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CHAPTER VIII 

Commutative Rings and Their Modules 

Abstract. This chapter amplifies the theory of commutative rings that was begun in Chapter IV,
and it introduces modules for any ring. Emphasis is on the topic of unique factorization.
Section 1 gives many examples of rings, some commutative and some noncommutative, and

introduces the notion of a module for a ring.
Sections 2–4 discuss some of the tools related to questions of factorization in integral domains.

Section 2 defines the field of fractions for an integral domain and gives its universal mapping property.
Section 3 defines prime and maximal ideals and relates quotients of them to integral domains and
fields. Section 4 introduces principal ideal domains, which are shown to have unique factorization,
and it defines Euclidean domains as a special kind of principal ideal domain for which greatest
common divisors can be obtained constructively.
Section 5 proves that if R is an integral domain with unique factorization, then so is the polynomial 

ring R[X]. This result is a consequence of Gauss’s Lemma, which addresses what happens to the
greatest common divisor of the coefficients when one multiplies two members of R[X]. Gauss’s 
Lemma has several other consequences that relate factorization in R[X] to factorization in F[X],
where F is the field of fractions of R. Still another consequence is Eisenstein’s irreducibility criterion,
which gives a sufficient condition for a member of R[X] to be irreducible.
Section 6 contains the theorem that every finitely generated unital module over a principal ideal

domain is a direct sum of cyclic modules. The cyclic modules may be assumed to be primary in a
suitable sense, and then the isomorphism types of the modules appearing in the direct-sum decom-
position, together with their multiplicities, are uniquely determined. The main results transparently
generalize the Fundamental Theorem for Finitely Generated Abelian Groups, and less transparently
they generalize the existence and uniqueness of Jordan canonical form for square matrices with
entries in an algebraically closed field.
Sections 7–11 contain foundational material related to factorization for the two subjects of

algebraic number theory and algebraic geometry. Both these subjects rely heavily on the theory of
commutative rings. Section 7 is a section of motivation, showing the analogy between a situation
in algebraic number theory and a situation in algebraic geometry. Sections 8–10 introduce Noe-
therian rings, integral closures, and localizations. Section 11 uses this material to establish unique
factorization of ideals for Dedekind domains, as well as some other properties. 

1. Examples of Rings and Modules 

Sections 4–5 of Chapter IV introduced rings and fields, giving a small number of
examples of each. In the present section we begin by recalling those examples
and giving further ones. Although Chapters VI and VII are not prerequisite for 
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371 1. Examples of Rings and Modules 

the present chapter, our list of examples will include some rings and fields that
arose in those two chapters.
The theory to be developed in this chapter is intended to apply to commutative

rings, especially to questions related to unique factorization in such rings. Despite
this limitation it seems wise to include examples of noncommutative rings in the
list below. 
In the conventions of this book, a ring need not have an identity. Many rings

that arise only in the subject of algebra have an identity, but there are important
rings in the subject of real analysis that do not. From the point of view of category
theory, one therefore distinguishes between the category of all rings, with ring
homomorphisms as morphisms, and the category of all rings with identity, with
ring homomorphisms carrying 1 to 1 as morphisms. In the latter case one may
want to exclude the zero ring from being an object in the category under certain
circumstances. 

EXAMPLES OF RINGS. 
(1) Basic commutative rings from Chapter IV. All of the structures Z, Q, R, 

C, Z/mZ, and 2Z are commutative rings. All but the last have an identity. Of 
these, Q, R, and C are fields, and so is Fp = Z/ pZ if p is a prime number. The 
others are not fields. 
(2) Polynomial rings. Let R be a nonzero commutative ring with identity.

In Section IV.5 we defined the commutative ring R[X1, . . . , Xn] of polynomials 
over R in n indeterminates. It has a universal mapping property with respect to
substitution for the indeterminatesand use of a homomorphism on the coefficients.
Making substitutions from R itself and mapping the coefficients by the identity ho-
momorphism, we are led to the ring of all functions (r1, . . . , rn) 7→ f (r1, . . . , rn)
for r1, . . . , rn in R and f (X1, . . . , Xn) in R[X1, . . . , Xn]; this is called the ring 
of all polynomial functions in n variables on R. Polynomials may be considered
also in infinitely many variables, but we did not treat this case in any detail. 
(3) Matrix rings over commutative rings. Let R be a nonzero commutative 

ring with identity. The set Mn(R) of all n-by-n matrices with entries in R is a ring
under entry-by-entry addition and the usual definition of matrix multiplication: 
(AB)i j = 

P
k
n 
=1 Aik Bkj . It has an identity, namely the identity matrix I with 

Ii j = δi j . In this setting, Section V.2 introduced a theory of determinants, and it
was proved that a matrix has a one-sided inverse if and only if it has a two-sided
inverse, if and only if its determinant is a member of the group R× of units in 
R, i.e., elements of R invertible under multiplication. The matrix ring Mn(R) is 
always noncommutative if n > 1. 
(4) Matrix rings over noncommutative rings. If R is any ring, we can still make 

the set Mn(R) of all n-by-n matrices with entries in R into a ring. However, if 
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R has no identity, Mn(R) will have no identity. The theory of determinants does 
not directly apply if R is noncommutative or if R fails to have an identity,1 and as 
a consequence, questions about the invertibility of matrices are more subtle than
with the previous example. 
(5) Spaces of linear maps from a vector space into itself. Let V be a vector 

space over a field K. The vector space EndK(V ) = HomK(V, V ) of all K linear 
maps from V to itself is initially a vector space over K. Composition provides a 
multiplication that makes EndK(V ) into a ring with identity. In fact, associativity
of multiplication is automatic for any kind of function, and so is the distributive law 
(L1 + L2)L3 = L1 L3 + L2 L3. The distributive law L1(L2 + L3) = L1 L2 + L1 L3 

follows from the fact that L1 is linear. This ring is isomorphic as a ring to Mn(K)
if V is n-dimensional, an isomorphism being determined by specifying an ordered 
basis of V . 
(6) Associative algebras over fields. These were defined in Section VI.7,

knowledge of which is not being assumed now. Thus we repeat the definition. If 
K is a field, then an associative algebra over K, or associative K algebra, is a ring 
A that is also a vector space over K such that the multiplication A × A → A is 
K-linear in each variable. The conditions of linearity concerning multiplication
have two parts to them: an additive part saying that the usual distributive laws
are valid and a scalar-multiplication part saying that 

(ka)b = k(ab) = a(kb) for all k in K and a, b in A. 

If A has an identity, the displayed condition says that all scalar multiples of
the identity lie in the center of A, i.e., commute with every element of A. In 
Examples 2 and 3, when R is a field K, the polynomial rings and matrix rings 
over K provide examples of associative algebras over K; scalar multiplication is
to be done in entry-by-entry fashion. Example 5 is an associative algebra as well.
If L is any field such that K is a subfield, then L may be regarded as an associative 
algebra over K. An interesting commutative associative algebra over C without 
identity is the algebra Ccom(R) of all continuous complex-valued functions on R 
that vanish outside a bounded interval; the vector-space operations are the usual
pointwise operations, and the operation of multiplication is given by convolution 

Z 
( f ∗ g)(x) = f (x − y)g(y) dy. 

R 

Section VII.4 worked with an analog C(G, C) of this algebra in the context that 
R is replaced by a finite group G. 

1A limited theory of determinants applies in the noncommutative case, but it will not be helpful
for our purposes. 
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(7) Division rings. A division ring is a nonzero ring with identity such that every
element has a two-sided inverse under multiplication. A commutative division
ring is just a field. The ring H of quaternions is the only explicit noncommutative
division ring that we have encountered so far. It is an associative algebra over R. 
More generally, if A is a division ring, then we can easily check that the center 
K of A is a field and that A is an associative algebra over K.2 

(8) Tensor, symmetric, and exterior algebras. If E is a vector space over a field 
K, Chapter VI defined the tensor, symmetric, and exterior algebras of E over K, as 
well as the polynomial algebra on E in the case that E is finite-dimensional. These 
are all associative algebras with identity. Symmetric algebras and polynomial
algebras are commutative. None of these algebras will be discussed further in
this chapter. 
(9) A field of 4 elements. This was constructed in Section IV.4. Further finite

fields beyond the field of 4 elements and the fields Fp = Z/ pZ with p prime will 
be constructed in Chapter IX. 
(10) Algebraic number fields Q[θ]. These were discussed in Sections IV.1 

and IV.4. In defining Q[θ], we assume that θ is a complex number and that 
there exists an integer n > 0 such that the complex numbers 1, θ, θ2 , . . . , θn 

are linearly dependent over Q. The set Q[θ] is defined to be the subset of C 
obtained by substitution of θ into all members of Q[X]. It coincides with the 
linear span over Q of 1, θ, θ2 , . . . , θn−1. Proposition 4.1 shows that it is closed
under the arithmetic operations, including passage to multiplicative inverses of
nonzero elements, and it is therefore a subfield of C. This example ties in with
the notion of minimal polynomial in Chapter V because the members of Q[X]
with θ as a root are all multiples of one nonzero such polynomial that exhibits the
linear dependence. We return to this example occasionally later in this chapter,
particularly in Sections 7–11, and then we treat it in more detail in Chapter IX. 
(11) Algebraic integers in a number field Q[θ]. Algebraic integers were defined 

in Section VII.4 as the roots in C of monic polynomials in Z[X], and they were 
shown to form a commutative ring with identity. The set of algebraic integers 
in Q[θ] is therefore a commutative ring with identity, and it plays somewhat
the same role for Q[θ] that Z plays for Q. We discuss this example further in 
Sections 7–11. 
(12) Integral group rings. If G is a group, then we can make the free abelian 

group ZG on the elements of G into a ring by defining multiplication to be °P
i migi 

¢° P
j njhj 

¢ 
= 

P
i, j (minj )(gi hj ) when the mi and nj are in Z and the 

gi and hj are in G. It is immediate that the result is a ring with identity, and ZG 

2Use of the term “division algebra” requires some care. Some mathematicians understand 
division algebras to be associative, and others do not. The real algebra O of octonions, as defined in
Problems 52–56 at the end of Chapter VI, is not associative, but it does have division. 
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is called the integral group ring of G. The group G is embedded as a subgroup 
of the group (ZG)× of units of ZG, each element of g being identified with a 
sum ∂(g) = 

P 
mi gi in which the only nonzero term is 1g. The ring ZG has 

the universal mapping property illustrated in Figure 8.1 and described as follows:
whenever ϕ : G → R is a group homomorphism of G into the group R× of units 
of a ring R, then there exists a unique ring homomorphism 8 : ZG → R such 
that 8∂ = ϕ. The existence of 8 as a homomorphism of additive groups follows
from the universal mapping property of free abelian groups, and then one readily
checks that 8 respects multiplication.3 

G 

∂

y

ZG 

FIGURE 8.1. Universal mapping property of the integral group ring of G. 

(13) Quotient rings. If R is a ring and I is a two-sided ideal, then we saw in 
Section IV.4 that the additive quotient R/I has a natural multiplication that makes 
it into a ring called a quotient ring of R. This in effect was the construction that 
obtained the ring Z/mZ from the ring Z. 
(14) Direct product of rings. If {Rs | s ∈ S} is a nonempty set of rings, then 

a direct product 
Q

s∈S Rs is a ring whose additive group is any direct product
of the underlying additive groups and whose ring operations are given in entry-
by-entry fashion. The resulting ring and the associated ring homomorphisms 
ps0 : 

Q
s∈S Rs → Rs0 amount to the product functor for the category of rings; 

if each Rs has an identity, the result amounts also to the product functor for the
category of rings with identity. 

We give further examples of rings near the end of this section after we have
defined modules and given some examples.
Informally a module is a vector space over a ring. But let us be more precise. 

If R is a ring, then a left R module4 M is an abelian group with the additional 
structure of a “scalar multiplication” R × M → M such that 

(i) r(r 0m) = (rr 0)m for r and r 0 in R and m in M , 

3Universal mapping properties are discussed systematically in Problems 18–22 at the end of
Chapter VI. The subject of such a property, here the pair (ZG, ∂), is always unique up to canonical
isomorphism in a given category, but its existence has to be proved.

4Many algebra books write “R-module,” using a hyphen. However, when R is replaced by an
expression, particularly in applications of the theory, the hyphen is often dropped. For an example,
see “module” in Hall’s The Theory of Groups. The present book omits the hyphen in all cases in 
order to be consistent. 

ϕ 
−−−→ R 

8 
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(ii) (r + r 0)m = rm + r 0m and r(m + m0) = rm + rm0 if r and r 0 are in R 
and m and m0 are in M . 

In addition, if R has an identity, we say that M is unital if 
(iii) 1m = m for all m in M . 

One may also speak of right R modules. For these the scalar multiplication is 
usually written as mr with m in M and r in R, and the expected analogs of (i) 
and (ii) are to hold.
When R is commutative, it is immaterial which side is used for the scalar

multiplication, and one speaks simply of an R module. 
Let R be a ring, and let M and N be two left R modules. A homomorphism 

of left R modules, or more briefly an R homomorphism, is an additive group 
homomorphism ϕ : M → N such that ϕ(rm) = rϕ(m) for all r in R. Then we 
can form a category for fixed R in which the objects are the left R modules and 
the morphisms are the R homomorphisms from one left R module to another. 
Similarly the right R modules, along with the corresponding kind of R homo-
morphisms, form a category. If R has an identity, then the unital R modules form 
a subcategory in each case. These categories are fundamental to the subject of
homological algebra, which we take up in Chapter IV of Advanced Algebra. 

EXAMPLES OF MODULES. 
(1) Vector spaces. If R is a field, the unital R modules are exactly the vector 

spaces over R. 
(2) Abelian groups. The unital Z modules are exactly the abelian groups. 

Scalar multiplication is given in the expected way: If n is a positive integer, the 
product nx is the n-fold sum of x with itself. If n = 0, the product nx is 0. If 
n < 0, the product nx is −((−n)x). 
(3) Vector spaces as unital modules for the polynomial ring K[X]. Let V 

be a finite-dimensional vector space over the field K, and fix L be in EndK(V ). 
Then V becomes a unital K[X] module under the definition A(X)v = A(L)(v) 
whenever A(X) is a polynomial in K[X]; here A(L) is the member of EndK(V )
defined as in Section V.3. In Section 6 in this chapter we shall see that some of
the deeper results in the theory of a single linear transformation, as developed in
Chapter V, follow from the theory of unital K[X] modules that will emerge from 
the present chapter. 
(4) Modules in the context of algebraic number fields. Let Q[θ] be a subfield 

of C as in Example 10 of rings earlier in this section. It is assumed that the Q 
vector space Q[θ] is finite-dimensional. Let L be the member of EndQ(Q[θ])
given as left multiplication by θ on Q[θ]. As in the previous example, Q[θ]
becomes a unital Q[X] module. Chapter V defines a minimal polynomial for 



376 VIII. Commutative Rings and Their Modules 

L , as well as a characteristic polynomial. These objects play a role in the study
to be carried out in Chapter IX of fields like Q[θ]. If θ is an algebraic integer
as in Example 11 of rings earlier in this section, then we can get more refined
information by replacing Q by Z in the above analysis; this technique plays a role
in the theory to be developed in Sections 7–11. 
(5) Rings and their quotients. If R is a ring, then R is a left R module and also 

a right R module. If I is a two-sided ideal in I , then the quotient ring R/I , as 
defined in Proposition 4.20, is a left R module and also a right R module. These 
modules are automatically unital if R has an identity. Later in this section we 
shall consider quotients of R by “one-sided ideals.” 
(6) Spaces of rectangular matrices. If R is a ring, then the space Mmn(R) of 

m-by-n matrices with entries in R is an abelian group under addition and becomes 
a left R module when multiplication by the scalar r is defined as left multiplication 
by r in each entry. Also, if we put S = Mm(R), then Mmn(R) is a left S module 
under the usual definition of matrix multiplication: (sv)i j = 

Pn
k=1 sik vk j , where 

s is in S and v is in Mmn(R). 
(7) Direct product of R modules. If S is a nonempty set and {Ms}s∈S is 

a corresponding system of left R modules, then a direct product 
Q

iss∈S Ms 
obtained as an additive group by forming any direct product of the underlying
additive groups of the Ms ’s and defining scalar multiplication by members of 
R to be scalar multiplication in each coordinate. The associated abelian-group
homomorphisms ps0 : 

Q
→ Ms0 become R homomorphisms under thiss∈S Ms 

definition of scalar multiplication on the direct product. Direct product amounts
to the product functor for the category of left R modules; we omit the easy
verification, which makes use of the corresponding fact about abelian groups. As
in the case of abelian groups, we can speak of an external direct product as the
result of a construction that starts with the product of the sets Ms , and we can 
speak of recognizing a direct product as internal when the Ms’s are contained in 
the direct product and the restriction of each ps to Ms is the identity function. 
(8) Direct sum of R modules. If S is a nonempty set and {Ms }s∈S is a corre-

sponding system of left R modules, then a direct sum 
L

s∈S Ms is obtained as 
an additive group by forming any direct sum of the underlying additive groups
of the Ms ’s and defining scalar multiplication by members of R to be scalar 
multiplication in each coordinate. The associated abelian-group homomorphisms
is0 : Ms0 → 

L
s∈S Ms become R homomorphisms under this definition of scalar

multiplication on the direct sum. Direct sum amounts to the coproduct functor for
the category of left R modules; we omit the easy verification, which makes use
of the corresponding fact about abelian groups. As in the case of abelian groups,
we can speak of an external direct sum as the result of a construction that starts 
with a subset of the product of the sets Ms , and we can speak of recognizing a 
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direct sum as internal when the Ms’s are contained in the direct sum and each is 
is the inclusion mapping. 
(9) Free R modules. Let R be a nonzero ring with identity, and let S be a 

nonempty set. As in Example 5, let us regard R as a unital left R module. Then 
the left R module given as the direct sum F(S) = 

L
s∈S R is called a free R 

module, or free left R module. We define ∂ : S → F(S) by ∂(s) = is (1),
where is is the usual embedding map for the direct sum of R modules. The left 
R module F(S) has a universal mapping property similar to the corresponding
property of free abelian groups. This is illustrated in Figure 8.2 and is described
as follows: whenever M is a unital left R module and ϕ : S → M is a function, 
then there exists a unique R homomorphism 8 : F(S) → M such that 8∂ = ϕ. 
The existence of 8 as an R homomorphism follows from the universal mapping
property of direct sums (Example 8) as soon as the property is demonstrated for
S equal to a singleton set. Thus let A be any left R module, and let a ∈ A be 
given; then it is evident that r 7→ ra is the unique R homomorphism of the left 
R module R into A carrying 1 to a. 

ϕS −−−→ M 

∂

y

F(S) 

FIGURE 8.2. Universal mapping property of a free left R module. 

If R is a ring and M is a left R module, then an R submodule N of M is an 
additive subgroup of M that is closed under scalar multiplication, i.e., has rm in 
N when r is in R and m is in N . In situations in which there is no ambiguity, the
use of “left” in connection with R submodules is not necessary. 
EXAMPLES OF SUBMODULES. If V is a vector space over a field K, then a K 

submodule of V is a vector subspace of V . If M is an abelian group, then a Z 
submodule of M is a subgroup. In Example 6 of modules, in which S = Mm (R),
then an example of a left S submodule of Mmn(R) is all matrices with 0 in every 
entry of a specified subset of the n columns. 
If the ring R has an identity and M is a unital left R module, then the R 

submodule of M generated by m ∈ M , i.e., the smallest R submodule containing 
m, is Rm, the set of products rm with r in R. In fact, the set of all rm is an abelian 
group since (r ± s)m = rm ± sm, it is closed under scalar multiplication since 
s(rm) = (sr)m, and it contains m since 1m = m. However, if the left R module 
M is not unital, then the R submodule generated by m may not equal Rm, and it 
was for that reason that R modules were assumed to be unital in the construction of 
free R modules in Example 9 of modules above. More generally the R submodule 

8 
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of M generated by a finite set {m1, . . . , mn} in M is Rm1 +· · ·+ Rmn if the left 
R module M is unital. 
Example 5 of modules treated R as a left R module. In this setting the left 

R submodules are called left ideals in R. That is, a left ideal I is an additive 
subgroup of R such that ri is in I whenever r is in R and i is in I . As a special 
case of what was said in the previous paragraph, if the ring R has an identity, then 
the left R module R is automatically unital, and the left ideal of R generated by 
an element a is Ra, the set of all products ra with r in R. 
Similarly a right ideal in R is an additive subgroup I such that ir is in I 

whenever r is in R and i is in I . The right ideals are the right R submodules 
of the right R module R. If R is commutative, then left ideals, right ideals, and
two-sided ideals are all the same. 
Suppose that ϕ : M → N is an R homomorphism of left R modules. In this 

situation we readily verify that the kernel of ϕ, denoted by ker ϕ as usual, is an 
R submodule of M , and the image of ϕ, denoted by image ϕ as usual, is an R 
submodule of N . The R homomorphism ϕ is one-one if and only if ker ϕ = 0, as
a consequence of properties of homomorphisms of abelian groups. A one-one R 
homomorphism of one left R module onto another is called an R isomorphism;
its inverse is automatically an R isomorphism, and “is R isomorphic to” is an 
equivalence relation.
Still with R as a ring, suppose that M is a left R module and N is an R 

submodule. Then we can form the quotient M/N of abelian groups. This becomes 
a left R module under the definition r(m + N ) = rm + N , as we readily check. 
We call M/N a quotient module. The quotient mapping m 7→ m + N of M to 
M/N is an R homomorphism onto. A particular example of a quotient module 
is R/I , where I is a left ideal in R. 
We can now go over the results on quotients of abelian groups in Section IV.2,

specifically Proposition 4.11 through Theorem 4.14, and check that they extend
immediately to results about left R modules. The statements appear below. The
arguments are all routine, and there is no point in repeating them. In the special
case that R is a field and the R modules are vector spaces, these results specialize
to results proved in Sections II.5 and II.6. 

Proposition 8.1. Let R be a ring, let ϕ : M1 → M2 be an R homomorphism
between left R modules, let N0 = ker ϕ, let N be an R submodule of M1 

contained in N0, and define q : M1 → M1/N to be the R module quotient 
map. Then there exists an R homomorphism ϕ : M1/N → M2 such that 
ϕ = ϕq, i.e, ϕ(m1 + N ) = ϕ(m1). It has the same image as ϕ, and ker ϕ = 
{h0 N | h0 ∈ N0}. 

REMARK. As with groups, one says that ϕ factors through M1/N or descends 
to M1/N . Figure 8.3 illustrates matters. 
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ϕM1 −−−→ M2 

q ϕ
y

M1/N 

FIGURE 8.3. Factorization of R homomorphisms via a quotient of R modules. 

Corollary 8.2. Let R be a ring, let ϕ : M1 → M2 be an R homomorphism
between left R modules, and suppose that ϕ is onto M2 and has kernel N . Then 
ϕ exhibits the left R module M1/N as canonically R isomorphic to M2. 

Theorem 8.3 (First Isomorphism Theorem). Let R be a ring, let ϕ : M1 → M2 

be an R homomorphism between left R modules, and suppose that ϕ is onto M2 

and has kernel K . Then the map N1 7→ ϕ(N1) gives a one-one correspondence 
between 

(a) the R submodules N1 of M1 containing K and 
(b) the R submodules of M2. 

Under this correspondence the mapping m + N1 7→ ϕ(m) + ϕ(N1) is an R 
isomorphism of M1/N1 onto M2/ϕ(N1). 

REMARK. In the special case of the last statement that ϕ : M1 → M2 is 
an R module quotient map q : M → M/K and N is an R submodule of 
M containing K , the last statement of the theorem asserts the R isomorphism
M/N ∼= (M/K )

±
(N/K ). 

Theorem 8.4 (Second Isomorphism Theorem). Let R be a ring, let M be a 
left R module, and let N1 and N2 be R submodules of M . Then N1 ∩ N2 is an 
R submodule of N1, the set N1 + N2 of sums is an R submodule of M , and the 
map n1 + (N1 ∩ N2) 7→ n1 + N2 is a well-defined canonical R isomorphism 

N1/(N1 ∩ N2) ∼= (N1 + N2)/N2. 

A quotient of a direct sum of R modules by the direct sum of R submodules 
is the direct sum of the quotients, according to the following proposition. The
result generalizes Lemma 4.58, which treats the special case of abelian groups
(unital Z modules). 

Proposition 8.5. Let R be a ring, let M = 
L

s∈S Ms be a direct sum of left R 
modules, and for each s in S, let Ns be a left R submodule of Ms . Then the natural 
map of 

L
s∈S Ms to the direct sum of quotients descends to an R isomorphism 

M .M 
∼

M
Ms Ns = (Ms /Ns). 

s∈S s∈S s∈S 



380 VIII. Commutative Rings and Their Modules 

PROOF. Let ϕ : 
L

s∈S Ms → 
L

s∈S (Ms/Ns ) be the R homomorphism defined 
by ϕ({ms }s∈S) = {ms + Ns }s∈S . The mapping ϕ is onto 

L
s∈S (Ms /Ns ), and the 

kernel is 
L

s∈S Ns . Then Corollary 8.2 shows that ϕ descends to the required R 
isomorphism. § 

EXAMPLES OF RINGS, CONTINUED. 
(15) Associative algebras over commutative rings with identity. These directly

generalize Example 6 of rings. Let R be a nonzero commutative ring with identity. 
An associative algebra over R, or associative R algebra, is a ring A that is also 
a left R module such that multiplication A × A → A is R linear in each variable. 
The conditions of R linearity in each variable mean that addition satisfies the
usual distributive laws for a ring and that the following condition is to be satisfied
relating multiplication and scalar multiplication: 

(ra)b = r(ab) = a(rb) for all r in R and a, b ∈ A. 

If A has an identity, the displayed condition says that all scalar multiples of
the identity lie in the center of A, i.e., commute with every element of A. 
Examples 2 and 3, treating polynomial rings and matrix rings whose scalars
lie in a commutative ring with identity, furnish examples. Every ring R is an 
associative Z algebra when the Z action is defined so as to make the abelian 
group underlying the additive structure of R into a Z module. All that needs to be 
checked is the displayed formula. For n = 1, we have (1a)b = 1(ab) = a(1b)
since the Z module R is unital. If we also have (na)b = n(ab) = a(nb) for a 
positive integer n, then we can add and use the appropriate distributive laws to 
obtain ((n + 1)a)b = (n + 1)(ab) = a((n + 1)b). Induction therefore gives 
(na)b = n(ab) = a(nb) for all positive integers n, and this equality extends 
to all integers n by using additive inverses. The associative R algebras form
a category in which the morphisms from one such algebra to another are the
ring homomorphisms that are also R homomorphisms. The product functor
for this category is the direct product as in Example 14 with an overlay of scalar
multiplication as in Example 7 of modules. The coproduct functor in the category
of commutative associative R algebras with identity is more subtle and involves 
a tensor product over R, a notion we postpone introducing until Chapter X. 
(16) Group algebra RG over R. If G is a group and R is a commutative ring

with identity, then we can introduce a multiplication in the free R module RG 
on the elements of G by the definition 

°P
i ri gi 

¢° P
j sj hj 

¢ 
= 

P
i, j (ri sj )(gi hj )

when the ri and sj are in R and the gi and hj are in G. It is immediate that 
this multiplication makes the free R module into an associative R algebra with 
identity, and RG is called the group algebra of G over R. The special case R = Z 
leads to the integral group ring as in Example 12. The group G is embedded as a 
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subgroup of the group (RG)× of units of RG, each element of g being identified 
with a sum ∂(g) = 

P 
ri gi in which the only nonzero term is 1g. The associative 

R algebra RG has a universal mapping property similar to that in Figure 8.1 and
given in Figure 8.4 as follows: whenever ϕ : G → A is a group homomorphism 
of G into the group A× of units of an associative R algebra A, then there exists 
a unique associative R algebra homomorphism 8 : RG → A such that 8∂ = ϕ. 

G 

∂

y

RG 

FIGURE 8.4. Universal mapping property of the group algebra RG. 

(17) Scalar-valued functions of finite support on a group, with convolution
as multiplication. If G is a group and R is a commutative ring with identity, 
denote by C(G, R) the R module of all functions from G into R that are of finite 
support in the sense that each function is 0 except on a finite subset of G. This R 
module readily becomes an associative R algebra if ring multiplication is taken
to be pointwise multiplication, but the interest here is in a different definition of
multiplication. Instead, multiplication is defined to be convolution with 

( f1 ∗ f2)(x) = 
X 

f1(xy−1) f2(y) = 
X 

f1(y) f2(y−1x). 
y∈G y∈G 

The sums in question are finite because of the finite support of f1 and f2, and the
sums are equal by a change of variables. This multiplication was introduced in
the special case R = C in Section VII.4, and the argument for associativity given
there in the special case works in general. With convolution as multiplication,
C(G, R) becomes an associative R algebra with identity. Problem 14 at the end
of the chapter asks for a verification that the mapping g 7→ fg with 

Ω 1 for x = g,
fg(x) = 

0 for x =6 g, 

extends to an R algebra isomorphism of RG onto C(G, R). 

2. Integral Domains and Fields of Fractions 

For the remainder of the chapter we work with commutative rings only. In several
of the sections, including this one, the commutative ring will be an integral
domain, i.e., a nonzero commutative ring with identity and with no zero divisors. 

ϕ 
−−−→ A 

8 
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In this section we show how an integral domain can be embedded canonically
in a field. This embedding is handy for recognizing certain facts about integral
domains as consequences of facts about fields. For example Proposition 4.28b
established that if R is a nonzero integral domain and if A(X) is a polynomial in 
R[X] of degree n > 0, then A(X) has at most n roots. Since the coefficients of 
the polynomial can be considered to be members of the larger field that contains
R, this result is an immediate consequence of the corresponding fact about fields
(Corollary 1.14).
The prototype is the construction of the field Q of rationals from the integral 

domain Z of integers as in Section A3 of the appendix, in which one thinks of a 
bcas a pair (a, b) with b 6 == 0 and then identifies pairs by saying that a d if and b

only if ad = bc. 
We proceed in the same way in the general case. Thus let R be an integral 

domain, form the set 

F = {(a, b) | a ∈ R, b ∈ R, b 6= 0},e

and impose the equivalence relation (a, b) ∼ (c, d) if ad = bc. The relation 
∼ is certainly reflexive and symmetric. To see that it is transitive, suppose that 
(a, b) ∼ (c, d) and (c, d) ∼ (e, f ). Then ad = bc and c f = de, and these 
together force ad f = bc f = bde. In turn, this implies a f = be since R is an 
integral domain and d is assumed 6= 0. Thus ∼ is transitive and is an equivalence 
relation. Let F be the set of equivalence classes.
The definition of addition in Feis (a, b)+(c, d) = (ad+bc, bd), the expression

we get by naively clearing fractions, and we want to see that addition is consistent
with the equivalence relation. In checking this, we need change only one of the
pairs at a time. Thus suppose that (a0 , b0) ∼ (a, b) and that (c, d) is given. We 
know that a0b = ab0, and we want to see that (ad + bc, bd) ∼ (a0d + b0c, b0d),
i.e., that (ad + bc)b0d = (a0d + b0c)bd. In other words, we are to check that 
adb0d = a0dbd; we see immediately that this equality is valid since ab0 = a0b. 
Consequently addition is consistent with the equivalence relation and descends
to be defined on the set F of equivalence classes.
Taking into account the properties satisfied by members of an integral domain,

we check directly that addition is commutative and associative on Fe, and it follows 
that addition is commutative and associative on F . 
The element (0, 1) is a two-sided identity for addition in Fe, and hence the 

class of (0, 1) is a two-sided identity for addition in F . We denote this class 
by 0. Let us identify this class. A pair (a, b) is in the class of (0, 1) if and only 
if 0 · b = 1 · a, hence if and only if a = 0. In other words, the class of (0, 1)
consists of all (0, b) with b 6= 0. 
In Fe, we have (a, b) + (−a, b) = (ab + b(−a), bb) = (0, b2) ∼ (0, 1), and 

therefore the class of (−a, b) is a two-sided inverse to the class of (a, b) under 
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addition. Consequently F is an abelian group under addition.
The definition of multiplication in Fe is (a, b)(c, d) = (ac, bd), and it is

routine to see that this definition is consistent with the equivalence relation.
Therefore multiplication descends to be defined on F . We check by inspection 
that multiplication is commutative and associative on Fe, and it follows that it is 
commutative and associative on F . The element (1, 1) is a two-sided identity for 
multiplication in Fe, and the class of (1, 1) is therefore a two-sided identity for 
multiplication in F . We denote this class by 1. 
If (a, b) is not in the class 0, then a 6 0, as we saw above. Then ab = 0,= 6

and we have (a, b)(b, a) = (ab, ab) ∼ (1, 1) = 1. Hence the class of (b, a) is 
a two-sided inverse of the class of (a, b) under multiplication. Consequently the 
nonzero elements of F form an abelian group under multiplication.
For one of the distributive laws, the computation 

(a, b)((c, d) + (e, f )) = (a, b)(c f + de, d f ) = (a(c f + de), bd f ) 

= (ac f + ade, bd f ) ∼ (acb f + bdae, b2d f ) 
= (ac, bd) + (ae, bf ) = (a, b)(c, d) + (a, b)(e, f ) 

shows that the classes of (a, b)((c, d) + (e, f )) and of (a, b)(c, d) + (a, b)(e, f )
are equal. The other distributive law follows from this one since F is commutative 
under multiplication. Therefore F is a field. 
The field F is called the field of fractions of the integral domain R. The 

function η : R → F defined by saying that η(r) is the class of (r, 1) is easily
checked to be a homomorphism of rings sending 1 to 1. It is one-one. Let us
call it the canonical embedding of R into F . The pair (F, η) has the universal 
mapping property stated in Proposition 8.6 and illustrated in Figure 8.5. 

ϕR −−−→ F 0 

η 


y

F 

eϕ 

ee

FIGURE 8.5. Universal mapping property of the field of fractions of R. 

Proposition 8.6. Let R be an integral domain, let F be its field of fractions, 
and let η be the canonical embedding of R into F . Whenever ϕ is a one-one ring 
homomorphism of R into a field F 0 carrying 1 to 1, then there exists a unique 
ring homomorphism ϕ : F → F 0 such that ϕ ϕη, and ϕ is one-one as a 
homomorphism of fields. 

= e

REMARK. We say that eϕ is the extension of ϕ from R to F . 
proposition has been proved, it is customary to drop η from the notation and 
regard R as a subring of its field of fractions. 

Once this 
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PROOF. If (a, b) with b 6 F , we define 8(a, b) = ϕ(a)ϕ(b)−1= 0 is a pair in e . 
This is well defined since b 6= 0 and since ϕ, being one-one, cannot have ϕ(b) = 0. 
Let us see that 8 is consistent with the equivalence relation, i.e., that (a, b) ∼ 
(a0 , b0) implies 8(a, b) = 8(a0 , b0). Since (a, b) ∼ (a0 , b0), we have ab0 = 
a0b and therefore also ϕ(a)ϕ(b0) = ϕ(a0)ϕ(b) and 8(a, b) = ϕ(a)ϕ(b)−1 = 

, b0), as required. 
ϕ of the class of (a, b) to be 8(a, b), and 

as a function from F to F 0 ϕ(η(r)) 

ϕη = ϕ. 
For uniqueness, let the class of (a, b) be given in F . 

e
e

e

ϕ(a0)ϕ(b0)−1 = 8(a0 

We can thus define is well defined ϕe
class of 1rϕ( ( )) ,e 

8(r, 1) = ϕ(r)ϕ(1)−1, and this equals ϕ(r) since ϕ is assumed to carry 1 into 1. 
If r is in R, then. = = 

Therefore
Since b is nonzero, 

. 
Since (ϕη)(a)e
this class is the same as the class of (a, 1)(b, 1)−1, which equals η(a)η(b)−1

ϕ(a) and (ϕη)(b) ϕ(b), we must have ϕ(class of (a, b)) 
= ϕ(a)ϕ(b)−1. Therefore ϕ uniquely determines

= = e = 
e

e
ϕ(η(a))ϕ(η(b))−1 ϕ. 

If K is a field, then R = K[X] is an integral domain, and Proposition 8.6 applies 
to this R. The field of fractions consists in effect of formal rational expressions 
P(X)Q(X)−1 in the indeterminate X , with the expected identifications made. 
We write K(X) for this field of fractions. More generally the field of fractions
of the integral domain K[X1, . . . , Xn] consists of formal rational expressions in 
the indeterminates X1, . . . , Xn , with the expected identifications made, and is 
denoted by K(X1, . . . , Xn). 

e

3. Prime and Maximal Ideals 

In this section, R will denote a commutative ring, not necessarily having an 

e

identity. We shall introduce the notions of “prime ideal” and “maximal ideal,”
and we shall investigate relationships between these two notions.
A proper ideal I in R is prime if ab ∈ I implies a ∈ I or b ∈ I . The ideal 

I = R is not prime, by convention.5 We give three examples of prime ideals; a
fourth example will be given in a proposition immediately afterward. 

EXAMPLES. 
(1) For Z, it was shown in an example just before Proposition 4.21 that each

ideal is of the form mZ for some integer m. We may assume that m ∏ 0. The 
prime ideals are 0 and all pZ with p prime. To see this latter fact, consider mZ 
with m ∏ 2. If m = ab nontrivially, then neither a nor b is in I , but ab is in I ;
hence I is not prime. Conversely if m is prime, and if ab is in I = mZ, then 

5This convention is now standard. Books written before about 1960 usually regarded I = R as 
a prime ideal. Correspondingly they usually treated the zero ring as an integral domain. 

§ 
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ab = mc for some integer c. Since m is prime, Lemma 1.6 shows that m divides 
a or m divides b. Hence a is in I or b is in I . Therefore I is prime. 
(2) If K is a field, then each ideal in R = K[X] is of the form A(X)K[X] with 

A(X) in K[X], and A(X)K[X] is prime if and only if A(X) is 0 or is a prime 
polynomial. In fact, each ideal is of the form A(X)K[X] by Proposition 5.8. If 
A(X) is not a constant polynomial, then the argument that A(X)K[X] is prime 
if and only if the polynomial A(X) is prime proceeds as in Example 1, using 
Lemma 1.16 in place of Lemma 1.6. 
(3) In R = Z[X], the structure of the ideals is complicated, and we shall not

attempt to list all ideals. Let us observe simply that the ideal I = XZ[X] is prime. 
In fact, if A(X)B(X) is in XZ[X], then A(X)B(X) = XC(X) for some C(X) in 
Z[X]. If the constant terms of A(X) and B(X) are a0 and b0, this equation says 
that a0b0 = 0. Therefore a0 = 0 or b0 = 0. In the first case, A(X) = X P(X)
for some P(X), and then A(X) is in I ; in the second case, B(X) = XQ(X) for 
some Q(X), and then B(X) is in I . We conclude that I is prime. 

Proposition 8.7. An ideal I in the commutative ring R is prime if and only if 
R/I is an integral domain. 

PROOF. If a proper ideal I fails to be prime, choose ab in I with a ∈/ I and 
b ∈/ I . Then a + I and b + I are nonzero in R/I and have product 0 + I . So 
R/I is nonzero and has a zero divisor; by definition, R/I fails to be an integral 
domain. 
Conversely if R/I (is nonzero and) has a zero divisor, choose a + I and b + I 

nonzero with product 0 + I . Then neither a nor b is in I but ab is in I . Since I 
is certainly proper, I is not prime. § 

A proper ideal I in the commutative ring R is said to be maximal if R has no 
proper ideal J with I $ J . If the commutative ring R has an identity, a simple 
way of testing whether an ideal I is proper is to check whether 1 is in I ; in fact, 
if 1 is in I , then I ⊇ RI ⊇ R1 = R implies I = R. Maximal ideals exist 
in abundance when R is nonzero and has an identity, as a consequence of the 
following result. 

Proposition 8.8. In a commutative ring R with identity, any proper ideal is 
contained in a maximal ideal. 

PROOF. This follows from Zorn’s Lemma (Section A5 of the appendix).
Specifically let I be the given proper ideal, and form the set S of all proper 
ideals that contain I . This set is nonempty, containing I as a member, and we 
order it by inclusion upward. If we have a chain in S, then the union of the
members of the chain is an ideal that contains all the ideals in the chain, and it is 
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proper since it does not contain 1. Therefore the union of the ideals in the chain is
an upper bound for the chain. By Zorn’s Lemma the set S has a maximal element,
and any such maximal element is a maximal ideal containing I . § 

Lemma 8.9. If R is a nonzero commutative ring with identity, then R is a field 
if and only if the only proper ideal in R is 0. 

PROOF. If R is a field and I is a nonzero ideal in R, let a 6= 0 be in I . Then 
1 = aa−1 is in I , and consequently I = R. Conversely if the only ideals in R 
are 0 and R, let a 6 = aR. Since 1 is in = 0 be given in R, and form the ideal I 
R, a is in I . Thus I 6= 0. Then I must be R. So there exists some b in R with 
1 = ba, and a is exhibited as having the inverse b. § 

Proposition 8.10. If R is a commutative ring with identity, then an ideal I is 
maximal if and only if R/I is a field. 

REMARK. One can readily give a direct proof, but it seems instructive to give
a proof reducing the result to Lemma 8.9. 

PROOF. We consider R and R/I as unital R modules, the ideals for each of R 
and R/I being the R submodules. The quotient ring homomorphism R → R/I is 
an R homomorphism. By the First Isomorphism Theorem for modules (Theorem
8.3), there is a one-one correspondence between the ideals in R containing I and 
the ideals in R/I . Then the result follows immediately from Lemma 8.9. § 

Corollary 8.11. If R is a commutative ring with identity, then every maximal 
ideal is prime. 

PROOF. If I is maximal, then R/I is a field by Proposition 8.10. Hence R/I 
is an integral domain, and I must be prime by Proposition 8.7. § 

In the converse direction nonzero prime ideals need not be maximal, as the
following example shows. However, Proposition 8.12 will show that nonzero 
prime ideals are necessarily maximal in certain important rings. 

EXAMPLE. In R = Z[X], we have seen that I = XZ[X] is a prime ideal. But 
I is not maximal since XZ[X] + 2Z[X] is a proper ideal that strictly contains I . 

Proposition 8.12. In R = Z or R = K[X] with K a field, every nonzero prime 
ideal is maximal. 

PROOF. Examples 1 and 2 at the beginning of this section show that every
nonzero prime ideal is of the form I = pR with p prime. If such an I is given 
and if J is any ideal strictly containing I , choose a in J with a not in I . Since a 
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is not in I = pR, it is not true that p divides a. So p and a are relatively prime, 
and there exist elements x and y in R with xp + ya = 1, by Proposition 1.2c or 
1.15d. Since p and a are in J , so is 1. Therefore J = R, and I is not strictly 
contained in any proper ideal. So I is maximal. § 

EXAMPLE. Algebraic number fields Q[θ]. These were introduced briefly in 
Chapter IV and again in Section 1 as the Q linear span of all powers 1, θ, θ2 , . . . . 
Here θ is a nonzero complex number, and we make the assumption that Q[θ] is a 
finite-dimensional vector space over Q. Proposition 4.1 showed that Q[θ] is then
indeed a field. Let us see how this conclusion relates to the results of the present
section. In fact, write a nontrivial linear dependence of 1, θ, θ2 , . . . over Q in 
the form c0 + c1θ + c2θ2 + · · · + cn−1θn−1 + θn = 0. Without loss of generality, 
suppose that this particular linear dependence has n as small as possible among 
all such relations. Then θ is a root of 

P(X) = c0 + c1 X + c2 X2 + · · · + cn−1 Xn−1 + Xn . 

Consider the substitution homomorphism E : Q[X] → C given by E(A(X)) = 
A(θ). This ring homomorphism carries Q[X] onto the ring Q[θ], and the kernel 
is some ideal I . Specifically I consists of all polynomials A(X) with A(θ) = 0,
and P(X) is one of these of lowest possible degree. Proposition 5.8 shows that I 
consists of all multiples of some polynomial, and that polynomial may be taken
to be P(X) by minimality of the integer n. Proposition 8.1 therefore shows 
that Q[θ] ∼ Q[X]/P(X)Q[X] as a ring. If P(X) were to have a nontrivial = 
factorization as P(X) = Q1(X)Q2(X), then P(θ) = 0 would imply Q1(θ) = 0 
or Q2(θ) = 0, and we would obtain a contradiction to the minimality of n. 
Therefore P(X) is prime. By Example 2 earlier in the section, I = P(X)Q[X]
is a nonzero prime ideal, and Proposition 8.12 shows that it is maximal. By
Proposition 8.10 the quotient ring Q[θ] = Q[X]/P(X)Q[X] is a field. These 
computations with Q[θ] underlie the first part of the theory of fields that we shall 
develop in Chapter IX. 

4. Unique Factorization 

We have seen that the positive members of Z and the nonzero members of K[X],
when K is a field, factor into the products of “primes” and that these factorizations
are unique up to order and up to adjusting each of the prime factors in K[X] by
a unit. In this section we shall investigate this idea of unique factorization more
generally. Zero divisors are problematic from the point of view of factorization,
and it will be convenient to exclude them. Therefore we work exclusively with
integral domains. 
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The first observation is that unique factorization is not a completely general
notion for integral domains. Let us consider an example in detail. 

EXAMPLE. R = Z[
p

−5 ]. This is the subring of C whose members are of 
the form a + b

p
−5 withpa and b integers. Since (a + b

p
−5 )(c + d

p
−5 ) = 

(ac − 5cd) + (ad + bc) −5, R is closed under multiplication and is indeed a 
subring. Define N (a + b

p
−5 ) = a2 + 5b2 = (a + b

p
−5 )(a + b

p
−5). This 

is a nonnegative-integer-valued function on R and is 0 only on the 0 element of 
R. Since complex conjugation is an automorphism of C, we check immediately 
that 

p p p p
N 

° 
(a + b −5 )(c + d −5 )

¢ 
= N (a + b −5 )N (c + d −5 ). 

The group of units of R, i.e., of elements with inverses under multiplication, is 
denoted by R× as usual. If r is in R×, then rr−1 = 1, and so N (r)N (r−1) = 
N (1) = 1. Consequently the units r of R all have N (r) = 1. Setting a2+5b2 = 1,
we see that the units are ±1. The product formula for N shows that if we start 
factoring a member of R, then factor its factors, and so on, and if we forbid
factorizations into two factors when one is a unit, then the process of factorization
has to stop at some point. So complete factorization makes sense. Now consider
the equality p p

6 = (1 + −5 )(1 − −5 ) = 2 · 3. 
p p

The factors here have N (1 + −5 ) = N (1 − −5 ) = 6, N (2) = 4, and 
N (3) = 9. Considering the possible values of a2 + 5b2, we see that N ( · ) doesp p
not take on either of the values 2 and 3 on R. Consequently 1 + −5, 1 − −5,
2, and 3 do not have nontrivial factorizations. On the other hand, considerationp
of the values of N ( · ) shows that 2 and 3 are not products of either of 1 ± −5 
with units. We conclude that the displayed factorizations of 6 show that unique
factorization has failed. 

Thus unique factorization is not universal for integral domains. It is time 
to be careful about terminology. With Z and K[X], we have referred to the
individual factors in a complete factorization as “primes.” Their defining property
in Chapter I was that they could not be factored further in nontrivial fashion.
Primes in these rings were shown to have the additional property that if a prime
divides a product then it divides one of the factors. It is customary to separate
these two properties for general integral domains. Let us say that a nonzero
element a divides b if b = ac for some c. In this case we say also that a is 
a factor of b. In an integral domain R, a nonzero element r that is not a unit 
is said to be irreducible if every factorization r = r1r2 in R has the property 
that either r1 or r2 is a unit. Nonzero nonunits that are not irreducible are said 
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to be reducible. A nonzero element p that is not a unit is said to be prime6 if 
the condition that p divides a product ab always implies that p divides a or p
divides b. 
Prime implies irreducible. In fact, if p is a prime that is reducible, let us write 

p = r1r2 with neither r1 nor r2 equal to a unit. Since p is prime, p divides r1 or 
r2, say r1. Then r1 = pc with c in R, and we obtain p = r1r2 = pcr2. Since 
R is an integral domain, 1 = cr2, and r2 is exhibited as a unit with inverse c, in 
contradiction to the assumption that r2 is not a unit. 
On the other hand, irreducible does not imply prime. In fact, we saw in p p p

Z[
p

−5 ] that 1 + −5 is irreducible. But 1 + −5 divides 2 · 3, and 1 + −5p
does not divide either of 2 or 3. Therefore 1 + −5 is not prime.
We shall see in a moment that the distinction between “irreducible”and “prime”

lies at the heart of the question of unique factorization. Let us make a definition
that helps identify our problem precisely. We say that an integral domain R is a 
unique factorization domain if R has the two properties 

(UFD1) every nonzero nonunit of R is a finite product of irreducible ele-
ments,

(UFD2) the factorization in (UFD1) is always unique up to order and to
multiplication of the factors by units. 

The problem that arises for us for a given R is to decide whether R is a unique 
factorization domain. The following proposition shows the relevance of the
distinction between “irreducible” and “prime.” 

Proposition 8.13. In an integral domain R in which (UFD1) holds, the 
condition (UFD2) is equivalent to the condition 

(UFD20) every irreducible element is prime. 

REMARKS. In fact, showing that irreducible implies prime was the main step
in Chapter I in proving unique factorization for positive integers and for K[X]
when K is a field. The mechanism for carrying out the proof that irreducible
implies prime for those settings will be abstracted in Theorems 8.15 and 8.17. 

PROOF. Suppose that (UFD2) holds, that p is an irreducible element, and 
that p divides ab. We are to show that p divides a or p divides b. We may 
assume that ab 6 0. Write ab = pc, and let a = 

Q
i pi , b = 

Q
j p0= j , and 

c = 
Q

k qk be factorizations via (UFD1) into products of irreducible elements. 

6This definition enlarges the definition of “prime” in Z to include the negatives of the usual prime
numbers. Unique factorization immediately extends to nonzero integers of either sign, but the prime
factors are now determined only up to factors of ±1. In cases where confusion about the sign of an
integer prime might arise, the text will henceforth refer to “primes of Z” or “integer primes” when
both signs are allowed, and to “positive primes” or “prime numbers” when the primes are understood
to be as in Chapter I. 
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Then 
Q

i, j pi p0 = p 
Q

k qk . By (UFD2) one of the factors on the left side is εp 
for some unit ε

j
. Then p either is of the form ε−1 pi and then p divides a, or is of 

the form ε−1 p0
j and then p divides b. Hence (UFD20) holds. 

Conversely suppose that (UFD20) holds. Let the nonzero nonunit r have two 
factorizations into irreducible elements as r = p1 p2 · · · pm = ε0q1q2 · · · qn with 
m ≤ n and with ε0 a unit. We prove the uniqueness by induction on m, the case 
m = 0 following vacuously since r is not a unit and the case m = 1 following 
from the definition of “irreducible.” Inductively from (UFD20) we know that pm 

divides qk for some k. Since qk is irreducible, qk = εpm for some unit ε. Thus we 
can cancel qk and obtain p1 p2 · · · pm−1 = ε0εq1q2 · · · qbk · · · qn , the hat indicating 
an omitted factor. By induction the factors on the two sides here are the same
except for order and units. Thus the same conclusion is valid when comparing the
two sides of the equality p1 p2 · · · pm = ε0q1q2 · · · qn . The induction is complete, 
and (UFD2) follows. § 

It will be convenient to simplify our notation for ideals. In any commutative
ring R with identity, if a is in R, we let (a) denote the ideal Ra generated by a. 
An ideal of this kind with a single generator is called a principal ideal. More 
generally, if a1, . . . , an are members of R, then (a1, . . . , an) denotes the ideal 
Ra1 + · · · + Ran generated by a1, . . . , an . For example, in Z[X], (2, X) denotes 
the ideal 2Z + XZ of all polynomials whose constant term is even. The following
condition explains a bit the mystery of what it means for an element to be prime. 

Proposition 8.14. A nonzero element p in an integral domain R is prime if 
and only if the ideal ( p) in R is prime. 

PROOF. Suppose that the element p is prime. Then the ideal ( p) is not R; in 
fact, otherwise 1 would have to be of the form 1 = rp for some r ∈ R, r would be 
a multiplicative inverse of p, and p would be a unit. Now suppose that a product 
ab is in the ideal ( p). Then ab = pr for some r in R, and p divides ab. Since p
is prime, p divides a or p divides b. Therefore the ideal ( p) is prime. 
Conversely suppose that ( p) is a prime ideal with p 6 0. Since ( p) = R, p= 6

is not a unit. If p divides the product ab, then ab = pc for some c in R. Hence 
ab is in (p). Since ( p) is assumed prime, either a is in ( p) or b is in ( p). In the 
first case, p divides a, and in the second case, p divides b. Thus the element p is 
prime. § 

An integral domain R is called a principal ideal domain if every ideal in R is 
principal. At the beginning of Section 3, we saw a reminder that Z is a principal 
ideal domain and that so is K[X] whenever K is a field. It turns out that unique
factorization for these cases is a consequence of this fact. 
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Theorem 8.15. Every principal ideal domain is a unique factorization domain. 

REMARKS. Let R be the given principal ideal domain. Proposition 8.13 shows
that it is enough to show that (UFD1) and (UFD20) hold in R. 

PROOF OF (UFD1). Let a1 be a nonzero nonunit of R. Then the ideal (a1)
in R is proper and nonzero, and Proposition 8.8 shows that it is contained in a
maximal ideal. Since R is a principal ideal domain, this maximal ideal is of the 
form (c1) for some c1, and c1 is a nonzero nonunit. Maximal ideals are prime
by Corollary 8.11, and Proposition 8.14 thus shows that c1 is a prime element, 
necessarily irreducible. Therefore the inclusion (a1) ⊆ (c1) shows that some 
irreducible element, namely c1, divides a1. 
Write a1 = c1a2, and repeat the above argument with a2. Iterating this 

construction, we obtain an = cnan+1 for each n with cn irreducible. Thus 
a1 = c1c2 · · · cnan+1 with c1, . . . , cn irreducible. Let us see that this process 
cannot continue indefinitely. Assuming the contrary, we are led to the strict 
inclusions 

(a1) $ (a2) $ (a3) $ · · · . 

Put I = 
S∞ 

n=1(an). Then I is an ideal. Since R is a principal ideal domain, 
I = (a) for some element a. This element a must be in (ak ) for some k, and then 
we have (ak ) = (ak+1) = · · · = (a). Since (ak ) = (ak+1), ck has to be a unit, 
contradiction. Thus ak has no nontrivial factorization, and a1 = c1 · · · ck−1ak is 
the desired factorization. This proves (UFD1). § 

PROOF OF (UFD20). If p is an irreducible element, we prove that the ideal ( p)
is maximal. Corollary 8.11 shows that ( p) is prime, and Proposition 8.14 shows 
that p is prime. Thus (UFD20) will follow. 
The element p, being irreducible, is not a unit. Thus ( p) is proper. Suppose 

that I is an ideal with I % (p). Since R is a principal ideal domain, I = (c)
for some c. Then p = rc for some r in R. Since I 6 ( p), r cannot be a unit. = 
Therefore the irreducibility of p implies that c is a unit. Then I = (c) = (1) = R,
and we conclude that ( p) is maximal. § 

Let us record what is essentially a corollary of the proof. 

Corollary 8.16. In a principal ideal domain, every nonzero prime ideal is 
maximal. 

PROOF. Let ( p) be a nonzero prime ideal. Proposition 8.14 shows that p
is prime, and prime elements are automatically irreducible. The argument for
(UFD20) in the proof of Theorem 8.15 then deduces in the context of a principal
ideal domain that ( p) is maximal. § 
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Principal ideal domains arise comparatively infrequently, and recognizing
them is not necessarily easy. The technique that was used with Z and K[X]
generalizes slightly, and we take up that generalization now. An integral domain
R is called a Euclidean domain if there exists a function δ : R → {integers ∏ 0}
such that whenever a and b are in R with b 6 0, there exist q and r in R with= 
a = bq + r and δ(r) < δ(b). The ring Z of integers is a Euclidean domain if we 
take δ(n) = |n|, and the ring K[X] for K a field is a Euclidean domain if we take 
δ(P(X)) to be 2deg P if P(X) 6= 0 and to be 0 if P(X) = 0. p
Another example of a Euclidean domain is the ring Z[

p
−1 ] = Z + Z −1 of 

Gaussian integers. It has δ(a +b
p

−1 ) = (a +b
p

−1 )(a −b
p

−1 ) = a2 +b2, 
a and b being integers. Let us abbreviate 

p
−1 as i . To see that δ has the required 

property, we first extend δ to Q[i], writing δ(x + yi) = (x + yi)(x − yi) = x2 + y2 

if x and y are rational. We use the fact that 

δ(zz0) = δ(z)δ(z0) for z and z0 in Q[i], 

which follows from the computation δ(zz0) = zz0 · zz0 = zzz0z0 = δ(z)δ(z0). 
For any real number u, let [u] be the greatest integer ≤ u. Every real u satisfiesØ
Ø[u + 2 ] − u

Ø
Ø ≤ 1 61 

2 . Given a + ib and c + di with c + di = 0, we write 

a + bi (a + bi)(c − di) ac + bd bc − ad 
= = + 

c + di c2 + d2 c2 + d2 c2 + d2 
i. 

Put p = 
h 
ac+bd + 1 

i 
, q = 

h 
bc−ad + 1 

i
, and r +si = (a +bi)−(c+di)( p+qi).c2+d2 2 c2+d2 2 

Then 

a + bi = (c + di)( p + qi) + (r + si), 

and 

≥ a + bi ¥
δ(r + si) = δ 

° 
(a + bi) − (c + di)( p + qi)

¢ 
= δ(c + di)δ

c + di 
− ( p + qi) . 

a+bi ° ac+bd − p
¢ 
+ 

° bc−ad The complex number x + yi = c+di − ( p + qi) = − q
¢
ic2+d2 c2+d2 

1 1has |x | ≤ 12 and |y| ≤ 2
1 , and therefore δ(x + yi) = x2 + y2 ≤ 4

1 + = 2 . Hence 
δ(r + si) < δ(c + di), as required.

4 

Some further examples of this kind appear in Problems 13 and 25–26 at the
end of the chapter. The matter is a little delicate. The ring Z[

p
−5 ] may seem 

superficially similar to Z[
p

−1 ]. But Z[
p

−5 ] does not have unique factorization,
and the following theorem, in combination with Theorem 8.15, assures us that 
Z[

p
−5 ] cannot be a Euclidean domain. 
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Theorem 8.17. Every Euclidean domain is a principal ideal domain. 

PROOF. Let I be an ideal in R. We are to show that I is principal. Without 
loss of generality, we may assume that I 6 0. Choose b = 0 in I with δ(b) as= 6
small as possible. Certainly I ⊇ (b). If a 6= 0 is in I , write a = bq + r with 
δ(r) < δ(b). Then r = a − bq is in I with δ(r) < δ(b). The minimality of b 
forces r = 0 and a = bq. Thus I ⊆ (b), and we conclude that I = (b). § 

5. Gauss’s Lemma 

In the previous section we saw that every principal ideal domain has unique
factorization. In the present section we shall establish that certain additional
integral domains have unique factorization, namely any integral domain R[X]
for which R is a unique factorization domain. A prototype is Z[X], which will
be seen to have unique factorization even though there exist nonprincipal ideals
like (2, X) in the ring. An important example for applications, particularly in
algebraic geometry, is K[X1, . . . , Xn], where K is a field; in this case our result
is to be applied inductively, making use of the isomorphism K[X1, . . . , Xn] ∼= 
K[X1, . . . , Xn−1][Xn] given in Corollary 4.31.
For the conclusion that R[X] has unique factorization if R does, the heart of

the proof is an application of a result known as Gauss’s Lemma, which we shall
prove in this section. Gauss’s Lemma has additional consequences for R[X]
beyond unique factorization, and we give them as well.
Before coming to Gauss’s Lemma, let us introduce some terminology and

prove one preliminary result. In any integral domain R, we call two nonzero 
elements a and b associates if a = bε for some ε in the group R× of units. The 
property of being associates is an equivalence relation because R× is a group. 
Still with the nonzero integral domain R, let us define a greatest common 

divisor of two nonzero elements a and b to be any element c of R such that c 
divides both a and b and such that any divisor of a and b divides c. Any associate 
of a greatest common divisor of a and b is another greatest common divisor of 
a and b. Conversely if a and b have a greatest common divisor, then any two
greatest common divisors are associates. In fact, if c and c0 are greatest common 
divisors, then each of them divides both a and b, and the definition forces each 
of them to divide the other. Thus c0 = cε and c = c0ε0, and then c0 = c0ε0ε and 
1 = ε0ε. Consequently ε is a unit, and c and c0 are associates. 
If R is a unique factorization domain, then any two nonzero elements a and b 

have a greatest common divisor. In fact, we decompose a and b into the product 
kiof a unit by powers of nonassociate irreducible elements as a = ε 

Qm andi=1 pi
b = ε0 Qn

j=1 pj
0 lj . For each p0

j such that p0
j is associate to some pi , we replace 

p0
j by pi in the factorization of b, adjusting ε0 as necessary, and then we reorder 
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the factors of a and b so that the common pi ’s are the ones for 1 ≤ i ≤ r . Then 
min(ki ,li )c = 

Qr is a greatest common divisor of a and b. We write GCD(a, b)i=1 pi
for a greatest common divisor of a and b; as we saw above, this is well defined 
up to a factor of a unit.7 

One should not read too much into the notation. In a principal ideal domain if 
a and b are nonzero, then, as we shall see momentarily, GCD(a, b) is defined by 
the condition on ideals that 

(GCD(a, b)) = (a, b). 

This condition implies that there exist elements x and y in R such that 

xa + yb = GCD(a, b). 

However, in the integral domain Z[X], in which GCD(2, X) = 1, there do not 
exist polynomials A(X) and B(X) with A(X)2 + B(X)X = 1. 
To prove that (GCD(a, b)) = (a, b) in a principal ideal domain, write (c)

for the principal ideal (a, b); c satisfies c = xa + yb for some x and y in R. 
Since a and b lie in (c), a = rc and b = r 0c. Hence c divides both a and b. 
In the reverse direction if d divides a and b, then ds = a and ds0 = b. Hence 
c = xa + yb = (xs + ys0)d, and d divides c. So c is indeed a greatest common 
divisor of a and b. 
In a unique factorization domain the definition of greatest common divisor

immediately extends to apply to n nonzero elements, rather than just two. We 
readily check up to a unit that 

GCD(a1, . . . , an) = GCD
°
GCD(a1, . . . , an−1), an

¢
. 

Moreover, we can allow any of a2, . . . , an to be 0, and there is no difficulty. In 
addition, we have 

GCD(da1, . . . , dan) = d GCD(a1, . . . , an) up to a unit 

if d and a1 are not 0. 
Let R be a unique factorization domain. If A(X) is a nonzero element of R[X],

we say that A(X) is primitive if the GCD of its coefficients is a unit. In this case 
no prime of R divides all the coefficients of A(X). 

7Greatest common divisors can exist for certain integral domains that fail to have unique factor-
ization, but we shall not have occasion to work with any such domains. 
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Theorem 8.18 (Gauss’s Lemma). If R is a unique factorization domain, then
the product of primitive polynomials is primitive. 
PROOF #1. Arguing by contradiction, let A(X) = am Xm + · · · + a0 and 

B(X) = bn Xn + · · · + b0 be primitive polynomials such that every coefficient of 
A(X)B(X) is divisible by some prime p. Since A(X) and B(X) are primitive, 
we may choose k and l as small as possible such that p does not divide ak and 
does not divide bl . The coefficient of Xk+l in A(X)B(X) is 

a0bk+l + a1bk+l−1 + · · · + akbl + · · · + ak+lb0 

and is divisible by p. Then all the individual terms, and their sum, are divisible 
by p except possibly for akbl , and we conclude that p divides akbl . Since p is 
prime and p divides akbl , p must divide ak or bl , contradiction. § 

PROOF #2. Arguing by contradiction, let A(X) and B(X) be primitive poly-
nomials such that every coefficient of A(X)B(X) is divisible by some prime 
p. Proposition 8.14 shows that the ideal ( p) is prime, and Proposition 8.7 
shows that R0 = R/( p) is an integral domain. Let ϕ : R → R0[X] be the 
composition of the quotient homomorphism R → R0 and the inclusion of R0 into 
constant polynomials in R0[X], and let 8 : R[X] → R0[X] be the corresponding
substitution homomorphism of Proposition 4.24 that carries X to X . Since A(X)
and B(X) are primitive, 8(A(X)) and 8(B(X)) are not zero. Their product 
8(A(X))8(B(X)) = 8(A(X)B(X)) is 0 since p divides every coefficient of 
A(X)B(X), and this conclusion contradicts the assertion of Proposition 4.29 that 
R0[X] is an integral domain. § 

Let F be the field of fractions of the unique factorization domain R. The 
consequences of Theorem 8.18 exploit a simple relationship between R[X] and 
F[X], which we state below as Proposition 8.19. Once that proposition is in hand,
we can state the consequences of Theorem 8.18. If A(X) is a nonzero polynomial 
in R[X], let c(A) to be the greatest common divisor of the coefficients, i.e., 

c(A) = GCD(an, . . . , a1, a0) if A(X) = an Xn + · · · + a1 X + a0. 

The element c(A) is well defined up to a factor of a unit. In this notation the
definition of “primitive” becomes, A(X) is primitive if and only if c(A) is a unit. 
We shall make computations with c(A) as if it were a member of R, in order to
keep the notation simple. To be completely rigorous, one should regard c(A) as 
an orbit of the group R× of units in R, using equality to refer to equality of orbits. 
If A(X) is not necessarily primitive, then at least c(A) divides each coefficient 

of A(X), and hence c(A)−1 A(X) is in R[X], say with coefficients bn, . . . , b1, b0. 
Then we have 

c(A) = GCD(an, . . . , a1, a0) = GCD(c(A)bn, . . . , c(A)b1, c(A)b0) 
= c(A)GCD(bn, . . . , b1, b0) = c(A)c 

° 
c(A)−1 A(X)

¢ 
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up to a unit factor, and hence c 
° 
c(A)−1 A(X)

¢ 
is a unit. We conclude that 

A(X) ∈ R[X] implies that c(A)−1 A(X) is primitive. 

Proposition 8.19. Let R be a unique factorization domain, and let F be its 
field of fractions. If A(X) is any nonzero polynomial in F[X], then there exist α 
in F and A0(X) in R[X] such that A(X) = α A0(X) with A0(X) primitive. The 
scalar α and the polynomial A0(X) are unique up to multiplication by units in R. 

REMARK. We call A0(X) the associated primitive polynomial to A(X). 
According to the proposition, it is unique up to a unit factor in R. 

PROOF. Let A(X) = cn Xn + · · · + c1 X + c0 with each ck in F . We can write 
each ck as akb−1 with ak and bk in R and bk 6= 0. We clear fractions. That is, k
we let β = 

Qn Then the kth coefficient of β A(X) is ak 
Q

l=k bl and is in k=0 bk . 6
R. Hence β A(X) is in R[X]. The observation just before the proposition shows 
that c(β A)−1β A is primitive. Thus A(X) = α A0(X) with α = β−1c(β A) and 
A0(X) = c(β A)−1β A(X), A0(X) being primitive. This proves existence. 
If α1 A1(X) = α2 A2(X) with α1 and α2 in F and with A1(X) and A2(X)

primitive, choose r 6= 0 in R such that rα1 and rα2 are in R. Up to unit factors in 
R, we then have rα1 = rα1c(A1) = c(rα1 A1) = c(rα2 A2) = rα2c(A2) = rα2. 
Hence, up to a unit factor in R, we have α1 = α2. This proves uniqueness. § 

Corollary 8.20. Let R be a unique factorization domain, and let F be its field 
of fractions. 
(a) Let A(X) and B(X) be nonzero polynomials in R[X], and suppose that 

B(X) is primitive. If B(X) divides A(X) in F[X], then it divides A(X) in R[X].
(b) If A(X) is an irreducible polynomial in R[X] of degree > 0, then A(X) is 

irreducible in F[X].
(c) If A(X) is a monic polynomial in R[X] and if B(X) is a monic factor of 

A(X) within F[X], then B(X) is in R[X].
(d) If A(X), B(X), and C(X) are in R[X] with A(X) primitive and with 

A(X) = B(X)C(X), then B(X) and C(X) are primitive. 

PROOF. In (a), write A(X) = B(X)Q(X) in F(X), and let Q(X) = ρ Q0(X) be 
a decomposition of Q(X) as in Proposition 8.19. Since c(A)−1 A(X) is primitive, 
the corresponding decomposition of A(X) is A(X) = c(A) 

° 
c(A)−1 A(X)

¢
. The 

equality A(X) = ρ B(X)Q0(X) then reads c(A)(c(A)−1 A(X)) = ρ B(X)Q0(X). 
Since B(X)Q0(X) is primitive according to Theorem 8.18, the uniqueness in
Proposition 8.19 shows that c(A)−1 A(X) = B(X)Q0(X) except possibly for a 
unit factor in R. Then B(X) divides A(X) with quotient c(A)Q0(X), apart from 
a unit factor in R. Since c(A)Q0(X) is in R[X], (a) is proved. 
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In (b), the condition that deg A(X) > 0 implies that A(X) is not a unit in 
F[X]. Arguing by contradiction, suppose that A(X) = B(X)Q(X) in F[X] with 
neither of B(X) and Q(X) of degree 0. Let B(X) = β B0(X) be a decomposition 
of B(X) as in Proposition 8.19. Then we have A(X) = B0(X)(β Q(X)), and (a) 
shows that β Q(X) is in R[X], in contradiction to the assumed irreducibility of 
A(X) in R[X].
In (c), write A(X) = B(X)Q(X), and let B(X) = β B0(X) be a decomposition 

of B(X) as in Proposition 8.19. Then we have A(X) = B0(X)(β Q(X)) with 
β Q(X) in F[X]. Conclusion (a) shows that β Q(X) is in R[X]. If b ∈ R is the 
leading coefficient of B0(X) and if q ∈ R is the leading coefficient of β Q(X), then 
we have 1 = bq, and consequently b and q are units in R. Since B(X) = β B0(X)
and B(X) is monic, 1 = βb, and therefore β = b−1 is a unit in R. Hence B(X)
is in R[X].
In (d), we argue along the same lines as in (a). We may take B(X) = 

c(B)(c(B)−1 B(X)) and C(X) = c(C)(c(C)−1C(X)) as decompositions of 
B(X) and C(X) according to Proposition 8.19. Then we have A(X) = 
(c(B)c(C))

£
c(B)−1 B(X)c(C)−1C(X)

§
. Theorem 8.18 says that the factor in

brackets is primitive, and the uniqueness in Proposition 8.19 shows that 1 = 
c(B)c(C), up to unit factors. Therefore c(B) and c(C) are units in R, and B(X)
and C(X) are primitive. § 

Corollary 8.21. If R is a unique factorization domain, then the ring R[X] is 
a unique factorization domain. 
REMARK. As was mentioned at the beginning of the section, Z[X] and 

K[X1, . . . , Xn], when K is a field, are unique factorization domains as a con-
sequence of this result. 
PROOF. We begin with the proof of (UFD1). Suppose that A(X) is a nonzero 

member of R[X]. We may take its decomposition according to Proposition 8.19 
to be A(X) = c(A)(c(A)−1 A(X)). Consider divisors of c(A)−1 A(X) in R[X].
These are all primitive, according to (d). Hence those of degree 0 are units 
in R. Thus any nontrivial factorization of c(A)−1 A(X) is into two factors of 
strictly lower degree, both primitive. In a finite number of steps, this process of
factorization with primitive factors has to stop. We can then factor c(A) within R. 
Combining the factorizations of c(A) and c(A)−1 A(X), we obtain a factorization 
of A(X). 
For (UFD20), let P(X) be irreducible in R[X]. Since the factorization P(X) = 

c(P)(c(P)−1 P(X)) has to be trivial, either c(P) is a unit, in which case P(X) is 
primitive, or c(P)−1 P(X) is a unit, in which case P(X) has degree 0. In either 
case, suppose that P(X) divides a product A(X)B(X). 
In the first case, P(X) is primitive. Since F[X] is a principal ideal domain, 

hence a unique factorization domain, either P(X) divides A(X) in F[X] or P(X) 
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divides B(X) in F[X]. By symmetry we may assume that P(X) divides A(X)
in F[X]. Then (a) shows that P(X) divides A(X) in R[X].
In the second case, P(X) = P has degree 0 and is prime in R. Put R0 = R(P)

as in Proof #2 of Theorem 8.18. Then A(X)B(X) maps to zero in the integral 
domain R0[X], and hence A(X) or B(X) is in P R[X]. § 

The final application, Eisenstein’s irreducibility criterion, is proved somewhat
in the style of Gauss’s Lemma (Theorem 8.18). We shall give only the analog of
Proof #1 of Gauss’s Lemma, leaving the analog of Proof #2 to Problem 21 at the
end of the chapter. 

Corollary 8.22 (Eisenstein’s irreducibility criterion). Let R be a unique fac-
torization domain, let F be its field of fractions, and let p be a prime in R. If 
A(X) = aN X N + · · · + a1 X + a0 is a polynomial of degree ∏ 1 in R[X] such 
that p divides aN−1, . . . , a0 but not aN and such that p2 does not divide a0, then 
A(X) is irreducible in F[X]. 

REMARK. The polynomial A(X) will be irreducible in R[X] also unless all its 
coefficients are divisible by some nonunit of R. 

PROOF. Without loss of generality, we may replace A(X) by c(A)−1 A(X)
and thereby assume that A(X) is primitive; this adjustment makes use of the 
hypothesis that p does not divide aN . Corollary 8.20b shows that it is enough to 
prove irreducibility in R[X]. Assuming the contrary, suppose that A(X) factors 
in R[X] as A(X) = B(X)C(X) with B(X) = bm Xm + · · · + b1 X + b0, C(X) = 
cn Xn + · · ·+ c1 X + c0, and neither of B(X) and C(X) equal to a unit. Corollary 
8.20d shows that B(X) and C(X) are primitive. In particular, B(X) and C(X)
have to be nonconstant polynomials. Define ak = 0 for k > N , bk = 0 for k > m,
and ck = 0 for k > n. Since p divides a0 = b0c0 and p is prime, p divides either 
b0 or c0. Without loss of generality, suppose that p divides b0. Since p2 does not 
divide a0, p does not divide c0. 
We show, by induction on k, that p divides bk for every k < N . The case 

k = 0 is the base case of the induction. If p divides bj for j < k, then we have 

ak = b0ck + b1ck−1 + · · · + bk−1c1 + bkc0. 

Since k < N , the left side is divisible by p. The inductive hypothesis shows 
that p divides every term on the right side except possibly the last. Consequently 
p divides bkc0. Since p does not divide c0, p divides bk . This completes the 
induction. 
Since C(X) is nonconstant, the degree of B(X) is < N , and therefore we have 

shown that every coefficient of B(X) is divisible by p. Then c(B) is divisible by 
p, in contradiction to the fact that B(X) is primitive. § 
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EXAMPLES. 
(1) Cyclotomic polynomials in Q[X]. Let us see for each prime number p that 

the polynomial 8(X) = X p−1 + X p−2 + · · · + X + 1 is irreducible in Q[X].
We have X p − 1 = (X − 1)8(X). Replacing X − 1 by Y gives (Y + 1)p − 1 = 
Y 8(Y + 1). The left side, by the Binomial Theorem, is 

Pp ° p¢Y k . Hencek=1 k 
8(Y + 1) = 

P
k
p
=1 

° p¢Y k−1. The binomial coefficient 
° p¢ 

is divisible by pk k
for 1 ≤ k ≤ p − 1 since p is prime, and therefore the polynomial 9(Y ) = 
8(Y + 1) satisfies the condition of Corollary 8.22 for the ring Z. Hence 9(Y ) is 
irreducible over Q[Y ]. A nontrivial factorization of 8(X) would yield a nontrivial 
factorization of 9(Y ), and hence 8(X) is irreducible over Q[X]. 
(2) Certain polynomials in K[X, Y ] when K is a field. Since K[X, Y ] ∼= 

K[X][Y ], it follows that K[X, Y ] is a unique factorization domain, and any mem-
ber of K[X, Y ] can be written as A(X, Y ) = an(X)Y n + · · · + a1(X)Y + a0(X). 
The polynomial X is prime in K[X, Y ], and Corollary 8.22 therefore says that 
A(X, Y ) is irreducible in K(X)[Y ] if X does not divide an(X) in K[X], X divides 
an−1(X), . . . , a0(X) in K[X], and X2 does not divide a0(X) in K[X]. The remark 
with the corollary points out that A(X, Y ) is irreducible in K[X, Y ] if also there 
is no nonconstant polynomial in K[X] that divides every ak (X). For example, 
Y 5 + XY 2 + XY + X is irreducible in K[X, Y ]. 

6. Finitely Generated Modules 

The Fundamental Theorem of Finitely Generated Abelian Groups (Theorem 4.56)
says that every finitely generated abelian group is a direct sum of cyclic groups.
If we think of abelian groups as Z modules, we can ask whether this theorem 
has some analog in the context of R modules. The answer is yes—the theorem 
readily extends to the case that Z is replaced by an arbitrary principal ideal domain.
The surprising addendum to the answer is that we have already treated a second
special case of the generalized theorem. That case arises when the principal ideal
domain is K[X] for some field K. If V is a finite-dimensional vector space over 
K and L : V → V is a K linear map, then V becomes a K[X] module under 
the definition Xv = L(v). This module is finitely generated even without the 
X present because V is finite-dimensional, and the generalized theorem that we
prove in this section recovers the analysis of L that we carried out in Chapter V. 
When K is algebraically closed, we obtain the Jordan canonical form; for general 
K, we obtain a different canonical form involving cyclic subspaces that was
worked out in Problems 32–40 at the end of Chapter V.
The definitions for the generalization of Theorem 4.56 are as follows. Let 

R be a principal ideal domain. A subset S of an R module M is called a set 
of generators of M if M is the smallest R submodule of M containing all the 
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members of S. If {ms | s ∈ S} is a subset of M , then the set of all finite 
sums 

P
s∈S rsms is an R submodule, but it need not contain the elements ms and 

therefore need not be the R submodule generated by all the ms . However, if M 
is unital, then taking rs0 = 1 and all other rs equal to 0 exhibits ms0 as in the R 
submodule of all finite sums 

P
s∈S rsms . For this reason we shall insist that all 

the R submodules in this section be unital. 
We say that the R module M is finitely generated if it has a finite set of 

generators. The main theorem gives the structure of unital finitely generated R 
modules when R is a principal ideal domain. We need to take a small preliminary
step that eliminates technical complications from the discussion, the same step
that was carried out in Lemma 4.51 and Proposition 4.52 in the case of Z modules,
i.e., abelian groups. 

Lemma 8.23. Let R be a commutative ring with identity, and let ϕ : M → N 
be a homomorphism of unital R modules. If ker ϕ and image ϕ are finitely 
generated, then M is finitely generated. 

PROOF. Let {x1, . . . , xm } and {y1, . . . , yn} be respective finite sets of generators 
for ker ϕ and image ϕ. For 1 ≤ j ≤ n, choose xj0 in M with ϕ(xj

0) = yj . We shall 
prove that {x1, . . . , xm , x1

0 , . . . , xn0 } is a set of generators for M . Thus let x be in M . 
Since ϕ(x) is in image ϕ, there exist r1, . . . , rn in R with ϕ(x) = r1 y1 +· · ·+rn yn . 
The element x 0 = r1x1

0 +· · ·+ rnxn 
0 of M has ϕ(x 0) = r1 y1 +· · ·+ rn yn = ϕ(x). 

Therefore ϕ(x − x 0) = 0, and there exist s1, . . . , sm in R such that x − x 0 = 
s1x1 + · · · + smxm . Consequently 

x = s1x1 + · · · + smxm + x 0 = s1x1 + · · · + smxm + r1x1
0 + · · · + rnxn

0 . § 

Proposition 8.24. If R is a principal ideal domain, then any R submodule 
of a finitely generated unital R module is finitely generated. Moreover, any R 
submodule of a singly generated unital R module is singly generated. 

REMARK. The proof will show that if M can be generated by n elements, then 
so can the unital R submodule. 

PROOF. Let M be unital and finitely generated with a set {m1, . . . , mn} of n 
generators, and define Mk = Rm1 + · · · + Rmk for 1 ≤ k ≤ n. Then Mn = M 
since M is unital. We shall prove by induction on k that every R submodule of 
Mk is finitely generated. The case k = n then gives the proposition. For k = 1,
suppose that S is an R submodule of M1 = Rm1. Since S is an R submodule 
and every member of S lies in Rm1, the subset I of all r in R with rm1 in S is 
an ideal with Im1 = S. Since every ideal in R is singly generated, we can write 
I = (r0). Then S = Im1 = Rr0m1, and the single element r0m1 generates S. 
Assume inductively that every R submodule of Mk is known to be finitely 

generated, and let Nk+1 be an R submodule of Mk+1. Let q : Mk+1 → Mk+1/Mk 
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be the quotient R homomorphism, and let ϕ be the restriction q
Ø
Ø
Nk+1

, mapping 
Nk+1 into Mk+1/Mk . Then ker ϕ = Nk+1 ∩ Mk is an R submodule of Mk and is 
finitely generated by the inductive hypothesis. Also, image ϕ is an R submodule 
of Mk+1/Mk , which is singly generated with generator equal to the coset of 
mk+1. Since an R submodule of a singly generated unital R module was shown 
in the previous paragraph to be singly generated, image ϕ is finitely generated. 
Applying Lemma 8.23 to ϕ, we see that Nk+1 is finitely generated. This completes 
the induction and the proof. § 

According to the definition in Example 9 of modules in Section 1, a free R 
module is a direct sum, finite or infinite, of copies of the R module R. A free R 
module is said to have finite rank if some direct sum is a finite direct sum. A 
unital R module M is said to be cyclic if it is singly generated, i.e., if M = Rm0 

for some m0 in M . In this case, we have an R isomorphism M ∼ R/I , where I= 
is the ideal {r ∈ R | rm0 = 0}. 
Before coming to the statement of the theorem and the proof, let us discuss

the heart of the matter, which is related to row reduction of matrices. We regard
the space M1n(R) of all 1-row matrices with n entries in R as a free R module. 
Suppose that R is a principal ideal domain, and suppose that we have a particular 
2-by-n matrix with entries in R and with the property that the two rows have 
nonzero elements a and b, respectively, in the first column. We can regard 
the set of R linear combinations of the two rows of our particular matrix as 
an R submodule of the free R module M1n(R). Let c = GCD(a, b). This 
member of R is defined only up to multiplication by a unit, but we make a
definite choice of it. The idea is that we can do a kind of invertible row-reduction 
step that simultaneously replaces the two rows of our 2-by-n matrix by a first row 
whose first entry is c and a second row whose first entry is 0; in the process the 
corresponding R submodule of M1n(R) will be unchanged. In fact, we saw in the 
previous section that the hypothesis on R implies that there exist members x and 
y of R with xa + yb = c. Since c divides a and b, we can rewrite this equality as 

x y° 
x(ac−1) + y(bc−1) = 1. Then the 2-by-2 matrix M = 

¢ 
with entries −bc−1 ac−1 

in R has the property that 
µ 

x y 
∂µ 

a ∗ 
∂ µ 

c 
∂

∗ 
= .

−bc−1 ac−1 b ∗ 0 ∗ 

This equation shows explicitly that the rows of 
° c ∗ ¢ 

lie in the R linear span of the 0 ∗ 
rows of 

° a ∗ ¢. The key fact about M is that its determinant x(ac−1) + y(bc−1)b ∗ 
is 1 and that M is therefore invertible with entries in R: the inverse is just 
M−1 = 

≥ 
ac−1 −y 

¥ 
. This invertibility shows that the rows of 

° a ∗ ¢ 
lie in the R

bc−1 x b ∗ 

linear span of 
° c ∗ ¢. Consequently the R linear span of the rows of our given 0 ∗ 

2-by-n matrix is preserved under left multiplication by M . 
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In effect we can do the same kind of row reduction of matrices over R as we 
did with matrices over Z in the proof of Theorem 4.56. The only difference is
that this time we do not see constructively how to find the x and y that relate a,
b, and c. Thus we would lack some information if we actually wanted to follow
through and calculate a particular example. We were able to make calculations
to imitate the proof of Theorem 4.56 because we were able to use the Euclidean
algorithm to arrive at what x and y are. In the present context we would be able 
to make explicit calculations if R were a Euclidean domain. 

Theorem 8.25 (Fundamental Theorem of Finitely Generated Modules). If R 
is a principal ideal domain, then 

(a) the number of R summands in a free R module of finite rank is independent 
of the direct-sum decomposition,

(b) any R submodule of a free R module of finite rank n is a free R module 
of rank ≤ n,

(c) any finitely generated unital R module is the finite direct sum of cyclic 
modules. 

REMARK. Because of (a), it is meaningful to speak of the rank of a free 
R module of finite rank; it is the number of R summands. By convention 
the 0 module is a free R module of rank 0. Then the statement of (b) makes 
sense. Statement (c) will be amplified in Corollary 8.29 below. Some people
use the name “Fundamental Theorem of Finitely Generated Modules” to refer to
Corollary 8.29 rather than to Theorem 8.25. 

PROOF. Let F be a free R module of the form Rx1 ⊕ · · · ⊕ Rxn , and 
suppose that y1, . . . , ym are elements of F such that no nontrivial combination 
r1 y1 + · · · + rm ym is 0. We argue as in the proof of Proposition 2.2. Define an 
m-by-n matrix C with entries in R by yi = 

Pn
j=1 Ci j xj for 1 ≤ i ≤ m. If Q is 

the field of fractions of R, then we can regard C as a matrix with entries in Q. As 
such, the matrix has rank ≤ n. If m > n, then the rows are linearly dependent, 
and we can find members q1, . . . , qm of Q, not all 0, such that 

Pm 
=1 qiCi j = 0i

for 1 ≤ j ≤ n. Clearing fractions, we obtain members r1, . . . , rm of R, not all 0, 
such that 

Pm
i=1 riCi j = 0 for 1 ≤ j ≤ n. Then 

m m n n n≥ ¥ ≥ m ¥P 
ri yi = 

P 
ri 

P 
Ci j xj = 

P P 
riCi j xj = 

P 
0xj = 0, 

i=1 i=1 j=1 j=1 i=1 j=1 

in contradiction to the assumed independence property of y1, . . . , ym . Therefore 
we must have m ≤ n. 
If we apply this conclusion to a set x1, . . . , xn that exhibits F as free and to 

another set, possibly infinite, that does the same thing, we find that the second 



403 6. Finitely Generated Modules 

set has ≤ n members. Reversing the roles of the two sets, we find that they both 
have n members. This proves (a).
For (b) and (c), we shall reduce the result to a lemma saying that a certain kind

of result can be achieved by row and column reduction of matrices with entries in
R. Let F be a free R module of rank n, defined by a subset x1, . . . , xn of F , and let 
M be an R submodule of F . Proposition 8.24 shows that M is finitely generated. 
We let y1, . . . , ym be generators, not necessarily with any independence property. 
Define an m-by-n matrix C with entries in R by yi = 

Pn
j=1 Ci j xj . We can recover 

F as the set of R linear combinations of x1, . . . , xn , and we can recover M as the 
set of R linear combinations of y1, . . . , ym . 
If B is an n-by-n matrix with entries in R and with determinant in the group 

R× of units, then Corollary 5.5 shows that B−1 exists and has entries in R. If 
we define xi0 = 

Pn
j=1 Bi j xj , then any R linear combination of x10 , . . . , xn 

0 is an 
R linear combination of x1, . . . , xn . Also, the computation 

Pn 
=1(B−1)ki xi

0 =iP
i, j (B−1)ki Bi j xj = 

P
j δk j xj = xk shows that any R linear combination of 

x1, . . . , xn is an R linear combination of x10 , . . . , xn0 . Thus we can recover the 
same F and M if we replace C by CB. Arguing in the same way with y1, . . . , ym 

and y1
0 , . . . , y0 , we see that we can recover the same F and M if we replace CB m

by AC B, where A is an m-by-m matrix with entries in R and with determinant 
in R×. 
Lemma 8.26 below will say that we can find A and B such that the nonzero 

entries of D = AC B are exactly the diagonal ones Dkk for 1 ≤ k ≤ l, where l is 
a certain integer with 0 ≤ l ≤ min(m, n). 
That is, the resulting equations restricting y1

0 , . . . , y0 in terms of x10 , . . . , x 0 
m n

will be of the form 

y0 
Ω Dkk xk

0 for 1 ≤ k ≤ l, 
= (∗)k 0 for l + 1 ≤ k ≤ m. 

Now let us turn to (b) and (c). For (b), the claim is that the elements yk0 with 
1 ≤ k ≤ l exhibit M as a free R module. We know that y10 , . . . , y0 generate Mm
and hence that y10 , . . . , yl0 generate M . For the independence, suppose we can find 
members r1, . . . , rl not all 0 in R such that 

Pl
k=1 rk yk

0 = 0. Then substitution 
gives 

Pl
k=1 rk Dkk x 0 = 0, and the independence of x10 , . . . , xl0 forces rk Dkk = 0k

for 1 ≤ k ≤ l. Since R is an integral domain, rk = 0 for such k. Thus indeed the 
elements yk0 with 1 ≤ k ≤ l exhibit M as a free R module. Since l ≤ min(m, n),
the rank of M is at most the rank of F . 
For (c), let S be a finitely generated unital R module, say with n generators.

By the universal mapping property of free R modules (Example 9 in Section 1), 
there exists a free R module F of rank n with S as quotient. Let x1, . . . , xn be 
generators of F that exhibit F as free, and let M be the kernel of the quotient R 
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homomorphism M → S, so that S ∼= F/M . Then (b) shows that M is a free 
R module of rank m ≤ n. Let y1, . . . , ym be generators of M that exhibit M 
as free, and define an m-by-n matrix C with entries in R by yi = 

Pn
j=1 Ci j xj

for 1 ≤ i ≤ m. The result is that we are reduced to the situation we have just
considered, and we can obtain equations of the form (∗) relating their respective 
generators, namely y1

0 , . . . , y0 for M and x1
0 , . . . , x 0 for F .m n

For 1 ≤ k ≤ n, define Fk = Rxk
0 and 

Ω Ry0 = R Dkk x 0 for 1 ≤ k ≤ l,
Mk = k k 

0 for l + 1 ≤ k ≤ n, 

so that M ∼ M1 ⊕ · · ·⊕ Mn . Then Fk/Mk is R isomorphic to the cyclic R module 
R/(Dkk ) if 1 ≤ k ≤ l, while Fk /Mk = Fk is isomorphic to the cyclic R module 
R if l + 1 ≤ k ≤ n. Applying Proposition 8.5, we obtain 

= 

F/M ∼ · · = (F1/M1) ⊕ · · ⊕ (Fn/Mn). = (F1 ⊕ · · ⊕ Fn)/(M1 ⊕ · · ⊕ Mn) ∼ · 

Thus F/M is exhibited as a direct sum of cyclic R modules. § 

To complete the proof of Theorem 8.25, we are left with proving the following
lemma, which is where row and column reduction take place. 

Lemma 8.26. Let R be a principal ideal domain. If C is an m-by-n matrix 
with entries in R, then there exist an m-by-m matrix A with entries in R and 
with determinant in R× and an n-by-n matrix B with entries in R and with 
determinant in R× such that for some l with 0 ≤ l ≤ min(m, n), the nonzero 
entries of D = AC B are exactly the diagonal entries D11, D22, . . . , Dll . 

PROOF. The matrices A and B will be constructed as products of matrices of 
determinant ±1, and then det A and det B equal ±1 by Proposition 5.1a. The 
matrix A will correspond to row operations on C , and B will correspond to
column operations. Each factor will be the identity except in some 2-by-2 block.
Among the row and column operations of interest are the interchange of two 

rows or two columns, in which the 2-by-2 block is 
≥ 
0 1 

¥
. Another row operation 1 0 

of interest replaces two rows having respective j th entries a and b by R linear 
combinations of them in which a and b are replaced by c = GCD(a, b) and 0. 

x yIf x(ac−1) + y(bc−1) = 1, then the 2-by-2 block is 
° ¢

. A similar −bc−1 ac−1 

operation is possible with columns.
The reduction involves an induction that successively constructs the entries 

D11, D22, . . . , Dll , stopping when the part of C involving rows and columns 
numbered ∏ l + 1 has been replaced by 0. We start by interchanging rows and
columns to move a nonzero entry into position (1, 1). By a succession of row 
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operations as in the previous paragraph, we can reduce the entry in position (1, 1)
to the greatest common divisor of the entries of C in the first column, while
reducing the remaining entries of the first column to 0. Next we do the same
thing with column operations, reducing the entry in position (1, 1) to the greatest
common divisor of the members of the first row, while reducing the remaining
entries of the first row to 0. Then we go back and repeat the process with row
operations and with column operations as many times as necessary until all the
entries of the first row and column other than the one in position (1, 1) are 0. We 
need to check that this process indeed terminates at some point. If the entries that
appear in position (1, 1) as the iterations proceed are c1, c2, c3, . . . , then we have 
(c1) ⊆ (c2) ⊆ (c3) ⊆ · · · . The union of these ideals is an ideal, necessarily a 
principal ideal of the form (c), and c occurs in one of the ideals in the union; the
chain of ideals must be constant after that stage. Once the corner entry becomes

x yconstant, the matrices 
° ¢ 

for the row operations can be chosen to be −bc−1 ac−1 

1 0of the form 
≥ ¥

, and the result is that the row operations do not change 
−ba−1 1 

the entries of the first row. Similar remarks apply to the matrices for the column
operations. The upshot is that we can reduce C in this way so that all entries of
the first row and column are 0 except the one in position (1, 1). This handles 
the inductive step, and we can proceed until at some l th stage we have only the 0 
matrix to process. § 

This completes the proof of Theorem 8.25. In Theorem 4.56, in which we
considered the special case of abelian groups, we obtained a better conclusion
than in Theorem 8.25c: we showed that the direct sum of cyclic groups could
be written as the direct sum of copies of Z and of cyclic groups of prime-power
order, and that in this case the decomposition was unique up to the order of the
summands. We shall now obtain a corresponding better conclusion in the setting
of Theorem 8.25. 
The existence of the decomposition into cyclic modules of a special kind uses a

very general form of the Chinese Remainder Theorem, whose classical statement
appears as Corollary 1.9. The generalization below makes use of the following
operations of addition and multiplication of ideals in a commutative ring with
identity: if I and J are ideals, then I + J denotes the set of sums x + y with 
x ∈ I and y ∈ J , and I J denotes the set of all finite sums of products xy with 
x ∈ I and y ∈ J ; the sets I + J and I J are ideals. 

Theorem 8.27 (Chinese Remainder Theorem). Let R be a commutative ring 
with identity, and let I1, . . . , In be ideals in R such that Ii + Ij = R whenever 
i 6 j .= 

(a) If elements x1, . . . , xn of R are given, then there exists x in R such that 
x ≡ xj mod Ij , i.e., x − xj is in Ij , for all j . The element x is unique if 
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I1 ∩ · · · ∩ In = 0. 
(b) The map ϕ : R → 

Qn 
=1 R/Ij given by ϕ(r) = (. . . , r + Ij , . . . ) is an onto j

ring homomorphism, its kernel is 
Tn

j=1 Ij , and the homomorphism descends to a 
ring isomorphism 

n
Ij ∼ R/I1 × ·R

± T 
= · · × R/In. 

j=1 

(c) The intersection 
Tn

j=1 Ij and the product I1 · · · In coincide. 
PROOF. For existence in (a) when n = 1, we take x = x1. For existence 

when n = 2, the assumption I1 + I2 = R implies that there exist a1 ∈ I1 and 
a2 ∈ I2 with a1 + a2 = 1. Given x1 and x2, we put x = x1a2 + x2a1, and then 
x ≡ x1a2 ≡ x1 mod I1 and x ≡ x2a1 ≡ x2 mod I2. 
For general n, the assumption I1 + Ij = R for j ∏ 2 implies that there 

exist aj ∈ I1 and bj ∈ Ij with aj + bj = 1. If we expand out the product 
1 = 

Qn 
=2 (aj + bj ), then all terms but one on the right side involve some ajj

and are therefore in I1. That one term is b2b2 · · · bn , and it is in 
Tn

j=2 Ij . Thus 
I1 + 

Tn
j=2 Ij = R. The case n = 2, which was proved above, yields an element 

y1 in R such that 
y1 ≡ 1 mod I1 and y1 ≡ 0 mod 

T
j=1 Ij .6

Repeating this process for index i and using the assumption Ii + Ij = 6R for j = i ,
we obtain an element yi in R such that 

yi ≡ 1 mod Ii and yi ≡ 0 mod 
T

j=i Ij .6

If we put x = x1 y1 + · · · + xn yn , then we have x ≡ xi yi mod Ii ≡ xi mod Ii for 
each i , and the proof of existence is complete.
For uniqueness in (a), if we have two elements x and x 0 satisfying the con-

gruences, then their difference x − x 0 lies in Ij for every j , hence is 0 under the 
assumption that I1 ∩ · · · ∩ In = 0. 
In (b), the map ϕ is certainly a ring homomorphism. The existence result in (a) 

shows that ϕ is onto, and the proof of the uniqueness result identifies the kernel.
The isomorphism follows.
For (c), consider the special case that I and J are ideals with I + J = R. 

Certainly I J ⊆ I ∩ J . For the reverse inclusion, choose x ∈ I and y ∈ J with 
x + y = 1; this is possible since I + J = R. If z is in I ∩ J , then z = zx + zy 
with zx in J I and zy in I J . Thus z is exhibited as in I J . 
Consequently I1 I2 = I1 ∩ I2. Suppose inductively that I1 · · · Ik = I1 ∩ · · ·∩ Ik . 

We saw in the proof of (a) that Ik+1 + 
T

j=k+1 Ij = R, and thus we certainly have 6

Ik+1 + 
Tk

j=1 Ij = R. The special case in the previous paragraph, in combination 

with the inductive hypothesis, shows that Ik+1 I1 · · · Ik = Ik+1 · 
°Tk

j=1 Ij 
¢ 

= 
Tk+1 

j=1 Ij . This completes the induction and the proof. § 
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Corollary 8.28. Let R be a principal ideal domain, and let a = εpk1 · · · pkn1 n
be a factorization of a nonzero nonunit element a into the product of a unit and
powers of nonassociate primes. Then there is a ring isomorphism 

R/(a) ∼ R/( pk1 · · × R/( pn
kn ). = 1 ) × · 

kj ki kjPROOF. Let Ij = ( p 6 j , we have GCD( p , pj ) =j ) in Theorem 8.27. For i = i 
ki1. Since R is a principal ideal domain, there exist a and b in R with api +bp

k
j 
j = 1, 

ki kjand consequently ( pi ) + ( pj ) = R. The theorem applies, and the corollary 
follows. § 

Corollary 8.29. If R is a principal ideal domain, then any finitely generated 
unital R module M is the direct sum of a nonunique free R submodule 

Ls 
=1 R ofi

a well-defined finite rank s ∏ 0 and the R submodule T of all members m of M 
such that rm = 0 for some r =6 0 in R. In turn, the R submodule T is isomorphic 
to a direct sum 

n
T ∼= 

M 
R/( pkj 

j ), 
j=1 

where the pj are primes in R and the ideals ( pj
kj ) are not necessarily distinct. The 

number of summands ( pk ) for each class of associate primes p and each positive 
integer k is uniquely determined by M . 

REMARK. As mentioned with Theorem 8.25, some people use the name
“Fundamental Theorem of Finitely Generated Modules” to refer to Corollary
8.29 rather than to Theorem 8.25. 

PROOF. Theorem 8.25c gives M = F ⊕ 
Ln

j=1 Raj , where F is a free R 
submodule of some finite rank s and the aj ’s are nonzero members of M that are 
each annihilated by some nonzero member of R. The set T of all m with rm = 0 
for some r 6 0 in R is exactly 

Ln
j Then F is R isomorphic to M/T ,= =1 Raj . 

hence is isomorphic to the same free R module independently of what direct-sum 
decomposition of M is used. By Theorem 8.25a, s is well defined. 
The cyclic R module Raj is isomorphic to R/(bj ), where (bj ) is the ideal of 

all elements r in R with raj = 0. The ideal (bj ) is nonzero by assumption and 
is not all of R since the element r = 1 has 1aj = 6 0. Applying Corollary aj = 
8.28 for each j and adding the results, we obtain T ∼= 

Ln 
=1 R/( pi

ki ) for suitable i
primes pi and powers ki . The isomorphism in Corollary 8.28 is given as a ring
isomorphism, and we are reinterpreting it as an R isomorphism. The primes 
pi that arise for fixed (bj ) are distinct, but there may be repetitions in the pairs 
(pi , ki ) as j varies. This proves existence of the decomposition. 
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If p is a prime in R, then the elements m of T such that pkm = 0 for some k 
are the ones corresponding to the sum of the terms in 

Ln
j=1 R/( pkj 

j ) in which pj
is an associate of p. Thus, to complete the proof, it is enough to show that the R 
isomorphism class of the R module 

N = R/( pl1 ) ⊕ · · · ⊕ R/( plm ) 

with p fixed and with 0 < l1 ≤ · · · ≤ lm completely determines the integers 
l1, . . . , lm . 
For any unital R module L , we can form the sequence of R submodules 

p j L . The element p carries p j L into p j+1 L , and thus each p j L/ p j+1 L is an 
R module on which p acts as 0. Consequently each p j L/ p j+1 L is an R/( p)
module. Corollary 8.16 and Proposition 8.10 together show that R/( p) is a field, 
and therefore we can regard each p j L/ p j+1 L as an R/( p) vector space. 
We shall show that the dimensions dimR/(p)( p j N/ p j+1 N ) of these vector 

spaces determine the integers l1, . . . , lm . We start from 

p j N = p j R/( pl1 ) ⊕ · · · ⊕ p j R/( plm ). 

The term p j R/( plk ) is 0 if j ∏ lk . Thus 

p j N = 
M 

p j R/( plk ) = 
M 

p j R/ plk R. 
j<lk j<lk 

Similarly 
p j+1 N = 

M 
p j+1 R/( plk ) = 

M 
p j+1 R/ plk R. 

j<lk j<lk 

Proposition 8.5 and Theorem 8.3 give us the R isomorphisms 

p j N/p j+1 N ∼
M ° 

p j R/ plk R
¢±° 

p j+1 R/ plk R
¢ ∼

M 
p j R/ p j+1 R,= = 

j<lk j<lk 

and these must descend to R/( p) isomorphisms. Consequently 

dimR/(p)(p j N/ p j+1 N ) = #{k | lk > j} dimR/(p)( p j R/ p j+1 R). 

The coset p j + p j+1 R of p j R/ p j+1 R has the property that multiplication by arbi-
trary elements of R yields all of p j R/ p j+1 R. Therefore dimR/(p)( p j R/ p j+1 R) 
= 1, and we obtain 

dimR/(p)( p j N/ p j+1 N ) = #{k | lk > j}. 

Thus the R module N determines the integers on the right side, and these deter-
mine the number of lk ’s equal to each positive integer j . This proves uniqueness.

§ 
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Let us apply Theorem 8.25 and Corollary 8.29 to the principal ideal domain 
R = K[X], where K is a field. The particular unital module of interest is a
finite-dimensional vector space V over K, and the scalar multiplication by K[X]
is given by A(X)v = A(L)(v) for each polynomial A(X), where L is a fixed 
linear map L : V → V . Let us see that the results of this section recover the 
structure theory of L as developed in Chapter V. 
Since V is finite-dimensional over K, V is certainly finitely generated over 

R = K[X]. Theorem 8.25 gives 

V ∼= R/(A1(X)) ⊕ · · · ⊕ R/(An(X)) ⊕ R ⊕ · · · ⊕ R 

as R modules and in particular as vector spaces over K. Each summand R is 
infinite-dimensional as a vector space, and consequently no summand R can be 
present. Corollary 8.29 refines the decomposition to the form 

V ∼ k1 ) ⊕ · km )= R/(P1(X) · · ⊕ R/(Pm(X)

as R modules, the polynomials Pj (X) being prime but not necessarily distinct. 
Since the R isomorphism is in particular an isomorphism of K vector spaces, 
each R/(Pj (X)kj ) corresponds to a vector subspace Vj , and V = V1 ⊕ · · · ⊕ Vm . 
Since the R isomorphism respects the action by X , we have L(Vj ) ⊆ Vj for each 
j . Thus the direct sum decompositions of Theorem 8.25 and Corollary 8.29 are
yielding a decomposition of V into a direct sum of vector subspaces invariant 
under L . Since the j th summand is of the form R/(Pj (X)kj ), L acts on Vj in a 
particular way, which we have to analyze.
Let us carry out this analysis in the case that K is algebraically closed (as for 

example when K = C), seeing that each Vj yields a Jordan block of the Jordan 
canonical form (Theorem 5.20a) of L . For the case of general K, the analysis
can be seen to lead to the corresponding more general results that were obtained
in Problems 32–40 at the end of Chapter V.
Since K is algebraically closed, any polynomial in K[X] of degree ∏ 1 has a 

root in K and therefore has a first-degree factor X − c. Consequently all primes 
in K[X] are of the form X − c, up to a scalar factor, with c in K. To understand 
the action of L on Vj , we are to investigate K[X]/((X − c)k ). 
Suppose that A(X) is in K[X] and is of degree n ∏ 1. Expanding the 

monomials of A(X) by the Binomial Theorem as 
P j ° jX j = ((X − c) + c) j = i=0 i 

¢
c j−i (X − c)i , 

we see that A(X) has an expansion as 

A(X) = a0 + a1(X − c) + · · · + an(X − c)n 
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for suitable coefficients a0, . . . , an in K. Let the invariant subspace that we are 
studying be Vj0 ⊆ V . Since Vj0 is isomorphic as an R module to K[X]/((X −c)k ), 
(X − c)k acts on Vj0 as 0. So does every higher power of X − c, and hence 

A(X) acts as a0 + a1(X − c) + · · · + ak−1(X − c)k−1 . 

The polynomials on the right, as their coefficients vary, represent distinct
cosets of K[X]/((X − c)k ): in fact, if two were to be in the same coset, we could 
subtract and see that (X − c)k could not divide the difference unless it were 0. 
The distinct cosets match in one-one K linear fashion with the members of Vj0 ,
and thus dim Vj0 = k. Let us write down this match. Let v0 be the member of 
Vj0 that is to correspond to the coset 1 of K[X]/(X − c)k . On Vj0 , K[X] is acting 
with Xv = L(v). We define recursively vectors v1, . . . , vk−1 of Vj0 by 

v1 = (L − cI )v0 = (X −c)v0 √→ (X −c) · 1 = X −c, 

v2 = (L − cI )v1 = (X −c)v1 √→ (X −c) · (X −c) = (X −c)2 , 

. . . 
k−2 k−1 vk−1 = (L − cI )vk−2 = (X −c)vk−2 √→ (X −c) · (X −c) = (X −c) , 

(L − cI )vk−1 = (X −c)vk−1 √→ (X −c) · (X −c)k−1 = (X −c)k ≡ 0. 

We conclude from this correspondence that the vectors v0, v1, . . . , vk−1 form a 
basis of Vj0 and that the matrix of L − cI in the ordered basis vk−1, . . . , v1, v0 is 

 0 1 0 0 ··· 0 0  
0 1 0 ··· 0 0 
0 1 ··· 0 0 




. . . . 


. . . . .


. . 


. . 


0 1 0 


 
0 1 

 

0 

Hence the matrix of L in the same ordered basis is 
 c 1 0 0 ··· 0 0  

c 1 0 ··· 0 0 
c 1 ··· 0 0 




. . 


. . . . . .  ,. . . . 


c 1 0 


 
c 1 

 

c 

i.e., is a Jordan block. Thus Theorem 8.25 and Corollary 8.29 indeed establish
the existence of Jordan canonical form (Theorem 5.20a) when K is algebraically
closed. It is easy to check that Corollary 8.29 establishes also the uniqueness
statement in Theorem 5.20a. 
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7. Orientation for Algebraic Number Theory and Algebraic Geometry 

The remainder of the chapter introduces material on commutative rings with iden-
tity that is foundational for both algebraic number theory and algebraic geometry.
Historically algebraic number theory grew out of Diophantine equations, particu-
larly from two problems—from Fermat’s Last Theorem and from representation
of integers by binary quadratic forms. Algebraic geometry grew out of studying
the geometry of solutions of equations and out of studying Riemann surfaces.
Algebraic geometry and algebraic number theory are treated in more detail in
Advanced Algebra. 
These two subjects can be studied on their own, but they also have a great

deal in common. The discovery that the plane could be coordinatized and that
geometry could be approached through algebra was one of the great advances of
all time for mathematics. Since then, fundamental connections between algebraic
number theory and algebraic geometry have been discovered at a deeper level,
and the distinction between the two subjects is more and more just a question of
one’s point of view. The emphasis in the remainder of this chapter will be on
one aspect of this relationship, the theory that emerged from trying to salvage
something in the way of unique factorization.
By way of illustration, let us examine an analogy between what happens with

a certain ring of “algebraic integers” and what happens with a certain “algebraic
curve.” The ring of algebraic integers in question was introduced already inp
Section 4. It is R = Z[

p
−5] = Z + Z −5. The units are ±1. Our investigation 

of unique factorization was aided by the function 

p p p
N (a + b −5 ) = (a + b −5 )(a − b −5 ) = a2 + 5b2 , 

which has the property that 

N 
° 
(a + b

p
−5 )(c + d

p
−5 )

¢ 
= N (a + b

p
−5 )N (c + d

p
−5 ). 

With this function we could determine candidates for factors of particular ele-p p
ments. In connection with the equality 2 · 3 = (1 + −5 )(1 − −5 ), we
saw that the two factors on the left side and the two factors on the right side are
all irreducible. Moreover, neither factor on the left is the product of a unit and
a factor on the right. Therefore R is not a unique factorization domain. As ap
consequence it cannot be a principal ideal domain. In fact, (2, 1 + −5 ) is an 
example of an ideal that is not principal. We shall return shortly to examine this
ring further.
Now we introduce the algebraic curve. Consider y2 = (x − 1)x(x + 1) as 

an equation in two variables x and y. To fix the ideas, we think of a solution as 
a pair (x, y) of complex numbers. Although the variables in this discussion are 
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complex, it is convenient to be able to draw pictures of the solutions, and one does
this by showing only the solutions (x, y) with x and y in R. Figure 8.6 indicates 
the set of solutions in R2 for this particular curve. We can study these solutions
for a while, looking for those pairs (x, y) with x and y rationals or integers, but
a different level of understanding comes from studying functions on the locus of
complex solutions. The functions of interest are polynomial functions in the pair 
(x, y), and we identify two of them if they agree on the locus. Thus we introduce
the ring 

R0 = C[x, y]/(y2 − (x − 1)x(x + 1)). 

There is a bit of a question whether this is indeed the space of restrictions, but
that question is settled affirmatively by the “Nullstellensatz” in Section VII.1 of
Advanced Algebra and a verification that the principal ideal (y2 −(x −1)x(x +1)) 
is prime.8 The ring R0 is called the “affine coordinate ring” of the curve, and the
curve itself is an example of an “affine algebraic curve.” 

FIGURE 8.6. Real points of the curve y2 = (x − 1)x(x + 1). 

We can recover the locus of the curve from the ring R0 as follows. If (x0, y0) is a 
point of the curve, then it is meaningful to evaluate members of R0 at (x0, y0), and 
we let I(x0,y0) be the ideal of all members of R0 vanishing at (x0, y0). Evaluation 
at (x0, y0) exhibits the ring R0/I(x0,y0) as isomorphic to C, which is a field. Thus 
I(x0,y0) is a maximal ideal and is in particular prime. It turns out for this example
that all nonzero prime ideals are of this form.9 We return to make use of this 
geometric interpretation of prime ideals in a moment. 

8The polynomial y2 − (x − 1)x(x + 1) is prime since (x − 1)x(x + 1) is not a square, or since 
Eisenstein’s criterion applies. The principal ideal (y2 − (x − 1)x(x + 1)) is therefore prime by
Proposition 8.14. What the Nullstellensatz says when the underlying field is algebraically closed is
that the only polynomials vanishing on the zero locus of a prime ideal are the members of the ideal.

9In Section 9, Example 3 of integral closures in combination with Proposition 8.45 shows that
every nonzero prime ideal of R0 is maximal. (In algebraic geometry one finds that this property of
prime ideals is a reflection of the 1-dimensional nature of the curve.) The Nullstellensatz says that
the maximal ideals are all of the form I(x0,y0). 
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Now let us consider factorization in R0. Every element of R0 can be written 
uniquely as A(x) + B(x)y, where A(x) and B(x) are polynomials. The analog 
in R0 of the quantity N (a + b

p
−5 ) in the ring R is the quantity 

N 
°
A(x) + B(x)y

¢ 
= (A(x) + B(x)y)(A(x) − B(x)y) 

= A(x)2 − B(x)2 y2 

= A(x)2 − B(x)2(x3 − x). 

Easy computation shows that 

N 
° 
(A(x) + B(x)y)(C(x) + D(x)y)

¢ 
= N

°
A(x) + B(x)y

¢
N 

°
C(x) + D(x)y

¢
, 

and hence N ( · ) gives us a device to use to check whether elements of R0 are 
irreducible. We find in the equation 

p p
(x + y)(x − y) = x2 − (x3 − x) = −x(x − 12 (1 + 5))(x − 12 (1 − 5)) 

that the two elements on the left side and the three elements on the right side are
irreducible. Therefore unique factorization fails in R0. 
Although unique factorization fails for the elements of R0, there is a notion 

of factorization for ideals in R0 that behaves well algebraically and has a nice
geometric interpretation. Recall that the nonzero prime ideals correspond to the
points of the locus y2 = (x − 1)x(x + 1) via passage to the zero locus, the ideal 
corresponding to (x0, y0) being called I(x0,y0). For any two ideals I and J , we 
can form the product ideal I J whose elements are the sums of products of a 
member of I and a member of J . Then I k may be interpreted as the ideal of (x0,y0) 

all members of R0 vanishing at (x0, y0) to order k or higher, and I k1 · · · I kn 
(x1,y1 ) (xn ,yn )

becomes the ideal of all members of R0 vanishing at each (xj , yj ) to order at 
least kj . We shall see in Section 11 that every nonzero proper ideal I in R0 

factors in this way. The points (xj , yj ) and the integers kj have a geometric 
interpretation in terms of I and are therefore uniquely determined: the (xj , yj )’s 
form the locus of common zeros of the members of I , and the integer kj is the 
greatest integer such that the vanishing at (xj , yj ) is always at least to order kj . In 
a sense, factorization of elements was the wrong thing to consider; the right thing
to consider is factorization of ideals, which is unique because of the associated
geometric interpretation.
Returning to the ring R = Z[

p
−5 ], we can ask whether factorization of ideals 

is a useful notion in R. Again I J is to be the set of all sums of products of an p p
element in I and an element in J . For I = (2, 1 + −5 ) and J = (2, 1 − −5 ),p p
we get all sums of expressions (2a + b(1 + −5 ))(2c + d(1 − −5 )) in which 
a, b, c, d are in Z, hence all sums of expressions 

2(2ac + 3bd) + 2(bc + ad) + 2
p

−5(bc − ad). 
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All such elements are divisible by 2. Two examples come by taking a = c = 1 
and b = d = 0 and by taking a = c = 0 and b = d = 1; these give 4 and 6. 
Subtracting, we see that 2 is a sum of products. Thus I J = (2). The element 2 
is irreducible and not prime, and we know from Proposition 8.14 that the ideal 
(2) therefore cannot be prime. What we find is that the ideal (2) factors even 
though the element 2 does not factor. It turns out that R has unique factorization 
of ideals, just the way R0 does. 
The prime ideals of the ring R have a certain amount of structure in terms of 

the primes or prime ideals of Z. To understand what to expect, let us digress forp
a moment to discuss what happens with the ring R00 = Z[i] = Z + Z −1 of 
Gaussian integers. This too was introduced in Section 4, and it is a Euclidean do-
main, hence a principal ideal domain. It has unique factorization. Its appropriate
N ( · ) function is N (a + ib) = a2 + b2. Problems 27–31 at the end of the chapter 
ask one to verify that the primes of R00, up to multiplication by one of the units 
±1 and ±i , are members of R00 of any of the three kinds 

p = 4n + 3 that is prime in Z and has n ∏ 0, 
p = a ± ib with a2 + b2 prime in Z of the form 4n + 1 with n ∏ 0, 
p = 1 ± i (these are associates). 

These three kinds may be distinguished by what happens to the function N ( · ). 
In the first case N ( p) = p2 is the square of a prime of Z and is the square of 
a prime of R00, in the second case N ( p) is a prime of Z that is the product of 
two distinct primes of R00, and in the third case N ( p) is a prime of Z that is the 
square of a prime of R00, apart from a unit factor. The nonzero prime ideals of R00 

are the principal ideals generated by the prime elements of R00, and they fall into 
three types as well. Each nonzero prime ideal P has a prime p of Z attached to 
it, namely the one with ( p) = Z ∩ P , and the type of the ideal corresponds to the
nature of the factorization of the ideal pR00 of R00. Specifically in the first case 
pR00 is a prime ideal in R00, in the second case pR00 is the product of two distinct 
prime ideals in R00, and in the third case pR00 is the square of a prime ideal in R00. 
The structure of the prime ideals in R is of the same nature as with R00. 

Each nonzero prime ideal P has a prime p of Z attached to it, again given 
by ( p) = Z ∩ P , and the three kinds correspond to the factorization of the ideal 
pR of R. Let us be content to give examples of the three possible behaviors: 

11R is prime in R, 

2R is the product of two distinct prime ideals in R, 
p

5R is the square of the prime ideal ( −5 ) in R. 

We have already seen the decomposition of 2R, and the decomposition of 5R is 
easy to check. With 11R, the idea is to show that 11 is a prime element in R. 
Thus let 11 divide a product in R. Then N (11) = 112 divides the product of 
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the N ( · )’s, 11 divides the product of the N ( · )’s, and 11 must divide one of the 
N ( · )’s. Say that 11 divides N (a + b

p
−5 ), i.e., that a2 + 5b2 ≡ 0 mod 11. If 

11 divides one of a or b, then this congruence shows that 11 divides the other of 
them; then 11 divides a + b

p
−5, as we wanted to show. The other possibility 

is that 11 divides neither a nor b. Then (ab−1)2 ≡ −5 mod 11 says that −5 is a 
square modulo 11, and we readily check that it is not. The conclusion is that 11
is indeed prime in R. 
This structure for the prime ideals of R has an analog with the curve and its 

ring R0. The analogs for the curve case of Z and 
p

−5 for the number-theoretic 
case are C[x] and y. The primes of C[x] are nonzero scalars times polynomials 
x − c with c complex, and the relevant question for R0 is how the ideal (x − c)R0 

decomposes into prime ideals. We can think about this problem algebraically or
geometrically. Algebraically, the ideal of all polynomials vanishing at (x0, y0) is 
I(x0,y0) = (x −x0, y − y0), the set of all (x −x0)A(x)− y0 B(x)+ yB(x) with A(x)
and B(x) in C[x]. The intersection with C[x] consists of all (x − x0)A(x) and is 
therefore the principal ideal (x − x0). We want to factor the ideal (x − x0)R0. 
If we pause for a moment and think about the problem geometrically, the answer

is fairly clear. Ideals correspond to zero loci with multiplicities. The question
is the factorization of the ideal of all polynomials vanishing when x = x0. For 
most values of the complex number x0, there are two choices of the complex y
such that (x0, y) is on the locus since y is given by a quadratic equation, namely 
y2 = (x0 − 1)x0(x0 + 1). Thus for most values of x0, (x − x0)R0 is the product 
of two distinct prime ideals. The geometry thus suggests that 

(x − x0)R0 = (x − x0, y − y0)(x − x0, y + y0), 

where y2 = (x0 − 1)x0(x0 + 1) and it is assumed that y0 =6 0. We can verify this0
algebraically: The members of the product ideal are the polynomials 
° 
(x − x0)A(x) + (y − y0)B(x)

¢°
(x − x0)C(x) + (y + y0)D(x)

¢ 

= (x − x0)2 A(x)C(x) + (x − x0) 
°
A(x)(y + y0)D(x)) + C(x)(y − y0)B(x)

¢ 

+ (y2 − y0
2)B(x)D(x). 

The last term on the right side is 
° 
(x3 − x) − (x0

3− x0)
¢
B(x)D(x) and is divisible 

by x − x0. Therefore every member of the product ideal lies in the principal 
ideal (x − x0). On the other hand, the product ideal contains (x − x0)(x − x0)
and also (y2 − y0

2) = (x3 − x0
3) − (x − x0) = (x − x0)(x2 + xx0 + x0

2). Since 
GCD

° 
(x −x0), (x2 +xx0 +x0

2)
¢ 

= 1, the product ideal contains x −x0. Therefore 
the product ideal equals (x − x0). 
The exceptional values of x0 are −1, 0, +1, where the locus has y0 = 0. 

The geometry of the factorization is not so clear in this case, but the algebraic 
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computation remains valid. Thus we have (x − x0)R0 = (x − x0, y)2 if x0 equals 
−1, 0, or +1. The conclusion is that the nonzero prime ideals of R0 are of two 
types, with (x − x0)R0 equal to 

the product of two distinct prime ideals in R0 if x0 is not in {−1, 0, +1}, 
the square of a prime ideal in R0 if x0 is in {−1, 0, +1}. 

The third type, with (x − x0)R0 prime in R0, does not arise. Toward the end of
Chapter IX we shall see how we could have anticipated the absence of the third
type. 

That is enough of a comparison for now. Certain structural results useful in 
both algebraic number theory and algebraic geometry are needed even before
we get started at factoring ideals, and those are some of the topics for the
remainder of this chapter. In Section 11 we conclude by establishing unique
factorization of ideals for a class of examples that includes the examples above.
In the examples above, the rings we considered were Z[X]/(X2 + 5) = Z[

p
−5 ]

and C[x, y]/(y2 − (x − 1)x(x + 1)) ∼ (x − 1)x(x + 1) ]. In each case = C[x][
p

the notation [ · ] refers to forming the ring generated by the coefficients and the
expression or expressions in brackets.
First we establish a result saying that ideals in the rings of interest are not

too wild. For example, in algebraic geometry, one wants to consider the set of
restrictions of the members of K[X1, . . . , Xn], K being a field, to the locus of
common zeros of a set of polynomials. The general tool will tell us that any ideal
in K[X1, . . . , Xn] is finitely generated; thus a description of what polynomials
vanish on the locus under study is not completely out of the question. The tool is
the Hilbert Basis Theorem and is the main result of Section 8. 
Second we need a way of understanding, in a more general setting, the relation-

ship that we used in the above examples between Z and Z[
p

−5 ], and between 
C[x] and C[x][

p
(x − 1)x(x + 1) ]. The tool is the notion of integral closure and 

is the subject of Section 9.
Third we need a way of isolating the behavior of prime ideals, of eliminating

the influence of algebraic or geometric factors that have nothing to do with the
prime ideal under study. The tool is the notion of localization and is the subject
of Section 10. 
In Section 11 we make use of these three tools to establish unique factorization

of ideals for a class of integral domains known as “Dedekind domains.” It is easy
to see that principal ideal domains are Dedekind domains, and we shall show
that many other integral domains, including the examples above, are Dedekind
domains. A refined theorem producing Dedekind domains will be obtained
toward the end of Chapter IX once we have introduced the notion of a “separable”
extension of fields. 
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8. Noetherian Rings and the Hilbert Basis Theorem 

In this section, R will be a commutative ring with identity, and all R modules 
will be assumed unital. We begin by introducing three equivalent conditions on
a unital R module. 

Proposition 8.30. If R is a commutative ring with identity and M is a unital 
R module, then the following conditions on R submodules of M are equivalent: 

(a) (ascending chain condition) every strictly ascending chain of R sub-
modules M1 $ M2 $ · · · terminates in finitely many steps, 

(b) (maximum condition) every nonempty collection of R submodules has 
a maximal element under inclusion,

(c) (finite basis condition) every R submodule is finitely generated. 

PROOF. To see that (a) implies (b), let C be a nonempty collection of R 
submodules of M . Take M1 in C. If M1 is not maximal, choose M2 in C properly
containing M1. If M2 is not maximal, choose M3 in C properly containing M2. 
Continue in this way. By (a), this process must terminate, and then we have found
a maximal R submodule in C. 
To see that (b) implies (c), let N be an R submodule of M , and let C be 

the collection of all finitely generated R submodules of N . This collection is 
nonempty since 0 is in it. By (b), C has a maximal element, say N 0. If x is in 
N but x is not in N 0, then N 0 + Rx is a finitely generated R submodule of N 
that properly contains N 0 and therefore gives a contradiction. We conclude that 
N 0 = N , and therefore N is finitely generated.
To see that (c) implies (a), let M1 $ M2 $ · · · be given, and put N = S∞ 
n=1 Mn . By (c), N is finitely generated. Since the Mn are increasing with n,

we can find some Mn0 containing all the generators. Then the sequence stops no 
later than at Mn0 . § 

Let us apply Proposition 8.30 with M taken to be the unital R module R. As 
always, the R submodules of R are the ideals of R. 

Corollary 8.31. If R is a commutative ring with identity, then the following 
conditions on R are equivalent: 

(a) ascending chain condition for ideals: every strictly ascending chain of
ideals in R is finite,

(b) maximum condition for ideals of R: every nonempty collection of ideals 
in R has a maximal element under inclusion,

(c) finite basis condition for ideals: every ideal in R is finitely generated. 
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The corollary follows immediately from Proposition 8.30. A commutative
ring with identity satisfying the equivalent conditions of Corollary 8.31 is said to
be a Noetherian commutative ring. 

EXAMPLES. 
(1) Principal ideal domains, such as Z and K[X] when K is a field. The finite 

basis condition for ideals is satisfied since every ideal is singly generated. The fact
that (c) implies (a) has already been proved manually for principal ideal domains
twice in this chapter—once in the proof of (UFD1) for a principal ideal domain
in Theorem 8.15 and once in the proof of Lemma 8.26. 
(2) Any homomorphic image R0 of a Noetherian commutative ring R, provided 

1 maps to 1. In fact, if I 0 ⊆ R0 is an ideal, its inverse image I is an ideal in R;
the image of a finite set of generators of I is a finite set of generators of I 0. 
(3) K[X1, . . . , Xn] when K is a field. This commutative ring is Noetherian by

application of the Hilbert Basis Theorem (Theorem 8.32 below) and induction on 
n. This ring is also a unique factorization domain, as we saw in Section 5. 
(4) Z[X]. This commutative ring is Noetherian, also by the Hilbert Basis

Theorem below. Example 2 shows therefore that the quotient Z[
p

−5 ] = 
Z[X]/(X2 + 5) is Noetherian. This ring is an integral domain, and we have
seen that it is not a unique factorization domain. 

Theorem 8.32 (Hilbert Basis Theorem). If R is a nonzero Noetherian com-
mutative ring, then so is R[X]. 

PROOF. If I is an ideal in R[X] and if k ∏ 0 is an integer, let Lk (I ) be the 
union of {0} and the set of all nonzero elements of R that appear as the coefficient 
of Xk in some element of degree k in I . First let us see that {Lk(I )}k∏0 is an 
increasing sequence of ideals in R. In fact, if A(X) and B(X) are polynomials of 
degree k in I with leading terms ak Xk and bk Xk , then A(X) + B(X) has degree 
k if bk 6= −ak , and hence ak + bk is in Lk (I ) in every case. Similarly if r is in R 
and rak 6= 0, then r A(X) has degree k, and hence rak is in Lk(I ) in every case. 
Consequently Lk (I ) is an ideal in R. Since I is closed under multiplication by 
X , Lk (I ) ⊆ Lk+1(I ) for all k ∏ 0. 
Next let us prove that if J is any ideal in R[X] such that I ⊆ J and Lk (I ) = 

Lk (J ) for all k ∏ 0, then I = J . Let B(X) be in J with deg B(X) = k. Arguing 
by contradiction, we may suppose that B(X) is not in I and that k is the smallest 
possible degree of a polynomial in J but not in I . Since Lk (I ) = Lk (J ), we 
can find A(X) in I whose leading term is the same as the leading term of B(X). 
Since B(X) is not in I , B(X) − A(X) is not in I . Since I ⊆ J , B(X) − A(X) is 
in J . Since deg(B(X) − A(X)) ≤ k − 1, we have arrived at a contradiction to 
the defining property of k. We conclude that I = J . 



419 8. Noetherian Rings and the Hilbert Basis Theorem 

Now let {Ij }j∏0 be an ascending chain of ideals in R[X], and form Li (Ij ) for 
each i . When i or j is fixed, these ideals are increasing as a function of the other 
index, j or i . By the maximum condition in R, Li (Ij ) ⊆ Lp(Iq ) for some p
and q and all i and j . For i ∏ p and j ∏ q, we have Li (Ij ) ⊇ Lp(Iq ) and 
thus Li (Ij ) = Lp(Iq ). The case j = q gives Lp(Iq ) = Li (Iq ), and therefore 
Li (Ij ) = Li (Iq ) for i ∏ p and j ∏ q. For any fixed i , the ascending chain 
condition on ideals gives Li (Ij ) = Li (In(i)) for j ∏ n(i), and the above argument 
shows that we may take n(i) = q if i ∏ p. Hence n(i) may be taken to be bounded 
in i , say by n0, and Li (Ij ) = Li (In0 ) for all i ∏ 0 and j ∏ n0. By the result 
of the previous paragraph, Ij = In0 for j ∏ n0, and hence the ascending chain 
condition has been verified for ideals in R[X]. § 

Proposition 8.33. In a Noetherian integral domain R, every nonzero nonunit 
is a product of irreducible elements. 

REMARK. The proof below gives an alternative argument for (UFD1) in
Theorem 8.15, an argument that does not so explicitly use the full force of Zorn’s
Lemma. 

PROOF. Let a1 be a nonzero nonunit of R. If a1 is not irreducible, then a1 

has a factorization a1 = a2b2 in which neither a2 nor b2 is a unit. If a2 is not 
irreducible, then a2 has a factorization a2 = a3b3 in which neither a3 nor b3 is 
a unit. We continue in this way as long as it is possible to do so. Let us see 
that this process cannot continue indefinitely. Assume the contrary. The equality 
a1 = a2b2 with b2 not a unit says that the inclusion of ideals (a1) ⊆ (a1, a2) is 
proper. Arguing in this way with a2, a3, and so on, we obtain 

(a1) $ (a1, a2) $ (a1, a2, a3) $ · · · , 

in contradiction to the ascending chain condition for ideals. Because of this 
contradiction we conclude that for some n, an does not have any decomposition 
an = an+1bn+1 with bn+1 a nonunit. Hence an is irreducible. The upshot is that 
our original element a1 has an irreducible factor, say c1. 
Write a1 = c1d2. If d2 is not a unit, repeat the process with it, obtaining 

d2 = c2d3 with c2 irreducible. If d3 is not a unit, we can again repeat this process.
This process cannot continue indefinitely because otherwise we would have a
strictly increasing sequence of ideals 

(c1) $ (c1, c2) $ (c1, c2, c3) $ · · · , 

in contradiction to the ascending chain condition for ideals. Thus for some n, we 
have a1 = c1c2 . . . cndn+1 with c1, . . . , cn irreducible and with dn+1 equal to a 
unit. Grouping cn and dn+1 as a single irreducible factor, we obtain the desired
factorization of the given element a1. § 
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Proposition 8.34. If R is a Noetherian commutative ring, then any R submod-
ule of a finitely generated unital R module is finitely generated. 

REMARK. The proof follows the lines of the argument for Proposition 8.24. 

PROOF. Let M be a unital finitely generated R module with a set {m1, . . . , mn}
of n generators, and define Mk = Rm1+· · ·+ Rmk for 1 ≤ k ≤ n. Then Mn = M 
since M is unital. We shall prove by induction on k that every R submodule of 
Mk is finitely generated. The case k = n then gives the proposition. For k = 1,
suppose that S is an R submodule of M1 = Rm1. Let I be the subset of all r 
in R with rm1 in S. Since S is an R submodule, I is an ideal in R, necessarily 
finitely generated since R is Noetherian. Let I = (r1, . . . , rl ). Then S = Im1 = 
Rr1m1 + Rr2m1 + · · · + Rrlm1, and the elements r1m1, r2m1, . . . , rlm1 form a 
finite set of generators of S. 
Assume inductively that every R submodule of Mk is known to be finitely 

generated, and let Nk+1 be an R submodule of Mk+1. Let q : Mk+1 → Mk+1/Mk 
be the quotient R homomorphism, and let ϕ be the restriction q

Ø
Ø
Nk+1

, mapping 
Nk+1 into Mk+1/Mk . Then ker ϕ = Nk+1 ∩ Mk is an R submodule of Mk and is 
finitely generated by the inductive hypothesis. Also, image ϕ is an R submodule 
of Mk+1/Mk , which is singly generated with generator equal to the coset of 
mk+1. Since an R submodule of a singly generated unital R module was shown 
in the previous paragraph to be finitely generated, image ϕ is finitely generated. 
Applying Lemma 8.23 to ϕ, we see that Nk+1 is finitely generated. This completes 
the induction and the proof. § 

9. Integral Closure 

In this section, we let R be an integral domain, F be its field of fractions, and 
K be a any field containing F . Sometimes we shall assume also that dimF K is 
finite. The main cases of interest are as follows. 

EXAMPLES OF GREATEST INTEREST. 
(1) R = Z, F = Q, and dimF K < ∞. In Chapter IX we shall see in this case

from the “Theorem of the Primitive Element” that K is necessarily of the form 
Q[θ] as already described in Section 1 and in Chapter IV. This is the setting we
used in Section 7 as orientation for certain problems in algebraic number theory. 
(2) R = K[X] for a field K, F = K(X) is the field of fractions of R, and 

K is a field containing F with dimF K < ∞. In the special case K = C, this
is the setting we used in Section 7 as orientation for treating curves in algebraic
geometry. 
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Proposition 8.35. Let R be an integral domain, F be its field of fractions, and 
K be any field containing F . Then the following conditions on an element x of 
K are equivalent: 

(a) x is a root of a monic polynomial in R[X],
(b) the subring R[x] of K generated by R and x is a finitely generated R 

module,
(c) there exists a finitely generated nonzero unital R module M ⊆ K such 

that xM ⊆ M . 

REMARK. When the equivalent conditions of the proposition are satisfied, 
we say that x is integral over R or x is integrally dependent on R. In this 
terminology, in Section VII.5 and in Section 1 of the present chapter, we defined an
algebraic integer to be any member of C that is integral over Z. The equivalence
of (a) and (c) in this setting allowed us to prove that the set of algebraic integers
is a subring of C. 
PROOF. If (a) holds, we can write xn + an−1xn−1 + · · · + a1x + a0 = 0 

for suitable coefficients in R. Solving for xn and substituting, we see that the 
subring R[x], which equals R + Rx + Rx2 + · · · , is actually given by R[x] = 
R + Rx + · · · + Rxn−1. Therefore R[x] is a finitely generated R module, and 
(b) holds.
If (b) holds, then we can take M = R[x] to see that (c) holds. 
If (c) holds, let m1, . . . , mk be generators of M as an R module. Then we can 

find members ai j of R for which 

xm1 = a11m1 + · · · + a1kmk , 

. . . 

xmk = ak1m1 + · · · + akk mk . 

This set of equations, regarded as a single matrix equation over K , becomes 
 x−a11 −a12 · · · −a1k 

 m1 0    
−a21 x−a22 · · · −a2k m2 0

.. 
 ..  =  .. 

 . 
.  

. . 
−ak1 −ak2 · · · x−akk mk 0 

The k-by-k matrix on the left is therefore not invertible, and its determinant, which
is a member of the field K , must be 0. Expanding the determinant and replacing 
x by an indeterminate X , we obtain a monic polynomial of degree k in R[X] for 
which x is a root. Thus (a) holds. § 

If R, F , and K are as above, the integral closure of R in K is the set of all 
members of K that are integral over R. In Corollary 8.38 we shall prove that the 
integral closure of R in K is a subring of K . 
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EXAMPLES OF INTEGRAL CLOSURES. 
(1) The integral closure of Z in Q is Z itself. This fact amounts to the statement 

that a rational root of a monic polynomial with integer coefficients is an integer;
this was proved10 in the course of Lemma 7.30. Recall the argument: If x = p/q
is a rational number in lowest terms that satisfies xn +an−1xn−1 +· · ·+a1a +a0 = 
0, then we clear fractions and obtain pn +an−1 pn−1q +· · ·+a1 pqn−1 +a0qn = 0. 
Examining divisibility by q, we see that q divides pn . Hence any prime factor of 
q divides p and shows that p/q cannot be in lowest terms. Therefore q has no 
prime factors, and p/q is an integer. 

p
(2) Let us determine the integral closure of Z in Q( m ), where m is a square-

free integer other than 0 or 1. The result is going to be that the integral closure
consists of all a + b

p
m with 

Ω both in Z if m ≡/ 1 mod 4,
a and b 1both in Z or both in Z + if m ≡ 1 mod 4.2 

In other words, the integral closure is 
Ω Z[

p
m ] if m ≡/ 1 mod 4, 

p (∗)
Z[ 12 (1 + m )] if m ≡ 1 mod 4. 

In fact, consider the polynomial 

P(X) = X2 − 2aX + (a2 − mb2), 

whose roots are exactly a ± b
p
m. If a and b are in Z, then P(X) has coefficients 

in Z, and hence both of a ± b
p
m are in the integral closure. If m ≡ 1 mod 4 and 

a and b are both in Z + 2
1 , write a = c/2 and b = d/2 with c and d in 2Z + 1. 

1Since a2 − mb2 = 4 (c
2 − md2), we have 

c2 − md2 ≡ c2 − d2 mod 4 ≡ 1 − 1 mod 4 ≡ 0 mod 4, 

and therefore 14 (c
2 − md2) = a2 − mb2 is in Z. Consequently the polynomial 

P(X) exhibits a + b
p
m as in the integral closure.

For the reverse inclusion, suppose that z = a + b
p
m is in the integral closure 

and is not in Z. Then z is a root of some monic polynomial A(X) in Z[X].
In addition, z is a root of P(X) above, and P(X) is a monic prime polyno-
mial in Q[X] because it has no rational first-degree factor. Writing A(X) = 
B(X)P(X) + R(X) in Q[X] with R(X) = 0 or deg R(X) < deg P(X) = 2 and 

10It is not assumed that the reader has looked at Chapter VII. A result that implies Lemma 7.30
will be obtained below as Corollary 8.38, which makes no use of material from Chapter VII. 
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substituting z for X , we see that R(z) = 0, and we conclude that R(X) = 0. 
Thus P(X) divides A(X). By Corollary 8.20c, P(X) is in Z[X]. Hence 2a and 
a2 − mb2 are in Z. One case is that a is in Z, and then mb2 is in Z; since m is 
square free, there are no candidates for primes dividing the denominator of b, and 

1 1so b is in Z. The other case is that a is in Z + 2 , and then mb2 is in Z + 4 . So 
m(2b)2 is in 4Z + 1. Since m is square free, there are no candidates for primes 
dividing the denominator of 2b, and 2b is an integer. Since m(2b)2 is in 4Z + 1, 
m ≡ 1 mod 4 and 2b ≡ 1 mod 2 are forced. This completes the proof that the
integral closure is given by (∗). 
(3) Under the assumption that the characteristic of the field K is not 2, let 

us determine the integral closure T of R = K[x] in K = K(x)[
p
P(x) ] = 

K(x)[y]/(y2 − P(x)), where P(X) is a square-free polynomial in K[x]. Par-
enthetically we need to check that K is a field. Since K(x) is a field, K(x)[y]
is a principal ideal domain, and the question is whether (y2 − P(x)) is a prime 
( = maximal) ideal. We have only to observe that y2 − P(x) is irreducible because 
P(x) is not a square, and then it follows that K is a field. Thus the situation for 
this example fits the setting of Proposition 8.35 with R = K[x], F = K(x), and 
K = F(y)/(y2 − P). We are going to show that the integral closure T of R inp
K consists of all A(x) + B(x) P(x) with A(x) and B(x) both in R = K[x]. It 
follows that the integral closure will be 

T = K[x][
p
P(x) ] = K[x] + K[x]

p
P(x). (∗) 

To see this, first let A(x) and B(x) be in K[x], and consider the monic polynomial 

Q(y) = y2 − 2Ay + (A2 − PB2) (∗∗) 
p

in K[x][y]. Its roots in K are exactly A(x) ± B(x) P(x), and thus we see that p
both of A(x) ± B(X)P(x) are in T . Conversely let z = A(x) + B(x) P(x) be 
in T but not R. Here A(x) and B(x) are in K(x). Then z is a root in K of some 
monic polynomial M(y) whose coefficients are in K[x]. In addition, z is a root 
of the member Q(y) of K(x)[y] defined in (∗∗). The division algorithm gives 
M(y) = N (y)Q(y) + W (y) in K(x)[y] with W = 0 or deg W < deg Q = 2. 
Substituting z ∈ T for y, we obtain 

0 = M(z) = N (z)Q(z) + W (z) = N (z)0 + W (z). 

Thus W (z) = 0. If deg W = 1, then z is in F , and the same argument as in 
Example 1 shows that z is in R; since we are assuming that z is not in R, we 
conclude that W = 0. Therefore Q(y) divides M(y). By Corollary 8.20c, M(y)
is in K[x][y]. Hence 2A and A2 − PB2 are in K[x]. Since the characteristic of 
K is not 2, A is in K[x]. Then PB2 is in K[x], and B must be in K[x] since P is 
square free. Thus T is given as in (∗). 
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From these examples we can extract a rough description of the situation that
will interest us. We start with a ring R such as Z or K[x], along with its field 
of fractions F . We assume that the integral closure of R in F is R itself, as is 
the case with Z in Q and as we shall see is the case with K[x] in K(x). Let K 
be a field containing F with dimF K < ∞. We are interested in an analog T of 
integral elements relative to K , and what works as T is the integral closure of R 
in K . 

Lemma 8.36. If A, B, and C are integral domains with A ⊆ B ⊆ C such that 
C is a finitely generated B module and B is a finitely generated A module, then 
C is a finitely generated A module. 

PROOF. Let C be generated over B by c1, . . . , cr , and let B be generated over A 
by b1, . . . , bs . Then C is generated over A by the sr elements bjci for 1 ≤ i ≤ r 
and 1 ≤ j ≤ s. § 

Proposition 8.37. Let R be an integral domain, F be its field of fractions, and 
K be any field containing F . If x1, . . . , xr are members of K integral over R,
then the subring R[x1, . . . , xr ] of K generated by R and x1, . . . , xr is a finitely 
generated R module. 

REMARKS. The ring R[x1, . . . , xr ] is certainly finitely generated over R as a 
ring. The proposition asserts more—that it is finitely generated as an R module. 
This means that all products of powers of the xj ’s are in the R linear span of 
finitely many of them. 

PROOF. We induct on r . Since x1 is assumed integral over R, the case r = 1 
follows from Proposition 8.35b. For the inductive step, suppose that R[x1, . . . , xs]
is a finitely generated R module. Since xs+1 is integral over R, it is certainly 
integral over R[x1, . . . , xs ]. Thus Proposition 8.35b shows that R[x1, . . . , xs+1]
is a finitely generated R[x1, . . . , xs ] module. Taking A = R, B = R[x1, . . . , xs ],
and C = R[x1, . . . , xs+1] in Lemma 8.36, we see that R[x1, . . . , xs+1] is a finitely 
generated R module. § 

Corollary 8.38. Let R be an integral domain, F be its field of fractions, and 
K be any field containing F . Then the integral closure of R in K is a subring 
of K . 

REMARK. A special case of this corollary appears in somewhat different
language as Lemma 7.30. 

PROOF. Let x and y be integral over R. Then R[x, y] is a finitely gener-
ated R module by Proposition 8.37. We have (x ± y)R[x, y] ⊆ R[x, y] and 
(xy)R[x, y] ⊆ R[x, y]. Taking M = R[x, y] in Proposition 8.35c and using the 
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implication that (c) implies (a) in that proposition, we see that x ± y and xy are 
integral over R. § 

Corollary 8.39. Let A, B, and C be integral domains with A ⊆ B ⊆ C . If 
every member of B is integral over A and if every member of C is integral over 
B, then every member of C is integral over A. 
PROOF. Let K be the field of fractions of C , and regard C as a subring of 

K . If x is in C , then x is a root of some monic polynomial with coefficients in 
B, say xn + bn−1xn−1 + · · · + b0 = 0. By Proposition 8.37 the subring D = 
A[bn−1, . . . , b0] of C is a finitely generated A module. Since x is integral over D,
D[x] is a finitely generated D module, by a second application of Proposition 8.37. 
Lemma 8.36 shows that D[x] is a finitely generated A module. By Proposition 
8.35, x is integral over A. § 

We say that the integral domain R is integrally closed if R equals its integral
closure in its field of fractions. Example 1 above in essence observed that the
ring Z of integers is integrally closed. Example 2 above showed, for the case 
m = −3, that the integral closure of Z in Q[

p
−3 ] is something other than the 

ring Z[
p

−3 ]; consequently Z[
p

−3 ] cannot be integrally closed. A more direct
argument is to observe that the element x = 12 (−1 + 

p
−3 ) of Q[

p
−3 ] satisfies 

x2 + x + 1 = 0 but is not in Z[
p

−3 ]. 

Corollary 8.40. Let R be an integral domain, F be its field of fractions, and 
K be any field containing F . Then the integral closure T of R in K is integrally 
closed. 
PROOF. Corollary 8.38 shows that T is a subring of K . Let C be the integral 

closure of T in K . We apply Corollary 8.39 to the integral domains R ⊆ T ⊆ C . 
The corollary says that every member of C is integral over R, and hence C ⊆ T . 
That is, C = T . Let η : T → L be the one-one homomorphism of T into its 
field of fractions, and let ϕ : T → K be the inclusion. By Proposition 8.6, there 
exists a unique ring homomorphism eϕ : L → K such that ϕ = ϕηe . Identifying 
L with ϕe(L) ⊆ K , we can treat L as a subfield of K containing T . Since the only 
elements of K integral over T have been shown to be the members of T , the only 
elements of the subfield L integral over T are the members of T . Therefore T is 
integrally closed. § 

Proposition 8.41. If R is a unique factorization domain, then R is integrally 
closed. 
PROOF. Suppose that y−1x is a member of the field of fractions F of R, with 

x and y in R and y 6= 0, and suppose that y−1x satisfies the equation 

(y−1x)n + an−1(y−1x)n−1 + · · · + a1(y−1x) + a0 = 0 
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with coefficients in R. Clearing fractions and moving xn over to one side by 
itself, we have 

xn = −y(an−1xn−1 + · · · + a1xyn−2 + a0 yn−1). 

If a prime p in R divides y, then it divides xn and must divide x . If R is a unique 
factorization domain, this says that we cannot arrange for GCD(x, y) to equal 1 
unless no prime divides y. In this case, y is a unit in R. Consequently y−1x is 
in R. § 

Since Z is a unique factorization domain, Proposition 8.41 gives a new proof 
that Z is integrally closed. We see also that K[x] is integrally closed when K is 
a field. 
We saw above that the ring Z[

p
−3 ] is not integrally closed; consequently it

cannot be a unique factorization domain. Another way of drawing this conclusionp p
is to verify in the equality (1 + −3 )(1 − −3 ) = 2 · 2 that the two elements 
on the left are irreducible and are not associates of the irreducible element 2 on 
the right.
A more significant example, taking advantage of the contrapositive of Propo-

sition 8.41, is that any polynomial ring K[X1, . . . , Xn] over a field K is integrally 
closed. In fact, we know from Section 5 that K[X1, . . . , Xn] has unique factor-
ization. 

Proposition 8.42. Let R be an integral domain, F be its field of fractions, and 
K be any field containing F . If dimF K < ∞, then any x in K has the property 
that there is some c 6= 0 in R such that cx is integral over R. 
REMARKS. Consequently K may be regarded as the field of fractions of the 

integral closure T of R in K . In fact, let {xi } be a basis of K over F , and choose 
ci 6 = ci xi is integral over R. Then {yi } is a basis = 0 in R for each i such that yi 
for K over F consisting of members of T , and it follows that every member of 
K is the quotient of a member of T by a member of R. Proposition 8.6 supplies
a one-one ring homomorphism of the field of fractions for T into K , and the 
description just given for the elements of K shows that this homomorphism is 
onto K . Therefore K may be regarded as the field of fractions of T . 
PROOF. Since dimF K < ∞, the elements 1, x, x2 , . . . of K are linearly 

dependent over F . Therefore anxn + · · · + a1x + a0 = 0 for a suitable n and 
for suitable members of F with an 6= 0. Clearing fractions, we may assume that 
an, . . . , a1, a0 are in R and that an 6 0. Multiplying the equation by an−1= , we n
obtain 

(anx)n + an−1(anx)n−1 + · · · + a1an−2(anx) + a0an−1 = 0.n n 

Thus we can take c = an . § 
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In the base rings Z and K[x] of our examples, every nonzero prime ideal is
maximal because the rings are principal ideal domains. In Section 7 we mentioned
that every nonzero prime ideal in Z[

p
−5 ] is maximal even though Z[

p
−5 ] is not

a principal ideal domain. The remainder of this section, particularly Proposition
8.45, shows that the feature that every nonzero prime ideal is maximal is always
preserved in our passage from R to T . 

Proposition 8.43. Let R be an integral domain, F be its field of fractions, K 
be any field containing F , and T be the integral closure of R in K . If Q is a 
nonzero prime ideal of T , then P = R ∩ Q is a nonzero prime ideal of R. 

REMARKS. Corollary 8.38 shows that T is a ring. A construction for prime 
ideals that goes in the reverse direction, from R to T , appears below as Proposition 
8.53. 

PROOF. Let Q be a nonzero prime ideal of T , and put P = R ∩ Q. The ideal 
P is proper since 1 is not in Q and cannot be in P . It is prime since xy ∈ P 
implies that xy is in Q, x or y is in Q, and x or y is in R ∩ Q = P . To see that 
P is nonzero, take t 6= 0 in Q. Since t is integral over R, t satisfies some monic 
polynomial equation tn + an−1tn−1 + · · · + a1t + a0 = 0 with coefficients in R. 
Without loss of generality, a0 6= 0 since otherwise we could divide the equation 
by a positive power of t . Then a0 = t (−tn−1 − an−1tn−2 − · · · − a1) exhibits a0 

as in Q as well as in R. Thus P is nonzero. § 

Lemma 8.44. Let R and T be integral domains with R ⊆ T and with every 
element of T integral over R. If T 0 is an integral domain and ϕ : T → T 0 is a 
homomorphism of rings onto T 0, then every member of T 0 is integral over ϕ(R). 

PROOF. If t is in T , then t satisfies some monic polynomial equation of the 
form tn +an−1tn−1 +· · ·+a1t +a0 = 0 with coefficients in R. Applying ϕ to this 
equation, we see that ϕ(t) satisfies a monic polynomial equation with coefficients 
in ϕ(R). § 

Proposition 8.45. Let R be an integral domain, F be its field of fractions, 
K be any field containing F , and T be the integral closure of R in K . If every 
nonzero prime ideal of R is maximal, then every nonzero prime ideal of T is 
maximal. 

REMARK. As with Proposition 8.43, Corollary 8.38 shows that T is a ring. 

PROOF. Let Q be a nonzero prime ideal in T , and let P = R ∩ Q. 
Since P is a nonzero prime ideal of R by Proposition 8.43, the hypotheses say that 
P is maximal in R. We shall apply Lemma 8.44 to the quotient homomorphism 
T → T /Q. The lemma says that every element of the integral domain T/Q is 
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integral over the subring (R + Q)/Q. Composing the inclusion homomorphism 
R → T with the homomorphism T → T /Q yields a ring homomorphism 
R → T /Q that carries P into the 0 coset. Since P = R ∩ Q, this ring 
homomorphism descends to a one-one ring homomorphism R/P → T /Q. The 
Second Isomorphism Theorem (for abelian groups) identifies the image of R/P 
with (R + Q)/Q. Since P is maximal as an ideal in R, R/P is a field. The 
ring isomorphism R/P ∼= (R + Q)/Q thus shows that every element of T /Q is 
integral over a field.
Let us write k for this field isomorphic to R/P , and let k 0 be the field of fractions 

of T /Q. We can now argue as in the proof of Proposition 4.1. If x 6= 0 is in T /Q,
then x satisfies a monic polynomial equation xm +cm−1xm−1 +· · ·+c1x +c0 = 0 
with coefficients in k, and we may assume that c0 6 0.= Then the equality 
x−1 = −c0 

−1(c1 + · · · + am−1xm−2 + xm−1) shows that the member x−1 of k 0 is 
in fact in T /Q. Therefore T /Q is a field, and the ideal Q is maximal in T . § 

10. Localization and Local Rings 

In this section, R denotes a commutative ring with identity. The objective is to
enlarge or at least adjust R so as to make further elements of R become invertible 
under multiplication. The prototype is the construction of the field of fractions
for an integral domain. A subset S of R is called a multiplicative system if 1 
is in S and if the product of any two members of S is in S. The multiplicative
system will be used as a set of new allowable denominators, and the new ring will
be denoted11 by S−1 R. 
The construction proceeds along the same lines as in Section 2, except that

some care is needed to take into account the possibility of zero divisors in R and 
even in S. We begin with an intermediate set 

R = {(r, s) | r ∈ R, s ∈ S}e

and impose the relation (r, s) ∼ (r 0 , s 0) if t (rs0 − sr 0) = 0 for some t ∈ S. To 
, s 0) ∼ (r 00 check transitivity, suppose that (r, s) ∼ (r 0 , s 0) and (r 0 , s 00). Then we 

have t (rs0 − sr 0) = 0 and t 0(r 0s 00 − s 0r 00) = 0 for some t and t 0 in S, and hence 

(r 0s 00 − s 0r 00s 0t t 0(rs 00 − sr 00) = s 00t 0 
° 
t (rs 0 − sr 0)

¢ 
+ st 

° 
t 0 )

¢ 
= 0. 

Since s 0t t 0 is in S, (r, s) ∼ (r 00 , s 00). Thus ∼ is an equivalence relation. 

11Some authors write RS instead of S−1 R. 
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The set of equivalence classes is denoted by S−1 R and is called the localiza-
tion12 of R with respect to S. Addition and multiplication are defined in Re by 
(r, s) + (r 0 , s 0) = (rs 0 + sr 0 , ss 0) and (r, s)(r 0 , s 0) = (rr 0 , ss 0). Simple variants
of the arguments in Section 2 show that these operations descend to operations 
on S−1 R. For example, with addition let (r, s), (r 0 , s 0), and (r 00 , s 00) be in Rewith 
(r 0 , s 0) ∼ (r 00 , s 00), i.e., with t 0(r 0s 00 − s 0r 00) = 0 for some t 0 ∈ S. Then the 
equivalence 

) = (r, s) + (r 00 , s 00(r, s) + (r 0 , s 0) = (rs 0 + sr 0 , ss 0) ∼ (rs 00 + sr 00 , ss 00 ) 

holds because 

)ss 00 − (rs 00 + sr 00 (r 0s 00 − s 0r 00t 0 
° 
(rs 0 + sr 0 )ss 0

¢ 
= s2t 0 ) = 0. 

Similarly multiplication is well defined.
The result is that S−1 R is a commutative ring with identity and that the mapping 

r 7→ r∗, where r∗ is the class of (r, 1), is a ring homomorphism of R into S−1 R 
carrying 1 to 1. Let us observe the following simple properties of S−1 R: 

(i) S−1 R = 0 if and only if 0 is in S, since S−1 R = 0 if and only if 
(1, 1) ∼ (0, 1), if and only if t (1 · 1 − 1 · 0) = 0 for some t ∈ S. 

(ii) r 7→ r∗ is one-one if and only if S contains no zero divisors, since r∗ = 0 
if and only if (r, 1) ∼ (0, 1), if and only if tr = 0 for some t ∈ S. 

(iii) s∗ is a unit in S−1 R for each s ∈ S, since the class of (1, s) is a multi-
plicative inverse for s∗ . 

(iv) every member of S−1 R is of the form (s∗ )−1r∗ for some r ∈ R and s ∈ S,
since (r, s) = (r, 1)(1, s) is the class of r∗ (s∗ )−1. 

(v) S−1 R is an integral domain if R is an integral domain and 0 is not in S. 
In working with localizations, we shall normally drop the superscript ∗ on the 
image r∗ in S−1 R of an element r of R. 
Localizations arise in algebraic number theory and in algebraic geometry. In

applications to algebraic number theory, the ring R typically is an integral domain, 
and therefore the map r 7→ r∗ is one-one. In applications to algebraic geometry, 
S may have zero divisors. 

EXAMPLES OF LOCALIZATIONS. 
(1) R is arbitrary, and S = {1}. Then S−1 R = R. 

12Some authors use a term like “ring of fractions” or “ring of quotients” in connection with
localization in the general case or in some special cases. We shall not use these terms. In any event,
“ring of quotients” is emphatically not to be confused with “quotient ring” as in Chapter IV, which
is the coset space of a ring modulo an ideal. 
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(2) R is arbitrary, and S = {nonzero elements that are not zero divisors in R}. 
Then every nonzero element of S−1 R is a zero divisor or is a unit. In this example 
when S consists of all members of R other than 0, then R is an integral domain 
and S−1 R is the field of fractions of R. 
(3) R is arbitrary, P is a prime ideal in R, and S is the set-theoretic complement 

of P . The identity is in S since P is proper. The prime nature of P is used in 
checking that S is a multiplicative system: if s and t are in S, then neither is in 
P , by definition, and their product st cannot be in P since P is prime; thus the 
product st is in S. With these definitions, 

S−1 R is often denoted by RP 

and is called the localization of R at the prime P . In practice this is the most 
important example of a localization,13 directly generalizing the construction of
the field of fractions of an integral domain as the localization at the prime ideal 0.
Here are some special cases, K being a field in the cases in which it occurs: 

(a) When R = Z and P = ( p) for a prime number p, the set S consists 
of nonzero integers not divisible by p, and RP is the subset of all members of Q
whose denominators are not divisible by p. 

(b) When R = K[X] and P = (X −c), the set S consists of all polynomials 
that are nonvanishing at c, and RP is the set of formal rational expressions in X 
that are finite at c. 

(c) When R = K[X, Y ] and P = (X − c, Y − d), the set S consists of 
all polynomials in X and Y that are nonvanishing at (c, d), and RP is the set of 
formal rational expressions in X and Y that are finite at (c, d). 

(d) When R = K[X, Y ] and P = (X), the set S consists of all polynomials 
in X and Y that are not divisible by X , and RP is the set of formal rational 
expressions in X and Y that are meaningful as rational expressions in Y when X 
is set equal to 0. For example, 1/(X + Y ) is in RP , but 1/ X is not. 
(4) R is arbitrary, {Pα} is a nonempty collection of prime ideals, and S is the 

set of all elements of R that lie in none of the ideals Pα. Then S−1 R may be 
regarded as the localization of R at the set of all primes Pα. 
(5) R is arbitrary, u is an element of R, and S = {1, u, u2 , . . . }. For example, 

if R = Z/( p2), where p is a prime, and if u = p, then 0 is in S, and observation 
(i) shows that S−1 R = 0. 
(6) R is a Noetherian integral domain, E is an arbitrary set of nonzero elements 

of R, and S is the set of all finite products of members of E , including the element 

13Beware of confusing RP with R/P . The ring RP is obtained by suitably enlarging R, at least 
in the case that R is an integral domain, whereas the ring R/P is obtained by suitably factoring 
something out from R. 
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1 as the empty product. Let us see that the same S−1 R results when E is replaced 
by a certain set E 0 of units and irreducible elements of R, namely the union 
of R× and the set of all irreducible elements x in R such that x−1 is in S−1 R. 
Define T to be the set of all finite products of members of E 0. We show that 

b

S−1 R = T −1 R. If e is in E 0, then either e is a unit in R, in which case e−1 

lies in R and therefore also S−1 R, or e is irreducible in R with e−1 in S−1 R. 
Passing to finite products of members of E 0, we see that T −1 ⊆ S−1 R. Hence 
T −1 R ⊆ S−1 R. Now let s be in S, and use Proposition 8.33 to write s as a 
product of irreducible elements s Then s−1 s−1(s1 · sj 

sj indicating a missing factor. By construction, each sj is in E 0. Therefore 
each sj is in T , and s is in T . Consequently S ⊆ T , and S−1 R ⊆ T −1 R. 

s1 · · · sn . sn),= = · · · · ·j
with b

The localization of R at S is characterized up to canonical isomorphism by the
same kind of universal mapping property that characterizes the field of fractions
of an integral domain. To formulate a proposition, let us write η for the homo-
morphism r 7→ r∗ of R into S−1 R. Then the pair (S−1 R, η) has the universal 
mapping property stated in Proposition 8.46 and illustrated in Figure 8.7. 

ϕR −−−→ T 

η 


y

S−1 R 

eϕ 

FIGURE 8.7. Universal mapping property of the localization of R at S. 

Proposition 8.46. Let R be a commutative ring with identity, let S be a 
multiplicative system in R, let S−1 R be the localization of R at S, and let η be the 
canonical homomorphism of R into S−1 R. Whenever ϕ is a ring homomorphism 
of R into a commutative ring T with identity such that ϕ(1) = 1 and such that 
ϕ(s) is a unit in T for each s ∈ S, then there exists a unique ring homomorphism 
ϕ : S−1 R → T such that ϕ 

e

ee ϕη. 

PROOF. If (r, s) with s ∈ S is a pair in Re, we define 8(r, s) = ϕ(r)ϕ(s)−1. 
This is well defined since ϕ(s) is assumed to be a unit in T . Let us see that 
8 is consistent with the equivalence relation, i.e., that (r, s) ∼ (r 0 , s 0) implies 
8(r, s) = 8(r 0 , s 0). Since (r, s) ∼ (r 0 , s 0), we have u(rs0 − r 0s) = 0 for some 
u ∈ S, and therefore also ϕ(u)(ϕ(r)ϕ(s0) − ϕ(r 0)ϕ(s)) = 0. Since ϕ(u) is a 
unit, ϕ(r)ϕ(s0) = ϕ(r 0)ϕ(s). Hence 8(r, s) = ϕ(r)ϕ(s)−1 = ϕ(r 0)ϕ(s0)−1 = 
8(r 0 , s 0), as required.
We can thus define ϕ of the class of (r, s) to be 8(r, s), and ϕ is well defined 

as a function from S−1 R to T . It is a routine matter to check that
ϕ(η(r)) 

= 

e

homomorphism. If r is in R, then
e

e

e
ϕ is a ring 

= ϕ(class of (r, 1)) = 8(r, 1) = 
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ϕ(r)ϕ(1)−1, and this equals ϕ(r) since ϕ is assumed to carry 1 into 1. Therefore 
ϕη = ϕ.e
For uniqueness, observation (iv) shows that the most general element of S−1 R 

is of the form η(r)η(s)−1 with r ∈ R and s ∈ S. Since (eϕη)(r) = ϕ(r)
and (eϕη)(s) = ϕ(s), we must have eϕ(η(r)η(s)−1) = ϕe(η(r))eϕ(η(s))−1 = 
ϕ(r)ϕ(s)−1. Therefore ϕ uniquely determines ϕ. §e

We shall examine the relationship between ideals in R and ideals in the local-
ization S−1 R. If I is an ideal in R, then S−1 I = {s−1i | s ∈ S, i ∈ I } is easily 
checked to be an ideal in S−1 R and is called the extension of I to S−1 R. If J 
is an ideal in S−1 R, then R ∩ J , i.e., the inverse image of J under the canonical 
homomorphism η : R → S−1 R, is an ideal in R and is called the contraction 
of J . 

Proposition 8.47. Let R be a commutative ring with identity, and let S−1 R 
be a localization. If J is an ideal in S−1 R, then S−1(R ∩ J ) = J . Consequently 
the mapping I 7→ S−1 I is a one-one mapping of the set of all ideals I in R of 
the form I = R ∩ J onto the set of all ideals in S−1 R, and this mapping respects 
intersections and inclusions. 

REMARKS. As in the definition of contraction, R ∩ J means η−1(J ), where 
η : R → S−1 R is the canonical homomorphism. The map I 7→ S−1 I that carries 
arbitrary ideals of R to ideals of S−1 R need not be one-one; the localization could
for example be the field of fractions of an integral domain and have only trivial
ideals. The proposition says that the map I 7→ S−1 I is one-one, however, when 
restricted to ideals of the form I = R ∩ J . 

PROOF. From the facts that R ∩ J ⊆ J and J is an ideal in S−1 R, we obtain 
S−1(R ∩ J ) ⊆ S−1 J ⊆ J . For the reverse inclusion let x be in J , and write 
x = s−1r with r in R and s in S. Then sx = r is in R ∩ J , and therefore x is in 
S−1(R ∩ J ). 
For the conclusion about the mapping I 7→ S−1 I , the mapping is one-one 

because S−1(R ∩ J1) = S−1(R ∩ J2) implies J1 = J2 by what we have just 
shown; hence R ∩ J1 = R ∩ J2. The mapping is onto because if J is given, 
then J = S−1(R ∩ J ) by what has already been shown. To see that the mapping
respects the intersection of ideals, let ideals R ∩ Jα be given for α in some 
nonempty set. Then 

S−1°T 
(R ∩ Jα)

¢ 
= S−1(R ∩ 

T 
Jα) = 

T 
Jα = 

T 
S−1(R ∩ Jα). α α α α 

Finally the fact that the mapping respects the intersection of two ideals implies
that it respects inclusions. § 
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Corollary 8.48. Let R be a commutative ring with identity, and let S−1 R be 
a localization. 
(a) If R is Noetherian, then S−1 R is Noetherian. 
(b) If every nonzero prime ideal in R is maximal, then the same thing is true 

in S−1 R. 
(c) If R is an integral domain that is integrally closed and if S−1 R is not zero, 

then S−1 R is integrally closed. 
(d) If I is an ideal in R, then the ideal S−1 I of S−1 R is proper if and only if 

I ∩ S = ∅. 
PROOF. For (a), let {Jα} be a nonempty collection of ideals in S−1 R. Con-

traction of ideals is one-one by the first conclusion of Proposition 8.47, and it
respects inclusions because it is given by the inverse image of a function. Since R 
is Noetherian, Corollary 8.31b produces a maximal element R ∩ J from among 
the ideals R ∩ Jα of R. The first and second conclusions of Proposition 8.47 
together show that J = S−1(R ∩ J ) ⊇ S−1(R ∩ Jα) = Jα for all α. Hence J is 
maximal among the Jα. 
For (b), let J1 be a nonzero prime ideal in S−1 R. Arguing by contradiction, 

suppose that J2 is an ideal in S−1 R with J1 $ J2 $ S−1 R. Then R ∩ J1 ⊆ 
R ∩ J2 ⊆ R. If either of these inclusions were an equality, then use of the second
conclusion of Proposition 8.47 would give a corresponding equality for J1, J2, R,
and there is no such equality. Hence R ∩ J1 $ R ∩ J2 $ R. 
If J1 is prime in S−1 R, then R ∩ J1 is prime in R: In fact, if a and b are 

members of R such that ab is in R ∩ J1, then ab is in J1, and either a or b must be 
in J1 since J1 is prime. Since a and b are both in R, one of a and b is in R ∩ J1. 
Thus R ∩ J1 is prime.14 

By assumption for (b), R ∩ J1 is then maximal in R, and this conclusion 
contradicts the fact that R ∩ J1 $ R ∩ J2 $ R. The assumption that J2 exists has 
thus led us to a contradiction. Consequently there can be no such J2, and J1 is a 
maximal ideal in S−1 R. 
For (c), let F be the field of fractions of R, so that R ⊆ S−1 R ⊆ F . The field 

of fractions of S−1 R is the field F as a consequence of Proposition 8.6. If x is a 
member of F that is integral over S−1 R and if x satisfies xn +bn−1xn−1+· · ·+b0 = 
0 with coefficients in S−1 R, then we can find a common element s of S and rewrite 
this equation as 

xn + (s−1an−1)xn−1 + · · · + (s−1a0) = 0 

with an−1, . . . , a0 in R. Multiplying by sn , we obtain 

(sx)n + an−1(sx)n−1 + · · · + a1sn−2(sx) + a0sn−1 = 0. 
14Problem 9 at the end of the chapter puts this argument in a broader context. 

http:prime.14
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Therefore sx is integral over R. Since R is integrally closed, sx is in R. Write 
r = sx . Then x = s−1r with r in R and s in S. Hence x is exhibited as in S−1 R,
and we conclude that S−1 R is integrally closed. 
For (d), suppose that I ∩ S is nonempty. If s is in I ∩ S, then 1 = s−1s is 

in S−1 I and the ideal S−1 I equals S−1 R. Conversely if S−1 I = S−1 R, then 1 
is in S−1 I = {s−1i | s ∈ S, i ∈ I }, and hence 1 = s−1i for some s and i ;
consequently I ∩ S contains the element i = s. § 

A local ring is a commutative ring with identity having a unique maximal
ideal. An equivalent definition is given in Proposition 8.49 below, and then it
follows that the localization S−1 R of Example 2 earlier in this section is a local
ring. Corollary 8.50 below will produce a more useful example: localization with
respect to a prime ideal, as in Example 3 earlier, always yields a local ring.15 

Proposition 8.49. A nonzero commutative ring R with identity is a local ring 
if and only if the nonunits of R form an ideal. 

REMARK. The zero ring is not local, having no proper ideals, and its set of
nonunits is empty, hence is not an ideal. 

PROOF. If the nonunits of R form an ideal, then that ideal is a unique maximal
ideal since a proper ideal cannot contain a unit; hence R is local. Conversely 
suppose that R is local and that M is the unique maximal ideal. If x is any 
nonunit, then the principal ideal (x) is a proper ideal since 1 is not of the form xr . 
By Proposition 8.8, (x) is contained in some maximal ideal, and we must have 
(x) ⊆ M since M is the unique maximal ideal. Then x is in M , and we conclude 
that every nonunit is contained in M . § 

Corollary 8.50. Let R be an integral domain, let P be a prime ideal of R, let 
S be the set-theoretic complement of P , and let RP = S−1 R be the localization 
of R at P . Then RP is a local ring, its unique maximal ideal is M = S−1 P , and 
P can be recovered from M as P = R ∩ M . If Q is any prime ideal of R that is 
not contained in P , then S−1 Q = S−1 R. 

PROOF. The subset S−1 P of S−1 R is an ideal by Proposition 8.47, and Corol-
lary 8.48d shows that it is proper. Every member of S−1 R that is not in S−1 P 
is of the form s 0−1s with s and s 0 in S and hence is a unit. Since no unit lies in 
any proper ideal, S−1 R has M = S−1 P as its unique maximal ideal, and S−1 R 
is local by Proposition 8.49. 

15For Example 3 with R = K[X] and P = (X − c), the sense in which the ring RP is “local” 
has a geometric interpretation: the only spot in K where we can regard members of RP as K-valued 
functions is “near” the point c, with “near” depending on the element of RP . See the discussion 
after the proof of Corollary 8.50 below. 
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The contraction R ∩ M consists of all elements in R of the form s−1 p with s 
in S and p in P . Let us see that the contraction equals P . Certainly R ∩ M ⊇ P . 
For the reverse inclusion the equation s−1 p = r says that p = rs. If r is not in 
P , then the facts that s is not in P and P is prime imply that p = rs is not in P ,
contradiction. Thus r is in P , and we conclude that P can be recovered from M 
as P = R ∩ M . 
If Q is any prime ideal of R that is not contained in P , then S−1 Q = S−1 R. In 

fact, any element q of Q that is not in P is in S; therefore 1 is in the ideal S−1 Q,
and S−1 Q = S−1 R. § 

The construction of RP in the corollary reduces to the construction of the 
field of fractions of R if P = 0. Other interesting and typical cases occur for 
suitable nonzero P’s when R = K[X, Y ], K being a field. One such prime ideal 
is P = (X − c, Y − d); then, as was mentioned in connection with Example 3
above, the localization of R at P consists of the rational expressions f (X, Y )
that are well defined at (c, d). The maximal ideal in this case consists of all such 
rational expressions that are 0 at (c, d). Another example of a nonzero prime 
ideal in R = K[X, Y ] is P = (X); then the localization of R at P consists of 
the rational expressions f (X, Y ) whose denominators are not divisible by X ,
and the maximal ideal consists of all such rational expressions f (X, Y ) whose 
numerators are divisible by X if f is written in lowest terms. 
A number-theoretic analog of the localizations of the previous paragraph is the

localization of R = Z at ( p), where p is a prime number. The discussion with 
Example 3 above mentioned that the localization consists of all members of Q
with no factor of p in the denominator. In this case the maximal ideal consists 
of those rationals q whose numerators are divisible by p if q is written in lowest 
terms. 

We conclude this section with introductory remarks about a product operation
on ideals. Let R be a nonzero commutative ring with identity. If I and J are ideals 
in R, then once again I J denotes16 the set of all sums of products of a member of 
I by a member of J . Certainly I J is closed under addition and negatives, and the 
fact that r(I J ) = (r I )J ⊆ I J for r ∈ R shows that I J is an ideal. Localization 
with respect to a prime ideal is a handy tool for extracting information about
products of ideals. We illustrate with Propositions 8.52 and 8.53 below. The first
of these will play an important role in Section 11. 

16Sometimes, such as in the equality S−1 S−1 = S−1, the product notation is meant to refer only
to the set of all products, not to all sums of products. With ideals we are to allow sums of products.
The applicable convention will normally be clear from the context, but we shall be explicit when
there might be a possibility of confusion. 
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Lemma 8.51 (Nakayama’s Lemma). Let R be a commutative ring with 
identity, let I be an ideal of R contained in all maximal ideals, and let M be 
a finitely generated unital R module. If I M = M , then M = 0. 

REMARK. Here I M means the set of sums of products of a member of I by a 
member of M . The lemma applies to no ideals if R = 0. 

PROOF. We induct on the number of generators of M . If M is singly generated, 
say by a generator m, then the hypothesis I M = M implies that rm = m for 
some r in I . Thus (1 − r)m = 0. If 1 − r is a unit, then we can multiply by its 
inverse and obtain m = 0; we conclude that M = 0. If 1 − r is not a unit, then 
it lies in some maximal ideal P , by application of Proposition 8.8 to the proper 
principal ideal (1 − r). Since r lies in P by hypothesis, 1 lies in P , and we have 
a contradiction to the fact that P is proper.
Suppose that the lemma holds for n − 1 or fewer generators, and let M be 

generated by m1, . . . , mn . Since I M = M , we have 
Pn

j=1 rjmj = m1 for 
suitable r1, . . . , rn in I . Then (1 − r1)m1 = 

Pn
j=2 rjmj . If 1 − r1 is a unit, then 

we can multiply by its inverse and see that the generator m1 is unnecessary; we 
conclude that M = 0 by induction. If 1 − r1 is not a unit, then it lies in some 
maximal ideal P . Since r1 lies in P by hypothesis, 1 lies in P , and we have a 
contradiction. § 

Proposition 8.52. Let R be a Noetherian commutative ring, and let I and P 
be ideals in R with P prime. If I P = I , then I = 0. 

PROOF. Let us localize with respect to the prime ideal P . If we write S for the 
set-theoretic complement of P in R, then RP = S−1 R is a local ring by Corollary 
8.50, and its unique maximal ideal is S−1 P . Since (S−1 I )(S−1 R) = S−1 I R = 
S−1 I , S−1 I is an ideal in RP . Also, (S−1 I )(S−1 P) = S−1 I P = S−1 I , and 
S−1 I has to be proper. In Nakayama’s Lemma (Lemma 8.51), let us take M to 
be the S−1 R module S−1 I . Since S−1 P is the only maximal ideal in S−1 R, M is 
contained in all maximal ideals of S−1 R. Since R is Noetherian, Corollary 8.48a 
shows S−1 R to be Noetherian, and the ideal S−1 I is a finitely generated S−1 R 
module by Corollary 8.31c. The lemma applies since (S−1 P)(S−1 I ) = S−1 I ,
and the conclusion is that S−1 I = 0. Then the subset I of S−1 I must be 0. § 

Proposition 8.53. Let R be an integral domain, F be its field of fractions, 
K be any field containing F , and T be the integral closure of R in K . If P is a 
maximal ideal in R, then PT 6= T , and there exists a maximal ideal Q of T with 
P = R ∩ Q. 

REMARKS. This result inverts the construction of Proposition 8.43, of course
not necessarily uniquely. The examples in Section 7 illustrate what can happen 
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in simple cases. More detailed analysis of what can happen in general requires
some field theory and is postponed to Chapter IX, specifically when we discuss
“splitting of prime ideals in extensions.” 
PROOF. If PT 6= T , then Proposition 8.8 supplies a maximal ideal Q of T 

with PT ⊆ Q. Since 1 is not in Q, we then have P ⊆ R ∩ Q $ R. Consequently 
the maximality of P implies that P = R ∩ Q. 
Arguing by contradiction, we now assume that PT = T . Localizing, let S 

be the set-theoretic complement of P in R, so that S−1 P is the unique maximal 
ideal of S−1 R by Corollary 8.50. From PT = T , we can write 

1 = a1t1 + · · · + antn (∗) 

with each ai in P and each ti in T . If we define T0 to be the subring R[t1, · · · , tn]
of T , then T0 is a finitely generated R module by Proposition 8.37, and S−1T0 

is therefore a finitely generated S−1 R module. Equation (∗) shows that 1 lies 
in PT0. Multiplying by an arbitrary element of T0, we see that PT0 = T0. 
Since S−1 S−1 = S−1, we obtain (S−1 P)(S−1T0) = S−1T0. Nakayama’s Lemma 
(Lemma 8.51) allows us to conclude that S−1T0 = 0. Since 1 lies in T0, we have 
arrived at a contradiction. § 

11. Dedekind Domains 

A Dedekind domain is an integral domain with the following three properties: 
(i) it is Noetherian,
(ii) it is integrally closed,
(iii) every nonzero prime ideal is maximal. 

Every principal ideal domain R is a Dedekind domain. In fact, (i) every ideal 
in R is singly generated, (ii) R is integrally closed by Proposition 8.41, and (iii) 
every nonzero prime ideal in R is maximal by Corollary 8.16.
We shall be interested in Dedekind domains that are obtained by enlarging a

principal ideal domain suitably. The general theorem in this direction is that if 
R is a Dedekind domain with field of fractions F and if K is a field containing 
F with dimF K finite, then the integral closure of R in K is a Dedekind domain. 
Let us state something less sweeping. 

Theorem 8.54. If R is a Dedekind domain with field of fractions F and if K 
is a field containing F with dimF K finite, then the integral closure T of R in K 
is a Dedekind domain if any of the following three conditions holds: 

(a) T is Noetherian, 
(b) T is finitely generated as an R module,
(c) the field extension F ⊆ K is “separable.” 
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REMARKS. The term “separable” will be defined in Chapter IX, and the fact that
(c) implies (b) will be proved at that time. It will be proved also that characteristic 0
implies separable. For now, we shall be content with showing that (b) implies (a)
and that (a) implies that T is a Dedekind domain. 

PROOF. We are given that R satisfies conditions (i), (ii), (iii) above, and we are 
to verify the conditions for T . Condition (ii) holds for T by Corollary 8.40, and 
Proposition 8.45 shows that (iii) holds. If (a) holds, then T satisfies the defining 
conditions of a Dedekind domain. 
Let us see that (b) implies (a). If (b) holds, then Proposition 8.34 shows that 

every R submodule of T is finitely generated. Since T ⊇ R, every T submodule 
of T is finitely generated. That is, every ideal of T is finitely generated, and T is 
Noetherian. Thus (a) holds, and the proof is complete. § 

Example 2 of integral closures in Section 9 showed that the integral closure of p
Z in Q( m ) is doubly generated as a Z module, a set of generators being either p 1 p
{1, m } or {1, 2 (1 + m )}, depending on the value of m. Example 3 showed, 
under the assumption that K has characteristic different from 2, that the integral 
closure of K[x] in K(x)[

p
P(x) ] is doubly generated as a K[x] module, a set of p

generators being {1, P(x) }. Since Z and K[x] are principal ideal domains and
hence Dedekind domains, these examples give concrete cases in which hypothesis
(b) in Theorem 8.54 is satisfied. Consequently in each case the theorem asserts
that a certain explicit integral closure is a Dedekind domain. 

Theorem 8.55 (unique factorization of ideals). If R is a Dedekind domain, 
then each nonzero proper ideal I in R decomposes as a finite product 

Qn 
=1 P

kj ,j j
where the Pj ’s are distinct nonzero prime ideals and the kj ’s are positive integers. 
Moreover, 

(a) the decomposition into positive powers of distinct nonzero prime ideals
is unique up to the order of the factors,

(b) the power Pk of a nonzero prime ideal P appearing in the decomposition 
of I is characterized as the unique nonnegative integer such that Pk 
contains I and Pk+1 does not contain I (with k = 0 interpreted as saying 
that P is not one of the Pj ),

(c) whenever I, J1, J2 are nonzero ideals with I J1 = I J2, then J1 = J2,
(d) whenever I and J1 are two nonzero proper ideals with I ⊆ J1, then there 

exists a nonzero ideal J2 with I = J1 J2. 

Let us say that a nonzero ideal J1 divides a nonzero ideal I if I = J1 J2 for 
some ideal J2. We say also that J1 is a factor of I . Conclusion (d), once it
is established, is an important principle for working with ideals in a Dedekind
domain: to contain is to divide. 
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Thinking along these lines leads us to expect that prime ideals play some
special role with respect to containment. Such a role is captured by the following
lemma. 

Lemma 8.56. In an integral domain, if P is a prime ideal such that 
P ⊇ I1 · · · In for the product of the ideals I1, . . . , In , then P ⊇ Ij for some j . 

PROOF. By induction it is enough to handle n = 2. Thus suppose P ⊇ I1 I2. 
We are to show that P ⊇ I1 or P ⊇ I2. Arguing by contradiction, suppose 
on the contrary that x ∈ I1 and y ∈ I2 are elements with x ∈/ P and y ∈/ P . 
Then xy cannot be in P since P is prime, but xy is in I1 I2 ⊆ P , and we have a 
contradiction. § 

Lemma 8.57. Let R be a Dedekind domain, and let I be a nonzero ideal of 
R. Then there exists a finite product P1 · · · Pk of nonzero prime ideals, possibly
empty and not necessarily having distinct factors, such that P1 · · · Pk ⊆ I . 

PROOF. We argue by contradiction. Among all nonzero ideals for which there
is no such finite product, choose one, say J , that is maximal under inclusion. 
This choice is possible since R is Noetherian. The ideal J cannot be prime since 
otherwise J ⊆ J would be the containment asserted by the lemma. Thus we can 
choose elements a1 and a2 in R with a1a2 ∈ J , a1 ∈/ J , and a2 ∈/ J . Define 
ideals I1 and I2 by I1 = J + Ra1 and I2 = J + Ra2. These strictly contain 
J , and their product manifestly has I1 I2 ⊆ J . By maximality of J , we can find 
products P1 · · · Pk and Q1 · · · Ql of nonzero prime ideals with P1 · · · Pk ⊆ I1 and 
Q1 · · · Ql ⊆ I2. Then P1 · · · Pk Q1 · · · Ql ⊆ I1 I2 ⊆ J , contradiction. § 

Lemma 8.58. Let R be a Dedekind domain, regard R as embedded in its field 
of fractions F , let P be a nonzero prime ideal in R, and define 

P−1 = 
©
x ∈ F | x P ⊆ R

™ 
. 

Then the set PP−1 of sums of products equals R. 

PROOF. By definition of P−1, P ⊆ PP−1 ⊆ R. Since P is an ideal and 
PP−1 is closed under addition and negatives, PP−1 is an ideal. Property (iii) of 
Dedekind domains shows that P is a maximal ideal in R, and therefore PP−1 = P 
or PP−1 = R. We are to rule out the first alternative. 
Thus suppose that PP−1 = P . Since R is Noetherian by (i), P is a finitely 

generated R submodule of F . The equality PP−1 = P implies that each member 
x of P−1 has x P ⊆ P , and Proposition 8.35c implies that each such x is integral 
over R. Since R is integrally closed by (ii), x is in R. Thus P−1 ⊆ R, and the 
definition of P−1 shows that P−1 = R. 
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Fix a nonzero element a of P . Applying Lemma 8.57, find a product of 
nonzero prime ideals such that P1 · · · Pk ⊆ (a) ⊆ P . Without loss of generality, 
we may assume that k is as small as possible among all such inclusions. Since 
P is prime and P1 · · · Pk ⊆ P , Lemma 8.56 shows that P contains some Pj , say 
P1. By (iii), P1 is maximal, and therefore P = P1. Form the product P2 · · · Pk ,
taking this product to be R if k = 1. Then P2 · · · Pk is not a subset of (a), by 
minimality of k, and there exists a member b of P2 · · · Pk that is not in (a). On 
the other hand, PP2 · · · Pk ⊆ (a) shows that Pb ⊆ (a), hence that a−1bP ⊆ R. 
Thus a−1b is in P−1, which we are assuming is R. In other words, a−1b is in R,
and b is in aR = (a), contradiction. § 

PROOF OF THEOREM 8.55. Arguing by contradiction, we may assume because 
R is Noetherian that I is maximal among the nonzero proper ideals that do not
decompose as products of prime ideals. Then certainly I is not prime. Application 
of Proposition 8.8 produces a maximal ideal P containing I , and P is prime 
by Corollary 8.11. Multiplying I ⊆ P by P−1 as in Lemma 8.58, we obtain 
I ⊆ P−1 I ⊆ P−1 P = R, the equality holding by Lemma 8.58. Hence P−1 I 
is an ideal. An equality I = P−1 I would imply that P I = PP−1 I = I by
Lemma 8.58, and then Proposition 8.52 would yield I = 0, a contradiction 
to the hypothesis that I is nonzero. An equality P−1 I = R would imply 
I = PP−1 I = PR = P by Lemma 8.58, in contradiction to the fact that 
I is not prime. We conclude that I $ P−1 I $ R. The maximal choice 
of I shows that P−1 I decomposes as a product P−1 I = P1 · · · Pr of prime 
ideals, not necessarily distinct. One more application of Lemma 8.58 yields 
I = PP−1 I = PP1 · · · Pr , and we have a contradiction. We conclude that every
nonzero proper ideal decomposes as a product of prime ideals. Grouping equal
factors, we can write the decomposition as in the statement of the theorem.
Next let us establish uniqueness as in (a). Suppose that we have two equal

decompositions P1 · · · Pr = Q1 · · · Qs as the product of prime ideals, and suppose 
that r ≤ s. We show by induction on r that r = s and that the factors on the 
two sides match, apart from their order. The base case of the induction is r = 0,
and then it is evident that s = 0. Assume the uniqueness for r − 1. Since P1 is 
prime and P1 ⊇ Q1 · · · Qs , P1 ⊇ Qj for some j by Lemma 8.56. By (iii) for 
Dedekind domains, Qj is a maximal ideal, and therefore P1 = Qj . Multiplying 
the equality P1 · · · Pr = Q1 · · · Qs by P−1 and applying Lemma 8.58 to each 1
side, we obtain P2 · · · Pr = Q1 · · · Qj−1 Qj+1 · · · Qs . The inductive hypothesis 
implies that r − 1 = s − 1 and the factors on the two sides match, apart from
their order. Then we can conclude about the equality P1 · · · Pr = Q1 · · · Qs that 
r = s and that the factors on the two sides match, apart from their order. This 
proves (a).
Let us establish the formula in (b) for kj . Suppose that P is a prime ideal. 
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By (a), we can write I = Pn J for a certain integer n ∏ 0 in such a way that P 
does not appear in the unique decomposition of J . Certainly Pk ⊇ I for k ≤ n 
because Pk ⊇ Pk Pn−k = Pn ⊇ Pn J = I . Suppose Pn+1 ⊇ I . Multiplying
Pn+1 ⊇ I = Pn J by n factors of P−1 and using Lemma 8.58 repeatedly, we 
obtain P ⊇ P−n I = J . Since P is prime, Lemma 8.56 shows that P must 
contain one of the factors when J is decomposed as the product of prime ideals,
and we have a contradiction to the maximality of this factor unless this factor is
P itself. In this case, P appears in the decomposition of J , and again we have a 
contradiction. 
For (c), if I J1 = I J2, substitute the unique decompositions as products of 

prime ideals for I , J1, and J2, and use (a) to cancel the factors from I on each 
side, obtaining J1 = J2. 
For (d), suppose that I and J1 are two nonzero proper ideals with I ⊆ J1. If 

Pi
ki is the largest power of a prime ideal Pi appearing in the decomposition of J1, 

then Pi
ki ⊇ J1 ⊇ I , and (b) shows that Pi

ki appears in the decomposition of I . In 
other words, if li is the largest power of Pi appearing in the decomposition of I , 
then li ∏ ki . Let J2 = 

Q
i P

li −ki . Then we obtain I = J1 J2, and (d) is proved. §i 

Corollary 8.59. Let R be a Dedekind domain, and let P be a nonzero prime 
ideal in R. Then there exists an element π in P such that π is not in P2, and any 
such element has the property that π k is not in Pk+1 for any k ∏ 1. 

PROOF. Proposition 8.52 shows that P2 is a proper subset of P , and therefore 
we can find an element π in P that is not in P2. Since the principal ideal (π) has 
(π) ⊆ P and (π) $ P2, the factorization of (π) involves P but not P2. Thus we 
can use Theorem 8.55 to write (π) = PQ1 · · · Qn for prime ideals Q1, . . . , Qn 

different from P . Then (π k ) = (π)k = PkQ1
k · · · Qk , and (b) of the theorem n

says that Pk+1 does not contain (π k ). § 

Corollary 8.60. Let R be a Dedekind domain, and let P be a nonzero prime 
ideal in R. For any integer e ∏ 1, the natural action of R on powers of P 
makes Pe−1/Pe into a vector space over the field R/P , and this vector space is 
1-dimensional. 

REMARKS. This technical-sounding corollary will be used crucially late in
Chapter IX of this volume and again in Chapter V of Advanced Algebra. 

PROOF. Since R(Pe−1) ⊆ Pe−1 and P(Pe−1) ⊆ Pe, we obtain 

(R/P)(Pe−1/Pe) ⊆ Pe−1/Pe . 

Thus Pe−1/Pe is a unital R/P module, i.e., a vector space over the field R/P . 
We show that it has dimension 1. Corollary 8.59 shows that there exists a member 
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π of P not in P2, and it shows that π k is not in Pk+1 for any k. This element 
π has the property that (π) = PQ1 · · · Qr for nonzero prime ideals Q1, . . . , Qr 
distinct from P , and thus 

Rπ e−1 = (π e−1) = (π)e−1 Pe−1 Qe−1 · Qe−1= · · .1 r 

Hence 
Rπ e−1 + Pe = Pe−1(Q1 

e−1 · · · Qr
e−1 + P). 

The ideal in parentheses on the right side strictly contains P since the failure 
of P to divide Qe−1 · · · Qe−1 means that P does not contain Qe−1 · · · Qe−1 (by1 r 1 r
Theorem 8.55d). Since P is maximal, the ideal in parentheses is R, and we see 
that R(π e−1 + Pe) = Pe−1/Pe. Therefore (R/P)(π e−1 + Pe) = Pe−1/Pe. This 
formula says that Pe−1/Pe consists of all scalar multiples of a certain element, 
and it follows that Pe−1/Pe is 1-dimensional. § 

Lemma 8.61. If P and Q are distinct maximal ideals in an integral domain R 
and if k and l are positive integers, then Pk + Ql = R. 
PROOF. We know that Pk + Ql is an ideal. Arguing by contradiction, assume

that it is proper. Then we can find a maximal ideal M with M ⊇ Pk + Ql . This 
M satisfies M ⊇ Pk and M ⊇ Ql . By Lemma 8.56, M ⊇ P and M ⊇ Q. Since 
P and Q are distinct and maximal, we obtain P = M = Q, contradiction. § 

Corollary 8.62. If R is a Dedekind domain with only finitely many prime 
ideals, then R is a principal ideal domain. 
REMARKS. Corollary 8.48 may be used to produce examples to which Corol-

lary 8.62 is applicable. All we have to do is to take one of our standard Dedekind
domains R and localize with respect to a nonzero prime ideal P . The corollary 
says that the result RP is a Dedekind domain, and it has a unique maximal ideal,
hence a unique nonzero prime ideal. The conclusion is that RP is a principal 
ideal domain. 
PROOF. Let P1, . . . , Pn be the distinct nonzero prime ideals. Theorem 8.55

shows that any nonzero ideal I in R factors uniquely as I = Pk1 · · · Pkn with1 n
each kj ∏ 0. For 1 ≤ i ≤ n, Corollary 8.59 produces πi in Pi such that πi is not 
in Pi

2, and it shows that πm is not in Pm+1.i i 
Lemma 8.61 gives Pi

ki + Pj
kj = R if i 6 j . Applying the Chinese Remainder = 

kiTheorem (Theorem 8.27a), we can find an element a in R with a ≡ π mod Pki +1 
i i 

for 1 ≤ i ≤ n. Using Theorem 8.55 again, let (a) = Pl1 · · · Pln be the unique 1 n
factorization of the principal ideal (a). The defining property of a shows that a 
is in Pki but not Pki +1 for each i . Thus (a) is contained in Pki but not in Pki +1.i i i i 
By Theorem 8.55b, li = ki for each i . Hence the ideal I = Pk1 · · · Pkn = (a) is1 n
exhibited as principal. § 
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Corollary 8.63. If R is a Dedekind domain and if I = 
Qn

j=1 Pj
kj is the unique 

factorization of a nonzero proper ideal I as the product of positive powers of 
distinct prime ideals Pj , then the map r 7→ 

Qn 
=1 P

kj defined on R by r 7→j j 

(. . . , r + Pj
kj , . . . ) descends to a ring isomorphism 

= × · · .R/I ∼ R/P1 
k1 · × R/Pn

kn 

PROOF. Lemma 8.61 shows that Pki + Pj
kj = R if i =6 j . Then the result i

follows immediately from the Chinese Remainder Theorem (Theorem 8.27). § 

12. Problems 

1. This problem examines ring homomorphisms of the field of real numbers into
itself that carry 1 into 1. Let ϕ be such a homomorphism. 
(a) Prove that ϕ is the identity on Q. 
(b) Prove that ϕ maps squares into squares. 
(c) Prove that ϕ respects the ordering of R, i.e., that a ≤ b implies ϕ(a) ≤ ϕ(b). 
(d) Prove that ϕ is the identity on R. 

2. An element r in a commutative ring with identity is called nilpotent if rn = 0 
for some integer n. Prove that if r is nilpotent, then 1 + r is a unit. 

3. If R is a field, prove that the embedding of R in its field of fractions exhibits R 
as isomorphic to its field of fractions. 

4. Prove that X is prime in R[X] if R is an integral domain. 
5. Suppose that R is an integral domain that is not a field.

(a) Prove that there is a nonzero prime ideal in R[X] that is not maximal. 
(b) Prove that there is an ideal in R[X] that is not principal. 

6. This problem makes use of real-analysis facts concerning closed bounded inter-
vals of the real line. Let R be the ring of all continuous functions from [0, 1] into 
R, with pointwise multiplication as the ring multiplication.
(a) Prove for each x0 in [0, 1] that the set Ix0 of members of R that vanish at x0 

is a maximal ideal of R. 
(b) Prove that any maximal ideal I of R that is not some Ix0 contains finitely 

many members f1, . . . , fn of R that have no common zero on [0, 1].
(c) By considering f1

2+ · · · + f 2 in (b), prove that every maximal ideal of R isn 
of the form Ix0 for some x0 in [0, 1]. 

7. Let R be the ring of all bounded continuous functions from R into R, with 
pointwise multiplication as the ring multiplication. Say that a member f of R 
vanishes at infinity if for each ≤ > 0, there is some N such that | f (x)| < ≤ 
whenever |x | ∏ N . Answer the following: 
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(a) Show that the subset I∞ of all members of R that vanish at infinity is an 
ideal but not a maximal ideal. 

(b) Why must R have at least one maximal ideal I that contains I∞? 
(c) Why can there be no x0 in R such that the maximal ideal I of (b) consists 

of all members of R that vanish at x0? 

8. Let I be a nonzero ideal in Z[
p

−5 ].
(a) Prove that I contains some positive integer. 
(b) Prove that I , as an abelian group under addition, is free abelian of rank 2. 
(c) If n denotes the least positive integer in I , prove that I has a Z basis of the 

form {n, a + b
p

−5 } for a suitable member a + b
p

−5 of Z[
p

−5 ]. 

9. Let ϕ : R → R0 be a homomorphism of commutative rings with identity such 
that ϕ(1) = 1. Prove that if P 0 is a prime ideal in R0, then P = ϕ−1(P 0) is a 
prime ideal in R. 

10. Determine the maximal ideals of each of the following rings:
(a) R × R, 
(b) R[X]/(X2), 
(c) R[X]/(X2 − 3X + 2), 
(d) R[X]/(X2 + X + 1). 

11. (a) Prove or disprove: If I is a nonzero prime ideal in Q[X], then Q[X]/I is a 
unique factorization domain.

(b) Prove or disprove: If I is a nonzero prime ideal in Z[X], then Z[X]/I is a 
unique factorization domain. 

12. (Partial fractions) Let R be a principal ideal domain, and let F be its field of 
fractions. 
(a) Let n be a nonzero member of R with a factorization n = cd such that 

GCD(c, d) = 1. Prove for each m in R that the member mn−1 of F has a 
decomposition as mn−1 = ac−1 + bd−1 with a and b in R. 

(b) Let n be a nonzero member of R with a factorization n = p1 
k1 · · · prkr , the 

elements pj being nonassociate primes in R. Prove for each m in R that the 
member mn−1 of F has a decomposition as mn−1 = q1 p−k1 +· · ·+ qr pr −kr 
with all qj in R.

1 

13. (a) By adapting the proof that the ring of Gaussian integers forms a Euclidean
domain, prove that the function δ(a + b

p
−2) = a2 + 2b2 satisfies δ(rr 0) = 

δ(r)δ(r 0) and exhibits Z[
p

−2] as a Euclidean domain.
(b) It was shown in Section 9 that Z[

p
−3 ] is not a unique factorization domain,

hence cannot be a Euclidean domain. What goes wrong with continuing the
adaptation in the previous problem so that it applies to Z[

p
−3 ]? 
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14. Let G be a group, and let R be a commutative ring with identity. Examples 16
and 17 in Section 1 defined the group algebra RG and the R algebra C(G, R)

of functions from G into R, convolution being the multiplication in C(G, R). 
Prove that the mapping g 7→ fg described with Example 17 extends to an R 
algebra isomorphism of RG onto C(R, G). 

15. Let I be an ideal in Z[X], and suppose that the lowest degree of a nonzero 
polynomial in I is n and that I contains some monic polynomial of degree n. 
Prove that I is a principal ideal. 

16. For each integer n > 0, exhibit an ideal In in Z[X] that cannot be written with 
fewer than n generators. 

17. Let ϕ be the substitution homomorphism ϕ : K[x, y] → K[t] defined by x 7→ t2, 
y 7→ t3, and ϕ(c) = c for c ∈ K. 
(a) Prove that ker ϕ is the principal ideal (y2 − x3). 
(b) What is image ϕ? 

18. Let R = Z[i].
(a) Show that each unital R module M may be regarded as an abelian group

with an abelian-group homomorphism ϕ : M → M for which ϕ2 is the 
mapping m 7→ −m. 

(b) Show conversely that if M is an abelian group and there exists an abelian-
group homomorphism ϕ : M → M for which ϕ2 is the mapping m 7→ −m,
then M may be regarded as a unital R module. 

19. Let R be a unique factorization domain, and let F be its field of fractions. Let 
A(X) and B(X) be nonzero polynomials in F[X], let A0(X) and B0(X) be their 
associated primitive polynomials, and suppose that B(X) divides A(X) in F[X].
Prove that B0(X) divides A0(X) in R[X]. 

20. Prove that an integral domain with finitely many elements is a field. 
21. Two proofs of Theorem 8.18 were given, one using direct multiplication of

polynomials and the other using polynomials with coefficients taken modulo 
( p), and it was stated that proofs in both these styles could be given for Corollary
8.22. A proof in the first style was supplied in the text. Supply a proof in the
second style. 

22. Let K be a field. 
(a) Prove that det 

≥ 
W X 

¥
, when considered as a polynomial in K[W, X, Y, Z ],Y Z 

is irreducible. 
(b) Let Xi j be indeterminates for i and j from 1 to n. Doing an induction, prove 

that the polynomial det[Xi j ] is irreducible in K[X11, X12, . . . , Xnn]. 
23. Prove that two members of Z[X] are relatively prime in Q[X] if and only if the 

ideal they generate in Z[X] contains a nonzero integer. 



446 VIII. Commutative Rings and Their Modules 

24. Let V be the Z[i] module with two generators u1, u2 related by the conditions 
(1 + i)u1 + (2 − i)u2 = 0 and 3u1 + 5iu2 = 0. Express V as the direct sum of 
cyclic Z[i] modules. 

p
Z
£ 1Problems 25–26 concern the ring R = 2 (1 + −m )

§
, where m is a square-free 

integer > 1 with m ≡ 3 mod 4. Let F = Q[
p

−m ] be the field of fractions of R. 
p

25. For z = x + y −m in F , define δ(z) = x2 + my2. 
(a) Show that δ(zw) = δ(z)δ(w). 
(b) Show that if for each z in F there is some r in R with δ(z − r) < 1, then δ 

exhibits R as a Euclidean domain. 

26. Prove that the condition of part (b) of the previous problem is satisfied for m = 3,
p

7, and 11, and conclude that Z
£ 1
2 (1 + −m )

§ 
is a Euclidean domain for these 

values of m. 

Problems 27–31 classify the primes in the ring Z[i] of Gaussian integers. This ring
is a Euclidean domain and therefore is a unique factorization domain. Members of
this ring will be written as a + bi , and it is understood that a and b are in Z. Put 
N (a + bi) = (a + bi)(a − bi) = a2 + b2. 
27. Let a + bi be prime in Z[i]. Prove that 

(a) a − bi is prime. 
(b) N (a + bi) is a power of some positive prime p in Z. 
(c) N (a + bi) equals p or p2 when p is as in (b). 
(d) N (a + bi) = p2 in (c) forces a + bi = p, apart from a unit factor. 

28. Prove that no prime a + bi in Z[i] has N (a + bi) = p with p of the form 4n + 3. 
Conclude that every positive prime in Z of the form 4n + 3 is a prime in Z[i]. 

29. Prove that the only primes a + bi of Z[i] for which N (a + bi) equals 2 or 22 are 
1 + i and its associates, for which N (a + bi) = 2. 

30. Prove that if p is a positive prime in Z of the form 4n + 1, then −1 is a square 
in the finite field Fp. 

31. Let p be a positive prime in Z of the form 4n + 1. 
(a) Prove that there exist ring homomorphisms ϕ1 of Z[X] onto Fp[X]/(X2 +1) 

and ϕ2 of Z[X] onto Z[i]/(p). 
(b) Prove that ker ϕ1 and ker ϕ2 are both equal to the ideal ( p, X2 + 1) in Z[X],

and deduce a ring isomorphism Z[i]/( p) ∼= Fp[X]/(X2 + 1). 
(c) Taking into account the results of Problems 27 and 30, show that p is not 

prime in Z[i] and is therefore of the form p = N (a + bi) = a2 + b2 for 
some prime a + bi in Z[i].

(d) Prove a uniqueness result for the decomposition p = a2 + b2, that if also 
p = a02 + b02, then a0 + b0i is an associate either of a + bi or of a − bi . 
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Problems 32–35 establish a theory of elementary divisors. This theory provides
a different uniqueness result, beyond the one in Corollary 8.28, to accompany the
Fundamental Theorem of Finitely Generated Modules over a Principal Ideal Domain.
When specialized to K[X] for a field K, the theory yields the rational canonical form 
of a member of Mn(K). Let R be a nonzero principal ideal domain. If C and D are 
members of Mmn(R), let us say that C and D are equivalent if there exist A in 
Mm (R) and B in Mn(R) with det A in R×, det B in R×, and D = AC B. Fix m 
and n, and put k = min(m, n). If C is a member of Mmn(R), its diagonal entries 
are the entries C11, C22, . . . , Ckk . The matrix C will be called diagonal if its only
nonzero entries are diagonal entries. Problems 26–31 of Chapter V are relevant for
Problem 34. 

32. (a) Suppose that C is a diagonal matrix in Mmn(R) with C11 6 0. Show that = 
C is equivalent to a matrix C 0 described as follows: all entries of C 0 are the 
same as those of C except possibly for the entries C 0

k1 in the first 21, . . . , C
0

column, and these satisfy Cj
0
1 = Cj j . 

(b) By applying the algorithm of Lemma 8.26 to the matrix C 0 in (a), prove that 
any nonzero diagonal matrix C in Mmn(R) is equivalent to a diagonal matrix 
C 00 such that C 00 .11 divides all the diagonal entries of C

00

(c) By iterating the construction in (a) and (b), prove that any diagonal matrix
C in Mmn(R) is equivalent to a diagonal matrix D having the following 
properties: The nonzero diagonal entries of D are the entries Dj j with 
1 ≤ j ≤ l for some integer l with 0 ≤ l ≤ k. For each j with 1 ≤ j < l,
Dj j divides Dj+1, j+1. 

33. (a) Establish the following uniqueness theorem: Let D and E be diagonal 
matrices in Mmn(R) whose diagonal entries satisfy the divisibility property
in (c) of the previous problem. Prove that if D and E are equivalent, then they
have the same number of nonzero entries, and their corresponding diagonal
entries are associates. 

(b) Combine Corollary 8.29, Problem 32, and Problem 33a to establish the
following elementary-divisors version of the Fundamental Theorem of 
Finitely Generated Modules: If R is a principal ideal domain, then any 
finitely generated unital R module M is the direct sum of a nonunique free R 
submodule 

Ls 
=1 R of a well-defined finite rank s ∏ 0 and the R submodulei

T of all members m of M such that rm = 0 for some r =6 0 in R. In turn, 
the R submodule T is isomorphic to a direct sum T ∼

Ll
j=1 R/(dj ), where = 

the dj are nonzero nonunits in R such that dj divides dj+1 for 1 ≤ j < l. 
The number of l of summands and the ideals (dj ) are uniquely determined 
by M . 

34. (a) (Rational decomposition) Let K be a field, and let L : V → V be a K 
linear mapping from a finite-dimensional K vector space V to itself. By
applying Theorem 8.25 and the results of the previous problems to V as a 
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K[X] module with Xv = L(v), prove the following: V can be written as 
the direct sum of cyclic subspaces V1, . . . , Vr under L in such a way that 
the minimal polynomial of L on Vj divides the minimal polynomial of L on 
Vj+1 for 1 ≤ j < r ; moreover, the integer r and the minimal polynomials 
are uniquely determined by L , and any two linear mappings with the same 
r and matching minimal polynomials are similar over K. 

(b) (Rational canonical form) Interpret the result of (a) as saying something 
about similarity over K of any matrix in Mnn(K) to a certain block diagonal
matrix with blocks of the form in Problem 28 for Chapter V and with minimal
polynomials having a suitable divisibility property. 

35. Let K and L be fields with K ⊆ L, and suppose that two members of Mn(K) are 
conjugate via GL(n, L). Prove that they are conjugate via GL(n, K). 

Problems 36–39 concern symmetric polynomials in n indeterminates over a field. Let 
F be a field, and let R = F[X1, . . . , Xn]. If σ ∈ Sn is a permutation, then there
is a corresponding substitution homomorphism of rings σ ∗ : R → R fixing F and 
carrying each Xj into Xσ ( j). A symmetric polynomial A in R is a member of R 
for which σ ∗ A = A for every permutation σ . The symmetric polynomials form a 
subring of R containing the constants. The main result about symmetric polynomials
is that every symmetric polynomial is a polynomial in the “elementary symmetric
polynomials”; these will be defined below. 
36. Prove that the ring homomorphisms σ ∗ satisfy (σ τ ) ∗ = σ ∗ τ ∗. Deduce that each 

σ ∗ : R → R is an isomorphism. 

37. Prove that the homogeneous-polynomialexpansionof any symmetric polynomial
is into symmetric polynomials. 

38. For each permutation σ , let σ ∗∗ be the substitution homomorphism of R[X] ∼= 
F[X1, . . . , Xn, X] acting as σ ∗ on R and carrying X to itself. 

σ ∗∗ τ ∗∗(a) Prove that (στ ) ∗∗ = and that each σ ∗∗ is a ring isomorphism of 
R[X].

(b) Prove that each coefficient in R[X] of any polynomial fixed by all σ ∗∗ is a 
symmetric polynomial in R. 

(c) The polynomial (X − X1)(X − X2) · · · (X − Xn) is fixed by all σ ∗∗, and its 
coefficients are called the elementary symmetric polynomials. Show that 
they are 

E1 =
P 

Xi , E2 = 
P 

Xi Xj , E3 = 
P 

Xi Xj Xj , . . . , En = X1 X2 · · · Xn. 
i i< j i< j<k 

39. Order the monomials of total degree m by saying that the monomial aXk1 · · · Xnkn1 

with a 6 = m is greater than the monomial a0 Xl1 · · with a0 6= 0 and 
P 
kj · Xln = 01 n 

and 
P 
lj = m if the first j for which kj =6 lj has kj > lj . 
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(a) If A(X1, . . . , Xn) is a nonzero symmetric polynomial homogeneous of de-
gree m and if aXk1 · · · Xkn is its nonzero monomial that is highest in the1 n 

above order, why must it be true that k1 ∏ k2 ∏ · · · ∏ kn? 
(b) Verify that the largest monomial in E1 

c1 · · · Encn in the ordering is 

Xc1+c2+···+cn Xc2+···+cn · · · Xcn .1 2 n 

(c) Show that if A(X1, . . . , Xn) is a nonzero symmetric polynomial homoge-
neous of degree m, then there exist a symmetric polynomial M = E1 

c1 · · · Encn 

homogeneous of degree m and a scalar r such that the largest monomials in 
A and rM are equal.

(d) With notation as in (c), show that A − rM equals 0 or else the largest 
monomial of A is greater than the largest monomial of A − rm. 

(e) Deduce that every symmetric polynomial is a polynomial in the elementary
symmetric polynomials. 

Problems 40–43 concern the Pfaffian of a (2n)-by-(2n) alternating matrix X = [xi j ]
with entries in a field K. Here “alternating” means that xi j = −xji for all i and j
and xii = 0 for all i . The Pfaffian is the polynomial in the entries of X with integer 
coefficients given by 

nX Y
Pfaff(X) = (sgn τ ) xτ (2k−1),τ (2k), 

certain τ ’s k=1
in S2n 

where the sum is taken over those permutations τ such that τ (2k − 1) < τ (2k) for 
1 ≤ k ≤ n and such that τ (1) < τ (3) < · · · < τ (2n−1). The Pfaffian was introduced 
in Problems 23–28 at the end of Chapter VI. It was shown in those problems that
the Pfaffian satisfies det X = (Pfaff(X))2. The present problems will make use of
that result but of no other results from Chapter VI. They will also make use of facts
concerning continuous functions and connected open subsets of Euclidean space. 

40. Prove by induction on m that the open subset of Cm on which a nonzero poly-
nomial function P(z1, . . . , zm ) is nonzero is pathwise connected and therefore 
connected. 

41. For this problem let K = C. 
(a) For any two matrices A and X in M2n(C) with X alternating, prove that 

Pfaff(At X A) = ±(det A)Pfaff(X) with the sign depending on A and X . 
(b) Fix X , and allow A to vary. Using Problem 40, prove that the sign is always

positive in (a). That is, prove that Pfaff(At X A) = (det A)Pfaff(X). 
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42. For this problem let K be any field. By regarding the expressions Pfaff(At X A)

and (det A)Pfaff(X) as polynomials with coefficients in Z in the indeterminates 
Ai j for all i and j and the indeterminates Xi j for i < j , and using the prin-
ciple of permanence of identities in Section V.2, prove that Pfaff(At X A) = 
(det A)Pfaff(X) whenever A and X are in M2n(K) and X is alternating. 

43. Section VI.5 defines a particular alternating matrix J for which Pfaff(J ) = 1. 
A symplectic matrix g over K is one for which gt Jg = J . Prove that every 
symplectic matrix has determinant 1. 

Problems 44–47 concern Dedekind domains. Let R be such a domain. It is to be 
proved that each nonzero ideal I is doubly generated in the sense that I = Ra + Rb 
for suitable members a and b of R. 
44. Let R1, . . . , Rn be nonzero commutative rings with identity, not necessarily

integral domains. Prove that if every ideal of each Rj is principal, then every 
ideal in R1 × · · · × Rn is principal. 

45. Let P be a nonzero prime ideal, and let k be a positive integer.
(a) Prove that the only nonzero proper ideals in R/Pk are P/Pk , P2/Pk , . . . , 

Pk−1/Pk . 
(b) Using the element π in the statement of Corollary 8.59, prove that each of

the ideals in (a) is principal. 

46. Combining Corollary 8.63 with Problems 44 and 45, conclude that the quotient
of R by any nonzero proper ideal has only principal ideals. 

47. Let I be a nonzero proper ideal in R. By letting a be any nonzero element of I 
and by applying (c) in the previous problem to the ideal I /(a) of R/(a), prove 
that I = Ra + Rb for a suitable b in I . 

Problems 48–53 introduce and classify “fractional ideals” in Dedekind domains. Let
R be a Dedekind domain, regarded as a subring of its field of fractions F . A fractional 
ideal in F is a finitely generated R submodule of F . 
48. Prove that the fractional ideals in F that lie in R are exactly the ordinary ideals 

of R. 

49. Prove for any fractional ideal M that there exists a nonzero member a of F such 
that aM lies in R and hence is an ordinary ideal. Conclude that the product of
two fractional ideals is a fractional ideal. 

50. Prove that if I is a nonzero ideal of R and if I −1 is defined by 

I −1 = {x ∈ F | x R ⊆ I }, 

then I −1 is a fractional ideal in F . Conclude that if P is a prime ideal in R, then 
P−1 as defined in Lemma 8.58 is a fractional ideal in F . 
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51. Prove, by arguing with an ideal that is maximal among those for which the
statement is false, that to any nonzero ideal I in R corresponds some fractional 
ideal M of F such that I M = R. 

52. Prove in the notation of the previous two problems that M = I −1. 
53. Deduce that every nonzero fractional ideal is of the form I J −1, where I and J 

are nonzero ideals. Conclude that 
(a) the nonzero fractional ideals are exactly all products 

Qn 
=1 P

ki , where the Pii i
are distinct nonzero prime ideals and the ki are arbitrary nonzero integers, 
positive or negative,

(b) the nonzero fractional ideals form a group. 




