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CHAPTER VI 

Multilinear Algebra 

Abstract. This chapter studies, in the setting of vector spaces over a field, the basics concerning
multilinear functions, tensor products, spaces of linear functions, and algebras related to tensor
products.
Sections 1–5 concern special properties of bilinear forms, all vector spaces being assumed to be

finite-dimensional. Section 1 associates a matrix to each bilinear form in the presence of an ordered
basis, and the section shows the effect on the matrix of changing the ordered basis. It then addresses
the extent to which the notion of “orthogonal complement” in the theory of inner-product spaces
applies to nondegenerate bilinear forms. Sections 2–3 treat symmetric and alternating bilinear forms,
producing bases for which the matrix of such a form is particularly simple. Section 4 treats a related
subject, Hermitian forms when the field is the complex numbers. Section 5 discusses the groups that
leave some particular bilinear and Hermitian forms invariant.
Section 6 introduces the tensor product of two vector spaces, working with it in a way that does

not depend on a choice of basis. The tensor product has a universal mapping property—that bilinear
functions on the product of the two vector spaces extend uniquely to linear functions on the tensor
product. The tensor product turns out to be a vector space whose dual is the vector space of all
bilinear forms. One particular application is that tensor products provide a basis-independent way
of extending scalars for a vector space from a field to a larger field. The section includes a number
of results about the vector space of linear mappings from one vector space to another that go hand
in hand with results about tensor products. These have convenient formulations in the language of
category theory as “natural isomorphisms.”
Section 7 begins with the tensor product of three and then n vector spaces, carefully considering

the universal mapping property and the question of associativity. The section defines an algebra
over a field as a vector space with a bilinear multiplication, not necessarily associative. If E is a 
vector space, the tensor algebra T (E) of E is the direct sum over n ∏ 0 of the n-fold tensor product 
of E with itself. This is an associative algebra with a universal mapping property relative to any
linear mapping of E into an associative algebra A with identity: the linear map extends to an algebra 
homomorphism of T (E) into A carrying 1 into 1.
Sections 8–9 define the symmetric and exterior algebras of a vector space E . The symmetric al-

gebra S(E) is a quotient of T (E) with the following universal mapping property: any linear mapping 
of E into a commutative associative algebra A with identity extends to an algebra homomorphism 
of S(E) into A carrying 1 into 1. The symmetric algebra is commutative. Similarly the exterior 
algebra 

V
(E) is a quotient of T (E) with this universal mapping property: any linear mapping l of 

E into an associative algebra A with identity such that l(v)2 = 0 for all v ∈ E extends to an algebra 
homomorphism of 

V
(E) into A carrying 1 into 1.

The problems at the end of the chapter introduce some other algebras that are of importance
in applications, and the problems relate some of these algebras to tensor, symmetric, and exterior
algebras. Among the objects studied are Lie algebras, universal enveloping algebras, Clifford
algebras, Weyl algebras, Jordan algebras, and the division algebra of octonions. 
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249 1. Bilinear Forms and Matrices 

1. Bilinear Forms and Matrices 

This chapter will work with vector spaces over a common field of “scalars,” which
will be called K. In Section 6 a field containing K as a subfield will briefly play 
a role, and that will be called L. 
If V is a vector space over K, a bilinear form on V is a function from V × V 

into K that is linear in each variable when the other variable is held fixed. 

EXAMPLES. 
(1) For general K, take V = Kn . Any matrix A in Mn(K) determines a bilinear 

form by the rule hv, wi = vt Aw. 
(2) For K = R, let V be an inner-product space, in the sense of Chapter III, 

with inner product ( · , · ). Then ( · , · ) is a bilinear form on V . 

Multilinear functionals on a vector space of row vectors, also called k-linear 
functionals or k-multilinear functionals, were defined in the course of working
with determinants in Section II.7, and that definition transparently extends to
general vector spaces. A bilinear form on a general vector space is then just a
2-linear functional. From the point of view of definitions, the words “functional”
and “form” are interchangeable here, but the word “form” is more common in
the bilinear case because of a certain homogeneity that it suggests and that comes
closer to the surface in Corollary 6.12 and in Section 7.
For the remainder of this section, all vector spaces will be finite-dimensional.
Bilinear forms, i.e., 2-linear functionals, are of special interest relative to k-

linear functionals for general k because of their relationships with matrices and
linear mappings. To begin with, each bilinear form, in the presence of an ordered
basis, is given by a matrix. In more detail let V be a finite-dimensional vector 
space, and let h · , · i be a bilinear form on V . If an ordered basis 0 = (v1, . . . , vn)
of V is specified, then the bilinear form determines the matrix B with entries 
Bi j = hvi , vj i. Conversely we can recover the bilinear form from B as follows: 
Write v = 

P
i ai vi and w = 

P
j bj vj . Then 

hv, wi = 
≠P

i ai vi , 
P

j bj vj 
Æ 
= 

P
i, j ai hvi , vj ibj . 

µ 
v 

∂ µ 
w 

∂
In other words, hv, wi = at Bb, where a = and b = in the notation 

0 0 
of Section II.3. Therefore 

µ 
v 

∂t µ 
w 

∂ 

hv, wi = B . 
0 0 
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Consequently we see that all bilinear forms on a finite-dimensional vector space
reduce to Example 1 above—once we choose an ordered basis.
Let us examine the effect of a change of ordered basis. Suppose that 0 = 

(v1, . . . , vm ) and 1 = (w1, . . . , wn), and let B and C be the matrices of the 
bilinear form in these two ordered bases: Bi j = hvi , vj i and Ci j = hwi , wj i. Let µ 

I 
∂

the two bases be related by wj = 
P

i ai j vi , i.e., let [ai j ] = . Then we 
01 

have 

Ci j = hwi , wj i = 
≠P 

aki vk , 
P 
al j vl 

Æ 
= 

P 
aki al j hvk , vl i = 

P 
aki Bkl al j . 

k l k,l k,l 

Translating this formula into matrix form, we obtain the following proposition. 

Proposition 6.1. Let h · , · i be a bilinear form on a finite-dimensional vector 
space V , let 0 and 1 be ordered bases of V , and let B and C be the respective 
matrices of h · , · i relative to 0 and 1. Then 

µ 
I 

∂t µ 
I 

∂
C = B . 

01 01 

The qualitative conclusion about the matrices may be a little unexpected. It
is not that they are similar but that they are related by C = St BS for some 
nonsingular square matrix S. In particular, B and C need not have the same 
determinant. 
Guided by the circle of ideas around the Riesz Representation Theorem for

inner products (Theorem 3.12), let us examine what happens when we fix one
of the variables of a bilinear form and work with the resulting linear map. Thus
again let h · , · i be a bilinear form on V . For fixed u in V , v 7→ hu, vi is a linear 
functional on V , thus a member of the dual space V 0 of V . If we write L(u) for this 
linear functional, then L is a function from V to V 0 satisfying L(u)(v) = hu, vi. 
The formula for L shows that L is in fact a linear function. We define the left 
radical, lrad, of h · , · i to be the kernel of L; thus 

lrad 
° 
h · , · i

¢ 
= {u ∈ V | hu, vi = 0 for all v ∈ V }. 

Similarly we let R : V → V 0 be the linear map R(v)(u) = hu, vi, and we define 
the right radical, rrad, of h · , · i to be the kernel of R; thus 

rrad 
° 
h · , · i

¢ 
= {v ∈ V | hu, vi = 0 for all u ∈ V }. 

EXAMPLE 1, CONTINUED. The vector space V is the space Kn of n-dimensional 
column vectors, the dual V 0 is the space of n-dimensional row vectors, A is 
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an n-by-n matrix with entries in K, and h · , · i is given by hu, vi = ut Av = 
L(u)(v) = R(v)(u) for u and v in Kn . Explicit formulas for L and R are 
given by 

L(u) = ut A = (Atu)t 

and R(v) = (Av)t . 

Thus 

lrad 
° 
h · , · i

¢ 
= ker L = null space(At ), 

rrad 
° 
h · , · i

¢ 
= ker R = null space(A). 

Since A is square and since the row rank and column rank of A are equal, the 
dimensions of the null spaces of A and At are equal. Hence 

dim lrad 
° 
h · , · i

¢ 
= dim rrad 

° 
h · , · i

¢
. 

This equality of dimensions for the case of Kn extends to general V , as is noted 
in the next proposition. 

Proposition 6.2. If h · , · i is any bilinear form on a finite-dimensional vector 
space V , then 

dim lrad 
° 
h · , · i

¢ 
= dim rrad 

° 
h · , · i

¢
. 

PROOF. We saw above that computations with bilinear forms of V reduce, once 
we choose an ordered basis for V , to computations with matrices, row vectors, and
column vectors. Thus the argument just given in the continuation of Example 1
is completely general, and the proposition is proved. § 

A bilinear form h · , · i is said to be nondegenerate if its left radical is 0. In 
view of the Proposition 6.2, it is equivalent to require that the right radical be 0.
When the radicals are 0, the associated linear maps L and R from V to V 0 are 
one-one. Since dim V = dim V 0, it follows that L and R are onto V 0. Thus a 
nondegenerate bilinear form on V sets up two canonical isomorphisms of V with 
its dual V 0. 
For definiteness let us work with the linear mapping L : V → V 0 given by 

L(u)(v) = hu, vi. If U ⊆ V is a vector subspace, define 

U ⊥ = {u ∈ V | hu, vi = 0 for all v ∈ U }. 

It is apparent from the definitions that 

U ∩ U ⊥ = lrad 
° 
h · , · i

¢ØØ
U×U . 
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In contrast to the special case that K = R and the bilinear form is an inner 
product, U ∩ U ⊥ may be nonzero even if h · , · i is nondegenerate. For example 
let V = R2, define D ≥ 

x1 
¥ ≥ 

y1 
¥ E 

, = x1 y1 − x2 y2,x2 y2 

n≥ 
x1 

¥o 
and suppose that U is the 1-dimensional vector subspace U = . Thex1 

0matrix of the bilinear form in the standard ordered basis is 
≥ 
1 

¥
; since the matrix 0 −1 

is nonsingular, the bilinear form is nondegenerate. Direct calculation shows that n≥ 
y1 

¥o 
U⊥ = y1 

= U , so that U ∩U ⊥ =6 0. Nevertheless, in the nondegenerate case 
the dimensions of U and U⊥ behave as if U⊥ were an orthogonal complement. 
The precise result is as follows. 

Proposition 6.3. If h · , · i is a nondegenerate bilinear form on the finite-
dimensional vector space V and if U is a vector subspace of V , then 

dim V = dim U + dim U ⊥ . 

PROOF. Define ` : V → U 0 by `(v)(u) = hv, ui for v ∈ V and u ∈ U . The 
definition of U ⊥ shows that ker ̀  = U⊥. To see that image ̀  = U 0, choose a 
vector subspace U1 of V with V = U ⊕ U1, let u0 be in U 0, and define v0 in V 0 by 

Ω u0 on U,0 v = 
0 on U1. 

Since h · , · i is nondegenerate, the linear mapping L : V → V 0 is onto V 0. Thus 
we can choose v ∈ V with L(v) = v0. Then 

0`(v)(u) = hv, ui = L(v)(u) = v (u) = u0(u) 

for all u in U , and hence `(v) = u0. Therefore image ̀  = U 0, and we conclude 
that 

dim V = dim(ker ̀ ) + dim(image ̀ ) = dim U⊥ + dim U 0 = dim U ⊥ + dim U. 

§ 

Corollary 6.4. If h · , · i is a nondegenerate bilinear form on the finite-
dimensional vector space V and if U is a vector subspace of V , then V = U ⊕U ⊥ 

if and only if h · , · i
Ø
Ø
U×U is nondegenerate. 

PROOF. Corollary 2.29 and Proposition 6.3 together give 

dim(U + U ⊥) + dim(U ∩ U ⊥) = dim U + dim U ⊥ = dim V . 

Thus U + U⊥ = V if and only if U ∩ U ⊥ = 0, if and only if h · , · i
Ø
Ø
U×U is 

nondegenerate. The result therefore follows from Proposition 2.30. § 
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2. Symmetric Bilinear Forms 

We continue with the setting in which K is a field and all vector spaces of interest 
are defined over K and are finite-dimensional. 
A bilinear form h · , · i on V is said to be symmetric if hu, vi = hv, ui for 

all u and v in V , skew-symmetric if hu, vi = −hv, ui for all u and v in V , and 
alternating if hu, ui = 0 for all u in V . 
“Alternating” always implies “skew-symmetric.” In fact, if h · , · i is alternat-

ing, then 0 = hu + v, u + vi = hu, ui+ hu, vi+ hv, ui+ hv, vi = hu, vi+ hv, ui;
thus h · , · i is skew-symmetric. If K has characteristic different from 2, then the
converse is valid: “skew-symmetric” implies “alternating.” In fact, if h · , · i is 
skew-symmetric, then hu, ui = −hu, ui and hence 2hu, ui = 0; thus hu, ui = 0,
and h · , · i is alternating.
Let us examine further the effect of the characteristic of K. If, on the one hand, 

K has characteristic different from 2, the most general bilinear form h · , · i is the 
sum of the symmetric form h · , · is and the alternating form h · , · ia given by 

1hu, vis = 2 (hu, vi + hv, ui), 
1hu, via = 2 (hu, vi − hv, ui). 

In this sense the symmetric and alternating bilinear forms are the extreme cases
among all bilinear forms, and we shall study the two cases separately.
If, on the other hand, K has characteristic 2, then “alternating” implies “skew-

symmetric” but not conversely. “Alternating” is a serious restriction, and we
shall be able to deal with it. However, “symmetric” and “skew-symmetric” are
equivalent since 1 = −1, and thus neither condition is much of a restriction; we
shall not attempt to say anything insightful in these cases.
In this section we study symmetric bilinear forms, obtaining results when K 

has characteristic different from 2. From the symmetry it is apparent that the
left and right radicals of a symmetric bilinear form are the same, and we call
this vector subspace the radical of the form. By way of an example, here is a
continuation of Example 1 from the previous section. 

EXAMPLE. Let V = Kn , let A be a symmetric n-by-n matrix (i.e., one with 
At = A), and let hu, vi = ut Av. The computation hv, ui = vt Au = (vt Au)t = 
ut At v = ut Av = hu, vi shows that the bilinear form h · , · i is symmetric; the 
second equality vt Au = (vth Au)t holds since vt Au is a 1-by-1 matrix. 

Again the example is completely general. In fact, if 0 = (v1, . . . , vn) is an 
ordered basis of a vector space V and if h · , · i is a given symmetric bilinear form 
on V , then the matrix of the form has entries Ai j = hvi , vj i, and these evidently 
satisfy Ai j = Aji . So A is a symmetric matrix, and computations with the bilinear
form are reduced to those used in the example. 
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Theorem 6.5 (Principal Axis Theorem). Suppose that K has characteristic 
different from 2. 
(a) If h · , · i is a symmetric bilinear form on a finite-dimensional vector space 

V , then there exists an ordered basis of V in which the matrix of h · , · i is diagonal. 
(b) If A is an n-by-n symmetric matrix, then there exists a nonsingular n-by-n 

matrix M such that Mt AM is diagonal. 

REMARKS. Because computations with general symmetric bilinear forms
reduce to computations in the special case of a symmetric matrix and because
Proposition 6.1 tells the effect of a change of ordered basis, (a) and (b) amount
to the same result; nevertheless, we give two proofs of Theorem 6.5—a proof via
matrices and a proof via linear maps. A hint of the validity of the theorem comes
from the case that K = R. For the field R when the bilinear form is an inner 
product, the Spectral Theorem (Theorem 3.21) says that there is an orthonormal
basis of eigenvectors and hence that (a) holds. When K = R, the same theorem 
says that there exists an orthogonal matrix M with M−1 AM diagonal; since any 
orthogonal matrix M satisfies M−1 = Mt , the Spectral Theorem is saying that 
(b) holds. 

PROOF VIA MATRICES. If A is an n-by-n symmetric matrix, we seek a non-
singular M with Mt AM diagonal. We induct on the size of A, the base case of 
the induction being n = 1, where there is nothing to prove. Assume the result to 
be known for size n − 1, and write the given n-by-n matrix A in block form as 
A = 

≥ 
a b 

¥ 
with d of size 1-by-1. If d =6 0, let x be the column vector −d−1b.bt d

Then ≥ 
I x 

¥ ≥ 
a b 

¥ ≥ 
I 0 

¥ ≥ 
∗ 0 

¥ 
= ,0 1 bt d xt 1 0 d 

and the induction goes through. If d = 0, we argue in a different way. We may 
assume that b 6 0 since otherwise the result is immediate by induction. Say = 
bi 6= 0 with 1 ≤ i ≤ n − 1. Let y be an (n − 1)-dimensional row vector with i th 

entry a member δ of K to be specified and with other entries 0. Then 

∗≥ 
I 0 

¥ ≥ a b 
¥ ≥ 

I yt 
¥ ≥ ∗ ¥ ≥ ∗ ∗ ¥ 

= = .y 1 bt 0 0 1 ∗ yayt +bt yt +yb ∗ δ2aii +2δbi 

Since K has characteristic different from 2, 2bi is not 0; thus there is some value 
of δ for which δ2aii + 2δbi 6 6= 0. Then we are reduced to the case d = 0, which 
we have already handled, and the induction goes through. § 

PROOF VIA LINEAR MAPS. We may assume that the given symmetric bilinear
form is not identically 0, since otherwise any basis will do. Let the radical of
the form be denoted by rad = rad 

° 
h · , · i

¢
. Choose a vector subspace S of V 

such that V = rad ⊕S, and put [ · , · ] = h · , · i
Ø
Ø
S×S . Then [ · , · ] is a symmetric 
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bilinear form on S, and it is nondegenerate. In fact, [u, · ] = 0 means hu, vi = 0 
for all v ∈ S; since hu, vi = 0 for v in rad anyway, hu, vi = 0 for all v ∈ V , u is 
in rad as well as S, and u = 0. 
Since h · , · i is not identically 0, the subspace S is not 0. Thus the nondegen-

erate symmetric bilinear form [ · , · ] on S is not 0. Since 
1[u, v] = 
°
[u + v, u + v] − [u, u] − [v, v]

¢
,2 

it follows that [v, v] 6 0 for some v in S. Put U1 = Kv. Then [ · , ]
Ø
Ø
U1×U1 

= · 

is nondegenerate, and Corollary 6.4 implies that S = U1 ⊕ U1
⊥. Applying the 

converse direction of the same corollary to U1
⊥, we see that [ · , · ]

Ø
Ø
U1

⊥×U⊥ is 
1

nondegenerate. Repeating this construction with U⊥ and iterating, we obtain 

V = rad ⊕U1 ⊕ · · · ⊕ Uk 

with hUi , Uj i = 0 for i 6 j and with dim Ui = 1 for all i . This completes the = 
proof. § 

Theorem 6.5 fails in characteristic 2. Problem 2 at the end of the chapter
illustrates the failure. 
Let us examine the matrix version of Theorem 6.5 more closely when K is C or 

R. The theorem says that if A is n-by-n symmetric, then we can find a nonsingular 
M with B = Mt AM diagonal. Taking D diagonal and forming C = Dt BD,
we see that we can adjust the diagonal entries of B by arbitrary nonzero squares. 
Over C, we can therefore arrange that C is of the form diag(1, . . . , 1, 0, . . . , 0). 
The number of 1’s equals the rank, and this has to be the same as the rank of the
given matrix A. The form is nondegenerate if and only if there are no 0’s. Thus
we understand everything about the diagonal form.
Over R, matters are more subtle. We can arrange that C is of the form 

diag(±1, . . . , ±1, 0, . . . , 0), the various signs ostensibly not being correlated. 
Replacing C by PtCP with P a permutation matrix, we may assume that our
diagonal matrix is of the form diag(+1, . . . , +1, −1, . . . , −1, 0, . . . , 0). The 
number of +1’s and −1’s together is again the rank of A, and the form is
nondegenerate if and only if there are no 0’s. But what about the separate numbers
of +1’s and −1’s? The triple given by 

( p, m, z) = 
°
#(+1)’s, #(−1)’s, #(0)’s

¢ 

is called the signature of A when K = R. A similar notion can be defined in the 
case of a symmetric bilinear form over R. 

Theorem 6.6 (Sylvester’s Law). The signature of an n-by-n symmetric matrix 
over R is well defined. 
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PROOF. The integer p + m is the rank, which does not change under a trans-
formation A 7→ Mt AM if M is nonsingular. Thus we may take z as known. Let 
(p0 , m0 , z) and ( p, m, z) be two signatures for a symmetric matrix A, with p0 ≤ p. 
Define the corresponding symmetric bilinear form on Rn by hu, vi = ut Av. Let 

0(v1
0 , . . . , vn) and (v1, . . . , vn) be ordered bases of Rn diagonalizing the bilinear

0 0form and exhibiting the resulting signature, i.e., having hvi , vj i = hvi , vj i = 0 
for i 6 j and having = 


+1 for 1 ≤ j ≤ p0 , 

0 0


hvj , v j i = −1 for p0 + 1 ≤ j ≤ n − z,
 
0 for n − z + 1 ≤ j ≤ n, 

 +1 for 1 ≤ j ≤ p,
hvj , vj i = −1 for p + 1 ≤ j ≤ n − z,

 
0 for n − z + 1 ≤ j ≤ n. 

0 0We shall prove that {v1, . . . , vp, vp0+1, . . . , vn} is linearly independent, and then 
we must have p0 ∏ p. Reversing the roles of p and p0, we see that p0 = p and 
m0 = m, and the theorem is proved. Thus suppose we have a linear dependence: 

0 0a1v1 + · · · + apvp = bp0+1vp0+1 + · · · + bnvn. 

Let v be the common value of the two sides of this equation. Then 

p

hv, vi = ha1v1 + · · · + apvp, a1v1 + · · · + apvpi = 
X 

aj 
2 ∏ 0 

j=1 

and 
n−z

0 0 0 0 
X 

b2hv, vi = hbp0+1vp0+1 + · · · + bnvn, bp0+1vp0+1 + · · · + bnvni = − j ≤ 0. 
j=p0+1 

We conclude that hv, vi = 0, 
P

j
p
=1 a

2
j = 0, and a1 = · · · = ap = 0. Thus v = 0 

0 0 0 0and bp0+1vp0+1 + · · · + bnv = 0. Since {vp0+1, . . . , vn} is linearly independent, n 
0 0we obtain also bp0+1 = · · · = bn = 0. Therefore {v1, . . . , vp, vp0+1, . . . , vn} is a 

linearly independent set, and the proof is complete. § 

3. Alternating Bilinear Forms 

We continue with the setting in which K is a field and all vector spaces of interest 
are defined over K and are finite-dimensional. 
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In this section we study alternating bilinear forms, imposing no restriction on
the characteristic of K. From the skew symmetry of any alternating bilinear form
it is apparent that the left and right radicals of such a form are the same, and we
call this vector subspace the radical of the form. First let us consider examples
given in terms of matrices. Temporarily let us separate matters according to the
characteristic. 

EXAMPLE 1 OF SECTION 1 WITH K OF CHARACTERISTIC 6 2. Let V == 
Kn , let A be a skew-symmetric n-by-n matrix (i.e., one with At = −A), and 
let hu, vi = ut Av. The computation hv, ui = vt Au = (vt Au)t = ut At v = 
−ut Av = −hu, vi shows that the bilinear form h · , · i is skew-symmetric, hence 
alternating. 

EXAMPLE 1 OF SECTION 1 WITH K OF CHARACTERISTIC = 2. Let V = Kn , let 
A be an n-by-n matrix, and define hu, vi = ut Av. We suppose that A is skew-
symmetric; it is the same to assume that A is symmetric since the characteristic 
is 2. In order to have hei , ei i = 0 for each standard basis vector, we shall 
assume that Aii = 0 for all i . If u is a column vector with entries u1, . . . , un , then 
hu, ui = ut Au = 

P
i, j ui Ai j uj = 

P
i j ui Ai j uj = 

P
i< j (Ai j uiuj + Aji uiuj ) = 6=P

i< j 2Ai j uiuj = 0. Hence the bilinear form h · , · i is alternating. 

Again the examples are completely general. In fact, if 0 = (v1, . . . , vn) is 
an ordered basis of a vector space V and if h · , · i is a given alternating bilinear 
form, then the matrix of the form has entries Ai j = hvi , vj i that evidently satisfy 
Ai j = −Aji and Aii = 0. So A is a skew-symmetric matrix with 0’s on the
diagonal, and computations with the bilinear form are reduced to those used in
the examples. To keep the terminology parallel, let us say that a square matrix is
alternating if it is skew-symmetric and has 0’s on the diagonal. 

Theorem 6.7. 
(a) If h · , · i is an alternating bilinear form on a finite-dimensional vector space 

V , then there exists an ordered basis of V in which the matrix of h · , · i has the 
form  

0 1 
−1 0 

0 1 
−1 0 

 

 
 
 
 
 

.
. 
. . 

 
0 1  

−1 0 
 


0 


 
 .. 

 
. 
0 
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If h · , · i is nondegenerate, then dim V is even. 
(b) If A is an n-by-n alternating matrix, then there exists a nonsingular n-by-n 

matrix M such that Mt AM is as in (a). 

PROOF. It is enough to prove (a). Let rad be the radical of the given form h · , · i,
and choose a vector subspace S of V with V = rad ⊕S. The restriction of h · , · i 
to S is then alternating and nondegenerate. We may now proceed by induction
on dim V under the assumption that h · , · i is nondegenerate. For dim V = 1, the 
form is degenerate. For dim V = 2, we can find u and v with hu, vi =6 0, and we 
can normalize one of the vectors to make hu, vi = 1. Then (u, v) is the required 
ordered basis. 
Assuming the result in the nondegenerate case for dimension < n, suppose that 

dim V = n. Again choose u and v with hu, vi = 1, and define U = Ku ⊕ Kv. 
0 1 Then h · , · i

Ø
Ø
U×U has matrix 

≥ ¥ 
and is nondegenerate. By Corollary 6.4, 

−1 0 

V = U ⊕ U⊥, and an application of the converse of the corollary shows that 
h · , · i

Ø
Ø
U⊥×U⊥ is nondegenerate. The induction hypothesis applies to U⊥, and we 

obtain the desired matrix for the given form. § 

4. Hermitian Forms 

In this section the field will be C, and V will be a finite-dimensional vector space 
over C. 
A sesquilinear form h · , · i on V is a function from V × V into C that is linear 

in the first variable and conjugate linear in the second.1 Sesquilinear forms do
not make sense for general fields because of the absence of a universal analog of
complex conjugation, and we shall consequently work only with the field C in 
this section.2 

A sesquilinear form h · , · i is Hermitian if hu, vi = hv, ui for all u and v in 
V . The form is skew-Hermitian if instead hu, vi = −hv, ui for all u and v in 
V . Hermitian and skew-Hermitian forms are the extreme types of sesquilinear
forms since any sesquilinear form h · , · i is the sum of a Hermitian form h · , · ih 

and a skew-Hermitian form h · , · ish given by 

1hu, vih = 2 (hu, vi + hv, ui), 
1hu, vish = 2 (hu, vi − hv, ui). 

1Some authors, particularly in mathematical physics, reverse the roles of the two variables and
assume the conjugate linearity in the first variable instead of the second.

2Sesquilinear forms make sense in number fields like Q
£p
2 

§ 
that have an automorphism of

order 2 (see Section IV.1), but sesquilinear forms in this kind of setting will not concern us here. 
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In addition, any skew-Hermitian form becomes a Hermitian form simply by
multiplying by i . Specifically if h · , · ish is skew-Hermitian, then ih · , · ish is 
sesquilinear and Hermitian, as is readily checked. Consequently the study of
skew-Hermitian forms immediately reduces to the study of Hermitian forms. 

EXAMPLE. Let V = Cn , and let A be a Hermitian matrix, i.e., one with 
A∗ = A, where A∗ is the conjugate transpose of A. Then it is a simple matter to 
check that hu, vi = v ∗ Au defines a Hermitian form on Cn . 

Again the example with a matrix is completely general. In fact, let h · , · i be a 
Hermitian form on V , let 0 = (v1, . . . , vn) be an ordered basis of V , and define 
Ai j = hvi , vj i. Then A is a Hermitian matrix, and hu, vi = ut Av̄, where v̄ is the 
entry-by-entry complex conjugate of v. 
If 1 = (w1, . . . , wn) is a second ordered basis, then the formula for changing

basis may be derived as follows: Write wj = 
P

i ci j vi , so that [ci j ] is the matrix ∂µ 
I . If Bi j = hwi , wj i, then Bi j = hwi , wj i = 

P
kl cki hvk , vl ic̄l j , and hence 

01 

µ 
I 

∂t µ 
I 

∂
B = A . 

01 01 

Thus two Hermitian matrices A and B represent the same Hermitian form in 
different bases if and only if B = M∗ AM for some nonsingular matrix M . 

Proposition 6.8. 
(a) If h · , · i is a Hermitian form on a finite-dimensional vector space V over 

C, then there exists an ordered basis of V in which the matrix of h · , · i is diagonal 
with real entries. 
(b) If A is an n-by-n Hermitian matrix, then there exists a nonsingular n-by-n 

matrix M such that M∗ AM is diagonal. 

PROOF. The above considerations show that (a) and (b) are reformulations
of the same result. Hence it is enough to prove (b). By the Spectral Theorem
(Theorem 3.21), there exists a unitary matrix U such that U −1 AU is diagonal 
with real entries. Since U is unitary, U−1 = U ∗. Thus we can take M = U to 
prove (b). § 

Just as with symmetric bilinear forms over R, we can do a little better than 
Proposition 6.8 indicates. If B is Hermitian and diagonal with diagonal entries 
bi , and if D is diagonal with positive entries di , then C = D∗ BD is diago-
nal with diagonal entries di2bi . Choosing D suitably and then replacing C by
PtCP for a suitable permutation matrix P , we may assume that PtCP is of the 
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form diag(+1, . . . , +1, −1, . . . , −1, 0, . . . , 0). The number of +1’s and −1’s 
together is the rank of A, and the form is nondegenerate if and only if there are
no 0’s. The triple given by 

( p, m, z) = 
°
#(+1)’s, #(−1)’s, #(0)’s

¢ 

is again called the signature of A. A similar notion can be defined in the case of 
a Hermitian form, as opposed to a Hermitian matrix. 

Theorem 6.9 (Sylvester’s Law). The signature of an n-by-n Hermitian matrix 
is well defined. 

The proof is the same as for Theorem 6.6 except for adjustments in notation. 

5. Groups Leaving a Bilinear Form Invariant 

Although it is not logically necessary to do so, we digress in this section to intro-
duce some important groups that are defined by means of bilinear or Hermitian
forms. These groups arise in many areas of mathematics, both pure and applied,
and their detailed structure constitutes a topic in the fields of Lie groups, algebraic
groups, and finite groups that is beyond the scope of this book. Thus the best
place to define them seems to be now.
We limit our comments on applications to just these: When the underlying

field in the definition of these groups is R or C, the group is quite often a “simple
Lie group,” one of the basic building blocks of the theory of the continuous groups
that so often arise in topology, geometry, differential equations, and mathematical
physics. When the underlying field is a number field in the sense of Example 9
of Section IV.1, the group quite often plays a role in algebraic number theory.
When the underlying field is a finite field, the group is often closely related to a
finite simple group; an example of this relationship occurred in Problems 55–62
at the end of Chapter IV, where it was shown that the group PSL(2, K), built in 
an easy way from the general linear group GL(2, K), is simple if the field K has 
more than 5 elements. More general examples of finite simple groups produced
by analogous constructions are said to be of “Lie type.” A celebrated theorem 
of the late twentieth century classified the finite simple groups—establishing that
the only such groups are the cyclic groups of prime order, the alternating groups
on 5 or more letters, the simple groups of Lie type, and 26 so-called sporadic
simple groups.
If h · , · i is a bilinear form on an n-dimensional vector space V over a field K,

a nonsingular linear map g : V → V is said to leave the bilinear form invariant 
if 

hg(u), g(v)i = hu, vi 
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for all u and v in V . Fix an ordered basis 0 of V , let A be the matrix of the bilinear µ 
g 

∂
form in this basis, let g0 = be the member of GL(n, K) corresponding

00 µ 
w 

∂
to g, and abbreviate as w0 for any w in V . To translate the invariance 

0 
condition into one concerning matrices, we use the formula hu, vi = u0t Av0, the 
corresponding formula for hg(u), g(v)i, and the formula g(w)0 = g0(w0) from 

0 0Theorem 2.14. Then we obtain u0t g0t Ag0v = u0t Av . Taking u to be the i th 

member of the ordered basis 0 and v to be the j th member, we obtain equality of 
the (i, j)th entry of the two matrices g0t Ag0 and A. Thus the matrix form of the 
invariance condition is that a nonsingular matrix g0 satisfy 

g0t Ag0 = A. 

We know that changing the ordered basis 0 amounts to replacing A by Mt AM for 
some nonsingular matrix M . If g0 satisfies the invariance condition g0t Ag0 = A 
relative to A, then M−1g0 M satisfies 

t(M−1g0 M) (Mt AM)(M−1g0 M) = Mt AM. 

Thus we are led to a conjugate subgroup within GL(n, K). A conjugate subgroup
is not something substantially new, and thus we might as well make a convenient
choice of basis so that A looks particularly special.
The interesting cases are that the given bilinear form is symmetric or alter-

nating, hence that the matrix A is symmetric or alternating. Let us restrict our
attention to them. The left and right radicals coincide in these cases, and the first
thing to do is to take the two-sided radical into account. Returning to the original
bilinear form, we write V = rad ⊕S, where rad is the radical and S is some 
vector subspace of S, and we choose an ordered basis (v1, . . . , vp, vp+1, . . . , vn)
such that v1, . . . , vp are in S and vp+1, . . . , vn are in rad. Then hvi , vj i = 0 if 
i > p or j > p, and consequently A has its only nonzero entries in the upper 
left p-by-p block. The same argument as in the proofs of Theorems 6.5 and
6.7 shows that the restriction of the bilinear form to S is nondegenerate, and 
consequently the upper left p-by-p block of A is nonsingular. Changing notation ≥ 

g11 g12 
¥

slightly, suppose that g is an n-by-n matrix written in block form as g = g21 g22 

with g11 of size p-by-p, suppose that 
≥ 
A 0 

¥ 
is another matrix written in the same 0 0 

block form, suppose that the p-by-p matrix A is nonsingular, and suppose that 
gt 

≥ 
A 0 

¥ ≥ 
A 0 

¥
g = . Making a brief computation, we find that necessary and 0 0 0 0 

sufficient conditions on g are that g11 be nonsingular and have gt = A,11 Ag11 

that g12 = 0, that g22 be arbitrary nonsingular, and that g21 be arbitrary. In other 
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words, the only interesting condition g11
t Ag11 = A is a reflection of what happens 

in the nonsingular case.
Consequently the interesting cases are that the given bilinear form is non-

degenerate, as well as either symmetric or alternating. If A is symmetric and 
nonsingular, then the group of all nonsingular matrices g such that gt Ag = A is 
called the orthogonal group relative to A. If A is alternating and nonsingular, 
then the group of all nonsingular matrices g such that gt Ag = A is called the 
symplectic group relative to A. 
For the symplectic case it is customary to invoke Theorem 6.7 and take A to 

be  
0 1 

−1 0 

0 1 
−1 0 

 

 
 
 

J =  
, 

.
. 


. 

 
0 1 

−1 0 

except possibly for a permutation of the rows and columns and possibly for
a multiplication by −1. Two conflicting notations are in common use for the
symplectic group, namely Sp(n, K) and Sp( 2

1 n, K), and one always has to check 
a particular author’s definitions.
For the orthogonal case the notation is less standardized. Theorem 6.5 says

that we may take A to be diagonal except when K has characteristic 2. But the 
theorem does not tell us exactly which A’s are representative of the same bilinear 
form. When K = C, we know that we can take A to be the identity matrix I . 
The group is known as the complex orthogonal group and is denoted by O(n, C). 
When K = R, we can take A to be diagonal with diagonal entries ±1. Sylvester’s 
Law (Theorem 6.6) says that the form determines the number of +1’s and the 
number of −1’s. The groups are called indefinite orthogonal groups and are 
denoted by O( p, q), where p is the number of +1’s and q is the number of −1’s. 
When q = 0, we obtain the ordinary orthogonal group of matrices relative to an
inner product.
A similar analysis applies to Hermitian forms. The field is now C, the invari-

ance condition with the form is still hg(u), g(v)i = hu, vi, and the corresponding 
condition with matrices is gt Aḡ = A. The interesting case is that the Hermitian 
form is nondegenerate. Proposition 6.8 and Sylvester’s Law (Theorem 6.9)
together show that we may take A to be diagonal with diagonal entries ±1 and 
that the Hermitian form determines the number of +1’s and the number of −1’s. 
The groups are the indefinite unitary groups and are denoted by U( p, q), where 
p is the number of +1’s and q is the number of −1’s. When q = 0, we obtain 
the ordinary unitary group of matrices relative to an inner product. 
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6. Tensor Product of Two Vector Spaces 

If E is a vector space over K, then the set of all bilinear forms on E is a vector 
space under addition and scalar multiplication of the values, i.e., it is a vector
subspace of the set of all functions from E × E into K. In this section we introduce 
a vector space called the “tensor product” of E with itself, whose dual, even if E 
is infinite-dimensional, is canonically isomorphic to this vector space of bilinear
forms. 
Matters will be clearer if we work initially with something slightly more general

than bilinear forms on a single vector space E . Thus fix a field K, and let E and 
F be vector spaces over K. A function from E × F into a vector space U over K 
is said to be bilinear if it is linear in each of the two variables when the other one 
is held fixed. Such a space of bilinear functions is a vector space over K under 
addition and scalar multiplication of the values. The bilinear functions are called
bilinear forms when the range space U is K itself. More generally, if E1, . . . , Ek 
are vector spaces over K, a function from E1 × · · · × Ek into a vector space over 
K is said to be k-linear or k-multilinear if it is linear in each of its k variables 
when the other k − 1 variables are held fixed. Again the word “form” is used in
the scalar-valued case, and all of these spaces of multilinear functions are vector 
spaces over K. 
In this section we shall introduce the tensor product of two vector spaces E 

and F over K, ultimately denoting it by E ⊗K F . The dual of this tensor product
will be canonically isomorphic to the vector space of bilinear forms on E × F . 
More generally the space of linear functions from the tensor product into a vector 
space U will be canonically isomorphic to the vector space of bilinear functions 
on E × F with values in U . 
Following the habit encouraged by Chapter IV, we want to arrange that tensor

product is a functor. If V denotes the category of vector spaces over K and if 
V × V denotes the category described in Section IV.11 as V S for a two-element 
set S, then tensor product is to be a functor from V × V into V. Hence we will 
want to examine the effect of tensor products on morphisms, i.e., on linear maps.
As in similar constructions in Chapter IV, the effect of tensor product on linear

maps is captured by defining the tensor product by means of a universal mapping
property. The appropriate universal mapping property rephrases the statement
above that the space of linear functions from the tensor product into any vector 
space U is canonically isomorphic to the vector space of bilinear functions on 
E × F with values in U . 
If E and F are vector spaces over K, a tensor product of E and F is a pair 

(V, ∂) consisting of a vector space V over K together with a bilinear function 
∂ : E × F → V , with the following universal mapping property: whenever b is 
a bilinear mapping of E×F into a vector space U over K, then there exists a unique 
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linear mapping B of V into U such that the diagram in Figure 6.1 commutes, i.e., 
such that B∂ = b holds in the diagram. When ∂ is understood, one frequently 
refers to V itself as the tensor product. The linear mapping B : V → U is called 
the linear extension of b to the tensor product. 

bE × F −−−→ U 

V 



y∂ B 

FIGURE 6.1. Universal mapping property of a tensor product. 

Theorem 6.10. If E and F are vector spaces over K, then a tensor product 
of E and F exists and is unique up to canonical isomorphism in this sense: if 
(V1, ∂1) and (V2, ∂2) are tensor products, then there exists a unique linear mapping 
B : V2 → V1 with B∂2 = ∂1, and B is an isomorphism. Any tensor product is 
spanned linearly by the image of E × F in it. 

REMARKS. As usual, uniqueness will follow readily from the universal map-
ping property. What is really needed is a proof of existence. This will be carried
out by an explicit construction. Later, in Chapter X, we shall reintroduce tensor
products, taking the basic construction to be that of the tensor product of two
abelian groups, and then the tensor product of two vector spaces will in effect
be obtained in a slightly different way. However, the exact construction does not
matter, only the existence; the uniqueness allows us to match the results of any
two constructions. 

∂2 ∂1E × F −−−→ V2 E × F −−−→ V1 

∂1 



y

V1 

B2 and ∂2 



y

V2 

B1 

FIGURE 6.2. Diagrams for uniqueness of a tensor product. 

PROOF OF UNIQUENESS. Let (V1, ∂1) and (V2, ∂2) be tensor products. Set up
the diagrams in Figure 6.2, and use the universal mapping property to obtain
linear maps B2 : V1 → V2 and B1 : V2 → V1 extending ∂2 and ∂1. Then 
B1 B2 : V1 → V1 has B1 B2∂1 = B1∂2 = ∂1, and 1V1 : V1 → V1 has (1V1 )∂1 = ∂1. 
By the assumed uniqueness within the universal mapping property, B1 B2 = 1V1 

on V1. Similarly B2 B1 = 1V2 on V2. Then B1 : V2 → V1 gives the canonical 
isomorphism. Because of the isomorphism the image of E × F will span an 
arbitrary tensor product if it spans some particular tensor product. § 
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PROOF OF EXISTENCE. Let V1 = 
L 

(e, f ) K(e, f ), the direct sum being taken 
over all ordered pairs (e, f ) with e ∈ E and f ∈ F . Then V1 is a vector space 
over K with a basis consisting of all ordered pairs (e, f ). We think of all identities 
that the elements of V1 must satisfy to be a tensor product, writing each as some
expression set equal to 0, and then we assemble those expressions into a vector
subspace to factor out from V1. Namely, let V0 be the vector subspace of V1 

generated by all elements of any of the kinds 

(e1 + e2, f ) − (e1, f ) − (e2, f ), 
(ce, f ) − c(e, f ), 

(e, f1 + f2) − (e, f1) − (e, f2), 
(e, c f ) − c(e, f ), 

the understanding being that c is in K, the elements e, e1, e2 are in E , and the 
elements f, f1, f2 are in F . Define V = V1/V0, and define ∂ : E × F → V1/V0 

by ∂(e, f ) = (e, f ) + V0. We shall prove that (V, ∂) is a tensor product of E and 
F . The definitions show that the image of ∂ spans V linearly. 
Let b : E × F → U be given as in Figure 6.1. To see that a linear extension 

B exists and is unique, define B1 on V1 by 

B1 
° P 

ci (ei , fi )
¢ 

= 
P 

cib(ei , fi ). 
(finite) (finite) 

The bilinearity of b shows that B1 maps V0 to 0. By Proposition 2.25, B1 descends 
to a linear map B : V1/V0 → U , and we have B∂ = b. Hence B exists as required. 
To check uniqueness of B, we observe again that the cosets (e, f ) + V0 within 

V1/V0 span V ; since commutativity of the diagram in Figure 6.1 forces 

B((e, f ) + V0) = B(∂(e, f )) = b(e, f ), 

B is unique. This completes the proof. § 

A tensor product of E and F is denoted by (E ⊗K F, ∂), with the bilinear map 
∂ given by ∂(e, f ) = e ⊗ f ; the map ∂ is frequently dropped from the notation
when there is no chance of ambiguity. The tensor product that was constructed
in the proof of existence in Theorem 6.10 is not given any special notation to
distinguish it from any other tensor product. The elements e ⊗ f span E ⊗K F ,
as was noted in the statement of the theorem. Elements of the form e ⊗ f are 
sometimes called pure tensors. 
Not every element need be a pure tensor, but every element in E ⊗K F is a 

finite sum of pure tensors. We shall see in Proposition 6.14 that if {ui } is a basis 
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of E and {vj } is a basis of F , then the pure tensors ui ⊗vj form a basis of E ⊗K F . 
In particular the dimension of the tensor product is the product of the dimensions
of the factors. We could have defined the tensor product in this way—by taking
bases and declaring that ui ⊗vj is to be a basis of the desired space. The difficulty
is that we would be forever wedded to our choice of those particular bases, or
we would constantly have to prove that our definitions are independent of bases.
The definition by means of Theorem 6.10 avoids this difficulty.
To make tensor product (E, F) 7→ E ⊗K F into a functor, we have to describe

the effect on linear mappings. To aid in that discussion, let us reintroduce some
notation first used in Chapter II: if U and V are vector spaces over K, then 
HomK(U, V ) is defined to be the vector space of K linear maps from U to V . 

Corollary 6.11. If E , F , and V are vector spaces over K, then the vector space 
HomK(E ⊗K F, V ) is canonically isomorphic (via restriction to pure tensors) to
the vector space of all V -valued bilinear functions on E × F . 

PROOF. Restriction is a linear mapping from HomK(E ⊗K F, V ) to the vector 
space of all V -valued bilinear functions on E × F , and it is one-one since the 
image of E × F in E ⊗K F spans E ⊗K F . It is onto since any bilinear function 
from E × F to V has a linear extension to E ⊗K F , by Theorem 6.10. § 

Corollary 6.12. If E and F are vector spaces over K, then the vector space of 
all bilinear forms on E × F is canonically isomorphic to (E ⊗K F)0, the dual of 
the vector space E ⊗K F . 

PROOF. This is the special case of Corollary 6.11 in which V = K. § 

Corollary 6.13. If E , F , and V are vector spaces over K, then there is a 
canonical K linear isomorphism 8 of left side to right side in 

HomK(E ⊗K F, V ) ∼= HomK(E, HomK(F, V )) 

such that 
8(ϕ)(e)( f ) = ϕ(e ⊗ f ) 

for all ϕ ∈ HomK(E ⊗K F, V ), e ∈ E , and f ∈ F . 

REMARK. This result is just a restatement of Corollary 6.11, but let us prove it
anyway, writing the proof in the language of the statement. 

PROOF. The map 8 is well defined and K linear, and it carries the left side to 
the right side. For √ in the right side, define 9(√)(e, f ) = √(e)( f ). Then 9(√)
is a bilinear map from E × F into V , and we let 9e(√) be the linear extension 
from E ⊗K F into V given in Theorem 6.10. Then 9e is a two-sided inverse to 
8, and the corollary follows. § 
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Let us now make (E, F) 7→ E ⊗K F into a covariant functor. If (E1, F1) and 
(E2, F2) are objects in V × V, i.e., if they are two ordered pairs of vector spaces,
then a morphism from the first to the second is a pair (L , M) of linear maps of the 
form L : E1 → E2 and M : F1 → F2. To (L , M), we are to associate a linear 
map from E1 ⊗K F1 into E2 ⊗K F2; this linear map will be denoted by L ⊗ M . We 
use Corollary 6.11 to define L ⊗ M as the member of HomK(E1 ⊗K F1, E2 ⊗K F2)
that corresponds under restriction to the bilinear map (e1, f1) 7→ L(e1) ⊗ M( f1)
of E1 × F1 into E2 ⊗K F2. In terms of pure tensors, the map L ⊗ M satisfies 

(L ⊗ M)(e1 ⊗ f1) = L(e1) ⊗ M( f1), 

and this formula completely determines L ⊗ M because of the uniqueness of 
linear extensions of bilinear maps.
To check that this definition of the effect of tensor product on pairs of linear

maps makes (E, F) 7→ E ⊗K F into a covariant functor, we have to check the
effect on the identity map and the effect on composition. For the effect on the
identity map (1E1 , 1F1 ) when E1 = E2 and F1 = F2, we see from the above 
displayed formula that (1E1 ⊗ 1F1 )(e1 ⊗ f1) = 1E1 (e1) ⊗ 1F1 ( f1) = e1 ⊗ f1 = 
1E1⊗K F1 (e1 ⊗ f1). Since elements of the form e1 ⊗ f1 span E1 ⊗K F1, we conclude 
that 1E1 ⊗ 1F1 = 1E1⊗K F1 . 
For the effect on composition, let (L1, M1) : (E1, F1) → (E2, F2) and 

(L2, M2) : (E2, F2) → (E3, F3) be given. Then we have 

(L2 ⊗ M2)(L1 ⊗ M1)(e1 ⊗ f1) = (L2 ⊗ M2)(L1(e1) ⊗ M1( f1)) 
= (L2 L1)(e1) ⊗ (M2 M1)( f1) = (L2 L1 ⊗ M2 M1)(e1 ⊗ f1). 

Since elements of the form e1 ⊗ f1 span E1 ⊗K F1, we conclude that 

(L2 ⊗ M2)(L1 ⊗ M1) = L2 L1 ⊗ M2 M1. 

Therefore (E, F) 7→ E ⊗K F is a covariant functor. 
In particular, E 7→ E ⊗K F and F 7→ E ⊗K F are covariant functors from V 

into itself. For these two functors from V into itself, the effect on linear mappings 
is especially nice, namely that 

Ω 
is K linear from HomK(E1, E2)L1 7→ L1 ⊗ M1 into HomK(E1 ⊗K F1, E2 ⊗K F2), 

Ω 
is K linear from HomK(F1, F2)M1 7→ L1 ⊗ M1 into HomK(E1 ⊗K F1, E2 ⊗K F2). 

To prove the first of these assertions, for example, we observe that the sum of the
linear extensions of 

(e1, f1) 7→ L1(e1) ⊗ M1( f1) and (e1, f1) 7→ L1
0 (e1) ⊗ M1( f1) 
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is a linear extension of (e1, f1) 7→ (L1 + L 0
1)(e1)⊗ M1( f1), and the uniqueness in 

the universal mapping property implies that (L1+L 0
1)⊗M1 = L1⊗M1+L1

0 ⊗M1. 
Similar remarks apply to multiplication by scalars.
Let us mention some identities satisfied by ⊗K. There is a canonical isomor-

phism 

E ⊗K F ∼ F ⊗K E= 

given by taking the linear extension of (e, f ) 7→ f ⊗ e as the map from left to 
right. The linear extension of ( f, e) 7→ e⊗ f gives a two-sided inverse. Category
theory has a way of capturing the idea that this isomorphism is systematic, rather
than randomly dependent on E and F . The two sides of the above isomorphism
may be regarded as the values of the covariant functors (E, F) 7→ E ⊗K F and 
(E, F) 7→ F ⊗K E . The notion in category theory capturing “systematic” is 
called “naturality.” It makes precise the fact that the system of isomorphisms
respects linear maps, as well as the vector spaces. Here is the general definition.
Its usefulness will be examined later in this section. 
Let C and D be two categories, and let 8 : C → D and 9 : C → D 

be covariant functors. Suppose that for each X in Obj(C ), a morphism TX 

in MorphD(8(X), 9(X)) is given. Then the system {TX } is called a natural 
transformation of 8 into 9 if for each pair of objects X1 and X2 in C and each 
h in MorphC(X1, X2), the diagram in Figure 6.3 commutes. If furthermore each 
TX is an isomorphism, then it is immediate that the system {T −1} is a natural X
transformation of 9 into 8, and we say that {TX } is a natural isomorphism. 

8(h)
8(X1) −−−→ 8(X2) 

TX1 



y 



y

9(X1) 

TX2 

9(h)
−−−→ 9(X2) 

FIGURE 6.3. Commutative diagram of a natural transformation {TX }. 

If 8 and 9 are contravariant functors, then the system {TX } is called a natural 
transformation of 8 into 9 if the diagram obtained from Figure 6.3 by revers-
ing the horizontal arrows commutes. The system is a natural isomorphism if 
furthermore each Tx is an isomorphism.
In the case we are studying, we have C = V × V and D = V. Objects X in C 

are pairs (E, F) of vector spaces, and 8 and 9 are the covariant functors with 
8(E, F) = E ⊗K F and 9(E, F) = F ⊗K E . The mapping T(E,F) : E ⊗K F → 
F ⊗K E is uniquely determined by the condition that T(E,F)(e ⊗ f ) = f ⊗ e 
for all e ∈ E and f ∈ F . A morphism of pairs from (E1, F1) to (E2, F2) is of 
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the form h = (L , M) with L ∈ HomK(E1, E2) and M ∈ HomK(F1, F2). Our 
constructions above show that 

8(L , M) = L ⊗ M ∈ HomK(E1 ⊗K F1, E2 ⊗K F2) 
and 9(L , M) = M ⊗ L ∈ HomK(F1 ⊗K E1, F2 ⊗K E2). 

In Figure 6.3 the two routes from top left to bottom right in the diagram have 

T(E2,F2)8(L , M)(e1 ⊗ f1) = T(E2,F2)(L ⊗ M)(e1 ⊗ f1) 
= T(E2,F2)(L(e1) ⊗ M( f1)) = M( f1) ⊗ L(e1) 

and 

9(L , M)T(E1 ,F1 )(e1 ⊗ f1) = 9(L , M)( f1 ⊗ e1) 
= (M ⊗ L)( f1 ⊗ e1) = M( f1) ⊗ L(e1). 

The results are equal, and therefore the diagram commutes. Consequently the
isomorphism 

E ⊗K F ∼ F ⊗K E= 

is natural in the pair (E, F). 
Another canonical isomorphism of interest is 

E ⊗K K ∼ E .= 

Here the map from left to right is the linear extension of (e, c) 7→ ce, while 
the map from right to left is e 7→ e ⊗ 1. In view of the previous canonical 
isomorphism, we have K ⊗K E ∼ E also. Each of these isomorphisms is natural = 
in E . 
Next let us consider how ⊗K interacts with direct sums. The result is that 

tensor product distributes over direct sums, even infinite direct sums: 

E ⊗K 
°M 

Fs 
¢ ∼

M 
(E ⊗K Fs ). = 

s∈S s∈S 

The map from left to right is the linear extension of the bilinear map (e, { fs}s∈S) 7→ 
{e ⊗ fs}s∈S . For the definition of the inverse, the constructions of Section II.6
show that we have only to define the map on each E ⊗K Fs , where it is the linear 
extension of (e, fs ) 7→ e ⊗ {is ( fs))}s∈S; here is0 : Fs0 → 

L
Fs is the one-one s

linear map carrying the sth vector space into the direct sum. Once again it is0
possible to prove that the isomorphism is natural; we omit the details.
It follows from the displayed isomorphism and the isomorphism E ⊗K K ∼ E= 

that if {xi } is a basis of E and {yj } is a basis of F , then {xi ⊗ yj } is a basis of 
E ⊗K F . This proves the following result. 
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Proposition 6.14. If E and F are vector spaces over K, then 

dim(E ⊗K F) = (dim E)(dim F). 

If {yj } is a basis of F , then the most general member of E ⊗K F is of the form P
j ej ⊗ yj with all ej in E . 

We turn to a consideration of HomK from the point of view of functors. In
the examples in Section IV.11, we saw that V 7→ HomK(U, V ) is a covariant 
functor from V to itself and that U 7→ HomK(U, V ) is a contravariant functor 
from V to itself. If we are not squeamish about mixing the two types—covariant
and contravariant—then we can consider (U, V ) 7→ HomK(U, V ) as a functor3 

from V × V to V. At any rate if L is in HomK(U1, U2) and M is in HomK(V1, V2),
then Hom(L , M) carries HomK(U2, V1) into HomK(U1, V2) and is given by 

Hom(L , M)(h) = MhL for h ∈ HomK(U2, V1). 

It is evident that the result is K linear as a function of h, and hence 

Hom(L , M) is in HomK 
° 
HomK(U2, V1), HomK(U1, V2)

¢
. 

When we look for analogs for the functor HomK of the identity E ⊗K K ∼ E= 
for the functor ⊗K, we are led to two identities. One is just the definition of the
dual of a vector space: 

HomK(U, K) = U 0 . 

The other is the natural isomorphism 

HomK(K, V ) ∼= V . 

In the proof of the latter identity, the mapping from left to right is given by sending
a linear h : K → V to h(1), and the mapping from right to left is given by sending 
v in V to h with h(c) = cv. 

Next let us consider how HomK interacts with direct sums and direct products. 
The construction HomK(U, V ) distributes over finite direct sums in each variable,
but the situation with infinite direct sums or direct products is more subtle. Valid
identities are 

°M 
Us, V 

¢ ∼
Y

HomK = HomK(Us, V ) 
s∈S s∈S 

Y ¢ ∼
Y

and HomK 
° 
U, Vs = HomK(U, Vs ), 

s∈S s∈S 

3Readers who care about this point can regard U as in the category V opp defined in Problems 
78–80 at the end of Chapter IV. Then (U, V ) 7→ HomK(U, V ) is a covariant functor from V opp × V 
into V. 
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and these are natural isomorphisms. Proofs of these identities for all S and 
counterexamples related to them when S is infinite appear in Problems 7–8 at the 
end of the chapter.
We have already checked that the isomorphism E ⊗K F ∼ F ⊗K E is natural in = 

(E, F), and we have asserted naturality in some other situations in which it is easy
to check. The next proposition asserts naturality for the identity of Corollary 6.13,
which combines ⊗K and HomK in a nontrivial way. After the proof of the result,
we shall digress for a moment to indicate the usefulness of natural isomorphisms. 

Proposition 6.15. Let E , F , V , E1, F1, and V1 be vector spaces over K, and 
let LE1 : E1 → E , LF1 : F1 → F , and LV : V → V1 be K linear maps. Then 
the isomorphism 8 of Corollary 6.13 is natural in the sense that the diagram 

8HomK(E ⊗K F, V ) −−−→ HomK(E, HomK(F, V )) 

Hom(LE1 ⊗LF1 , LV ) 

HomK(E1 ⊗K F1, V1) 



y 



y

−−−→ HomK(E1, HomK(F1, V1)) 

Hom(LE1 ,Hom(LF1 ,LV )) 

8

commutes. 

REMARKS. Observe that the first two linear maps LE1 and LF1 go in the 
opposite direction to the two vertical maps, while LV goes in the same direction
as the vertical maps. This is a reflection of the fact that both sides of the identity
in Corollary 6.13 are contravariant in the first two variables and covariant in the
third variable. 

PROOF. For ϕ in HomK(E ⊗K F, V ), e1 in E1, and f1 in F1, we have 

(Hom(LE1 , Hom(LF1 ,LV )) ◦ 8)(ϕ)(e1)( f1) 
= (Hom(LF1 , LV ) ◦ 8(ϕ) ◦ LE1 )(e1)( f1) 
= (Hom(LF1 , LV ) ◦ (8(ϕ) ◦ LE1 ))(e1)( f1) 
= LV (8(ϕ)(LE1 (e1))(LF1 ( f1))) 
= LV (ϕ(LE1 (e1) ⊗ LF1 ( f1))) 
= (LV ◦ ϕ ◦ (LE1 ⊗ LF1 ))(e1 ⊗ f1) 
= (Hom(LE1 ⊗ LF1 , LV )(ϕ))(e1 ⊗ f1) 
= 8(Hom(LE1 ⊗ LF1 , LV ) ◦ ϕ)(e1)( f1). 

This proves the proposition. § 
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Let us now discuss naturality in a wider context. In a general category D, if 
we have two objects U and U 0 such that Morph(U, V ) and Morph(U 0 , V ) have 
the same cardinality for each object V , then we cannot really say anything about 
the relationship between U and U 0. But under a hypothesis that the isomorphism
of sets has a certain naturality to it, then, according to Proposition 6.16 below,
U and U 0 are isomorphic objects. Thus naturality of a system of weak-looking
set-theoretic isomorphisms can lead to a much stronger-looking isomorphism.
Corollary 6.17 goes on to make a corresponding assertion about functors. The
assertion about functors in the corollary is a helpful tool for establishing natural
isomorphisms of functors, and an example appears below in Proposition 6.200. 

Proposition 6.16. Let D be a category, and suppose that U and U 0 are objects 
in D with the following property: to each object V in D corresponds a one-one 
onto function 

TV : Morph(U, V ) → Morph(U 0 , V ) 

with the system {TV } natural in V in the sense that whenever σ is in Morph(V, V 0),
then the diagram 


y 

TVMorph(U, V ) −−−→ Morph(U 0 , V ) 


Morph(U, V 0) 

left-by-σ 



y

−−−→ Morph(U 0 

left-by-σ 

TV 0 
, V 0) 

commutes. Then U is isomorphic to U 0 as an object in D, an isomorphism from 
U to U 0 being the member T −1(1U 0 ) of Morph(U, U 0).U 0 

REMARKS. 
(1) Another way of formulating this result is as follows: Let D be any category, 

let S be the category of sets, and let U and U 0 be objects in D. Define a covariant 
functor HU : D → S by HU (V ) = MorphD(U, V ) and HU (σ ) = left-by-σ 
for σ ∈ MorphD(V, V 0), and define HU 0 similarly. If HU and HU 0 are naturally 
isomorphic functors, then U and U 0 are isomorphic objects in D. 
(2) A similar result is valid when HU and HU 0 are contravariant functors, 

HU being defined by HU (V ) = HomD(V, U ) and HU (σ ) = right-by-σ for 
σ ∈ MorphD(V, V 0). The result in this case follows immediately by applying
Proposition 6.16 to the opposite category D opp of D as defined in Problems 78–80 
at the end of Chapter IV. 

PROOF. Let ϕ be the element T −1(1U 0 ) of Morph(U, U 0), and let √ be the U 0 

element TU (1U ) of Morph(U 0 , U ). To prove the proposition, it is enough to show 
that ϕ√ = 1U 0 and √ϕ = 1U . 
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For σ in Morph(V, V 0), form the commutative diagram in the statement of the
proposition. The commutativity says that 

σ TV (h) = TV 0 (σ h) for h ∈ Morph(U, V ). (∗) 

Taking V = U , V 0 = U 0, σ = ϕ, and h = 1U in (∗) proves the second equality
of the chain 

ϕ√ = ϕTU (1U ) = TU 0 (ϕ1U ) = TU 0 (ϕ) = 1U 0 . 

Taking V = U 0, V 0 = U , σ = √ , and h = ϕ in (∗) proves the first equality of 
the chain 

TU (√ϕ) = √ TU 0 (ϕ) = √1U 0 = √ = TU (1U ); 

Applying T −1, we obtain √ϕ = 1U , as required. §U 

Corollary 6.17. Let C and D be categories, and let F : C → D and 
G : C → D be covariant functors. Suppose that to each pair of objects (A, V ) in 
C × D corresponds a one-one onto function 

TA,V : Morph(F(A), V ) → Morph(G(A), V ) 

with the system {TA,V } natural in (A, V ). Then the functors F and G are naturally
isomorphic. 

REMARKS. A similar result is valid if TA,V carries Morph(V, F(A)) to 
Morph(V, G(A)) and/or if F and G are contravariant. To handle these situations,
we apply the corollary to the opposite categories D opp and/or C opp, as defined in
Problems 78–80 at the end of Chapter IV, instead of to the categories D and/or C. 
PROOF. By Proposition 6.16 and the hypotheses, the member TA

−
,
1 
G(A)(1G(A)) 

of MorphD(F(A), G(A)) is an isomorphism. We are to prove that the system 
{TA,G(A)} is natural in A. If σ in MorphC(A, A0) is given, then the naturality of 
TA,V in the V variable implies that the diagram 

TA,G(A)MorphD(F(A), G(A)) −−−→ MorphD(G(A), G(A)) 


y



y

MorphD(F(A), G(A0)) → MorphD(G(A), G(A0)) 

left-by-G(σ ) left-by-G(σ ) 

TA,G( A0)
−−−−

commutes. Evaluating at TA
−
,
1 
G(A)(1G(A)) ∈ MorphD(F(A), G(A)) the two equal

compositions in the diagram, we obtain 

G(σ ) = G(σ )1G(A) = TA,G(A0) 
°
G(σ )T −1 (1G(A))

¢
. (∗)A,G(A)
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With σ as above, the naturality of TA,V in the A variable implies that the diagram 

TA0 ,G(A0)MorphD(F(A0), G(A0)) −−−−→ MorphD(G(A0), G(A0)) 

right-by-G(σ ) 

MorphD(G(A), G(A0)) 



y

MorphD(F(A), G(A0)) 



yright-by-F(σ ) 

TA,G( A0)
−−−−→ 

commutes. Evaluating at TA
−
0 ,
1 
G(A0)(1G(A0)) ∈ MorphD(F(A0), G(A0)) the two 

equal compositions in the diagram, we obtain 

G(σ ) = 1G(A0)G(σ ) = TA,G(A0) 
°
TA

−
0 ,
1 
G(A0)(1G(A0))F(σ )

¢
. (∗∗) 

Equations (∗) and (∗∗), together with the fact that TA,G(A0) is invertible, say that 

G(σ )TA
−
,
1 
G(A)(1G(A)) = TA

−
0 ,
1 
G(A0 )(1G(A0))F(σ ). 

In other words, the isomorphism TeA ∈ MorphD(F(A), G(A)) given by TeA = 
TA

−
,
1 
G(A)(1G(A)) makes the diagram 

TAeF(A) −−−→ G(A) 

F(σ ) 



y



y

F(A0) −−−→ G(A0) 

G(σ ) 

TeA0 

commute. Thus F is naturally isomorphic to G. § 

Tensor product provides a device for converting a real vector space canonically
into a complex vector space, so that a basis over R in the original space becomes a 
basis over C in the new space. If E is the given real vector space, then the complex 
vector space, called the complexification of E , is the space EC = E ⊗R C with 
multiplication by a complex number c in EC defined to be 1 ⊗ (z 7→ cz). 
This construction works more generally when we have any inclusion of fields 

K ⊆ L. In this situation, L becomes a vector space over K if scalar multiplication 
K × L → L is defined as the restriction of the multiplication L × L → L within 
L. For any vector space E over K, we define EL = E ⊗K L, initially as a vector 
space over K. For c ∈ L, we then define 

(multiplication by c in E ⊗K L) = 1 ⊗ (multiplication by c in L). 
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The above identities concerning tensor products of linear maps allow one easily
to prove the following identities: 

c1(c2v) = (c1c2)v, 

c(u + v) = cu + cv, 

(c1 + c2)v = c1v + c2v, 

1v = v. 

Together these identities say that EL = E ⊗K L, with its vector-space addition
and the above definition of multiplication by scalars in L, is a vector space over 
L. The further identity 

c(e ⊗ 1) = ce ⊗ 1 if c is in K and e is in E 

shows that its scalar multiplication is consistent with scalar multiplication in E 
when the scalars are in K and E is identified with the subset E ⊗ 1 of EL. 
Let us say that the pair (EL , ∂), where ∂ : E → EL is the mapping e 7→ e ⊗ 1,

is obtained by extension of scalars. This construction is characterized by a 
universal mapping property as follows. 

Proposition 6.18. Let K ⊆ L be an inclusion of fields, and let E be a vector 
space over K. 
(a) If (EL , ∂) is formed by extension of scalars, then (EL , ∂) has the following 

universal mapping property: whenever U is a vector space over L and ϕ : E → U 
is a K linear map, there exists a unique L linear map 8 : EL → U such that 
8∂ = ϕ. 
(b) Suppose that (V, j) is any pair in which V is a vector space over L and 

j : E → V is a K linear function such that the following universal mapping
property holds: whenever U is a vector space over L and ϕ : E → U is a K 
linear map, there exists a unique L linear map 8 : V → U such that 8j = ϕ. 
Then there exists a unique isomorphism 9 : EL → V of L vector spaces such that 
9 ∂ = j . 

PROOF. In (a), for the uniqueness of 8, we must have 8(e ⊗c) = c8(e ⊗1) = 
c(8 ∂)(e) = cϕ(e). Hence 8 is determined by ϕ on pure tensors in E ⊗K L and 
therefore everywhere.
For existence let 8 : E ⊗K L → U be the K linear extension of the K bilinear 

function of E × L into U given by 

(e, c) 7→ cϕ(e) for e ∈ E and c ∈ L. 
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In the L vector space E ⊗K L, multiplication by a member c0 of L is defined to 
be 1 ⊗ (multiplication by c0). On a pure tensor e ⊗ c, we therefore have 

8(c0(e ⊗ c)) = 8(e ⊗ c0c) = (c0c)ϕ(e) = c0(cϕ(e)) = c0(8(e ⊗ c)). 

Since E ⊗K L is generated by pure tensors, 8 is L linear. By the construction of 
8, ϕ(e) = 8(e ⊗ 1) = (8 ∂)(e). Thus 8 has the required properties. 
In (b), let (V, j) have the same universal mapping property as (EL , ∂). We 

apply the universal mapping property of (EL , ∂) to the K linear map j : E → V 
to obtain an L linear 8 : EL → V with 8∂ = j , and we apply the universal 
mapping property of (V, j) to the K linear map ∂ : E → EL to obtain an L linear 
80 : V → EL with 80 j = ∂. From (808) ∂ = 80 j = ∂ and 1EL ∂ = ∂, the 
uniqueness in the universal mapping property for (EL , ∂) implies 808 = 1EL . 
Arguing similarly, we obtain 880 = 1V . Thus 8 is an isomorphism with the 
required properties.
If 9 : EL → V is another isomorphism with 9 ∂ = j , then the argument just 

given shows that 809 = 1EL and 980 = 1V . Hence 9 = (80)−1 = 8, and 9 
is unique. § 

To make E 7→ EL into a covariant functor from vector spaces over K to vector 
spaces over L, we must examine the effect on linear maps. The tool is Proposition
6.18a. Thus let E and F be two vector spaces over K, and let M : E → F be 
a K linear map between them. We extend scalars for E and F . The proposition 
applies to the composition E → F → FL and shows that the composition 
extends uniquely to an L linear map from EL to FL. A quick look at the proof 
shows that this L linear map is M ⊗ 1. Actually, we can see directly that M ⊗ 1 is 
indeed linear over L and not just over K: we just use our identity for compositions 
of tensor products to write 

(M ⊗ 1)(I ⊗ (multiplication by c)) = M ⊗ (multiplication by c) 
= (I ⊗ (multiplication by c))(M ⊗ 1). 

In any event, the explicit form of the extended linear map as M ⊗ 1 shows 
immediately that the identity linear map goes to the identity and that compositions
go to compositions. Thus E 7→ EL is a covariant functor. 
In the special case that the vector spaces are Kn and Km , extension of scalars

has a particularly simple interpretation. The new spaces may be viewed as Ln 

and Lm . Thus column vectors with entries in K get replaced by column vectors 
with entries in L. What happens with linear mappings is even more transparent. 
A linear map M : E → F is given by an m-by-n matrix A with entries in K, and 
the linear map M ⊗ 1 : EL → FL is the one given by the same matrix A. Now 
the entries of A are to be regarded as members of the larger field L. Viewed this 
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way, extension of scalars might look as if it is dependent on choices of bases, but
the tensor-product formalism shows that it is not.
A related notion to extension of scalars is that of restriction of scalars. Again 

with an inclusion K ⊆ L of fields, a vector space E over the larger field L 
becomes a vector space EK over the smaller field K by ignoring unnecessary
scalar multiplications. Although this notion is related to extension of scalars, it
is not inverse to it. For example, if the two fields are R and C and if we start with 
an n-dimensional vector space E over R, then EC is a complex vector space of 
dimension n and (EC)R is a real vector space of dimension 2n. We thus do not 
get back to the original space E . 

7. Tensor Algebra 

Just as polynomial rings are often used in the construction of more general
commutative rings, so “tensor algebras” are often used in the construction of
more general rings that may not be commutative. In this section we construct the
“tensor algebra” of a vector space as a direct sum of iterated tensor products of
the vector space with itself, and we establish its properties. We shall proceed with
care, in order to provide a complete proof of the associativity of the multiplication.
Let A, B, and C be vector spaces over a field K. A triple tensor product V = 

A ⊗K B ⊗K C is a vector space over K with a 3-linear map ∂ : A × B × C → V 
having the following universal mapping property: whenever t is a 3-linear map-
ping of A× B ×C into a vector space U over K, then there exists a linear mapping 
T of V into U such that the diagram in Figure 6.4 commutes. 

A × B × C 

∂

y

V = A ⊗K B ⊗K C 

FIGURE 6.4. Commutative diagram of a triple tensor product. 

The usual argument with universal mapping properties shows that there is at
most one triple tensor product up to a well-determined isomorphism, and one can
give an explicit construction of it that is similar to the one for ordinary tensor
products E ⊗K F . We shall not need that particular proof of existence since
Proposition 6.19a below will give us an alternative argument. Once we have that
statement, we shall use the uniqueness of triple tensor products to establish in
Proposition 6.19b an associativity formula for ordinary iterated tensor products. 

t
−−−→ U 

T 
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A shorter proof of Proposition 6.19b, which avoids Proposition 6.19a and uses
naturality, will be given after the proof of Proposition 6.20. 

Proposition 6.19. If K is a field and A, B, C are vector spaces over K, then 

(a) (A ⊗K B) ⊗K C and A ⊗K (B ⊗K C) are triple tensor products. 
(b) there exists a unique K isomorphism 8 from left to right in 

(A ⊗K B) ⊗K C ∼ A ⊗K (B ⊗K C)= 

such that 8((a ⊗ b) ⊗ c) = a ⊗ (b ⊗ c) for all a ∈ A, b ∈ B, and c ∈ C . 

PROOF. In (a), consider (A ⊗K B) ⊗K C . Let t : A × B × C → U be 
3-linear. For c ∈ C , define tc : A × B → U by tc(a, b) = t (a, b, c). Then tc 
is bilinear and hence extends to a linear Tc : A ⊗K B → U . Since t is 3-linear, 
tc1+c2 = tc1 +tc2 and txc = xtc for scalar x ; thus uniqueness of the linear extension 
forces Tc1+c2 = Tc1 + Tc2 and Txc = xTc. Consequently 

t 0 : (A ⊗K B) × C → U 

given by t 0(d, c) = Tc(d) is bilinear and therefore extends to a linear 
T : (A ⊗K B) ⊗K C → U . This T proves existence of the linear extension of the 
given t . Uniqueness is trivial, since the elements (a ⊗b)⊗c span (A⊗K B)⊗K C . 
So (A ⊗K B)⊗K C is a triple tensor product. In a similar fashion, A ⊗K (B ⊗K C)
is a triple tensor product.
For (b), set up the diagram of the universal mapping property for a triple tensor

product, using V = (A ⊗K B) ⊗K C , U = A ⊗K (B ⊗K C), and t (a, b, c) = 
a ⊗ (b ⊗ c). We have just seen in (a) that V is a triple tensor product with 
∂(a, b, c) = (a ⊗b)⊗c. Thus there exists a linear T : V → U with T ∂(a, b, c) = 
t (a, b, c). This equation means that T ((a ⊗ b) ⊗ c) = a ⊗ (b ⊗ c). Interchanging 
the roles of (A ⊗K B) ⊗K C and A ⊗K (B ⊗K C), we obtain a two-sided inverse 
for T . Thus T will serve as 8 in (b), and existence is proved. Uniqueness is 
trivial, since the elements (a ⊗ b) ⊗ c span (A ⊗K B) ⊗K C . § 

When there is no danger of confusion, Proposition 6.19 allows us to write a
triple tensor product without parentheses as A ⊗K B ⊗K C . The same argument
as in Corollaries 6.11 and 6.12 shows that the vector space of 3-linear forms on
A× B ×C is canonically isomorphic to the dual of the vector space A⊗K B ⊗K C . 
Just as with Corollary 6.13 and Proposition 6.15, the result of Proposition 6.19

can be improved by saying that the isomorphism is natural in the variables A, B,
and C , as follows. 
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Proposition 6.20. Let A, B, C , A1, B1, and C1 be vector spaces over a field 
K, and let LA : A → A1, LB : B → B1, and LC : C → C1 be linear maps. 
Then the isomorphism 8 of Proposition 6.19b is natural in the triple (A, B, C)
in the sense that the diagram 

8
(A ⊗K B) ⊗K C −−−→ A ⊗K (B ⊗K C) 

 
(LA ⊗LB )⊗LC 

 
LA ⊗(LB ⊗LC )y y

8
(A1 ⊗K B1) ⊗K C1 −−−→ A1 ⊗K (B1 ⊗K C1) 

commutes. 
PROOF. We have 

((LA ⊗ (LB ⊗ LC )) ◦ 8)((a ⊗ b) ⊗ c) 
= (LA ⊗ (LB ⊗ LC ))(a ⊗ (b ⊗ c)) 
= L Aa ⊗ (LB ⊗ LC )(b ⊗ c) 
= L Aa ⊗ (L Bb ⊗ LCc) 
= 8((L Aa ⊗ LBb) ⊗ LCc) 
= 8((LA ⊗ LB )(a ⊗ b) ⊗ LCc) 
= (8 ◦ ((LA ⊗ LB ) ⊗ LC ))((a ⊗ b) ⊗ c), 

and the proposition follows. § 

The treatment of Propositions 6.19 and 6.20 can be shortened if we are willing
to bypass the notion of a triple tensor product and use what was proved about
naturality in the previous section. The result and the proof are as follows. 

Proposition 6.200. Let A, B, and C be vector spaces over a field K. Then 
there is an isomorphism 8 : (A ⊗K B) ⊗K C → A ⊗K (B ⊗K C) that is natural 
in the triple (A, B, C) and satisfies 8(a ⊗ (b ⊗ c)) = a ⊗ (b ⊗ c). 
PROOF. Writing ∼ for “naturally isomorphic in all variables” and applying= 

Proposition 6.15 and other natural isomorphisms of the previous section repeat-
edly, we have 
HomK 

° 
(A ⊗K B) ⊗K C, V 

¢ ∼ °
A ⊗K B, HomK(C, V )

¢
= HomK 

∼= HomK 
°
B, HomK(A, HomK(C, V ))

¢ 

∼= HomK 
°
B, HomK(A ⊗K C, V )

¢ 

∼= HomK 
°
B, HomK(C ⊗K A, V )

¢ 

∼= HomK 
° 
(C ⊗K B) ⊗K A, V 

¢ 
by symmetry 

∼= HomK 
°
A ⊗K (C ⊗K B), V 

¢ 

∼= HomK 
°
A ⊗K (B ⊗K C), V 

¢
. 
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Then the existence of the natural isomorphism follows from Corollary 6.17. Using
the explicit formula for the isomorphism in Proposition 6.16 and tracking matters
down, we see that 8(a ⊗ (b ⊗ c)) = a ⊗ (b ⊗ c). § 

There is no difficulty in generalizing matters to n-fold tensor products by 
induction. An n-fold tensor product is to be universal for n-multilinear maps.
Again it is unique up to canonical isomorphism, as one proves by an argument
that runs along familiar lines. A direct construction of an n-fold tensor product
is possible in the style of the proof for ordinary tensor products, but such a
construction will not be needed. Instead, we can form an n-fold tensor product 
as the (n − 1)-fold tensor product of the first n − 1 spaces, tensored with the nth 

space. Proposition 6.19b allows us to regroup parentheses (inductively) in any
fashion we choose, and the same argument as in Corollaries 6.11 and 6.12 yields
the following proposition. 

Proposition 6.21. If E1, . . . , En , and V are vector spaces over K, then the 
vector space HomK(E1 ⊗K · · ·⊗K En, V ) is canonically isomorphic (via restric-
tion to pure tensors) to the vector space of all V -valued n-multilinear functions 
on E1 × · · · × En . In particular the vector space of all n-multilinear forms on 
E1 × · · · × En is canonically isomorphic to (E1 ⊗K · · · ⊗K En)0. 

Iterated application of Proposition 6.20 shows that we get also a well-defined
notion of a linear map L1 ⊗ · · · ⊗ Ln , the tensor product of n linear maps. Thus 
(E1, . . . , En) 7→ E1 ⊗K · · · ⊗K En is a functor. There is no need to write out the 
details. 

We turn to the question of defining a multiplication operation on tensors. If K 
is a field, an algebra4 over K is a vector space V over K with a multiplication 
or product operation V × V → V that is K bilinear. The additive part of the K 
bilinearity means that the product operation satisfies the distributive laws 

a(b + c) = ab + ac and (b + c)a = ba + ca for all a, b, c in V, 

and the scalar-multiplication part of the K bilinearity means that 

(ka)b = k(ab) = a(kb) for all k in K and a, b in V . 

Within the text of the book, we shall work mostly just with associative 
algebras, i.e., those algebras satisfying the usual associative law 

a(bc) = (ab)c for all a, b, c in V . 

4Some authors use the term “algebra” to mean what we shall call an “associative algebra.” 
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An associative algebra is therefore a ring and a vector space, the scalar multipli-
cation and the ring multiplication being linked by the requirement that (ka)b = 
k(ab) = a(kb) for all scalars k. Some commutative examples of associative alge-
bras over K are any field L containing K, the polynomial algebra K[X1, . . . , Xn],
and the algebra of all K-valued functions on a nonempty set S. Two noncommu-
tative examples of associative algebras over K are the matrix algebra Mn(K), with 
matrix multiplication as its product, and HomK(V, V ) for any vector space V ,
with composition as its product. The division ring H of quaternions (Example 10
in Section IV.1) is another example of a noncommutative associative algebra 
over R. 
Despite our emphasis on algebras that are associative, certain kinds of nonasso-

ciative algebras are of great importance in applications, and consequently several
problems at the end of the chapter make use of nonassociative algebras. A 
nonassociative algebra is determined by its vector-space structure and the mul-
tiplication table for the members of a K basis. There is no restriction on the 
multiplication table; all multiplication tables define algebras. Perhaps the best-
known nonassociative algebra is the 3-dimensional algebra over R determined by 
vector product in R3. A basis is {i, j, k}, the multiplication operation is denoted 
by ×, and the multiplication table is 

i × i = 0, i × j = k, i × k = −j, 
j × i = −k, j × j = 0, j × k = i, 
k × i = j, k × j = −i, k × k = 0. 

Since i × (i × k) = i × (−j) = −k and (i × i) × k = 0, vector product is not 
associative. The vector-product algebra is a special case of a Lie algebra; Lie
algebras are defined in Problems 31–35 at the end of the chapter.
Tensor algebras, which we shall now construct, will be associative algebras.

Fix a vector space E over K, and for integers n ∏ 1, let T n(E) be the n-fold 
tensor product of E with itself. In the case n = 0, we let T 0(E) be the field K. 
Define, initially as a vector space, T (E) to be the direct sum 

∞M 
T nT (E) = (E). 

n=0 

The elements that lie in one or another T n(E) are called homogeneous. We 
define a bilinear multiplication on homogeneous elements 

Tm (E) × T n(E) → Tm+n(E) 

to be the restriction of the canonical isomorphism 

Tm (E) ⊗K T n(E) → Tm+n(E) 
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resulting from iterating Proposition 6.19b. This multiplication, denoted by ⊗, is 
associative, as far as it goes, because the restriction of the K isomorphism 

T l (E) ⊗K (Tm (E) ⊗K T n(E)) → (T l (E) ⊗K Tm(E)) ⊗K T n(E) 

to T l (E) × (Tm (E) × T n(E)) factors through the map 

T l (E) × (Tm (E) × T n(E)) → (T l (E) × Tm(E)) × T n(E) 

given by (r, (s, t)) 7→ ((r, s), t). 
This much tells how to multiply homogeneous elements in T (E). Since each 

element t in T (E) has a unique expansion as a finite sum t = 
P

k
n 
=0 tk with 
Pn0

tk ∈ T k (E), we can define the product of this t and the element t 0 = k=0 tk
0 to 

Pn+n0

be the element t ⊗ t 0 = 
P

k+k0=l (tk ⊗ tk
0 ); the expression 

P
k+k0=l (tk ⊗ tk

0 )l=0 
is the component of the product in T l (E). 
Multiplication is thereby well defined in T (E), and it satisfies the distributive 

laws and is associative. Thus T (E) becomes an associative algebra with a
(two-sided) identity, namely the element 1 in T 0(E). In the presence of the 
identification ∂ : E → T 1(E), T (E) is known as the tensor algebra of E . The 
pair (T (E), ∂) has the universal mapping property given in Proposition 6.22 
and pictured in Figure 6.5. 

lE −−−→ A 

∂

y

T (E) 

FIGURE 6.5. University mapping property of a tensor algebra. 

Proposition 6.22. The pair (T (E), ∂) has the following universal mapping 
property: whenever l : E → A is a linear map from E into an associative alge-
bra with identity, then there exists a unique associative algebra homomorphism
L : T (E) → A with L(1) = 1 such that the diagram in Figure 6.5 commutes. 
PROOF. Uniqueness is clear, since E and 1 generate T (E) as an algebra. For 

existence we define L(n) on T n(E) to be the linear extension of the n-multilinear 
map 

(v1, v2, . . . , vn) 7→ l(v1)l(v2) · · · l(vn), 
and we let L = 

L 
L(n) in obvious notation. Let u1 ⊗ · · · ⊗ um be in Tm (E) and 

v1 ⊗ · · · ⊗ vn be in T n(E). Then we have 
L(m)(u1 ⊗ · · · ⊗ um) = l(u1) · · · l(um), 

L(n)(v1 ⊗ · · · ⊗ vn) = l(v1) · · · l(vn), 

L(m+n)(u1 ⊗ · · · ⊗ um ⊗ v1 ⊗ · · · ⊗ vn) = l(u1) · · · l(um)l(v1) · · · l(vn). 

L 
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Hence 

L(m+n)L(m)(u1 ⊗ · · ·⊗ um)L(n)(v1 ⊗ · · ·⊗ vn) = (u1 ⊗ · · ·⊗ um ⊗ v1 ⊗ · · ·⊗ vn). 

Taking linear combinations, we see that L is a homomorphism. § 

Proposition 6.22 allows us to make E 7→ T (E) into a functor from the category 
of vector spaces over K to the category of associative algebras with identity over 
K. To carry out the construction, we suppose that ϕ : E → F is a linear map 
between two vector spaces over K. If i : E → T (E) and j : F → T (F) are the 
inclusion maps, then jϕ is a linear map from E into T (F), and Proposition 6.22 
produces a unique algebra homomorphism 8 : T (E) → T (F) carrying 1 to 1 
and satisfying 8i = jϕ. Then the tensor-product functor is defined to carry the 
linear map ϕ to the homomorphism 8 of associative algebras with identity. 
For the situation in which R is a commutative ring with identity, Section 

IV.5 introduced the ring R[X1, . . . , Xn] of polynomials in n commuting inde-
terminates with coefficients in R. This ring was characterized by a universal
mapping property saying that if a ring homomorphism of R into a commutative 
ring with identity were given and if n elements t1, . . . , tn were given, then the 
ring homomorphism of R could be extended uniquely to a ring homomorphism 
of R[X1, . . . , Xn] carrying Xj into tj for each j . 
Proposition 6.22 yields a noncommutative version of this result, except that the

ring of coefficients is assumed this time to be a field K. To arrange for X1, . . . , Xn 

to be noncommuting indeterminates, we form a vector space with {X1, . . . , Xn}
as a basis. Thus we let E = 

Ln
j=1 KXj . If t1, . . . , tn are arbitrary elements of an 

associative algebra A with identity, then the formulas l(Xj ) = tj for 1 ≤ j ≤ n 
define a linear map l : E → A. The associative-algebra homomorphism 
L : T (E) → A produced by the proposition extends the inclusion of K into 
the subfield K1 of A and carries each Xj to tj . 

8. Symmetric Algebra 

We continue to allow K to be an arbitrary field. Let E be a vector space over 
K, and let T (E) be the tensor algebra. We begin by defining the symmetric 
algebra S(E). This is to be a version of T (E) in which the elements, which are
called symmetric tensors, commute with one another. It will not be canonically
an algebra of polynomials, as we shall see presently, and thus we make no use of
polynomial rings in the construction.
Just as the vector space of n-multilinear forms E ×· · ·× E → K is canonically 

the dual of T n(E), so the vector space of symmetric n-multilinear forms will be 
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canonically the dual of Sn(E). Here “symmetric” means that f (x1, . . . , xn) = 
f (xτ (1), . . . , xτ (n)) for every permutation τ in the symmetric group Sn . 
Since tensor algebras are supposed to be universal devices for constructing

associative algebras over K, whether commutative or not, we seek to form S(E)
as a quotient of T (E). If q is the quotient homomorphism, we want to have 
q(u ⊗ v) = q(v ⊗ u) in S(E) whenever u and v are in ∂(E) = T 1(E). Hence 
every element u ⊗ v − v ⊗ u is to be in the kernel of the homomorphism. On the
other hand, we do not want to impose any unnecessary conditions on our quotient,
and so we factor out only what the elements u ⊗ v − v ⊗ u force us to factor out. 
Thus we define the symmetric algebra by 

S(E) = T (E)/I, 
√ two-sided ideal generated by all 

where I = u ⊗ v − v ⊗ u with u and v 

! 

. 
in T 1(E) 

M 

Then S(E) is an associative algebra with identity.
Let us see that the fact that the generators of the ideal I are homogeneous 

elements (all being in T 2(E)) implies that 

∞

I = (I ∩ T n(E)). 

M 

n=0 

In fact, each I ∩ T n(E) is contained in I , and hence I contains the right side. 
On the other hand, if x is any element of I , then x is a sum of terms of the form 
a ⊗ (u ⊗ v − v ⊗ u) ⊗ b, and we may assume that each a and b is homogeneous. 
Any individual term a ⊗ (u ⊗ v − v ⊗ u) ⊗ b is in some I ∩ T n(E), and x is 
exhibited as a sum of members of the various intersections I ∩ T n(E).L∞An ideal with the property I = n=0 (I ∩ T n(E)) is said to be homogeneous. 
Since I is homogeneous, 

∞

S(E) = T n(E)/(I ∩ T n(E)). 

M 

n=0 

We write Sn(E) for the nth summand on the right side, so that 

∞

S(E) = Sn(E). 
n=0 

Since I ∩ T 1(E) = 0, the map of E → T 1(E) → S1(E) into first-order elements 
is one-one onto. The product operation in S(E) is written without a product sign, 
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the image in Sn(E) of v1 ⊗ · · ·⊗ vn in T n(E) being written as v1 · · · vn . If a is in 
Sm (E) and b is in Sn(E), then ab is in Sm+n(E). Moreover, Sn(E) is generated 
by elements v1 · · · vn with all vj in S1(E) ∼= E , since T n(E) is generated by 
corresponding elements v1 ⊗ · · · ⊗ vn . The defining relations for S(E) make 
vi vj = vj vi for vi and vj in S1(E), and it follows that the associative algebra 
S(E) is commutative. § 

Proposition 6.23. Let E be a vector space over the field K. 
(a) Let ∂ be the n-multilinear function ∂(v1, . . . , vn) = v1 · · · vn of E × · · ·× E 

into Sn(E). Then (Sn(E), ∂) has the following universal mapping property: 
whenever l is any symmetric n-multilinear map of E × · · · × E into a vector 
space U , then there exists a unique linear map L : Sn(E) → U such that the 
diagram 

lE × · · · × E −−−→ U 

∂

y

Sn(E) 

commutes. 
(b) Let ∂ be the one-one linear function that embeds E as S1(E) ⊆ S(E). 

Then (S(E), ∂) has the following universal mapping property: whenever l is 
any linear map of E into a commutative associative algebra A with identity, then 
there exists a unique algebra homomorphism L : S(E) → A with L(1) = 1 such 
that the diagram 

lE −−−→ A 

∂

y

S(E) 

commutes. 
PROOF. In both cases uniqueness is trivial. For existence we use the universal

mapping properties of T n(E) and T (E) to produce eL on T n(E) or T (E). If we 
can show that eL annihilates the appropriate subspace so as to descend to Sn(E) 
or S(E), then the resulting map can be taken as L , and we are done. For (a), we 
have eL : T n(E) → U , and we are to show that eL(T n(E) ∩ I ) = 0, where I is 
generated by all u ⊗ v − v ⊗ u with u and v in T 1(E). A member of T n(E) ∩ I 
is thus of the form 

P 
ai ⊗ (ui ⊗ vi − vi ⊗ ui ) ⊗ bi with each term in T n(E). 

Each term here is a sum of pure tensors 

x1 ⊗ · · ·⊗ xr ⊗ui ⊗vi ⊗ y1 ⊗ · · ·⊗ ys − x1 ⊗ · · ·⊗ xr ⊗vi ⊗ui ⊗ y1 ⊗ · · ·⊗ ys (∗) 

L 

L 
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with r + 2 + s = n. Since l by assumption takes equal values on 

x1 × · · · × xr × ui × vi × y1 × · · · × ys 

and x1 × · · · × xr × vi × ui × y1 × · · · × ys, 

L vanishes on (∗), and it follows that eL(T n(E) ∩ I ) = 0.e
For (b) we are to show that eL : T (E) → A vanishes on I . Since ker eL 

is an ideal, it is enough to check that eL vanishes on the generators of I . But 
L(u ⊗ v − v ⊗ u) = l(u)l(v) − l(v)l(u) = 0 by the commutativity of A, and thus e
L(I ) = 0. § 

Corollary 6.24. If E and F are vector spaces over the field K, then the 
vector space HomK(Sn(E), F) is canonically isomorphic (via restriction to pure
tensors) to the vector space of all F-valued symmetric n-multilinear functions on 
E × · · · × E . 

PROOF. Restriction is linear and one-one. It is onto by Proposition 6.23a. § 

Corollary 6.25. If E is a vector space over the field K, then the dual (Sn(E))0 

of Sn(E) is canonically isomorphic (via restriction to pure tensors) to the vector
space of symmetric n-multilinear forms on E × · · · × E . 

PROOF. This is a special case of Corollary 6.24. § 

If ϕ : E → F is a linear map between vector spaces, then we can use
Proposition 6.23b to define a corresponding homomorphism 8 : S(E) → S(F)
of associative algebras with identity. In this way, we can make E 7→ S(E) into a 
functor from the category of vector spaces over K to the category of commutative 
associative algebras with identity over K. The details appear in Problem 14 at 
the end of the chapter.
Next we shall identify a basis for Sn(E) as a vector space. The union of such 

bases as n varies will then be a basis of S(E). Let {ui }i∈A be a basis of E , possibly 
infinite. As noted in Section A5 of the appendix, a simple ordering on the index 
set A is a partial ordering in which every pair of elements is comparable and in
which a ≤ b and b ≤ a together imply a = b. 

Proposition 6.26. Let E be a vector space over the field K, let {ui }i∈A be a 
basis of E , and suppose that a simple ordering has been imposed on the index set 

j1 jkA. Then the set of all monomials u · · · u with i1 < · · · < ik and 
P

jm = ni1 ik m
is a basis of Sn(E). 
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REMARK. In particular if E is finite-dimensional with (u1, . . . , uN ) as an 
j1 jNordered basis, then the monomials u1 · · · uN of total degree n form a basis of 

Sn(E). 

PROOF. Since S(E) is commutative and since n-fold products of elements ∂(ui )
in T 1(E) span T n(E), the indicated set of monomials spans Sn(E). Let us see that 
the set is linearly independent. Take any finite subset F ⊆ A of indices. The map P

i∈A ciui 7→ 
P

i∈F ci Xi of E into the polynomial algebra K[{Xi }i∈F ] is linear
into a commutative algebra with identity. Its extension via Proposition 6.23b maps
all monomials in the ui for i ∈ F into distinct monomials in K[{Xi }i∈F ], which
are necessarily linearly independent. Hence any finite subset of the monomials in
the statement of the proposition is linearly independent, and the whole set must
be linearly independent. Therefore our spanning set is a basis. § 

The proof of Proposition 6.26 shows that S(E) may be identified with poly-
nomials in indeterminates identified with members of E once a basis has been 
chosen, but this identification depends on the choice of basis. Indeed, if we think
of E as specified in advance, then the isomorphism was set up by mapping the set 
{Xi }i∈A to the specified basis of E , and the result certainly depended on what basis 
was used. Nevertheless, if E is finite-dimensional, there is still an isomorphism
that is independent of basis; it is between S(E 0), where E 0 is the dual of E , and 
a natural basis-free notion of “polynomials” on E . We return to this point after 
one application of Proposition 6.26. 

Corollary 6.27. Let E be a finite-dimensional vector space over K of dimen-
sion N . Then µ 

n + N − 1 
∂

(a) dim Sn(E) = for 0 ≤ n < ∞,N − 1 
(b) Sn(E 0) is canonically isomorphic to Sn(E)0 in such a way that 

nX Y
( f1 · · · fn)(w1 · · · wn) = f j (wτ ( j))), 

τ ∈Sn j=1 

for any f1, . . . , fn in E 0 and any w1, . . . , wn in E , provided K has 
characteristic 0; here Sn is the symmetric group on n letters. 

PROOF. For (a), a basis has been described in Proposition 6.26. To see its
cardinality, we recognize that picking out N − 1 objects from n + N − 1 to label 
as dividers is a way of assigning exponents to the uj ’s in an ordered basis; thus µ 

n + N − 1 
∂

the cardinality of the indicated basis is .N − 1 
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For (b), let f1, . . . , fn be in E 0 and w1, . . . , wn be in E , and define 

nX Y
l f1,..., fn (w1, . . . , wn) = f j (wτ ( j))). 

τ∈Sn j=1 

Then l f1,..., fn is symmetric n-multilinear from E × · · · × E into K and extends 
by Proposition 6.23a to a linear L f1,..., fn : Sn(E) → K. Thus l( f1, . . . , fn) = 
L f1 ,..., fn defines a symmetric n-multilinear map of E 0 × · · · × E 0 into Sn(E)0. Its 
linear extension L maps Sn(E 0) into Sn(E)0. 
To complete the proof, we shall show that L carries basis to basis. Let 

u1, . . . , uN be an ordered basis of E , and let u0
1, . . . , u

0
N be the dual basis. Part 

(a) shows that the elements (u0
1) 

j1 · · · (u0
N ) 

jN with 
P

jm = n form a basis of m
Sn(E 0) and that the elements (u1)k1 · · · (uN )

kN with 
P

km = n form a basis of m
Sn(E). We show that L of the basis of Sn(E 0) is the dual basis of the basis of 
Sn(E), except for positive-integer factors. Thus let all of f1, . . . , f j1 be u0

1, let 
all of f j1+1, . . . , f j1+ j2 be u0

2, and so on. Similarly let all of w1, . . . , wk1 be u1,
let all of wk1+1, . . . , wk1+k2 be u2, and so on. Then 

j1 (u0 k1 kN ) =L((u0
1) · · · N ) 

jN )((u1) · · · (uN ) L( f1 · · · fn)(w1 · · · wn) 

= l( f1, . . . , fn)(w1 · · · wn) 
nX Y

= fi (wτ (i))). 
τ∈Sn i=1 

For given τ , the product on the right side is 0 unless, for each index i , an inequality 
jm−1 + 1 ≤ i ≤ jm implies that km−1 + 1 ≤ τ (i) ≤ km . In this case the product 
is 1; so the right side counts the number of such τ ’s. For given τ , obtaining a 
nonzero product forces km = jm for all m. And when km = jm for all m, the 
choice τ = 1 does lead to product 1. Hence the members of L of the basis are 
positive-integer multiples of the members of the dual basis, as asserted. § 

Let us return to the question of introducing a basis-free notion of polynomials
on the vector space E under the assumption that E is finite-dimensional. We take 
a cue from Corollary 4.32, which tells us that the evaluation homomorphism
carrying K[X1, . . . , Xn] to the algebra of K-valued polynomial functions of 
(t1, . . . , tn) is one-one if K is an infinite field. We regard the latter as the algebra
of polynomial functions on Kn , and we check what happens when we identify 
the vector space E with Kn by fixing a basis. Let 0 = {x1, . . . , xn} be a basis of 
E , and let 00 = {x1

0 , . . . , xn0 } be the dual basis of E 0. If e = t1x1 + · · · + tnxn is 
the expansion of a member of E in terms of 0, then we have xj0(e) = tj . Thus the 
polynomial functions tj are given by the members of the dual basis. The vector 
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space of all homogeneous first-degree polynomial functions is the set of linear
combinations of the tj ’s, and these are given by arbitrary linear functionals on E . 
Thus the vector space of homogeneous first-degree polynomial functions on E is 
just the dual space E 0, and this conclusion does not depend on the choice of basis.
The algebra of all polynomial functions on E is then the algebra of all K-valued 
functions on E generated by E 0 and the constant functions. 
This discussion tells us unambiguously what polynomial functions on E are 

to be, and we want to backtrack to handle abstract polynomials on E . Although 
the evaluation homomorphism from K[X1, . . . , Xn] to the algebra of polynomial 
functions on Kn may fail to be one-one if K is a finite field, its restriction to 
homogeneous first-degree polynomials is one-one. Thus, whatever we might
mean by the vector space of homogeneous first-degree polynomials on E , the 
evaluation mapping should exhibit this space as isomorphic to E 0. 
Armed with these clues, we define the polynomial algebra P(E) on E to be 

the symmetric algebra S(E 0) if E is finite-dimensional. We need an evaluation 
mapping for each point e of E , and we obtain this from the universal mapping
property of symmetric algebras (Proposition 6.23b): With e fixed, we have a 
linear map l from the vector space E 0 to the commutative associative algebra 
K given with l(e0) = e0(e). The universal mapping property gives us a unique 
algebra homomorphism L : S(E 0) → K that extends l and carries 1 to 1. The 
algebra homomorphism L is then a multiplicative linear functional on P(E) = 
S(E 0) that carries 1 to 1 and agrees with evaluation at e on homogeneous first-
degree polynomials. We write this homomorphism as p 7→ p(e), and we define 
Pn(E) = Sn(E 0); this is the vector space of homogeneous nth-degree polynomials 
on E . A confirmation that P(E) is indeed to be regarded as the algebra of abstract 
polynomials on E comes from the following. 

Proposition 6.28. If E is a finite-dimensional vector space over the field 
K, then the system of evaluation homomorphisms P(E) → K on polynomials 
given by p 7→ { p(e)}e∈E is an algebra homomorphism of P(E) onto the algebra 
of K-valued polynomial functions on E that carries the identity to the constant 
function 1, and it is one-one if K is an infinite field. 

PROOF. Certainly p 7→ { p(e)}e∈E is an algebra homomorphism of P(E) into 
the algebra of K-valued polynomial functions on E , and it carries the identity to
the constant function 1. We have seen that the image of P1(E) is exactly E 0, and 
hence the image of P(E) is the algebra of K-valued functions on E generated
by E 0 and the constants. This is exactly the algebra of all K-valued polynomial 
functions, and hence the mapping is onto.
Suppose that K is infinite. The restriction of p 7→ { p(e)}e∈E to the finite-

dimensional subspace Pn(E) of P(E) maps into the finite-dimensional subspace 
of all polynomial functions on E homogeneous of degree n, and this restriction 
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must therefore be onto. We can read off the dimension of the space of all 
polynomial functions on E homogeneous of degree n from Corollary 4.32 and
Corollary 6.27a. This dimension matches the dimension of Pn(E), according to
Corollary 6.27a. Since the mapping is onto and the finite dimensions match, the
restricted mapping is one-one. Hence p 7→ { p(e)}e∈E is one-one. § 

We have defined the symmetric algebra S(E) as a quotient of the tensor algebra 
T (E). Now let us suppose that K has characteristic 0. With this hypothesis we
shall be able to identify an explicit vector subspace of T (E) that maps one-one 
onto S(E) during the passage to the quotient. This subspace of T (E) can therefore 
be viewed as a version of S(E) for some purposes. 
We define an n-multilinear function from E × · · · × E into T n(E) by 

1 X
(v1, . . . , vn) 7→ vτ (1) ⊗ · · · ⊗ vτ (n),n! 

τ∈Sn 

and let σ : T n(E) → T n(E) be its linear extension. We call σ the symmetrizer
operator. The image of σ in T (E) is denoted by eSn(E), and the members of this 
subspace are called symmetrized tensors. 

Proposition 6.29. Let the field K have characteristic 0, and let E be a vector 
space over K. Then the symmetrizer operator σ satisfies σ 2 = σ . The kernel of 
σ on T n(E) is exactly T n(E) ∩ I , and therefore 

T n(E) = eSn(E) ⊕ (T n(E) ∩ I ). 

REMARK. In view of this corollary, the quotient map T n(E) → Sn(E) carries 
Sn(E) one-one onto Sn(E). Thus eSn(E) can be viewed as a copy of Sn(E)e
embedded as a direct summand of T n(E). 

PROOF. We have 

12
X

σ (v1 ⊗ · · · ⊗ vn) = vρτ (1) ⊗ · · · ⊗ vρτ (n)
(n!)2 

ρ,τ∈Sn 

1 X X
= vω(1) ⊗ · · · ⊗ vω(n)

(n!)2 
ρ∈Sn ω∈Sn , 

(ω=ρτ ) 

1 X
= σ (v1 ⊗ · · · ⊗ vn)n! 

ρ∈Sn 

= σ (v1 ⊗ · · · ⊗ vn). 
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Hence σ 2 = σ . Thus σ fixes any member of image σ , and it follows that 
image σ ∩ ker σ = 0. Consequently T n(E) is the direct sum of image σ and 
ker σ . We are left with identifying ker σ as T n(E) ∩ I . 
The subspace T n(E) ∩ I is spanned by elements 

x1 ⊗ · · · ⊗ xr ⊗ u ⊗ v ⊗ y1 ⊗ · · · ⊗ ys − x1 ⊗ · · · ⊗ xr ⊗ v ⊗ u ⊗ y1 ⊗ · · · ⊗ ys 

with r + 2 + s = n, and the symmetrizer σ certainly vanishes on such elements. 
Hence T n(E) ∩ I ⊆ ker σ . Suppose that the inclusion is strict, say with t in 
ker σ but t not in T n(E) ∩ I . Let q be the quotient map T n(E) → Sn(E). 
The kernel of q is T n(E) ∩ I , and thus q(t) 6 0. From Proposition 6.26 the = 
T (E) monomials in basis elements from E with increasing indices map onto a 
basis of S(E). Since K has characteristic 0, the symmetrized versions of these
monomials map to nonzero multiples of the images of the initial monomials.
Consequently q carries eSn(E) = image σ onto Sn(E). Thus choose t 0 ∈ eSn(E)
with q(t 0) = q(t). Then t 0 − t is in ker q = T n(E) ∩ I ⊆ ker σ . Since σ (t) = 0,
we see that σ (t 0) = 0. Consequently t 0 is in ker σ ∩ image σ = 0, and we obtain 
t 0 = 0 and q(t) = q(t 0) = 0, contradiction. § 

9. Exterior Algebra 

We turn to a discussion of the exterior algebra. Let K be an arbitrary field, and 
let E be a vector space over K. The construction, results, and proofs for the 
exterior algebra 

V
(E) are similar to those for the symmetric algebra S(E). The 

elements of 
V

(E) are to be all the alternating tensors (= skew-symmetric if K 
has characteristic 6 = 0. Thus we define the = 2), and so we want to force v ⊗ v 
exterior algebra by 

V
(E) = T (E)/I 0 , 

∂µ 
two-sided ideal generated by all where I 0 = . 
v ⊗ v with v in T 1(E) 

Then 
V

(E) is an associative algebra with identity.L∞It is clear that I 0 is homogeneous: I 0 = n=0 (I 0 ∩ T n(E)). Thus we can 
write V

(E) = 
L∞ 

n=0 T n(E)/(I 0 ∩ T n(E)). 

We write 
Vn(E) for the nth summand on the right side, so that 

V
(E) = 

L∞ 
n=0 

Vn(E). 
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Since I 0 ∩ T 1(E) = 0, the map of E into first-order elements 
V1(E) is one-one 

onto. The product operation in 
V

(E) is denoted by ∧ rather than ⊗, the image in Vn(E) of v1 ⊗ · · · vn in T n(E) being denoted by v1 ∧ · · · ∧ vn . If a is in 
Vm(E) 

and b is in 
Vn(E), then a ∧ b is in 

Vm+n(E). Moreover, 
Vn(E) is generated 

by elements v1 ∧ · · · ∧ vn with all vj in 
V1(E) ∼ E , since T n(E) is generated = 

by corresponding elements v1 ⊗ · · · ⊗ vn . The defining relations for 
V

(E) make 
vi ∧ vj = −vj ∧ vi for vi and vj in 

V1(E), and it follows that 

a ∧ b = (−1)mnb ∧ a for a ∈ 
Vm (E) and b ∈ 

Vn(E). 

Proposition 6.30. Let E be a vector space over the field K. 
(a) Let ∂ be the n-multilinear function ∂(v1, . . . , vn) = v1∧· · ·∧vn of E×· · ·×E 

into 
Vn(E). Then (

Vn(E), ∂) has the following universal mapping property: 
whenever l is any alternating n-multilinear map of E × · · ·× E into a vector space 
U , then there exists a unique linear map L : 

Vn(E) → U such that the diagram 
lE × · · · × E −−−→ U 


∂

y

Vn(E) 

commutes. 
(b) Let ∂ be the function that embeds E as 

V1(E) ⊆ 
V

(E). Then (
V

(E), ∂)
has the following universal mapping property: whenever l is any linear map of 
E into an associative algebra A with identity such that l(v)2 = 0 for all v ∈ E ,
then there exists a unique algebra homomorphism L : 

V
(E) → A with L(1) = 1 

such that the diagram 
lE −−−→ A 


∂

y

V
(E) 

commutes. 

PROOF. The proof is completely analogous to the proof of Proposition 6.23. § 

Corollary 6.31. If E and F are vector spaces over the field K, then the 
vector space HomK(

Vn(E), F) is canonically isomorphic (via restriction to pure
tensors) to the vector space of all F-valued alternating n-multilinear functions on 
E × · · · × E . 

PROOF. Restriction is linear and one-one. It is onto by Proposition 6.30a. § 

L 

L 
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Corollary 6.32. If E is a vector space over the field K, then the dual (
Vn(E))0 

of 
Vn(E) is canonically isomorphic (via restriction to pure tensors) to the vector

space of alternating n-multilinear forms on E × · · · × E . 

PROOF. This is a special case of Corollary 6.31. § 

If ϕ : E → F is a linear map between vector spaces, then we can use
Proposition 6.30b to define a corresponding homomorphism 8 : 

V
(E) → 

V
(F)

of associative algebras with identity. In this way, we can make E 7→ 
V

(E) into a 
functor from the category of vector spaces over K to the category of commutative 
associative algebras with identity over K. We omit the details, which are similar 
to those for symmetric tensors.
Next we shall identify a basis for 

Vn(E) as a vector space. The union of such 
bases as n varies will then be a basis of 

V
(E). 

Proposition 6.33. Let E be a vector space over the field K, let {ui }i∈A be a 
basis of E , and suppose that a simple ordering has been imposed on the index set 
A. Then the set of all monomials ui1 ∧ · · · ∧ uin with i1 < · · · < in is a basis of Vn(E). 

PROOF. Since multiplication in 
V

(E) satisfies a ∧ b = (−1)mnb ∧ a for 
a ∈ 

Vm(E) and b ∈ 
Vn(E) and since monomials span T n(E), the indicated set 

spans 
Vn(E). Let us see that the set is linearly independent. For i ∈ A, let ui0 be 

the member of E 0 with ui
0 (uj ) equal to 1 for j 6= i and equal to 0 for j = i . Fix 

r1 < · · · < rn , and define 

l(w1, . . . , wn) = det{u0 (wj )} for w1, . . . , wn in E .ri 

Then l is alternating n-multilinear from E × · · · × E into K and extends by 
Proposition 6.30a to L : 

Vn(E) → K. If k1 < · · · < kn , then 

L(uk1 ∧ · · · ∧ ukn ) = l(uk1 , . . . , ukn ) = det{u0 (ukj )},ri 

and the right side is 0 unless r1 = k1, . . . , rn = kn , in which case it is 1. This 
proves that the ur1 ∧ · · · ∧ urn are linearly independent in 

Vn(E). § 

Corollary 6.34. Let E be a finite-dimensional vector space over K of dimen-
sion N . Then µ 

N 
∂

(a) dim 
Vn(E) = for 0 ≤ n ≤ N and = 0 for n > N ,n 

(b) 
Vn(E 0) is canonically isomorphic to 

Vn(E)0 by 

( f1 ∧ · · · ∧ fn)(w1, . . . , wn) = det{ fi (wj )}. 
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PROOF. Part (a) is an immediate consequence of Proposition 6.33, and (b) is
proved in the same way as Corollary 6.27b, using Proposition 6.30a as a tool. The
“positive-integer multiples” that arise in the proof of Corollary 6.27b are all 1 in
the current proof, and hence no restriction on the characteristic of K is needed. § 

Now let us suppose that K has characteristic 0. We define an n-multilinear 
function from E × · · · × E into T n(E) by 

1 X
(v1, . . . , vn) 7→ (sgn τ )vτ (1) ⊗ · · · ⊗ vτ (n),n! 

τ∈Sn 

and let σ 0 : T n(E) → T n(E) be its linear extension. We call σ 0 the antisym-Vn
metrizer operator. The image of σ 0 in T (E) is denoted by e (E), and the 
members of this subspace are called antisymmetrized tensors. 

Proposition 6.35. Let the field K have characteristic 0, and let E be a vector 
space over K. Then the antisymmetrizer operator σ 0 satisfies σ 02 = σ 0. The 
kernel of σ 0 on T n(E) is exactly T n(E) ∩ I 0, and therefore 

Vn
T n(E) = e (E) ⊕ (T n(E) ∩ I 0). 

REMARK. In view of this corollary, the quotient map T n(E) → 
Vn(E) carries 

Vn Vn e (E) one-one onto 
Vn(E). Thus e (E) can be viewed as a copy of 

Vn(E)
embedded as a direct summand of T n(E). 

PROOF. We have 

σ 02(v1 ⊗ · · · ⊗ vn) = 
1 X 

(sgn ρτ )vρτ (1) ⊗ · · · ⊗ vρτ (n)
(n!)2 

ρ,τ∈Sn 

1 X X
= (sgn ω)vω(1) ⊗ · · · ⊗ vω(n)

(n!)2 
ρ∈Sn ω∈Sn , 

(ω=ρτ ) 

1 X 
σ 0= (v1 ⊗ · · · ⊗ vn)n! 

ρ∈Sn 

= σ 0(v1 ⊗ · · · ⊗ vn). 

Hence σ 02 = σ 0. Consequently T n(E) is the direct sum of image σ 0 and ker σ 0,
and we are left with identifying ker σ 0 as T n(E) ∩ I 0. 
The subspace T n(E) ∩ I 0 is spanned by elements 

x1 ⊗ · · · ⊗ xr ⊗ v ⊗ v ⊗ y1 ⊗ · · · ⊗ ys 
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with r+2+s = n, and the antisymmetrizer σ 0 certainly vanishes on such elements. 
Hence T n(E) ∩ I 0 ⊆ ker σ 0. Suppose that the inclusion is strict, say with t in 
ker σ 0 but t not in T n(E) ∩ I 0. Let q be the quotient map T n(E) → 

Vn(E). The 
kernel of q is T n(E) ∩ I 0, and thus q(t) 6 0. From Proposition 6.33 the T (E)= 
monomials with strictly increasing indices map onto a basis of 

V
(E). Since K 

has characteristic 0, the antisymmetrized versions of these monomials map to
nonzero multiples of the images of the initial monomials. Consequently q carries Vn Vn 

(E) = image σ 0 onto 
Vn(E). Thus choose t 0 ∈ e (E) with q(t 0) = q(t).e

Then t 0 − t is in ker q = T n(E) ∩ I 0 ⊆ ker σ 0. Since σ 0(t) = 0, we see that 
σ 0(t 0) = 0. Consequently t 0 is in ker σ 0 ∩ image σ 0 = 0, and we obtain t 0 = 0 
and q(t) = q(t 0) = 0, contradiction. § 

10. Problems 

1. Let V be a vector space over a field K, and let h · , · i be a nondegenerate bilinear 
form on V . 
(a) Prove that every member v0 of V is of the form v0(w) = hv, wi for one and 

only one member v of V . 
(b) Suppose that ( · , · ) is another bilinear form on V . Prove that there is some 

linear function L : V → V such that (v, w) = hL(v), wi for all v and w 
in V . 

2. The matrix A = 
≥ 
0 1 

¥ 
with entries in F2 is symmetric. Prove that there is no 1 0 

nonsingular M with Mt AM diagonal. 

3. This problem shows that one possible generalization of Sylvester’s Law to other
fields is not valid. Over the field F3, show that there is a nonsingular matrix 

0 
¥ 

Mt 
≥ 
1 0 M such that 

≥ 
−1 = 

¥ 
M . Conclude that the number of squares in 0 −1 0 1 

K× among the diagonal entries of the diagonal form in Theorem 6.5 is not an
invariant of the symmetric matrix. 

4. Let V be a complex n-dimensional vector space, let ( · , · ) be a Hermitian form on 
V , let VR be the 2n-dimensional real vector space obtained from V by restricting 
scalar multiplication to real scalars, and define h · , · i = Im( · , · ). Prove that 
(a) h · , · i is an alternating bilinear form on VR, 
(b) hJ (v1), J (v2)i = hv1, v2i for all v1 and v2 if J : VR → VR is what 

multiplication by i becomes when viewed as a linear map from VR to itself, 
(c) h · , · i is nondegenerate on VR if and only if ( · , · ) is nondegenerate on V . 

5. Let W be a 2n-dimensional real vector space, and let h · , · i be a nondegenerate 
alternating bilinear form on W . Suppose that J : W → W is a linear map such 
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that J 2 = −I and hJ (w1), J (w2)i = hw1, w2i for all w1 and w2 in W . Prove 
that W equals VR for some n-dimensional complex vector space V possessing a 
Hermitian form whose imaginary part is h · , · i. 

6. This problem sharpens the result of Theorem 6.7 in the nondegenerate case. Let 
h · , · i be a nondegenerate alternating bilinear form on a 2n-dimensional vector 
space V over K. A vector subspace S of V is called an isotropic subspace if 
hu, vi = 0 for all u and v in S. Prove that 
(a) any isotropic subspace of V that is maximal under inclusion has dimension 

n, 
(b) for any maximal isotropic subspace S1, there exists a second maximal 

isotropic subspace S2 such that S1 ∩ S2 = 0. 
(c) if S1 and S2 are maximal isotropic subspaces of V such that S1 ∩ S2 = 0, 

then the linear map S2 → S1
0 given by s2 7→ h · , s2i

Ø
Ø
S1 
is an isomorphism of 

S2 onto the dual space S1
0 . 

(d) if S1 and S2 are maximal isotropic subspaces of V such that S1 ∩ S2 = 0,
then there exist bases {p1, . . . , pn} of S1 and {q1, . . . , qn} of S2 such that 
h pi , pj i = hqi , qj i = 0 and hpi , qj i = δi j for all i and j . (The resulting 
basis { p1, . . . , pn, q1, . . . , qn} of V is called a Weyl basis of V .) 

7. Let S be a nonempty set, and let K be a field. For s in S, let Us and Vs be vector 
spaces over K, and let U and V be two further vector spaces over K. 
(a) Prove that HomK 

°L
s∈S Us , V 

¢ ∼ Q
s∈S HomK(Us, V ).= Q ¢ ∼ Q

(b) Prove that HomK 
°
U, s∈S Vs = s∈S HomK(U, Vs ). 

(c) Give examples to show that neither isomorphism in (a) and (b) need remain
valid if all three direct products are changed to direct sums. 

8. This problem continues Problem 1 at the end of Chapter V, which established
a canonical-form theorem for an action of GL(m, K) × GL(n, K) on m-by-
n matrices. For the present problem, the group GL(n, K) acts on Mn(K) by 
(g, x) 7→ gxgt . 
(a) Verify that this is indeed a group action and that the vector subspaces Ann(K)

of alternating matrices and Snn(K) of symmetric matrices are mapped into 
themselves under the group action.

(b) Prove that two members of Ann(K) lie in the same orbit if and only if they
have the same rank, and that the rank must be even. For each even rank ≤ n,
find an example of a member of Ann(K) with that rank. 

(c) Prove that two members of Snn(C) lie in the same orbit if and only if they
have the same rank, and for each rank ≤ n, find an example of a member of 
Snn(C) with that rank. 

9. Let U and V be vector spaces over K, and let U 0 be the dual of U . The bilinear 
map (u0, v) 7→ u0( · )v of U 0 × V into HomK(U, V ) extends to a linear map 
TU V : U 0 ⊗K V → HomK(U, V ). Do the following: 
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(a) Prove that TU V is one-one. 
(b) Prove that TU V is onto HomK(U, V ) if U is finite-dimensional. 
(c) Give an example for which TU V is not onto HomK(U, V ). 
(d) Let C be the category of all vector spaces over K, and let 8 and 9 be the 

functors from C×C into C whose effects on objects are 8(U, V ) = U 0 ⊗K V 
and 9(U, V ) = HomK(U, V ). Prove that the system {TU V } is a natural 
transformation of 8 into 9. 

(e) In view of (c), can the system {TU V } be a natural isomorphism? 
10. Let K ⊆ L be an inclusion of fields, and let VK and VL be the categories of 

vector spaces over K and L. Section 6 of the text defined extension of scalars as 
a covariant functor 8(E) = E ⊗K L. Another definition of extension of scalars 
is 9(E) = HomK(L, E) with (lϕ)(l 0) = ϕ(ll 0). Verify that 9(E) is a vector 
space over L and that 9 is a functor. 

11. A linear map L : E → F between finite-dimensional complex vector spaces 
becomes a linear map LR : ER → FR when we restrict attention to real scalars. 
Explain how to express a matrix for LR in terms of a matrix for L . 

12. (Kronecker product of matrices) Let L : E1 → E2 and M : F1 → F2 be 
linear maps between finite-dimensional vector spaces over K, let 01 and 02 be 
ordered bases of E1 and E2, and let 11 and 12 be ordered bases of F1 and F2.≥ 

L 
≥ 

M 
¥

Define matrices A and B by A = 
¥ 
and B = . Use 01, 02, 11,0201 1211

and 12 to define ordered bases ƒ1 and ƒ2 of E1 ⊗K F1 and E2 ⊗K F2, and ≥ 
L⊗Mdescribe how the matrix C = 

¥ 
is related to A and B.

ƒ2ƒ1 

13. Let K be a field, and let E be the vector space KX ⊕KY . Prove that the subalgebra 
of T (E) generated by 1, Y , and X2 + XY + Y 2 is isomorphic as an algebra with 
identity to T (F) for some vector space F . 

Problems 14–17 concern the functors E 7→ T (E), E 7→ S(E), and E 7→ 
V
E 

defined for vector spaces over a field K. 
14. If ϕ : E → F is a linear map between vector spaces over K, Section 8 of the text 

indicated how to define a corresponding homomorphism 8 : S(E) → S(F) of 
associative algebras with identity over K, using Proposition 6.23b.
(a) Fill in the details of this application of Proposition 6.23b.
(b) Establish the appropriate conditions on mappings that complete the proof

that E 7→ S(E) is a functor. 
(c) Verify that 8 carries Sn(E) linearly into Sn(F) for all integers n ∏ 0. 

15. Suppose that a linear map ϕ : E → E is given. Let 8 : S(E) → S(E) and 
8 : T (E) → T (E) be the associated algebra homomorphisms of S(E) into itself e
and of T (E) into itself, and let q : T (E) → S(E) be the quotient homomorphism 
appearing in the definition of S(E). These mappings are related by the equation 
8q(x) = qe8(x) for x in T (E). Proposition 6.29 shows for each n ∏ 0 that 
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T n(E) = eSn(E) ⊕ (T n(E) ∩ I ), where eSn(E) is the image of T n(E) under the 
symmetrizer mapping. The remark with the proposition observes that q carries 
Sn(E) one-one onto Sn(E). Prove that e Sn(E) into itself and that 8 carries ee

in the sense that qe Sn(E).8
Ø
Ø matches 8

Ø
Ø
Sn (E) 8(x) = 8q(x) for all x in ee

Sn (E)e

16. With E finite-dimensional let ϕ : E → E be a linear mapping, and define 
8 : 

V
E → 

V
E to be the corresponding algebra homomorphism of 

V
E 

sending 1 into 1. This carries each 
Vn E into itself. Prove that 8 acts as 

multiplication by the scalar det ϕ on the 1-dimensional space 
Vdim E (E). 

17. Suppose that G is a group, that the vector space E over K is finite-dimensional, 
and that ϕ : G → GL(E) is a representationof G on E . The functors E 7→ T (E),
E 7→ S(E), and E 7→ 

V
E yield, for each ϕ(g), algebra homomorphisms of 

T (E) into itself, S(E) into itself, and 
V
E into itself. 

(a) Show that as g varies, the result in each case is a representation of G. 
(b) Suppose that E = Kn . Give a formula for the representation of G on a 

member of P(Kn) = S((Kn)0). 

Problems 18–22 concern universal mapping properties. Let A and V be two cat-
egories, and let F : A → V be a covariant functor. (In practice, F tends to be a 
relatively simple functor, such as one that simply ignores some of the structure of 
A.) Let E be in Obj(V ). A pair (S, ∂) with S in Obj(A) and ∂ in MorphV(E, F(S)) 
is said to have the universal mapping property relative to E and F if the following 
condition is satisfied: whenever A is in Obj(A) and a member l of MorphV(E, F(A)) 
is given, there exists a unique member L of MorphA(S, A) such that F(L) ∂ = l. 

18. (a) By suitably specializing A, V, F, etc., show that the universal mapping
property of the symmetric algebra of a vector space over K is an instance of 
what has been described. 

(b) How should the answer to (a) be adjusted so as to account for the universal
mapping property of the exterior algebra of a vector space over K? 

(c) How should the answer to (a) be adjusted so as to account for the universal
mapping property of the coproduct of {Xj }j∈J in a category C, the universal 
mapping property being as in Figure 4.12? (Educational note: For the 
product of {Xj }j∈J in C, the above descriptiondoes not apply directly because
the morphisms go the wrong way. Instead, one applies the above description
to the opposite categories Aopp and V opp, defined as in Problems 78–80 at 
the end of Chapter IV.) 

19. If (S, ∂) and (S0 , ∂0) are two pairs that each have the universal mapping property 
relative to E and F, prove that S and S0 are canonically isomorphic as objects 
in A. More specifically prove that there exists a unique L in MorphA(S, S0) such 
that F(L)∂ = ∂0 and that L is an isomorphism whose inverse L 0 in MorphA(S0 , S)
has F(L 0)∂0 = ∂. 
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20. Suppose that the pair (S, ∂) has the universal mapping property relative to E 
and F. Let S be the category of sets, and define functors F : A → S and 
G : A → S by F(A) = MorphA(S, A), F(ϕ) equals composition on the left 
by ϕ for ϕ ∈ MorphA(A, A0), G(A) = MorphV(E, F(A)), and G(ϕ) equals
composition on the left by F(ϕ). Let TA : MorphA(S, A) → MorphV(E, F(A))

be the one-one onto map given by the universal mapping property. Show that the
system {TA} is a natural isomorphism of F into G. 

21. Suppose that (S0 , ∂) is a secondpair having the universal mapping property relative 
to E and F. Define F 0 : A → S by F 0(A) = MorphA(S0 , A). Combining the
previous problem and Proposition 6.16, obtain a second proof (besides the one
in Problem 19) that S and S0 are canonically isomorphic. 

22. Suppose that for each E in Obj(V ), there is some pair (S, ∂) with the universal 
mapping property relative to E and F. Fix such a pair (S, ∂) for each E , calling 
it (S(E), ∂E ). Making an appropriate construction for morphisms and carrying
out the appropriate verifications, prove that E 7→ S(E) is a functor. 

Problems 23–28 introduce the Pfaffian of a (2n)-by-(2n) alternating matrix X = [xi j ]
with entries in a field K. This is the polynomial in the entries of X with integer 
coefficients given by 

nX Y
Pfaff(X) = (sgn τ ) xτ (2k−1),τ (2k), 

some τ ’s k=1
in S2n 

where the sum is taken over those permutations τ such that τ (2k − 1) < τ (2k) for 
1 ≤ k ≤ n and such that τ (1) < τ (3) < · · · < τ (2n − 1). It will be seen that det X 
is the square of this polynomial. Examples of Pfaffians are 

 0 a b c 
 

0 x 
¥ 

−a 0 d ePfaff 
≥ 

−x 0 
= x and Pfaff  

−b −d 0 f 
 = a f − be + cd. 

−c −e − f 0 

The problems in this set will be continued at the end of Chapter VIII. 

23. For the matrix J in Section 5, show that Pfaff(J ) = 1. 
24. In the expansion det X = 

P 
(sgn σ ) 

Q
l
2
=
n 
1 xl,σ (l), prove that the value of σ ∈S2n

the right side with X as above is not changed if the sum is extended only over 
those σ ’s whose expansion in terms of disjoint cycles involves only cycles of
even length (and in particular no cycles of length 1). 

25. Define σ ∈ S2n to be “good” if its expansion in terms of disjoint cycles involves
only cycles of even length. If σ is good, show that there uniquely exist two 
disjoint subsets A and B of n elements each in {1, . . . , 2n} such that A contains 
the smallest-numbered index in each cycle and such that σ maps each set onto 
the other. 
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26. In the notation of the previous problem with σ good, let y(σ ) be the product 
of the monomials xab such that a is in A and b = σ (a). For each factor xi j of 
y(σ ) with i > j , replace the factor by −xji . In the resulting product, arrange
the factors in order so that their first subscripts are increasing, and denote this
expression by sxi1i2 xi3i4 · · · xi2n−1i2n , where s is a sign. Let τ be the permutation 
that carries each r to ir , and define s(τ ) to be the sign s. Similarly let z(σ )
be the product of the monomials xba such that b is in B and a = σ (b). For 
each factor xi j of z(σ ) with i > j , replace the factor by −xji . In the resulting
product, arrange the factors in order so that their first subscripts are increasing,
and denote this expression by s0xj1 j2 xj3 j4 · · · xj2n−1 j2n , where s0 is a sign. Let τ 0 

be the permutation that carries each r to jr , and define s0(τ 0) to be the sign s0. 
Prove, apart from signs, that the σ th term in the expansion of det X matches the 
product of the τ th term of Pfaff(X) and the τ 0th term of Pfaff(X). 

27. In the previous problem, take the signs s(τ ) and s0(τ 0) into account and show 
that the signs of σ , τ , and τ 0 work out so that the σ th term in the expansion of 
det X is the product of the τ th and τ 0th terms of Pfaff(X). 

28. Show that every term of the product of Pfaff(X) with itself is accounted for once 
and only once by the construction in the previous three problems, and conclude
that the alternating matrix X has det X = (Pfaff(X))2. 

Problems 29–30 concern filtrations and gradings. A vector space V over K is said 
to be filtered when an increasing sequence of subspaces V0 ⊆ V1 ⊆ V2 ⊆ · · · is 
specified with union V . In this case we put V−1 = 0 by convention. The space V is 
graded if a sequence of subspaces V 0 , V 1 , V 2 , . . . is specified such that 

∞M
V = V n . 

n=0 

When V is graded, there is a naturalfiltration of V given by Vn = 
L

k
n 
=0 V k . Examples 

of graded vector spaces are any tensor algebra V = T (E), symmetric algebra S(E),
exterior algebra 

V
(E), and polynomial algebra P(E), the nth subspace of the grading

consisting of those elements that are homogeneous of degree n. Any polynomial 
algebra K[X1, . . . , Xn] is another example of a graded vector space, the grading 
being by total degree. 
29. When V is a filtered vector space as in (A.34), the associated graded vector L∞space is gr V = n=0 Vn/Vn−1. Let V and V # be two filtered vector spaces, 

and let ϕ be a linear map between them such that ϕ(Vn) ⊆ V # for all n. Since n 
the restriction of ϕ to Vn carries Vn−1 into Vn

# 
−1, this restriction induces a linear 

map grn ϕ : (Vn/Vn−1) → (Vn 
#/Vn

# 
−1). The direct sum of these linear maps 

is then a linear map gr ϕ : gr V → gr V # called the associated graded map 
for ϕ. Prove that if gr ϕ is a vector-space isomorphism, then ϕ is a vector-space 
isomorphism. 
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30. Let A be an associative algebra over K with identity. If A has a filtration 
A0, A1, . . . of vector subspaces with 1 ∈ A0 such that Am An ⊆ Am+n for 
all m and n, then one says that A is a filtered associative algebra; similarly L∞if A is graded as A = n=0 An in such a way that Am An ⊆ Am+n for all m 
and n, then one says that A is a graded associative algebra. If A is a filtered 
associative algebra with identity, prove that the graded vector space gr A acquires
a multiplication in a natural way, making it into a graded associative algebra with
identity. 

Problems 31–35 concern Lie algebras and their universal enveloping algebras. If K 
is a field, a Lie algebra g over K is a nonassociative algebra whose product, called 
the Lie bracket and written [x, y], is alternating as a function of the pair (x, y) and 
satisfies the Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z in 
g. The universal enveloping algebra U(g) of g is the quotient T (g)/I 00, where I 00 
is the two-sided ideal generated by all elements x ⊗ y − y ⊗ x − [x, y] with x and 
y in T 1(g). The grading for T (g) makes U(g) into a filtered associate algebra with 
identity. The product of x and y in U (g) is written xy. 
31. If A is an associative algebra over K, prove that A becomes a Lie algebra if the 

Lie bracket is defined by [x, y] = xy − yx . In particular, observe that Mn(K)

becomes a Lie algebra in this way. 
32. Fix a matrix A ∈ Mn(K), and let g be the vector subspace of all members x of 

Mn(K) with xt A + Ax = 0. 
(a) Prove that g is closed under the bracket operation of the previous problem

and is therefore a Lie subalgebra of Mn(K). 
(b) Deduce as a special case of (a) that the vector space of all skew-symmetric

matrices in Mn(K) is a Lie subalgebra of Mn(K). 
33. Let g be a Lie algebra over K, and let ∂ be the linear map obtained as the 

composition of g → T 1(g) and the passage to the quotient U (g). Prove that 
(U(g), ∂) has the following universal mapping property: whenever l is any linear 
map of g into an associative algebra A with identity satisfying the condition of
being a Lie algebra homomorphism, namely l[x, y] = l(x)l(y) − l(y)l(x) for 
all x and y in g, then there exists a unique associative algebra homomorphism 
L : U(g) → A with L(1) = 1 such that L ◦ ∂ = l. 

34. Let g be a Lie algebra over K, let {ui }i∈A be a vector-space basis of g, and suppose 
that a simple ordering has been imposed on the index set A. Prove that the set of 

j1 jkall monomials ui1 
· · · uik with i1 < · · · < ik and 

P
m jm arbitrary is a spanning 

set for U(g). 
35. For a Lie algebra g over K, the Poincaré–Birkhoff–Witt Theorem says that the 

spanning set for U (g) in the previous problem is actually a basis. Assuming this
theorem, prove that gr U (g) is isomorphic as a graded algebra to S(g). 

Problems 36–40 introduce Clifford algebras. Let K be a field of characteristic = 2, 6
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let E be a finite-dimensional vector space over K, and let h · , · i be a symmetric 
bilinear form on E . The Clifford algebra Cliff(E, h · , · i) is the quotient T (E)/I 00,
where I 00 is the two-sided ideal generated by all elements5 v ⊗ v + hv, vi with v in 
E . The grading for T (E) makes Cliff(E, h · , · i) into a filtered associative algebra 
with identity. Products in Cliff(E, h · , · i) are written as ab with no special symbol. 
36. Let ∂ be the composition of the inclusion E ⊆ T 1(E) and the passage to the 

quotient modulo I 00. Prove that (Cliff(E, h · , · i), ∂) has the following universal 
mapping property: whenever l is any linear map of E into an associative algebra 
A with identity such that l(v)2 = −hv, vi1 for all v ∈ E , then there exists a 
unique algebra homomorphism L : Cliff(E, h · , · i) → A with L(1) = 1 and 
such that L ◦ ∂ = l. 

37. Let {u1, . . . , un} be a basis of E . Prove that the 2n elements of Cliff(E, h · , · i) 
given by ui1 ui2 · · · uik with i1 < · · · < ik form a spanning set of Cliff(E, h · , · i). 

38. Using the Principal Axis Theorem, fix a basis {e1, . . . , en} of E such that 
hei , ej i = di δi j for all j . Introduce an algebra C over K of dimension 2n with 
generators e1, . . . , en and with a basis parametrized by subsets of {1, . . . , n} and 
given by all elements 

ei1 ei2 · · · eik with i1 < i2 < · · · < ik , 
with the multiplication that is implicit in the rules 

e2 = −di and = −ej ei if i 6 j,i ei ej = 

namely, to multiply two monomials ei1 ei2 · · · eik and ej1 ej2 · · · ejl , put them end 
to end, replace any occurrence of two ek’s by the scalar −dk , and then permute 
the remaining ek ’s until their indices are in increasing order, introducing a minus
sign each time two distinct ek ’s are interchanged. Prove that the algebra C is 
associative. 

39. Prove that the associative algebra C of the previous problem is isomorphic as an 
algebra to Cliff(E, h · , · i). 

40. Prove that gr Cliff(E, h · , · i) is isomorphic as a graded algebra to 
V

(E). 

Problems 41–48 introduce finite-dimensional Heisenberg Lie algebras and the corre-
sponding Weyl algebras. They make use of Problems 31–35 concerning Lie algebras
and universal enveloping algebras. Let V be a finite-dimensional vector space over 
the field K, and let h · , · i be a nondegenerate alternating bilinear form on V × V . 
Write 2n for the dimension of V . Introduce an indeterminate X0. The Heisenberg 
Lie algebra H(V ) on V is a Lie algebra whose underlying vector space is KX0 ⊕ V 
and whose Lie bracket is given by [(cX0, u), (dX0, v)] = hu, viX0. Let U(H(V )) be 
its universal enveloping algebra. The Weyl algebra W (V ) on V is the quotient of the 
tensor algebra T (V ) by the two-sided ideal generated by all u ⊗ v − v ⊗ u − hu, vi1 
with u and v in V ; as such, it is a filtered associative algebra. 
5Some authors factor out the elements v ⊗ v − hv, vi instead. There is no generally accepted 
convention. 
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41. Verify when the field is K = R that an example of a 2n-dimensional V with its 
nondegenerate alternating bilinear form h · , · i is V = Cn with hu, vi = Im(u, v),
where ( · , · ) is the usual inner product on Cn . For this V , exhibit a Lie-algebra 
isomorphism of H(V ) with the Lie algebra of all complex (n + 1)-by-(n + 1)∂µ 0 z̄t ir 
matrices of the form 0 0 

0 0 0 
with z ∈ Cn and r ∈ R.z 

42. In the general situation show that the linear map ∂(cX0, v) = c1+v is a Lie algebra 
homomorphism of H(V ) into W (V ) and that its extension to an associative 
algebra homomorphism ∂ : U (H(V )) → W (V ) is onto and has kernel equal to 
the two-sided ideal in U (H(V )) generated by X0 − 1.

e

43. Prove that W (V ) has the following universal mapping property: whenever 
ϕ : H(V ) → A is a Lie algebra homomorphism of H(V ) into an associative 
algebra A with identity such that ϕ(X0) = 1, then there exists a unique associative 
algebra homomorphism ϕ of W (V ) into A such that ϕ = eϕ ◦ ∂. 

k1 k2n44. Let v1, . . . , v2n be any vector space basis of V . Prove that the elements v1 · · · v2n
with integer exponents ∏ 0 span W (V ). 

e

45. For K = R, let S be the vector space of all real-valued functions P(x)e−π |x |2 ,
where P(x) is a polynomial in n real variables. Show that S is mapped into itself 
by the linear operators @/@xi and mj = (multiplication by xj ). 

46. With K = R, let {p1, . . . , pn, q1, . . . , qn} be a Weyl basis of V in the terminology 
of Problem 6. In the notation of Problem 45, let ϕ : V → HomR(S, S ) be the 
linear map given by ϕ( pi ) = @/@xi and ϕ(qj ) = mj . Use Problem 43 to extend 
ϕ to an algebra homomorphism ϕ : W (V ) → HomR(S, S ) with ϕ(1) 1,

Prove that this 
= ee

and use Problem 42 to obtain a representation of H(V ) on S. 
representation of H(V ) is irreducible in the sense that there is no proper nonzero
vector subspace carried to itself by all members of ϕ(H(V )).e

47. In Problem 46 with K = R, prove that the associative algebra homomorphism 
ϕ : W (V ) → HomR(S, S ) is one-one. Conclude for K = R that the elements 
k1

e
· · ·1 v k2n2n of Problem 44 form a vector-space basis of W (V ).v 

48. For K = R, prove that gr W (V ) is isomorphic as a graded algebra to S(V ). 

Problems 49–51 deal with Jordan algebras. Let K be a field of characteristic 6= 2. An 
algebra J over K with multiplication a · b is called a Jordan algebra if the identities 
a ·b = b ·a and a2 · (b ·a) = (a2 ·b) ·a are always satisfied; here a2 is an abbreviation 
for a · a. 

49. Let A be an associative algebra, and define a · b = 2
1 (ab + ba). Prove that A 

becomes a Jordan algebra under this new multiplication. 
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50. In the situation of the previous problem, suppose that a 7→ at is a one-one linear 
mapping of A onto itself such that (ab)t = btat for all a and b. (For example, 
a 7→ at could be the transpose mapping if A = Mn(K).) Prove that the vector 
subspace of all a with at = a is carried to itself by the Jordan product a · b and 
hence is a Jordan algebra. 

51. Let V be a finite-dimensional vector space over K, and let h · , · i be a symmetric 
bilinear form on V . Define A = K1 ⊕ V as a vector space, and define a 
multiplication in A by (c1, x) · (d1, y) = 

° 
(cd + hx, yi)1, cy + dx

¢
. Prove that 

A is a Jordan algebra under this definition of multiplication. 

Problems 52–56 deal with the algebra O of real octonions, sometimes known as 
the Cayley numbers. This is a certain 8-dimensional nonassociative algebra with 
identity over R with an inner product such that kabk = kakkbk for all a and b and 
such that the left and right multiplications by any element a 6= 0 are always invertible. 
52. Let A be an algebra over R. Let [a, b] = ab − ba and [a, b, c] = (ab)c − a(bc). 

(a) The 3-multilinear function (a, b, c) 7→ [a, b, c] from A× A× A to A is called 
the associator in A. Observe that it is 0 if and only if A is associative. Show 
that it is alternating if and only if A always satisfies the limited associativity 
laws 

(aa)b = a(ab), (ab)a = a(ba), (ba)a = b(aa). 

In this case, A is said to be alternative. 
(b) Show that A is alternative if the first and third of the limited associativity

laws in (a) are always satisfied. 

53. (Cayley–Dickson construction) Suppose that A is an algebra over R with a 
two-sided identity 1, and suppose that there is an R linear function ∗ from A to 
itself (called “conjugation”) such that 1∗ = 1, a∗∗ = a, and (ab) ∗ = b∗a∗ for all 
a and b in A. Define an algebra B over R to have the underlying real vector-space 
structure of A ⊕ A and to have multiplication and conjugation given by 

(a, b)(c, d) = (ac − db∗ , a∗d + cb) and (a, b) ∗ = (a∗ , −b). 

(a) Prove that (1, 0) is a two-sided identity in B and that the operation ∗ in B 
satisfies the required properties of a conjugation.

(b) Prove that if a∗ = a for all a ∈ A, then A is commutative. 
(c) Prove that if a∗ = a for all a ∈ A, then B is commutative. 
(d) Prove that if A is commutative and associative, then B is associative. 
(e) Verify the following outcomes of the above construction A → B: 

(i) A = R yields B = C,
(ii) A = C yields B = H, the algebra of quaternions. 
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54. Suppose that A is an algebra over R with an identity and a conjugation as in the 
previous problem. Say that A is nicely normed if 

(i) a + a∗ is always of the form r1 with r real and 
(ii) aa∗ always equals a∗a and for a 6= 0, is of the form r1 with r real and 

positive. 
(a) Prove that if A is nicely normed, then so is the algebra B of the previous 

problem.
(b) Prove that if A is nicely normed, then (a, b) = 2

1 (ab∗ + ba∗ ) is an inner 
product on A with norm kak = (aa∗ )1/2 = (a∗a)1/2. 

(c) Prove that if A is associative and nicely normed, then the algebra B of the 
previous problem is alternative. 

55. Starting from the real algebra A = H, apply the construction of Problem 53,
and let the resulting 8-dimensional real algebra be denoted by O, the algebra of 
octonions. 
(a) Prove that O is an alternative algebra and is nicely normed. 
(b) Prove that (xx∗ )y = x(x∗ y) and x(yy∗ ) = (xy)y∗ within O. 
(c) Prove that kabk2a = kak2kbk2a within O. 
(d) Conclude from (c) that the operations of left and right multiplication by any 

a 6= 0 within O are invertible. 
(e) Show that the inverse operators are left and right multiplication by kak−2a∗ . 
(f) Denote the usual basis vectors of H by 1, i, j, k. Write down a multiplication 

table for the eight basis vectors of O given by (x, 0) and (0, y) as x and y
run through the basis vectors of H. 

56. What prevents the construction of Problem 53, when applied with A = O, from 
yielding a 16-dimensional algebra B in which kabk2 = kak2kbk2 and therefore 
in which the operations of left and right multiplication by any a 6 0 within B= 
are invertible? 




