contradicts the fact that x lies in V . We conclude
that ∼ is symmetric and is therefore an equivalence relation. §

Subspaces of topological spaces inherit certain properties if the original space
has them. Among these are T1, Hausdorff, and separable. A subspace of a
normal space need not be normal, as is seen by taking X = {a, b, c, d}, and T =
{∅, {a}, {a, b}, {a, c}, {a, b, c, d}}, the subspace being {a, b, c} and the relatively
closed subsets of interest being {b} and {c}. Let us state the result for regularity
as a proposition.

Proposition 10.8. A subspace of a regular topological space is regular.

PROOF. Within a subspace A of X , let F be a relatively closed set, and let x
be a point of A not in F . By Proposition 10.3 we have F = Fcl ∩ A, the closure
being taken in X . Since x is in A but not F , x is not in Fcl. Since X is regular,
we can find disjoint open sets U and V in X with x ∈ U and Fcl ⊆ V . Then
U ∩ A and V ∩ A are disjoint relatively open sets containing x and F . §

As with metric spaces, a subset D of a topological space X is dense in A if
Dcl ⊇ A; D is dense if D is dense in X . A set D is dense if and only if there
is some point of D in each nonempty open set of X . If X is separable, then X
has a countable dense set; we have only to select one point from each nonempty
member of the base.
The properties of bases of a topological space X become more transparent

with the aid of the notion of a local base. A set Ux of open neighborhoods of x is
a local base at x if each open set containing x contains some member of Ux . If B
is a base, then the members of B containing x form a local base at x . Conversely
if Ux is a local base for each x , then the union of all the Ux ’s is a base. We say that
X has a countable local base at each point5 if a countable such Ux can be chosen
for each x in X . Metric spaces have this property; the open balls of rational radii
centered at a point form a local base at the point.

5Someauthors say instead that “X satisfies thefirst axiomof countability”or “X is first countable”
if this condition holds. In the same kind of terminology, one says that “X satisfies the second axiom
of countability” or “X is second countable” if X is separable in the sense of Section 1.
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EXAMPLE 4, CONTINUED. A space that has a countable dense set and has a
countable local base at each point and yet is not separable. As in Example 4
earlier in this section, let X be the closed upper half plane {Im z ∏ 0} in C. A
base for T consists of all open disks in X that do not meet the x axis, together
with all open disks in X that are tangent to the x axis; the latter sets are to include
the point of tangency. For a point p on the x axis, the open disks of rational
radii with point of tangency p form a countable local base, and for a point p
off the x axis, the open disks within the open upper half plane having center p
and rational radius form a countable local base. A countable dense set consists
of all points with rational coordinates and with y coordinate positive. We shall
see in Corollary 10.10 in the next section that a separable regular space has to be
normal, and this X is not normal, according to the statement in Example 4 and
the proof to be given in Section 7. Thus X cannot be separable.

3. Compactness and Local Compactness

Let X be a topological space. In this sectionwe carry over to a general topological
space X some definitions made in Section II.7 for metric spaces. A collection U
of open sets is an open cover of X if its union is X . An open subcover of U is a
subset of U that is itself an open cover.
We begin with a new term, saying that the topological space X is a Lindelöf

space if every open cover of X has a countable subcover. Proposition 2.32 showed
that a metric space X is separable if and only if X is a Lindelöf space. For general
topological spaces it is still true that any separable X is a Lindelöf space, by the
same argument as for the implication that condition (a) implies condition (b) in
Proposition 2.32. In fact, every subspace of a separable space is separable, and
hence every subspace of a separable space is Lindelöf. However, a Lindelöf space
need not be separable, as the following example shows rather emphatically.

EXAMPLE. We construct a topological space (X, T ) that is Hausdorff and
normal, has a countable dense set, has a countable local base at each point, is
Lindelöf, yet is not separable. Take X as a set to be the real line. The intersection
of any two bounded intervals of the form [a, b) is an interval of the same kind,
and the union of all such intervals is the whole line. Hence the bounded intervals
[a, b) form a base for some topology on the line, and this topology we take to
be T. It is called the half-open interval topology for the real line. Since every
ordinary open interval of the line is the union of intervals [a, b), any open set in
the usual metric topology is open in the half-open interval topology. Any two
distinct points of X may be separated by ordinary disjoint open intervals, and
therefore X is Hausdorff. To see that X is regular, let a point x and a closed set
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F with x not in F be given. Since x is in the open set Fc, some [x, x + ≤) is
disjoint from F . Then U = [x, x + ≤) and V = (−∞, x) ∪ [x + ≤,+∞) are
disjoint open sets separating x and F , and we conclude that X is regular. Once
we prove that X is Lindelöf, it will follow from Proposition 10.9 below that X
is normal. The rationals form a countable dense subset of X , and the set of all
intervals

£
x, x + 1

n
¢
is a countable local base at x . The space X is not separable.

In fact, if B is any base, we can find, for each x , some open neighborhood Bx of
x that is in B and is contained in [x, x + 1). If x < y, then x cannot lie in By and
hence Bx 6= By; therefore B has to be uncountable. Finally let us see that X is
Lindelöf. Let an open cover U of X be given, and fix a negative real number x0.
Consider the set S(x0) of all real numbers x such that some countable collection
of members of U covers [x0, x]. Since x0 is covered by some member of U, the
set S(x0) contains x0. If the set contains an element x1, then the member of the
countable collection that covers x1 must contain [x1, x1 + ≤) for some ≤ > 0.
Thus x1 + ≤

2 is in S(x0), and S(x0) contains no largest element. We shall show
that S(x0) = [x0,+∞). If the contrary is true, then S(x0) must be bounded. In
this case, let c be the least upper bound. For large enough n, c − 1

n is in S(x0).
Taking the union of the countable collections that cover

£
x0, c− 1

n
§
, together with

one more set to cover c, we obtain a countable collection that covers [x0, c], and
we see that c is in S(x0). Since c is in S(x0), we have a contradiction to the
fact that S(x0) contains no largest element. We conclude that some countable
subcollection of U covers [x0,+∞), no matter what x0 is. Taking the union of
the countable subcollections corresponding to each negative integer, we obtain a
countable subcollection of U covering (−∞,+∞). Thus X is Lindelöf.

It is not always so obvious when a topological space is normal. The next result
provides one sufficient condition.

Proposition 10.9 (Tychonoff’s Lemma). Every regular Lindelöf space is
normal.

PROOF. Let X be regular and Lindelöf, and let disjoint closed subsets E and F
of X be given. By regularity and Proposition 10.5b each point of E has an open
neighborhood whose closure is disjoint from F . Therefore the class U of open
sets with closures disjoint from F covers E . Similarly the class V of open sets
with closures disjoint from E covers F . Thus U∪ V∪ {X − (E ∪ F)} is an open
cover of X . Since X is Lindelöf, there exist sequences of sets Un in U and Vn in
V such that E ⊆

S∞
n=1Un and F ⊆

S∞
n=1 Vn . Put

U 0
n = Un −

[

k≤n
V clk and V 0

n = Vn −
[

k≤n
U cl
k .
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When m ≤ n, we have Vm ⊆
S

k≤n V clk . Then U 0
n ∩ Vm = ∅, and hence the

smaller set U 0
n ∩ V 0

m is empty. Reversing the roles of the U ’s and the V ’s shows
thatU 0

n ∩V 0
m is empty form ∏ n. ThereforeU 0

n ∩V 0
m = ∅ for all n andm. Define

U =
∞[

n=1
U 0
n and V =

∞[

m=1
V 0
m .

Then U ∩ V =
S

n,m (U 0
n ∩ V 0

m) = ∅. Also,

E∩U = E∩
∞[

n=1

≥
Un−

[

k≤n
V clk

¥
⊇ E∩

∞[

n=1

≥
Un−

∞[

k=1
V clk

¥
= E∩

≥
X−

∞[

k=1
V clk

¥
,

the last equality holding since {Un} covers E . The right side here equals E since
V clk ⊆ X − E for all k, and therefore E ⊆ U . Similarly F ⊆ V . The proof is
complete. §

Corollary 10.10. Every regular separable space is normal.

PROOF. A separable space is automatically Lindelöf, and thus the corollary
follows from Proposition 10.9. §

Let us return to the concluding example in Section 2, in which X as a set is
the closed upper half plane {Im z ∏ 0} but in which the topology is nonstandard
near the real axis. It was shown in Section 2 that this particular X is regular, and
it was stated that Urysohn’s Lemma would be used in Section 7 to show that X
is not normal. By Corollary 10.10, X cannot be separable. This completes the
argument that X has a countable dense set and has a countable local base at each
point yet is not separable.
We can now proceed with carrying over some definitions from Section II.7,

valid there formetric spaces, to a general topological space X . We call X compact
if every open cover of X has a finite subcover. A subset E of X is compact if it is
compact as a subspace of X , i.e., if every collection of open sets in X whose union
contains E has a finite subcollection whose union contains E . It is immediate
from the definition that the union of two compact subsets is compact.
This definition generalizes the property of closed bounded sets of Rn given

by the Heine–Borel Theorem. We shall see that the Heine–Borel property, rather
than the Bolzano–Weierstrass property for sequences, is the useful property to
carry over to more general situations in real analysis. In fact, in several places in
this book, we have combined an iterated application of the Bolzano–Weierstrass
property with the Cantor diagonal process to obtain some conclusion. This
construction is tantamount to proving that the product of countablymany compact
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metric spaces, which is a metric space essentially by Proposition 10.28 below, is
compact. There will be situations for which we want to consider an uncountable
product of compact metric spaces, and then arguments with sequences are not
decisive. Instead, it is the Heine–Borel property that is relevant. The Tychonoff
Product Theorem of Section 4 will be the substitute for the Cantor diagonal
process, and the use of nets, considered in Section 5, will be analogous to the use
of sequences.
A number of the simpler results in Section II.7 generalize easily from compact

metric spaces to all compact topological spaces or at least to all compactHausdorff
spaces. We list those now. A consequence of Proposition 10.12 below is that
compactness is preserved under homeomorphisms.
A set of subsets of a nonempty set is said to have the finite-intersection

property if each intersection of finitely many of the subsets is nonempty.

Proposition 10.11. A topological space X is compact if and only if each
set of closed subsets of X with the finite-intersection property has nonempty
intersection.
PROOF. Closed sets with the finite-intersection property have complements

that are open sets, no finite subcollection of which is an open cover. §

Proposition 10.12. Let X and Y be topological spaces with X compact. If
f : X → Y is continuous, then f (X) is a compact subset of Y .
PROOF. If {Uα} is an open cover of f (X), then { f −1(Uα)} is an open cover of

X . Let { f −1(Uj )}nj=1 be a finite subcover. Then {Uj }nj=1 is a finite subcover of
f (X). §

Corollary 10.13. Let X be a compact topological space, and let f : X → R
be a continuous function. Then f attains its maximum and minimum values.
PROOF. By Proposition 10.12, f (X) is a compact subset of R. Arguing as in

the proof of Corollary 2.39, we see that f (X) has a finite supremum and a finite
infimum and that both of these must lie in f (X). §

Proposition 10.14. Aclosed subset of a compact topological space is compact.
PROOF. Let E be a closed subset of the compact space X , and let U be an open

cover of E . Then U ∪ {Ec} is an open cover of X . Passing to a finite subcover
and discarding Ec, we obtain a finite subcover of E . Thus E is compact. §

Lemma 10.15. Let K and E be subsets of a topological space X , and let K be
compact. Suppose that to each point x of K there are disjoint open sets Ux and
Vx such that x is in Ux and E ⊆ Vx . Then there exist disjoint open setsU and V
such that K ⊆ U and E ⊆ V .
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PROOF. As x varies through K , the open setsUx form an open cover of K . By
compactness, a finite subcollection of the Ux ’s is a cover, say Ux1, . . . ,Uxn . Put
U =

Sn
k=1Uxk and V =

Tn
k=1 Vxk . Then K ⊆ U and E ⊆ V . Also, U ∩ V =°Sn

k=1Uxk
¢
∩

°Tn
k=1 Vxk

¢
=

Sn
k=1

°
Uxk ∩

°Tn
l=1 Vxl

¢¢
⊆

Sn
k=1(Uxk ∩Vxk ) = ∅,

and thus U and V have the required properties. §

Proposition 10.16. Every compact Hausdorff space is regular and normal.

PROOF. Let X be compactHausdorff. If a point x and a closed set F with x /∈ F
are given, we observe by Proposition 10.14 that F is compact. The Hausdorff
property of X allows us to take E = {x} and K = F in Lemma 10.15, and we
obtain disjoint open sets U and V such that x is in V and F ⊆ U . Thus X is
regular.
If disjoint closed sets E and F are given, then F is compact by Proposition

10.14. The fact that X has been shown to be regular allows us to take K = F in
Lemma 10.15, and we obtain disjoint open sets U and V such that E ⊆ V and
F ⊆ U . Thus X is normal. §

Proposition 10.17. In a Hausdorff space every compact set is closed.

PROOF. Let X be a Hausdorff space, and let K be a compact subset of X . Fix x
in Kc. The Hausdorff property of X allows us to take E = {x} in Lemma 10.15,
and we obtain disjoint open sets Ux and Vx such that x is in Vx and K ⊆ Ux .
Letting x now vary, we see that Kc =

S
x∈Kc Vx . Hence Kc is open and K is

closed. §

Corollary 10.18. Let X and Y be topological spaces with X compact and
with Y Hausdorff. If f : X → Y is continuous, one-one, and onto, then f is a
homeomorphism.

PROOF. We are to show that f −1 : Y → X is continuous. Let E be a closed
subset of X , and consider ( f −1)−1(E) = f (E). The set E is compact in X by
Proposition 10.14, f (E) is compact by Proposition 10.12, and f (E) is closed by
Proposition 10.17. Since the inverse image under f −1 of any closed set is closed,
f −1 is continuous. §

A topological space is locally compact if every point has a compact neigh-
borhood. Compact spaces are locally compact, but the real line with its usual
topology is locally compact and not compact. In a sense to be made precise in
the next two propositions, locally compact Hausdorff spaces are just one point
away from being compact Hausdorff.
Let (X, T ) be an arbitrary topological space. Define a new set X∗ by X∗ =

X ∪ {∞}, where∞ is not already a member of X , and define T ∗ to be the union
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of T and the set of all complements in X∗ of closed compact subsets of X . We
shall verify in Proposition 10.19 that T ∗ is a topology for X∗. The topological
space (X∗, T ∗) is called the one-point compactification of (X, T ). By way of
examples, the one-point compactification of R may be visualized as a circle and
the one-point compactification of R2 may be visualized as a sphere.

Proposition 10.19. If (X, T ) is a topological space, then (X∗, T ∗) is a
compact topological space, X is an open subset of X∗, and the relative topology
for X in X∗ is T.

PROOF. To see that T ∗ is a topology, we observe first that∅ and X∗ are in T ∗.
If U and V are in T ∗, there are three cases in checking that U ∩ V is in T ∗: If U
and V are both in T, thenU ∩V is in T since T is closed under finite intersections.
If U is in T and V is not, then V c is closed compact in X , and X − V c is thus
open in X ; since T is closed under finite intersections,U ∩V = U ∩ (X −V c) is
in T. If U and V are not in T, then the complementsUc and V c in X∗ are closed
compact subsets of X ; so is their union (U ∩ V )c, and hence U ∩ V is in T ∗.
We still have to check closure of T ∗ under arbitrary unions. Suppose that Uα

is in T for α in an index set A and Vβ has closed compact complement for β
in an index set B. Then

S
α∈A Uα is in T, and if B is nonempty,

T
β∈B V

c
β is a

closed subset of one V c
β and hence is compact; in this case,

°S
β∈B Vβ

¢c is closed
compact in X , and hence

S
β∈B Vβ is in T ∗. Thus we have only to check that

U ∪ V is in T ∗ ifU is in T and V c is closed compact in X . As the intersection of
two closed sets, one of which is compact, (X −U) ∩ V c = (X −U) ∩ (X − V )
is closed and compact in X , and thus U ∪ V = ((X −U) ∩ V c)c is in T ∗. Thus
T ∗ is a topology.
To see that X∗ is compact, let U be an open cover of X∗. Find some V in U

containing the point∞. The members of U ∩ T cover the compact subset V c of
X , and there is a finite subcollection V that covers V c. Then V ∪ {V } is a finite
subcollection of U that covers X∗.
The set X is in T and is therefore in T ∗. Thus X is open in X∗. To complete

the proof, we are to show that T ∗ ∩ X = T. We know that T ∗ ∩ X ⊇ T. If V is
a member of T ∗ that does not lie in T, then V c is closed compact in X , and its
complement X − V c = V ∩ X in X is open in X . Hence V ∩ X is in T.

Proposition 10.20. If X∗ is the one-point compactification of a topological
space X , then X∗ is Hausdorff if and only if X is both locally compact and
Hausdorff.

PROOF. Suppose that X is locally compact and Hausdorff. Since X is Haus-
dorff, any two points of X can be separated by disjoint open sets in X , and these
sets will be open in X∗. To separate a point x in X from∞, let C be a compact
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neighborhood of x in X . Since X is Hausdorff, C is closed in X . Thus Cc is in
T ∗. Then Co and Cc are disjoint open sets in X∗ such that x is in Co and∞ is in
Cc, and X∗ is Hausdorff.
Conversely suppose that X∗ is Hausdorff. Proposition 10.19 shows that X is

a subspace of X∗. Since any subspace of a Hausdorff space is Hausdorff, X is
Hausdorff. To see that X is locally compact, let x be in X , and find disjoint open
setsU and V in X∗ such that x is in U and∞ is in V . ThenU must be in T, and
V c must be closed compact in X . Since U ∩ V = ∅, U ⊆ V c. This inclusion
exhibits V c as a compact neighborhood of x , and thus X is locally compact. §

Corollary 10.21. Every locally compact Hausdorff space is regular.

PROOF. If X is locally compact Hausdorff, Propositions 10.19 and 10.20 show
that the one-point compactification X∗ is compact Hausdorff and allow us to
regard X as a subspace of X∗. Proposition 10.16 shows that X∗ is regular, and
Proposition 10.8 shows that X is therefore regular. §

A locally compact Hausdorff space need not be normal; an example is given
in Problem 5 at the end of the chapter. The remainder of this section concerns
senses in which a locally compact Hausdorff space is almost normal.

Corollary 10.22. If K and F are disjoint closed sets in a locally compact
Hausdorff space and if K is compact, then there exist disjoint open setsU and V
such that K ⊆ U and F ⊆ V .

PROOF. This is immediate from Lemma 10.15 and Corollary 10.21. §

Corollary 10.23. If K is a compact set in a locally compact Hausdorff space,
then there is a compact set L such that K ⊆ Lo.

PROOF. Let X be locally compact Hausdorff, and form the one-point compact-
ification X∗. Since X∗ is compact Hausdorff by Proposition 10.20, Proposition
10.17 shows that K is closed in X∗ and Proposition 10.16 shows that X∗ is regular.
Thus Proposition 10.5b shows that we can find an open set U in X∗ such that∞
is in U and U cl ∩ K = ∅. Then K ⊆ X∗ − U cl ⊆ X∗ − U . By definition of
the topology of X∗, the set L = X∗ −U is compact in X . Its subset X∗ −U cl is
open and is therefore contained in Lo. Thus K ⊆ Lo ⊆ L with L compact. §

A topological space is called σ -compact if there is a sequence of compact sets
with union the whole space. The real line with its usual topology is σ -compact.
For that matter, so is the subspace of rationals since each finite subset is compact.
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Proposition 10.24. A locally compact topological space is σ -compact if and
only if it is Lindelöf. Consequently every σ -compact locally compact Hausdorff
space is normal.

PROOF. If X is σ -compact, write X =
S∞

n=1 Kn with Kn compact. If U is an
open cover of X , then U is an open cover of each Kn , and there is a finite subcover
Un of Kn . Then

S∞
n=1 Un is a countable subcover of U, and X is Lindelöf.

Conversely if X is locally compact and Lindelöf, choose, for each x in X , a
compact neighborhood Kx of x , and letUx be the interior of Kx . As x varies, the
Ux form an open cover of X . Since X is Lindelöf, there is a countable subcover
{Uxn }

∞
n=1. Since we haveUxn ⊆ Kxn for all n, {Kxn }

∞
n=1 is a sequence of compact

sets with union X . Hence X is σ -compact.
Finally if X is locally compact Hausdorff and σ -compact, hence also Lin-

delöf, then Corollary 10.21 shows that X is regular, and Tychonoff’s Lemma
(Proposition 10.9) shows that X is normal. §

Proposition 10.25. In a σ -compact locally compact Hausdorff space, there
exists an increasing sequence {Kn} of compact sets with union the whole space
and with Kn ⊆ Ko

n+1 for all n.

PROOF. Let X be a locally compact Hausdorff space such that X =
S∞

n=1 Ln
with Ln compact. Replacing Ln by the union of the previous members of the
sequence, we may assume that Ln ⊆ Ln+1 for all n ∏ 1. Put L0 = K0 = ∅. Use
Corollary 10.23 to choose K1 compact with L1 ⊆ K 0

1 .
Inductively suppose that n > 0 and that for all k with 0 < k ≤ n, a compact

set Kk has been defined such that Lk ∪ Kk−1 ⊆ Ko
k . Applying Corollary 10.23,

we can find a compact set Kn+1 such that the compact set Ln+1∪ Kn is contained
in Ko

n+1. Then Kk−1 ⊆ Ko
k for all k ∏ 1 as required, and X =

S∞
n=1 Kn since

Kn ⊆ Ln and
S∞

n=1 Ln = X . §

4. Product Spaces and the Tychonoff Product Theorem

The product topology for the product of topological spaces was discussed briefly
in Section 1. If S is a nonempty set and if Xs is a topological space for each s in
S, then the Cartesian product X = ×s∈S Xs , as a set, is the set of all functions f
from S into

S
s∈S Xs such that f (s) is in Xs for all s ∈ S. The topology that is

imposed on X is, by definition, theweakest topology thatmakes the sth coordinate
function ps : X → Xs be continuous for every s.
Let us investigate what sets have to be open in this topology, and then we can

look at examples and see better what the topology is. If Us is any open subset
of Xs , then p−1

s (Us) has to be open in X since ps is continuous. For example,
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if S = {1, 2}, we are considering X = X1 × X2. A set p−1
1 (U1) is of the form

U1 × X2, and a set p−1
2 (U2) is of the form X1 × U2. These have to be open if

U1 is open in X1 and U2 is open in X2. The intersection of any two such sets,
which is of the form U1 × U2, has to be open in X , as well. We do not need to
intersect these sets further, since p−1

1 (U1) ∩ p−1
1 (V1) = p−1

1 (U1 ∩ V1). By the
remark with Proposition 10.1, the sets p−1

1 (U1) ∩ p−1
2 (U2) with U1 open in X1

and U2 open in X2 form a base for some topology on X = X1 × X2. These sets
have to be open in the product topology, and p1 and p2 are indeed continuous in
this topology. Therefore the product topology on X = X1 × X2 has

©
p−1
1 (U1) ∩ p−1

2 (U2)
Ø
Ø U1 open in X1, U2 open in X2

™

as a base. More generally the product topology on X = X1 × · · · × Xn has
n n\

k=1
p−1
k (Uk)

Ø
Ø
Ø Uk open in Xk for each k

o

as a base.
When the index set S is the set of positive integers, the product X = ×n∈S Xn ,

as a set, is the set of sequences { f (n)}n∈S . Again any set p−1
n (Un) with Un open

in Xn has to be open in X . Hence any finite intersection of such sets as n varies
has to be open. But there is no need for infinite intersections of such sets to be
open, and a base for the product topology in fact consists of all finite intersections
of sets p−1

n (Un) with Un open in Xn .
The use of finite intersections, and not infinite intersections, persists for all S

and gives us a description of a base for the product topology in general. When
S = [0, 1] and all Xs are [0, 1], the description of the product topology has a
helpful geometric interpretation. The set X consists of all functions from the
closed unit interval to itself, and we can visualize these in terms of their graphs.
A basic open set of such functions imposes restrictions at finitely many values of
s, i.e., at finitely many points of the domain. At such values of s, the graph of a
function in the basic open set is to pass through a certain window Us depending
on s. At all other values of s, the function is unrestricted.

Proposition 10.26. The topological product of Hausdorff topological spaces
is Hausdorff.
PROOF. Let a product X = ×n∈S Xn be given, let ps : X → Xs be the

sth coordinate function, and let two distinct members f and g of X be given.
Members of X are functions of a certain kind, and these two functions, being
distinct, have f (s) 6= g(s) for some s ∈ S. Since Xs is Hausdorff, we can choose
disjoint open setsUs and Vs in Xs such that f (s) is inUs and g(s) is in Vs . Then
p−1
s (Us) and p−1

s (Vs) are disjoint open sets in X such that f is in p−1
s (Us) and g

is in p−1
s (Vs). §
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Theorem 10.27 (Tychonoff Product Theorem). The topological product of
compact topological spaces is compact.

REMARKS. This theorem is a fundamental tool in real analysis. We shall give
the proof and then discuss how the theorem can be regarded as a generalization of
the Cantor diagonal process used in the proofs earlier of the fact that any totally
bounded complete metric space is compact (Theorem 2.46), the Helly Selection
Principle (Problem 10 at the end of Chapter I), Ascoli’s Theorem (Theorems
1.22 and 2.56), and, by implication, the Cauchy–Peano Existence Theorem for
differential equations (Problems 24–29 at the end of Chapter IV). The proof
will make use of Zorn’s Lemma (Section A9 of Appendix A), which is one
formulation of the Axiom of Choice. Actually, the Axiom of Choice arises in two
more transparent ways in the proof as well. One is simply in the statement that
the topological product is a topological space; for this to be the case, the product
has to be nonempty, and that is the content of the Axiom of Choice. The other
is the construction of a particular element x in the product that occurs near the
beginning of the proof below.

PROOF. Let X=×s∈S Xs begivenwith each Xs compact, and let ps : X → Xs
be the sth coordinate function. We are to prove that any open cover of X has a
finite subcover, and we begin by proving a special case. Let S be the family of all
sets p−1

s (Us) as Us varies through all open sets of Xs and as s varies. We know
that finite intersections of members of S form a base for the product topology on
X . For the special case let U be an open cover of X by members of S; we shall
produce a finite subcover. For each s, let Bs be the family of all open sets Us in
Xs such that p−1

s (Us) is in U. We may assume for each s that no finite subfamily
of Bs covers Xs , since otherwise the corresponding finitely many sets p−1

s (Us)
would cover X . By compactness of Xs , Bs does not cover Xs ; say that xs is not
covered. The point x of X whose sth coordinate is xs then belongs to no member
of U, and U cannot be a cover. This contradiction shows that the special U has a
finite subcover.
Now let U be any open cover of X , and suppose that no finite subfamily of U

covers X . Let C be the system of all open covers V of X such that U ⊆ V and such
that no finite subfamily of V covers X . The set C is partially ordered by inclusion
upward and is nonempty, having U as a member. If {Vα} is a chain in C, then we
shall show that V =

S
α Vα is in C and hence is an upper bound in C for the chain

{Vα}. In fact, V is certainly an open cover. If it has a finite subcover, then each
member of the finite subcover lies in one of the covers, say Vαj . Since {Vα} is a
chain, all members of the finite subcover lie in the largest of those Vαj ’s. Thus
one of the Vαj ’s fails to be in C, and we arrive at a contradiction. We conclude
that every chain in C has an upper bound in C. By Zorn’s Lemma let U ∗ be a
maximal cover from C of X .
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The family S ∩ U ∗ of all members of U ∗ that are in the family S of the first
paragraph of the proof has the property that no finite subfamily is a cover of X .
By the result of the first paragraph, S ∩ U ∗ cannot be a cover of X . Hence we
shall have arrived at a contradiction if we show that the union of the members
of U ∗ is contained in the union of the members of S ∩ U ∗. Let U be a member
of U ∗, and fix a point x in U . Since finite intersections of members of S form a
base, Proposition 10.1 shows that there are members S1 ∩ · · · ∩ Sn of S such that
x is in S1 ∩ · · · ∩ Sn and S1 ∩ · · · ∩ Sn ⊆ U . We shall show that one of the sets
Sj is in U ∗, hence in U ∗ ∩ S, and then the proof will be complete.
If S1 is in U ∗, we are finished. Otherwise, by the maximality of U ∗, there are

finitely many open sets C1, . . . ,Ck of U ∗ such that X = S1 ∪ C1 ∪ · · · ∪ Ck .
Again by the maximality, no open set containing S1 can belong to U ∗, since the
union of that set withC1∪ · · ·∪Ck would be X . Proceeding inductively, suppose
we have shown that no open set containing S1 ∩ · · · ∩ Si is in U ∗ and that there
are open sets D1, . . . , Dm in U ∗ with

X = (S1 ∩ · · · ∩ Si ) ∪ (D1 ∪ · · · ∪ Dm).

If, as we may assume, Si+1 is not in U ∗, then by maximality of U ∗, there are open
sets E1, . . . , Er in U ∗ such that X = Si+1 ∪ E1 ∪ · · · ∪ Er . Then

X − Si+1 ⊆ E1 ∪ · · · ∪ Er ,
Si+1 = (S1 ∩ · · · ∩ Si+1) ∪ (Si+1 ∩ (D1 ∪ · · · ∪ Dm))and

⊆ (S1 ∩ · · · ∩ Si+1) ∪ (D1 ∪ · · · ∪ Dm).

Hence

X = Si+1∪(X− Si+1) ⊆
°
(S1∩ · · ·∩ Si+1)∪(D1∪ · · ·∪Dm)

¢
∪

°
E1∪ · · ·∪Er

¢
.

That is,

X = (S1 ∩ · · · ∩ Si+1) ∪ (D1 ∪ · · · ∪ Dm ∪ E1 ∪ · · · ∪ Er ).

Therefore, once again bymaximality ofU ∗, no open set containing S1∩ · · ·∩Si+1
can be in U ∗, and the induction is complete. In particular, U , which is an open
set containing S1∩ · · ·∩ Sn , is not in U ∗. This contradiction concludes the proof.

§

As announced above, the Tychonoff Product Theorem is a generalization of
the Cantor diagonal process. In fact, let us see how that diagonal process may be
used to show directly that the product of a sequence of copies of [0, 1] is compact.
Denote the product as a set by X = ×∞

n=1 [0, 1]. A member of X is a sequence
{xn} with terms xn . Let us impose on X the Hilbert-cube metric of Example 11
in Section II.1:
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d({xn}, {yn}) =
X

n
2−n|xn − yn|.

We show below in Corollary 10.29 that this metric on X yields the product
topology. By Theorem 2.36 the space X will then be compact if every sequence
in X has a convergent subsequence. A sequence in X means a system {x (m)

n } in
which the nth term of the mth sequence is x (m)

n . Convergence is term-by-term
convergence. To produce a convergent subsequence of sequences, we iterate use
of the Bolzano–Weierstrass property of [0, 1]. Remembering that m tells which
sequence we are dealing with, we find first a subcollection mk of the indices m
such that we have convergence along the mk’s for n = 1, then a subcollection
mkl of that such that we have convergence along the mkl ’s for n = 2, and so on.
Since the intersection of all these sequences may be empty, we instead obtain
a convergent subsequence of our sequences by requiring that the kth term of
the desired subsequence be the kth term of the kth subsequence. This “diagonal
process” thus shows that any sequence in X has a convergent subsequence. Hence
X , being a metric space, is compact.
The general Tychonoff Product Theorem may thus be viewed as a topological

generalization of the diagonal process to product spaces with an uncountable
number of factors.
Here is one way in which the Tychonoff Product Theorem is used in real

analysis. For the situation in which we have a set Y and a system of functions
fs : Y → C for s in some set S, the first section of this chapter introduced
the weak topology for Y determined by { fs}s∈S . This is the weakest topology
making all the functions fs continuous. Often in analysis a set Y and a system
of functions fs of this kind arise in a construction, and then this weak topology
is imposed on Y . In favorable cases it turns out that each function fs is bounded
on Y . In this case if there are enough functions fs to separate points of Y
(i.e., enough so that for each x and y there is some s with fs(x) 6= fs(y)),
then Y is a candidate for a compact Hausdorff space. To see what is needed for
compactness, let Xs be a compact subset of C containing the image of fs , and let
X = ×s∈S Xs . Define a function F : Y → X by “F(y) is the function whose sth
coordinate is fs(y).” It is readily verified that F is a homeomorphism of Y onto
a subspace of the compact Hausdorff space X . Thus Y is compact if and only if
F(Y ) is closed in X . Checking that a set is closed is much easier than checking
compactness directly, and it is especially easy if one uses “nets,” which are the
objects introduced in the next section as a useful generalization of sequences.
To complete our discussion, we still need to prove that the Hilbert-cube metric

on X = ×∞
n=1 [0, 1] yields the product topology. It will be helpful to prove the

following more general result and to obtain the statement about the Hilbert cube
as a special case.
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Proposition 10.28. Suppose that X is a nonempty set and {dn}n∏1 is a sequence
of pseudometrics on X such that dn(x, y) ≤ 1 for all n and for all x and y in X .
Then d(x, y) =

P∞
n=1 2−ndn(x, y) is a pseudometric. If the open balls relative

to dn are denoted by Bn(r; x) and the open balls relative to d are denoted by
B(r; x), then the Bn’s and B’s are related as follows:

(a) whenever some Bn(rn; x) is given with rn > 0, there exists some B(r; x)
with r > 0 such that B(r; x) ⊆ Bn(rn; x),

(b) whenever B(r; x) is given with r > 0, there exist finitely many rn > 0,
say for n ≤ K , such that

TK
n=1 Bn(rn; x) ⊆ B(r; x).

PROOF. For (a), choose r = 2−nrn . If d(x, y) < r , then 2−mdm(x, y) < r for
all m and in particular dn(x, y) < 2nr = rn .
For (b), choose K large enough so that 2−K < r/2, and put rn = r/2 for

n ≤ K . If y is in
TK

n=1 Bn(rn; x), then dn(x, y) < rn = r/2 for n ≤ K .
Hence d(x, y) ≤

PK
n=1 2−ndn(x, y) +

P∞
n=K+1 2−n <

PK
n=1 2−nr/2 + 2−K <

r/2+ r/2 = r . Therefore y is in B(r; x). §

Corollary 10.29. The Hilbert-cube metric on X = ×∞
n=1 [0, 1] yields the

product topology.

PROOF. Proposition 10.28a implies that any basic open neighborhood of x
in the product topology contains a basic open neighborhood in the Hilbert-cube
metric topology. Proposition 10.28b shows that any basic open neighborhood of
x in the Hilbert-cube metric topology contains a basic open neighborhood in the
product topology. §

5. Sequences and Nets

Sequences are of limited interest in general topological spaces. Nets, which are
generalized sequences of a certain kind, are a useful substitute, and we introduce
them in this section. Using nets, we shall be able to see that product topologies are
appropriate for detecting pointwise convergence in the same way that the metric
topology obtained from the supremum norm is appropriate for detecting uniform
convergence.
We begin with two examples that illustrate some of the difficulties with using

sequences in general topological spaces. We use the natural definition suggested
by Section II.4—that a sequence {xn} in X converges to x0 if for each neigh-
borhood of x0, there is some N depending on the neighborhood such that xn is
in the neighborhood for n ∏ N . We say that the sequence is eventually in the
neighborhood. The point x0 is a limit of the sequence.
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EXAMPLES.

(1) Let X be the set of positive integers, and let a topology for X consist of
the empty set and all sets whose complements are finite. If xn = 2n, then the
sequence {xn} converges to every point of X and hence does not have a unique
limit. The space X is T1 and has a countable local base at each point, but X is
not Hausdorff.

(2) Let X be the set of points (m, n) in the plane with m and n integers ∏ 0.
Define a topology for X as follows. Any set not containing (0, 0) is to be open. If
a setU contains (0, 0), thenU is defined to be open if there are only finitely many
columns Cm = {(m, n) | n = 0, 1, 2 . . . } such that Cm − (U ∩ Cm) is infinite.
Enumerate X , and define xn to be the nth point in the enumeration. It is easy to
check that the image of the sequence {xn} has (0, 0) as a limit point and that no
subsequence of {xn} converges to (0, 0). The space X is Hausdorff but does not
have a countable local base at (0, 0).

Thus the elementary results in Section II.4 do not generalize to all topological
spaces. But Proposition 2.20 (the uniqueness of the limit of any sequence)
is still valid if X is Hausdorff, and Proposition 2.22 and Corollary 2.23 (the
characterization of limit points and of closed sets in terms of sequences) are still
valid if X has a countable local base at each point. Nets will cure the problem
about characterizing limit points and closed sets without countable local bases
but not the problem about nonuniqueness of limits, and thus we shall be able to
work well with nets in all Hausdorff spaces. In particular we shall be able to use
nets in uncountable products of Hausdorff spaces, which arise frequently in real
analysis and tend not to have a countable local base at each point.
Before defining nets, let us give one positive result whose statement mixes

topological spaces and metric spaces. If S is any nonempty set, we have made
B(S), the vector space of all bounded scalar-valued functions on S, into a normed
linear space—and hence a metric space—by means of the supremum norm. If
S is a topological space, let C(S) be the subset of continuous members of B(S);
this is a vector subspace and hence is itself a normed linear space.

Proposition 10.30. If S is a topological space and { fn} is a sequence of scalar-
valued functions continuous at s0 and converging uniformly to a function f , then
f is continuous at x0. Consequently the subspace C(S) of B(S) is a closed
subspace, and C(S) is complete as a metric space.

PROOF. Given ≤ > 0, choose N such that n ∏ N implies k fn − f ksup < ≤.
For any s, we then have



514 X. Topological Spaces

| f (s) − f (s0)| ≤ | f (s) − fN (s)| + | fN (s) − fN (s0)| + | fN (s0) − f (s0)|

≤ k fN − f ksup + | fN (s) − fN (s0)| + k fN − f ksup
< 2≤ + | fN (s) − fN (s0)|.

Since fN is continuous at s0, there exists a neighborhood of s0 such that the right
side is < 3≤ for s in that neighborhood. Thus f is continuous at s0.
If { fn} is a sequence in C(S) converging uniformly to f in B(S), then f is in

C(S), by the result of the previous paragraph. Since convergence of sequences
in B(S) is the same as uniform convergence, Corollary 2.23 shows that C(S)
is a closed subset of B(S). Propositions 2.43 and 2.44 then show that C(S) is
complete as a metric space. §

Now we turn our attention to nets. In the indexing for a net, the set of positive
integers is replaced by a “directed set,” which we define first. Let D be a partially
ordered set in the sense of Section A9 of Appendix A, the partial ordering being
denoted by≤. We say that (D,≤) is a directed set if for any α and β in D, there
is some ∞ in D with α ≤ ∞ and β ≤ ∞ .

EXAMPLES.
(1) Take D to be the set of positive integers, and let≤ have the usual meaning.
(2) Let S be a nonempty set, take D to be the set of all finite subsets of S, and

let α ≤ β mean that the inclusion α ⊆ β holds.
(3) Let X be a topological space, let x be a point in X , take D to be the set of

all neighborhoods of x , and let α ≤ β mean that α ⊇ β.
(4) Let (D1,≤1) and (D2,≤2) be two directed sets, take D to be D1×D2, and

let (α1,α2) ≤ (β1,β2) mean that α1 ≤1 β1 and α2 ≤2 β2.

If X is a nonempty set, a net in X is a function from a directed set D into X .
If D needs to be specified to avoid confusion, we speak of a “net from D to X .”
The function will often be written α 7→ xα or {xα}. If E is a subset of X , the net
is eventually in E if there is some α0 in D such that α0 ≤ α implies that xα is in
E . The net is frequently in E if for any α in D, there is a β in D with α ≤ β
such that xβ is in E . It is important to observe that the negation of “the net is
eventually in E” is that “the net is frequently in the complement of E .”
The directedness of the set D plays an important role in the theory by allowing

us to work simultaneously with finitely many conditions on a net. For example,
if {xα} is eventually in E1 and eventually in E2, then it is eventually in E1 ∩ E2.
In fact, the given conditions say that there are members α1 and α2 of D such that
xα is in E1 for α1 ≤ α and xα in E2 for α2 ≤ α. The directedness implies that
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α1 ≤ α0 and α2 ≤ α0 for some α0 in D. Then {xα} is in E1 ∩ E2 for α0 ≤ α.
This kind of argument will be used often without mention of the details.
If X is a topological space, a net {xα} in X converges to x0 in X if {xα} is

eventually in each neighborhood of x0. In this case we write xα → x0, and we
say that x0 is a limit of {xα}. Because of the availability of Examples 3 and 4
above, it is an easy matter to characterize the terms “Hausdorff,” “limit point,”
“closed set,” and “continuous at a point” in terms of convergence of nets.

Proposition 10.31. A topological space X is Hausdorff if and only if every
convergent net in X has only one limit.

PROOF. Suppose that X is Hausdorff and that xα → x0 and xα → y0 with
x0 6= y0. Choose disjoint open sets U and V with x0 in U and y0 in V . By the
assumed convergence, {xα} is in U eventually and is in V eventually. Then it is
in U ∩ V = ∅ eventually, and we have a contradiction.
Suppose that X is not Hausdorff. Find distinct points x0 and y0 such that every

pair of neighborhoods U of x0 and V of y0 has nonempty intersection. For any
such pair (U, V ), define xU,V to be some point in the intersection. Combining
Examples 3 and 4 above, we see that (U, V ) 7→ xU,V is a net in X converging to
both x0 and y0. §

Proposition 10.32. If X is a topological space, then
(a) for any subset A of X and limit point x0 of A, there exists a net in A−{x0}

converging to x0,
(b) any convergent net {xα} in X with limit x0 in X either has x0 as a limit

point of the image of the net or else is eventually constantly equal to x0.

PROOF. For (a), the definition of limit point implies that for each neighborhood
U of x0, the setU∩(A−{x0}) is nonempty. If xU denotes a point in the intersection,
then U 7→ xU is a net in A − {x0} converging to x0.
For (b), suppose that x0 is not a limit point of the image of the net. Then there

exists a neighborhood U of x0 such that U − {x0} is disjoint from the image of
the net. Since the convergence implies that the net is eventually in U , it must be
true that xα = x0 eventually. §

Corollary 10.33. If X is a topological space, then a subset F of X is closed if
and only if every convergent net in F has its limits in F .

PROOF. Suppose that F is closed and that {xα} is a convergent net in F with
limit x0. By Proposition 10.32b, either x0 is in the image of the net or x0 is a limit
point of the image of the net. In the latter case, x0 is a limit point of the larger set
F . In either case, x0 is in F ; thus the limit of any convergent net in F is in F .



516 X. Topological Spaces

Conversely suppose every convergent net in F has its limit in F . If x0 is a limit
point of F , then Proposition 10.32a produces a net in F − {x0} converging to x0.
By assumption, the limit x0 is in F . Therefore F contains all its limit points and
is closed. §

Proposition 10.34. Let f : X → Y be a function between topological spaces.
Then f is continuous at a point x0 in X if and only if whenever {xα} is a convergent
net in X with limit x0, then { f (xα)} is convergent in Y with limit f (x0).

REMARKS. This result needs to be used with caution if Y is not known to be
Hausdorff. For example, let X and Y both be the set {a, b}. Let the topology
for X be discrete and the topology for Y be indiscrete, consisting only of ∅
and the whole space. Every function f : X → Y is continuous. Suppose that
f (a) = f (b) = a. Take x0 = b and xα = b for all α. Then { f (xα)} converges
to both a and b. Hence we cannot evaluate f (x0) as just any limit of { f (xα)}; we
have to pick the right limit.

PROOF. Suppose that f is continuous at x0 and that {xα} is a convergent net in
X with limit x0. Let V be any open neighborhood of f (x0). By continuity, there
exists an open neighborhood U of x0 such that f (U) ⊆ V . Since xα → x0, the
members xα of the net are eventually in U . Then f (xα) is in f (U) ⊆ V for the
same α’s, hence eventually. Therefore { f (xα)} converges to f (x0).
Conversely suppose that xα → x0 always implies f (xα) → f (x0). We are to

show that f is continuous. If V is an arbitrary open neighborhood of f (x0), we
seek some open neighborhood of x0 that maps into V under f . Assuming that
there is no such neighborhood for some V , we can find, for each neighborhood
U of x0, some xU in U such that f (xU ) is not in V . Then xU → x0, but f (xU )
does not have limit f (x0) because f (xU ) is never in V . This is a contradiction,
and we conclude that some U maps into V under f ; thus f is continuous. §

Proposition 10.35. Let X = ×s∈S Xs be the product of topological spaces
Xs , and let ps : X → Xs be the sth coordinate function. Then a net {xα} in
X converges to some x0 in X if and only if the net {ps(xα)} in Xs converges to
ps(x0) for each s in S.

REMARK. This is the sense in which the product topology is the topology of
pointwise convergence. In combination with Corollary 10.33, this proposition
simplifies the problem of deciding when a subset of a product space is closed in
the product topology.

PROOF. If {xα} converges to x0, then Proposition 10.34 and the continuity of
ps together imply that {ps(xα)} converges to ps(x0).



5. Sequences and Nets 517

Conversely suppose that {ps(xα)} converges to ps(x0) for all s. Fix s. IfUs is
an open neighborhood of ps(x0) in Xs , then {ps(xα)} is eventually in Us . Hence
there is some α0 such that ps(xα) is inUs whenever α0 ≤ α. For the same values
of α, {xα} is in p−1

s (Us). Thus {xα} is eventually in p−1
s (Us).

Any neighborhood N of x0 in X contains some basic open neighborhood of the
form U = p−1

s1 (Us1) ∩ · · · ∩ p−1
sn (Usn ). It follows from the result of the previous

paragraph that {xα} is eventually in each p−1
s (Us), hence is eventually in the

intersectionU , and hence is eventually in N . Therefore {xα} converges to x0. §

One can express also the notion of compactness in terms of nets, the idea
being that compactness of X is equivalent to the fact that every net in X has a
convergent subnet, for an appropriate definition of “subnet.” The remainder of
this section will deal with this question. Carrying out the details of this equiv-
alence is harder than what we have done so far with nets. Actually, the main
benefit of the equivalence is the resulting simplification to proofs of compactness,
especially to the proof of the Tychonoff Product Theorem. Since we have already
proved theTychonoff ProductTheoremwithout nets, thematerial in the remainder
of this section will be used only in minor ways in the rest of the book.6
Let D and E be directed sets. A function from E to D, written µ 7→ αµ, is

cofinal 7 if for any β in D, there is a ∫ in E such that β ≤ αµ whenever ∫ ≤ µ.
If µ 7→ αµ is cofinal and if α 7→ xα is a net from D to X , then the composition
µ 7→ xαµ

is a net from E to X and is called a subnet of the net α 7→ xα.
The prototype of a subnet is a subsequence. In this case, D and E are both

the set of positive integers, and the function from E to D is k 7→ nk . If the
sequence is {an}, then the subnet/subsequence is {ank }. For a general subnet one
might expect that it would suffice always to take E to be a subset of D and to
let the function from E to D be inclusion. However, this definition of subnet is
insufficient to prove the desired characterization of compactness in terms of nets
and subnets.
A net from a directed set D to a nonempty set X is called universal if for any

subset A of X , the net is eventually in A or eventually in Ac. It of course cannot
be eventually in both, since otherwise it would eventually be in the intersection,
namely the empty set.

Proposition 10.36. Each net in a nonempty set X has a universal subnet.

REMARK. The proof will use Zorn’s Lemma. Apart from this one use, the only
other uses of the Axiom of Choice in the remainder of this section are transparent
ones.

6Nets play a more significant role in the companion volume, Advanced Real Analysis.
7This definition is not the standard one given in Kelley’s General Topology, but it leads to the

standard definition of “subnet.”
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PROOF. Let D be a directed set, and letα 7→ xα be a net from D to X . Consider
all families Cβ of subsets of X that are closed under finite intersections and have
the property, for each A in Cβ , that the net is frequently in A. There exists such a
family, the singleton family {X} being one. Partially order the set of such families
by inclusion upward, saying that Cβ ≤ Cβ 0 when Cβ ⊆ Cβ 0 . In any chain of Cβ’s,
let C∞ be the union of the sets in the various members of the chain. Since closure
under intersection depends only on two sets at a time and since the other property
of a Cβ depends only on one set at a time, C∞ is again a family of this kind. By
Zorn’s Lemma let C be a maximal such family.
Let us prove for each subset A of X that either A or Ac is in C. In fact, if for

every B in C, the net is frequently in A∩ B, then C∪ {A} is a family containing C
and satisfying the two defining properties of one of our families. By maximality,
C ∪ {A} = C. Hence A is in C. Assuming that A is not in C, we obtain a set B in
C such that the net fails to be frequently in A∩ B. Then B is a member of C such
that the net is eventually in (A ∩ B)c.
Similarly if we assume that Ac is not in C, we obtain a set B 0 in C such that

the net is eventually in (Ac ∩ B 0)c. If neither A nor Ac is in C, then the net is
eventually in

(A ∩ B)c ∩ (Ac ∩ B 0)c = (Ac ∪ Bc) ∩ (A ∪ B 0c)

= (Ac ∩ (A ∪ B 0c)) ∪ (Bc ∩ (A ∪ B 0c))

= (Ac ∩ B 0c) ∪ (Bc ∩ (A ∪ B 0c))

⊆ B 0c ∪ Bc = (B ∩ B 0)c,

and it cannot be frequently in B ∩ B 0. This contradicts the fact that B ∩ B 0 is
in C because C is closed under finite intersections. This completes the proof that
either A or Ac has to be in C.
The members of C form a directed set under inclusion downward, i.e., with

partial ordering A ≤ B if A ⊇ B. Form E = C × D as a directed set under
the definition in Example 4 earlier in this section. We construct a subnet as
follows. For each ordered pair (A,β) in C × D, let α(A,β) be an element of D
with β ≤ α(A,β) and with xα(A,β)

in A; this choice is possible since D is directed
and the given net is frequently in A. The function (A,β) 7→ α(A,β) is cofinal
because for any β ∈ D, the member (X,β) of E = C × D has β ≤ α(B,∞ )

whenever (A,β) ≤ (B, ∞ ). Thus (A,β) 7→ xα(A,β) is a subnet.
To complete the proof, we show that this subnet is universal. For any subset A

of X , we have seen that either A or Ac has to be in C. Without loss of generality,
assume that A is in C. For any fixed β, the inequality (A,β) ≤ (B, ∞ ) implies
that xα(B,∞ )

is in the subset B of A, and hence the subnet is eventually in A. §

Proposition 10.37. The following three statements about a topological space
X are equivalent:
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(a) X is compact,
(b) every universal net in X is convergent,
(c) every net in X has a convergent subnet.

PROOF. To prove that (a) implies (b), let {xα} be a universal net in X , and
suppose that {xα} is not convergent. For each x in X , there is then an open
neighborhood Ux of x such that {xα} is not eventually in Ux . Since the net is
universal, it is eventually in (Ux)

c for each x . The open sets Ux cover X . By
compactness, let {Ux1, . . . ,Uxn } be a finite subcover. The net is eventually in
each (Uxj )

c and hence is eventually in their intersection. But their intersection is
empty since X =

Sn
j=1Uxj . We have arrived at a contradiction, and thus {xα}

must be convergent.
Statement (b) implies statement (c) since every net has a universal subnet, by

Proposition 10.36.
To prove that (c) implies (a), suppose that X is noncompact. We shall produce

a net with no convergent subnet. IfU is an open cover of X with no finite subcover,
we shall use U to define a directed set. LetF be the set of all finite subcollections
of members of U. This is directed under inclusion upward: α ≤ β if α ⊆ β. For
each α inF, the set X −

S
U∈α U is not empty since U has no finite subcover, and

we let xα be an element of X −
S

U∈α U . Then α 7→ xα is a net. Suppose that
{xα} has a convergent subnet, with some x0 as limit. For any neighborhood N of
x0, {xα} is frequently in N . Since U is a covering, there is some U in U with x0
in U . By construction, {xα} is not in U as soon as α has {U} ≤ α. We conclude
that no subnet of {xα} converges. §

Proposition 10.37 gives the statement about general topological spaces that
extends the equivalence of the Bolzano–Weierstrass property and the Heine–
Borel property of closed bounded subsets of Euclidean space. To illustrate the
power of nets, we can now use them to give a second proof of the Tychonoff
Product Theorem (Theorem 10.27).

SECOND PROOF OF TYCHONOFF PRODUCT THEOREM. Let X = ×s∈S Xs be
given with each Xs compact, let ps : X → Xs be the sth coordinate function,
and let {xα} be a universal net in X . Fix s, and let As be any subset of Xs .
Since the net is universal, it is eventually in p−1

s (As) or in (p−1
s (As))c. Since

(p−1
s (As))c = p−1

s ((As)c), the net {ps(xα)} is eventually in As or in (As)c. Thus
{ps(xα)} is a universal net in Xs . By Proposition 10.37 and the compactness of
Xs , {ps(xα)} converges to some member xs of Xs . Now let s vary. Forming the
member x of X with ps(x) = xs for all s and applying Proposition 10.35, we see
that xα → x . By Proposition 10.37, X is compact. §
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6. Quotient Spaces

If X is a topological space and ∼ is an equivalence relation on X , then we saw
in Section 1 that the set X/∼ of equivalence classes inherits a natural topology
known as the “quotient topology.” If q : X → X/∼ is the quotient map, then
a subset U of X/∼ is defined to be open in the quotient topology if q−1(U) is
open in X . The quotient topology is then the finest topology on X/∼ that makes
the quotient map continuous.
Without some assumption that relates the equivalence relation to the topology

of X , we cannot expect much from general quotient spaces. In this section
we shall investigate situations in which the quotient space does have reasonable
properties. Ultimately our interest will be in four situations, some of which are
hinted at in Section 1:

(i) the passage from a regular topological space to the quotient when the
equivalence relation is that x ∼ y if x is in {y}cl (Proposition 10.7),

(ii) the passage from a compact Hausdorff space X to the quotient when the
equivalence relation is closed as a subset of X × X (to be discussed in
Problem 11 at the end of the chapter),

(iii) the passage from a “topological vector space” or “topological group” to
a coset space (to be discussed in the companion volume, Advanced Real
Analysis),

(iv) the piecing together of a “manifold,” or a “vector bundle,” or a “cover-
ing space” from local data (to be discussed in the companion volume,
Advanced Real Analysis).

We begin with some general facts. The first is a kind of “universal mapping
property” for all quotient spaces. Its corollary describes a situation in which we
can recognize a given space as a quotient even if it was not constructed that way:
we say that a function F : X → Y is open if F carries open sets to open sets.

Proposition 10.38.
(a) Let F : X → Y be a continuous function between topological spaces, let

∼ be an equivalence relation on X , and let q : X → X/∼ be the quotient map.
Suppose that F has the property that F(x1) = F(x2) whenever x1 ∼ x2, so that
there exists a well-defined function f : X/∼ → Y such that F = f ◦ q. Then
f is continuous.
(b) The quotient X/∼ is characterized by the property in (a) in the following

sense. Suppose that q 0 : X → Z is any continuous function of X onto a
topological space Z such that

(i) x1 ∼ x2 implies q 0(x1) = q 0(x2),
(ii) whenever F : X → Y is a continuous function such that x1 ∼ x2
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implies F(x1) = F(x2), there exists a continuous function f 0 : Z → Y
with F = f 0 ◦ q 0.

Then Z is canonically homeomorphic to X/∼.
PROOF. In (a), we want to know that f −1(U) is open in X/∼ whenever U is

open in Y . By definition of the quotient topology, f −1(U) is open in X/∼ if and
only if q−1( f −1(U)) is open in X . This set is F−1(U), which is open since F is
assumed continuous.
In (b), suppose Z and q 0 are such that q 0 : X → Z has the stated properties.

We apply the result of (a) with F taken to be q : X → X/ ∼. Property (ii) of
Z gives us a continuous function f 0 : Z → X/∼ such that q = f 0 ◦ q 0. Then
we apply the result of (a) with F taken to be q 0 : X → Z , and (a) shows that the
function f : X/ ∼ → Z with q 0 = f ◦ q is continuous. Combining these two
equations gives us q = f 0 ◦ f ◦q and q 0 = f ◦ f 0 ◦q 0. Thus f 0 ◦ f is the identity
on the image of q, and f ◦ f 0 is the identity on the image of q 0. Since q is onto
X/∼ and q 0 is onto Z , f : X/∼ → Z is a homeomorphism. §

Corollary 10.39. Let F : X → Y be a continuous function from one
topological space onto another, and define x1 ∼ x2 if F(x1) = F(x2). Let
q : X → X/ ∼ be the quotient map, and let f : X/ ∼ → Y be the continuous
map such that F = f ◦ q. If F is open, then f is a homeomorphism and hence
Y can be regarded as a quotient of X .
REMARK. The continuity of f is the conclusion of Proposition 10.38a.
PROOF. The function f : X/ ∼ → Y is continuous, one-one, and onto. To

see that f is open and hence is a homeomorphism, let an open set U in X/∼ be
given. Then F(q−1(U)) is open because q is continuous and F is open. Since
F(q−1(U)) = f (q(q−1(U))) = f (U), we see that f (U) is open. Hence f is
open. §

EXAMPLE. Let X = ×s∈S Xs be a product of topological spaces, fix s in S,
and let ps : X → Xs be the sth coordinate function. We shall show that ps is
open, so that Xs can be regarded as the quotient of X by the relation that x1 ∼ x2
if ps0(x1) = ps0(x2) for all s 0 6= s. IfU is an open set in X and x is inU , then we
can find a basic open set Vx = p−1

s1 (U1)∩ · · ·∩ p−1
sn (Un) about x that is contained

in U . Then ps(Vx) equals Uj if s = sj , and it equals Xs if s is not equal to any
sj . In either case, ps(Vx) is open. Thus ps(U) contains a neighborhood of each
of its points and must be an open set. So ps is open.

A key desirable property of a quotient space is that it is Hausdorff. The
Hausdorff property is what makes limits unique, after all, and it therefore paves
the way to doing some analysis with the space. The next proposition gives a
useful necessary condition and a useful sufficient condition.
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Proposition 10.40. Let X be a topological space, let ∼ be an equivalence
relation on X , and let R be the subset {(x1, x2) | x1 ∼ x2} of X × X . If the
quotient topology on X/ ∼ is Hausdorff, then R is a closed subset of X × X .
Conversely if R is a closed subset of X×X and if the quotientmap q : X → X/∼
is open, then X/∼ is Hausdorff.

PROOF. Suppose that X/∼ is Hausdorff. If (x, y) is not in R, then q(x) and
q(y) are distinct points in X/∼. Find disjoint open sets U and V in X/∼ such
that q(x) is in U and q(y) is in V . Then q−1(U) and q−1(V ) are open sets in
X with the property that no member of q−1(U) is equivalent to any member of
q−1(V ). Thus q−1(U)×q−1(V ) is an open neighborhood of (x, y) that does not
meet R. Hence R is closed.
Conversely if R is closed and (x, y) is not in R, then there exists a basic open

set U × V of X × X containing (x, y) that does not meet R. The sets q(U) and
q(V ) are open in X/∼ since q is open, they are disjoint since no member of U
is equivalent to a member of V , and they are neighborhoods of q(x) and q(y),
respectively. Thus X/∼ is Hausdorff. §

A special case is the situation with a pseudometric space in which the equiv-
alence relation is that x ∼ y if x and y are at distance 0 from one another. A
generalization of this relation was given in Proposition 10.7, which said that in
a regular topological space the relation x ∼ y if x is in {y}cl is an equivalence
relation. The corollary to follow gives properties of the quotient space when this
equivalence relation is used.

Corollary 10.41. Let X be a regular topological space, let∼ be the equivalence
relation defined by saying that x ∼ y if x is in {y}cl, and let q : X → X/∼ be
the quotient map. Then

(a) q is open, and every open set in X is the union of equivalence classes,
(b) X/∼ is regular and Hausdorff,
(c) X normal implies X/∼ normal,
(d) X separable implies X/∼ separable.

PROOF. First we show that every open set is a union of equivalence classes.
Suppose that x is in an open set U in X . Let x ∼ y. If y were not in U , then y
would be in the closed set Uc and hence {y}cl would be contained in Uc. Since
x ∼ y, x is in {y}cl, and we are led to the contradiction that x would be in Uc,
hence in U ∩ Uc = ∅. So U is a union of equivalence classes. Then it follows
that q−1(q(U)) = U , and the set q(U) has the property that its inverse image is
open in X . By definition of the quotient topology, q(U) is open. Therefore q is
an open map. This proves (a).
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To prove theHausdorff property in (b), we shall apply Proposition 10.40. Since
(a) shows that q is open, it is enough to show that the subset R = {(x, y) | x ∼ y}
of X × X is closed. If (x, y) is not in R, then x is not in {y}cl. By regularity of
X , choose disjoint open sets U and V in X such that x is in U and {y}cl ⊆ V .
Since U and V are unions of equivalence classes and are disjoint, no member of
U is equivalent to any member of V . Therefore (U × V ) ∩ R = ∅, and every
point of Rc has an open neighborhood lying in Rc. Hence R is closed.
As a result of (a), the open sets in X are in one-one correspondence via q with

the open sets in X/∼, and the same thing is true for the closed sets. Under this
correspondence disjoint sets correspond to disjoint sets. Then regularity in (b),
as well as conclusions (c) and (d), follow immediately. §

7. Urysohn’s Lemma

According to Proposition 10.31, a Hausdorff topological space has unique limits
for convergent sequences and nets. Corollary 10.41 shows that regularity of a
space makes it possible to pass to a natural quotient space that is regular and
Hausdorff. The following theorem exhibits a special role for the condition that a
space be normal.

Theorem 10.42. (Urysohn’s Lemma). If E and F are disjoint closed sets in
a normal topological space X , then there exists a continuous function f from X
into [0, 1] that is 0 on E and is 1 on F .
PROOF. Proposition 10.5c shows in a normal space that between a closed

set and a larger open set we can always interpolate an open set and its closure.
Starting from E ⊆ Fc, we find an open set U1/2 with

E ⊆ U1/2 ⊆ (U1/2)cl ⊆ Fc.

Then we can find open sets U1/4 and U3/4 with

E ⊆ U1/4 ⊆ (U1/4)cl ⊆ U1/2 ⊆ (U1/2)cl ⊆ U3/4 ⊆ (U3/4)cl ⊆ Fc.

Proceeding inductively on n, we obtain, for each diadic rational number r = m/2n
with 0 < r < 1, an open set Ur between E and Fc such that r < s implies
(Ur )

cl ⊆ Us . Put U1 = X . For each x in X , define f (x) to be the greatest
lower bound of all r such that x is in Ur . Then f is 0 on E , is 1 on F , and has
values in [0, 1]. To see that f is continuous, let x be given, let r and s be diadic
rationals in (0, 1) with r < f (x) < s, and choose diadic rationals r 0 and s 0 with
r < r 0 < f (x) < s 0 < s. (If f (x) = 0, we omit r and r 0; if f (x) = 1, we omit s
and s 0.) We are to produce an open neighborhoodU of x with f (U) ⊆ (r, s). If
U = Us0 − (Ur 0)cl, then U is open with r 0 ≤ f (U) ≤ s 0. Thus r < f (U) < s as
required. We conclude that f is continuous. §
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EXAMPLE. In Example 4 of Section 2, we produced a certainHausdorff regular
space X that is not normal, but we deferred the proof that X is not normal until we
had Urysohn’s Lemma in hand. We can now give that missing proof. As a set, X
is the closed upper half plane {Im z ∏ 0} inC. A base for the topology in question
consists of all open disks in X that do not meet the x axis, together with all open
disks in X that are tangent to the x axis; the latter sets are to include the point of
tangency. For a point p on the x axis, the open disks of rational radii with point of
tangency p form a countable local base. Arguing by contradiction, suppose that
X is normal. Any subset of the x axis in X is closed in X , and we take E to be the
set of rationals on the axis and F to be the set of irrationals on the axis. Urysohn’s
Lemma (Theorem 10.42) supplies a continuous function f : X → [0, 1] such
that f (E) = 0 and f (F) = 1. Define a sequence of functions fn : R → [0, 1]
by fn(x) = f

°
x, 1n

¢
, the notation (x, y) indicating a point in the (x, y) plane.

The functions fn are continuous in the ordinary topology onR since the topology
on X is the ordinary topology of the half plane as long as we stay away from the
x axis. At any point (x, 0) of the x axis, the sets

Um = {x, 0} ∪ B
° 1
m ;

°
x, 1m

¢¢

form a local base at (x, 0), and
°
x, 1n

¢
is in Um for n ∏ m. The continuity of f

therefore yields limn f
°
x, 1n

¢
= f (x, 0). In other words, limn fn exists pointwise

onR and equals the indicator function of the set of irrationals. The sequence { fn}
is therefore a sequence of continuous real-valued functions onRwhose pointwise
limit is everywhere discontinuous. However, Theorem 2.54 implies that the set
of discontinuities of the limit function is of first category in R, and the Baire
Category Theorem (Theorem 2.53) implies thatR is not of first category in itself.
Thus we have a contradiction, and we conclude that X cannot be normal.

Corollary 10.43. If E and F are disjoint closed sets in a compact Hausdorff
space X , then there exists a continuous function f : X → [0, 1] that is 0 on E
and is 1 on F .

PROOF. This follows by combining Proposition 10.16 and Theorem 10.42. §

Corollary 10.44. If K and F are disjoint closed sets in a locally compact
Hausdorff space X and if K is compact, then there exists a continuous function
f : X → [0, 1] that is 1 on K , is 0 on F , and has compact support.

PROOF. Using Proposition 10.19, regard X as an open subset of the one-point
compactification X∗. Proposition 10.20 shows that the compact space X∗ is
Hausdorff. Choose disjoint open sets U and V in X by Corollary 10.22 such
that K ⊆ U and F ⊆ V . Choose L compact in X by Corollary 10.23 such
that K ⊆ Lo. Then M = L ∩ (X − V ) is compact in X by Proposition 10.14,
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and K ⊆ Lo ∩ U ⊆ Lo ∩ (X − V )o ⊆ (L ∩ (X − V ))o = Mo. Hence
K and X∗ − Mo are disjoint compact sets in X∗. Corollary 10.43 produces a
continuous g : X∗ → [0, 1] such that g is 1 on K and is 0 on X∗ − Mo. Since
F ⊆ V ⊆ (X− L)∪V = X− (L ∩ (X−V )) = X−M ⊆ X−Mo ⊆ X∗ −Mo,
the function f = g

Ø
Ø
X has the required properties. §

8. Metrization in the Separable Case

A problem about topological spaces, now completely solved, is to characterize
those topologies that arise from metric spaces. Such a space is said to bemetriz-
able. We consider only the separable case and prove the following theorem.

Theorem10.45 (UrysohnMetrizationTheorem). Any separable regularHaus-
dorff space X is homeomorphic to a subspaceof theHilbert cubeC = ×∞

n=1[0, 1]
and is therefore metrizable.

PROOF. The Hilbert cube C is seen as a metric space in Example 11 in Section
II.1, Corollary 10.29 identifies it as a product space, and the Tychonoff Product
Theorem (Theorem 10.27) shows that it is compact. Let pn : X → [0, 1] be the
nth coordinate function.
By Corollary 10.10, X is normal. Fix a countable base B for the open sets.

Enumerate the countable set of pairs (U, V ) of members of B such thatU cl ⊆ V .
To the nth pair, associate by Urysohn’s Lemma (Theorem 10.42) a continuous
function fn : X → [0, 1] such that fn is 1 onU cl and is 0 on V c. Let F : X → C
be defined by “F(x) is the sequence whose nth term is fn(x).” We are to show
that F is continuous, is one-one, and is open as a function onto F(X).
The continuity of pn ◦ F = fn for each n means that F−1 p−1

n of any open set
in [0, 1] is open in C . Since F−1 of a basic open set in C is the finite intersection
of the various F−1 p−1

n ’s of open sets, F is continuous.
To see that F is one-one, let x and y be distinct points of X . By Proposition

10.6c, X Hausdorff implies that {y} is closed and hence that {y}c is an open
neighborhood of x . Choose a basic open set V containing x and contained in
{y}c. By Proposition 10.5b and the regularity of X , choose a basic open set
U containing x such that U cl ⊆ V . Then (U, V ) is one of our pairs, and the
corresponding function fn has fn(x) = 1 and fn(y) = 0. Hence F(x) 6= F(y),
and F is one-one.
To see that F carries open sets of X to open sets in F(X), let W be open in

X , and fix x in W . Arguing as in the previous paragraph, we can find basic open
sets U and V such that x is in U and U cl ⊆ V ⊆ W . The corresponding fn then
has fn(x) = 1 and fn(V c) = 0. Hence fn(Wc) = 0. The set Nx of y’s such that
fn(y) > 0 is open in X and contains x . The product (0, 1]n ×

°×k 6=n[0, 1]k
¢
is
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open in C , and its intersection with F(X) is the same as F(Nx) ∩ F(X). Thus
F(Nx) ∩ F(X) is relatively open in F(X). Then F(x) lies in this relatively open
set, which in turn lies in F(W ), and it follows that F(W ) is a relatively open
neighborhood of each of its members. §

Corollary 10.46. Every separable compact Hausdorff space is metrizable.
PROOF. This is immediate from Proposition 10.16 and Theorem 10.45. §

9. Ascoli–Arzelà and Stone–Weierstrass Theorems

In Section II.10 we studied Ascoli’s Theorem (Theorem 2.56) and the Stone–
Weierstrass Theorem (Theorem 2.58) as tools for working with continuous func-
tions on compact metric spaces. In turn, these theorems were illuminating
generalizations of results about continuous functions on closed bounded intervals
of the line, particularly the classical version of Ascoli’s Theorem (Theorem 1.22)
and the Weierstrass Approximation Theorem (Theorem 1.52). In this section
we shall extend these results to the setting of continuous functions on compact
Hausdorff spaces. The proof of the extended Ascoli theorem will be our first
example of how the Cantor diagonal process gets replaced by an application
of the Tychonoff Product Theorem (Theorem 10.27) when one is dealing with
an uncountable number of limiting situations at once. The Stone–Weierstrass
Theorem in the more general setting becomes in part a tool for dealing with large
abstract compact Hausdorff spaces that arise in functional analysis. The starting
point for this investigation is the general form of Alaoglu’s Theorem,8 which says
that the closed unit ball in the dual X∗ of a normed linear space X is compact in
the weak-star topology; closed subsets of this space play a foundational role in
the theory of Banach algebras.
Wework in this sectionwith a compactHausdorff space X andwith the algebra

C(X) of bounded continuous scalar-valued functions on X . The scalars may be
real or complex. Corollary 10.13 shows that if f is a continuous scalar-valued
function on X , then | f | attains its maximum value on X . The set C(X) is a
subspace of the normed linear space B(X) of bounded scalar-valued functions
on X , the norm being k f ksup = supx∈X | f (x)|. Convergence in B(X) is uniform
convergence. Proposition 10.30 shows that C(X) is a closed subspace of B(X)
and is complete as a metric space.
We begin with the extended Ascoli theorem. Let F = { fα} be a set of

scalar-valued functions on the compact Hausdorff space X . We say that F is
equicontinuous at x in X if for each ≤ > 0, there is an open neighborhood Ux,≤

8A preliminary form of this theorem was given as Theorem 5.58. The general form appears in
the companion volume, Advanced Real Analysis.
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of x such that | fα(y) − fα(x)| < ≤ for all y in Ux,≤ and all fα in F. We say
that F is equicontinuous if it is equicontinuous at each point. Not having a
metric to compare different points of X , we no longer define a notion of “uniform
equicontinuity.”
It is immediate from the definition that any subset of an equicontinuous family

is equicontinuous. The definition of equicontinuity at x reduces to the defini-
tion of continuity if F has just one member, and therefore every member of an
equicontinuous family is continuous.
As in Section II.10 the set F is uniformly bounded on X if it is pointwise

bounded at each x ∈ X and if the bound for the values | f (x)| with f ∈ F can be
taken independent of x .

Lemma 10.47. If F = { fα} is equicontinuous at x in X , then the closure F cl

of F in the product topology on CX is equicontinuous at x .

REMARK. Consequently every member of F cl is continuous at x .

PROOF. Let Ux,≤ be as in the definition of equicontinuity of F at x . For each
≤ > 0, the set of functions f ∈ CX such that

| f (y) − f (x)| ≤ ≤

for a particular y in X is a closed subset ofCX . Thus the set of functions f ∈ CX

such that this inequality holds for all y in Ux,≤ , being an intersection of closed
sets, is closed, and it contains F. In turn, the intersection G of these sets taken
over all ≤ > 0 is closed in CX and contains F. For each ≤ > 0, each g in this
closed set G satisfies the inequality |g(y) − g(x)| < 2≤ whenever y is in Ux,≤ .
Therefore G is equicontinuous at x , and so is its subset F cl. §

Theorem10.48 (Ascoli–Arzelà Theorem). If { fn} is an equicontinuous family
of scalar-valued functions defined on a compact Hausdorff space X and if { fn}
has the property that { fn(x)} is bounded for each x , then { fn} has a uniformly
convergent subsequence.

PROOF. We may assume that there are infinitely many distinct functions fn ,
since otherwise the assertion is trivial. Let | fn(x)| ≤ cx for all n, and form the
product space C = ×x∈X

©
z ∈ C

Ø
Ø |z| ≤ cx

™
. The space C is compact by the

Tychonoff Product Theorem (Theorem 10.27), and we are now assuming that
there are infinitely many members of the sequence { fn} in the space. Let S be
the image of the sequence as a subset of C . If S were to have no limit point in C ,
then each fn would have an open neighborhood in C disjoint from the rest of S;
these open sets and Sc would form an open cover of C with no finite subcover, in
contradiction to compactness of C . Thus S has a limit point f in C . By Lemma
10.47 and the remarks before it, the family S ∪ { f } is equicontinuous.
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Let ≤ > 0. We shall complete the proof by producing an fN in S such that
| fN (x) − f (x)| < ≤ for all x . By equicontinuity find an open neighborhood Ux
for each x such that y ∈ Ux implies

| fn(y) − fn(x)| < ≤/3 for all n
| f (y) − f (x)| < ≤/3.and

The open sets Ux cover X , and finitely many of them suffice to cover, by the
compactness of X . Thus there are finitely many points x1, . . . , xk in X with the
property that for each y in X , there is some xj with 1 ≤ j ≤ k such that

| fn(y) − fn(xj )| < ≤/3 and | f (y) − f (xj )| < ≤/3

for all n. Since f is a limit point of S, choose N such that

| fN (xj ) − f (xj )| < ≤/3 for 1 ≤ j ≤ k.

Then for every y in X , there is an xj such that

| fN (y) − f (y)| ≤ | fN (y) − fN (xj )| + | fN (xj ) − f (xj )| + | f (xj ) − f (y)| < ≤.

Thus fN is within distance ≤ of f , as asserted. §

Corollary 10.49. If X is a compact Hausdorff space, then a subset F = { fα}
of C(X) is compact if and only if

(a) F is closed in C(X),
(b) the set { fα} is pointwise bounded at each point in X , and
(c) F is equicontinuous.

In this case, F is uniformly bounded.
PROOF. Suppose that the three conditions hold. Being a subset of C(X), F is

a metric space under the restriction of the metric. By Theorem 2.36, F will be
compact if we prove that every sequence has a convergent subsequence. Because
of (b) and (c), Theorem 10.48 shows that every sequence in F has a uniformly
Cauchy subsequence. By (a) and the completeness of C(X) given in Proposition
10.30,F is complete as ametric space. Hence the Cauchy subsequence converges
to an element of F.
Conversely suppose that F is compact. Property (a) follows since compact

sets are closed in any metric space. For (b) and the stronger conclusion that
F is uniformly bounded, the function f 7→ k f ksup is a continuous function
on the compact set F, and Corollary 10.13 shows that it is bounded. For the
equicontinuity in (c), let ≤ > 0 and x be given. Theorem 2.46 shows that F
is totally bounded as a metric space. Hence we can find a finite set f1, . . . , fl
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in F such that each member f of F has supy∈X | f (y) − f j (y)| < ≤ for some
j . By continuity of each fi , choose an open neighborhood Ux,≤ of x such that
| fi (x) − fi (y)| < ≤ for 1 ≤ i ≤ l for all y in Ux,≤ . If f is some member of F
and if f j is the member of the finite set associated with f , then y ∈ Ux,≤ implies

| f (y) − f (x)| ≤ | f (y) − f j (y)| + | f j (y) − f j (x)| + | f j (x) − f (x)| < 3≤.

Hence F is equicontinuous at each x in X . §

Now we come to the extended Stone–Weierstrass Theorem. We are interested
in showing that certain subalgebras of the algebra C(X) of continuous scalar-
valued functions on a compact Hausdorff space X are dense in C(X). Except for
the dropping of the assumption that X is metric, the assumptions and notation
are the same as in Section II.10. In particular the scalars for the subalgebra and
for C(X) may be real or complex, and the statement of the theorem is slightly
different in the two cases.

Theorem 10.50 (Stone–Weierstrass Theorem). Let X be a compact Hausdorff
space.

(a) If A is a real subalgebra of real-valued members of C(X) that separates
points and contains the constant functions, thenA is dense in the algebra
of real-valued members of C(X) in the uniform metric.

(b) If A is a complex subalgebra of C(X) that separates points, contains the
constant functions, and is closed under complex conjugation, then A is
dense in C(X) in the uniform metric.

REMARKS. Curiously, Urysohn’s Lemma (Corollary 10.43) does not play a
role in the proof. Instead, the role of Urysohn’s Lemma is to ensure that C(X)
is large in applications, and then the present theorem has serious content. The
actual proof of Theorem 10.50 is word-for-word the same as for Theorem 2.58,
and there is no need to repeat it.

10. Problems

1. Let f and g be continuous functions from a topological space into a Hausdorff
space Y .
(a) Prove that the set of all points x in X for which f (x) = g(x) is closed.
(b) Prove that if f (x) = g(x) for all x in a dense subset of X , then f = g.

2. (Dini’s Theorem) Let X be a compact Hausdorff space. Suppose that the
function fn : X → R is continuous, that f1 ≤ f2 ≤ f3 ≤ · · · , and that
f (x) = lim fn(x) is continuous and is nowhere +∞. Use the defining property
of compactness to prove that { fn} converges to f uniformly on X .
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3. (BaireCategoryTheorem) Prove that a locally compactHausdorff space cannot
be the countable union of closed nowhere dense sets.

4. Prove that a locally compact dense subset of a Hausdorff space is open.
5. This problem produces a locally compact Hausdorff space that is not normal.

Verify the details of the construction. Let X be a countably infinite discrete
space, and let Y be an uncountable discrete space. Let X∗ and Y ∗ be their
one-point compactifications, with the added points denoted by x∞ and y∞. The
locally compact Hausdorff space is Z = X∗ ×Y ∗ − {(x∞, y∞)}with the relative
topology. Two closed subsets that cannot be separated by disjoint open sets are
A = ({x∞} × Y ∗) − {(x∞, y∞)} and B = (X∗ × {y∞}) − {(x∞, y∞)}.

6. If X is compact, prove that each infinite subset of X has a limit point.
7. Let U be the family of subsets of R consisting of all sets {x ∈ R | x < a},

together with ∅ and R.
(a) Prove that U is a topology for R and that it is not Hausdorff. (It is called the

upper topology of R.)
(b) If {tn}n∈D is a net in R, define lim supn tn to be the infimum over n of

supm∈D, m∏n tn . Prove that a net {tn}n∈D in R converges to t relative to U if
and only if lim supn tn ≤ t .

8. Let (X, T ) be a topological space, and let U be the upper topology of R as in the
previous problem. A function f : X → R is said to be upper semicontinuous
if it is continuous with respect to T and U.
(a) Prove that upper semicontinuity of f : X → R is equivalent to the condition

that lim sup f (xn) ≤ f (x) whenever xn → x in X .
(b) Prove that the function f : R → R that is 1 at x = 0 and is 0 elsewhere is

upper semicontinuous.
(c) Prove that if f and g are upper semicontinuous functions on X and if c is

nonnegative real, then f + g and c f are upper semicontinuous.
(d) Prove that if { fs}s∈S is a nonempty set of upper semicontinuous functions

on X such that infs∈S f (x) > −∞ for all x ∈ X , then infs∈S fs is upper
semicontinuous.

(e) Prove that if f is a bounded real-valued function on X , then there exists a
unique smallest upper semicontinuous function f − with f −(x) ∏ f (x) for
all x .

9. Let (X, T ) be a topological space. A function f : X → R is lower semi-
continuous if − f is upper semicontinuous. In this case if f is bounded, let
f− = −(− f )−, with the right side defined as in the previous problem. Let the
oscillation Qf of f be defined by Qf (x) = f −(x) − f−(x) for x in X .
(a) Why is Qf upper semicontinuous?
(b) Prove that this definition agrees with the one in Section II.9.
(c) Prove that f is continuous if and only if Qf is identically 0.
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10. Let X be a Hausdorff topological space in which there are two disjoint nonempty
closed sets A and B. Let∼ be the equivalence relation that identifies all elements
of A with each other, identifies all elements of B with each other, and otherwise
identifies no distinct points of X .
(a) Prove that the subset of pairs (x, y) in X × X with x ∼ y is closed.
(b) Give an example of this kind in which X/∼ is not Hausdorff.

11. Let X be a compact Hausdorff space, and let ∼ be an equivalence relation on
X such that the subset R ⊆ X × X of pairs (x, y) with x ∼ y is closed. Let
q : X → X/∼ be the quotient map.
(a) Prove for each x ∈ X that q−1q(x) is a closed subset of X .
(b) If U ⊆ X is open, prove that V = {x ∈ X | q−1q(x) ⊆ U} is open by

first proving that V c = p2((Uc × X) ∩ R), where p2 : X × X → X is the
projection to the second coordinate.

(c) Prove that the compact quotient X/∼ is Hausdorff.
(d) Prove that the quotient map is closed, i.e., that closed sets map to closed sets.
(e) Is the quotient map necessarily open?
(f) As in one of the examples in Section 1, let X be the interval [−π,π], and

let S1 be the unit circle in C. Let∼ be the equivalence relation that lets−π

and π be the only nontrivial pair of elements of X that are equivalent, and
form X/ ∼. Prove that X/ ∼ is homeomorphic to S1 and that under this
identification the quotient map may be taken to be the function p : X → S1
given by p(x) = eix .

Problems 12–15 concern connectedness and connected components. Most of the
definitions and proofs in the first three are rather similar to those in Chapter II (§II.8
and Problems 11–13) for the special case of metric spaces. A topological space X is
connected if X cannot be written as X = U ∪ V with U and V open, disjoint, and
nonempty. A subset E of X is connected if E is connected as a subspace of X , i.e.,
if E cannot be written as a disjoint union (E ∩U) ∪ (E ∩ V ) with U and V open in
X and with E ∩U and E ∩ V both nonempty.
12. (a) Prove that a continuous function between topological spaces carries con-

nected sets to connected sets.
(b) A path in a topological space X is a continuous function from a closed

bounded interval [a, b] into X . Why is the image of a path necessarily
connected?

13. (a) If X is a topological space and {Eα} is a system of connected subsets of X
with a point x0 in common, prove that

S
α Eα is connected.

(b) If X is a topological space and E is a connected subset of X , prove that the
closure Ecl is connected.

14. (a) A topological space X is pathwise connected if for any two points x1 and
x2 in X , there is some continuous p : [a, b] → X with p(a) = x1 and
p(b) = x2. Why is a pathwise-connected space X necessarily connected?
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(b) A topological space X is called locally pathwise connected if each point
has arbitrarily small open neighborhoods that are pathwise connected. Prove
that if X is connected and locally pathwise connected, then it is pathwise
connected.

15. In a topological space X , define two points to be equivalent if they lie in a
connected subset of X .
(a) Show that this notion of equivalence is indeed an equivalence relation. The

equivalence classes are called the connected components of X .
(b) Prove that the connected components of X are closed sets.
(c) Prove that the connected components of X are open sets if X is locally

connected, i.e., if each point has arbitrarily small connected neighborhoods.

Problems 16–17 concern partitions of unity, which were introduced in Section III.5.
An open cover U of a topological space is said to be locally finite if each point of x
has a neighborhood that lies in only finitely many members of U.
16. Suppose that U is a locally finite open cover of a normal space X . By applying

Zorn’s Lemma to the class of all functions F defined on subfamilies of U such
that F(U), for each U in the domain of F , is an open set with F(U)cl ⊆ U and

° S

U∈domain(F)

F(U)
¢

∪
° S

V∈U,
V /∈domain(F)

V
¢

= X,

prove that it is possible to select, for each U in U, an open set VU such that
V clU ⊆ U and such that {VU | U ∈ U } is an open cover of X .

17. Prove that ifU is a locally finite open cover of a normal space X , then it is possible
to select, for each U in U, a continuous function fU : X → [0, 1] such that fU
is 0 outside U and such that

P
U∈U fU (x) = 1 for all x ∈ X .

Problems 18–20 establish the Tietze Extension Theorem. Let X be a normal topolog-
ical space, and letC be a closed subset of X . Suppose that f is a bounded real-valued
continuous function defined on C . The theorem is that there exists a continuous
function F : X → R such that F

Ø
Ø
C = f and supx∈X |F(x)| = supx∈C | f (x)|.

18. Let g0 = f , c0 = supx∈C |g0(x)|, P0 = {x ∈ C | g0(x) ∏ c0/3}, and N0 =
{x ∈ C | g0(x) ≤ −c0/3}. Show that there is a continuous function F0 from X
into [−c0/3, c0/3] that is c0/3 on P0 and −c0/3 on N0.

19. In the previous problem, put g1 = g0 − F0 on C , and let c1 = supx∈C |g1(x)|.
Show that c1 ≤ 2

3c0. When the result of the previous problem is applied to g1 in
order to produce a function F1, what properties does F1 have?

20. Show that iteration of the above results produces a sequence of continuous
functions Fn : X → R such that the series

P∞
n=0 Fn(x) is uniformly convergent

on X and such that the sum F(x) =
P∞

n=0 Fn(x) is continuous. Show also that
F has F

Ø
Ø
C = f and satisfies supx∈X |F(x)| = supx∈C | f (x)|.
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Problems 21–28 concern order topologies. Suppose that X is a set with at least two
elements and having a total ordering, i.e., a partial ordering ≤ such that

(i) x ≤ y and y ≤ x together imply x = y,
(ii) any x and y in the set have either x ≤ y or y ≤ x .

Define x < y tomean that x ≤ y and x 6= y. The order topologyon X is the topology
for which a base consists of all sets {x | x < b}, {x | a < x}, and {x | a < x < b}.
For a nonempty subset Y of X , the terms “lower bound,” “upper bound,” “greatest
lower bound,” and “least upper bound” are defined in the expected way. Examples
are given by the real line R with its usual topology, the set ƒ of countable ordinals
(as defined in Problems 25–33 at the end of Chapter V) with its order topology, and
other examples given below.
21. Prove that every open interval {x | a < x < b} in X is open and every closed

interval {x | a ≤ x ≤ b} is closed.
22. Prove that X is Hausdorff and regular in its order topology.
23. Prove that every nonempty subset with an upper bound has a least upper bound if

and only if every every nonempty subset with a lower bound has a greatest lower
bound. In this case, X is said to be order complete.

24. Suppose that X is order complete.
(a) Prove that a nonempty subset Y of X is compact if and only if Y is closed

and has a lower bound and an upper bound.
(b) Prove that X is locally compact.

25. (a) Prove that if there exist a and b in X with a < b and with no c such that
a < c < b, then X is not connected, in the sense of Problems 12–15. Let us
say that X has a gap when such a and b exist.

(b) Prove that if X is order complete and has no gaps, then X is connected.
26. The set X = [0, 1) ∪ [2, 3) is totally ordered. Prove that this X is connected

in its order topology, and conclude that the order topology is different from the
relative topology for X as a subspace of R.

27. The set X = [0, 1) ∪ (1, 2] is totally ordered. Prove that this X is not connected
in its order topology but has no gaps.

28. Let X and Y be two totally ordered sets with at least two elements apiece.
Define the lexicographic ordering on X × Y to be the total ordering given by
(x1, y1) ≤ (x2, y2) if x1 < x2 or else x1 = x2 and y1 ≤ y2.
(a) Prove that the lexicographic ordering on [0, 1] × [0, 1] makes the space

compact connected but not separable.
(b) The long line is defined to be the productƒ × [0, 1) with the lexicographic

ordering, where ƒ is the set of countable ordinals as defined in Problems
25–33 at the end of Chapter V. Prove that the long line is locally compact
and connected but not separable.




