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CHAPTER IX 

Fields and Galois Theory 

Abstract. This chapter develops some general theory for field extensions and then goes on to
study Galois groups and their uses. More than half the chapter illustrates by example the power
and usefulness of the theory of Galois groups. Prerequisite material from Chapter VIII consists
of Sections 1–6 for Sections 1–13 of the present chapter, and it consists of all of Chapter VIII for
Sections 14–17 of the present chapter.
Sections 1–2 introduce field extensions. These are inclusions of a base field in a larger field.

The fundamental construction is of a simple extension, algebraic or transcendental, and the next
construction is of a splitting field. An algebraic simple extension is made by adjoining a root of an
irreducible polynomial over the base field, and a splitting field is made by adjoining all the roots of
such a polynomial. For both constructions, there are existence and uniqueness theorems.
Section 3 classifies finite fields. For each integer q that is a power of some prime number, there 

exists one and only one finite field of order q, up to isomorphism. One finite field is an extension of
another, apart from isomorphisms, if and only if the order of the first field is a power of the order of
the second field. 
Section 4 concerns algebraic closure. Any field has an algebraic extension in which each

nonconstant polynomial over the extension field has a root. Such a field exists and is unique up
to isomorphism.
Section 5 applies the theory of Sections 1–2 to the problem of constructibility with straightedge

and compass. First the problem is translated into the language of field theory. Then it is shown that
three desired constructions from antiquity are impossible: “doubling a cube,” trisecting an arbitrary
constructible angle, and “squaring a circle.” The full proof of the impossibility of squaring a circle
uses the fact that π is transcendental over the rationals, and the proof of this property of π is deferred 
to Section 14. Section 5 concludes with a statement of the theorem of Gauss identifying integers n 
such that a regular n-gon is constructible and with some preliminary steps toward its proof.
Sections 6–8 introduce Galois groups and develop their theory. The theory applies to a field

extension with three properties—that it is finite-dimensional, separable, and normal. Such an 
extension is called a “finite Galois extension.” The Fundamental Theorem of Galois Theory says in
this case that the intermediate extensions are in one-one correspondence with subgroups of the Galois
group, and it gives formulas relating the corresponding intermediate fields and Galois subgroups.
Sections 9–11 give three standard initial applications of Galois groups. The first is to proving the

theorem of Gauss about constructibility of regular n-gons, the second is to deriving the Fundamental
Theorem of Algebra from the Intermediate Value Theorem, and the third is to proving the necessity
of the condition of Abel and Galois for solvability of polynomial equations by radicals—that the
Galois group of the splitting field of the polynomial have a composition series with abelian quotients.
Sections 12–13 begin to derive quantitative information, rather than qualitative information, from

Galois groups. Section 12 shows how an appropriate Galois group points to the specific steps in
the construction of a regular n-gon when the construction is possible. Section 13 introduces a tool 
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453 1. Algebraic Elements 

known as Lagrange resolvents, a precursor of modern harmonic analysis. Lagrange resolvents are
used first to show that Galois extensions in characteristic 0 with cyclic Galois group of prime order p
are simple extensions obtained by adjoining a pth root, provided all the pth roots of 1 lie in the base 
field. Lagrange resolvents and this theorem about cyclic Galois groups combine to yield a derivation
of Cardan’s formula for solving general cubic equations.
Section 14 begins the part of the chapter that depends on results in the later sections of Chap-

ter VIII. Section 14 itself contains a proof that π is transcendental; the proof is a nice illustration of
the interplay of algebra and elementary real analysis.
Section 15 introduces the field polynomial of an element in a finite-dimensional extension field.

The determinant and trace of this polynomial are called the norm and trace of the element. The
section gives various formulas for the norm and trace, including formulas involving Galois groups.
With these formulas in hand, the section concludes by completing the proof of Theorem 8.54 about
extending Dedekind domains, part of the proof having been deferred from Section VIII.11.
Section 16 discusses how prime ideals split when one passes, for example, from the integers to

the algebraic integers in a number field. The topic here was broached in the motivating examples
for algebraic number theory and algebraic geometry as introduced in Section VIII.7, and it was the
main topic of concern in that section. The present results put matters into a wider context.
Section 17 gives two tools that sometimes help in identifying Galois groups, particularly of

splitting fields of monic polynomials with integer coefficients. One tool uses the discriminant of the
polynomial. The other uses reduction of the coefficients modulo various primes. 

1. Algebraic Elements 

If K and k are fields such that k is a subfield of K, we say that K is a field 
extension of k. When it is necessary to refer to this situation in some piece of
notation, we often write K/k to indicate the field extension. In this section we 
shall study field extensions in a general way, and in the next section we shall
discuss constructions and uniqueness results involving them.
If K and K0 are two fields and if ϕ is a ring homomorphism of K into K0 with 

ϕ(1) = 1, then ϕ is automatically one-one since K has no nontrivial ideals. We 
refer to ϕ as a field map or field mapping.1 If K and K0 are both field extensions 
of a field k and if the restriction of a field map ϕ to k is the identity, then ϕ is 
called a k field map or a field map fixing k. The terminology “k field map” is 
consistent with the view that K and K0 are two R algebras for R = k in the sense 
of Examples 6 and 15 in Section VIII.1, and that the isomorphism in question is
just an R algebra isomorphism.
If a field map ϕ : K → K0 is onto K0, then ϕ is a field isomorphism; it is a 

k field isomorphism if K and K0 are extensions of k and ϕ is the identity on k. 
When K = K0 and ϕ is onto K0, ϕ is called an automorphism of K; if also ϕ is 
the identity on a subfield k, then ϕ is called a k automorphism of K. 

1This is the notion of morphism in the category of fields. 
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Throughout this section we let K/k be a field extension. If x1, . . . , xn are 
members of K, we let 

k[x1, . . . , xn] = subring of K generated by 1 and x1, . . . , xn, 

k(x1, . . . , xn) = subfield of K generated by 1 and x1, . . . , xn. 

The latter, in more detail, means the set of all quotients ab−1 with a and b in 
k[x1, . . . , xn] and with b 6= 0. It is referred to as the field obtained by adjoining 
x1, . . . , xn to k. Because of this description of the elements of k(x1, . . . , xn), the 
field k(x1, . . . , xn) can be regarded as the field of fractions F of k[x1, . . . , xn]. In 
fact, we argue as follows: let η : k[x1, . . . , xn] → F be the natural ring homo-
morphism a 7→ class of (a, 1) of k[x1, . . . , xn] into its field of fractions; then the 
universal mapping property of F stated in Proposition 8.6 gives a factorization of 
the inclusion ∂ : k[x1, . . . , xn] → k(x1, . . . , xn) as ∂ = e∂η, and the field mapping 
∂ has to be onto k(x1, . . . , xn) since the class of (a, b) maps to the member ab−1 e
of k(x1, . . . , xn). 
As in Chapter IV and elsewhere, we let k[X] be the ring of polynomials in 

the indeterminate X with coefficients in k. For each x in K, we have a unique 
substitution homomorphism ϕx : k[X] → k[x] carrying k to itself and carrying 
X to x . We say that x is algebraic over k if ϕx is not one-one, i.e., if x is a root 
of some nonzero polynomial in k[X], and that x is transcendental over k if ϕx 
is one-one. 

EXAMPLES. 
p

(1) If k = R, if K = C, and if x is the usual element i = −1, then 
ϕi (X2 + 1) = 0, and i is algebraic over R. 
(2) If k = Q, if K = C, and if θ is a complex number with the property that 

θn + cn−1θn−1 + · · · + c1θ + c0 = 0 for some n and for some coefficients in Q,
then θ is algebraic over Q. This situation was the subject of Proposition 4.1, of
Example 2 in Section IV.4, and of Example 10 in Section VIII.1. 
(3) Let k = Q and K = C. For π equal to the usual trigonometric constant,P∞given as the least positive real such that eiπ = −1 when ez = n=0 zn/n!, it will 

be proved in Section 14 that there is no polynomial F(X) in Q[X] with F(π) = 0,
and π is consequently transcendental over Q. 
(4) If k = Z/2Z and K is the 4-element field constructed in Example 3 of

fields in Section IV.4, then any element of K is algebraic over k. 
(5) If k = C(X) and if K = C(X)[

p
(X − 1)X (X + 1) ] as with the ring R0 

in Section VIII.7 and as in Example 3 of integral closures in Section VIII.9, thenp
(X − 1)X (X + 1) is algebraic over C(X). 
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Suppose that x in K is algebraic over k. Then 

ker ϕx = {F(X) ∈ k[X] | F(x) = 0} 

is an ideal in k[X] that is necessarily nonzero and principal. A generator is
determined up to a constant factor as any nonzero polynomial in the ideal that has
lowest possible degree, and we might as well take this polynomial to be monic.
Thus ker ϕx is of the form (F0(X)) for some unique monic polynomial F0(X), and 
this polynomial F0(X) is called the minimal polynomial of x over k. Review of 
the example at the end of Section VIII.3 may help motivate the first five results
below. 

Proposition 9.1 If x ∈ K is algebraic over k, then the minimal polynomial of 
x over k is prime as a polynomial in K[X]. 

PROOF. Suppose that F(X) factors nontrivially as F(X) = G(X)H(X). Since 
F(x) = 0, either G(x) = 0 or H (x) = 0, and then we have a contradiction to 
the fact that F has minimal degree among all polynomials vanishing at x . § 

Theorem 9.2. If x ∈ K is algebraic over k, then the field k(x) coincides with 
the ring k[x]. Moreover, if the minimal polynomial of x over k has degree n,
then each element of k(x) has a unique expansion as 

cn−1xn−1 + cn−2xn−2 + · · · + c1x + c0 with all ci ∈ k. 

PROOF. Since the substitution ring homomorphism ϕx carries k[X] onto k[x],
we have an isomorphism of rings k[x] ∼ = k[X]/(F0(X)), where = k[X]/ ker ϕx 
F0(X) is the minimal polynomial of x over k. Since F0 is prime, (F0(X)) is a 
nonzero prime ideal and hence is maximal. Thus k[x] is a field. Consequently 
k(x) = k[x].
Any element in k[x], hence in k(x), is a polynomial in x . Since F0(x) = 0,

we can solve F0(x) = 0 for its leading term, say xn , obtaining xn = G(x), where 
G(X) = 0 or deg G(X) ≤ n − 1. Thus the expansions in the statement of the
theorem yield all the members of k[x]. If an element has two such expansions,
we subtract them and obtain a nonzero polynomial H(X) of degree at most n − 1 
with H(x) = 0, in contradiction to the minimality of the degree of F0(X). § 

Corollary 9.3. If x ∈ K is algebraic over k, then the field k(x), regarded as 
a vector space over k, is of dimension n, where n is the degree of the minimal 
polynomial of x over k. The elements 1, x, x2 , . . . , xn−1 form a basis of k(x) 
over k. 

PROOF. This is just a restatement of the second conclusion of Theorem 9.2. § 
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We say that the field extension K/k is an algebraic extension if every element 
of K is algebraic over k. 

Proposition 9.4. If the vector-space dimension of K over k is some finite n,
then K is an algebraic extension of k, and each element x of K has some nonzero 
polynomial F(X) in k[X] of degree at most n for which F(x) = 0. 

PROOF. This is immediate since the elements 1, x, x2 , . . . , xn of K have to be 
linearly dependent over k. § 

When K/k is a field extension, we write [K : k] for the vector-space dimension 
dimk K, and we call this the degree of K over k. If [K : k] is finite, we say that 
K is a finite extension of k, or finite algebraic extension of k, the condition 
“algebraic” being automatic by Proposition 9.4. 

Corollary 9.5. If x is in K, then x is algebraic over k if and only if k(x) is a 
finite algebraic extension of k. In this case the minimal polynomial of x over k 
has degree [k(x) : k]. 
PROOF. If x is algebraic over k, then [k(x) : k] is finite and is the degree of the 

minimal polynomial of x over k, by Corollary 9.3. Proposition 9.4 shows in this 
case that k(x) is a finite algebraic extension. If x is transcendental over k, then the 
substitution homomorphism ϕx is one-one, and dimk k(x) ∏ dimk k[X] = +∞. 

§ 

Theorem 9.6. Let k, K, and L be fields with k ⊆ K ⊆ L, and suppose that 
[K : k] = n and [L : K] = m, finite or infinite. Let {ω1,ω2, . . . } be a vector-
space basis of K over k, and let {ξ1, ξ2, . . . } be a vector-space basis of L/K. Then 
the mn products ωi ξj form a basis of L over k. 
PROOF OF SPANNING. If ξ is in L, write ξ = 

P
j aj ξj with each aj in K and 

with only finitely many aj ’s not 0. Then expand each aj in terms of the ωi ’s, and 
substitute. § 

PROOF OF LINEAR INDEPENDENCE. Let 
P

i, j ci j ωi ξj = 0 with the ci j ’s in k. 
Since the members ξj of L are linearly independent over K, 

P
i ci j ωi = 0 for 

each j . Since the members ωi of K are linearly independent over k, ci j = 0 for 
all i and j . § 

Corollary 9.7. If k, K, and L are fields with k ⊆ K ⊆ L, then 

[L : k] = [L : K] [K : k] . 

PROOF. This is immediate by counting basis elements in Theorem 9.6. § 
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Theorem 9.8. If K/k is a field extension and if x1, . . . , xn are members of K 
that are algebraic over k, then k(x1, . . . , xn) is a finite algebraic extension of k. 

REMARK. If a finite algebraic extension of k turns out to be of the form k(x)
for some x , we say that the extension is a simple algebraic extension. 

PROOF. Since xi is algebraic over k, it is algebraic over k(x1, . . . , xi−1). Hence 
[k(x1, . . . , xi ) : k(x1, . . . , xi−1)] is finite. Applying Corollary 9.7 repeatedly, we 
see that k(x1, . . . , xn) is a finite extension of k. Proposition 9.4 shows that it is a 
finite algebraic extension. § 

p3EXAMPLE. The sum 
p
2+ 2 is algebraic over Q, as a consequence of Theorem 

9.8. This fact suggests Corollary 9.9 below. 

Corollary 9.9 If K/k is a field extension, then the elements of K that are 
algebraic over k form a field. 

PROOF. If x and y in K are algebraic over k, then k(x, y) is a finite algebraic 
extension of k, according to Theorem 9.8. This extension contains x ± y and xy,
and it contains x−1 if x 6 0. The corollary therefore follows from Proposition = 
9.4. § 

For the special case of Corollary 9.9 in which K = C and k = Q, this subfield 
of C is called the field of algebraic numbers, and any finite algebraic extension of 
Q within C is called a number field, or an algebraic number field. The seeming
discrepancy between this definition and the definition given in remarks with
Proposition 4.1 (that in essence a “number field” is any simple algebraic extension
of Q) will be resolved by the Theorem of the Primitive Element (Theorem 9.34
below). 

2. Construction of Field Extensions 

In this section, k denotes any field. Our interest will be in constructing extension 
fields for k and in addressing the question of uniqueness under additional hy-
potheses. We begin with a kind of converse to Proposition 9.1 that generalizes thep
method described in Section A4 of the appendix for constructing C = R( −1 )
from R and the polynomial X2 + 1 . 

Theorem 9.10 (existence theorem for simple algebraic extensions). If F(X) is 
a monic prime polynomial in k[X], then there exists a simple algebraic extension 
K = k(x) of k such that x is a root of F(X). Moreover, F(X) is the minimal 
polynomial of x over k. 
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PROOF. Define K = k[X]/(F(X)) as a ring. Since F(X) is prime, (F(X)) is 
a nonzero prime ideal, hence maximal. Therefore K is a field, an extension field 
of k. Define x to be the coset X + (F(X)). Then F(x) = F(X) + (F(X)) = 
0 + (F(X)), and x is therefore algebraic over k. It is immediate that K = k[x],
and Theorem 9.2 shows that K = k(x). If G(x) = 0 for some G(X) in k[X],
then G(X) is in (F(X)). We conclude that F(X) has minimal degree among all 
polynomials with x as a root, and F(X) is therefore the minimal polynomial. § 

Theorem 9.11 (uniqueness theorem for simple algebraic extensions). If F(X)
is a monic prime polynomial in k[X] and if K = k(x) and K0 = k(y) are two 
simple algebraic extensions such that x and y are roots of F(X), then there exists 
a field isomorphism ϕ of K onto K0 fixing k and carrying x to y. 

EXAMPLE. The monic polynomial F(X) = X3 − 2 is prime in Q[X], and p p
x = 3 2 and y = e2π i/3 3 2 are roots of it within C. The fields Q(x) and Q(y)
are subfields of C and are distinct because Q(x) is contained in R and Q(y) is 
not. Nevertheless, these fields are Q isomorphic, according to the theorem. 

PROOF. In view of the proof of Theorem 9.10, there is no loss of generality
in assuming that K = k[X]/(F(X)). Since y is algebraic over k, we can 
form the substitution homomorphism ϕy : k[X] → k(y). This is a k alge-
bra homomorphism. Its kernel is the ideal (F(X)) since F(X) is the minimal 
polynomial of y, and ϕy therefore descends to a one-one k algebra homomorphism 
ϕy : k(x) → k(y). Since dim k(x) and dim k(y) both match the degree of F(X), 
ϕy is onto k(y) and is therefore the required k isomorphism. § 

We say that a nonconstant polynomial F(X) in k[X] splits in a given extension 
field if F(X) factors completely into degree-one factors over that extension field. 
A splitting field over k for a nonconstant polynomial F(X) in k[X] is an extension 
field L of k such that F(X) splits in L and such that L is generated by k and the 
roots of F(X) in L. 

p
EXAMPLES. Let k = Q. Then Q( −1 ) is a splitting field for X2 + 1, because p p p p

± −1 are both in Q( −1 ) and they generate Q( −1 ) over Q. But Q( 3 2) isp
not a splitting field for X3 − 2 because Q( 3 2) does not contain the two nonreal 
roots of X3 − 2. 

Theorem 9.12 (existence of splitting field). If F(X) is a nonconstant polyno-
mial in k[X], then there exists a splitting field of F(X) over k. 

PROOF. We begin by constructing a certain extension field K of k in which 
F(X) factors completely into degree-one factors in K[X]. We do so by induction 
on n = deg F(X). For n = 1, there is nothing to prove. For general n, let G(X) 
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be a prime factor of F(X), and apply Theorem 9.10 to obtain a simple algebraic 
extension k1 = k(x1) over k such that G(x1) = 0. Then F(x1) = 0, and the 
Factor Theorem (Corollary 1.13) gives F(X) = (X − x1)H(X) for some H (X)
in k1(X) of degree n − 1. Since deg H (X) = n − 1 < deg F(X), the inductive 
hypothesis produces an extension K of k1 such that H(X) is a constant multiple 
of (X − x2) · · · (X − xn) with all xi in K. Then F(X) factors into degree-one 
factors in K[X], and the induction is complete.
Within the constructed field K, let L be the subfield L = k(x1, . . . , xn). Then 

F(X) still factors completely into degree-one factors in L(X), and L is generated 
by k and the xi . Hence L is a splitting field. § 

EXAMPLES OF SPLITTING FIELDS. 
p

(1) k = Q and F(X) = X3 −2. The proof of Theorem 9.12 takes k1 = Q( 3 2)p p p3 3and writes X3 − 2 = (X − 3 2) 
°
X2 + 2 X + ( 2)2

¢
. Then the proof adjoins p p p

one root θ (hence both roots) of X2 + 3 2 X + ( 3 2)2, setting K = Q( 3 2, θ). 
With this choice of K, the splitting field turns out to be L = K. In fact, to see that 
L is not a proper subfield of K, we observe that 6 = [K : k] = [K : L] [L : Q] by p
Corollary 9.7 and that the proper containment L % Q( 3 2) implies [L : Q] > 3. 
Since [L : Q] is a divisor of 6 greater than 3, [L : Q] = 6. Thus [K : L] = 1,
and K = L. 
(2) k = Q and F(X) = X3 − X − 13 . Application of Corollary 8.20c to 

the polynomial G(X) = −3X2 F(1/ X) = X3 + 3X2 − 3 shows that G(X)
has no degree-one factor and hence is irreducible over Q. Then it follows that 
F(X) is irreducible over Q. The proof of Theorem 9.12 takes k1 = Q(r), where 
r3 − r − 1 = 0. Then division gives 3 

X3 − X − 13 = (X − r)(X2 + r X + (r2 − 1)). 

The discriminant b2 − 4ac of the quadratic factor is 

r2 

r2 − 4(r2 − 1) = 4 − 3r2 = 
(1 + 2r)2 

, 

the right-hand equality following from direct computation. This discriminant is
a square in k1 = Q(r), and hence X2 + r X + (r2 − 1) factors into degree-one 
factors in Q(r) without passing to an extension field. Therefore L = Q(r) with 
[L : Q] = 3. 

Theorem 9.13 (uniqueness of splitting field). If F(X) is a nonconstant poly-
nomial in k[X], then any two splitting fields of F(X) over k are k isomorphic. 
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The idea of the proof is simple enough, but carrying out the idea runs into a
technical complication. The idea is to proceed by induction, using the uniqueness
result for simple algebraic extensions (Theorem 9.11) repeatedly until all the roots
have been addressed. The difficulty is that after one step the coefficients of the
two quotient polynomials end up in two distinct but k isomorphic fields. Thus
at the second step Theorem 9.11 does not apply directly. What is needed is the
reformulated version given below as Theorem 9.110, which lends itself to this kind
of induction. In addition, as soon as the induction involves at least three steps, the
above statement of Theorem 9.13 does not lend itself to a direct inductive proof.
For this reason we shall instead prove a reformulated version Theorem 9.130 of 
Theorem 9.13 that is ostensibly more general than Theorem 9.13.
Recall from Proposition 4.24 that a general substitution homomorphism that

starts from a polynomial ring can have two ingredients. One is the substitution
of some element, such as x , for the indeterminate X , and the other is a homo-
morphism that is made to act on the coefficients. If the homomorphism is σ ,
let us write Fσ (X) to indicate the polynomial obtained by applying σ to each 
coefficient of F(X). 

Theorem 9.110. Let k and k0 be fields, and let σ : k → k0 be a field 
isomorphism. Suppose that F(X) is a monic prime polynomial in k[X] and that 
K = k(x) and K0 = k0(x 0) are simple algebraic extensions such that F(x) = 0 
and Fσ (x 0) = 0. Then there exists a field isomorphism ϕ : k(x) → k0(x 0) such 
that ϕ

Ø
Ø
k = σ and ϕ(x) = x 0. 

PROOF. The argument is essentially unchanged from the proof of Theorem 
9.11. We start from the substitution homomorphism G(X) 7→ Gσ (x 0) that 
replaces X by x 0 and that operates by σ on the coefficients. This descends to 
a field map of k[x] into k0[x 0], and the homomorphism must be onto k0[x 0] by a 
count of dimensions. § 

Theorem 9.130. Let k and k0 be fields, and let σ : k → k0 be a field 
isomorphism. If F(X) is a nonconstant polynomial in k[X] and if L and L0 

are respective splitting fields for F(X) over k and for Fσ (X) over k0, then there 
exists a field isomorphism ϕ : L → L0 such that ϕ

Ø
Ø
k = σ and such that ϕ sends 

the set of roots of F(X) to the set of roots of Fσ (X). 

PROOF. We proceed by induction on n = deg F(X), the case n = 1 being 
evident. Assume the result for degree n − 1. Let G(X) be a prime factor of F(X) 
over k. Then Gσ (X) is a prime factor of Fσ (X) over k0. The polynomials G(X)
and Gσ (X) have roots in L and L0, respectively. Fix one such root for each, say x1 

and x1
0 . By Theorem 9.110, there exists a field isomorphism σ1 : k(x1) → k0(x1

0 )
extending σ and satisfying σ1(x1) = x1

0 . Write F(X) = (X − x1)H(X) with 
coefficients in k(x1), by the Factor Theorem (Corollary 1.13). Applying σ1 to 
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the coefficients, we obtain Fσ (X) = (X − x1
0 )Hσ1 (X) with coefficients in k0(x1

0 ). 
Then L and L0 are splitting fields for H(X) and H σ1 (X) over k(x1) and k0(x1

0 ),
respectively. By induction we can extend σ1 to an isomorphism ϕ : L → L0, and 
the theorem readily follows. § 

3. Finite Fields 

In this section we shall use the results on splitting fields in Section 2 to classify
finite fields up to isomorphism. So far, the examples of finite fields that we have
encountered are the prime fields Fp = Z/pZ with p elements, p being any prime
number, and the field of 4 elements in Example 3 of fields in Section IV.4. Every
finite field has to contain a subfield isomorphic to one of the prime fields Fp, and
Proposition 4.33 observed as a consequence that any finite field necessarily has 
pn elements for some prime number p and some integer n > 0. 

Theorem 9.14. For each pn with p a prime number and with n a positive 
integer, there exists up to isomorphism one and only one field with pn elements. 
Such a field is a splitting field for X p

n 
− X over the prime field Fp. 

If q = pn , it is customary to denote by Fq a field of order q. The theorem 
says that Fq exists and is unique up to isomorphism. Some authors refer to finite 
fields as Galois fields. 
Some preparation is needed before we can come to the proof of the theorem.

We need to carry over the simplest aspects of differential calculus to polynomials
with coefficients in an arbitrary field k. First we give an informal definition of 
the derivative of a polynomial; then we give a more precise definition. For any 
polynomial F(X) = 

Pn
j=0 cj X j in k[X], we informally define the derivative to 

be the polynomial 

n nP−1
F 0(X) = 

P 
jcj X j−1 = ( j + 1)cj+1 X j . 

j=1 j=0 

The more precise definition uses the definition of members of k[X] as infinite 
sequences of members of k whose terms are 0 from some point on. In this notation 
if F = (c0, c1, . . . , cn, 0, . . . ) with cj in the j th position for j ≤ n and with 0 in 
the j th position for j > n, then F 0 = (c1, 2c2, . . . , ncn, 0, . . . ) with ( j + 1)cj+1 

in the j th position for j ≤ n − 1 and with 0 in the j th position for j > n − 1. In 
any event, the mapping F 7→ F 0 is k linear from k[X] to itself. The operation is 
called differentiation. 
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Proposition 9.15. Differentiation on k[X] satisfies the product rule: F = GH 
implies F 0 = G 0 H + GH 0. 

PROOF. Because of the k linearity, it is enough to prove the result for monomi-
als. Thus let G(X) = Xm and H(X) = Xn , so that F(X) = Xm+n . Then 
F 0(X) = (m + n)Xm+n−1, G 0(X)H(X) = mXm+n−1, and G(X)H 0(X) = 
nXm+n−1. Hence we indeed have F 0(X) = G 0(X)H (X) + G(X)H 0(X). § 

Corollary 9.16. If n is a positive integer, if r is in k, and if F(X) = (X − r)n 

in k[X], then F 0(X) = n(X − r)n−1. 

PROOF. This is immediate by induction from Proposition 9.15 since the deriv-
ative of X − r is 1. § 

Corollary 9.17. Let r be in k, and let F(X) be in k[X]. If (X − r)2 divides 
F(X), then F(r) = F 0(r) = 0. Conversely if F(r) = F 0(r) = 0, then (X − r)2 

divides F(X). 

PROOF. Write F(X) = (X − r)2G(X). If we substitute r for X , we see that 
F(r) = 0. If instead we differentiate, using Proposition 9.15 and Corollary 9.16,
then we obtain F 0(X) = 2(X − r)G(X) + (X − r)2G 0(X). Substituting r for X ,
we obtain F 0(r) = 0 + 0 = 0. 
For the converse, let F(r) = F 0(r) = 0. Proposition 4.28a shows that F(X) = 

(X − r)G(X). Differentiating this identity by means of Proposition 9.15 gives 
F 0(X) = G(X)+(X−r)G 0(X). Substitutingr for X yields 0 = F 0(r) = G(r)+0 
and shows that G(r) = 0. By Proposition 4.28, G(X) = (X − r)H (X). Hence 
F(X) = (X − r)2 H(X). § 

Lemma 9.18. If k is a field of characteristic p 6= 0, then the map ϕ : k → k 
given by ϕ(x) = x p is a field mapping. 

REMARK. The map x 7→ x p is often called the Frobenius map. If k is a finite 
field, then it must carry k onto k since one-one implies onto for functions from a
finite set to itself; in this case the map is an automorphism of k. 

PROOF. The computation ϕ(uv) = (uv)p = u pv p = ϕ(u)ϕ(v) shows that ϕ 
respects products. If u and v are in k, then 

p−1
ϕ(u + v) = (u + v)p = ϕ(u) + 

P ° p¢u p− j v j + ϕ(v) = ϕ(u) + ϕ(v), j
j=1 

the last equality holding since the binomial coefficient 
° p
j 
¢ 
has a p in the numerator 

for 1 ≤ j ≤ p − 1. Thus ϕ is a ring homomorphism. Since ϕ(1) = 1, ϕ is a field 
mapping. § 
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PROOF OF UNIQUENESS IN THEOREM 9.14. Let k be a finite field, say of 
characteristic p, and let P be the prime field of order p within k. We know that P 
is isomorphic to Fp = Z/ pZ. Since k is a finite-dimensional vector space over P,
we know also that k has order q = pn for some integer n > 0. The multiplicative 
group k× of k thus has order q − 1, and every x 6= 0 in k therefore satisfies 
xq−1 = 1. Taking x = 0 into account, we see that every member of k satisfies 
xq = x . Forming the polynomial Xq − X in P[X], we see that every member of 
k is a root of this polynomial. Iterated application q times of the Factor Theorem 
(Corollary 1.13) shows that Xq − X factors into degree-one factors in k. Since 
every member of k is a root of Xq − X , k is a splitting field of Xq − X over P. 
Then the uniqueness of the prime field up to isomorphism, in combination with
the uniqueness of the splitting field of Xq − X given in Theorem 9.130, shows 
that k is uniquely determined up to isomorphism. § 

PROOF OF EXISTENCE IN THEOREM 9.14. Let q = pn be given, and define k to 
be a splitting field of Xq − X over Fp = Z/ pZ. The field k exists by Theorem 
9.12, and it has characteristic p. Since Xq − X is monic of degree q, the definition 
of splitting field says that we can write 

Xq − X = (X − u1)(X − u2) · · · (X − uq ) with all uj ∈ k. 

Because of Lemma 9.18, the map ϕ(u) = uq , which is the nth power of the 
map u 7→ u p, is a field mapping of k into itself. The members of k fixed by 
ϕ form a subfield of k, and these elements of k are exactly the members of the 
set S = {u1, . . . , uq }. Therefore S is a subfield of k, necessarily containing 
Fp = Z/pZ. Since Xq − X splits in S and since the roots of Xq − X generate
S, S is a splitting field of Xq − X over Fp. In other words, S = k. To complete 
the proof, it is enough to show that the elements u1, . . . , uq are distinct, and then 
k will be a field of q elements. The question is therefore whether some root of 
Xq − X has multiplicity at least 2, i.e., whether (X −r)2 divides Xq − X for some 
r in k. Corollary 9.17 gives a necessary condition for this divisibility, saying that
the derivative of Xq − X must have r as a root. However, the derivative of Xq − X 
is qXq−1 − 1 = −1, and the constant polynomial −1 has no roots. We conclude 
that k has q elements. § 

Corollary 9.19. If q and r are integers with 2 ≤ q ≤ r , then the finite field 
Fq is isomorphic to a subfield of the finite field Fr if and only if r = qn for some 
integer n ∏ 1. 

PROOF. If Fq is isomorphic to a subfield of Fr , then we may consider Fr as a 
vector space over Fq , say of dimension n. In this case, Fr has qn elements. 
Conversely let r = qn , and regard Fr as a splitting field of Xqn 

− X over the 
prime field Fp, by Theorem 9.14. Let S be the subset of Fr of all roots of Xq − X . 
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qn −1Putting a = q − 1 and k = q−1 = qn−1 + qn−2 + · · · + 1, we have 

Xka − 1 = (Xa − 1)(X (k−1)a + X (k−2)a + · · · + 1). 

Multiplying by X , we see that Xq − X is a factor of Xqn 
− X . Since Xqn 

− X 
splits in Fr and has distinct roots, the same is true of Xq − X . Therefore |S| = q. 
Let q = pm . The mth power of the homomorphism of Lemma 9.18 on k = Fr 

is x 7→ xq , and the subset of Fr fixed by this homomorphism is a subfield. Thus 
S is a subfield, and it has q elements. § 

4. Algebraic Closure 

Algebraically closed fields—those for which every nonconstant polynomial with
coefficients in the field has a root in the field—were introduced in Section V.1, and
it was mentioned at that time that every field is a subfield of some algebraically
closed field. We shall prove that existence theorem in this section in a form
lending itself to a uniqueness result.
Throughout this section let k be a field. We begin by giving further descriptions

of algebraically closed fields that take the theory of Sections 1–2 into account. 

Proposition 9.20. The following conditions on the field k are equivalent: 
(a) k has no nontrivial algebraic extensions,
(b) every irreducible polynomial in k[X] has degree 1, 
(c) every polynomial in k[X] of positive degree has at least one root in k,
(d) every polynomial in k[X] of positive degree factors over k into polyno-

mials of degree 1. 

PROOF. If (a) holds, then (b) holds since any irreducible polynomial of degree
greater than 1 would give a nontrivial simple algebraic extension (Theorem 9.10).
If (b) holds and a polynomial of positive degree is given, apply (b) to an irreducible
factor to see that the given polynomial has a root; thus (c) holds. Condition (c)
implies condition (d) by induction and the Factor Theorem. If (d) holds and if 
K is an algebraic extension of k, let x be in K, and let F(X) be the minimal 
polynomial of x over k. Then F(X) is irreducible over k, and (d) says that F(X)
has degree 1. Hence x is in k, and we conclude that K = k. § 

A field satisfying the equivalent conditions of Proposition 9.20 is said to be
algebraically closed. 
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EXAMPLES OF ALGEBRAICALLY CLOSED FIELDS. 
(1) The Fundamental Theorem of Algebra (Theorem 1.18) says that C is 

algebraically closed. This theorem was not proved in Chapter I, but a proof
will be given in this chapter in Section 10. 
(2) Let K be the subset of all members of C that are algebraic over Q. By

Corollary 9.9, K is a subfield of C. Example 1 shows that every polynomial in 
Q[X] splits in K, and Lemma 9.21 below then allows us to conclude that K is 
algebraically closed. 
(3) Fix a prime number p, and start with k0 = Fp as the prime field Z/ pZ. 

Enumerate the members of Fp[X], letting Fn(X) be the nth such polynomial. We 
construct kn by induction on n so that kn is a splitting field for Fn(X) over kn−1 

when n ∏ 1. Then k0 ⊆ k1 ⊆ k2 ⊆ · · · is an increasing sequence of fields 
containing Fp. Let K be the union. Any two elements of K lie in a single kn , and 
it follows that K is closed under the field operations. Any three elements lie in a 
single kn , and it follows that any of the defining properties of a field is valid in 
K because it is valid in kn . Therefore K is a field. This field is an extension of 
Fp, and every polynomial in Fp[X] splits in K. As in Example 2, Lemma 9.21 
below shows that K is algebraically closed. 

Lemma 9.21. If K/k is an algebraic extension of fields and if every non-
constant polynomial in k[X] splits into degree-one factors in K, then K is 
algebraically closed. 

PROOF. Let K0 be an algebraic extension of K, and let x be in K0. Let G(X)
be the minimal polynomial of x over K, and write G(X) as 

G(X) = Xn + cn−1 Xn−1 + · · · + c0 with all ci ∈ K. 

Then x is algebraic over k(cn−1, . . . , c0), which is a finite extension of k by
Theorem 9.8. By Corollary 9.7, x lies in a finite extension of k. Thus Proposition 
9.4 shows that x is algebraic over k. Let F(X) be the minimal polynomial of x 
over k. By assumption this splits over K, say as 

F(X) = (X − x1) · · · (X − xm ) with all xi ∈ K. 

Evaluating at x and using the fact that F(x) = 0, we see that x = xj for some j . 
Therefore x is in K, and K is algebraically closed. § 

An extension field K/k is an algebraic closure of k if K is algebraic over k 
and if K is algebraically closed. Example 2 of algebraically closed fields above
gives an algebraic closure of Q, and Example 3 gives an algebraic closure of Fp. 
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Theorem 9.22 (Steinitz). Every field k has an algebraic closure, and this is 
unique up to k isomorphism. 

REMARKS. The proof of existence is modeled on the argument for Example 3
of algebraic closures. However, we are not free in general to use a simple union
of a sequence of fields and have to work harder. Because there is no evident set
of possibilities within which we are forming extension fields, Zorn’s Lemma is
inconvenient to use and tends to result in an unintuitive construction. Instead,
we use Zermelo’s Well-Ordering Theorem, whose use more closely parallels the
inductive construction in Example 3. 

PROOF OF EXISTENCE. With k as the given field, let S be the set of nonconstant 
polynomials s(X) in k[X], and introduce a well ordering into S by means of
Zermelo’s Well-Ordering Theorem (Section A5 of the appendix). Let us write ≺ 
for “strictly precedes in the ordering” and - for “equals or strictly precedes.” For 
each s ∈ S, let s̄ be the successor of s, i.e., the first element among all elements t 
with s ≺ t . We write s0 for the first element of S. Without loss of generality, we 
may assume that S has a last element s∞. The idea is to construct simultaneously 
two kinds of things: 

(i) an algebraic extension field ks /k for each s ∈ S such that ks0 = k and 
such that ks̄ is a splitting field for s(X) over ks whenever s ≺ s∞,

(ii) a field mapping ϕut : kt → ku for each ordered pair of elements t and u 
in S having t - u, such that ϕt t = 1 for all t and such that t - u - v 
implies ϕvt = ϕvuϕut . 

These extension fields and mappings are to be such that ks = 
S

t≺s ϕst (kt )
whenever s is not a successor and is not s0. If such a system of extension fields
and field homomorphisms exists, then Lemma 9.21 applies to a splitting field 
over ks∞ of the nonconstant polynomial s∞(X) and shows that this splitting field
is algebraically closed; since this splitting field is an algebraic extension of k, it 
is an algebraic closure of k. 
A partial such system through t0 means a system consisting of fields ks with 

s - t0 and field homomorphisms ϕut with t - u - t0 such that the above 
conditions hold as far as they are applicable. A partial system exists through
the first member s0 of S because we can take ks0 = k and ϕs0s0 = 1. Arguing
by contradiction, we suppose that such a system of extension fields and field
homomorphisms fails to exist through some member of S. Let t0 be the first 
member of S such that there is no partial system through t0. 
Suppose that t0 is the successor of some element t1 in S. We know that a partial 

system exists through t1. If we let kt0 be a splitting field for t1(X) over kt1 , and 
if we define Ω 

ϕt0t1 ϕt1t for t - t1, 
ϕt0 t = 

1 for t = t0, 
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then the enlarged system is a partial system through t0, contradiction. Thus t0 

cannot be the successor of some element of S. 
When t0 is not a successor, at least kt is defined for t ≺ t0 and ϕut is defined 

for t - u ≺ t0. We want to form a union, but we have to keep the field operations
aligned properly in the process. Define a “t-allowable tuple” to be a function 
u 7→ xu defined for t - u ≺ t0 such that xu is in ku and ϕvu(xu ) = xv whenever 
t - u - v ≺ t0. If x is in kt , then an example of a t-allowable tuple is given by 
u 7→ ϕut (x) for t - u ≺ t0. 
If t ≺ t0 and t 0 ≺ t0, then we can apply field operations to the t-allowable tuple 

u 7→ xu and to the t 0-allowable tuple u 7→ yu , obtaining max(t, t 0)-allowable 
tuples u 7→ xu + yu , u 7→ −xu , u 7→ xu yu , and xu 7→ x−1 as long as xt 6 0.= u
These operations are meaningful since each ϕvu is a field mapping. 
If t ≺ t0 and t 0 ≺ t0, we say that the t-allowable tuple u 7→ xu is equivalent to 

the t 0-allowable tuple u 7→ yu if xu = yu for max(t, t 0) - u ≺ t0. The result is 
an equivalence relation, and the equivalence relation respects the field operations
in the previous paragraph. We define kt0 to be the set of equivalence classes of
allowable tuples with the inherited field operations. The 0 element is the class of
the s0-allowable tuple u 7→ 0, and the multiplicative identity is the class of the 
s0-allowable tuple u 7→ 1. It is a routine matter to check that kt0 is a field. 
If t ≺ t0 is given, we define the function ϕt0t : kt → kt0 as follows: if x is 

in kt , we form the t-allowable tuple u 7→ ϕut (x) and take its equivalence class, 
which is a member of kt0 , as ϕt0t (x). Then ϕt0t is evidently a field mapping. It 
is evident also that ϕt0vϕvu = ϕt0u when u - v ≺ t0. Defining ϕt0t0 to be the 
identity, we have a complete system of field mappings ϕvu for kt0 . 
The final step is to check that kt0 is the union of the images of the ϕt0t for t ≺ t0. 

Thus choose a representative of an equivalence class in kt0 . Let the representative 
be a t-allowable tuple u 7→ xu for t - u ≺ t0. The element xt is in kt , and the 
condition xu = ϕut (xt ) is just the condition that the class of u 7→ xu be the image 
of xt under ϕt0t . Hence every member of kt0 is in the image of some ϕt0t with 
t ≺ t0, and we have a contradiction to the hypothesis that a partial system through 
t0 does not exist. This completes the proof of existence. § 

For the uniqueness in Theorem 9.22, we again need a serious application of
the Axiom of Choice, but here Zorn’s Lemma can be applied fairly routinely.
The proof will show a little more than is needed, and in fact the uniqueness in
Theorem 9.22 will be derived as a consequence of Theorem 9.23 below. 

Theorem 9.23. Let K0 be an algebraically closed field, and let K be an algebraic 
extension of a field k. If ϕ is a field mapping of k into K0, then ϕ can be extended 
to a field mapping of K into K0. 
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PROOF OF UNIQUENESS IN THEOREM 9.22 USING THEOREM 9.23. Let K and 
K0 be algebraic closures of k, and let ϕ : k → K0 be the inclusion mapping. 
Theorem 9.23 supplies a field mapping 8 : K → K0 such that 8

Ø
Ø
k = ϕ, i.e., 

such that 8 fixes k. Since K is an algebraic closure of k, so is 8(K). Then K0 is 
an algebraic extension of the algebraically closed field 8(K), and we must have 
8(K) = K0. Thus 8 is a k isomorphism of K onto K0. 

PROOF OF THEOREM 9.23. Let S be the set of all triples (L, L0 ,√) such 
that L is a field with k ⊆ L ⊆ K and √ is a field mapping of L onto the 
subfield L0 of K0 with √

Ø
Ø
k = ϕ. The set S is nonempty since (k, ϕ(k), ϕ) is 

a member of it. Defining (L1, L0
1,√1) ⊆ (L2, L0

2,√2) to mean that L1 ⊆ L2,
that L0

1 ⊆ L0
2, and that √1 as a set of ordered pairs is a subset of √2 as a set 

of ordered pairs, we partially order S by inclusion upward. If {(Lα, L0 
α, √α)} is 

a nonempty chain in S, form the triple 
°S 

Lα, 
S 

L0 
α, 

S 
√α

¢
, and put √ = α α αS 

α √α. Then √ 
°S 

α Lα

¢ 
= 

S 
α L0 

α, and consequently 
°S 

α Lα, 
S 

α L0 
α, 

S 
α √α

¢ 

is an upper bound in S for the chain. By Zorn’s Lemma, S has a maximal element 
(L0, L0

0,√0). We shall prove that L0 = K, and the proof will be complete. 
Fix x in K, and let F(X) be the minimal polynomial of x over L0. The 

minimal polynomial of √0(x) over L0
0 is then F√0 (X). Since K0 is algebraically 

closed, F√0 (X) has a root x 0 in K0. By Theorem 9.110, √0 : L0 → L0 can be 
extended to an isomorphism 90 : L0(x) → L0

0(x 0) such that √0(x) = x 0. Then 
(L0(x), L0

0(x 0), 90) is in S and contains (L0, L0
0,√0). This containment, if strict, 

would contradict the fact that (L0, L0
0,√0) is a maximal element of S. Thus 

equality must hold: L0(x) = L0. Therefore x is in L0, and we conclude that 
L0 = K. § 

The use of algebraic closures allows us to simplify understanding of splitting
fields. If we are working with a field k and is k is a fixed algebraic closure of k,
then the existence and uniqueness of the splitting field of a polynomial F(X) in 
k[X] becomes evident; no isomorphisms are involved. Namely let α1, . . . , αn be 
the roots of F(X) in k. Then the subfield of k generated by k and α1, . . . , αn is 
the splitting field of F(X), and it is manifestly unique. Henceforth when we refer 
to the splitting field of a polynomial over a field k, it is with an understanding of
working within a fixed algebraic closure in this way. 

5. Geometric Constructions by Straightedge and Compass 

Classical Euclidean geometry attached a certain emphasis to constructions in the
Euclidean plane that could be made by straightedge and compass. These are
often referred to casually as constructions by “ruler and compass,” but one is not 
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allowed to use the markings on a ruler. Thus “straightedge and compass” is a 
more accurate description.
In these constructions the starting configuration may be regarded as a line with

two points marked on the line. Allowable constructions are the following: to form
the line through a given point different from finitely many other lines through that
point, to form the line through two distinct points, to form a circle with a given
center and a radius different from that of finitely many other circles through the
point, and to form a circle with a given center and radius. Intersections of a line
or a circle with previous lines and circles establish new points for continuing the
construction. 
For example a line perpendicular to a given line at a given point can be

constructed by drawing any circle centered at the point, using the two intersection
points as centers of new circles, drawing those circles so as to have radius larger
than the first circle, and forming the line between their two points of intersection.
An angle at the point P of intersection between two intersecting lines A and B 
may be bisected by drawing any circle centered at P , selecting one of the points 
of intersection on each line so that P and the two new points Q and R describe 
the angle, drawing circles with that same radius centered at Q and R, and forming
the line between the points of intersection of the two circles. And so on.
Three notable problems remained unsolved in antiquity: 
(i) how to double a cube, i.e., how to construct the side of a cube of double
the volume of a given cube,

(ii) how to trisect any constructible angle, i.e., how to divide the angle into
three equal parts by means of constructed lines,

(iii) how to square a circle, i.e., how to construct the side of a square whose
area equals that of a given disk. 

In this section we shall use the elementary field theory of Sections 1–2 to show that
doubling a cube and trisecting a 60-degree angle are impossible with straightedge
and compass. As to (iii), we shall reduce a proof of the impossibility of squaring
the circle to a proof that π is transcendental over Q. This latter proof we give in 
Section 14. 
The first step is to translate the problem of geometric constructibility into a

statement in algebra. Since we are given two points on a line, we can introduce
Cartesian coordinates for the Euclidean plane, taking one of the points to be (0, 0)
and the other point to be (1, 0). Points in the Euclidean plane are now determined
by their Cartesian coordinates, which determine all distances. Distances in turn
can be laid off on the x-axis from (0, 0). Thus the question becomes, what points 
on the x-axis can be constructed? 
Let C be the set of constructible x coordinates. We are given that 0 and 1 are 

in C. Closure of C under addition and subtraction is evident; the straightedge is
not even necessary for this step. Figure 9.1 indicates why the positive elements 
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c 

a 

b d 

FIGURE 9.1. Closure of positive constructible x coordinates 
under multiplication and division. 

of C are closed under multiplication and division. In more detail we take two
intersecting lines and mark three known positive members of C as the distances 
a, b, c in the figure. Then we form the line through the two points marking a 
and b, and we form a line parallel to that line through the point marked off by
the distance c. The intersection of this parallel line with the other original line
defines a distance d. Then a/b = c/d, and so d = bc/a. By taking a = 1, we 
see that we can multiply any two members b and c in C, obtaining a result in C. 
By instead taking c = 1, we see that we can divide. The conclusion is that C is a 
field. 

c 

b 

a 

FIGURE 9.2. Closure of positive constructible x coordinates 
under square roots. 

Figure 9.2 indicates why the positive elements of C are closed under taking 
square roots. In more detail let a and b be positive members of C with a < b. By 
forming a circle whose diameter is a segment of length b and by forming a line 
perpendicular to that line at the point marked by a, we determine the pictured p
right triangle with a side c satisfying a/c = c/b. Then c = ab. By taking one 
of a and b to be 1, we see that the square root of the other of a and b is in C. This 
completes the proof of the direct part of the following theorem. 

Theorem 9.24. The set C of x coordinates that can be constructed from x = 1 
and x = 0 by straightedge and compass forms a subfield of R such that the square 
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root of any positive element of the field lies in the field. Conversely the members
of C are those real numbers lying in some subfield Fn of R of the form 

p p p
F1 = Q( a0 ), F2 = F1( a1 ), . . . , Fn = Fn−1( an−1 ) 

with each aj in Fj and with a0, . . . , an−1 all ∏ 0. 
PROOF OF CONVERSE. Suppose we have a subfield F = Fn of R of the 

kind described in the statement of the theorem. The possibilities for obtaining
a new constructible point from F by an additional construction arise from three
situations: the intersection of two lines, each passing through two points of F ;
the intersection of a line and a circle, each determined by data from F ; and the 
intersection of two circles, each determined by data from F . 
In the case of two intersecting lines, each line is of the form ax + by = c for 

suitable coefficients a, b, c in F , and the intersection is a point (x, y) in F × F . 
So intersections of lines do not force us to enlarge F . 
For a line and a circle, we assume that the line is given by ax + by = c with 

a, b, c in F , that the circle has radius in F and center in F × F , and that the lines 
and the circle actually intersect. The circle is then given by (x−h)2+(y−k)2 = r2 

with h, k, r in F . Substitution of the equation of the line into the equation of the
circle gives us a quadratic equation either for x , and x then determines y, or for 
y, and y then determines x . The quadratic equation has real roots, and thus its p
discriminant is ∏ 0. The result is that x and y are in a field F( l ) for some 
l ∏ 0 in F . 
For two circles, without loss of generality, we may take their equations to be 

x2 + y2 = r2 2 2 = s2and (x − h) + (y − h)

with r, h, k, s in F . Subtracting gives 2xh + 2yk = h2 + k2 − s2 + r2. With this 
equation and with x2 + y2 = r2, we again have a line and circle that are being
intersected. Thus the same remarks apply as in the previous paragraph.
The conclusion is that any new single construction of points of intersection byp

straightedge and compass leads from F to F( l ) for some l ∏ 0 in F . Thus 
every member of the set C is as described in the theorem. § 

To apply the theorem to prove the impossibility of the three never-accomplished
constructions that were described earlier in the section, we observe that [Fi : Fi−1]
in the theorem equals 1 or 2 for each i . Consequently every member of the 
constructible set C lies in a finite algebraic extension of Q of degree 2k for some k.p
For the problem of doubling a cube, the question amounts to constructing 3 2.p p

We argue by contradiction. If 3 2 lies in Fn as in the theorem, then Q( 3 2 ) ⊆ Fn . 
With k as the integer ≤ n such that [Fn : Q] = 2k , Corollary 9.7 gives 

p p p
2k = [Fn : Q] = [Fn : Q( 3 2 )] [Q( 3 2 ) : Q] = 3[Fn : Q( 3 2 )]. 
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Thus 3 must divide a power of 2, and we have arrived at a contradiction. We
conclude that it is not possible to double a cube with straightedge and compass.
For the problem of trisecting any constructible angle, let us show that a 60◦ 

angle cannot be trisected. A 60◦ angle is itself constructible, being the angle
between two sides in an equilateral triangle. Trisecting a 60◦ angle amounts to 
constructing cos 20◦; sin 20◦ is then (1 − cos2 20◦)1/2. To proceed, we derive an 
equation satisfied by cos 20◦, starting from 

i
p

3 1 3(cos 20◦ + i sin 20◦) = cos 60◦ + i sin 60◦ = .2 + 2 

We expand the left side and extract the real part of both sides to obtain 
1cos3 20◦ − 3 cos 20◦ sin2 20◦ = 2 . 

Substituting sin2 20◦ = 1 − cos2 20◦ and simplifying, we see that r = cos 20◦ 

satisfies 
4r3 − 3r − 12 = 0. 

Arguing with Corollary 8.20 as in Example 2 of splitting fields in Section 2, we
readily check that 4X3 − 3X − 12 is irreducible over Q. Hence [Q(cos 20◦) : Q] 
= 3, and we are led to the same contradiction as for the problem of doubling
the cube. Therefore it is not possible to trisect a 60◦ angle with straightedge and 
compass.
For the problem of squaring a circle, let A be the area of the circle, and let 

r be the radius. If the square has side x , then x2 = A = πr2, with r given. p
Thus x = r π , and the essence of the matter is to construct 

p
π . However, π 

is known to be transcendental by a theorem of F. Lindemann (1882); we give a
proof in Section 14. Since π is transcendental, 

p
π is transcendental. 

A fourth notable problem, which leads to further insights, concerns the con-
struction of a regular polygon of outer radius 1 with n sides. This construction 
is easy with straightedge and compass when n is a power of 2 or is 3 times a
power of 2, and Euclid showed that a construction is possible for n = 5. But a 
construction cannot be managed with straightedge and compass for n = 9, for 
example, because a central angle in this case is 40◦ and the constructibility of 
cos 40◦ would imply the constructibility of cos 20◦. Thus the question is, for what 
values of n can a regular n-gon be constructed with straightedge and compass?
The remarkable answer was given by Gauss. By a Fermat number is meant 

any integer of the form 22N 
+ 1. A Fermat prime is a Fermat number that is 

prime. The Fermat numbers for N = 0, 1, 2, 3, 4 are 3, 5, 17, 257, 65537, and 
each is a Fermat prime. No larger Fermat primes are known.2 The answer given 

2Many Fermat numbers for N ∏ 5 are known not to be prime, sometimes by the discovery of 
an explicit factor and sometimes by a verification that 3 to the power 22N −1 is not congruent to −1 

modulo (22N 
+ 1). (Cf. Lemma 9.46.) For example Euler discovered that 641 divides 225 

+ 1. 
Computer calculations have shown that 22N +1 is not prime if 5 ≤ N ≤ 32. 
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by Gauss, which we shall prove in stages in Sections 6–9, is as follows. 

Theorem 9.25 (Gauss).3 A regular n-gon is constructible with straightedge 
and compass if and only if n is the product of distinct Fermat primes and a power 
of 2. 

We can show the relevance of Fermat primes right now, and we can give an
indication that if n is a prime number, then a regular n-gon can be constructed if 
and only if n is a Fermat prime. But a full proof even of this statement will make
use of Galois groups, which we take up in the next three sections.
For the necessity let n be prime, and suppose that a regular n-gon is con-

structible. Returning from degrees to radians, we observe that each central angle
is 2π/n. Thus the constructibility implies the constructibility of cos 2π/n, and it 
follows that e2π i/n = cos 2π/n + i sin 2π/n is in the field C + iC of constructible 
points in the complex plane. We have the factorization 

Xn − 1 = (X − 1)(Xn−1 + Xn−2 + · · · + X + 1). 

and e2π i/n is a root of the second factor. The first example of Eisenstein’s criterion
(Corollary 8.22) in Section VIII.5 shows that the second factor is irreducible.
According to the results of Section 1, Q(e2π i/n) is a simple algebraic extension 
of Q of degree n − 1. 
Applying Theorem 9.24, we see that n − 1 must be a power of two. Let us 

write n − 1 = 2m . Suppose m = a2N with a odd. If a > 1, then the equality 
n = 2a2N 

+ 1 = (22N 
)a + 1a exhibits n as the sum of two ath powers, necessarily 

divisible by 22N 
+1. Since n is assumed prime, we conclude that a = 1. Therefore 

n = 22N 
+ 1, and n is a Fermat prime.

We do not quite succeed in proving the converse at this point. If n is the Fermat 
prime 22N 

+ 1, then the above argument shows that the degree of Q(e2π i/n) over 
Q is 22N . However, we cannot yet conclude that Q(e2π i/n) can be built from Q
by successively adjoining 2N square roots, and thus the converse part of Theorem
9.24 is not immediately applicable. Once we have the theory of Galois groups in
hand, we shall see that the existence of these intermediate extensions involving
square roots is ensured, and then the constructibility follows. 

3Gauss announced both the necessity and the sufficiency in this theorem in his Disquisitiones
Arithmeticae in 1801, but he included a proof of only the sufficiency (partly in his articles 336 and
365). A proof of the necessity appeared in a paper of Pierre-Laurent Wantzel in 1837. 



474 IX. Fields and Galois Theory 

6. Separable Extensions 

The Galois group Gal(K/k) of a field extension K/k is defined to be the set 

Gal(K/k) = {k automorphisms of K} 

with composition as group operation. An instance of this group was introduced in
the context of Example 9 of Section IV.1; in this example the field k was the field 
Q of rationals and the field K was a number field Q[θ], where θ is algebraic over 
Q. In studying Gal(K/k) in this chapter, we ordinarily assume that dimk K < ∞,
but there will be instances where we do not want to make such an assumption.
Beginning in this section, we take up a study of Galois groups in general.

We shall be interested in relationships between fields L with k ⊆ L ⊆ K and 
subgroups of Gal(K/k). If H is a subgroup of Gal(K/k), then 

KH = 
©
x ∈ K | ϕ(x) = x for all ϕ ∈ H

™ 

is a field called the fixed field of H ; it provides an example of an intermediate 
field L and gives a hint of the relationships we shall investigate. We begin with
some examples; in each case the base field k is the field Q of rationals. 

EXAMPLES OF GALOIS GROUPS. 
p

(1a) K = Q( −1 ). If ϕ is in Gal(K/Q), then we must have ϕ
Ø
Ø
Q = 1, and 

p p p
ϕ( −1 ) must be a root of X2 + 1. Thus ϕ( −1 ) = ± −1. Since Q andp p

−1 generate Q( −1 ), there are at most two such ϕ’s. On the other hand, p p p
Q( −1 ) and Q(− −1 ) are simple extensions of Q such that 

p
−1 and − −1 

have the same minimal polynomial. Theorem 9.11 therefore produces a Q auto-p p p
morphism of Q( −1 ) with ϕ( −1 ) = − −1, namely complex conjugation. 
We conclude that Gal(K/Q) has order 2, hence that Gal(K/Q) ∼= C2. p
(1b) K = Q( 2 ). The same argument applies as in Example 1a, and the 

conclusion is that Gal(K/Q) ∼= C2. The nontrivial element of the Galois group p
carries 

p
2 to − 2 and is different from complex conjugation. 

p p3 3(2) K = Q( 2 ). If ϕ is in Gal(K/Q), then ϕ
Ø
Ø
Q = 1, and ϕ( 2 ) has to be 

a root of X3 − 2. But K is a subfield of R, and there is only one root of X3 − 2p p p p
in R. Hence ϕ( 3 2 ) = 3 2. Since Q and 3 2 generate Q( 3 2 ) as a field, we see 
that ϕ = 1. We conclude that Gal(K/Q) has order 1, i.e., is the trivial group. 
(3) K = Q(r), where r is a root of X3 − X − 13 . Any ϕ in Gal(K/Q) fixes Q 

and sends r to a root of X3 − X − 13 . In Example 2 of splitting fields in Section 2,
we saw that all three complex roots of X3 − X − 13 lie in K. Arguing as in 
Example 1a, we see that Gal(K/Q) has order 3, hence that Gal(K/Q) ∼= C3. 



475 6. Separable Extensions 

Q(e2π i/17).(4) K = According to Section 5, this is the field we need to
consider in addressing the constructibility of a regular 17-gon. We saw in that
section that [K : Q] = 16 and that the minimal polynomial of e2π i/17 over Q
is X16 + X15 + · · · + X + 1. The other roots of the minimal polynomial in 
C are e2π il/17 for 2 ≤ l ≤ 16, and these all lie in K. Theorem 9.11 therefore 
gives us a Q automorphism ϕl of K sending e2π i/17 into e2π il/17 for each l with 
1 ≤ l ≤ 16. Since Q and e2π i/17 generate K, a Q automorphism of K is 
completely determined by its effect on e2π i/17. Thus the order of Gal(K/Q)
is 16. Let us determine the group structure. Since ϕl sends e2π i/17 into e2π il/17, it 
sends e2π ir/17 = (e2π i/17)r into (e2π il/17)r = e2π ilr/17. If we drop the exponential 
from the notation, we can think of ϕl as defined on the integers modulo 17, the 
formula being ϕl (r) = rl mod 17. From this viewpoint ϕl is an automorphism 
of the additive group of F17. Lemma 4.45 shows that the group of additive 
automorphisms of F17 is isomorphic to F× 

17, and it follows from Corollary 4.27 
that Gal(K/Q) ∼ C16. For our application of constructibility of a regular 17-= 
gon, we would like to know whether the elements of K are constructible. Taking
Theorem 9.24 into account, we therefore seek an intermediate field L of which 
K is a quadratic extension. Since we know that Gal(K/Q) is cyclic, we can let 
H ⊆ Gal(K/Q) ∼ C16 be the 2-element subgroup, and it is natural to try the = 
fixed field L = KH . To understand this fixed field, we need to understand the 

∼isomorphism F× = C16 better. Modulo 17, we have 17 

32 34 38 316= 9, = −22 , = 24 = −1, = 1. 

Consequently 3 is a generator of the cyclic group F× , 1} = {±1},17. Then H = {38 

and L = {x ∈ K | ϕ−1(x) = ϕ+1(x) = x}. Since ϕ−1(e2π ir/17) = e−2π ir/17 = 
e2π ir/17 with the overbar indicating complex conjugation, we see that 

L = KH = {x ∈ K | x = x̄}. 

It is not hard to check that indeed [K : L] = 2. Next we need a subfield L0 of 
L with [L : L0] = 2. We try L0 = KH 0 with H 0 equal to the 4-element cyclic 
subgroup of Gal(K/Q). Here we have a harder time checking whether L is indeed 
a quadratic extension of L0, but we shall see in Section 8 that it is.4 We continue 
in this way, and ultimately we end up with the chain of subfields that exhibits the
members of K as constructible. 

We seek to formulate the kind of argument in the above examples as a generalp
theorem. We have to rule out the bad behavior of Q( 3 2 ), where one root of the 

4Actually, Section 8 will point out how Corollary 9.36 in Section 7 already handles this step. In
fact, Corollary 9.37 handles this step with no supplementary argument. 



476 IX. Fields and Galois Theory 

minimal polynomial lies in the field but others do not, and we shall do this by
assuming that the extension field is a “normal” extension, in a sense to be defined
in Section 7. In addition, our style of argument shows that we might run into
trouble if our irreducible polynomials over k can have repeated roots in K. We 
shall rule out this bad behavior by insisting that the extension be “separable,” a
condition that we introduce now. The extension will automatically be separable
if K has characteristic 0. 
For the remainder of this section, fix the base field k. An irreducible polynomial 

F(X) in k[X] is called separable if it splits into distinct degree-one factors in its 
splitting field, i.e., if 

f (X) = an(X − x1) · · · (X − xn) with xi 6= xj for i 6= j. 

Once this splitting into distinct degree-one factors occurs in the splitting field, it
occurs in any larger field as well. 

Lemma 9.26. A polynomial F(X) in k[X] has no repeated roots in its splitting 
field K if and only if GCD(F, F 0) = 1, where F 0(X) is the derivative of F(X). 

PROOF. The polynomial F(X) has repeated roots in K if and only if F(X) is 
divisible by (X − r)2 for some r ∈ K, if and only if some r ∈ K has F(r) = 
F 0(r) = 0 (by Corollary 9.17), if and only if some r ∈ K has (X − r) dividing 
F(X) and also F 0(X) (by the Factor Theorem), if and only if some r ∈ K has 
(X − r) dividing GCD(F, F 0) when the GCD is computed in K, if and only 
if GCD(F, F 0) 6 1 when the GCD is computed in K (by unique factorization = 
in K[X]). However, the Euclidean algorithm calculates GCD(F, F 0) without 
reference to the field, and the GCD is therefore the same when computed in K as 
it is when computed in k. The lemma follows. § 

Proposition 9.27. An irreducible polynomial F(X) in k[X] is separable if 
and only if F 0(X) 6= 0. In particular, every irreducible (necessarily nonconstant)
polynomial is separable if k has characteristic 0. 

PROOF. Since the polynomial F(X) is irreducible and GCD(F, F 0) divides 
F(X), GCD(F, F 0) equals 1 or F(X) in all cases. If F 0(X) = 0, then GCD(F, F 0) 
= F(X), and Lemma 9.26 implies that F(X) is not separable. Conversely 
if F 0(X) 6 0, then the facts that GCD(F, F 0) divides F 0(X) and that deg F 0= < 
deg F together imply that GCD(F, F 0) cannot equal F(X). So GCD(F, F 0) = 1,
and Lemma 9.26 implies that F(X) is separable. § 

Fix an algebraic extension K of k. We say that an element x of K is separable 
over k if the minimal polynomial of x over k is separable. We say that K is a 
separable extension of k if every x in K is separable over k. 
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EXAMPLES OF SEPARABLE EXTENSIONS AND EXTENSIONS NOT SEPARABLE. 
(1) In characteristic 0, every algebraic extension K of k is separable, by 

Proposition 9.27. 
(2) Every algebraic extension K of a finite field k is separable. In fact, if x is 

in K, then [k(x) : k] is finite. Hence k(x) is a finite field. Then we may assume 
that K is a finite field, say of order q = pn with p prime. Since the multiplicative 
group K× has order q − 1, every nonzero element of K is a root of Xq−1 − 1, and 
every element of K is therefore a root of Xq − X . The minimal polynomial F(X)
of x over k must then divide Xq − X . However, we know that Xq − X splits over 
K and has no repeated roots. Thus F(X) splits over K and has no repeated roots. 
Then F(X) is separable over k, and x is separable over k. 
(3) Let k = Fp(x) be a transcendental extension of the finite field Fp. Because 

this extension is transcendental, X p − x is irreducible over k. Let K be the 
simple algebraic extension k[X]/(X p − x), which we can write more simply as 
k(x1/p). The minimal polynomial of x1/p over k is X p − x , and its derivative is 
pX p−1 = 0 since the derivative of the constant x is 0. By Proposition 9.27, x1/p 

is not separable over k. 

The way that separability enters considerations with Galois groups is through
the following theorem, explicitly or implicitly. One of the corollaries of the 
theorem is that if K/k is an algebraic extension, then the set of elements in K 
separable over k is a subfield of K. 

Theorem 9.28. Let k ⊆ L ⊆ K be an inclusion of fields such that K is a 
simple algebraic extension of L of the form K = L(α), let K be an algebraic 
closure of K, and let M(X) be the minimal polynomial of α over L. Then the 
number of field mappings of K into K fixing k is the product of the number of 
distinct roots of M(X) in K by the number of field mappings of L into K fixing k. 
REMARKS. An algebraic closure K of K exists by Theorem 9.22. Because K 

is known to exist, the present theorem reduces to Theorem 9.11 when L = k. 
PROOF. Any field mapping ϕ : K → K is uniquely determined by ϕ

Ø
Ø
L and 

ϕ(α). If σ = ϕ
Ø
Ø
L, then the equality M(α) = 0 implies that Mσ (ϕ(α)) = 0, and 

thus ϕ(α) has to be a root of Mσ (X). The number of distinct roots of Mσ (X)

in K equals the number of distinct roots of M(X) in K; hence the number of 
possibilities for ϕ(α) is at most the number of distinct roots of M(X) in K. 
Consequently the number of such ϕ’s fixing k is bounded above by the product 
of the number of distinct roots of M(X) in K times the number of field mappings 
σ of L into K fixing k. 
For an inequality in the reverse direction, let σ : L → K be any field mapping 

of L into K fixing k, put L0 = σ (L), let x be any root of Mσ (X), and form the 
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subfield L0(x) of K. Theorem 9.110 shows that there exists a field isomorphism 
ϕ : L(α) → L0(x) with ϕ

Ø
Ø
L = σ and ϕ(α) = x , and we can regard ϕ as a 

field mapping of K into K fixing k, extending σ , and having ϕ(α) = x . Thus 
the number of field mappings ϕ : K → k fixing k is bounded below by the 
product of the number of distinct roots of M(X) in K times the number of field 
homomorphisms σ of L into K fixing k. § 

Corollary 9.29. Let K = k(α1, . . . , αn) be a finite algebraic extension of 
the field k, and let K be an algebraic closure of K. Then the number of field 
mappings of K into K fixing k is ≤ [K : k]. Moreover, the following conditions 
are equivalent: 

(a) the number of field mappings of K into K fixing k equals [K : k],
(b) each αj is separable over k(α1, . . . , αj−1) for 1 ≤ j ≤ n,
(c) each αj is separable over k for 1 ≤ j ≤ n. 

PROOF. The minimal polynomial of αj over k(α1, . . . , αj−1) divides the min-
imal polynomial of αj over k. If the second of these polynomials has distinct
roots in its splitting field, so does the first. Thus (c) implies (b).
For 1 ≤ j ≤ n, let the minimal polynomial of αj over k(α1, . . . , αj−1) be 

Mj (X), let dj be the degree of Mj (X), and let sj be the number of distinct roots 
of Mj (X) in K. Then sj ≤ dj with equality for a particular j if and only if αj
is separable over k(α1, . . . , αj−1), by definition. Also, [K : k] = 

Qn
j=1 dj by 

Corollary 9.7, and the number of field mappings of K into K fixing k is 
Qn 

j=1 sj
by iterated application of Theorem 9.28. From these facts, the first conclusion of
the corollary is immediate, and so is the equivalence of (a) and (b).
Condition (a) is independent of the order of enumeration of α1, . . . , αn . Since 

we can always take any particular αj to be first, we see that (a) implies (c). § 

Corollary 9.30. Let K = k(α1, . . . , αn) be a finite algebraic extension of the 
field k. If each αj for 1 ≤ j ≤ n is separable over k, then K/k is a separable 
extension. 

PROOF. Let β be in K, We apply the equivalence of (a) and (c) in Corollary
9.29 once to the set of generators {α1, . . . , αn} and once to the set of generators 
{β, α1, . . . , αn}, and the result is immediate. § 

Corollary 9.31. If K/k is an algebraic field extension, then the subset L of 
elements of K that are separable over k is a subfield of K. 

PROOF. If α and β are given in L, we apply Corollary 9.30 to the extension 
k(α, β) of k to see that L contains the subfield generated by k and the elements 
α and β. § 
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Proposition 9.32. If K/k is a separable algebraic extension and if L is a field 
with k ⊆ L ⊆ K, then K is separable over L, and L is separable over k. 
PROOF. The separability assertion about L/k says the same thing about el-

ements of L that separability of K/k says about those same elements, and it is 
therefore immediate that L/k is separable. 
Next let us consider K/L. If x is in K, let F(X) be its minimal polynomial 

over k, and let G(X) be its minimal polynomial over L. Since F(X) is in L[X]
and F(x) = G(x) = 0, G(X) divides F(X). Since K/k is separable, F(X)
splits into distinct degree-one factors in its splitting field F. The field F contains 
the splitting field of G(X), and thus the degree-one factors of G(X) in F[X] are a 
subset of the degree-one factors of F(X) in F[X]. There are no repeated factors 
for F(X), and there can be no repeated factors for G(X). Thus x is separable 
over L, and K/L is a separable extension. § 

In studying Galois groups, we shall be chiefly interested in the following
situation in Corollary 9.29: K is an algebraic field extension K = k(α1, . . . , αn)
of k for which every field mapping of K into an algebraic closure that fixes k 
actually carries K into itself. We seek conditions under which this situation arises,
and then we mine the consequences. As we did in the study begun in Theorem
9.28, we begin with the case of a simple algebraic extension.
Let K = k(∞ ) be a simple algebraic extension of k, and let F(X) be the 

minimal polynomial of ∞ over k. Any member ϕ of the Galois group Gal(K/k)
carries ∞ to another root ∞ 0 of F(X), and ϕ is uniquely determined by ∞ 0 since 
k and ∞ generate the field K. An element ϕ of Gal(K/k) carrying ∞ to ∞ 0 can 
exist only if ∞ 0 is in K. If ∞ 0 is in K, then k(∞ ) ⊇ k(∞ 0), and the equal finite 
dimensionality of k(∞ ) and k(∞ 0) forces k(∞ ) = k(∞ 0). In other words, if ∞ 0 is 
in K, then the unique k isomorphism k(∞ ) → k(∞ 0) of Theorems 9.10 and 9.11 
carrying ∞ to ∞ 0 is a member of Gal(K/k). Making a count of what happens to 
all the elements ∞ 0, we see that we have proved the following. 

Proposition 9.33. Let K = k(∞ ) be a simple algebraic extension of k, and let 
F(X) be the minimal polynomial of ∞ . Then 

| Gal(K/k)| ≤ [K : k] 

with equality if and only if F(X) is a separable polynomial and K is the splitting 
field of F(X) over k. 

p
EXAMPLE. For K = Q( 3 2 ) with minimal polynomial F(X), we know that 

F(X) does not split in K; the nonreal roots of F(X) do not lie in K. Proposition 
9.33 gives us | Gal(K/Q)| < [K : Q] = 3, and a glance at the argument preceding 
Proposition 9.33 shows that | Gal(K/Q)| has to be 1. 
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It is possible to investigate the case of several generators directly, but it is more
illuminating to reduce it to the case of a single generator as in Proposition 9.33.
The tool for doing so is the following important theorem. 

Theorem 9.34 (Theorem of the Primitive Element). Let K/k be a separable 
algebraic extension with [K : k] < ∞. Then there exists an element ∞ in K such 
that K = k(∞ ). 

PROOF. We may assume that k is infinite because Corollary 4.27 shows that
the multiplicative group of a finite field is cyclic. With k infinite, we can write 
K = k(x1, . . . , xn), and we proceed by induction on n, the case n = 1 being 
trivial. For general n, let L = k(x1, . . . , xn−1), so that K = L(xn). By the 
inductive hypothesis, L is of the form L = k(α) for some α in K, and thus 
K = k(α, xn). Changing notation, we see that it is enough to prove that whenever 
K is a separable algebraic extension of the form K = k(α, β), then K is of the 
form K = k(∞ ) for some ∞ . We shall show this for ∞ of the form ∞ = β + cα 
for some c in k. 
Let F(X) and G(X) be the minimal polynomials of α and β over k, and let 

K0 be an extension in which F(X)G(X) splits, i.e., in which F(X) and G(X)
both split. Let α1 = α, α2, . . . , αm and β1 = β, β2, . . . , βn be the roots of 
F(X) and G(X) in K0, In each case the roots are necessarily distinct by definition 
of separability of α and β. Define L = k(∞ ) with ∞ = β + cα, where c is a 
member of k yet to be specified. For suitable c, we shall show that α is in L. 
Then β = ∞ − cα must be in L, and we obtain K ⊆ L. Since ∞ is in K, the 
reverse inclusion is built into the construction, and thus we will have K = L. 
We shall compute the minimal polynomial of α over L. We know that α is a 

root of F(X), and we put H(X) = G(∞ − cX). Then H(X) is in L[X] ⊆ K0[X],
and G(β) = 0 implies H(α) = 0. Therefore X −α divides both F(X) and H (X)
in the ring K0[X]. Let us determine GCD(F, H) in K0[X]. The separability of 
α says that X − α divides F(X) only once. Since F(X) splits in K0[x], any 
other prime divisor of GCD(F, H ) in K0[X] has to be of the form X − αi with 
i 6= 1. The definition of H(X) gives H(αi ) = G(∞ − cαi ). If G(∞ − cαi ) = 0,
then ∞ − cαi = βj for some j , with the consequence that β + cα − cαi = βj
and c = (βj − β)(α − αi )−1. Since k is an infinite field, we can choose c in 
K different from all the finitely many quotients (βj − β)(α − αi )−1. For such a 
choice of c, GCD(F, H) = X − α in K0[X]. Then GCD(F, H) = X − α, up to 
a scalar factor, in L[X] since F(X) and H (X) are in L[X] and since the GCD
can be computed without reference to the field containing both elements. The
ratio of the constant term to the coefficient of X has to be in L independently of 
the scalar factor multiplying X − α, and therefore α is in L. This completes the 
proof. § 
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7. Normal Extensions 

In using Galois groups to help in understanding field extensions, an example top
keep in mind is the extension Q( 3 2 )/Q. In this case the Galois group is trivial
and therefore gives us no information about the extension. Thus it makes sense
to regard the failure of equality to hold in an inequality | Gal(K/k)| ≤ [K : k] as 
an undesirable situation.5 

Proposition 9.33 suggests that the failure of equality to hold in the inequality 
| Gal(K/k)| ≤ [K : k] has something to do with two phenomena. One is the
possible failure of some polynomials over k to be separable, and the other is the 
failure of polynomials over k to split fully in K once they have at least one root 
in K. Having examined separability in Section 6, we turn to this question of full
splitting of polynomials.
Accordingly, we make a definition, choosing among several equivalent condi-

tions the one that is usually the easiest to check in practice. A finite6 algebraic
extension K of a field k is said to be normal over k if K is the splitting field of some 
F(X) in k[X]. The following proposition gives some equivalent formulations of
this condition. 

Proposition 9.34A. Let K be a finite algebraic extension of a field k, and regard 
K as contained in a fixed algebraic closure K. Then the following conditions on 
K are equivalent. 

(a) K is the splitting field of some F(X) in k[X], i.e., K is normal over k,
(b) every irreducible polynomial M(X) in k[X] with a root in K splits in K,

i.e., K contains the splitting field for each such M(X),
(c) every k isomorphism of K into K carries K into itself. 

REMARK. Although (a) is often the easiest of the conditions to check, (b) is
often the easiest to disprove. It is therefore quite handy to know the equivalence. 

PROOF. Suppose that (a) holds. Let F(X) be as in (a), and let its roots be 
∞1, . . . , ∞n . Let M(X) be an irreducible polynomial in k[X] with a root α in K,
and let L be the splitting field of M(X) over K. Let β be any root of M(X) in 
L. Since M(X) is irreducible over k, Theorem 9.11 produces a k isomorphism 
σ of k(α) onto k(β) with σ (α) = β. The isomorphism σ leaves F(X) fixed, 
since the coefficients of F(X) are in k. Now the splitting field of F(X) over k(α) 

5We obtained this inequality in Proposition 9.33 only when K has a single generator over k, but 
we take this case as indicative of what to expect more generally.

6Many books do not restrict the definition to finite extensions. The additional generality of
infinite algebraic extensions will not be of benefit for our current purposes, and thus we restrict to
finite extensions for now. But in Section VII.6 of Advanced Algebra, we shall enlarge the definition 
of “normal” to allow infinite algebraic extensions. 
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is K, since the roots of F(X) are in K and generate K over k(α). Similarly the 
splitting field of F(X) over k(β) is K(β). Application of Theorem 9.130 yields
a field isomorphism ϕ of K onto K(β) such that ϕ

Ø
Ø
k(α) = σ and such that ϕ 

carries the roots of F(X) to the roots of F(X). We can express α as a rational 
expression in ∞1, . . . , ∞n with coefficients in k, and then β = ϕ(α) is the same 
rational expression in ϕ(∞1), . . . , ϕ(∞n), which themselves are members of K. 
Therefore β is in K, and the conclusion is that M(X) splits in K. 
Suppose that (b) holds. Let ϕ be a k isomorphism of K into K, and let α be 

any element of K. The minimal polynomial M(X) of α over k is irreducible and 
has α as a root in K. By (b), M(X) splits in K. The element ϕ(α) has to be a 
root of M(X) since ϕ fixes the coefficients of M(X), and all the roots of M(X)
are assumed to lie in K. Therefore ϕ(α) lies in K, and (b) implies (c). 
Suppose that (c) holds. Since K is a finite algebraic extension of k, we can 

write K = k(α1, . . . , αn) for suitable elements α1, . . . , αn of K. Let Pj (X) be 
the minimal polynomial of αj over k, and put F(X) = 

Qn
j=1 Pj (X). Since the 

roots α1, . . . , αn generate K over k, it is enough to show that every root of F(X) 
lies in K , i.e., each root of each Pj (X) lies in K. Let β be a root of Pj (X) in K. 
We know from Theorem 9.11 that there is a k isomorphism ϕ of k(αj ) onto k(β)
with ϕ(αj ) = β. Theorem 9.23 shows that ϕ extends to a field mapping of K into 
K, and (c) shows that the extended ϕ sends K into itself. Therefore β = ϕ(αj ) 
lies in K, and all the roots of F(X) in K lie in K. Thus (c) implies (a). § 

Now we can put together the properties of normal and separable extensions.
It will be convenient to be able to refer in this context to the equivalence of (a)
and (b) that was proved in Proposition 9.34A, and thus we repeat the statement
of that equivalence here. 

Proposition 9.35. Let K be a finite separable algebraic extension of a field k,
so that | Gal(K/k)| ≤ [K : k]. Then the following are equivalent. 

(a) K is the splitting field of some F(X) in k[X], i.e., K is normal over k,
(b) every irreducible polynomial M(X) in k[X] with a root in K splits in K,

i.e., K contains the splitting field for each such M(X),
(c) | Gal(K/k)| = [K : k],
(d) k = KG for G = Gal(K/k). 

REMARKS. The equivalence of (a) and (b) is part of Proposition 9.34A, and
the fact that they are equivalent with (c) follows from Proposition 9.33 and the
Theorem of the Primitive Element (Theorem 9.34). We prove that the equivalent
(a), (b), and (c) imply (d), and that (d) implies (b). 

PROOF. Suppose that the equivalent (a), (b), and (c) hold for K/k. We prove 
(d). Write G = Gal(K/k), and let k0 = KG . Since every member of Gal(K/k) 
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fixes k0, Gal(K/k) ⊆ Gal(K/k0). Meanwhile, (a) for K/k implies (a) for K/k0,
and K is separable over k0 by Proposition 9.32. Since (a) implies (c), (c) holds 
for both k0 and k, and we have 

[K : k] = | Gal(K/k)| ≤ | Gal(K/k0)| = [K : k0]. 

Since k0 ⊇ k, the inequality of dimensions implies that k0 = k. Thus (d) holds. 
Suppose (d) holds. We prove (b). Let M(X) be an irreducible polynomial 

in k[X] having a root r in K. The polynomial M(X) is necessarily the minimal 
polynomial of r over k. Define 

J (X) = 
Q

(X − ϕ(r)). (∗) 
ϕ∈G 

If ϕ0 is in G, then Fϕ0 is given by replacing each ϕ(x) by ϕ0ϕ(r), and the product 
is unchanged. Therefore J (X) = J ϕ0 (X), and J (X) is in KG [X]. From the 
assumption in (d), KG = k. Therefore J (X) is in k[X]. Since J (r) = 0 and 
since M(X) is the minimal polynomial of r over k, M(X) divides J (X). Over 
K, J (X) splits because of its definition in (∗). By unique factorization in K[X],
M(X) must split too. Thus M(X) splits in K[X], and (b) holds. § 

Corollary 9.36. If K is a finite normal separable extension of k and if L is a 
field with k ⊆ L ⊆ K, then K is a finite normal separable extension of L, and the 
subgroup H = Gal(K/L) of Gal(K/k) has 

|H | · [L : k] = | Gal(K/k)| . 

PROOF. The field K is a separable extension of the intermediate field L by
Proposition 9.32, and it is a normal extension by Proposition 9.35a. Therefore
Proposition 9.35c gives | Gal(K/L)| = [K : L], and we have 

|H |·[L : k] = | Gal(K/L)|·[L : k] = [K : L]·[L : k] = [K : k] = | Gal(K/k)|, 

the last two equalities holding by Corollary 9.7 and Proposition 9.35c. § 

Corollary 9.37. Let K/k be a separable algebraic extension, and suppose that 
H is a finite subgroup of Gal(K/k). Then K/KH is a finite normal separable 
extension, H is the subgroup Gal(K/KH ) of Gal(K/k), and [K : KH ] = |H |. 

PROOF. Proposition 9.32 shows that K is separable over KH . For an arbitrary 
element x of K, form the polynomial in K[X] given by 

F(X) = 
Q

(X − ϕ(x)). 
ϕ∈H 
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If ϕ0 is in H , then Fϕ0 is given by replacing each ϕ(x) by ϕ0ϕ(x), and the product 
is unchanged. Therefore F(X) = Fϕ0 (X), and F(X) is in KH [X]. Thus F(X)
is a polynomial in KH [X] that has x as a root and splits in K. The minimal 
polynomial M(X) of x over KH must divide F(X), and it too has x as a root. 
By unique factorization in K[X], M(X) must split in K. Thus K/KH will be a 
normal extension if it is shown that [K : KH ] < ∞. 
The element x has [KH (x) : KH ] = deg M(X) ≤ deg F(X) = |H |, and 

the claim is that [K : KH ] ≤ |H |. Assuming the contrary, we would at 
some point have an inequality [KH (x1, . . . , xn) : KH ] > |H | because every 
element of K is algebraic over k. By the Theorem of the Primitive Element 
(Theorem 9.34), KH (x1, . . . , xn) = KH (z) for some element z, and therefore 
[KH (x1, . . . , xn) : KH ] = [KH (z) : KH ] ≤ |H |, contradiction. We conclude 
that [K : KH ] ≤ |H |. From the previous paragraph, K/KH is a finite separable 
normal extension. 
The definition of KH shows that H ⊆ Gal(K/KH ), and Proposition 9.35c 

gives | Gal(K/KH )| = [K : KH ]. Putting these facts together with the inequality 
[K : KH ] ≤ |H | from the previous paragraph, we have 

|H | ≤ | Gal(K/KH )| = [K : KH ] ≤ |H | 

with equality on the left only if H = Gal(K/KH ). Equality must hold throughout
the displayed line since the ends are equal, and therefore H = Gal(K/KH ). § 

8. Fundamental Theorem of Galois Theory 

We are now in a position to obtain the main result in Galois theory. 

Theorem 9.38 (Fundamental Theorem of Galois Theory). If K is a finite 
normal separable extension of k, then there is a one-one inclusion-reversing
correspondence between the subgroups H of Gal(K/k) and the subfields L of K 
that contain k, corresponding elements H and L being given by 

L = KH and H = Gal(K/L). 

The effect of the theorem is to take an extremely difficult problem, namely
finding intermediate fields, and reduce it to a problem that is merely difficult,
namely finding the Galois group. For example the finiteness of Gal(K/k) implies
that there are only finitely many subgroups of Gal(K/k), and the theorem therefore
implies that there are only finitely many intermediate fields; this finiteness of the
number of intermediate fields is not so obvious without the theorem. 
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As a reminder of the availability of Theorem 9.38, Proposition 9.35, and
Corollary 9.36, it is customary to refer to a finite normal separable extension 
as a finite Galois extension. 
Before coming to the proof of the theorem, let us examine what the theorem

says for the examples in Section 6. In each case the field k is the field Q of 
rationals. The extensions are separable because the characteristic is 0. 

EXAMPLES. 
p

(1a) K = Q( −1 ). This is the splitting field7 for X2 + 1. Proposition
9.33 gives | Gal(K/Q)| = [K : Q] = = There are no 2. Thus Gal(K/Q) ∼ C2. 
nontrivial subgroups, and there are consequently no intermediate fields. We knew
this already since there cannot be any intermediate Q vector spaces between Q
and K. Thus the theorem tells us nothing new. 

p
(1b) K = Q( 2 ). Similar remarks apply. 

p
(2) K = Q( 3 2 ). This extension is not normal, as a consequence of (b)

in Proposition 9.34A. (Namely X3 − 2 has a root in K but does not split in K.)p p
Theorem 9.38 does not apply to K. If we adjoin r to K with r2+( 3 2 )r +( 3 2 )2 = 
0, we obtain the splitting field K0 for X3 − 2 over Q. Then K0 is a normal 
extension of Q, and the theorem applies. Since each element of Gal(K0/Q)
permutes the three roots of X3 − 2 and is determined by its effect on these roots, 
Gal(K0/Q) is isomorphic to a subgroup of the symmetric group S3. The Galois 
group Gal(K0/Q) has order [K0 : Q] = 6 and hence is isomorphic to the whole 
symmetric group S3. The group S3 has three subgroups of order 2 and one 
subgroup of order 3. Therefore K0 has three intermediate fields of degree 3 and
one of degree 2. The intermediate fields of degree 3 are the three fields generated
by Q and one of the three roots of X3 − 2. The intermediate field of degree 2
corresponds to the alternating subgroup of order 3 and is the subfield generated
by Q and the cube roots of 1. It is the splitting field for X2 + X + 1 over Q. 
(3) K = Q(r), where r is a root of X3 − X − 13 . We know from Section 2 

that X3 − X − 13 is irreducible over Q and splits in K, and K by definition is 
therefore normal. Proposition 9.33 tells us that Gal(K/Q) has order 3 and hence 
is isomorphic to C3. There are no nontrivial subgroups, and Theorem 9.38 tells
us that there are no intermediate fields. We could have seen in more elementary
fashion that there are no intermediate fields by using Corollary 9.7, since the
corollary tells us that the degree of an intermediate field would have to divide 3. 
(4) K = Q(e2π1/17). We have seen that [K : Q] = 16 and that Gal(K/Q) ∼= 

F× ∼ Let c be a generator of the cyclic Galois group. Let H2 = {1, c8},=17 C16. 

7It is customary to regard the algebraic closure of Q as a subfield of C, and thus there is no 
ambiguity in referring to the splitting field. 
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H4 = {1, c4 , c8 , c12}, and H8 = {1, c2 , c4 , c6 , c8 , c10 , c12 , c14}. Then put 

L2 = KH2 , L4 = KH4 , L8 = KH8 . 

The inclusions among our subgroups are 

{1} ⊆ H2 ⊆ H4 ⊆ H8 ⊆ Gal(K/Q), 

and the theorem says that the correspondence with intermediate fields reverses
inclusions. Then we have 

K ⊇ L2 ⊇ L4 ⊇ L8 ⊇ Q. 

Applying Corollary 9.36, we see that each of these subfields is a quadratic ex-
tension of the next-smaller one. Theorem 9.24 says that the members of K are 
therefore constructible with straightedge and compass. Consequently a regular
17-gon is constructible with straightedge and compass. The constructibility or
nonconstructibilityof regular n-gons for general n will be settled in similar fashion 
in the next section. In Section 12 we return to the question of using Galois theory
to guide us through the actual steps of the construction when it is possible. 

PROOF OF THEOREM 9.38. The function L 7→ Gal(K/L) has domain the 
set of all intermediate fields and range the set of all subgroups of Gal(K/k),
since an element in Gal(K/L) is necessarily in Gal(K/k). Each such exten-
sion K/L is separable by Proposition 9.32 and is normal by Proposition 9.34A.

KGal(K/L)Thus Proposition 9.35d applies to each K/L and shows that L = . 
Consequently the function L 7→ Gal(K/L) is one-one. If H is a subgroup of 
Gal(K/k), then Corollary 9.37 shows that L = KH is an intermediate field for 
which H = Gal(K/L), and therefore the function L 7→ Gal(K/L) is onto. 
It is immediate from the definition of Galois group that L1 ⊆ L2 implies

Gal(K/L1) ⊇ Gal(K/L2), and it is immediate from the formula L = KGal(K/L) 

that Gal(K/L1) ⊇ Gal(K/L2) implies L1 ⊆ L2. This completes the proof. § 

Corollary 9.39. If K is a finite Galois extension of k and if L is a subfield of 
K that contains k, then L is a normal extension of k if and only if Gal(K/L) is 
a normal subgroup of Gal(K/k). In this case, the map Gal(K/k) → Gal(L/k)
given by restriction from K to L is a group homomorphism that descends to a 
group isomorphism 

Gal(K/k)
± 
Gal(K/L) ∼= Gal(L/k). 
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PROOF. Let L correspond to H = Gal(K/L) in Theorem 9.38, so that L = KH . 
If ϕ is in Gal(K/k), then 

Kϕ Hϕ−1 
= {k ∈ K | ϕhϕ−1(k) = k for all h ∈ H} 

= {ϕ(k0) ∈ K | ϕh(k0) = ϕ(k0) for all h ∈ H } 

= {ϕ(k0) ∈ K | h(k0) = k 0 for all h ∈ H} 

= ϕ(KH ) = ϕ(L). 

Since the correspondence of Theorem 9.38 is one-one onto, ϕ Hϕ−1 = H if and 
only if ϕ(L) = L. Therefore H is a normal subgroup of Gal(K/k) if and only if 
ϕ(L) = L for all ϕ ∈ Gal(K/k). 
Now suppose that H is a normal subgroup of Gal(K/k). We have just seen that 

ϕ(L) = L for all ϕ ∈ Gal(K/k). Then each ϕ defines by restriction a member 
ϕ = ϕ

Ø
Ø
L of Gal(L/k), and ϕ 7→ ϕ is certainly a group homomorphism. The 

kernel of ϕ 7→ ϕ is the subgroup of Gal(K/k) given by 
©
ϕ ∈ Gal(K/k) 

Ø
Ø ϕ

Ø
Ø
L = 1

™ 
, 

and this is just Gal(K/L). Thus ϕ 7→ ϕ descends to a one-one homomorphism 
of Gal(K/k)

± 
Gal(K/L) into Gal(L/k), and we have 

| Gal(K/k)|/| Gal(K/L)| ≤ | Gal(L/k)|. 

We make use of Corollary 9.7 relating degrees of extensions. Applying Proposi-
tion 9.35c to K/k and K/L, as well as Proposition 9.33 to L/k, we obtain 

[L : k] = [K : k]
±
[K : L] 

= | Gal(K/k)|/| Gal(K/L)|

≤ | Gal(L/k)| ≤ [L : k], 

with equality at the first ≤ sign only if ϕ 7→ ϕ is onto Gal(L/k) and with equality 
at the second ≤ sign only if L is the splitting field over k of the minimal polynomial 
of a certain element ∞ of L. Equality must hold in both cases because the end
members of the display are equal, and we conclude that ϕ 7→ ϕ is onto and that 
L/k is a normal extension. 
We are left with proving that if L/k is a normal extension, then H is a normal 

subgroup of Gal(K/k). Thus let L/k be normal. In view of the conclusion 
of the first paragraph of the proof, it is enough to prove that ϕ(L) = L for all 
ϕ ∈ Gal(K/k). By definition of normal extension, L is the splitting field of some 
polynomial F(X) in k[X]. We may assume that F(X) is monic. Let us write 

F(X) = (X − x1) · · · (X − xn) with all xj in L. 
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Applying a given member ϕ of Gal(K/k) to the coefficients, we obtain 

F(X) = (X − ϕ(x1)) · · · (X − ϕ(xn)), 

and here the ϕ(xj )’s are known only to be in K. By unique factorization in K[X], 
ϕ(xi ) = xj (i) for some j = j (i). Therefore ϕ(xi ) is in L for all i . Since L is the 
splitting field of F(X) over k, L = k(x1, . . . , xn). Thus ϕ maps L into L. § 

The examples of Galois groups given in Section 6 all involved fields that are
finite extensions of the rationals Q. As we shall see in Section 17, it is important for
the understanding of Galois groups of finite extensions of Q to be able to identify 
Galois groups of finite extensions of finite fields. This matter is addressed in the 
following proposition. 

Proposition 9.40. Let K be a finite extension of the finite field Fq , where 
q = pa and p is prime, and suppose that [K : Fq ] = n. Then K is a Galois 
extension of Fq , the Galois group Gal(K/Fq ) is cyclic of order n, and a generator 
is the ath-power Frobenius automorphism x 7→ xq = x pa . 

PROOF. Theorem 9.14 shows that K is a splitting field for Xqn 
− X over Fp. 

Hence it is a splitting field for Xqn 
− X over Fq , and K/Fq is a normal extension. 

The polynomial Xqn 
− X has no multiple roots, and it follows that K/Fq is a 

separable extension.
Define ϕ by ϕ(x) = xq . Lemma 9.18 shows that ϕ is an automorphism of K. 

Since every member of F× 
q has order dividing q − 1, every nonzero element of Fq

is fixed by ϕ. The map ϕ certainly carries 0 to 0, and thus ϕ is in Gal(K/Fq ). By 
a similar argument, ϕn fixes every element of K, and hence ϕn = 1. Corollary 
4.27 shows that K× is cyclic, hence that there exists an element y in K× such 
that yl 6 1 for 1 ≤ l < qn − 1. This y has yl = y for 2 ≤ l ≤ qn − 1. Then = 6
ϕk (y) = yqk cannot be 1 for 1 ≤ k ≤ n − 1, and ϕ must have order exactly n. 
This shows that ϕ generates a cyclic subgroup of order n in Gal(K/Fq ). Since 
n is an upper bound for the order of Gal(K/Fq ) by Proposition 9.33, this cyclic 
subgroup exhausts the Galois group. § 

EXAMPLE. Suppose that we are given a polynomial with coefficients in Fp
and we want to find the Galois group of a splitting field. Since there are efficient
computer programs for factoring the polynomial into irreducible polynomials,
let us take that factorization as done. The Galois group will be cyclic of some
order with generator the Frobenius automorphism x 7→ x p. For an irreducible 
polynomial of degree n, a splitting field has degree n, and the smallest power of 
x 7→ x p that gives the identity is the nth power. The conclusion is that the Galois
group is cyclic of order equal to the least common multiple of the degrees of the
irreducible constituents, a generator being the Frobenius automorphism. 
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9. Application to Constructibility of Regular Polygons 

In this section we use Galois theory to give a proof of Theorem 9.25 concerning
the constructibility of regular n-gons. Let us recall the statement. 

THEOREM 9.25 (Gauss). A regular n-gon is constructible with straightedge 
and compass if and only if n is the product of distinct Fermat primes and a power 
of 2. 

PROOF OF SUFFICIENCY. First suppose that n is a Fermat prime n = 22N 
+ 1. 

Let K = Q(e2π i/n). We saw in Section 5 that the degree [K : Q] is 22N , hence is 
a power of 2. Furthermore we know that K is a separable extension of Q, being 
of characteristic 0, and it is normal, being the splitting field for Xn − 1 over Q. 
In Section 6 we saw that the Galois group Gal(K/Q) is cyclic of order 22N . Let 
c be a generator of this group. For each integer k with 0 ≤ k ≤ 2N , let H2k be 
the unique cyclic subgroup of Gal(K/Q) of order 2k . For this subgroup, c22

N −k 

is a generator. Put L2k = KH2k . Then we have inclusions 

{1} ⊆ H2 ⊆ H22 ⊆ · · · H2k ⊆ · · · ⊆ H22N −1 ⊆ H22N = Gal(K/Q), 

the index being 2 at each stage. Theorem 9.38 says that the correspondence
with intermediate fields reverses inclusions and that the degree of each consec-
utive extension of subfields matches the index of the corresponding consecutive
subgroups. The intermediate fields are therefore of the form 

K ⊇ L2 ⊇ L22 ⊇ · · · L2k ⊇ · · · ⊇ L22N −1 ⊇ L22N = Q, 

and the degree in each case is 2. In view of the formula for the roots of a 
quadratic polynomial, each extension is obtained by adjoining some square root.
By Theorem 9.24 the members of K are constructible with straightedge and 
compass. In particular, e2π i/n is constructible, and a regular n-gon is constructible. 
Next suppose that e2π i/r and e2π i/s are both constructible and that GCD(r, s) = 

1. Choose integers a and b with ar + bs = 1, so that a + b = 1 . Then the s r rs 
equality (e2π i/s )a(e2π i/r )b = e2π i/(rs) shows that e2π i/(rs) is constructible. This 
proves the sufficiency for any product of distinct Fermat primes. Bisection of an
angle is always possible with straightedge and compass, as was observed in the
third paragraph of Section 5, and the proof of the sufficiency in Theorem 9.25 is
therefore complete. § 

REMARKS. The above proof shows that the construction is possible, but it gives
little clue how to carry out the construction. We shall address this matter further
in Section 12. 
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We turn our attention to the necessity—that n has to be the product of distinct 
Fermat primes and a power of 2 if a regular n-gon is constructible. For the moment 
let n ∏ 1 be any integer. Let us consider the distinct nth roots of 1 in C, which 
are ek2π i/n for 0 ≤ k < n. The order of each of these elements divides n, and the 
order is exactly n if and only if GCD(k, n) = 1. In this case we say that ek2π i/n 

is a primitive nth root of 1. Define the cyclotomic polynomial 8n(X) by 

Y
8n(X) = (X − ek2π i/n). 

GCD(k,n)=1,
0≤k<n 

Each such polynomial is monic by inspection. The splitting field Q(e2π i/n) in C 
is called a cyclotomic field. Since the complex roots of Xn − 1 are exactly the 
numbers ek2π i/n , we have 

Y
Xn − 1 = 8d (X), 

d|n 

the product being taken over the positive divisors d of n. 

Lemma 9.41. Each cyclotomic polynomial 8n(X) lies in Z[X], and the degree 
of 8n(X) is ϕ(n), where ϕ is the Euler ϕ function defined just before Corollary 
1.10. 

PROOF. We know that 8n(X) is in C[X], and we begin by showing by induction 
on n that 8n(X) is in Q[X]. For n = 1, we have 81[X] = X − 1, and the 
assertion is true. If it is true for all d with 1 ≤ d < n, then the formula 
Xn − 1 = 

Q
d|n 8d (X) and induction show that Xn − 1 = 8n(X)F(X) for some 

F(X) in Q[X]. By the division algorithm, Xn − 1 = F(X)Q(X) + R(X) for 
polynomials Q(X) and R(X) in Q[X] with R(X) = 0 or deg R(X) < deg F(X). 
Subtraction gives F(X) 

° 
8n(X) − Q(X)

¢ 
= −R(X) in C[X]. If R(X) is not 

0, then deg R(X) < deg F(X) gives a contradiction. Therefore R(X) = 0 and 
F(X) 

° 
8n(X) − Q(X)

¢ 
= 0. Since C[X] is an integral domain, 8n(X) = Q(X). 

Thus 8n(X) is in Q[X], and the induction is complete. 
To see that 8n(X) is in Z[X], we again induct, the case n = 1 being clear. The 

formula Xn − 1 = 
Q

d|n 8d (X) and induction show that Xn − 1 = 8n(X)F(X)

for some F(X) in Z[X]. Since 8n(X) is known to be in Q[X], Corollary 8.20c 
shows that 8n(X) is in Z[X], and the induction is complete. § 

Lemma 9.42. Each cyclotomic polynomial 8n(X) is irreducible as a member 
of Q[X]. 
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9. Application to Constructibility of Regular Polygons 

PROOF. Let ≥ be a primitive nth root of 1, let p be a prime number not dividing 
n, let F(X) be the minimal polynomial of ≥ over Q, and let G(X) be the minimal 
polynomial of ≥ p. The main step is to show that F(X) = G(X). 
To carry out this step, we observe that F(≥ ) = G(≥ p) = 0 and that F(X)

and G(X) must divide 8n(X). Arguing by contradiction, suppose that F(X) = 
G(X). Then GCD(F, G) = 1 since F(X) and G(X) are irreducible over Q, and 
therefore F(X)G(X) divides 8n(X). Hence we can write 

Xn − 1 = F(X)G(X)H(X), 

and H (X) is a monic member of Z[X] by Lemma 9.41 and Corollary 8.20c. 
Since ≥ is a root of G(X p), we must have G(X p) = F(X)M(X) for some 
monic polynomial M(X) in Z[X]. We apply the substitution homomorphism to 
Z[X] → Fp[X] that carries X to X and reduces the coefficients modulo p; the 
mapping on the coefficients will be denoted by a bar. Then we have 

Xn − 1̄ = F(X)G(X)H (X) and G(X)p = G(X p) = F(X)M(X), 

the equality G(X)p = G(X p) following from Lemma 9.18. If Q(X) is a prime 
factor of F(X), then Q(X) divides G(X)p and therefore must divide G(X). So 
Q(X)2 divides Xn − ¯ 1 has multiple roots in its splitting field,1. Therefore Xn − ¯

in contradiction to Corollary 9.17 and the fact that the derivative of Xn − 1̄ is 
nonzero at each nonzero member of Fp (since GCD( p, n) = 1 by assumption). 
We conclude that F(X) = G(X). 
Now suppose that r is a positive integer with GCD(r, n) = 1. Then we can 

write r = p1 · · · pl with each pj not dividing n, and we see inductively that ≥ r has 
F(X) as minimal polynomial. Thus F(X) has at least ϕ(n) roots. Since F(X)
divides 8n(X), we must have F(X) = 8n(X). Therefore 8n(X) is irreducible 
over Q. § 

PROOF OF NECESSITY IN THEOREM 9.25. Theorem 9.24 shows that the degree 
[Q(e2π i/n) : Q] must be a power of 2 if a regular n-gon is constructible. Since 
e2π i/n is a root of 8n(X) and since Lemma 9.42 shows 8n(X) to be irreducible 
over Q, 8n(X) is the minimal polynomial of e2π i/n over Q. By Lemma 9.41 the 
degree in question is given by [Q(e2π i/n) : Q] = ϕ(n), where ϕ is the Euler ϕ 

k1 · pkrfunction. Corollary 1.10 shows that if n = p1 · · r is a prime factorization of 
n into distinct prime powers with each kj > 0, then 

r kj −1 
ϕ(n) = 

Q
p ( pj − 1). j

j=1 

For constructibility this must be a power of 2. Then each pj dividing n must be 1 
more than a power of 2, i.e., must be 2 or a Fermat prime, and the only pj allowed 
to have p2j dividing n is pj = 2. § 
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10. Application to Proving the Fundamental Theorem of Algebra 

In this section we use Galois theory to give a proof of the Fundamental Theorem
of Algebra. Let us recall the statement. 

THEOREM 1.18 (Fundamental Theorem of Algebra). Any polynomial in C[X]
with degree ∏ 1 has at least one root. 

We begin with a lemma that handles three easy special cases. 

Lemma 9.43. There are no finite extensions of R of odd degree greater than 1, 
the only extension of R of degree 2 up to R isomorphism is C, and there are no 
finite extensions of C of degree 2. 

PROOF. If K is a finite extension of R of odd degree and if x is in K, then 
[R(x) : R] is odd, and consequently the minimal polynomial F(X) of x over 
R is irreducible of odd degree. By Proposition 1.20, which is derived from the
Intermediate Value Theorem of Section A3 of the appendix, F(X) has at least 
one root in R. Therefore F(X) has degree 1, and x is in R. 
If F(X) is an irreducible polynomial in R[X] of degree 2, then F(X) splits in 

C by the quadratic formula, and hence the only extension of R of degree 2 is C, 
up to R isomorphism, by the uniqueness of splitting fields (Theorem 9.13). 
Let G(X) = X2 + bX + c be a polynomial in C[X] of degree 2. Then G(X)

has a root x in C given by the quadratic formula since every member of C has 
a square root8 in C, and G(X) cannot be irreducible. Since any finite extension 
of C of degree 2 would have to be of the form C(x), with x equal to a root of an 
irreducible quadratic polynomial over C, there can be no such extension. § 

PROOF OF THEOREM 1.18. First let us show that every irreducible member 
F(X) of R[X] splits over C. Let K be a splitting field for F(X). Say that 
[K : R] = 2mN with N odd. Then K is a Galois extension of R, and | Gal(K/R)|
= 2mN . By the Sylow Theorems (particularly Theorem 4.59a), let H be a Sylow 
2-subgroup of Gal(K/R). This H has |H | = . The field L = KH that2m 

corresponds to H under Theorem 9.38 has [L : R] = N with N odd, and the 
first conclusion of Lemma 9.43 shows that N = 1. Thus | Gal(K/R)| = 2m . 
Corollary 4.40 shows that Gal(K/R) has nested subgroups of all orders 2m−k 

with 0 ≤ k ≤ m, and Theorem 9.38 says that the corresponding fixed fields are
nested and have respective degrees 2k with 0 ≤ k ≤ m. The extension field of 
R for k = 1 is necessarily C by Lemma 9.43, and Lemma 9.43 shows that there 

8To see that every member of C has a square root in C, let c + di be given with c and d real and 
1 

p 1 
p

with d 6 = c2 + d2 ), b2 2 (−c += 0. Let a and b be real numbers with a2 2 (c + = c2 + d2 ), 
and sgn(ab) = sgn d. Then (a + bi)2 = c + di . 
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are no quadratic extensions of C. Therefore m = 0 or m = 1, and the possible 
splitting fields for F(X) are R and C in the two cases. 
To complete the proof, suppose that K is a finite algebraic extension of C of 

degree n. Then K is a finite algebraic extension of R of degree 2n. The Theorem 
of the Primitive Element allows us to write K = R(x) for some x ∈ K, and 
the minimal polynomial of x over R necessarily has degree 2n. The previous 
paragraph shows that this polynomial splits in C. Thus x is in C, and K = C. 
This completes the proof. § 

11. Application to Unsolvability of Polynomial
Equations with Nonsolvable Galois Group 

The quadratic formula for finding the roots of a quadratic polynomial has in
principle been known since the time of the Babylonians about 400 B.C.9 The 
corresponding problem of finding roots of cubics was unsolved until the sixteenth
century, and Cardan’s formula was discovered at that time. The original formula
assumes real coefficients and was in two parts, a first case corresponding to
what we now view as one real root and two complex roots, the second case
corresponding to what we view as three real roots.10 There is a similar formula,
but more complicated, for solving quartics. Further centuries passed with no
progress on finding a corresponding formula for the roots of a polynomial of
degree 5 or higher. The introduction of Galois theory in the early nineteenth
century made it possible to prove a surprising negative statement about all degrees
beyond 4.
Suppose that we are given a polynomial equation with coefficients in the field 

Q or a more general field k of characteristic 0. In this section we use Galois 
theory to address the question whether the roots of the equation in a splitting field
can be expressed in terms of k and the adjunction of finitely many nth roots to the 
field, for various values of n. For the moment let us say in this case that the roots
are “expressible in terms of the members of k and radicals.” We shall make this 
notion more precise shortly.
Recall from Section IV.8 that with a finite group G, we can find a strictly 

decreasing sequence of subgroups starting with G and ending with {1} such 

9The Babylonians did not actually have equations but had an algorithmic method that amounted
to completing the square.

10Cardan’s name was Girolamo Cardano. The solution in the first case of the cubic seems to 
have been discovered by Scipione dal Ferro and later by Nicolo Tartaglia. Dal Ferro died in 1526
and passed the secret method to his student Antonio Fior. In 1535 Fior engaged in a public contest
with Tartaglia at solving cubics, and he lost. Cardano wheedled the solution method in the first case
from Tartaglia, published it in 1539, and discovered and published the solution in the second case.
Cardano’s student Lodovico Ferrari discovered how to solve quartics, and Cardano published that
solution as well. See “St. Andrews” in the Selected References for more information. 

http:roots.10


494 IX. Fields and Galois Theory 

that each subgroup is normal in the next larger one and each quotient group is
simple. Such a series was defined to be a composition series for G. The Jordan– 
Hölder Theorem (Corollary 4.50) says that the respective consecutive quotients
are isomorphic for any two composition series, apart from the order in which they 
appear. We define the finite group G to be solvable if each of the consecutive 
quotients is cyclic of prime order, rather than nonabelian. It is enough that the
group have a normal series for which each of the consecutive quotients is abelian.
Examples of solvable and nonsolvable groups are obtainable from the calcula-

tions in Section IV.8: abelian groups and groups of prime-power order are always
solvable, the symmetric group S4 and each of its subgroups are solvable, and the 
symmetric group S5 is not solvable since a composition series is S5 ⊇ A5 ⊇ {1}
and the group A5 is simple (Theorem 4.47).
Modulo a precise definition for a field k of the words “expressible in terms of 

the members of k and radicals,” the answer to our main question is as follows. 

Theorem 9.44 (Abel, Galois).11 Let k be a field of characteristic 0, let F(X)
be in k[X], and let K be a splitting field of F(X) over k. Then the roots of F(X)
are expressible in terms of the members of k and radicals if and only if the group 
Gal(K/k) is solvable. 

EXAMPLE. With k = Q, let F(X) be the polynomial F(X) = X5 − 5X + 1 in 
Q[X]. We shall show that 

(i) F(X) is irreducible over Q,
(ii) F(X) has three roots in R and one pair of conjugate complex roots in C,
(iii) the splitting field K over Q of any polynomial of degree 5 for which (i)

and (ii) hold has Galois group with Gal(K/Q) ∼= S5. 
We know that from Theorem 4.47 that S5 is not solvable, and Theorem 9.44
therefore allows us to conclude that the roots of X5 − 5X + 1 are not expressible 
in terms of the members of Q and radicals. 
To prove (i), we apply Eisenstein’s criterion (Corollary 8.22) to the polynomial 

F(X − 1) = X5 − 5X4 + 10X3 − 10X2 + 5 and to the prime p = 5, and the 
irreducibility is immediate.
To prove (ii), we observe that F(−2) < 0, F(0) > 0, F(1) < 0, F(2) > 0. 

Applying the Intermediate Value Theorem (Section A3 of the appendix), we see
that there are at least three roots in R. Since F 0(X) = 5(X4 − 1) has exactly the 
two roots ±1 in R, F(X) has at most three roots in R by an application of the 
Mean Value Theorem. 
To prove (iii), label the roots 1, 2, 3, 4, 5 with 1 and 2 denoting the nonreal

roots. Each member of the Galois group permutes the roots and is determined 

11Abel proved that there is no general solution via radicals that gives the roots of polynomials
of degree 5. Galois found the present theorem, which shows how to decide the question for each
individual polynomial of degree 5. 

http:Galois).11
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by its effect on the roots. Thus Gal(K/Q) may be regarded as a subgroup of S5. 
Since F(X) is irreducible over Q, 5 divides [K : Q] and 5 divides | Gal(K/Q)|. 
By the Sylow Theorems, Gal(K/Q) contains an element of order 5, hence a 5-
cycle. Some power of this 5-cycle carries root 1 to root 2. So we may assume
that the 5-cycle is (1 2 3 4 5). Also, Gal(K/Q) contains complex conjugation, 
which acts as (1 2). Then Gal(K/Q) contains 

(1 2 3 4 5)(1 2)(1 2 3 4 5)−1 = (2 3), 

(1 2 3 4 5)(2 3)(1 2 3 4 5)−1 = (3 4), 

(1 2 3 4 5)(3 4)(1 2 3 4 5)−1 = (4 5). 

Since the set {(1 2), (2 3), (3 4), (4 5)} of transpositions is easily shown from 
Corollary 1.22 to generate S5, Gal(K/Q) = S5. 

Let K0 be a finite extension of the given field k. A root tower for K0 over k is 
a finite sequence of extensions 

k = K0
0 ⊆ K1

0 ⊆ · · · ⊆ Kl
0
−1 ⊆ Kl 

0 = K0 

such that for each i with 0 ≤ i ≤ l − 1, there is a prime number ni > 1 and there 
is an element ri in K0

i+1 with ai = ri
ni in Ki

0 and ri not in K0
i . Then it follows that 

rk is not in Ki
0 for any k with 0 < k < ni .i pni(If we write ai = ri

ni , then we might think of writing Ki
0
+1 = Ki

0 ( ai ), but
this formulation is less precise at the moment since it does not specify preciselypniwhich choice of ai is to be used.)
With “root tower” now well defined, we can make a precise definition and

thereby complete the precise formulation of Theorem 9.44. Let k be the given 
field of characteristic 0, let F(X) be in k[X], and let K be a splitting field of F(X) 
over k. We say that the roots of F(X) are expressible in terms of members of 
k and radicals if there exists some finite extension K0 of K having a root tower 
over k. 
The statement of Theorem 9.44 is now completely precise, and the remainder

of the section will be devoted to the proof of one direction of the theorem: if the
roots are expressible in terms of members of k and radicals, then the Galois group
is solvable. The proof of the converse direction of the theorem is postponed to
Section 13. We begin with a lemma. 

Lemma 9.45. Let k be a field of any characteristic, and let p be a prime 
number. If a is a member of k such that X p − a has no root in k, then X p − a is 
irreducible in k. 
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PROOF. First suppose that p is different from the characteristic. Let L be a 
splitting field for X p − a. The derivative of X p − a, evaluated at any root of 
X p − a in L, is nonzero, and Corollary 9.17 shows that X p − a splits as the 
product of p distinct linear factors in L. The quotient of any two roots of X p − a 
is a pth root of 1. Fixing one of these two roots of X p − a and letting the other 
vary, we obtain p distinct pth roots of 1. Thus L contains all p of the pth roots 
of 1. Proposition 4.26 shows that the group of pth roots of 1 is cyclic. Let ≥ be a 
generator. If a1/p denotes one of the roots of X p − a in L, then the set of all the 
roots is given by {a1/p≥ k | 0 ≤ k ≤ p − 1}. 
Now suppose that X p − a has a nontrivial factorization X p − a = F(X)G(X)

in k[X]. Possibly by adjusting the leading coefficients of F(X) and G(X), we 
may assume that F(X) and G(X) are both monic. Unique factorization in L[X]
then implies that there is a nonempty subset S of {k | 0 ≤ k ≤ p − 1} with a 
nonempty complement Sc such that 

F(X) = 
Q

(X − ≥ ka1/p) and G(X) = 
Q

(X − ≥ ka1/ p). 
k∈S k∈Sc 

If S has m elements, then the constant term of F(X) is (−a1/p)mω, where ω 
is some pth root of 1. Thus x = (a1/p)mω is in k. Since GCD(m, p) = 1,
we can choose integers c and d with cm + dp = 1. Since x is in k, so is 
xcad = (a1/p)mc+dpωc = a1/pωc. But a1/pωc is a root of X p −a, in contradiction 
to the hypothesis that no root of X p − a lies in k. Hence X p − a is irreducible. 
If p equals the characteristic of k, then Lemma 9.18 gives the factorization 

X p −a = (X −a1/p)p, where a1/p is one root of X p −a in K. Then we can argue 
as above except that ≥ and ω are to be replaced by 1 throughout. This completes 
the proof of the lemma. § 

PROOF OF NECESSITY IN THEOREM 9.44 THAT Gal(K/k) BE SOLVABLE. We 
are to prove that if some finite extension K0 of K has a root tower over k, then 
Gal(K/k) is solvable. 
Step 1. We enlarge each field in the given root tower to obtain a root tower 

k ⊆ K00
0 ⊆ K00 · ⊆ Kl

00 
−1 ⊆ K00 = K00 

1 ⊆ · · l 

of a finite extension K00 of K0 in such a way that K00
0 is the normal extension of k 

obtained by adjoining all nth roots of 1 for a suitably large n and such that each 
K00
i+1 is the normal extension of K00

i for 0 ≤ i ≤ l −1 obtained by adjoining all nthi
roots of the member ai of Ki

0 . Using Theorem 9.22, choose an algebraic closure 
K0 of K0. Let n be the product of the integers n0, n1, . . . , nl−1. Let ≥1, . . . , ≥n−1 

be the nth roots of 1 in K0 other than 1 itself, define subfields of K0 by 

K00 
i = Ki 

0 (≥1, . . . , ≥n−1) for 0 ≤ i ≤ l, 
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and put K00 = Kl
0 . The field K0

00 is a splitting field for Xn −1 over k and is therefore 
= K00a normal extension. The field K00

i+1 is given by Ki
00
+1 i (ri ), where ri is a root 

in Ki
00
+1 of the polynomial Xni − ai in Ki

00[X]. Here ni is prime. Lemma 9.45 
shows that either ri is in Ki

00[X] or Xni − ai is irreducible in Ki
00[X]. In the first 

case, Ki
00
+1 = Ki

00, and we have a normal extension. In the second case, Ki
00
+1 is 

a splitting field for Xni − ai over Ki
00 because it is generated by Ki

00 and one root 
of Xni − ai and because all nth roots of 1 already lie in K00

0; thus again we have a i
normal extension. 
Step 2. The Galois group of K00

0 over k is abelian. In fact, Proposition 4.26 
shows that the group of nth roots of 1 in K00

0 is cyclic. Let ≥ be a generator, and 
let U = {≥ k }n−1 The map of Gal(K00

0/k) into Aut U given by ϕ 7→ ϕ
Ø
Ø
U is a k=0. 

one-one homomorphism, and Aut U is isomorphic to (Z/nZ)×. Since (Z/nZ)× 

is abelian, it follows that Gal(K00
0/k) is abelian. 

Step 3. The Galois group of K00
i+1 over K00 is trivial or is cyclic of order i 

ni . In fact, the Galois group is trivial if K00
i+1 = Ki

00. The contrary case is that 
[Ki

00
+1 : K00

i+1/K00
i ] = ni , and then Gal(K00

i ) has order ni , which is prime. Every 

i+1/K00group of order ni is cyclic, and hence Gal(K00
i ) is cyclic. 

Step 4. We extend the root tower to a larger field L ⊇ K00 that is a normal 
extension of k. The resulting root tower of L will be written as 

= K00 = K00k ⊆ L0 0 ⊆ L1 1 ⊆ · · · 

= K00 = K00 ⊆ Ll+1 ⊆ ·⊆ Lk−1 l−1 ⊆ Ll · · ⊆ Lt = L. 

As it is, we cannot say that K00 is the splitting field over k for the product of the 
minimal polynomials used in Step 1, because the elements ai are not assumed to 
lie in k. To adjust the tower to correct this problem, write K00 as 

K00 = k(r0, r1, . . . , rl−1, ≥ ) = k(x0, . . . , xl ), 

with ≥ as in Step 2. Here r0, . . . , rl−1 are the given elements that define the 
original root tower, and we define xl = ≥ and xj = rj for 0 ≤ j < l. Since K00 is 
a finite extension of k, each xj has a minimal polynomial Gj (X) over k. Define 
G(X) = 

Ql
j=0 Gj (X), and let L be the splitting field of G(X) in the algebraic 

closure K0. The field L is a normal extension of k. The roots of G(X) are the 
members of L that are roots of some Gj (X). Each xj is a root of its own Gj (X). 
If xj0 is another root of Gj (X), then there is a k isomorphism of k(xj ) onto k(xj

0), 
and we know by the uniqueness of splitting fields (Theorem 9.130)12 that this 

12The theorem is to be applied to σ : k(xj ) → k(xj
0 ) with F(X) = Fσ (X) = G(X) and with 

L0 = L. 
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extends to a k isomorphism of L onto L. Hence to each root θ of G(X) in L 
corresponds some xj and some ϕ ∈ Gal(K/k) with ϕ(xj ) = θ . Thus 

L = k 
° 
{ϕ(xj ) | 0 ≤ j ≤ l and ϕ ∈ Gal(L/k}

¢
. 

For any ϕ in Gal(L/k) and any j ≤ l − 1, the element ϕ(xj ) of L satisfies 

(ϕ(xj ))nj = ϕ(xj
nj ) = ϕ(aj ), 

and the element on the right is in ϕ(Kj
00). Any element ϕ(≥ ) is an nth root of 1 

and hence is already in K00
0; such elements are redundant for ϕ =6 1. Enumerate 

Gal(L/k) as ϕ1, . . . , ϕs with ϕ1 = 1. The tower for K00 is to be continued with 
the fields obtained by adjoining one at a time the elements 

ϕ2(r0), . . . , ϕ2(rl−1), ϕ3(r0), . . . , ϕ3(rl−1), . . . , ϕs (r0), . . . , ϕs (rl−1). 

The final field is L, and then we have an enlarged tower as asserted. 
Step 5. Gal(L/k) is a solvable group. In fact, first we prove by induction 

downward on i that Gal(L/Li ) is solvable, the case i = t being the case of 
the trivial group. Let i < t be given. We have arranged that Li+1 is a normal 
extension of Li . Since L is normal over all the smaller fields by Step 4, Corollary 
9.39 therefore gives Gal(Li+1/Li ) ∼= Gal(L/Li )

± 
Gal(L/Li+1). The group on 

the left side is cyclic by Step 3 or the analogous proof with some rj replaced by 
a suitable ϕ(rj ), and thus a normal series with abelian quotients for Gal(L/Li+1)
may be extended by including the term Gal(L/Li ), and the result is still a normal 
series with abelian quotients. Thus Gal(L/Li ) is solvable. This completes the 
induction and shows that Gal(L/L0) is solvable. To complete the proof we use the 
isomorphism Gal(L0/k) ∼= Gal(L/k)

± 
Gal(L/L0) given by Corollary 9.39. The

group on the left side is abelian by Step 2, and thus a normal series with abelian
quotients for Gal(L/L0) may be extended by including the term Gal(L/k), and the 
result is still a normal series with abelian quotients. Thus Gal(L/k) is solvable. 
Step 6. Gal(K/k) is a solvable group. We have L ⊇ K ⊇ k with L/k normal by 

Step 4 and with K/k normal since K is a splitting field of F(X) over k. Applying 
Corollary 9.39, we obtain an isomorphism Gal(K/k) ∼ Gal(L/k)

± 
Gal(L/K).= 

Then Step 6 will follow from Step 5 if it is shown that any homomorphic im-
age of a solvable group is solvable. Thus let G be a solvable group, and let 
ϕ : G → H be an onto homomorphism. Write G = G1 ⊇ · · · ⊇ Gm = {1}
with abelian quotients, and define Hi = ϕ(Gi ). Passage to the quotient gives 
us a homomorphism ϕi carrying Gi onto Hi /Hi+1. Since ϕ(Gi+1) ⊆ Hi+1, 
ϕ induces a homomorphism ϕi of Gi /Gi+1 onto Hi /Hi+1. As the image of 
an abelian group under a homomorphism, Hi /Hi+1 is abelian. Therefore H is 
solvable. This completes the proof. § 
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12. Construction of Regular Polygons 

Theorem 9.25 proved the constructibility of regular n-gons when n is the product
of a power of 2 and distinct Fermat primes, but it gave little clue how to carry
out the construction. In this section we supply enough further detail so that one
can actually carry out the construction. It is enough to handle the case that n is a 
Fermat prime, n = 22N 

+ 1, and we shall suppose that n is a prime of this form. 
Let ≥ = e2π i/n . The field of interest is Q(≥ ), with [Q(≥ ) : Q] = n − 1. The 

usual basis of Q(≥ ) over Q is {1, ≥, ≥ 2 , . . . , ≥ n−2}, but we shall use the basis 

2 3{≥, ≥ , ≥ , . . . , ≥ n−1} 

instead, in order to identify the Galois group Gal(Q(≥ )/Q) more readily with F× 
n ,

where Fn = Z/nZ is the field of n elements. In more detail we associate the addi-
tive group of Fn with the additive group of exponents of the members of the cyclic 
group {1, ≥, ≥ 2 , ≥ 3 , . . . , ≥ n−1}, and members of the Galois group correspond to the
various multiplications of these exponents by F× = {1, 2, . . . , n − 1}. The group n 
F× is known to be cyclic of order n − 1, and thus the isomorphic Galois group n
is cyclic. If a generator σ of the Galois group is to correspond to multiplication 
by a generator g of F×, then σ (≥ s ) = ≥ gs for all s. With the prime n of the form n 

22N 
+ 1, let us note for the sake of completeness why we can always take g = 3. 

Lemma 9.46. The number 3 is a generator of F× when n is prime of the form n 

22N 
+ 1 with N > 0. 

REMARKS. We verified this assertion for n = 17 in Section 6, and in principle
one could verify the lemma in any particular case in the same way. Here is a 
general argument using the law of quadratic reciprocity, whose full statement and
proof will be given in Chapter I of Advanced Algebra. For a prime number n 
that is congruent to 1 modulo 4, quadratic reciprocity implies that 3 is a square
modulo n if and only if n is a square modulo 3. Since 

22
N 

− 1 = (22
N −1 

(22
1 

+ 1)(22
N −2 

+ 1) · · · + 1)(22
1 
− 1) 

and 221 
− 1 = 3, 3 divides 22N 

− 1. Thus n is congruent to 2 modulo 3, n is 
not a square modulo 3, and 3 is not a square modulo n. The nonsquares modulo 
n = 22N 

+ 1 are exactly the generators of F×, and therefore 3 is a generator. n 

Taking Lemma 9.46 into account, we suppose for the remainder of this section
that the generator σ of the Galois group corresponds to multiplication of exponents 
of ≥ by 3. Then σ (≥ ) = ≥ 3 and σ (≥ s ) = ≥ 3s . These formulas and Q linearity tell 
us explicitly how σ operates on all of Q(≥ ). 
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The fixed fields that arise within Q(≥ ) correspond to subgroups of the group 
Gal(Q(≥ )/Q) ∼ }, and there is one for each power of 2 from = {σ j | 0 ≤ j < 22N 

20 to 22N . Fix attention on the subgroup Hl of order l, and write 22N 
= kl, with 

k and l being powers of 2. A generator of this subgroup is σ k , and the subgroup 
is Hl = {1, σ k , σ 2k , . . . , σ (l−1)k}. Let Kl be the fixed field of this subgroup, or 
equivalently of its generator σ k ; this has dimension k over Q. 
We shall determine a basis of Kl over Q. Since σ (≥ s ) = ≥ 3s , we have σ k(≥ s ) = 

≥ 3
k s . For 0 ≤ r ≤ k − 1, the k elements 

3r 3r+k 3r+2k 3r +k(l−1) ηr = ≥ + ≥ + ≥ + · · · + ≥ 

are linearly independent over Q because they involve disjoint sets of basis vectors 
of Q(≥ ) as r varies. The computation 

k k ° 
≥ 3

r 3r+k 3r+2k 3r +k(l−1) ¢σ (ηr ) = σ + ≥ + ≥ + · · · + ≥ 

3r+k 3r+2k 3r+3k 3r+kl = ≥ + ≥ + ≥ + · · · + ≥ 

3r 3r +k 3r +2k 3r +k(l−1) = ≥ + ≥ + ≥ + · · · + ≥ 

= ηr 

shows that each of these vectors is in Kl . Hence {η0, . . . , ηk−1} is a basis of 
Kl over Q. The elements of this basis are called the periods of l terms of the 
cyclotomic field.
The extreme cases for the periods are (k, l) = (22N 

, 1), for which 0 ≤ r ≤ 
22N 

− 1 with ηr = ≥ 3
r , and (k, l) = (1, 22N 

), for which r = 0 with 

30 31 32 322
N 

−1 
η0 = ≥ + ≥ + ≥ + · · · + ≥ = ≥ + ≥ 2 + ≥ 3 + · · · + ≥ n−1 = −1. 

Two facts enter into determining how to write ≥ in terms of rationals and square 
roots. The first is that at stage k for k ∏ 2, the sum of certain pairs of ηr ’s is 
an η for stage k − 1. The second is that the product of two ηr ’s at stage k is an 
integer combination of η’s from the same stage and that the sum formulas express
this combination in terms of η’s from earlier stages. The result is that at the kth 

stage we obtain expressions for the sum and product of two ηr ’s in terms of η’s 
from earlier stages. Therefore the two ηr ’s at stage k are the roots of a quadratic 
equation whose coefficients involve η’s from earlier stages. Consequently we 
can compute the ηr ’s explicitly by induction on k. To proceed further, we need 
to know the formula for the product of two ηr ’s, which is due to Gauss. 
To multiply two ηr ’s, we need to multiply various powers of ≥ , and the expo-

nents get added in the process. This addition is not readily compatible with terms
like ≥ 3

r and ≥ 3
s , and for that reason Gauss introduced new notation. Define 

η(t) t t3k t32k t3k(l−1) ≥ t3
kv 

= ≥ + ≥ + ≥ + · · · + ≥ = 
P 

v mod l 
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for 0 ≤ t ≤ n − 1. Then η(0) = l, and for 0 < t ≤ n − 1, η(t) is the ηr in which 
≥ t occurs. Gauss’s product formula is given by 

≥ s3
ku +t3kv ¢

η(s)η(t) = 
P ° P 

u mod l v mod l 

≥ s3
ku +t3k(u+w) ¢

= 
P ° P 

with v 7→ u + w 
u mod l w mod l 

≥ (s+t3kw)3ku ¢
= 

P ° P 

w mod l u mod l 

η(s+t3kw)= 
P 

. 
w mod l 

In words, this says that to multiply two η’s, we add the η’s for the exponents 
obtained by multiplying the first term of η(s) by all the terms of η(t). 
At this point it is more illuminating to work some examples than to try for a

general result. 

EXAMPLE 1. n = 5, N = 1, 22N 
= 4. The relevant pairs (k, l) to study in 

sequence are (k, l) = (1, 4), (2, 2), (4, 1), and the case (k, l) = (1, 4) is trivial 
since the only subscripted η is 

P3 
s=0 ≥ 3

s 
= −1. 

FIGURE 9.3. Construction of a regular pentagon. The circle with center 
° 1 1 ¢
2 , 4

1and radius 14 meets the line from 
° 1 ¢ 

to the origin at a point at distance 2 , 4 
cos(2π/5) from the origin. 

For k = 2, i.e., for the case that there are 2 periods of 2 terms each, we go
back to the definition of the η’s and find that 

30+2·0 30+2·1 1 4η0 = ≥ + ≥ = ≥ + ≥ , 

31+2·0 31+2·1 3 2η1 = ≥ + ≥ = ≥ + ≥ . 
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We form those sums of pairs of η’s that yield an η from the previous step. Here 
there is only one pair, and the sum is given by 

η0 + η1 = −1. 
Next we form the elements η(t), remembering that for t > 0, η(t) is the ηr in 
which ≥ t occurs. Then 

η(0) η(1) η(2) η(3) η(4)= 2, = η0, = η1, = η1, = η0. 

We apply Gauss’s product formula to compute the product of the two η’s whose 
sum we have identified. The formula gives 

η0η1 = η(1)η(2) = η(4) + η(3) = η0 + η1 = −1, 
the second equality following since the rule for the indices is to extract a power
of ≥ appearing in η(1) and add that index to all the powers of ≥ appearing in η(2). 
Since η0 and η1 have sum −1 and product −1, they are the roots of the quadratic 
equation p

x2 + x − 1 = 0, namely 12 (−1 ± 5 ). 

Deciding which root is η0 and which is η1 involves looking at signs. The two
roots of the quadratic equation are of opposite sign because the constant term of
the quadratic equation is negative. Since η0 = ≥ + ≥ −1 = e2π i/5 + e−2π i/5 = 
2 cos(2π/5) is positive, we obtain 

p p
η0 = 12 (−1 + 5 ) and η1 = 12 (−1 − 5 ). 

The computation can in principle stop here, since knowing cos(2π/5) gives 
us sin(2π/5) and therefore e2π i/5. See Figure 9.3. But it is instructive to carry
out the algorithm anyway. We are thus to treat k = 4. The periods of 1 term are 

3 4 2ξ0 = ≥, ξ1 = ≥ , ξ2 = ≥ , ξ3 = ≥ . 

The corresponding objects with superscripts are 
ξ (0) ξ (1) ξ (2) ξ (3) ξ (4)= 1, = ξ0, = ξ3, = ξ1, = ξ2. 

The relevant sums of pairs are 
ξ0 + ξ2 = η0, 

ξ1 + ξ3 = ξ1. 

We again use Gauss’s product formula, and this time we obtain 

ξ0ξ2 = ξ (1)ξ (4) = ξ (5) = ξ (0) = 1. 
Hence ξ0 and ξ2 are the roots of the quadratic equation 

p p
−1+ 5 5± i

q
4 − 

° 
−1+ )22 2y2 − η0 y + 1 = 0, namely 

2 
. 

The root y involving the plus sign is e2π i/5. 
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EXAMPLE 2.13 n = 17, N = 2, 22N 
= 16. The relevant pairs (k, l) have 

kl = 16, and the case (k, l) = (1, 16) is trivial since the only subscripted η is P15 
s=0 ≥ 3

s 
= −1. 

For k = 2, the 2 periods have 8 terms each, and 

30+2·0 30+2·1 30+2·2 30+2·3 30+2·4 30+2·5 30+2·6 30+2·7 
η0 = ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + ≥ 

1 9 13 15 16 8 4 2= ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + ≥ , 

31+2·0 31+2·1 31+2·2 31+2·3 31+2·4 31+2·5 31+2·6 31+2·7 
η1 = ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + ≥ 

3 10 5 11 14 7 12 6= ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + ≥ . 

We form those sums of pairs of η’s that yield an η from the previous step. Here 
there is only one pair, and the sum is given by 

η0 + η1 = −1. 

Next we form the elements η(t), remembering that for t > 0, η(t) is the ηr in 
which ≥ t occurs. Then η(0) = 2, 

η(1) = η(9) = η(13) = η(15) = η(16) = η(8) = η(4) = η(2) = η0, 

η(3) = η(10) = η(5) = η(11) = η(14) = η(7) = η(12) = η(6) = η1. 

To compute η0η1 by means of Gauss’s product formula, we use η0 = η(1) and 
η1 = η(3). Then 

= η(1)η(3) = η(4) + η(11) + η(6) + η(12) + η(15) + η(8) + η(13) + η(7)η0η1 , 

the indices on the right side being the indices for η1 plus one. Resubstituting in 
terms of η0 and η1, we obtain 

η0η1 = 4η0 + 4η1 = −4. 

Therefore η0 and η1 are the roots of the quadratic equation 
p

x2 + x − 4 = 0, namely 12 (−1 ± 17 ). 

Deciding which root is η0 and which is η1 involves looking at signs. The two
roots of the quadratic equation are of opposite sign. Since 

1 + ≥ −1 2 + ≥ −2 4 + ≥ −4 8 + ≥ −8η0 = (≥ ) + (≥ ) + (≥ ) + (≥ ) 

= 2
° 
cos(2π/17) + cos(4π/17) + cos(8π/17) + cos(16π/17)

¢ 

1> 2
° 1
2 + 2 + 0 + (−1)

¢ 
= 0, 

13The discussion of this example closely follows that in Van der Waerden, Vol. I, Section 54. 
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η0 is the positive root, and we have 
p p

η0 = 12 (−1 + 17 ) and η1 = 12 (−1 − 17 ). 

For k = 4, the 4 periods have 4 terms each, and 

30+4·0 30+4·1 30+4·2 30+4·3 1 13 16 4ξ0 = ≥ + ≥ + ≥ + ≥ = ≥ + ≥ + ≥ + ≥ , 

31+4·0 31+4·1 31+4·2 31+4·3 3 5 14 12ξ1 = ≥ + ≥ + ≥ + ≥ = ≥ + ≥ + ≥ + ≥ , 

32+4·0 32+4·1 32+4·2 32+4·3 9 15 8 2ξ2 = ≥ + ≥ + ≥ + ≥ = ≥ + ≥ + ≥ + ≥ , 

33+4·0 33+4·1 33+4·2 33+4·3 10 11 7 6ξ3 = ≥ + ≥ + ≥ + ≥ = ≥ + ≥ + ≥ + ≥ . 

The sums of pairs of these that yield η’s are 

ξ0 + ξ2 = η0 

ξ1 + ξ3 = η1. 

We can read off superscripted ξ ’s from the exponents on the right sides of the 
formulas for ξ0, . . . , ξ3, and the results are 

ξ (1) = ξ (13) = ξ (16) = ξ (4) = ξ0, 

ξ (3) = ξ (5) = ξ (14) = ξ (12) = ξ1, 

ξ (9) = ξ (15) = ξ (8) = ξ (2) = ξ2, 

ξ (10) = ξ (11) = ξ (7) = ξ (6) = ξ3. 

Then the relevant products are 

= ξ (1)ξ (9) = ξ (10) + ξ (16) + ξ (9) + ξ (3)ξ0ξ2 = ξ3 + ξ0 + ξ2 + ξ1 = −1, 

ξ (6) = ξ (13) + ξ (14) + ξ (10)ξ1ξ3 = ξ (3) + ξ (9) = ξ0 + ξ1 + ξ3 + ξ2 = −1. 

Thus ξ0 and ξ2 are the roots of the quadratic equation 

y2 − η0 y − 1 = 0, 

while ξ1 and ξ3 are the roots of the quadratic equation 

y2 − η1 y − 1 = 0. 

Since ξ0ξ2 and ξ1ξ3 are negative, these equations each have roots of opposite
sign. We observe that ξ0 = 2

° 
cos(2π/17) + cos(8π/17)

¢ 
> 0 and that ξ3 = 

2
° 
cos(14π/17) + cos(12π/17)

¢ 
< 0, and we conclude that the signs are 

ξ0 > 0 and ξ2 < 0, 
ξ1 > 0 and ξ3 < 0. 
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1FIGURE 9.4. Construction of a regular 17-gon. The small circle has center 
° 1
2 , 8 ) 

and radius 18 . Two circles are drawn tangent to it with center (0, 0); their radii 
are η0/4 and |η1|/4. Their x intercepts and height 12 determine the dashed box. 
The diameter of the large solid semicircle is ξ0/2, and its heavy part is ∏0/2. 
The separate semicircle at the left constructs 

p
ξ1/4 from ξ1/2, and the chord 

in the large semicircle is at distance 
p

ξ1/4 from the diameter. 

For k = 8, the 8 periods have 2 terms each, and the two with sum ξ0 are 
30+8·0 30+8·1 1 16∏0 = ≥ + ≥ = ≥ + ≥ , 

34+8·0 34+8·1 13 4∏4 = ≥ + ≥ = ≥ + ≥ . 

Their sum and their product are given by 

∏0 + ∏4 = ξ0, 
14 5 12 3∏0∏4 = ≥ + ≥ + ≥ + ≥ = ξ1. 

Thus ∏0 and ∏4 are the roots of the quadratic equation 

z2 − ξ0z + ξ1 = 0. 
Since ∏0 = 2 cos(2π/17) > 2 cos(8π/17) = ∏4, ∏0 is the larger of the two roots 
of the equation.
In summary, we have successively defined 

p p
1 1η0 = 
° 
− 1 + 17 

¢ 
and η1 = 

° 
− 1 − 17 

¢
,2 2 

1 η2 1 η2ξ0 = 
° 
η0 + 

q

0 + 4 
¢ 
and ξ2 = 

° 
η0 − 

q

0 + 4 
¢
,2 2 

1 η2 1 η2ξ1 = 
° 
η1 + 

q

1 + 4 
¢ 
and ξ3 = 

° 
η1 − 

q

1 + 4 
¢
,2 2 

1 ξ 2∏0 = 
° 
ξ0 + 

q

0 − 4ξ1 
¢
.2 
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Since ∏0 = 2 cos(2π/17), these formulas explicitly point to how to construct a
regular 17-gon. See Figure 9.4. 

13. Solution of Certain Polynomial
Equations with Solvable Galois Group 

In this section we investigate what specific information can be deduced about a
finite Galois extension in characteristic 0 when the Galois group is solvable.
The tool is a precursor of modern harmonic analysis14 known as “Lagrange
resolvents.” The argument of the previous section could be regarded as an instance
of applying the theory of Lagrange resolvents, but Lagrange resolvents give only
the simpler formulas of the previous section, not the Gauss product formula. 

Proposition 9.47. Let K be a finite normal extension of a field k of charac-
teristic 0, suppose that Gal(K/k) is cyclic of order n with σ as a generator, and 
suppose that Xn − 1 splits in k. Fix a generator σ of Gal(K/k) and a primitive 
nth root ω of 1 in k. For 0 ≤ r < n, define k linear maps Er : K → K by 

X 
ω−kr Er x = n−1 σ k x for x ∈ K. 

k mod n 

Then 

(a) Er Es equals Es if r = s and equals 0 if r 6≡ s mod n, so that the Er ’s are 
commuting projection operators whose images are linearly independent, 

(b) 
P 

Er = I , so that the direct sum of the images of the Er ’s is r mod n
all of K,

(c) σ (x) = ωr x for all r and for all x in image Er ,
(d) image E0 = k. 

REMARKS. The integers k and r depend only on their values modulo n, and the 
summation indices “k mod n” and “r mod n” are to be interpreted accordingly. 
The operators Er are known classically as Lagrange resolvents, apart from 
the constant n−1. The proposition says that the k linear map σ has a basis of 
eigenvectors, that the eigenvalues are a subset of the powers ωr , and that each Er 
is the projection operator on the eigenspace for the eigenvalue ωr along the sum 
of the remaining eigenspaces. 

14Lagrange resolvents give a certain specific Fourier decomposition relative to a cyclic group.
Similar formulas apply whenever a cyclic group acts linearly on a vector space over k and the relevant 
roots of 1 lie in k. For the corresponding decomposition of a vector space over C when a finite group 
G acts linearly, see Problems 47–52 at the end of Chapter VII. The decomposition in those problems
can be seen to work for any field k of characteristic 0 for which the values of all irreducible characters 
of G lie in k. The values of the characters are sums of certain roots of 1, and thus it is enough that 
k contain a certain finite set of roots of 1. 
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PROOF. For x in K, we compute 

Er Esx = n−2 P 
ω−kr σ k 

° P 
ω−ls σ l x

¢ 

k mod n l mod n 

= n−2 P P 
ω−kr σ k ω−ms+ks σ m−k x 

k mod n m mod n 

= n−2 P ° P 
ωk(s−r)¢ω−msσ mx . 

m mod n k mod n 

The expression in parentheses on the right side is the sum of a finite geometric
series. If s ≡ r mod n, then every term in the sum is 1, and the sum is n. If 
s 6≡ r mod n, then the sum is 1−ωn(s−r) 

= 0. Thus (a) follows. 1−ωs−r 

Next we calculate 
P 

Er x = 
P 

n−1 P 
ω−kr σ k x = 

P 
n−1° P 

ω−kr ¢σ k x . 
r mod n r mod n k mod n k mod n r mod n 

As in the previous paragraph, the sum in parentheses is n if k = 0 and it is 0 if 
k 6≡ 0 mod n. Therefore only the k = 0 term on the right side contributes, and 
the right side simplifies to x . This proves (b). 
The computation 

σ (Er x) = n−1 P 
ω−kr σ k+1x 

k mod n 

= n−1 P 
ω(−l+1)r σ l x 

l mod n 

= ωr n−1 P 
ω−lr σ l x = ωr Er x 

l mod n 

shows that σ (y) = ωr y for every y of the form Er x , and these y’s are the members 
of the image of Er . This proves (c).
Combining (b) and (c), we see that σ (x) = x if and only if x is in image E0. 

Since Gal(K/k) is cyclic, the members of K fixed by σ are the members fixed 
by the Galois group, and these are the members of k by Proposition 9.35d. This 
proves (d). § 

Corollary 9.48. Let K be a finite normal extension of a field k of characteris-
tic 0, suppose that Gal(K/k) is cyclic of prime order p, and suppose that X p − 1 
splits in k. Then there exist a in k and x in K such that x p = a and K = k(x). 

REMARKS. In other words, a finite normal extension field in characteristic 0
with Galois group cyclic of prime order p is necessarily obtained by adjoining a 
pth root of some element of the base field, provided that the base field contains
all the pth roots of 1. Once the extension field contains one pth root of an element 
of the base field, it has to contain all pth roots, since the base field by assumption 
contains a full complement of pth roots of 1. 
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PROOF. We apply Proposition 9.47 with n = p. Since [K : k] = p > 1, (d) 
shows that E0 is not the identity. By (b), some Er with r 6= 0 is not the 0 operator. 
Let x be a nonzero element in image Er . Since the generator σ of the Galois group 

= ωrp x pis a field automorphism, σ (x p) = σ (x)p = (ωr x)p = x p. Since x p is 
fixed by the Galois group, x p lies in k. Then the element a = x p has the property 
that x p = a and K ⊇ k(x) % k. Since [K : k] is prime, Corollary 9.7 shows that 
there are no intermediate fields between K and K. Therefore K = k(x). § 

We shall apply Corollary 9.48 to prove the converse statement in Theorem
9.44—that solvability of the Galois group for a polynomial equation in charac-
teristic 0 implies that the solutions of the equation are expressible in terms of
radicals and the base field. We begin with a lemma that handles a special case. 

Lemma 9.49. Let k be a field of characteristic 0, let n > 0 be an integer, 
and let K be a splitting field for 

Qn 
=1 (Xr − 1) over k. Then K/k is a Galois r

extension, the Galois group of Gal(K/k) is abelian, and K has a root tower over k. 

PROOF. Being a splitting field in characteristic 0, K is a finite Galois extension 
of k. For 1 ≤ r ≤ n, let ωr be a primitive r th root of 1 in K. The primitive 
r th roots of 1 are parametrized by the group (Z/rZ)× once some ωr is specified, 
the parametrization being k 7→ ωr

k . If σ is in Gal(K/k), then σ (ωr ) = ωr
k for 

some such k. This correspondence respects multiplication in (Z/rZ)× since if 
ωk ωl ωkl σ (ωr ) = and σ 0(ωr ) = , then σ 0(σ (ωr )) = σ 0(ωr

k ) = σ 0(ωr )
k = r .r r

Thus for each r , we have a homomorphism of Gal(K/k) into the abelian group 
(Z/rZ)×. Putting these homomorphisms together as r varies and using the fact 
that the ωr ’s generate K over k, we obtain a one-one homomorphism of Gal(K/k)
into the abelian group 

Qn 
=1 (Z/rZ)×. Consequently Gal(K/k) is isomorphic to r

a subgroup of an abelian group and is abelian.
It follows from Corollary 9.39 that every extension of intermediate fields is

Galois and has abelian Galois group. For 1 ≤ r ≤ n, we introduce the interme-
diate field Kr = k(ω1,ω2, . . . , ωr ). Here K1 = k(1) = k. For 1 < r < n, Kr is 
generated as a vector space over Kr−1 by ωr ,ωr 

2 , . . . , ωr−1 since 
Pr

k
−
=
1
0 ω

k = 0r r
for r > 1, and thus [Kr : Kr−1] ≤ r − 1. Since Gal(Kr /Kr−1) is abelian, it has
a composition series whose consecutive quotients are cyclic of prime order, the
prime order necessarily being ≤ [Kr : Kr−1] ≤ r − 1. Applying Galois theory, 
form the chain of intermediate extensions between Kr−1 and Kr . The degree of 
each extension is some prime p with p ≤ r − 1, the prime depending on the two 
fields in the chain. The pth roots of unity are in the smaller of any two consecutive 
fields because they are in Kr−1. By Corollary 9.48, such a degree-p extension 
between Kr−1 and Kr is generated by the smaller field and the pth root of an 
element in the smaller field. Since K1 = k, we see inductively that Kr has a root 
tower over Kr−1 for each r . Since K = Kn , K has a root tower over k. § 
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PROOF OF SUFFICIENCY IN THEOREM 9.44 THAT Gal(K/k) BE SOLVABLE. Let 
F(X) be in k[X], and suppose that K is a splitting field of F(X) over k. Under 
the assumption that Gal(K/k) is solvable, we are to prove that there exists a finite 
extension K0 of K having a root tower. 
Since G = Gal(K/k) is solvable, we can find a finite sequence of subgroups 

of G, each normal in the next larger one, such that the quotient of any consecutive
pair is cyclic of prime order. We write 

G = H0 ⊇ H1 ⊇ · · · ⊇ Hk−1 ⊇ Hk = {1}
with Hj /Hj+1 cyclic of prime order pj for 0 ≤ j < k. Let 

k = K0 ⊆ K1 ⊆ · · · ⊆ Kk−1 ⊆ Kk = K 

be the corresponding sequence of intermediate fields given by the Fundamen-
tal Theorem of Galois Theory (Theorem 9.38). Here Kj = KHj , and Hj = 
Gal(K/Kj ). 
According to Corollary 9.39, Kj+1 is a normal extension of Kj if and only if 

Gal(K/Kj+1) is a normal subgroup of Gal(K/Kj ), and in this case we have a 
group isomorphism Gal(K/Kj )

± 
Gal(K/Kj+1) ∼= Gal(Kj+1/Kj ). Since Hj+1 is 

a normal subgroup of Hj with quotient cyclic of order pj , it follows that Kj+1/Kj
is indeed normal and the Galois group is cyclic of order pj . 

0Let us use Theorem 9.22 to regard K as lying in a fixed algebraic closure K . 
Let n be the product of all the primes pj , and let K0

0 be the splitting field over 
0 0k for 

Qn 
=1 (Xr − 1) within K . For 1 ≤ j ≤ k, let K0

j be the subfield of Kr
generated by Kj and K0

0. We define K0 = Kk
0 . Then we have 

k ⊆ K0
0 ⊆ K0

1 ⊆ · · · ⊆ K0
k−1 ⊆ K0

k = K0 . 

Lemma 9.49 shows that K0
0 has a root tower over K0. To complete the proof, it is 

enough to show for each j ∏ 0 that either K0
j+1 = K0

j or else [K0
j+1 : K0

j ] = pj
and K0

j+1 is generated by K0
j root of some member of K0

j and the pth j . 
For each j ∏ 0, suppose that Kj+1 = Kj (xj ). Let Fj (X) be the minimal poly-

nomial of xj over Kj . Since Kj+1/Kj is normal, Kj+1 is the splitting field of Fj (X) 
over Kj . Then K0 = K0

j (xj ) is the splitting field of Fj (X) 
Qn 

=1 (Xr − 1) over j+1 r
K0
j , and consequently K0

j+1/K0
j is a normal extension. If g is in Gal(K0

j+1/K0
j ),

then g sends xj into a root of Fj (X) and is determined by this root. The restriction 
g
Ø
Ø
Kj+1 

therefore carries Kj+1 into itself and is in Gal(Kj+1/Kj ). Since g is 
determined by g(xj ), the group homomorphism g 7→ g

Ø
Ø
Kj+1 

is one-one. The 
image of this homomorphism must be a subgroup of Gal(Kj+1/Kj ) and therefore 
must be trivial or have pj elements. In the first case, K0

j+1 = K0
j , and in the 

second case, [K0
j+1 : K0 = pj . In the latter case, K0

j contains all pj of the pthj ] j
roots of 1 since these roots of 1 are in K0

0; by Corollary 9.48, K0
j+1 is generated 

by K0
j and a pthj root of some member of K0

j . This completes the proof. § 



510 IX. Fields and Galois Theory 

We turn now to apply our methods to irreducible cubics over a field k of char-
acteristic 0. In effect we shall derive Cardan’s formula,15 which was mentioned 
at the beginning of Section 11.
The Galois group of a splitting field of a cubic polynomial has to be a subgroup

of the symmetric group S3, and irreducibility of the cubic implies that the Galois
group has to contain a 3-cycle. Therefore the Galois group has to be either S3 or 
the alternating group A3 

∼= C3. 
Let the cubic be X3 +a2 X2 +a1 X +a0, the coefficients being in k. Substituting 

X = Z − 3
1 a2 converts the polynomial into 

(Z − 13 a2)
3 + a2(Z − 13 a2)

2 + a1(Z − 3
1 a2) + a0 

2= Z3 + (a1 − 3
1 a2
2)Z + (a0 − 3

1 a1a2 + 27 a2
3), 

and therefore we can assume whenever convenient that the given polynomial has 
a2 = 0. 
Suppose for the moment that the Galois group is G = S3. A composition 

series is 
G = S3 ⊇ A3 ⊇ {1}, 

and we can write the corresponding sequence of fixed fields as 

k ⊆ L ⊆ K, 

where K is the splitting field and L is KA3 . The dimensions satisfy [L : k] = 2 
and [K : L] = 3. 
Let the roots in K of the given cubic be r1, r2, r3. Since G is solvable, Theorem

9.44 tells us that the roots are expressible in terms of radicals and members of 
k. To derive explicit formulas for the roots, the idea is to use a two-step process
with Lagrange resolvents, arguing as in the proof of Corollary 9.48 at each step.
The first step involves passing from k to L. The square roots of 1 are already 

in k, and L is to be obtained from k by adjoining one of the square roots of 
some element of k. In Proposition 9.47 the Galois group Gal(L/k) is a 2-element 
quotient group, the sum is over members of the quotient group, and the element x 
is in L. It is a little more convenient to pull the sum back to one over the 6-element
symmetric group, taking ω to be the sign function on S3 and taking x to be any 
element of K. The formulas for the projection operators E0 and E1 are then 

1E0x = 
P 

σ (x), 6 
σ∈S3 

1 P
E1x = (sgn σ )σ (x), 6 

σ∈S3 

15We discuss only Cardan’s cubic formula, omitting any discussion of the corresponding quartic
formula, which often bears Cardan’s name and which can be handled with the same techniques. See
Van der Waerden, Vol. I, Section 58, for details. 
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with x in K, and the proof of Corollary 9.48 tells us to adjoin to k the square root 
of any element of image E1, i.e., any element with σ (x) = (sgn x)x for all σ in 
S3. 
The only elements of K for which we have good control of the action of the

Galois group, apart from the elements of k, are the elements that are expressed 
directly in terms of the roots r1, r2, r3 of the polynomial. By renumbering the
roots if necessary, we may assume that the roots are permuted by S3 according to 
their subscripts. An example of a polynomial function of r1, r2, r3 that transforms 
according to the sign of the permutation played a role in Section I.4 in defining
the sign of a permutation. It is the difference product of the polynomial, namely 

Y 
(rj − ri ). 

1≤i< j≤3 

This is a square root of the discriminant D of the polynomial, which is given by 
Y 

2D = (rj − ri ) . 
1≤i< j≤3 

We shall compute D in terms of the coefficients of the cubic shortly. In the p
meantime, the proof of Corollary 9.48 thus tells us that L = k( D ). Here 

p
D 

is given by 
p
D = (r3 − r2)(r3 − r1)(r2 − r1) 

= (r1r2
2 + r2r3

2 + r3r1
2) − (r1

2r2 + r2
2r3 + r3

2r1). 

The second step is to pass from L to K. Corollary 9.48 says to expect K 
to be obtained by adjoining the cube root of something if the cube roots of 1
are already present in L. The proof of the second half of Theorem 9.44, which
follows Corollary 9.48, indicates how we can incorporate the cube roots of 1 into
the fields in order to have a root tower. What we can do is to replace k at the start 
by a splitting field for 

Q
1≤r≤3 (Xr − 1). Since ±1 are already in k, we are to 

adjoin the nontrivial cube roots of 1, i.e., the roots of X2 + X + 1, if they are not p
already present. In other words, what we do is replace k at the start by k( −3 ). 
Changing notation, we assume that 

p
−3 lies in k from the outset. 

We can now use Lagrange resolvents. Let σ be the generator (1 2 3) of A3,p
sending r1 to r2, r2 to r3, and r3 to r1. Let ω = 12 (−1 + −3 ) be a primitive 
cube root of 1. Then we have 

1E0x = 3 (x + σ x + σ 2x), 
1E1x = 3 (x + ω−1σ x + ω−2σ 2x), 
1 σ x + ω−1E2x = 3 (x + ω−2 σ 2x). 
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Again we can use any x , but the roots of the cubic are the simplest nontrivial
elements for which we know the action of σ . Corollary 9.48 shows that K = 
L(E1x) if E1x 6 0. Proposition 9.47 says that (E1x)3 is fixed by σ , and it = 
therefore lies in L. Hence K is identified as obtained from L by adjoining a cube 
root of the element (E1x)3 of L. 

1 p
Taking x = r1, we have σ x = r2 and σ 2x = r3. Also, ω±1 = 2 (−1 ± −3 ). 

Using the formula for E1x and substituting for 
p
D and ω±1 then gives 

(3E1r1)3 = r1
3 + r2

3 + r3
2 + 6r1r2r3 

+ 3ω−1(r1
2r2 + r2

2r3 + r3
2r1) + 3ω(r1r2

2 + r2r3
2 + r3r1

2) 
p

= 
P 
r3 + 6r1r2r3 − 3 P 

ri
2rj + 3 −3

p
D.i 2 2

i i 6= j 

To proceed further, we shall want to substitute expressions involving the co-
efficients of the cubic for the above symmetric expressions in the roots.16 These 
expressions will be considerably simplified if we assume that the coefficient of
X2 in the cubic is 0. We know that this assumption involves no loss of generality.
Thus we assume for the remainder of this section that the cubic is X3 + pX + q. 
The relevant formulas relating the roots and the coefficients are 

r1 + r2 + r3 = 0, 
r1r2 + r1r3 + r2r3 = p, 

r1r2r3 = −q. 

Aiming for the right side of the displayed formula for (3E1r1)3, we have 
3 = 

P 
r3 + 3 

P 
r20 = (r1 + r2 + r3) i i rj + 6r1r2r3, 

i i 6= j 

0 = (r1 + r2 + r3)(r1r2 + r1r3 + r2r3) = − 9 P 
ri
2rj − 272 r1r2r3,2 

i 6 j= 

− 27 27=2 q 2 r1r2r3. 

Addition of these three lines and comparison with the expression for 3(E1r1)3 

yields 
p

− 27
2 q = 

P 
ri
3 − 32 

P 
ri
2rj + 6r1r2r3 = (3E1r1)3 − 32 −3

p
D. 

i i 6= j 

Consequently p p3 = − 27 3(3E1r1) 2 q + −3 D.2 

16Problems 36–39 at the end of Chapter VIII assure us that this rewriting is possible. For our
derivation this assurance is not logically necessary, since we will be producing explicit formulas. 

http:roots.16
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Similarly p p3 = − 27(3E2r1) 2 q − 3 −3 D.2 

Since 3E0r1 = r1 + r2 + r3 = 0, we have expressions for E0r1, E1r1, and E2r1,
apart from the choices of the cube roots. Proposition 9.47b says that we recover 
r1 by addition: r1 = E0r1 + E1r1 + E2r1. Thus we have found a root explicitly
as soon as we sort out the ambiguity in the choices of cube roots and determine
the value of D in terms of the coefficients p and q. 

Theorem 9.50 (Cardan’s formula). Let k be a field of characteristic 0 con-
taining 

p
−3, and let X3 + pX + q be an irreducible cubic in k[X]. For this 

polynomial the discriminant D is given by 

D = −4 p3 − 27q2 . 

The Galois group of a splitting field of the cubic is S3 if D is a nonsquare in k 
and is A3 if D is a square in k. In either case, fix a square root of D, denote it by p p1D, and let ω±1 = 2 (−1 ± −3) be the primitive cube roots of 1. Then it is
possible to determine cube roots of the form 

q p p q p p
3 − 27 3 3 − 273E1r1 = 2 q + −3 D and 3E2r1 = 2 q − 3 −3 D2 2 

in such a way that their product is (3E1r1)(3E1r2) = −3 p, and in this case the 
three roots of X3 + pX + q are given by 

r1 = E1r1 + E2r1, 

r2 = ωE1r1 + ω2 E2r1, 

r3 = ω2 E1r1 + ωE2r1. 

PROOF. Define σk = r1
k + r2

k + r3
k for 1 ≤ k ≤ 4. By inspection we have 

√ 1 1 1 !
 
1 r1 r2

 √ 3 σ1 σ2 
!

1 
r1 r2 r3 1 r2 r2 = σ1 σ2 σ3 . 

2 
r2 r2 r21 2 3 1 r3 r3

2 σ2 σ3 σ4 

Taking the determinant of both sides and applying Corollary 5.3, we obtain 

√ 3 σ1 σ2 
! 

D = det σ1 σ2 σ3 = 3σ2σ4 − σ2
3 − 3σ3

2. 
σ2 σ3 σ4 

The given cubic shows that σ1 = r1 + r2 + r3 = 0. For the other σi ’s, we have 
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σ2 = r1
2 + r2

2 + r2 = (r1 + r2 + r3)2 − 2(r1r2 + r1r3 + r2r3) = −2 p,3 

σ3 = r1
3 + r2

3 + r3
3 = (r1 + r2 + r3)(r1

2 + r2
2 + r3

2) 

− (r1
2r2 + r1

2r3 + r2
2r1 + r2

2r3 + r3
2r1r3

2r2) 
= −(r1 + r2 + r3)(r1r2 + r1r3 + r2r3) + 3r1r2r3 = −3q, 

σ4 = r1
4 + r2

4 + r3
4 = (r1

2 + r2
2 + r3

2)2 − 2(r1
2r2
2 + r1

2r3
2 + r2

2r3
2) 

2= (−2 p)2 − 2(r1r2 + r1r3 + r2r3)
2+ 4r1r2r3(r1 + r2 + r3) = (−2 p)2 − 2( p) = 2 p2 . 

Substituting, we obtain D = −12 p3 + 8 p3 − 27q2 = −4 p3 − 27q2. This proves 
the formula for D. In particular, it confirms that D lies in k. 
The Galois group of the splitting field of the polynomial must be S3 or A3. If p

it is S3, then we saw above that L = k( D) and that [L : k] = 2. Hence D is a 
nonsquare in k. If the Galois group is A3, then (r3 − r2)(r3 − r1)(r2 − r1) is fixed 
by the Galois group and lies in k. The square of this element is D, and hence D 
is a square in k. 
With either Galois group the calculations with the cubic extension that precede

the statement of the theorem are valid. If r1 is one of the roots, then we know that 

r1 = E0r1 + E1r1 + E2r1 = E1r1 + E2r1, 
p p3 = − 27 3 −3 D,(3E1r1) 2 q + 2 
p p3 = − 27(3E2r1) 2 q − 3 −3 D.2 

The uniqueness of simple extensions (Theorem 9.11) says that we can make any
choice of cube root to determine 3E1r1. Then 

(3E1r1)(3E2r1) = (r1 + ω−1σr1 + ω−2σ 2r1)(r1 + ω−2σr1 + ω−1σ 2r1) 

= (r1 + ω−1r2 + ωr3)(r1 + ωr2 + ω−1r3) 

= (r1
2 + r2

2 + r3
2) + (ω + ω−1)(r1r2 + r1r3 + r2r3) 

= (r1
2 + r2

2 + r3
2) − (r1r2 + r1r3 + r2r3). 

The first term on the right side we calculated in the first paragraph of the proof 
as σ2 = −2p, and the second term gives − p. Thus (3E1r1)(3E2r1) = −3 p as 
asserted. Since σ operates on image E1 as multiplication by ω and on image E2 

as multiplication by ω2, the fact that r1 = E1r1 + E2r1 implies that 
r2 = σ (r1) = ωE1r1 + ω2 E2r1 

and r3 = σ 2(r1) = ω2 E1r1 + ωE2r1. 

This completes the proof. § 
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14. Proof That π Is Transcendental 

In this section and the next three, we combine Galois theory with some of the
ring theory in the second half of Chapter VIII. This combination will allow us to
prove some striking theorems, see how Galois groups can be used effectively in
practice, and develop some techniques for identifying Galois groups explicitly.
The present section is devoted to the proof of the following theorem. 

Theorem 9.51 (Lindemann, 1882). The number π is transcendental over Q. 

The argument we give is based on that in a book by L. K. Hua.17 For purposes 
of having a precise theorem, π is defined as the least positive real number such 
that eπ i = −1. In addition to Galois theory in the form of Proposition 9.35,
the proof here will make use of a few facts about algebraic integers. Algebraic
integers were defined in Section VIII.1 and again in Section VIII.9 (as well as in
Section VII.4) as complex numbers that are roots of monic polynomials in Z[X].
The algebraic integers form a ring by Corollary 8.38 (or alternatively by Lemma
7.30), the only algebraic integers in Q are the members of Z by Proposition 8.41
(or alternatively by Lemma 7.30), and any algebraic number x has the property 
that nx is an algebraic integer for some integer n 6= 0 by Proposition 8.42. 
We begin with a lemma. 

Lemma 9.52. Let f (X) in C[X] be given by f (X) = 
P

k
n 
=0 ak Xk , and define 

F(X) to be the sum of the derivatives of f (X): 

n
F(X) = 

P 
f (l)(X). 

l=0 

PnIf Q(z) is defined as Q(z) = F(0)ez − F(z) for z ∈ C, then F(0) = k=0 akk! 
and 

n
|Q(z)| ≤ e|z| P 

|ak ||z|k . 
k=0 

PROOF. We calculate directly that 

n n akk! n k k! n k k!
F(z) = 

P P 

(k − l)! 
zk−l = 

P 
ak 

P 

(k − l)! 
zk−l = 

P 
ak 

P 

l! 
zl . 

l=0 k=l k=0 l=0 k=0 l=0 

17Introduction to Number Theory, pp. 484–488. In the same pages Hua establishes the earlier 
theorem of Hermite that e is transcendental, using a related but simpler argument. 
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Evaluation at z = 0 gives F(0) = 
Pn

k=0 akk!. Then 

n ∞ n kk! k! 
|Q(z)| ≤ 

Ø
Ø
Ø 
P 

ak 
P 

l! 
zl − 

P P 

l! 
zl 

Ø
Ø
Ø

k=0 l=0 k=0 l=0 

n ∞ k! 
= 

Ø
Ø
Ø 
P 

ak 
P 

l! 
zl 

Ø
Ø
Ø

k=0 l=k+1 

n ∞ |z|l 
≤ 

P 
|ak | 

P 
since 

°l ¢−1 
≤ 1 

k=0 l=k+1 (l − k)! k

n ∞ |z|m 

= 
P 

|ak ||z|k 
P 

k=0 m=1 m! 
n

≤ e|z| P 
|ak ||z|k . §

k=0 

PROOF OF THEOREM 9.51. Arguing by contradiction, suppose that π is al-
gebraic over Q, so that α = π i is algebraic over Q as well. Let M(X) be the 
minimal polynomial of α over Q, and let K be the splitting field of M(X) in C. 
This exists since C is algebraically closed. We write α1, . . . , αm for the roots of 
M(X) in K, with α1 = α. These are distinct algebraic numbers, and they are
permuted by the Galois group, G = Gal(K/Q). What we shall show is that 

m
R = 

Q
(1 + eαj ) 6= 0. 

j=1 

This will be a contradiction since 1 + eα1 = 0 for α1 = iπ . 
We expand the product defining R, obtaining 

R = 1 + 
P 
eαj + 

P 
eαj +αk + · · · , 

j j,k 

Whenever one of the exponentials has total exponent 0, we lump that term with
the constant 1. Otherwise we write the term as eβl , allowing repetitions among 
terms eβl . Thus 

R = N + eβ1 + eβ2 + · · · + eβr , 

with N an integer ∏ 1, with each βl 6 = 2m .= 0, and with N + r 
Each member of G = Gal(K/Q) permutes α1, . . . , αm , and it therefore per-

mutes the βl ’s that are single αj ’s, permutes the βl ’s that are the nonzero sums of 
two αj ’s, permutes the βl ’s that are the nonzero sums of three αj ’s, and so on. 
Choose an integer a > 0 such that aα1, . . . , aαm are algebraic integers, let p

be a prime number large enough to satisfy some conditions to be specified shortly,
and define 

r n(aX)p−1 

f (X) = 
Q

(aX − aβl )p = 
P 

ak Xn . 
( p − 1)! l=1 k=0 
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The members σ of G act on f (X) as usual by acting on the coefficients. Each βl 
that is the nonzero sum of a certain number of αj ’s is sent into another βl 0 of the 
same kind, and thus σ just permutes the factors of the product defining f , leaving 
f (X) unchanged. The coefficients of ( p − 1)! f (a−1 X) are algebraic integers in 
K. Being fixed by G, they are in Q by Proposition 9.35d, and hence they are in 
Z. Therefore 

Ap−1ap−1 X p−1 + Apa pX p + · · · 
f (X) = 

( p − 1)! 
with Ap−1, Ap, . . . in Z. Since Ap−1 = 

Q
l
r 
=1(−aβl )p, we can arrange that p does 

not divide Ap−1ap−1 by choosing p greater than a and greater than 
Ø
Ø Qr

l=1(aβl )
Ø
Ø. 

If we look at the l th factor in the product defining f (X), we see that (X − βl )p 

divides f (X) in K[X]. Therefore we have further formulas for f (X), namely 

∞p,l (X − βl )p + ∞p+1,l (X − βl )p+1 + · · · 
f (X) = for 1 ≤ l ≤ r. 

( p − 1)! 

As in Lemma 9.52, we define 
n

F(X) = 
P 

f (l)(X) and Q(z) = F(0)ez − F(z). 
l=0 

Then we have F(0) = 
P

k
n 
=0 akk!. For 1 ≤ l ≤ r , the definition of Q(z) gives 

F(0)eβl = F(βl ) + Q(βl ). Substituting from the definition of R, we obtain 

r r r
F(0)R = F(0) 

°
N + 

P 
eβl 

¢ 
= NF(0) + 

P 
F(βl ) + 

P 
Q(βl ). (∗)

l=1 l=1 l=1 

A further condition that we impose on the size of p is that p > N . Then the 
computation 

n
N F(0) = N 

P 
akk! = N (Ap−1ap−1 + p Apa p + p( p + 1)Ap+1ap+1 + · · · )

k=0 

and the properties of Ap−1, Ap, . . . together imply that NF(0) is an integer and 
is not divisible by p. 
Let us compute F(βl ). The derivatives through order p − 1 of f (X) are 0 at 

βl . For the pth derivative we have 

( p + j) · · · ( j + 1) jp∞p,l = f (p)(βl ) = pApa p + 
P 

Ap+ j a p+ j βl . 
j∏1 ( p − 1)! 

The coefficient of Ap+ j a p+ j β j inside the sum equals l 

( p + j) · · · ( j + 1) j! p 
µ 
p + j

∂ 

= p ,
p( p − 1)! j! j 
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and thus 

p∞p,l = f (p)(βl ) = ap
°
pAp + 

P 
p
° p+ 

j
j¢Ap+ j (aβl ) j 

¢
. 

j∏1 

The higher-order derivatives are computed and simplified similarly. For the 
(p + k)th derivative with k ∏ 1, we find that 

( p + k) · · · ( p + 1) p∞p+k,l = f (p+k)(βl ) 

= ap+k 
° 
( p + k) · · · ( p + 1) pAp+k (∗∗) 

+ 
P

( p + k) · · · ( p + 1) p
° p+ 

j
j+k¢Ap+ j+k (aβl ) j 

¢
. 

j∏1

Put Cp+k = 
Pr

l=1 ∞p+k,l . Summing the left and right members of (∗∗) over l 
gives 

° p+ j+k
l

Cp+k = ap+k
° 
r Ap+k + 

P 
j 

¢
Ap+ j+k 

P
(aβl ) j 

¢
. 

j∏1 j=1

The sum 
Pl

j=1(aβl ) j is an algebraic integer fixed by G, and it is therefore an 
integer. Consequently each Cp+k is an integer. Summing the left and middle 
members of (∗∗) over k and l gives 

rP 
F(βl ) = 

P
( p + k) · · · ( p + 1) pCp+k , 

l=1 k∏0

and this is an integer divisible by p. 
Since NF(0) is an integer not divisible by p, NF(0) + 

Pr
l=1 F(βl ) is an 

integer not divisible by p, and we have 

rØ
ØNF(0) + 

P 
F(βl )

Ø
Ø ∏ 1. 

l=1 

In view of (∗), we will have a contradiction to R = 0 if we show that 

rØ
Ø P 

Q(βl )
Ø
Ø < 1. 

l=1 

An easy argument by induction on m shows that if 
Pm

k=0 dkzk = 
Qs

j=1 (z − cj ), 
then 

Pm
k=0 |dk ||z|k ≤ 

Qs 
=1(|z|+ |cj |). Applying this observation to the sum and j

product defining f (X) and using Lemma 9.52, we see that 

n (a|z|)p−1 Qr 
=1 (a|z| + a|βl |)ple−|z||Q(z)| ≤ 

P 
|ak ||z|k ≤ . 

k=0 ( p − 1)! 



519 15. Norm and Trace 

For each fixed z, the right side is the ( p − 1)st term of the convergent series for an
exponential function at an appropriate point, and hence the right side is less than 
r−1e−|z| for p sufficiently large, p depending on z. Choosing p large enough to 
make the right side less than r−1e−|z| for z = β1, . . . , βl and summing over these 
z’s, we obtain 

Ø
Ø Pr 

=1 Q(βl )
Ø
Ø < 1, and we have arrived at the contradiction we l

anticipated. § 

15. Norm and Trace 

This is the second of four sections in which we combine Galois theory with
some of the ring theory in the second half of Chapter VIII. We shall make use
of a little more linear algebra than we have used thus far in this chapter, and we
shall conclude the section by completing the proof of Theorem 8.54 concerning
extensions of Dedekind domains. 
Let k be a field, not necessarily of characteristic 0, and let K be a finite 

algebraic extension. We take advantage of the fact that K is a vector space over 
k. If a is in K, let us write M(a) for the k linear mapping from K to K given by 
multiplication by a. The characteristic polynomial det(X I − M(a)) is called the 
field polynomial of a and is a monic polynomial in k[X] of degree [K : k]. The 
norm and trace of a relative to K/k are defined to be the determinant and trace 
of the linear mapping M(a). In symbols, 

NK/k(a) = det(M(a)), 
TrK/k(a) = Tr(M(a)). 

Both NK/k and TrK/k are functions from K to k. If n = [K : k], then NK/k(a)
is (−1)n times the constant term of det(X I − M(a)), and TrK/k(a) is minus the 
coefficient of Xn−1. The subscript K/k may be omitted when there is no chance 
of ambiguity. 

p p p
EXAMPLE. k = Q, K = Q( 2 ), a = 2. If we use 0 = (1, 2 ) as an 

ordered basis of K over k, then the matrix of M(a) relative to 0 is 
≥ 
M(a) 

¥ 
= 

00 ≥ 
0 2 

¥
. Since characteristic polynomials are independent of the choice of basis, 1 0 

the field polynomial of a can be computed in this basis and is given by 

det 
≥ 
X I −M(a) 

¥ 
X −2 

¥ 
= det 

≥ 
= X2 − 2. 

00 −1 X 

We can read off the norm and trace as N (a) = −2 and Tr(a) = 0. 
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Proposition 9.53. If K/k is a finite extension of fields with n = [K : k], then 
norms and traces relative to K/k have the following properties: 

(a) N (ab) = N (a)N (b),
(b) N (ca) = cn N (a) for c ∈ k,
(c) N (1) = 1, and consequently N (c) = cn for c ∈ k,
(c) Tr(a + b) = Tr(a) + Tr(b),
(d) Tr(ca) = c Tr(a) for c ∈ k,
(e) Tr(1) = n, and consequently Tr(c) = nc for c ∈ k. 

PROOF. Properties (a) and (b) follow from properties of the determinant in
combination with the identities M(ab) = M(a)M(b) and M(ca) = cM(a). 
Properties (c) and (d) follow from properties of the trace in combination with the
identities M(a + b) = M(a) + M(b) and M(ca) = cM(a). Since M(1) is the 
identity, the norm and trace of 1 are 1 and n, respectively. The other conclusions
in (c) and (e) are then consequences of this fact in combination with (b) and (d).

§ 

Proposition 9.54. Let K/k and L/K be finite extensions of fields with 
[K : k] = n and [L : K] = m, and let a be in K. The element a acts by 
multiplication on K and also on L, yielding k linear maps in each case that will 
be denoted by MK/k(a) and ML/k(a). Then in suitable ordered vector-space bases 
the matrix of ML/k(a) is block diagonal, each block being the matrix of MK/k(a). 
PROOF. We choose the bases as in Theorem 7.6. Thus let 0 = (ω1,ω2, . . . ) 

be an ordered basis of K over k, and let 1 = (ξ1, ξ2, . . . ) be a basis of L over K. 
Theorem 7.6 observes that the mn products ξi ωj form a basis of L over k, and we 
make this set into an ordered basis ƒ by saying that (i1, j1) < (i2, j2) if i1 < i2 

or if i1 = i2 and j1 < j2. Let MK/k(a)ωj = 
P

l cl j ωl . Then 

n m n
ML/k(a)ξi ωj = 

° P 
cl j ωl 

¢
ξi = 

P P 
(δki cl j )ξk ωl , 

l=1 k=1 l=1 

where δki is 1 when k = i and is 0 otherwise. The matrix 
≥ 
ML/k(a) 

¥ 
has

ƒƒ 

((k, l), (i, j))th entry δki cl j , and this is 0 unless the primary indices k and i are 
equal. Thus the matrix is block diagonal, the entries of the i th diagonal block 
being cl j . § 

Corollary 9.55. Let K/k and L/K be finite extensions of fields with 
[L : K] = m, and let a be in K. Let MK/k(a) and ML/k(a) denote multiplication 
by a on K and on L, and let FK/k(X) and FL/k(X) be the corresponding field 
polynomials. Then 

FL/k(X) = 
°
FK/k(X)

¢m 
. 

Consequently NL/k(a) = (NK/k(a))m and TrL/k(a) = m TrK/k(a). 
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PROOF. Proposition 9.54 shows that the matrix of X I − ML/k(a) may be 
taken to be block diagonal with each of the m diagonal blocks equal to the 
matrix of X I − MK/k(a). The determinant of X I − ML/k(a) is the product
of the determinants of the diagonal blocks, and the formula relating the field
polynomials is proved.
The formulas for the norms and the traces are consequences of this relationship.

In fact, let 
FK/k(X) = Xn + cn−1 Xn−1 + · · · + c0 

Xmn and FL/k(X) = + dmn−1 Xmn−1 + · · · + d0. 

Comparing coefficients of FL/k(X) and 
°
FK/k(X)

¢m , we see that dmn−1 = mcn−1 

and d0 = c0
m . Therefore 

NL/k(a) = (−1)mnd0 = ((−1)nc0)m = (NK/k(a))m 

and TrL/k(a) = −dmn−1 = −mcn−1 = m TrK/k(a). 

This completes the proof. § 

Corollary 9.56. Let K/k be a finite extension of fields, and let a be in K. Then 
the field polynomial of a relative to K/k is a power of the minimal polynomial of 
a over k, the power being [K : k(a)]. In the special case K = k(a), the minimal 
polynomial of a coincides with the field polynomial. 

REMARKS. In the theory of a single linear transformation as in Chapter V,
the minimal polynomial of a linear map divides the characteristic polynomial, by
the Cayley–Hamilton Theorem (Theorem 5.9). For a multiplication operator in
the context of fields, we get a much more precise result—that the characteristic
polynomial is a power of the minimal polynomial. 

PROOF. If F(X) is in k[X], then the operation M of multiplication has 

M(F(a))b = F(a)b = F(M(a))b for b ∈ K, (∗) 

as we see by first considering monomials and then forming k linear combinations. 
The minimal polynomial of a over k is the unique monic F(X) of lowest degree 
in k[X] for which F(a) = 0, hence such that M(F(a)) = 0. Meanwhile, the 
minimal polynomial of the linear map M(a) is the unique monic F(X) of lowest 
degree such that F(M(a)) = 0. These two polynomials coincide because of (∗). 
The degree of the minimal polynomial of M(a) thus equals the degree of the 

minimal polynomial of a, which is [k(a) : k]. The Cayley–Hamilton Theorem
(Theorem 5.9) shows that the minimal polynomial of M(a) divides the charac-
teristic polynomial of M(a), i.e., the field polynomial of a. When the field K is 
k(a), the minimal polynomial of a and the field polynomial of a have the same 
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degree; since they are monic, they are equal. This proves the second conclusion
of the corollary.
For the first conclusion we know from Corollary 9.55 that the field polynomial 

of a relative to a general K is the [K : k(a)]th power of the field polynomial of a 
relative to k(a). Since we have just seen that the latter polynomial is the minimal 
polynomial of a, the first conclusion of the corollary follows. § 

p p
EXAMPLE, CONTINUED. k = Q, K = Q( 2 ), a = 2. We have seen that 

the field polynomial of a is X2 − 2, that the norm and trace are N (a) = −2 and 
Tr(a) = 0, and that the matrix of the multiplication operator M(a) in the ordered 

p ¥ ≥ 
0 2 

¥ ¥ p
basis 0 = (1, 2 ) is 

≥ 
M(a) = . The eigenvalues of 

≥ 
M(a) are ± 2, 

00 1 0 00 
namely the roots of the field polynomial. These are not in the field k. Indeed,
they could not possibly be in the field, or we would have M(a)x = ∏x for some 
x 6 0 in K and some ∏ in k, and this would mean that ∏ a. Since the roots = = 
± 2 of the field polynomial each have multiplicity 1 and lie in K, the matrix ≥ 
M

p

(a) 
¥ 
is similar over K to the diagonal matrix 

≥ p
2 p0 

¥
. Since similar matrices 

00 0 − 2
have the same trace and the same norm, we can compute the trace and norm of
M(a) from this diagonal matrix, namely by adding or multiplying its diagonal
entries. The significance of the diagonal entries is that they are the images of 

p
2 

under the members of the Galois group Gal(K/k). We shall now generalize these
considerations. Additional complications arise when K/k fails to be separable 
and normal.18 

Proposition 9.57. Let k be a field, let k(a) be an algebraic extension of k, and 
suppose that the minimal polynomial F(X) of a over k is separable. Let K be a 
splitting field of F(X), and factor F(X) over K as 

F(X) = (X − a1)(X − a2) · · · (X − an) 

with all aj ∈ K and with a1 = a. Then the matrix of the multiplication operator 
M(a)k(a)/k of a on k(a) is similar over K to a diagonal matrix with diagonal 
entries a1, . . . , an . Consequently 

n nY X
Nk(a)/k(a) = aj and Trk(a)/k(a) = aj . 

j=1 j=1 

18The above argument used a matrix with entries in k and considered the entries as in the larger 
field K. The reader may wonder what the corresponding construction is for the k linear map M(a). It 
is not to treat M(a) as a K linear map on K, since then M(a) would have just the one eigenvalue 

p
2,

which would have multiplicity 1. Instead, it is to use tensor products as in Chapter VI, knowledge
of which is not being assumed at present. The idea is to extend scalars, replacing K by K ⊗k K and 
replacing M(a) by M(a) ⊗ 1. The K linearity occurs in the second member of the tensor product, p
not the first, and the operator M(a) ⊗ 1 is the K linear map with eigenvalues ± 2. 

http:normal.18
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REMARKS. The elements a1, . . . , an of K, with a1 = a, are called the 
conjugates of a over k. The conjugates of a are the images of a under the 
Galois group when k(a) is Galois over k, but they extend outside k when k(a)/k 
is not normal. 

PROOF. Corollary 9.56 shows that F(X) equals the field polynomial of a 
relative to k(a)/k, i.e., is the characteristic polynomial of the multiplication 
operator Mk(a)/k(a). Let A be the matrix of Mk(a)/k(a) in some ordered basis of 
k(a) over k. If we regard A as a matrix with entries in K, then the characteristic 
polynomial of A splits in K, and the roots of the characteristic polynomial have
multiplicity 1, by separability. Consequently A has a basis of eigenvectors, the 
eigenvectors being column vectors with entries in K and the eigenvalues being the 
members a1, . . . , an of K. It follows that A is similar over K to a diagonal matrix 
with diagonal entries a1, . . . , an . The determinant and trace of this diagonal
matrix equal the determinant and trace of A, and therefore the norm and trace of 
a are the product and sum of the members a1, . . . , an of K. § 

Corollary 9.58. Let K be a finite Galois extension of the field k, let G = 
Gal(K/k), let L be an intermediate field with k ⊆ L ⊆ K, and let H = Gal(K/L)
as a subgroup of G. Fix an ordered basis 0 of L over k. Then the expression “σ (a)
for σ ∈ G/H ” is well defined for a in L, and there exists a nonsingular matrix 

C of size [L : k] with entries in K such that every a in L has C−1 
≥ 
ML/k(a) 

¥ 
C 

00 
diagonal with diagonal entries σ (a) for σ ∈ G/H . In particular, every member 
a of L has norm and trace given by 

Y X
NL/k(a) = σ (a) and TrL/k(a) = σ (a). 

σ ∈G/H σ ∈G/H 

PROOF. Let a be in L, σ be in G, and τ be in H . Then τ (a) = a, and therefore 
στ (a) = σ (a). Consequently all members of the coset σ H of G/H have the 
same value on a, and “σ (a) for σ ∈ G/H ” is well defined. 
Let n = [L : k] = |G/H |. Fix an ordered basis 0 of L over k. For each a ∈ L,

let A(a) be the matrix of the multiplication operator M(a)L/k relative to 0. 
The Theorem of the Primitive Element (Theorem 9.34) shows that L = k(x)

for some x . Proposition 9.57 applies to this element x and to a splitting field 
within K for its minimal polynomial, showing that there is a nonsingular matrix 
C with entries in K such that C−1 A(x)C is a diagonal matrix whose diagonal 
entries are the n conjugates x1, . . . , xn of x in K, x1 being x ; the diagonal entries 
are necessarily distinct by separability. For each i with 1 ≤ i ≤ n, there exists σi 
in G with σi (x) = xi by Theorems 9.11 and 9.23. Since H fixes L, every member 
of the coset σi H carries x to xi . On the other hand, every σ in G must carry x to 
some conjugate, hence must have σ (x) = σi (x) for some i . Then σ −1σ fixes xi 
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and hence L, and it follows that σ −1σ is in H . Thus σ is in σi H . In other words, i
the conjugates x1, . . . , xn may be regarded exactly as the images of the n cosets 
σj H . 
In this terminology the diagonal entries of C−1 A(x)C are the n elements σ (x)

for σ in G/H . For each j with 0 ≤ j ≤ n−1, we have A(x j ) = A(x) j , and hence 
C−1 A(x j )C = C−1 A(x) jC is diagonal with diagonal entries σ (x) j = σ (x j ) for 
σ in G/H . Forming k linear combinations, we see for every polynomial P(X)
in k[X] of degree ≤ n − 1 that C−1 A(P(x))C is diagonal with diagonal entries 
σ (P(x)). Every element a of K is of the form P(x) for some such P(X), and 
the existence of C in the statement of the corollary is proved. The formulas for
the norm and trace follow by taking the determinant and trace. § 

Corollary 9.59. If K is a finite separable extension of the field k, then the 
trace function TrK/k is not identically 0. 

REMARKS. This result is trivial in characteristic 0 because TrK/k(1) = [K : k]
is not zero. The result is not so evident in characteristic p, and the assump-
tion of separability is crucial. An example for which separability fails and
the trace function is identically 0 has k = F(x), where F is a finite field of 
characteristic p and x is transcendental, and K = k(x1/p). The basis elements 
1, x1/p, x2/p, . . . , x (p−1)/p all have trace 0, and therefore the trace is identically 0. 

PROOF. By the Theorem of the Primitive Element (Theorem 9.34), we can 
write K = k(a) for some a 6 0. Let K0 be a splitting field for the minimal = 
polynomial of a over k. Then K0/k is a separable extension by Corollary 9.30
and hence is a finite Galois extension. Proposition 9.57 shows that the matrix of
MK/k(a) in any ordered basis of K over k is similar over K0 to a diagonal matrix 
with entries a1, . . . , an , where a1, . . . , an are the conjugates of a with a1 = a. 
These conjugates are necessarily distinct by separability. For 1 ≤ k ≤ n, the 
matrix of MK/k(ak ) is similar via the same matrix over K0 to a diagonal matrix 
with entries a1

k, . . . , ank . If TrK/k(ak ) = 0 for 1 ≤ k ≤ n, then we obtain the 
homogeneous system of linear equations 

a1x1 + a2x2 + · · · + anxn = 0, 

a1
2x1 + a2

2x2 + · · · + an 
2xn = 0, 

. . . 

a1
nx1 + a2

nx2 + · · · + an
nxn = 0, 

with (x1, . . . , xn) = (1, . . . , 1) as a nonzero solution. The coefficient matrix must 
therefore have determinant 0. This coefficient matrix, however, is a Vandermonde
matrix except that the j th column is multiplied by aj for each j . Since a1, . . . , an 



525 15. Norm and Trace 

are distinct, Corollary 5.3 shows that the determinant of the coefficient matrix
can be 0 only if a1a2 · · · an = 0. Since a 6= 0, we have arrived at a contradiction, 
and we conclude that TrK/k(ak) 6 §= 0 for some k. 

With the aid of Corollary 9.59, we can complete the proof of Theorem 8.54 in
Section VIII.11. Let us restate the part that still needs proof. 

THEOREM 8.54. If R is a Dedekind domain with field of fractions F and if K 
is a finite separable extension field of F , then the integral closure T of R in K is 
finitely generated as an R module and consequently is a Dedekind domain. 

REMARKS. What needs proof is that T is finitely generated as an R module. 
It was shown in Section VIII.11 how to deduce as a consequence that T is a 
Dedekind domain. 

PROOF. Since R is Noetherian (being a Dedekind domain), Proposition 8.34
shows that it is enough to exhibit T as an R submodule of a finitely generated R 
module in K . Let {u1, . . . , un} be a vector-space basis of K over F . Proposition 
8.42 shows that we may assume that each ui is in T . 
Define an F linear map from K into its F vector-space dual K 0 by y 7→ ` y ,

where ` y (x) = TrK /F (xy) for x ∈ K . This map is one-one by Corollary 9.59, 
and the equality of dimensions of K and K 0 over F therefore implies that the 
map is onto. We can thus view every member of K 0 as uniquely of the form ` y
for some y in K . With this understanding, let {`v1 , . . . , ̀ vn } be the dual basis of 
K 0 with `vj (ui ) = δi j for all i and j . Then we have 

TrK /F (ui vj ) = δi j for all i and j. 

Applying Proposition 8.42, choose c 6= 0 in R with cvj in T for all j . We shall 
complete the proof by showing that 

T ⊆ Rc−1u1 + · · · + Rc−1un. (∗) 

Before doing so, let us observe that 

TrK/F (t) is in R if t is in T . (∗∗) 

In fact, Proposition 9.57 shows that TrF(t)/F (t) is the sum of all the conjugates of t ,
whether or not they are in K . The conjugates have the same minimal polynomial 
over F that t has, and hence they are integral over R. Their sum TrF(t)/F (t) must 
be integral over R by Corollary 8.38, and it must lie in F . Since R is integrally 
closed (being a Dedekind domain), TrF(t)/F (t) lies in R. This proves (∗∗). 
Now we can return to the proof of (∗). Let x be given in T . Since T is a ring, 

cxvj is in T for each j , and TrK /F (cxvj ) is in R by (∗∗). Since {u1, . . . , un} is a 
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basis, we can write x = 
P

i diui with each di in F . Since Tr(cxvj ) is in R, the 
computation 

n
Tr(cxvj ) = c TrK /F (xvj ) = c 

P 
di Tr(ui vj ) = cdj

i=1 

shows that cdj is in R. Then the expansion x = 
P

i (cdi )c−1ui exhibits x as in 
Rc−1u1 + · · · + Rc−1un and completes the proof of (∗). § 

16. Splitting of Prime Ideals in Extensions 

Section VIII.7 was a section of motivation showing the importance for number
theory and geometry of passing from factorization of elements to factorization
of ideals. The later sections of Chapter VIII set the framework for this study,
examining the notions of Noetherian domain, integral closure, and localization
and putting them together in the notion of Dedekind domain. Only just now
were we able to complete the proof of the fundamental result (Theorem 8.54) for
constructing Dedekind domains out of other Dedekind domains. However, that
proposition does not complete the task of extending what is in Section VIII.7 to a
wider context. Much of Section VIII.7 concerned the relationship between prime
ideals in one domain and prime ideals in an extension. In the present section we
put that relationship in a wider context, showing how the examples of Section
VIII.7 are special cases of the present theory.
In two of the examples in Section VIII.7, we worked with the ring Z of integers 

inside its field of fractions Q and with the ring T of algebraic integers within a 
quadratic extension K of Q. In the third example in that section, we worked 
with the ring C[x], for transcendental x , inside its field of fractions C(x) and 
with a certain integral domain T within a quadratic extension of C(x). For all 
three examples we saw a correspondence between prime ideals P in T and prime 
ideals ( p) in Z or C[x], and that correspondence was formalized in a more general
setting in Propositions 8.43 and 8.53. The objective now is to understand that
correspondence a little better.
The notation for this section is as follows: Let R be a Dedekind domain, such 

as Z or C[x], and let F be its field of fractions.19 Let K be a finite separable 
extension of F , and let T be the integral closure of R in K . Theorem 8.54, 
including the part just proved in the previous section, shows that T is a Dedekind 
domain. We make repeated use of the fact about Dedekind domains that every
nonzero prime ideal is maximal. 

19It might seem more natural to assume that R is a principal ideal domain, as it is with Z and 
C[x]. But that extra assumption will not help us, and it will often not be satisfied when the present
results are used in the proof of the important Theorem 9.64 in the next section. 

http:fractions.19
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Proposition 8.43 shows that if P is any nonzero prime ideal of T , then p = R∩P 
is a nonzero prime ideal of R. In the reverse direction Proposition 8.53 shows that 
if p is any nonzero prime ideal in R, then pT 6 T , and there exists at least one = 
prime ideal P of T with p = R ∩ P . The unique factorization of ideals in T (given 
as Theorem 8.55) explains this correspondence better. If p is given, then pT is a 
proper ideal, hence is contained in some maximal ideal P . Since “to contain is 
to divide” (by Theorem 8.55d), such P’s (and only such P’s) are factors in the 
decomposition of pT as the product of nonzero prime ideals. Accordingly let us 
write 

gY 
PeipT = i , 

i=1 

where the Pi are the distinct prime ideals of T containing pT , or equivalently the 
distinct prime ideals of T satisfying R ∩ Pi = p. The ei are positive integers 
called the ramification indices. 
For each Pi , we can form the composition R ⊆ T → T /Pi of inclusion 

followed by passage to the quotient. Since p ⊆ Pi , this composition descends to 
a ring homomorphism R/p → T /Pi . The ideal p is maximal in R, and the ideal 
Pi is maximal in T . Thus the mapping R/p → T /Pi is in fact a field map. We 
regard it as an inclusion. Define 

fi = [T/Pi : R/p], 

allowing the dimension for the moment possibly to be +∞. It will follow from 
Theorem 9.60, however, that fi is finite. The integer fi is called the residue class 
degree. 

Theorem 9.60. Let R be a Dedekind domain, let F be its field of fractions, let 
K be a finite separable extension of F with [K : F] = n, and let T be the integral 
closure of R in K . If p is a nonzero prime ideal in R and pT = 

Qg
=1 P

ei is a i i
decomposition of pT as the product of powers of distinct nonzero prime ideals in 
T , then the ramification indices ei and residue class degrees fi = [T /Pi : R/p]
are related by 

gX 
ei fi = n. 

i=1 

REMARKS. Consequently each fi is finite. The cases of interest for our earlier 
examples have R = Z or R = C[x]. When R = Z, each R/p is a finite field. 
However, when R = K[x] for some field K of characteristic 0 like K = C, then 
each R/p is a finite extension of K, hence is an infinite field.20 

∼20When R = C[x], then T/Pi = R/p = C since C is algebraically closed. The last example of 
the present section will elaborate. 

http:field.20
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PROOF. Corollary 8.63 gives a ring isomorphism 

T /(pT ) ∼= T/Pe1 × · · · × T/Pg
eg . (∗)1 

Recall from the definition of residue class degree that we have a field mapping of
R/p into each T /Pi . Since p ⊆ Pi

e for 1 ≤ e ≤ ei and since p ⊆ pT , it follows 
similarly that we have a one-one ring homomorphism of R/p into each T/Pei
with 1 ≤ e ≤ ei and another one-one ring homomorphism of R/p into T/(pT ). 
Consequently each T/Pe with 1 ≤ e ≤ ei , the product T /Pe1 × · · · × T/Pg

eg ,i 1
and T/(pT ) may all be regarded as unital R/p modules, i.e., as vector spaces 
over the field R/p. Fix i . For 1 ≤ e ≤ ei , let us prove by induction on e that 

dimR/p(T/Pi
e) = e fi , (∗∗) 

the case e = 1 being the base case of the induction. Assume inductively that (∗∗) 
holds for exponents from 1 to e − 1. We know from Corollary 8.60 that Pe−1/Pei i
is a vector space over the field T/Pi with 

dimT/Pi (P
e−1/Pi

e) = 1. (†)i 

The First Isomorphism Theorem (as in the remark with Theorem 8.3) gives
T/Pe−1 ∼= (T /Pi

e)
±
(Pe−1/Pi

e) as vector spaces over R/p, and it follows that i i 

dimR/p(T /Pi
e) = dimR/p(T /Pi

e−1) + dimR/p(Pi
e−1/Pi

e) 

= (e − 1) fi + fi = e fi , 

the next-to-last equality following from (†) and the inductive hypothesis for the 
cases e − 1 and 1. This completes the induction and the proof of (∗∗). 
In view of the decomposition (∗) and the formula (∗∗) when e = ei , the 

theorem will follow if it is shown that 

dimR/p(T/(pT )) = n. (††) 

To prove (††) we localize. Let S be the complement of the prime ideal p of R. 
Corollary 8.48 shows that S−1 R is a Dedekind domain, Corollary 8.50 shows 
that S−1p is its unique maximal ideal, and Corollary 8.62 shows that S−1 R is a 
principal ideal domain.
The composition R ⊆ S−1 R → S−1 R/S−1p descends to a field mapping 

R/p → S−1 R/S−1p. Let us see that this mapping is onto. If s−1r0 + S−1p in0
S−1 R/S−1p is given, then s0 is not in p, and the maximality of p as an ideal in 
R implies that (s0) + p = R. Therefore we can choose r in R and x in p with 
rs0 + x = r0. Under the mapping R/p → S−1 R/S−1p, the image of r + p is 
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r + S−1p = r + s0 
−1x + S−1p = s0 

−1(rs0 + x) + S−1p = s0 
−1r0 + S−1p. Thus 

our mapping is onto S−1 R/S−1p, and we have an isomorphism of fields 

R/p ∼ S−1 R/S−1 p. (‡)= 

Similarly the composition T ⊆ S−1T → S−1T /(S−1pT ) descends to a ho-
momorphism of rings T /pT → S−1T/(S−1pT ). Let us show that this map too 
is one-one onto. 
If t + pT is in the kernel, then the member t of T is in S−1pT , and st is in 

pT for some s in S. Hence we have (s)(t) ⊆ Pe1 · · · Pg
eg , and we can write 1 

(s)(t) = Pe1 · · · Pg
eg Q for some ideal Q. Factoring the principal ideals (s) and1 

(t) and using the uniqueness of factorization of ideals gives 

(s) = Pu1 · · · Pg
ug Q1 and (t) = Pv1 · · · Pg 

vg Q21 1 

with Q = Q1 Q2 and with uj + vj = ej for all j . If uj > 0, then we must have 
(s) ⊆ Pj and sR ⊆ Pj ∩ R = p. This says that s is in p, in contradiction to 
the fact that S equals the set-theoretic complement of p in R. We conclude that 
uj = 0 for all j . Therefore (t) = Pe1 · · · Pg

eg Q2 ⊆ Pe1 · · · Pg
eg = pT , and t is in 1 1 

pT . Consequently the kernel consists of the 0 coset alone.
Let us show that T/pT maps onto S−1T/(S−1pT ). If s−1t0 + S−1pT in0

S−1T /S−1pT is given, then s0 is not in p, and the maximality of p as an ideal 
in R implies that (s0) + p = R. Therefore we can choose r in R and x in p
with rs0 + x = 1, hence with rs0t0 + xt0 = t0. Under the mapping T/pT → 
S−1T /(S−1pT ), the image of rt0 + pT is 

rt0 + S−1 pT =rt0 + s0 
−1xt0 + S−1 pT 

= s0 
−1(rs0t0 + xt0) + S−1 pT 

= s0 
−1t0 + S−1 pT . 

Thus our mapping is onto S−1T /S−1pT , and we conclude that we have an 
isomorphism of rings 

T/pT → S−1T/(S−1 pT ). (‡‡) 

Since T is finitely generated as an R module (Theorem 8.54), S−1T is finitely 
generated as an S−1 R module with the same generators. Since S−1 R is a principal 
ideal domain, Theorem 8.25c shows that S−1T is the direct sum of cyclic S−1 R 
modules. Each of these cyclic modules must in fact be isomorphic to S−1 R since 
S−1T has no zero divisors, and therefore S−1T is a free S−1 R module of some 
finite rank m. If t1, . . . , tm are free generators, then we have 

S−1T = S−1 Rt1 + · · · + S−1 Rtm . (§) 
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Let us see that {t1, . . . , tm} is an F vector-space basis of K . Suppose 
P

j cj tj = 0 
with all cj in F . Proposition 8.42 shows that there is an r 6= 0 in R with 
rc1, . . . , rcm in R. Then 

P
j (rcj )tj = 0, and the independence of t1, . . . , tm 

over S−1 R implies that rcj = 0 for all j . Thus cj = 0 for all j , and we obtain 
linear independence over F . If x ∈ K is given, we can choose r 6= 0 in R with 
r x in T by Proposition 8.42. Since t1, . . . , tm span S−1T over S−1 R, we can find 
members d1, . . . , dm of S−1 R with r x = 

P
j dj tj . Then x = 

P
j r−1dj tj with 

each coefficient r−1dj in F . This proves the spanning. Hence {t1, . . . , tm } is an 
F vector-space basis, and m = n. 
To complete the proof of (††) and hence the theorem, it is enough, in view of the 

isomorphisms (‡) and (‡‡), to prove that the cosets tj + S−1pT in S−1T/(S−1pT ) 
form a vector-space basis over S−1 R/S−1p. If t is in S−1T , then (§) says that 
t = 

P 
cj tj with cj in S−1 R. Hence 

t + S−1 pT = 
P 

(cj + S−1p)(tj + S−1pT ), 

and we have spanning. If 
P

j (cj + S−1p)(tj +S−1pT ) = 0+ S−1pT , then 
P

j cj tj
is in S−1pT . Thus we can write 

P
j cj tj = 

P
i ai ti

0 with ai ∈ p and ti
0 ∈ S−1T . 

Expanding each ti
0 according to (§), substituting, and using the uniqueness of the

expansion (§), we see for each j that cj is a sum of products of the ai ’s by members 
of S−1 R. Therefore each cj is in S−1p. This proves the linear independence and 
establishes (††). § 

The case of greatest interest is that K is a finite Galois extension of F . In this 
case the statement of Theorem 9.60 simplifies and will be given in its simplified
form as Theorem 9.62. We begin with a lemma. 

Lemma 9.61. Let R be a Dedekind domain, let F be its field of fractions, 
let K be a finite separable extension of F , and let T be the integral closure of R 
in K . Suppose that K is Galois over F . If p is a nonzero prime ideal in R and 
pT = 

Qg
=1 P

ei is a decomposition of pT as the product of nonzero prime ideals i i
in T , then Gal(K /F) is transitive on the set of ideals {P1, . . . , Pg}. 

PROOF. Arguing by contradiction, suppose that Pj is not of the form σ (P1)
for some σ in Gal(K /F). By the Chinese Remainder Theorem we can choose 
an element t of T with t ≡ 0 mod Pj and t ≡ 1 mod σ (P1) for all σ . Every σ 
in Gal(K /F) carries t to a member of T since t and σ (t) have the same minimal 
polynomial over F . Corollary 9.58 shows that NK /F (t) = 

Q
σ (t), and σ ∈Gal(K/F)

consequently NK /F (t) is in T ∩ F = R. Since the factor t itself is in Pj , NK /F (t) 
is in Pj . Therefore NK /F (t) is in R ∩ Pj = p ⊆ 

Qg
=1 P

ei . The right side is i i
contained in P1. Since P1 is prime, some factor σl (t) of NK /F (t) is in P1. Then 
t is in σ −1(P1), in contradiction to the fact that t ≡ 1 mod σ (P1) for all σ . §l 
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Theorem 9.62. Let R be a Dedekind domain, let F be its field of fractions, 
let K be a finite separable extension of F with [K : F] = n, and let T be the 
integral closure of R in K . Suppose that K is Galois over F . If p is a nonzero 
prime ideal in R and pT = 

Qg
=1 P

ei is a decomposition of pT as the product i i
of powers of distinct nonzero prime ideals in T , then the ramification indices 
have e1 = · · · = eg, and the residue class degrees fi = [T /Pi : R/p] have 
f1 = · · · = fg. If e and f denote the common value of the ei ’s and of the f j ’s, 
then 

e fg = n . 

PROOF. For σ in Gal(K /F), apply σ to the factorization pT = 
Qg

=1 P
ei ,i i

obtaining 
g

pT = σ (P1)e1 
Q

σ (Pi )ei . 
i=2 

Lemma 9.61 shows that σ (P1) can be any Pj , and unique factorization of ideals 
(Theorem 8.55) therefore implies that e1 = ej . With the same σ , the fact that σ 
respects the field operations implies that 

T/P1 
∼= σ (T )/σ (P1) = T/Pj , 

and thus f1 = f j . Substituting the values of the ei ’s and the f j ’s into the formula 
of Theorem 9.60, we obtain e f g = n. § 

EXAMPLES WITH n = 2 CONTINUED FROM SECTION VIII.7. 
(1) R = Z and T = Z[

p
−1 ]. In this case, Z and T are both principal ideal 

domains. We found three possible behaviors21 for the prime factorization of a 
principal ideal (p)T in T generated by a prime p > 0 in Z: 

(a) ( p)T is prime in T if p = 4m + 3. Here e = g = 1; so f = 2. 
(b) ( p)T = (a + ib)(a − ib) with p = a2 + b2 if p = 4m + 1. Here e = 1 

and g = 2; so f = 1. 
(c) (2)T = (1 + i)2. Here e = 2 and g = 1; so f = 1. 

(2) R = Z and T = Z[
p

−5 ]. In this case, T is not a unique factorization
domain and is in particular not a principal ideal domain. We gave examples of
three possible behaviors for the prime factorization of a principal ideal (p)T in 
T generated by a prime p > 0 in Z: 

(a) (11)T is prime in T . Here e = g = 1; so f = 2.p p
(b) (2)T = (2, 1 + −5)(2, 1 − −5). Here e = 1 and g = 2; so f = 1.p
(c) (5)T = ( −5 )2. Here e = 2 and g = 1; so f = 1. 

21The notation here fits with the notation in Theorem 9.62 and is different from the notation in 
Section VIII.7. 
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p
(3) R = C[x] and T = C[x, (x − 1)x(x + 1) ]. In this case, R is a principal 

ideal domain, and we saw that T is not a unique factorization domain. We found
two possible behaviors for the prime factorization of a principal ideal ( p)T in T 
generated by a prime p in C[x]: 

(a) (x − x0)T = (x − x0, y − y0)(x − x0, y + y0) if the equal expressions 
y0
2 = (x0 − 1)x0(x0 + 1) are not 0. Here e = 1 and g = 2; so f = 1. 

(b) (x − x0)T = (x − x0, y)2 if x0 is in {−1, 0, +1}. Here e = 2 and 
g = 1; so f = 1. 

The third type, with (x − x0)T prime in T , does not arise. It cannot arise since 
f > 1 would point to a quadratic extension of C, yet C is algebraically closed. 

17. Two Tools for Computing Galois Groups 

In Section 8 we mentioned that the effect of the Fundamental Theorem of Galois 
Theory is to reduce the extremely difficult problem of finding intermediate fields
to the less-difficult problem of finding a Galois group. In the intervening sections
we have seen some illustrations of the power of this reduction, all in cases in
which the Galois group was close at hand.
The problem of finding a Galois group in a particular situation is usually not

as easy as in those cases, and it by no means can be considered as solved in
general. In this section we combine Galois theory with some of the ring theory
in the second half of Chapter VIII in order to develop two tools that sometimes
help identify particular Galois groups.
Let us think in terms of a finite Galois extension K of the rationals Q. The 

field K is the splitting field of some irreducible monic polynomial with rational
coefficients, and we can scale this polynomial’s indeterminate (in effect by multi-
plying its roots by some nonzero integer) so that the polynomial is monic and has
integer coefficients. Thus let F(X) be a monic irreducible polynomial in Z[X] of 
some degree d, and let K be its splitting field over Q. The members of Gal(K /Q)
are determined by their effect on the d roots of F(X), and hence Gal(K /Q) may
be regarded as a subgroup of the symmetric group Sd . If r1, . . . , rd are the roots 
of F(X), then the discriminant of F(X) is the member of K defined by 

D = 
Q 

(rj − ri )2 . 
1≤i< j≤d 

This was defined in Section 13 in the cases d = 2 and d = 3, and we computed the 
value of D in those cases. The discriminant is an integer under our hypotheses,
and it is computable even though the roots r1, . . . , rd of F(X) are not at hand. In 
fact, the proof of Theorem 9.50 indicates that the discriminant D is given by the 
determinant 
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 d a1 a2 · · · ad−1 
 

a1


D = det a2

 

a2 

a3 

a3 

a4 

· · · 
· · · 
. . . 

ad 
ad+1 


,


 

ad−1 ad ad+1 · · · a2d−2 

j j jwhere aj = r1 + r2 + · · · + rd . Problems 36–39 at the end of Chapter VIII show 
that each of a1, . . . , a2d−1 can be expressed as a polynomial in the elementary 
symmetric polynomials in r1, . . . , rd , i.e., in the coefficients of F(X), and doing
so in a symbolic manipulation program is manageable for any fixed degree.22 

The first of the two tools that sometimes help in identifying particular Galois
groups directly concerns the discriminant: the discriminant is a square if and only
if the Galois group is a subgroup of the alternating group. Let us state the result
in the context of a general finite Galois extension even though we shall use it only
for our Galois extension K /Q. 

Proposition 9.63. Let K/k be a finite Galois extension, and suppose that K 
is the splitting field of a separable polynomial F(X) in k[X] of degree d. Let 
D be the discriminant of F(X), and regard G = Gal(K/k) as a subgroup of the 
symmetric group Sd . Then D is in k, and G is a subgroup of the alternating 
group Ad if and only if D is the square of an element of k. 
REMARK. The proof will use Galois theory to show that D is in k, and Problems 

36–39 at the end of Chapter VIII do not need to be invoked. 

PROOF. Let r1, . . . , rd be the roots of F(X), and put 1 = 
Q

i< j (rj − ri ). 
Under the identification of G with a subgroup of the permutation group Sd on 
{1, . . . , d}, each σ in G has 

σ (1) = 
Q

(σ (rj )−σ (ri )) = 
Q

(rσ ( j)−rσ (i)) = (sgn σ ) 
Q

(rj −ri ) =(sgn σ )1. 
i< j i< j i< j 

22For example, when d = 3, let F(X) = X3 − c1 X2 + c2 X − c3. In Mathematica the following 
program produces a1, a2, a3, a4 as output: 
e1={a1==r1+r2+r3, r1+r2+r3==c1, r1 r2+r2 r3+r1 r3==c2, 

r1 r2 r3==c3}
Eliminate[e1,{r1,r2,r3}] 
e2={a2==r1∧2+r2∧2+r3∧2, r1+r2+r3==c1, r1 r2+r2 r3+r1 r3==c2, 

r1 r2 r3==c3}
Eliminate[e2,{r1,r2,r3}] 
e3={a3==r1∧3+r2∧3+r3∧3, r1+r2+r3==c1, r1 r2+r2 r3+r1 r3==c2, 

r1 r2 r3==c3}
Eliminate[e3,{r1,r2,r3}] 
e4={a4==r1∧4+r2∧4+r3∧4, r1+r2+r3==c1, r1 r2+r2 r3+r1 r3==c2, 

r1 r2 r3==c3}
Eliminate[e4,{r1,r2,r3}] 

http:degree.22
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In particular, the element D = 12 has σ (D) = D. By Proposition 9.35d, D is 
in k. 
If some σ in G has sgn σ = −1, then σ does not fix 1, and 1 is not in k. 

Since 1 is a square root of D and since any two square roots of an element in a 
field differ at most by a sign, D is not the square of any element of k. 
Conversely if every σ in G has sgn σ = +1, then every σ fixes 1, and 

Proposition 9.35d shows that 1 is in k. Since D = 12, D is the square of the 
member 1 of k. § 

The second tool is complicated to prove but simple to state. We reduce the
polynomial F(X) modulo p for each prime number p and form the associated 
finite splitting field. The Galois group for a finite extension of finite fields is
cyclic by Proposition 9.40, and we thus obtain a cyclic subgroup of Sd . The 
second tool is this: if p does not divide the discriminant of F(X), then this cyclic 
group as a permutation group is a subgroup of Gal(K /Q) as a permutation group,
up to a relabeling of the symbols. In other words, the order and cycle structure
of a generator of the cyclic group are the same as the order and cycle structure of
some element of Gal(K /Q). 
Let us formulate the result precisely. In the setting of Theorem 9.62, fix a prime

ideal P of T lying in the factorization of pT . Each member σ of G = Gal(K /F)
carries T to itself, but not every σ in G carries P to itself. Let GP be the isotropy 
subgroup of G at P , i.e., let GP = {σ ∈ G | σ (P) = P}. The subgroup 
GP is called the decomposition group at P . Each σ in GP descends to an 
automorphism of the field T /P that fixes the subfield R/p, since σ fixes each 
element of R. Thus σ defines a member σ of G = Gal((T /P)/(R/p)) by the 
formula 

σ (x̄) = σ (x), where ȳ = y + P for y ∈ T . 

It is apparent that σ 7→ σ is a homomorphism of G into G. This homomorphism
turns out to yield the result stated informally in the previous paragraph. It has the
key property given in Theorem 9.64. 

Theorem 9.64. Let R be a Dedekind domain, let F be its field of fractions, let 
K be a finite separable extension of F with [K : F] = n, and let T be the integral 
closure of R in K . Suppose that K is Galois over F . Let p be a nonzero prime ideal 
in R, let P = P1 be a prime factor in a decomposition pT = 

Qg
=1 P

ei of pT asi i
the product of powers of distinct nonzero prime ideals in T , and suppose that T/P 
is a Galois extension of R/p. Let G = Gal(K /F), GP = {σ ∈ G | σ (P) = P},
and G = Gal((T /P)/(R/p)). Then the group homomorphism σ 7→ σ of GP 

into G carries GP onto G. 
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REMARKS. In our application with R = Z, T /P and R/p are finite fields, and 
Proposition 9.40 shows that T/P is a Galois extension of R/p with no further 
assumptions. 

PROOF. Let Kd be the fixed field of GP within K ; Theorem 9.38 shows that 
Gal(K /Kd ) = GP . Let T d be the integral closure of R in Kd ; this is a Dedekind 
domain, and T is the integral closure of T d in K . We are going to apply Theorem 
9.62 with R in the theorem replaced23 by T d . 
Proposition 8.43 shows that P = T d ∩ P is a nonzero prime ideal of T d . Since 

every member of GP carries P to itself and since GP is the full Galois group 
of K over Kd , Lemma 9.61 shows that P is the only nonzero prime ideal of T 
whose intersection with T d is P. Therefore PT d = Pe0 for some integer e0 ∏ 1. 
As always, we have a field mapping R/p → T d /P. Let us show that this 

mapping is onto T d /P. For any given u in T d , we are to produce r in R with 

r ≡ u mod P. (∗) 

Each σ in G that is not in GP has σ −1 P 6 P , and the previous paragraph shows = 
that the nonzero prime ideal Pσ = T d ∩σ −1 P of T d has Pσ =6 T d ∩ P . Therefore 
Pσ + P = T d , and the Chinese Remainder Theorem (Theorem 8.27) shows that
we can find an element v of T d with 

v ≡ u mod P and v ≡ 1 mod Pσ 

for all σ that lie in G but not GP . The first congruence implies that v − u is in 
P = T d ∩ P ⊆ P , hence that 

v ≡ u mod P, (∗∗) 

while the second congruence implies that v − 1 is in Pσ = T d ∩ σ −1 P ⊆ σ −1 P ,
hence that σ (v − 1) lies in P . Therefore 

σ (v) ≡ 1 mod P for all σ in G but not GP . (†) 

Put r = NKd /F (v). Since the splitting field of the minimal polynomial of v over 
F is contained in K , Corollary 9.58 shows that r is the product of the elements 
σ (v) for σ in G/GP . Each of these is in T , and hence NKd /F (v) is in T . Since 
NKd /F (v) is also in F , r = NKd /F (v) is in T ∩ F = R. If we use σ = 1 as the 
representative of the identity coset of G/GP , then we have 

° 
r = NK d /F (v) = v 

Q
σ (v)

¢
. 

some σ ’s 
not in GP 

23Consequently it would not have been sufficient to prove Theorem 9.62 when the ring R is a 
principal ideal domain. 
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The factor of v is congruent to u mod P by (∗∗), and each factor in parentheses 
is congruent to 1 mod P by (†). Therefore r ≡ u mod P , and r − u is in P . 
Since r − u is in T d , r − u is in T d ∩ P = P. This proves (∗). Consequently we 
can identify G = Gal((T/P)/(R/p)) with Gal((T/P)/(T d /P)). 
Choose x̄1 in T/P with T/P = (T d /P)[x̄1]; this choice is possible by the 

assumed separability of (T /P)/(R/p). Let x1 be a member of T with x̄1 = x1+P ,
and let M(X) be the minimal polynomial of x1 over Kd . Since x1 is in T , the 
coefficients of M(X) are in T d . Let M(X) be the corresponding member of 
(T d /P)[X], given by the substitution homomorphism that takes T d to T d /P and 
takes X to X . Since K /Kd is normal, M(X) splits over K . Write x1, . . . , xn for 
its roots; these are in T . 
Let τ be given in G, and suppose that τ (x̄1) = x̄ j . Since M(X) is irreducible 

over Kd , the Galois group Gal(K /Kd ) = GP is transitive on its roots. Choose σ 
in GP with σ (x1) = xj . Then σ (x̄1) = x̄ j . Since σ and τ agree on the generator 
x̄1 of T/P over T d /P, they agree on T /P . Therefore τ is exhibited as the image 
of σ under the homomorphism of the theorem, and the proof is complete. § 

A first consequence of Theorem 9.64 is that we get interpretations of the
integers e, f , and g, and they will be helpful to us. Galois theory gives us 
|G| = n, and Theorem 9.62 says that e f g = n. The transitivity in Lemma 9.61 
says that G acts transitively on the set {P1, . . . , Pg}, and the isotropy subgroup at 
P = P1 is GP . Hence g|GP | = |G|, and |GP | = n/g = e f . Galois theory gives 
us |G| = f , and the fact that GP maps onto G says that GP /kernel ∼= G; therefore 
|kernel| = |GP |/|G| = (e f )/ f = e. We conclude that g is the number of cosets 
modulo GP , e is the order of the kernel of the homomorphism in Theorem 9.64, 
and f is the order of the cyclic group G. 
In the setting of interest for current purposes, we are taking R = Z, F = Q,

and K equal to the splitting field of a given monic irreducible polynomial F(X) of 
degree d in Z[X]. We will be using Theorem 9.64 for various choices of p = ( p)
in Z to make progress on identifying Gal(K /Q). In order to identify G with the 
subgroup GP of G, we need the kernel of the homomorphism of GP onto G to 
be trivial. From the previous paragraph we know that the condition in question
is that e = 1. We postpone to Chapter V of Advanced Algebra any justification 
of the assertion that e = 1 if p does not divide the discriminant of F(X). 
In previous sections we have identified Gal(K /Q) in some cases when the 

Galois group is relatively small compared with the degree d of the polynomial.
The method now is helpful when the Galois group is relatively large compared
with d. 
Let us be sure when e = 1 that the theorem is telling us not only that GP 

is isomorphic to G as an abstract group, but also that the cycle structure of the 
elements of G is the same as the cycle structure of the elements of GP . For this 
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purpose we ignore the proof of the theorem and concentrate only on the statement.
Assuming that p does not divide the discriminant, let F(X) be the reduction of 
F(X) modulo p, let r1, . . . , rd be the roots of F(X) in T , and let r̄1, . . . , r̄d be 
the images of r1, . . . , rd under the quotient homomorphism T → T/P . The 
elements r̄1, . . . , r̄d are distinct since p does not divide the discriminant of F(X). 
Any member σ of G = Gal(K /Q) permutes r1, . . . , rd and is determined by the 
resulting permutation since K is assumed to be generated by r1, . . . , rd . Under 
the assumption that σ is in GP , σ descends to an automorphism σ of T/P . This 
automorphism σ acts on the set of elements r̄1, . . . , r̄d , permuting them. Since 
the mapping of the rj ’s to the r̄j ’s is one-one, the resulting permutation of the 
subscripts 1, . . . , d is the same. 
When p varies, we cannot match the elements r̄1, . . . , r̄d for one value of 

p with those for another value of p, because we have no direct knowledge of 
r1, . . . , rd . Thus we cannot directly compare the permutation groups G that we 
obtain for different p’s. But at least we know their cycle structure.
To apply the theory, we factor F(X) quickly with a symbolic manipulation

program, and we obtain the Galois group of a splitting field of F(X) by inspection,
together with the cycle structure of its elements. Specifically an irreducible factor
of degree m contributes an m-cycle for the element, and the cycles corresponding
to distinct irreducible factors are disjoint. Then we put together the information
from various p’s and see what elements must be in Gal(K /Q), up to a relabeling 
of indices. 

EXAMPLE 1. F(X) = X5 − X − 1. The discriminant is D = 2869 = 19 · 151. 
Thus the method may be used with any prime number other than 19 and 151.
Here is the factorization for a few primes, together with the cycle structure within 
S5 for a generator of G: 

p F(X) Cycle lengths 

2 (X2 + X + 1)(X3 + X + 1) 2, 3 
3 X5 + 2X + 2 5 
17 (X + 9)(X + 11)(X3 + 14X2 + 12X + 6) 1, 1, 3 
23 (X + 9)(X4 + 14X3 + 12X2 + 7X + 5) 1, 4 

For comparison, p = 19 gives F(X) = (X + 6)2(X2 + 7X2 + 13X + 10), but
we cannot use this prime since it divides the discriminant. It is enough to use
the information from p = 2 and p = 3. The irreducibility modulo 3 implies 
irreducibility over Q. From p = 3, we obtain a 5-cycle in Gal(K /Q). From 
p = 2, we obtain the product of a 2-cycle and a 3-cycle, and the cube of this
element is a 2-cycle. In the example in Section 11 following the statement of
Theorem 9.44, we saw in effect that the only subgroup of S5 containing a 5-cycle 
and a 2-cycle is S5 itself. Therefore Gal(K /Q) = S5. 
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EXAMPLE 2. F(X) = X5 + 10X3 − 10X2 + 35X − 18. The discriminant 
is D = 3025000000 = 2658112, a perfect square. Thus the Galois group is a
subgroup of the alternating group A5. The method using reduction modulo p
may be used with any prime other than 2, 5, and 11. Here is the factorization for
a few primes, together with the cycle structure within S5 for a generator of G: 

p F(X) Cycle lengths 

3 X (X + 2)(X3 + X2 + 2X + 1) 1, 1, 3 
7 X5 + 3X3 + 4X2 + 3 5 
17 (X + 14)(X2 + 5X + 14)(X2 + 15X + 15) 1, 2, 2 

It is enough to use the information from p = 3 and p = 7. The irreducibility 
modulo 7 implies irreducibility over Q. From p = 7, we obtain a 5-cycle in 
Gal(K /Q). From p = 3, we obtain a 3-cycle. Any 5-cycle and any 3-cycle 
together generate all of A5. In fact, the generated subgroup must have order
divisible by 15, hence must have order 15, 30, or 60. It cannot be of order 15
because every group of order 15 is cyclic and A5 has no elements of order 15. It 
cannot be of order 30 because A5 is simple and subgroups of index 2 have to be 
normal. Hence it is all of A5. 

EXAMPLE 3. Galois group Sd . Given d ∏ 4, let us see how to form an 
irreducible F(X) for which Gal(K /Q) is all of Sd . For any degree d and any 
prime number `, there exists at least one irreducible monic polynomial of degree 
d in F`[X]; the reason is that the finite field F`d is a simple extension of F` by
Corollary 9.19. Let Hd,2(X) be such a polynomial of degree d for ` = 2, and let 
Hd−1,3(X) be such a polynomial of degree d − 1 for ̀  = 3. Then let p be a prime 
greater than d, and let H2,p(X) be an irreducible monic polynomial of degree 2 
in Fp[X]. We can regard each of Hd,2(X), Hd−1,3(X), and H2,p(X) as in Z[X]
by reinterpreting their coefficients as integers. Consider the congruences 

F[X] ≡ Hd,2(X) mod (2), 
F[X] ≡ X Hd−1,3(X) mod (3), 

F[X] ≡ 
° dQ−3 

(X − k)
¢
H2,p(X) mod ( p), 

k=0 

in Z[X]. Since the sum of any two of the three ideals (2), (3), and ( p) of Z[X] is 
Z[X], the Chinese Remainder Theorem (Theorem 8.27) implies that there exists a
simultaneous solution F[X] to these congruences in Z[X], and we may take F[X]
to be monic of degree d. Let K be a splitting field for F[X] over Q. Our method 
applies to the primes 2, 3, and p since none of the three polynomials has any 
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repeated factors. The result of applying the method is that Gal(K /Q) contains 
a d-cycle, a (d−1)-cycle, and a 2-cycle. Let us see that the subgroup generated
by these three elements is all of Sd . We may assume that the (d − 1)-cycle is 
(1 2 · · · d−1). Without loss of generality, the 2-cycle is either (1 j) with j < d 
or is (k d) with k < d. In the first case some power of the d-cycle is a permutation 
τ with τ (1) = d; if σ denotes the 2-cycle (1 j), then Lemma 4.41 shows that 
τστ −1 is the 2-cycle (d τ ( j)), and this is of the form (k d) with k < d. Thus 
we may assume in any event that Gal(K /Q) contains (1 2 · · · d−1) and some 
2-cycle (k d) with k < d. Conjugating (k d) by powers of (1 2 · · · d−1), we 
see that Gal(K /Q) contains every 2-cycle (k d) with k < d. For 1 ≤ k < d − 1,
we then find that Gal(K /Q) contains 

(k d)(k + 1 d)(k d) = (k k + 1). 
So Gal(K /Q) contains (1 2), (2 3), . . . , (d−2 d−1), and we have already seen 
that it contains (d−1 d). These d − 1 transpositions generate the full symmetric 
group, and therefore Gal(K /Q) = Sd . 

18. Problems 
1. Take as known that the polynomial X3 − 3X + 4 is irreducible over Q, and let 

r be a complex root of it. In the field Q(r), find a multiplicative inverse for 
r2 + r + 1 and express it in the form ar2 + br + c with a, b, c in Q. 

2. Suppose that R is an integral domain and that F is a subring that is a field, so 
that R can be considered as a vector space over F . Prove that if dimF R is finite, 
then R is a field. 

3. Let K be a subfield of C that is not a subfield of R. Prove that K is topologically 
dense in C. 

4. Let K = k(x) be a transcendental extension of the field k, and let y be a member 
of K that is not in k. Prove that k(x) is an algebraic extension of k(y). 

5. What is a necessary and sufficient condition on an integer N > 0 for the positive p
square root of N to be in the subfield Q( 3 2 ) of R? 

6. The polynomials F(X) = X3 + X + 1 and G(Y ) = Y 3 + Y 2 + 1 are irreducible 
over F2. Let K be the field K = F2[X]/(F(X)), and let L be the field L = 
F2[Y ]/(G(Y )). Since K and L are two fields of order 8, they must be isomorphic. 
Find an explicit isomorphism. 

7. Can a field of order 8 have a subfield of order 4? Why or why not? 
8. If K is a finite field, prove that the product of the nonzero elements of K is −1. 

(Educational note: When K is Fp, this result reduces to Wilson’s Theorem, given
as Problem 8 at the end of Chapter IV.) 

9. Suppose that K/k is a finite extension of the form K = k(r) with [K : k] odd. 
Prove that K = k(r2). 
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10. Suppose that K/k is a finite extension of fields and that K = k[r, s]. Prove that 
if [k(r) : k] is relatively prime to [k(s), k], then 
(a) the minimal polynomial of r over k is irreducible over k(s), 
(b) [K : k] = [k(r) : k] [k(s) : k]. 

p p
11. In C, let β = 3 2, ω = 2

1 (−1 + −3), and α = ωβ. 
(a) Prove for all c in Q that ∞ = β+cα is a root of some sixth-degree polynomial 

of the form X6 + aX3 + b. 
(b) Prove that the minimal polynomial of β + α over Q has degree 3. 
(c) Prove that the minimal polynomial of β − α over Q has degree 6. 

12. Suppose that k is a finite field and that F(X) is a member of k[X] whose derivative 
is the 0 polynomial. Prove that F(X) is reducible over k. 

13. Let k be a field, let F(X) be a separable polynomial in k[X], let K be a splitting 
field of F(X) over k, and let r1, . . . , rn be the roots of F(X) in K. Regard 
Gal(K/k) as a subgroup of the symmetric group Sn . 
(a) Prove that Gal(K/k) is transitive on {r1, . . . , rn} if and only if F(X) is 

irreducible over k. 
(b) Show that the cyclotomic polynomial 88(X) is an example with k = Q and 

n = 4 for which Gal(K/k) is transitive but Gal(K/k) contains no 4-cycle. 
(c) Prove that if n is prime and F(X) is irreducible over k, then Gal(K/k) 

contains an n-cycle. 

14. Let a1, . . . , an be relatively prime square-free integers ∏ 2, and define Lk = 
p pQ( a1, . . . , ak ) for 0 ≤ k ≤ n. 

(a) Show for each k that [Lk : Q] = 2l with 0 ≤ l ≤ k. 
(b) Suppose for a particular k that [Lk : Q] = 2k . Exhibit a vector-space basis 

of Lk over Q, and describe the members of Gal(Lk /Q) by telling the effect 
of each member on all basis vectors of Lk over Q. 

(c) Suppose for a particular k < n that [Lk : Q] = 2k . Assume that pak+1 lies 
in Lk , and let pak+1 be expanded in terms of the basis of (b). Show that
application of the members of Gal(Lk/Q) leads to a contradiction. 

(d) Deduce that [Ln : Q] = 2n . 

15. Let p be a prime number, and suppose that a is a member of Q such that X p − a 
has no root in Q. If r is a member of C with r p = a, prove that 
(a) the cyclotomic polynomial 8p(X) is irreducible in Q(r), 
(b) the splitting field K of X p − a over Q has degree [K : Q] = p(p − 1), 
(c) the Galois group Gal(K/Q) is isomorphic to a semidirect product of the 

multiplicative group of Fp and the additive group of Fp, with the action of 
a member m of the multiplicative group on the members n of the additive 
group being given by m(n) = mn. 
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16. Let F(X) be a polynomial in k[X] of degree n, where k is a field of character-
istic 0, and let K be a splitting field for F(X) over k. Prove that [K : k] divides 
n!. 

17. Let k be a field, and let K be a quadratic extension k(r), where r2 = a is a 
member of k. 
(a) If k has characteristic 0, determine all elements of K whose squares are in k. 
(b) What happens differently if the characteristic is different from 0? 

18. Let G be a finite group. Show that there exist two finite extensions k and K 
of Q such that K is a Galois extension of k and the Galois group Gal(K/k) is 
isomorphic to G. 

19. Let K/k be a finite normal extension. For F(X) in K[X] and σ in Gal(K/k), let 
Fσ (X) be the result of the substitution homomorphism K[X] → K[X] carrying 
X to X and extending the action of σ on K, i.e., let Fσ (X) be obtained by applying 
σ to the coefficients of F(X). Prove that 

Q
Fσ (X) is in k[X].σ ∈Gal(K/k) 

20. Corollary 9.37 concerns a separable algebraic extension K/k and a finite sub-
group H of Gal(K/k), showing that K/KH is a finite Galois extension with 
H = Gal(K/KH ) and [K : KH ] = |H |. By going over its proof, obtain the 
conclusion that if {x1, . . . , xn} is the H orbit of x1 in K, then 
(a) the minimal polynomial of x1 over KH is 

Qn 
=1 (X − xj ). 

(b) n divides |H |. 
j

(c) K = KH (x1) if the isotropy subgroup of H at x1 is trivial. 

21. Let K be the transcendental extension C(z) of C. 
az+b(a) Prove that any linear fractional transformation ϕ(z) = cz+d with ad−bc =6 0 

in C extends uniquely to a C automorphism of K. 
(b) Let H be the 4-element subgroup of Gal(K/C) generated by the extensions 

of σ (z) = −z and τ (z) = 1/z. Show that w = z2 + z−2 is invariant under 
H , and conclude that every member of C(w) lies in KH . 

(c) Applying the previous problem to the element x1 = z of K, show that the 
minimal polynomial of z over C(w) has degree 4. 

(d) Conclude that KH = C(z2 + z−2). 

22. In characteristic 0, let L/K and K/k be quadratic extensions.
(a) Show that there exists an irreducible polynomial F(X) = X4 + bX2 + c in 

k[X] such that F(r) = 0 for some r in L. 
(b) Show that the element r in (a) has L = k(r). 
(c) Show that L is a normal extension of k with Galois group C2 × C2 if and 

only if c is a square in k for some polynomial as in (a), if and only if c is a 
square in k for every polynomial as in (a). 
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(d) Show that L is a normal extension of k with Galois group C4 if and only if 
c−1(b2 − 4c) is a square in k for some polynomial as in (a), if and only if 
c−1(b2 − 4c) is a square in k for every polynomial as in (a).

(e) Give an example of quadratic extensions L/K and K/k in characteristic 0 
such that L/k is not normal. 

23. Determine Galois groups for splitting fields over Q for the two polynomials 
X3 − 3X + 1 and X3 + X + 1. 

24. Suppose that F(X) is an irreducible cubic polynomial in Q[X] whose splitting 
field K has Gal(K/Q) isomorphic to S3. What are the possibilities, up to
isomorphism, for the Galois group of a splitting field of (X3 − 1)F(X) over Q? 

25. Let K/k be a finite Galois extension whose Galois group is isomorphic to S3. 
Is K necessarily a splitting field of some irreducible cubic polynomial in k[X]?
Why or why not? 

26. Is Cardan’s cubic formula valid for finding roots of reducible cubics X3 + pX +q
in characteristic 0? 

27. Prove that the discriminant of a real cubic with distinct roots is positive if all the
roots are real, and is negative if two of the roots are complex. 

28. Let F(X) = X3 + pX + q be irreducible in Q[X], and suppose that X − r is a 
factor for some r in C. 
(a) Show that F(X) factors in Q(r)[X] as F(X) = (X −r)(X2 +r X +(r2 + p)). 
(b) We know that Q(r) is a splitting field for F(X) over Q if and only if 

the discriminant −4 p3 − 27q2 is a square in Q. On the other hand, it is 
evident from the factorization of F(X) that it splits is Q(r) if and only if the 
discriminant r2 −4(r2 + p) is a square in Q(r). Show by a direct calculation 
that these two conditions are equivalent. 

29. Let K be a splitting field of an irreducible cubic polynomial F(X) in Q[X]. If 
Gal(K/Q) is S3, does it follow that K contains all three cube roots of 1? Why 
or why not? 

30. In characteristic 0, let K be the splitting field over k of an irreducible polynomial 
in k[X] of degree 5. Assuming that the discriminant of the polynomial is a square 
in k, what are the possibilities for Gal(K/k) up to a relabeling of the indices? 

31. Determine the Galois group of a splitting field over Q for the polynomial 
X5 + 6X3 − 12X2 + 5X − 4. Use of a computer may be helpful for this 
problem. 

32. TheproofofTheorem9.64 introducedapositive integer e0 in its second paragraph. 
Prove that e0 equals the integer e1 in the statement of the theorem. 
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33. Let R be a Dedekind domain, let F be its field of fractions, let K be a finite 
separable extension of F , and let L be a finite separable extension of K . Let T 
be the integral closure of R in K , and let U be the integral closure of R in L . Let 
p, P , and Q be nonzero prime ideals in R, T , and U , respectively, and let the
ramification indices and decomposition degrees for the extensions L/K , L/F ,
and K /F be 

e(Q|P), e(P|p), e(Q|p) and f (Q|P), f (P|p), f (Q|p). 

Prove that 

e(Q|p) = e(Q|P)e(P|p) and f (Q|p) = f (Q|P) f (P|p). 

Problems 34–40 concern norms and traces. 

34. Let m be a square-free integer, and let N and Tr denote the norm and trace from 
p

Q( m ) to Q. 
(a) Show that N (a + b

p
m ) = a2 − mb2 and Tr(a + b

p
m ) = 2a. 

p
(b) Let T be the ring of algebraic integers in Q( m ). It was shown in Section 

VIII.9 that T consists of all a + b
p
m with a, b in Z if m ≡ 2 mod 4 or 

1m ≡ 3 mod 4, and of all a + b
p
m with a, b in Z or a, b in Z + 2 if p

m ≡ 1 mod 4. Prove for a + b
p
m in Q( m ) that a + b

p
m is in T if and 

only if N (a + b
p
m ) and Tr(a + b

p
m ) are both in Z. 

(c) Assume that a + b
p
m is in T . Prove that N (a + b

p
m ) is in Z× if and only 

if a + b
p
m is in T ×. 

(d) For m = 2, give an example of a member of T × other than ±1. 
p

35. For the extension Q( 3 2 )/Q, find the value of the norm N and the trace Tr on a p p p
general element a + b 3 2 + c( 3 2 )2 of Q( 3 2 ); here a, b, c are in Q. 

36. Let N ( · ) be the norm relative to the extension Q(≥ )/Q, where ≥ is a primitive 
nth root of 1. 
(a) Show that N (1−≥ )=8n(1), where 8n(X) is the nth cyclotomic polynomial. 
(b) Using the formula 

Q
d|n, d>1 8d (X) = Xn−1 + Xn−2 + · · · + 1, show that 

N (1 − ≥ ) = 8n(1) equals p if n is a power of the positive prime p and 
equals 1 if n is divisible by more than one positive prime. 

37. Let p > 0 be a prime in Z of the form 4n + 1. It was shown in Problem 31 
at the end of Chapter VIII that such a prime is the sum of two squares. This
problem gives a shorter proof. Take as known from Section VIII.4 that the ring 
Z[

p
−1 ] of Gaussian integers is a Euclidean domain, and from Problem 30 at

the end of Chapter VIII that x2 ≡ −1 mod p has an integer solution x . Carry
out the following steps: 
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(a) Write p
x ± −1 1 1 p

= x ± −1. 
p p p 

If p were prime in Z[
p

−1 ], then it would follow from the divisibility of p p
x2 + 1 by p that p divides x + −1 or p divides x − −1. Deduce from 
the displayed equation that neither alternative is viable, and conclude that p
cannot be prime in Z[

p
−1 ].

(b) Using the conclusion of (a) to write p as a nontrivial product in Z[
p

−1]
and applying the norm function, prove that there exist integers a and b such 
that p = a2 + b2. 

38. Let p > 0 be a prime in Z of the form 8n + 1. Take as known from Problem 
13 at the end of Chapter VIII that Z[

p
−2 ] is a Euclidean domain, and from the

law of quadratic reciprocity (to be proved in Chapter I of Advanced Algebra)
that x2 ≡ −2 mod p has an integer solution x . Guided by the argument for the
previous problem, prove that there exist integers a and b such that p = a2 + 2b2. 

39. Let p > 0 be a prime in Z of the form 6n + 1. Take as known from Problem 
p

26 at the end of Chapter VIII that Z
£ 1
2 (1 + −3 )

§ 
is a Euclidean domain, and

from the law of quadratic reciprocity (to be proved in Advanced Algebra) that 
x2 ≡ −3 mod p has an integer solution x . Guided by the argument for the
previous problem, prove that there exist integers a and b such that p = a2 + 3b2. 

40. Let k ⊆ L ⊆ L0 be fields such that L0/k is a finite separable extension. Using
Corollary 9.58, prove that the norm and trace satisfy 

NL0/k = NL/k ◦ NL0/L and TrL0/k = TrL/k ◦ TrL0/L . 

Problems 41–45 make use of the theory of symmetric polynomials, which was intro-
duced in Problems 36–39 at the end of Chapter VIII. 
41. Let k be a field, let F(X) be a polynomial in k[X], let K be an extension field 

in which F(X) splits, and let r1, . . . , rn be the roots of F(X) in K, repeated 
according to their multiplicities. If P(X1, . . . , Xn) is a symmetric polynomial 
in k[X1, . . . , Xn], prove that P(r1, . . . , rn) is a member of k. 

42. Let k be a field, let F(X) and G(X) be polynomials over k, let K be an extension 
field in which F(X) and G(X) both split, and let r1, . . . , rm and s1, . . . , sn 
be the respective roots of F(X) and G(X) in K, repeated according to their
multiplicities. Deduce from the previous problem that the polynomials 

m n m n
H1(X) = 

Q Q
(X − ri − sj ) and H2(X) = 

Q Q
(X − ri sj )

i=1 j=1 i=1 j=1 

lie in k[X]. 
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p
43. (a) Find a nonzero polynomial with rational coefficients having 

p
2 + 3 as a p

root. What is the minimal polynomial of 
p
2 + 3 over Q? p3(b) Find a nonzero polynomial with rational coefficients having 

p
2 + 2 as a p3root. What is the minimal polynomial of 

p
2 + 2 over Q? 

44. Let k be a field of characteristic 0, and let K = k(r1, . . . , rn) be the field of 
fractions of the polynomial ring k[r1, . . . , rn] in n indeterminates. Show that 
any σ in the symmetric group Sn defines a member of Gal(K/k) such that 
σ (rj ) = rσ ( j) for all σ in Sn . Then define F(X) to be the polynomial 

F(X) = (X − r1) · · · (X − rn) 

in K[X], and show that 
(a) F(X) is irreducible over the fixed field KSn , 
(b) K is a splitting field for F(X) over KSn , 
(c) KSn = k(u1, . . . , un), where u1, . . . , un are given by 

u1 = 
P 
rI , u2 = 

P 
rirj , . . . , un = 

Q
ri , 

i i< j i 

(d) the Galois group of the splitting field of F(X) over k(u1, . . . , un) is Sn . 
45. (Cubic resolvent) This problem carries out one step in finding the roots of an ar-

bitrary quartic polynomial. Let k be a field of characteristic 0, let K = k( p, q, r)
be the field of fractions of the polynomial ring k[ p, q, r] in n indeterminates,
and let L be a splitting field of the polynomial 

F(X) = X4 + pX2 + qX + r 

in K[X]. The Galois group Gal(L/K) is S4 by the previous problem. Let 
B4 = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. In the composition series 
S4 ⊇ A4 ⊇ B4 ⊇ {(1p), (1 2)}(3 4)} ⊇ {1}, Proposition 9.63 shows that the 
fixed field of A4 is K( D ), where D is the discriminant. To obtain the fixed p
field of B4, we adjoin to K( D ) an element of L invariant under B4 but not 
under A4. If s1, s2, s3, s4 denote the roots of F(X) in L, then such an element is 
(s1 + s2)(s3 + s4). Its three conjugates under A4/B4 are 

θ1 = (s1 + s2)(s3 + s4), 
θ2 = (s1 + s3)(s2 + s4), 
θ3 = (s1 + s4)(s2 + s3), 

which are the three roots of the “cubic resolvent” polynomial 

3 − c1θ2θ + c2θ − c3, 

where c1, c2, c3 are the elementary symmetric polynomials in θ1, θ2, θ3 given by 
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c1 = 
P 

θi , c2 = 
P 

θi θj , c3 = 
Q

θi . 
i i< j i 

(a) Show that c1, c2, c3 are symmetric polynomials in s1, s2, s3, s4, hence are 
polynomials in the coefficients p, q, r . 

(b) Verify that c1 = 2p, c2 = p2 − 4r , and c3 = q2. 
(c) Show that the discriminant of the cubic resolvent equals the discriminant of

the original quartic polynomial. 

Problems 46–50 concern Galois groups of splitting fields of quartic polynomials. Take
as known that the discriminant of a quartic polynomial F(X) = X4 + pX2 + qX + r 
is given by 

−4 p3q2 − 27q4 + 16p4r + 144pq2r − 128p2r2 + 256r3 . 

Let K be a splitting field for F(X) over Q, and let G = Gal(K/Q). Regard G as a 
subgroup of the symmetric group S4. 
46. (a) Identify all transitive subgroups of the alternating group A4, up to a relabeling 

of the four indices. 
(b) Identify all transitive subgroups of the symmetric group S4 other than those 

in (a), up to a relabeling of the four indices. 

47. Suppose q = 0. 
(a) Show that G is a subgroup of A4 if and only if r is a square in Q. 
(b) Show by solving F(X) = 0 explicitly that [K : Q] is a power of 2, and 

conclude that G has no element of order 3. 
(c) Deduce when r is a square that G = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

if F(X) is irreducible over Q. 
(d) Deduce when r is a nonsquare that G is cyclic of order 4 or is dihedral of 

order 8 if F(x) is irreducible over Q; in the dihedral case, G is generated by
a 4-cycle and the group listed in (c). (Problem 22 shows how to distinguish
between the two cases.) 

48. For F(X) = X4 + X + 1, show by considering reduction modulo 2 and modulo 
3 that G = S4. 

49. Let F(X) = X4 + 8X + 12. 
(a) Compute the discriminant of F(X), and verify that it is a square. 
(b) Show that F(X) ≡ (1 + X)(2 + X + 4X2 + X3) mod 5 with the two factors 

on the right side irreducible in F5. 
(c) Show from (a) and (b) that if F(X) is reducible over Q, then it must have a 

root that is an integer. Check that there is no such root.
(d) Conclude that G = A4. 
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50. For each transitive group G as in Problem 46, find a polynomial F(X) of degree 4 
over Q whose splitting field K over Q has Gal(K/Q) isomorphic to G. 

Problems51–56 continue the introduction to error-correctingcodes begun in Problems
63–73 at the end of Chapter IV and continued in Problems 25–28 at the end of Chapter
VII. The current problems will not make use of the problems in Chapter VII. As in
the problems in Chapter IV, we work with the field F = Z/2Z, with Hamming space 
Fn , and with linear codes C in Fn . The minimal distance of C is denoted by δ(C). 
Problem 72 in Chapter IV introduced cyclic redundancy codes, which are determined
by a generating polynomial G(X) of some degree g suitably less than n. Such a code 
C is built from all polynomials G(X)B(X) with B(X) = 0 or deg B(X) ≤ n − g − 1. 
A given polynomial c0 + c1 X + · · · becomes the n-tuple (c0, c1, . . . ) of C ; the code 
C has dimension n − g. This set of problems will discuss a special class of cyclic
redundancy codes called cyclic codes, and then a special subclass called BCH codes. 

51. A linear code C in Fn is called a cyclic code if whenever (c0, c1, . . . , cn−1) is in 
C , then so is (cn−1, c0, c1, . . . , cn−2). 
(a) Prove that a linear code C is cyclic if and only if the set of all polynomials 

c0 + c1 X + · · · + cn−1 Xn−1 corresponding to members (c0, c1, . . . , cn−1)
of C is an ideal in the ring F[X]/(Xn − 1). (In this case the members of C 
will be identified with the set of such polynomials.)

(b) Prove that if C is cyclic and nonzero, then there exists a unique G(X) in 
C of lowest possible degree. Moreover, G(X) divides Xn − 1 in F[X],
and C consists exactly of the polynomials G(X)F(X) mod (Xn − 1) such 
that F(X) = 0 or deg F(X) ≤ n − deg G(X) − 1, and C has dimension 
n − deg G(X). (The polynomial G(X) is called the generating polynomial 
of C . A cyclic code C over the field Z/2Z having block length n and 
dimension k is called a binary cyclic (n, k) code.)

(c) Prove that if G(X) has degree n − k, then a basis of C consists of the 
polynomials G(X), XG(X), X2G(X), . . . , Xk−1G(X). 

(d) Under the assumption that C is cyclic and nonzero, (b) says that it is possible 
to write Xn − 1 = G(X)H(X) for some H(X) in F[X]. Prove that a 
member B(X) of F[X]/(Xn − 1) lies in C if and only if H(X)B(X) ≡ 
0 mod (Xn − 1). 

µ 1 0 0 1 0 1 1 
∂

52. (a) Show that the row space C of the matrix G = 0 1 0 1 1 1 0 is a cyclic 
0 0 1 0 1 1 1 

(7, 3) code with generating polynomial G(X) = 1 + X2 + X3 + X4. 
(b) Show directly from G that C has minimal distance δ = 4. 
(c) The polynomial H(X) = 1 + X2 + X3 has the property that G(X)H(X) = 

X7 −1 in F[X]. Find a 4-by-7 matrix H such that the column vectors v ∈ F7 

that lie in C are exactly the ones with Hv = 0. 
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(d) The matrix H in (c) is called the check matrix for the code. Describe a 
procedure for constructing the check matrix when starting from a general
binary cyclic (n, k) code whose generating polynomial G(X) is known and 
whose polynomial H(X) with G(X)H(X) = Xn − 1 is known. Prove that 
the procedure works. 

53. Show that Xn − 1 is a separable polynomial over F if n is odd but not if n is even. 
54. Let C be a binary cyclic (n, k) code with generating polynomial G(X), and 

suppose that n is odd. Let K be a finite extension field of F in which Xn − 1 
splits, and let α be a primitive nth root of 1, i.e., a root of Xn − 1 in K such that 
αm 6= 1 for 0 < m < n. Suppose that r and s are integers with 0 ≤ s < n and 

G(αr ) = G(αr+1) = · · · = G(αr+s ) = 0. 

(a) Let P(X) = 6 0 and deg F < k be an arbitrary G(X)F(X) with F(X) = 
nonzero member of C , so that P(αr ) = P(αr+1) = · · · = P(αr+s ) = 0. 
Write P(X) = c0 + c1 X + · · · + cn−1 Xn−1, and use the values of P(α j )
for r ≤ j ≤ r + s to set up a homogeneous system of s + 1 linear equations 
with n unknowns c0, . . . , cn−1. 

(b) Using an argument with Vandermonde determinants, show that every (s+1)-
by-(s+1) submatrix of the coefficient matrix of the system in (a) is invertible.

(c) Obtain a contradiction from (b) if s + 1 or fewer of the coefficients of P(X) 
are nonzero. 

(d) Conclude that the minimal distance δ(C) is ∏ s + 2. 
55. (BCH codes, or Bose–Chaudhuri–Hocquenghem codes) Let n be an odd 

positive integer, let e be a positive integer < n/2, let K be a finite extension 
field of F in which Xn − 1 splits, and let α be a primitive nth root of 1 in 
K. For 1 ≤ j ≤ 2e, let Fj (X) be the minimal polynomial of α j over F, and 
define G(X) = (1 + X) LCM(F1(X), . . . , F2e(X)). Prove that G(X) divides 
Xn − 1 and that G(X) is the generating polynomial for a cyclic code C in Fn 

with minimal distance δ(C) ∏ 2e + 2. (Educational note: Therefore C has the 
built-in capability of correcting at least e errors.) 

56. In the setting of the previous problem, let n = 2m − 1 for a positive integer m, 
and let K be a field of order 2m . 
(a) Prove that any irreducible polynomial in F[X] with a root in K has order 

dividing m, and conclude that the order of the generating polynomial G(X)

in the previous problem is at most 2em + 1. 
(b) Prove that there exists a sequence Cr of binary cyclic (nr , kr ) codes of BCH 

type such that kr /nr tends to 1 and the minimal distance δ(Cr ) tends to 
infinity. (Educational note: The fraction kr /nr tells the fraction of message
bits to total bits in each transmitted block. Thus the problem says that there
are linear codes capable of correcting as large a number of errors as we
please while having as large a percentage of message bits as we please.) 
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57. Take as known that F1(X) = 1 + X + X4 is irreducible over F. Let K be the 
field F[X]/(F1(X)) of order 16, and let α be the coset X + (F1(X)) in K. 
(a) Explain why F1(X) factors as F1(X) = (X − α)(X − α2)(X − α4)(X − α8) 

over K. 
(b) Find the minimal polynomial F3(X) of α3. 
(c) Show in F15 that the binary cyclic code C with generating polynomial 

G(X) = (1 + X)F1(X)F3(X) has dim C = 6 and δ(C) ∏ 6. 

Problems 58-63 combine Problems 12–13 in Chapter V with the notion of extension
of scalars from Chapter VI and some Galois theory from Chapter IX to prove the
general Jordan–Chevalley decomposition. Let k be a field, and let V be a finite-
dimensional vector space over k. A linear map N : V → V is called nilpotent if 
Nk = 0 for some k. A linear map S : V → V is called semisimple if there is 
some finite extension K of k for which the linear map SK : V K → V K obtained by 
extension of scalars has a basis of eigenvectors. The theorem is that if L : V → V is a 
linear map with the property that every irreducible factor of the minimal polynomial
of L over k is separable, then L has a unique decomposition L = S + N with S 
semisimple, N nilpotent, and SN = NS. The theorem applies without restriction 
to a linear L : V → V if k is finite or has characteristic 0 because the separability
condition is automatically satisfied in these cases. 

58. Let k be a field, let V be a vector space over k, and let K be an extension field of 
k. Extend scalars to form the K vector space given by V K = V ⊗k K, and let 
Gal(K/k) act on V K by saying that ϕ(v ⊗ c) = v ⊗ ϕ(c) for ϕ in Gal(K/k) and 
v ⊗ c in V K. Explain for V = kn that V K may be interpreted as Kn and that the 
action by ϕ reduces to (ϕ(u))j = ϕ(uj ). 

59. Let k be a field, let V be a finite-dimensional vector space over k, and let 
L : V → V be a linear map. Suppose that every irreducible factor of the minimal
polynomial of L over k is separable. Prove the existence of a Jordan–Chevalley 
decomposition of L by following these steps: 
(a) Let K be a splitting field of k, so that K is a finite Galois extension of k. Use 

Problems 12–13 of Chapter V to show that L ⊗ 1 : V K → V K has a unique 
decomposition as a sum S + N of K linear maps of V K to itself such that 
SN = NS, N is nilpotent, and S has a basis of eigenvectors. 

(b) Prove that any K linear T : V K → V K such that (1⊗ϕ)T = T (1⊗ϕ) for all 
ϕ ∈ Gal(K/k) is of the form T = T ⊗ 1 for a unique k linear T : V → V . 

(c) Show that the K linear maps S and N of (a) satisfy (1 ⊗ ϕ)S = S (1 ⊗ ϕ)

and (1 ⊗ ϕ)N = N (1 ⊗ ϕ) for all ϕ ∈ Gal(K/k), and deduce from (b) that 
S and N may be written as S = S ⊗ 1 and N = N ⊗ 1 for uniquely defined 
k linear maps S and N of V into itself. 

(d) Show that S is semisimple, N is nilpotent, and SN = NS, and conclude 
that L = S + N is a Jordan–Chevalley decomposition of L . 
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(e) Show that S and N are polynomials in L . 
60. Let k be a field, let V be a finite-dimensional vector space over k, and let 

L : V → V be a linear map. Prove the uniqueness result that there is at most
one decomposition L = S + N with S semisimple, N nilpotent, and SN = NS. 

61. Let k = R, and let L : R4 → R4 be the linear map defined by the matrix 

 
0 −1 0 0 

 

1 0 1 0A =  . 
0 0 0 −1 
0 0 1 0 

The minimal polynomial of L or A is (X2 +1)2. Calculate the Jordan–Chevalley 
decomposition of L in matrix form. 

62. Let F2 be a field of two elements, and let k = F2(x), where x is transcendental ≥ 
0 x 

¥
over F2. Let L : k2 → k2 be the linear map defined by the matrix A = .1 0 

The characteristic polynomial of L or A is M(X) = X2 − x . This is irreducible 
over k and hence is also the minimal polynomial. The quadratic extension 
K = k[x1/2] of k is a splitting field for M(X), and M(X) has a double root in 
k[x1/2].
(a) Show that A, regarded as a matrix in M2(K), does not have a basis of 

eigenvectors. Conclude that L is not semisimple.
(b) Calculate the most general 2-by-2 matrix commuting with A, and show that 

it cannot have characteristic polynomial X2 unless it is the 0 matrix. 
(c) Conclude that L cannot have a Jordan–Chevalley decomposition. 

63. Let k be a field, let V be a finite-dimensional vector space over k, and let 
L : V → V be an invertible linear map. Suppose that every irreducible factor 
of the minimal polynomial of L over k is separable. A linear map U : V → V 
is called unipotent if (U − I )k = 0 for some k. By suitably adjusting the proof
of the Jordan–Chevalley decomposition, prove that there exist linear maps S and 
U of V into itself such that S is semisimple, U is unipotent, and L = SU = US. 

Problems 64–73 introduce ordered fields, formally real fields, and real closed fields.
An ordered field k is a field with a specified subset P of “positive” elements that is
closed under addition and multiplication and is such that each nonzero element of k 
is in exactly one of P and −P . The fields Q and R are examples. A formally real 
field k is a field in which −1 is not the sum of squares. A real closed field k is a 
formally real field such that no proper algebraic extension of k is formally real. The 
problems together prove the existence part of the Artin–Schreier Theorem: If k is 
an ordered field with P as its set of positive elements and if k is an algebraic closure, 
then there exists a real closed field K between k and k that is an ordered field with P 
contained in its set of positive elements. Moreover, K is unique up to k isomorphism,p
and k is of the form K( −1 ). 
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64. Verify the following properties of an ordered field k when P is the set of positive 
elements: 
(a) 1 is in P , 
(b) every nonzero square is in P , 
(c) whenever a is in P , then so is a−1, 
(d) k is formally real, 
(e) k has characteristic 0. 

65. In an ordered field k whose set of positive elements is P , define x > y and y < x 
to mean x − y is in P . Let a, b, c, d be in k. Check the following: 
(a) exactly one the relations a > b, a = b, and a < b holds, 
(b) if a > b and b > c, then a > c, 
(c) if a > b, then a + c > b + c, 
(d) if a > b and c > 0, then ac > bc, 
(e) if a > b > 0, then b−1 > a−1, 
(f) if a > b > 0 and c > d > 0, then ac > bd, 
(g) if a > b and c > d, then ac + bd > ad + bc. 

66. Let k be an ordered field with P as its set of positive elements, let k(x) be a 
transcendental extension, and define the positive elements of k(x) to be those 
for which the quotient of the leading coefficient of the numerator by the leading
coefficient of the denominator is in P . Show that with this definition of the set 
of positive elements, k(x) becomes an ordered field in which x > n for every 
positive integer n. (Then also 1/n > 1/x for every positive integer n by Problem 
65e.) 

p
67. (a) Show that Q( 2 ) becomes an ordered field in two distinct ways. 

(b) If k is an ordered field with P as its set of positive elements and if c is a 
member of P that is not a square, show that there are two ways of definingp
the set of positive elements P 0 of K = k( c ) so that K becomes an ordered 
field with P ⊆ P 0. 

68. Let k be an ordered field, and let K be the extension that arises by adjoining the
square roots of all the positive elements of K. Prove that K is a formally real 
field by carrying out the following steps:
(a) Show that if n is chosen as small as possible so that an equation −1 = 

Pk
j=1 pj ξj

2 holds in K with all pj positive in k and all ξj in an extension 
p pk( c1 , . . . , cn ) of k with all cj positive in k, then writing 

p p p p p
k( c1 , . . . , cn ) = k( c1 , . . . , cn−1 )( cn ) 

leads to an equation 
k k k

−1 = 
P 

pjaj
2 + 

P 
pj cnb2j + 2pcn 

P 
pjajbj (∗)

j=1 j=1 j=1 p pin which aj and bj are in k( c1 , . . . , cn−1 ). 
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(b) Consider the third term on the right side of (∗), and show that a contradiction 
results if this term is 0 and a different contradiction arises if this term is not 0. 

69. Let k be a formally real field, and let k be an algebraic closure. Show that there
exist maximal formally real subfields of k containing k, and show that any such 
is a real closed field. 

70. Carry out the following steps to show that a real closed field k becomes an ordered 
field in one and only one way:

p
(a) Suppose that c 6 c ) is a quadratic extension = 0 is not a square, hence that k(

p
of k. Why is −1 = 

Pn
j=1(aj +bj c )2 for suitable members aj and bj of k? 

(b) By expanding the identity in (a), show that c is not a sum of squares. In 
other words, every sum of squares in k is a square in k. 

(c) Solve for c in the expansion in (b), and conclude that −c is a square. 
(d) Conclude from the previous steps that the choice of P as the set of nonzero 

squares makes k into an ordered field and that there no other possible defi-
nition for the set P of positive elements that makes k into an ordered field. 

71. Carry out the following steps to show that in any real closed field k, every 
polynomial of odd degree has a root:
(a) Show by induction that it is enough to handle irreducible polynomials of

odd degree.
(b) For an irreducible polynomial Q(X) of odd degree n, let k(α) be a simple 

algebraic extension of k such that Q(α) = 0. Show that an expression of −1 
as a sum of squares in k(α) forces an identity 

Pk
j=1 Rj (X)2 + Q(X)A(X) = 

−1 for suitable polynomials Rj (X) in k[X] of degree ≤ n − 1 and some 
polynomial A(X) in k[X] of odd degree ≤ n − 2. 

(c) If r is a root of the polynomial A(X) in (b), show that 
Pk

j=1 Rj (r)2 = −1, 
and deduce a contradiction. 

72. By using the results of Problems 70–71 and taking into account the proof of
Theorem 1.18 that appears in Section IX.10, prove that if k is a real closed field, p
then k( −1 ) is algebraically closed. 

73. Put the above results together to give a proof of the existence in the Artin–Schreier
Theorem: if an ordered field k has P as its set of positive elements and k as an 
algebraic closure, then there exists a real closed field K with k ⊆ K ⊂ k such p
that k = K( −1 ) and such that P is contained in the set of squares in k, i.e.,
such that the set of positive elements in the natural ordered-field structure on k 
contains P . 




