
from

Basic Algebra
Digital Second Edition

Anthony W. Knapp

Full Book DOI: 10.3792/euclid/9781429799980  

ISBN: 978-1-4297-9998-0

Distributed by Project Euclid.  

For copyright information, see the following page.

 Hints for Solutions of Problems, 615-713

DOI: 10.3792/euclid/9781429799980-12

https://doi.org/10.3792/euclid/9781429799980
https://doi.org/10.3792/euclid/9781429799980-12


Anthony W. Knapp
81 Upper Sheep Pasture Road
East Setauket, N.Y. 11733–1729, U.S.A.
Email to: aknapp@math.stonybrook.edu
Homepage: www.math.stonybrook.edu/∼aknapp

Title: Basic Algebra
Cover: Construction of a regular heptadecagon, the steps shown in color sequence; see page 505. 

Mathematics Subject Classification (2010): 15–01, 20–01, 13–01, 12–01, 16–01, 08–01, 18A05, 
68P30. 

First Edition, ISBN-13 978-0-8176-3248-9 
c 2006 Anthony W. Knapp

Published by Birkhäuser Boston 
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HINTS FOR SOLUTIONS OF PROBLEMS 

Chapter I 

1. 582. 
2. The Euclidean algorithm gives 11 = 1 · 7 + 4, 7 = 1 · 4 + 3, 4 = 1 · 3 + 1,

3 = 3 · 1 + 0. So the GCD is 1. Reversing the steps gives 1 = 4 − 1 · 3 = 
(11 − 1 · 7) − 1 · (7 − 1 · 4) = (11 − 1 · 7) − 1 · (7 − 1 · (11 − 1 · 7)) = 2 · 11 − 3 · 7. 
So (x, y) = (2, −3) is a solution in (a). For (b), the difference of any two solutions 
solves 11x + 7y = 0, and the solutions of this are of the form (x, y) = n(7, −11). 
3. Let dn = GCD(a1, . . . , an). The sequence dn is a monotone decreasing

sequence of positive integers, and it must eventually be constant. This eventual 
constant value is d, and thus dn = d for suitably large n. 
4. These n’s divide x + y − 2 and the sum of 2x − 3y − 3 and −2 times the 

x + y − 2, hence x + y − 2 and −5y + 1. A necessary and sufficient condition for 
−5y + 1 = na to be solvable for the pair (a, y) is that GCD(5, n) = 1 by Proposition 
1.2c. Let us see that the answer to the problem is GCD(5, n) = 1. 
The n’s we seek must further divide 5(x +y−2) = 5x +5y−10 and −5y+1, hence 

also the sum 5x−9, as well as −5y+1. If GCD(5, n) = 1, then 5x−9 = nb is solvable 
for (b, x). With our solutions (a, y) and (b, x), we have 5x + 5y − 10 = n(b − a). 
Since 5 divides the left side and GCD(5, n) = 1, 5 divides b − a. Write b − a = 5c. 
Then x + y − 2 = nc and −5y + 1 = na, and we obtain 2x − 3y − 3 = n(2c + a). 
5. Q(x) = (X − 1)P(X) + (X3 + x2 + X + 1), P(X) = X (X3 + x2 + X + 1) 

+(X2+1), X3+x2+X +1 = (X +1)(X2+1)+0. Hence the GCD is D(X) = X2+1. 
For (b), we retrace the steps, letting R(X) = X3 + X2 + X + 1. We have D(X) = 
P(X)−XR(X) = P(X)−X (Q(X)−(X −1)P(X)) = (X2−X +1)P(X)−XQ(X). 
Thus A(X) = X2 − X + 1 and B(X) = −X . 
6. The computation via the Euclidean algorithm, done within C[X], retains

real numbers as coefficients throughout. By Proposition 1.15a one GCD has real
coefficients. By Proposition 1.15c any GCD is a complex multiple of this polynomial
with real coefficients. 
7. In (a), we may assume, without loss of generality, that P has leading coeffi-

cient 1, so that P(X) = Xn +an−1 Xn−1 +· · ·+a0 = 
Q

j (X −zj )mj . Define Q(X) = 
Q

j (X − z̄ j )mj . Then Q(z̄) = 
Q

j (z̄ − z̄ j )mj = 
Q

j (z − zj ) = P(z). Replacing z̄
by z gives Q(z) = P(z̄) = z̄n + an−1 z̄n−1 + · · · + a0 = zn + an−1zn−1 + · · · + a0. 

615 



616 Hints for Solutions of Problems 

Since P has real coefficients, Q(z) = P(z) for all z. Then Q − P has every z as a 
root and in particular has more than n roots. Hence it must be the 0 polynomial. So Q

j (X − z̄ j )mj = 
Q

j (X − zj )mj , and the result follows from unique factorization 
(Theorem 1.17).
In (b), the result of (a) shows that we may factor any real polynomial in C[X] with 

leading coefficient 1 in the form 
Q

xj real(X − xj )mj 
Q

zj nonreal 
° 
(X − zj )nj (X − z̄ j )nj 

¢
. 

The right side equals 
Q

xj real(X − xj )mj 
Q

zj nonreal 
°
X2 −(zj + z̄ j )X + zj z̄ j 

¢nj . Every 
factor on the right side is in R[X], and the only way that the polynomial can be prime 
in R[X] is if only one factor is present. Thus the polynomial has degree at most 2. 
8. For (a), let deg A = d and form the equation A(p/q) = 0. Multiply through 

by qd in order to clear fractions. Every term in the equation except the leading term 
has q as a factor, and thus q divides the leading term pd . Since GCD( p, q) = 1, no 
prime can divide q. Thus q = ±1, and n = p/q is an integer. Forming the equation 
A(n) = 0, we see that n is a factor of each term except possibly the constant term a0. 
Thus n divides a0. 
For (b), we apply (a) to both polynomials. The only possible rational roots of 

X2 − 2 are ±1 and ±2, while the only possible rational roots of X3 + X2 + 1 are ±1. 
Checking directly, we see that none of these possibilities is actually a root. By the
Factor Theorem, neither X2 − 2 nor X3 + X2 + 1 has a first-degree factor in Q[X].
If a polynomial of degree ≤ 3 has a nontrivial factorization, then it has a first-degree 
factor. We conclude that X2 − 2 and X3 + X2 + 1 are prime. 
9. Computation gives GCD(8645, 10465) = 455. Therefore 8645/10465 equals 

19/23 in lowest terms. 
10. Apart from the identity, the cycle structures are those of (1 2) with 6 represen-

tatives, (1 2 3) with 8 representatives, (1 2 3 4) with 6 representatives, and (1 2)(3 4)
with 3 representatives. This checks, since there are 4! = 24 permutations in all. 
11. Check that the function σ 7→ σ (1 2) is one-one from the set of permutations 

of sign +1 onto the set of permutations of sign −1. 
µ 1 

∂ µ 
−11/3 

∂ µ 1 
∂

12. (a) x3 −2 . (b) None. (c) 10/3 + x3 −2 . 
1 0 1 

13. By the definition of “step,” an interchange of two rows (type (i)) takes n steps,
and a multiplication of a row by a nonzero scalar (type (ii)) takes n steps. Also,
replacement of a row by the sum of it and a multiple of another row (type (iii)) takes
2n steps. We proceed through the row-reduction algorithm column by column. For
each of the n columns, we do possibly one operation of type (i) and then possibly an
operation of type (ii). This much requires ≤ 2n steps. Then we do at most n − 1 
operations of type (iii), requiring ≤ 2n(n − 1) steps. Thus a single column is handled 
in ≤ 2n(n − 1) + 2n = n2 steps, and the entire row reduction requires ≤ 2n3 steps.≥ 

−2 11 
≥ 

−11 25 
¥

14. A + B = 
¥
, and AB = .3 8 −21 47 

15. We induct on n, the result being clear for n = 1. Taking into account the 
fact that B commutes with A, we have (A + B)n = (A + B)(A + B)n−1 = (A + 
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B) 
Pn−1 ° n−1¢An−1−k Bk 

Pn−1 ° n−1¢An−k Bk + 
Pn−1 ° n−1¢An−1−k Bk+1= =k=0 k k=0 k k=0 kPn−1 ° n−1¢An−k Bk +

Pn ° n−1¢An−kBk = An +
Pn−1 £°n−1¢+ 

° n−1¢§An−kBk +Bnk=0 k k=1 k−1 k=1 k k−1 . 
In turn, the right side equals 

Pn ° n¢An−k Bk by the Pascal-triangle identity for k=0 k
binomial coefficients. µ 1 1 0 

∂ µ 0 1 0 
∂

16. Write 0 1 1 as I + B, where B = 0 0 1 , and apply Problem 15. Since 
0 0 1 0 0 0 µ 0 0 1 

∂
B2 = 0 0 0 and B3 = 0, we obtain (I + B)n = I + nB + 2

1 n(n − 1)B2 = 
0 0 0 µ 

1 n 12 n(n−1) 
∂ 

0 1 n . 
0 0 1 

17. (AD)i j = Ai j dj and (DA)i j = di Ai j . Thus AD = DA if and only if di = dj
for all (i, j) for which Ai j 6= 0. 
18. Ekl Epq = δlp Ekq . 

19. Check that 
≥ 
a b 

¥ 
times the asserted inverse is the identity. Then the matrix c d ¥ ≥ x ¥ ≥ pactually is the inverse. Apply the inverse to 

≥ 
a b = 

¥ 
to obtain the value c d y q¥

for 
≥ x .y 

µ 
−2/3 −4/3 1 

∂ µ 1 −1 0 
∂

20. (a) No inverse. (b) A−1 = −2/3 11/3 −2 . (c) A−1 = −2 3 −1 . 
1 −2 1 2 −5 4 

21. No. If the algorithm is followed, then the row of 0’s persists throughout the
row reduction, at worst moving to a different row at various stages. 
22. If C = (AB)−1, then ABC = I shows that BC is the inverse of A and 

CAB = I shows that CA is the inverse of B. 
23. (I + A)(I − A + A2 − A3 + · · · + (−A)k−1) = I − (−A)k = I shows that 

I − A + A2 − A3 + · · · + (−A)k−1 is an inverse. 
24. Let S be the set of positive integers, and let f (n) = n + 1. Take g(n) to be 

n − 1 for n > 1 and g(1) = 1. Then g ◦ f is the identity. But f is not onto S, and g
is not one-one. ≥ 

1 
¥ ≥ 

1 0 
¥

25. Take A = ( 1 0 ) and B = . Then BA = . More generally, if 0 0 0 
° c ≥ 

ca cb 
¥

A = ( a b ) and B = 
¢
, then BA = . If the upper right entry is 0, then d da db 

c = 0 or b = 0. But then one of the two diagonal entries must be 0, and hence BA 
cannot be the identity. 
26. The set of common multiples is a nonempty set of positive integers because 

ab is in it. Therefore it has a least element. 
27. This is a restatement of Corollary 1.7. 

k1 kr l1 lr28. Let a and b have prime factorizations a = p1 · · · pr and b = p1 · · · pr . 
Problem 27 shows that any positive common multiple N of a and b is of the form 
p1 
m1 · · · prmr q1 

n1 · · · qsns with mj ∏ kj , mj ∏ lj , and nj ∏ 0, and certainly any positive 
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integer of this form is a common multiple. The inequalities for mj are equivalent 
with the condition mj ∏ max(kj , lj ). The smallest positive integer of this kind has 
mj = max(kj , lj ) and nj = 0. This proves (a). In combination with the form of N ,
the formula for LCM(a, b) proves (b). Conclusion (c) follows from Corollary 1.8 
and the identity kj + lj = min(kj , lj ) + max(kj , lj ). 

k1, j kr, j29. If aj = p1 · · · pr is a prime factorization of aj , then LCM(a1, . . . , at ) = 
max1≤ j ≤r {k1, j } max1≤ j≤r {kr, j }p1 · · · pr , just as with Corollary 1.11. 

Chapter II 

21. The methods at the end of Section 2 lead to the basis 
©
( 3 , 1, 0), (−

5
3 , 0, 1) 

™ 
for 

(a) and to the basis 
©
(1, − 12 , 2) 

™ 
for (b). 

2. For 0 ≤ k < n, the two recursive formulas and one application of associativity 
(k+2) (k+2) (k+2)) = v(k) +v(k+1)give v(k+1) +v = (v(k) +vk+1)+v = v(k) +(vk+1 +v ,

and (a) follows.
For (b), we proceed by induction on n, the cases n ≤ 3 being handled by associa-

tivity. Suppose that the result holds for sums of fewer than n vectors, with n ∏ 4. 
In a sum of n vectors, there is some outer plus sign, and the inductive hypothesis
means that the sum is of the form (v1 +· · ·+ vk ) + (vk+1 +· · ·+ vn), the expressions 
v1 + · · · + vk and vk+1 + · · · + vn being unambiguous. The inductive hypothesis 
means that we have v1 + · · · + vk = v(k) and vk+1 + · · · + vn = v(k+1), and hence 
the expression we are studying is of the form v(k) + v(k+1). Part (a) shows that this 
is independent of k, and hence (b) follows. 
3. From Section I.4, σ is a product of transpositions, and hence it is enough to

prove the result for a transposition. When r +1 < s, iteration of the identity (r s) = 
(r r + 1)(r + 1 s)(r r + 1) shows that any transposition is a product of trans-
positions of the form (r r + 1), and hence it is enough to prove the formula for 
σ = (r r + 1). This case is just the commutative law, and the result follows. 

4. (a) {( 1 2 −1 ) , ( 0 0 1 )}; (b) 
Ωµ 

2
1 
∂ 

, 

µ 
1
0 
∂æ
; (c) 2. 

0 −1 

5. If R is a reduced row-echelon form of A, then we know that R = E A, where E 
is a product of invertible elementary matrices. Since A has rank one, R has a single 
nonzero row r and is of the form e1r , where e1 is the first standard basis vector. Then 
A = E−1 R = (E−1e1)r , and we can take c = E−1e1. 
6. In (a), let u1, . . . , us be the rows of R having at least one of the first r entries 

nonzero, and let us+1, . . . , um be the other rows. For each i with 1 ≤ i ≤ s, the 
first nonzero entry of ui corresponds to a corner variable and occurs in the j (i)th 

position with j (i) ≤ r . The most general member of the row space of A is of the 
form c1u1 + · · · + cmum , and the j (i)th entry of this is ci . For this row vector to be 
in the indicated span, we must have ci = 0 for i ≤ s. 
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In (b), let R0 be a second reduced row-echelon form, and let its nonzero rows be 
v1, . . . , vm . From part (a), it follows that the linear span of us+1, . . . , um equals the 
linear span of vs+1, . . . , vm for each s. Moreover, the value of each j (i) has to be 
the same for ui as for vi . Inducting downward, we prove that ui = vi for each i . For 
i = m, this follows since the first nonzero entry is 1 for both um and vm . Assuming 
the result for s + 1, we write vs = csus + cs+1us+1 + · · · + cmum . We have cs = 1 
since the first nonzero entry of us and vs is 1, and we have cs+i = 0 for i > 0 since 
the j (s + i)th entry of this equality of row vectors is 0 = cs+i . Thus vs = us , and 
the induction is complete. 
7. Let E = {x1, . . . , xN }, and let f1, . . . , fn be a basis of U . Form the matrix  

f1(x1) ··· f1(xN ) 
 

. ..A = . . . . By assumption, A has row rank n. Therefore it has column  

. . . 
fn (x1) ··· fn (xN )

rank n, and there exist n linearly independent columns, say columns j1, . . . , jn . Then 
D = {xj1 , . . . , xjn }. 

8. Let the listed basis be 0, and let 6 be the standard basis. Then 
≥ 

I 
¥ 

= 
60 ≥ 

3 −4 
¥ ¥ ≥ 

3 4 
¥ 

, the inverse matrix is 
≥ 

I = , and 
≥ 

L 
¥ 
is the product 

−2 3 06 2 3 00 ≥ 
3 4 

¥ ≥ 
−6 −12 

¥ ≥ 
3 −4 

¥ ≥ 
2 0 

¥ 

2 3 6 11 −2 3 
= 0 3 

. 

9. One could compute the matrix of I − D2 in an explicit basis, but an easier way 
is to observe that D3 = 0 and hence (I − D2)(I + D2) = I − D4 = I . 
10. Since image(AB) ⊆ image A, we have rank(AB) = dim image(AB) ≤ 

dim image A = rank A. Similarly rank((AB)t ) = rank(Bt At ) ≤ rank Bt . Since a 
matrix and its transpose have the same rank (by the equality of row rank and column
rank), rank(AB) ≤ rank B. 
11. Since A has n columns, rank A ≤ n. Applying Problem 10 gives rank(AB) ≤ 

rank A ≤ n. Since n < k = rank I , we cannot have AB = I . ≥ 
1 0 

≥ 
0 1 12. Take A = 

¥ 
and B = 

¥
. Then AB = B has rank 1 while BA = 00 0 0 0 

has rank 0. 
13. {cosh t, sinh t}. 
14. Let {vn | n ∈ Z} be a countably infinite basis. For each subset S of Z, define 

0 0vS to be the member of V 0 such that vS(vn) is 1 if n is in S and is 0 if not. Choose 
0 0by Theorem 2.42 a subset of {vS} that is a basis for the linear span of all vS . Arguing 

by contradiction, assume that this basis is countable. Number the S’s in question as 
0 0 0 0S1, S2, . . . . Any vS then has a unique expansion as vS = c1vS1 

+ · · · + ck vsk for 
0some k. Fix k, and let vS be expandable for this k. Let E ⊆ {1, . . . , k}. Let m and n 

be such that vm and vn are in Sj for j in E and are not in Sj for j in {1, . . . , k} − E . 
0 0 0 0Then v (vm) = v (vn) for j = 1, . . . , k, and hence vS(vm) = vS(vn). Thus with Sj Sj 

0k fixed, the number of S’s for which vS is expandable is at most 2
k . In particular, it 

0is finite. Taking the union over k, we find that there are only countably many vS in 
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0 0the linear span of vS1 
, vS2 

, . . . . But there are uncountably many subsets S of Z, and 
0we have thus arrived at a contradiction. We conclude that our subset of all vS that is 

a basis for the linear span must have been uncountable. 
15. For (a), take L , M , and N to be the three 1-dimensional subspaces of R2 

shown in Figure 2.1. Then L ∩ (M + N ) = L while (L ∩ M) + (L ∩ N ) = 0. 
For (b), we always have ⊇ since L ∩(M + N ) ⊇ L ∩ M and L ∩(M + N ) ⊇ L ∩ N . 
For (c), if l = m + n is in L ∩ (M + N ), then L ⊇ M implies that n = l − m is 

in L . So l = m + n has m ∈ L ∩ M and n ∈ L ∩ N . 
16. Take M , N1, and N2 to be the three 1-dimensional subspaces of V = R2 

shown in Figure 2.1. Then M ⊕ N1 = M ⊕ N2 = R2, but N1 6= N2. 
17. (b) only. 
18. In V1 ⊕ · · · ⊕ Vn , let pj pick off the j th coordinate, and let i j carry vj to 

(0, . . . , 0, vj , 0, . . . , 0). Then pr is is I on Vs if r = s and is 0 on Vs if r =6 s. Also, Pn 
k=1 ik pk = I on V1 ⊕ · · · ⊕ Vn . 
19. Corollary 2.15 shows that dim ker T + dim image T = n. Since ker T and 

image T have 0 intersection, the union of bases of ker T and image T is a linearly 
independent set of n vectors in Rn . This set must be a basis of Rn , and hence 
Rn = ker T ⊕ image T . This proves (a). 
For (b), let T 2 = T and suppose that v is in ker T ∩image T . Since v is in image T ,

we have v = T (w) for some w. Then v = T (w) = T 2(w) = T (T (w)) = T (v), and 
the right side is 0 since v is in ker T . Consequently ker T ∩ image T = 0. 
20. Define L : V1

0 ⊕ V2
0 → (V1 ⊕ V2)0 by L(µ1, µ2)(v1, v2) = µ1(v1) + µ2(v2). 

21. Proposition 2.25 shows that y 7→ z is onto the subset of z’s in V 0 such that 
M ⊆ ker z, i.e., is onto Ann M . Since q is onto V/M , y 7→ z is one-one. 
22. The kernel of q is M , and thus the kernel of q

Ø
Ø
N is M ∩ N . So q

Ø
Ø
N is one-one 

if and only if M ∩ N = 0. 
If M + N = V , then any v ∈ V is of the form m+n; so v has v+ M = m+n+ M = 

n + M = q(n), and q carries N onto V/M . Conversely if q carries N onto V/M ,
let v ∈ V be given, and choose n with q(n) = v + M . Then n + M = v + M , and 
hence v − n is in M . This says that V = M + N . 
Consequently q

Ø
Ø
N : N → V/M is an isomorphism if and only if M ∩ N = 0 

and M + N = V , and we know from Proposition 2.30 that this pair of conditions is
equivalent to the single condition V = M ⊕ N . 
23. If A−1 has integer entries, then det A and det A−1 are integers that are recip-

rocals, and we conclude that det A = ±1. If det A = ±1, then Cramer’s rule shows 
that A−1 has integer entries. 
24. When r = rank A, there exist r linearly independent rows. Say that these are 

the ones numbered i1, . . . , ir . Let A1 be the r-by-n matrix obtained by deleting the 
remaining rows. Since A1 has rank r , it has r linearly independent columns. Say 
that these are the ones numbered j1, . . . , jr . Let A2 be the r-by-r matrix obtained by 
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deleting the remaining columns. Then A2 is a square matrix of rank r , is therefore 
invertible, and must have nonzero determinant. In the reverse direction if some 
s-by-s submatrix has nonzero determinant, then the rows of the submatrix are linearly
independent, and certainly the corresponding rows of A are linearly independent. 
Thus s ≤ rank A. 
25. Let the expression in question be f (t) = 

Pn 
=1 ai eci t . Put ri = eci . The 

numbers ri are distinct. The fact that f (0) = f (1) 
i
= · · · = f (n − 1) = 0 says 

that the product of the Vandermonde matrix formed from r1, . . . , rn times the column 
vector (a1, . . . , an) is the 0 vector. Since the Vandermonde matrix is invertible, it 
follows that (a1, . . . , an) is the 0 vector. 
26. The characteristic polynomial is ∏2−5∏+6 = (∏−2)(∏−3). The eigenvectors 

for ∏ = 2 are all nonzero multiples of 
≥ 
1 
¥
, and the eigenvectors for ∏ = 3 are all 2 

nonzero multiples of 
≥ 
1 
¥ 
.3 

27. 
P

i (C−1 AC)i i = 
P

i 
P

j,k (C−1)i j AjkCki = 
P

j,k Ajk 
P

i Cki (C−1)i j = P
j,k Ajk δk j = 

P
j Aj j . 

28. For n = 2, direct computation gives ∏2 − a1∏ − a0. Similarly we obtain 
∏3 − a2∏2 − a1∏ − a0 when n = 3. We are thus led to the guess in the general case 
that the determinant is ∏n − an−1∏n−1 − · · ·− a1∏ − a0. This is proved by induction,
using expansion in cofactors about the first column. The term from the (1, 1) entry, 
by the inductive hypothesis, is ∏(∏n−1 − an−1∏n−2 − · · ·− a1), and the term from the 
(1, n) entry is (−1)n+1(−a0) det B, where B is a lower triangular matrix of size n − 1 
with −1 in every diagonal entry. Then det B = (−1)n−1, and substitution completes 
the induction. 
29. In (a), we have det(∏I − AB) = det(A(∏A−1 − B)) = det A det(∏A−1 − B) = 

det(∏A−1 − B) det A = det((∏A−1 − B)A) = det(∏I − BA). 
For (b), we know from the fact that the characteristic polynomial of A is a polyno-

mial that there are only finitely many ≤ for which A + ≤ I fails to be invertible. Thus 
there is some ≤0 > 0 such that A + ≤ I is invertible when 0 < ≤ < ≤0. By (a), these 
≤’s have det(∏I − (A + ≤ I )B) = det(∏I − B(A + ≤ I )). Since det is a polynomial in 
the entries of the matrix it is applied to, det(∏I − C) is a continuous function of the 
entries of C . Taking C = (A + ≤ I )B and then C = B(A + ≤ I )), and letting ≤ tend 
to 0, we obtain det(∏I − AB) = det(∏I − BA). 
30. In R1, let the nth spanning set consist of {(r) | 0 < r < 1/n}. These each 

span R1, but their intersection is empty and the empty set does not span R1. 
031. Let {vα} be a basis of V . For each α, define a member v of V 0 by saying α 

0that v (vβ) is 1 for β = α and is 0 for β =6 α. In addition, let w0 be the member α

of V 0 that is 1 on each Vα . Arguing by contradiction, suppose that w0 is in ∂(V ). 
Then we can write w0 = 

P 
β∈F cβ ∂(vβ) for some finite set F , and for each α we 

0have w0(vα
0 ) = 

P 
β∈F cβ ∂(vβ)(vα

0 ) = 
P 

β∈F cβvα(vβ). The right side is nonzero 
0only if some β ∈ F has v (vβ) 6= 0, i.e., only if α is in F . On the other hand, the α
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left side is 1 for every α. For this equality to happen for all α forces F to be infinite, 
contradiction. 
32. Ann(M + N ) ⊆ Ann M , and Ann(M + N ) ⊆ Ann N ; thus Ann(M + N ) ⊆ 

Ann M ∩ Ann N . If v 0 is 0 on M and is 0 on N , then it is 0 on M + N . Hence 
Ann(M + N ) ⊇ Ann M ∩ Ann N . 
33. Ann(M ∩ N ) ⊇ Ann M , and Ann(M ∩ N ) ⊇ Ann N ; thus Ann(M ∩ N ) ⊇ 

Ann M + Ann N . Let {uα} be a basis of M ∩ N , let vβ be vectors added to {uα} to 
obtain a basis of M , and let w∞ be vectors added to {uα} to obtain a basis of N . Then 
{uα} ∪ {vβ } ∪ {w∞ } is a basis of M + N . Let xδ be vectors added to this to obtain a 

0basis of V . If v0 is given in Ann(M ∩ N ), define v1 to be v0 on all the basis vectors 
0 0 − v 0 0 0 0but the vβ , where it is to be 0, and define v2 = v 1. Then v = v1 + v2 with 

0 0v1 ∈ Ann M and v2 ∈ Ann N . So Ann(M ∩ N ) ⊆ Ann M + Ann N . 
34. Let v be in M , and let v0 be in Ann M . Then ∂(v)(v0) = v0(v) = 0. This 

proves (a).
For (b), Propositions 2.19 and 2.20a give dim Ann M = dim V 0 − dim M 

and dim Ann(Ann M) = dim V 00 − dim Ann M = dim V 00 − (dim V 0 − dim M) = 
dim M = dim ∂(M). This equality in the presence of the inclusion ∂(M) ⊆ 
Ann(Ann M) implies ∂(M) = Ann(Ann M) by Corollary 2.4. 
For (c), let V be as in Problem 31, and put M = V . Then Ann(M) = 0 and 

Ann(Ann M) = V 00 6= ∂(V ). 
35. Parts (a) and (b) follow by writing out individual entries of the products as

appropriate sums. 
36. If A or D is not invertible, then suitable row operations on the matrix on the left

side exhibit the matrix on the left as not invertible, and hence both sides are 0. Thus
we may assume that A−1 and D−1 exist. Problem 35c allows us to decompose the ¥ ≥ 

A 0 
¥ ≥ 

I 0 
¥ ≥ 

I A−1 Bgiven matrix as 
≥ 
A B = 

¥
. The determinant of the product 0 D 0 I 0 D 0 I

is the product of the determinants. Using the defining formula for det, we see that the
first two determinants from the right side are det A and det D. The third determinant 
is 1 since the matrix is triangular with 1’s on the diagonal. 
37. In effect, we do row reduction with blocks, taking advantage of Problem ¥ ≥ 

A 0 
¥ ≥ 

I A−1 B 
¥ ≥ 

A 0 
¥ ≥ 

I 0 
¥ ≥ 

I A−1 B 
¥

35c. We have 
≥ 
A B = = . Tak-C D 0 I C D 0 I C I 0 D−CA−1 B 

ing the determinant of both sides and using Problem 36, we obtain det 
≥ 
A B 

¥ 
= C D 

(det A) det(D − CA−1 B) = det(AD − AC A−1 B), and this equals det(AD − CB)

since AC = CA. 
38. The matrices 

≥ 
A 
¥ 
and ( B 0 ) are of size n-by-n, and their products in 0 ≥ 

AB 0 
¥¥ 

the two orders are 
≥ 
AB 0 

¥ 
and BA. Problem 29 shows that det 

≥
∏In −0 0 0 0 

= det(∏In − BA). The left side equals ∏n−k det(∏Ik − AB), and the result follows. 
39. Substitute the definitions of the determinants of A(S) and Ab(S) into the right

side, sort out the signs, and verify that the result is the defining expression for det A. 
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40. Expansion in cofactors about the last row gives det An = (An)nn det (\An)nn − 
(An)n−1,n det (A\n)n−1,n = 2 det An−1 + det B, where B in block form is the square ≥ 

An−2 0matrix of size n − 1 given by B = 
¥
. Expansion by cofactors of det B about0 −1

the last row shows that det B = − det An−2, and the stated formula results. 
41. Inspection gives det A1 = 2 and det A2 = 3. The function f with f (n) = 

det An − (n + 1) thus has f (1) = f (2) = 0 and f (n) = 2 f (n − 1) − f (n − 2) for 
n ∏ 3, and it must be 0 for all n ∏ 1. 
42. The only changes in (a) are notational. For (b), we compute det C2 = det C3 = 

2, and the formula det Cn = 2 follows as in Problem 41. 
43. For (b), we interchange the first two rows and then interchange the first two

columns. The determinant does not change. 
44. For (b), we interchange the third and fourth rows and then interchange the

third and fourth columns. For (c) we change the list of rows and columns of An from 
1, 2, 3, 4, 5 to 3, 5, 4, 2, 1. 
45. The area of the rectangle is (a + b)(c + d), the two trapezoids have areas 

1 
2 d(a + (a + b)) and 12 a(d + (c + d)), and the two triangles have areas 12 ac and 2

1 bd. 
The difference is bc − ad. The answer is independent of the picture except for a sign.
Thus the answer is the absolute value of the determinant. 
46. The geometric effect is to leave the left edge where it is and to translate the

right edge parallel to itself in the same direction. The area is unchanged because the 
parallelogram can still be regarded as having base from 

≥ 
0 
¥ 
to 

≥ 
a 
¥ 
and having the 0 c

same distance between the parallel sides. The algebraic effect is that of the column
operation of replacing the second column by the sum of it and s times the first column. 

47. Right multiplication by 
≥ 
1 0 

¥ 
leaves the bottom edge where it is and translates t 1

the top edge parallel to itself in the same direction; algebraically it corresponds to
the column operation of replacing the first column by the sum of it and t times the 
second column. Right multiplication by 

≥ 
0 1 

¥ 
interchanges the left and bottom sides 1 0 

of the parallelogram and corresponds to interchange of the two columns of the matrix. 
Right multiplication by 

≥ 
q 0 

¥ 
corresponds to stretching the left side by a factor of q0 1 

if q > 0, along with reversing the direction if q < 0, and the algebraic effect is the 
column operation of multiplying the first column by q. The effect of 

≥ 
1 0 

¥ 
is similar 0 r

but affects the bottom edge instead of the left edge. 
48. The roles of rows and columns are interchanged by the transpose operation,

and the determinant is unaffected by transpose according to Proposition 2.35. In
view of Proposition 1.29, A can thus be put in reduced column-echelon form by a
sequence of column operations, each of which corresponds to right multiplication
by a suitable elementary matrix. The result is an equality saying that the product
of A and some elementary matrices is the identity. Using inverses shows that A is 
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the product of elementary matrices. The product can be applied a step at a time to
the cube determined by the standard basis, and each step either preserves volume or
multiplies it by a known factor, up to a minus sign. The product of these numerical
factors is the determinant, up to a minus sign. Hence the volume of the parallelepiped
has to be the product of these factors, with its sign made positive. 

Chapter III 

1. Since Tr B∗ A = 
P

i, j Ai j Bi j , the inner product is the usual inner product on the 
n2 entries. Then (a) and (b) are immediate. For (c), (a) gives the result of Parseval’s
equality relative to the orthonormal basis in (b).
For (d), let U be the unitary matrix with columns u1, . . . , un , i.e., the matrix ≥ 
I 

¥
, where 0 = (u1, . . . , un) and 6 is the standard ordered basis. Then kAk2 = 

60 HS 

Tr(A∗ A) = Tr(U−1 A∗ AU) = 
P

i, j |(AU)i j |2 = 
P

j kAuj k2, and this equals 
∗P

i, j |vi Auj |
2 by Parseval’s equality. 

In (e), W ⊥ consists of all matrices that are 0 along the diagonal. It has dimension 
n2 − n. 

2. The system has unknowns c0, c1, . . . , cn , where pn(x) = c0 +c1x +· · ·+cnxn ,
and the kth equation, for 0 ≤ k ≤ n, comes from the equality for f (x) = xk , namely 
2−k = 

Pn 
=0( j + k + 1)−1cj .j

3. (LM) ∗ = M∗ L∗ = ML is equal to LM if and only if LM = ML . 

4. A vector u is in ker L if and only if (L(u), v) = 0 for all v, if and only if 
(u, L∗ (v)) = 0 for all v, if and only if u is in (image L∗ )⊥. 

5. There are none. The characteristic polynomial has no real roots, but all roots
must be real if A is Hermitian. 

6. The map v1 7→ (L(v1), v2)2 is a linear functional on V1 and hence is given by 
the inner product with a unique member u1 of V1, i.e., ((L(v1), v2)2 = (v1, u1)1, and 
we define this element u1 to be L∗ (v2). We readily check that L∗ is linear, and (a) is
then proved. The proof of (b) proceeds in the same way as in the case that V1 = V2. 

7. In (a), if v is in S⊥ ∩ T ⊥, then v is in V ⊥ = 0. Thus S⊥ + T ⊥ is a direct 
sum. We have dim V = dim S + dim T = (dim V − dim S⊥) + (dim V − dim T ⊥) = 
2 dim V − dim S⊥ − dim T ⊥. Therefore dim V = dim(S⊥ + T ⊥). The inclusion 
plus the equality of the finite dimensions forces V = S⊥ + T ⊥. 
In (b), let ∏ be 0 or 1. Then E∗u = ∏u if and only if (E∗u, v) = ∏(u, v) for all 

v, if and only if (u, Ev) = ∏(u, v) for all v. When ∏ = 1, this says that E∗u = u if 
and only if u ⊥ (I − E)v for all v, hence if and only if u ⊥ T , hence if and only if u 
is in T ⊥. When ∏ = 0, it says that E∗u = 0 if and only if u ⊥ Ev for all v, hence if 
and only if u ⊥ S, hence if and only if u is in S⊥. 
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8. The formulas of the Gram–Schmidt orthogonalization process have vj = 
cj (gej ) + 

P
i< j ai j vi with cj > 0. Therefore gej = c−j 

1 vj + 
P

i< j bi j vi , and 

(k−1g)i j = 
P

l (k−1)il gl j = 
P

l (k−1)il (gej )l 
= c−j 

1 P
l (k−1)il (vj )l + 

P
l 
P

m< j (k−1)il bm j (vm)l 

= c−j 
1 (k−1vj )i + 

P
m< j bmj (k−1vm )i = c−j 

1δi j + 
P

m< j bmj δim . 

If i = j , the right side is c−j 
1 and is positive. If i > j , then every term on the right 

side is 0. Thus k−1g is upper triangular with positive diagonal entries. Since k carries 
the standard orthonormal basis to the orthonormal basis {v1, . . . , vn}, k is unitary. 
9. For (a), the Spectral Theorem and Corollary 3.22 show that A is similar to a 

diagonal matrix with positive diagonal entries. Thus det A > 0. In (b), we specialize 
the inequality x̄ t Ax > 0 to x’s that are 0 except in the entries numbered i1, . . . , in , and
we find that the submatrix is positive definite. Then the result follows from Corollary
3.22. 

p
10. Take g = A in Problem 8 and obtain 

p
A = kt with k unitary and t upperp p

triangular with positive diagonal entries. Then A = ( A) ∗ ( A) = (kt) ∗ (kt) = t∗t . 
11. The roots of the characteristic polynomial are 12 (a+d+s) and 12 (a+d−s), where 

1 
≥ 1

2 (a+d+s) 0 
¥

s = 
p

(a − d)2 + 4|b|2. Let r = 2 (−a + d + s). Then D = 10 2 (a+d−s) 

= (b2 + r2)−1/2 
≥ 
b −r 

¥
and U .¯r b 

12. In (a), the conditions ad − |b|2 > 0 and a + d > 0 together are necessary 

2 (a+d+s)and sufficient. In (b), let 
p
D = 

µp 
1 

p 
1

0 
∂
, and let U be as in the 

0 2 (a+d−s) 

previous problem. Then the positive definite square root of A is U
p
DU−1. 

13. The Spectral Theorem shows that A has a basis of eigenvectors, each with a 
real eigenvalue. If v is an eigenvector with eigenvalue ∏, then vt Av = 0 says that 
∏kvk2 = 0. So every eigenvalue is 0, and A, being similar to a diagonal matrix, has 
to be 0. 
14. Choosing a basis of eigenvectors, we may solve the corresponding problem

for diagonal matrices. Thus let A be a diagonal matrix, and assume, without loss 
of generality, that A11 = · · · = = 1 and Aj j 6 1 for j > k. Then the given Akk = 
equation (I − A)2 y = (I − A)x says that (1 − Aj j )2 yj = (1 − Aj j )xj for all j . Thus 
define yj to be 0 if j ≤ k, and choose yj = (1 − Aj j )−1xj for j > k. 
15. LL∗ = (UP)(UP) ∗ = (PU)(PU) ∗ = PUU∗ P = P2 = PU∗UP = 

(UP) ∗ (UP) = L∗ L . 
16. The family has a basis of simultaneous eigenvectors, and the matrices are all

diagonal in this basis. So the answer is the dimension of the vector space of diagonal
matrices, namely n. 
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17. In (a), ct G(v1, . . . , vn)c̄ = 
P

i, j ci (vi , vj )c̄j = 
°P

i ci vi , 
P

j cj vj 
¢ 

= 

kc1v1 + · · · + cnvnk2. Thus Corollary 3.22 shows that G(v1, . . . , vn) is positive 
semidefinite. Moreover, kc1v1 + · · · + cnvnk2 = 0 for some c 6 0 if and only = 
if v1, . . . , vn are linearly dependent. Thus G(v1, . . . , vn) is definite if and only if 
v1, . . . , vn are linearly independent. We know that a positive semidefinite matrix is
definite if and only if it is invertible, and thus det G(v1, . . . , vn) > 0 if and only 
if v1, . . . , vn are linearly independent; this proves (b). In (c), equality holds in the
Schwarz inequality if and only if the two vectors are linearly dependent, i.e., if and
only if one of them is a multiple of the other. 
18. This is immediate by induction. 
19. For (a), the left side is D2(Xn+1) = (n + 1)D(XnX 0). Comparing with the 

expected right side, we see that we are to show that 

nD(XnX 0) = 
? 

(2n + 1)nX 00 Xn + 4n2 Xn−1 . 

The left side equals nXn−1 times n(X 0)2 + XX 00, while the right side equals 
nXn−1 times (2n + 1)X 00 X + 4n. Since 

n(X 0)2 + XX 00 = 4nx2 + 2x2 − 2 

= (4n + 2)x2 − (4n + 2) + 4n = (2n + 1)X 00 X + 4n, 

(a) is proved.
For (b), the Leibniz rule gives Dn(X 0Y ) = X 0 DnY + nX 00 Dn−1Y for any Y . 

Meanwhile, application of Dn−1 to (a) yields 

Dn+1(Xn+1 ) − n(2n + 1)X 00 Dn−1 (Xn−1) = (2n + 1)Dn(X 0 Xn (Xn) − 4n2 Dn−1 ). 

Substituting with Y = (2n + 1)Xn , we obtain (b). The recursion in conclusion (c)
follows immediately by multiplying by (2n+1n!)−1. 
For (d), conclusion (c) and the definition of Pn show that Qn = Pn − Rn satisfies 

Q0 = Q1 = 0 and (n +1)Qn+1(x)−(2n +1)xQn(x)−nQn−1(x). Thus Qn(x) = 0 
for every n by induction. 
20–21. Write X = x2 − 1. Since Xn = (x − 1)n f (x), the function Xn has all 

derivatives through order n − 1 equal to 0 at x = 1. The same conclusion applies 
also at x = −1. If m ≤ n, integration by parts gives 

R 1 = [Dm (Xm)Dn−1(Xn)]1 
−1 D

m(Xm )Dn(Xn) dx −1 −
R 
−
1
1 D

m+1(Xm)Dn−1(Xn) dx 

= − 
R 
−
1
1 D

m+1(Xm )Dn−1(Xn) dx 

= · · · = (−1)k 
R 
−
1
1 D

m+k(Xm )Dn−k (Xn) dx 
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for k ≤ n. If m < n, then taking k = m + 1 gives 0 on the right side because 
D2m+1(Xm ) = 0. If m = n, then taking k = n gives (−1)n 

R 
−
1
1 X

nD2n(Xn) dx = 

(−1)n(2n)! 
R 
−
1
1 X

n dx on the right side. Therefore 

(2n)!(−1)n 2(2nn!)) 2(2nn!)hDn(Xn), Dn(Xn)i = (−1)n
2 

= 
2 
,(2n+1)! 2n+1 

and hPn, Pni = 2 
2n+1 . 

22. The expansion for (a) is 

Dn+1[(D(Xn))X] 

Dn+1 1= (D(Xn))X + (n + 1)Dn(D(Xn))X 0 + 2 n(n + 1)Dn−1(D(Xn))X 00 

2 n(n + 1)X 00 Dn= XD2(Dn(Xn)) + (n + 1)X 0 D(Dn(Xn)) + 1 (Xn), 

and the expansion for (b) is 

Dn+1[(D(Xn Dn+1 Dn+1 )X 0 + (n + 1)Dn )X 00 ))X] = (nXnX 0) = (nXn (nXn

(Xn + n(n + 1)Dn(Xn)X 00 = nD(Dn ))X 0 . 

1Thus, for (c), we get (x2 − 1)D2(Pn(x)) + (n +1)2xD(Pn(x))+ 2 n(n + 1)2Pn(x) = 
nD(Pn(x))2x + n(n + 1)Pn(x)2. This simplifies to 

(x2 − 1)P 00 + 2(n + 1)x Pn 
0 + n(n + 1)Pn = 2nx Pn 

0 + 2n(n + 1)Pnn 

and then to (1 − x2)P 00 − 2x Pn 
0 + n(n + 1)Pn = 0.n 

24. In Problems 24–28, there is no difficulty with addition, and we have to check
something only about scalar multiplication. For Problem 24, we need to check in V 
that (ab)v = a(bv), 1v = v, a(u + v) = au + av, and (a + b)v = av + bv. These 
are satisfied in V because the identities (ab)v = ¯ bv), 1v = v, ¯ ¯ av,a( ̄ a(u + v) = au + ¯
and (a + b)v = āv + b̄v hold in V . 
25. We are to see that L respects scalar multiplication, and the argument is that 

L(cv) = L(c̄v) = cL(v) = cL(v).¯

26. We have (au, bv)V = (b̄v, ¯ = ab̄(v, u)V = a ̄au)V b(u, v)V , as required. 
27. Let ` in V 0 correspond to v in V , so that `(u) = (u, v)V = (v, u)V . Then 

` in V 0 corresponds to v in V , while (c`)(u) = c(v, u)V = (cv, u)V shows that c` 
corresponds to cv in V . 
28. Let ` in V 0 correspond to v in V . Then Lt (`)(u) = `(L(u)) = (v, L(u))V = 

(v, L(u))V = ((L) ∗ (v), u)V , and this says that Lt (`) corresponds to (L) ∗ (v), i.e., Lt 

corresponds to (L) ∗ . 
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29. In (a), it is enough to check the result for p and q equal to monomials, and 
k1 kn(b) is a direct calculation. In (c), let p(x) = 

P 
ck1,...,kn x · · · xn . The bilinearity 

)2hxk1 kn k1
1 

knand (b) show that hp, pi = 
P

(ck1,...,kn · · · x , x · · · xn i, and this is positive 1 n 1
unless all the coefficients are 0. 
30. The polynomial p is in HN if and only if @(|x |2) p = 0, if and only if 

h@(|x |2) p, qi = 0 for all q in VN−2, if and only if @(q)(@(|x |2)p) = 0 for all q in 
VN−2, if and only if @(|x |2q)p = 0 for all q in VN−2, if and only if h p, |x |2qi = 0 
for all q in VN−2, if and only if p is in (|x |2VN−2)

⊥. 
31. Problem 30 gives VN = HN ⊕ |x |2VN−2, and we iterate this decomposition. 
32. A basis of |x |2V2 is {|x |2x1

2, |x |2x1x2, |x |2x2
2}. Apply the Gram–Schmidt

orthogonalization procedure to obtain an orthonormal basis {|x |2u1, |x |2u2, |x |2u3}, 
and write x1

4 + y4 = h4 + 
P3 

=1 (x1
4 + y1

4, |x |2uj )|x |2uj . Then h4 is harmonic by 1 j
Problem 30. A basis of |x |2V0 is |x |2, and hence an orthonormal basis consists of 
the single vector w = k|x |2k−1|x |2. Write uj = h2, j + (uj , w)w for each j , and 
substitute. Each h2, j is harmonic. Then we have 

x1
4 + y4 = h4 + 

P3 
=1 (x1

4 + y1
4, |x |2uj )|x |2

°
h2, j + (uj , w)w

¢
1 j

= h4 + |x |2 P3 
j=1 (x1

4 + y1
4, |x |2uj )h2, j 

+ |x |4 P3 
=1 (x1

4 + y1
4, |x |2uj )(uj , w)k|x |2k−1

j

with h4 in H4, each h2, j in H2, and the last sum in H0. 
33. Let P be the positive semidefinite square root of B. Then AB = APP , and 

hence det(∏I − AB) = det(∏I − PAP). Consequently AB has the same eigenvalues 
as PAP . The latter is positive semidefinite since (PAPv, v) = (A(Pv), Pv) ∏ 0. 
Therefore all the eigenvalues of AB are ∏ 0. 
34. Since (P−1 ABC P−1v, v) = (ABC(P−1v), P−1v), ABC is positive 

semidefinite if and only if P−1 ABC P−1 is positive semidefinite, if and only if 
P−1 ABC P−1 has all eigenvalues ∏ 0. But P−1 ABC P−1 has the same eigenvalues 
as ABC P−1 P−1 = AB, which has all eigenvalues ∏ 0 by the previous problem. 

Chapter IV 

1. If a2 = b2 = (ab)2 = 1, then a−1 = a, b−1 = b, and (ab)−1 = ab. So 
ab = (ab)−1 = b−1a−1 = ba. 
2. Number the vertices counterclockwise as 1, 2, 3, 4. The motions in D4 are then 

given by permutations as 1, (1 2)(3 4), (1 4)(2 3), (1 3), (2 4), (1 2 3 4), 
(1 3)(2 4), (1 4 3 2). 
2A. In (c), the result follows from (a) and (b) if r 6 = 0, both sides are 1. = 0. If r 



Chapter IV 629 

3. Choose integers x and y with xl + y|G| = 1. Then a = axl+y|G| = 
(al )x (a|G|)y = (al )x since a|G| = 1, and this is a power of an element of H . 
4. Define ϕ : G → G 0 by ϕ(a) = a. Then ϕ(a) ◦ ϕ(b) = a ◦ b = ba = ϕ(ba) = 

ϕ(a ◦b). From this equality it follows that G0 is a group and that ϕ is an isomorphism. 
5. For n > 0, (ab)n = abab · · · ab = anbn; also (ab)−n = ((ab)−1)n = 

(b−1a−1)n = (a−1b−1)n = (a−1)n(b−1)n = a−nb−n . In S3, a 7→ a2 is not a 
homomorphism since four elements are sent to 1 and since 4 does not divide |S3| = 6. 
6. Define ϕ : H × K → HK by ϕ(h, k) = hk. What needs proof is that 

members of H commute with members of K . If h is in H and k is in K , then 
(hkh−1)h = hk = k(k−1hk). Since H and K are normal, hkh−1 is in K and 
k−1hk is in H . Then k−1(hkh−1) = (k−1hk)h−1 and H ∩ K = {1} together imply 
k−1(hkh−1) = 1 = (k−1hk)h−1 = 1. From the first of these, k = hkh−1. Therefore 
hk = kh. 
7. Since GCD(1234, 8191) = 1, there exist x and y with 1234x + 8191y = 1,

and x and y can be found explicitly by the Euclidean algorithm of Section I.1. For 
this x , 1234x ≡ 1 mod 8191. 
8. The members 1, 2, . . . , p − 1 of Fp are roots of X p−1 − 1 = 0. By iterated use 

of the Factor Theorem, X p−1 − 1 = (X − 1)(X − 2) · · · (X − ( p − 1))Q(X), and 
Q(X) must have degree 0. Checking the coefficient of X p−1 on both sides shows 
that Q(X) = 1. Evaluating at X = 0 gives −1 = (−1)(−2) · · · (−( p − 1)) mod p. 
Since p is odd, this equation reads ( p − 1)! = −1 mod p. 
9. Corollary 4.39 shows that such a group has to be abelian, and Theorem 4.56

shows that it is the direct sum of cyclic groups. Thus it must be Cp2 or Cp × Cp, up 
to isomorphism. 
10. If y = axa−1, then yn = axna−1. This proves (a). Also, ba = a−1(ab)a 

shows that ba and ab are conjugate. This proves (b). 
11. There are four classes: C1 = {1}, C2 = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)},

C3 = {(1 2 3), (3 4 1), (2 1 4), (4 3 2)}, C4 = {(1 3 2), (3 1 4), (2 4 1), (4 2 3)}. 
The centralizer of the first element of each class is A4 for C1, C1 ∪ C2 for C2, 
{(1 2 3), (1 3 2)} for C3 and C4. Since A4 has no element of order 6, it has no 
subgroup C6. In a subgroup S3, an element of order 3 is conjugate to its square, but 
no element of order 3 in A4 is conjugate to its square. 
12. A subgroup of order 30 would have index 2 and would thus be normal, in

contradiction to Theorem 4.47. 
13. This is a special case of Proposition 4.36. 
14. Since H is normal, G acts on H by conjugation. The number of elements in 

an orbit has to be a divisor of |G|, and the smallest divisor of |G| apart from 1 is p, by 
hypothesis. Since {1} is one orbit and there are only p − 1 other elements in H , each 
orbit must contain one element. Therefore ghg−1 = h for each g ∈ G and h ∈ H ,
and each h is in ZG . 
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15. Certainly the inner automorphisms are closed under composition and inversion
and therefore form a subgroup. If ϕ is an automorphism and √ is the inner automor-
phism √(x) = axa−1, then ϕ◦√ ◦ϕ−1(x) = ϕ(aϕ−1(x)a−1) = ϕ(a)xϕ(a)−1 shows 
that ϕ ◦ √ ◦ ϕ−1 is inner. Hence the subgroup of inner automorphisms is normal. 
Define a mapping 8 of G into the inner automorphisms by 8(a) = {x 7→ axa−1}. 
Then 8(ab) = 8(a)8(b), and hence 8 is a homomorphism. Certainly 8 is onto the 
inner automorphisms, and its kernel consists of all elements a ∈ G with axa−1 = x 
for all x , hence consists of all a in ZG . Thus 8 exhibits G/ZG as isomorphic to the 
group of inner automorphisms. 
16. Part (a) is proved in the same way as Lemma 4.45. For (b), choose m = 8;

then Aut Cm is C2 × C2. 
17. In (a), each Ck is a conjugacy class, by Proposition 4.42, and it is evident that 

the Ck ’s are the only conjugacy classes whose members have order 2. If x and y are 
in Sn , then τ (xyx−1) = τ (x)τ (y)τ (x)−1 shows that τ carries any conjugate of y to 
a conjugate of τ (y). Therefore conjugacy classes map to conjugacy classes under τ ,
and τ (C1) has to be some Ck . 
In (b), the number of ways of selecting 2k elements from n is 

° n ¢. For each 2k
of these, the number of ways of selecting k unordered pairs of elements from 2k 

2k (2k)!elements is the multinomial coefficient 
° 
2,...,2

¢ 
= 2k . Although the individual pairs

are unordered, this enumeration counts one for each different ordering of the k pairs.
There are k! orderings, and hence the multinomial coefficient must be divided by k! 
to discount the enumeration of the pairs. Thus |Ck | is the product of the integer 

° n ¢
2k

and the integer (2
2
k
k
k
)
!
! . 

(2k)!In (c), we saw in (b) that Nk = 2kk! is always an integer. Let us bound it below.
Canceling every even factor of the numerator by a factor of k! and a factor of 2k , we 
see that Nk = (2k − 1)(2k − 3)(2k − 5) · · · (3)(1). Thus Nk ∏ 2k − 1 with equality 
only if 2k − 1 = 1, in which case k = 1. Also, Nk ∏ (2k − 1)(2k − 3) with equality 
holding for a value of k > 1 only if 2k − 3 = 1, in which case k = 2. ° nNow let us compare |Ck | and |C1|. We have N1 = 1. Also, |Ck | = 

¢ (2k)! =2k 2kk! 
Nk 

° n ¢ 
and |C1| = N1 

° n¢ 
= 

° n¢. The easy comparison is that |Ck | ∏ 
° n ¢ 

and this2k 2 2 2k° nis > 
¢ 

= |C1| unless k = 1 or |n − 2k| ≤ 2. Thus |Ck | > |C1| unless k equals 1 2
1or 12 n or 2

1 (n − 1) or 12 (n − 2). We can discard k = 2 (n − 2) because in this case 
|Ck | = Nk 

° n¢ 
> N1 

° n¢ 
= |C1| except when k = 1.2 2

1 1Consider k = 2 (n − 1) with k > 1. Then |C1| = 2 n(n − 1) = nk and |Ck | = 
nNk 

° ¢ 
= nNk . From above, the latter is > n(2k − 1) ∏ nk = |C1|.n−1

1 1Finally consider k = 2 n with k > 1. Then |C1| = 2 n(n − 1) = (n − 1)k and 
|Ck | = Nk 

° n¢ 
= Nk . From above, the latter for k > 1 is ∏ (2k − 1)(2k − 3) = n 

(n − 1)(n − 3), and this is > (n − 1)k = |C1| unless k ∏ n − 3. When k ∏ n − 3,
1we obtain 12 n ∏ n − 3 and n ≤ 6. Since k = 2 n, n has to be even with n ≤ 6. 

The case n = 6 (with k = 3) we are allowing, and the case n = 4 with k = 2 has 
|C2| = 3 6 = 1 or n = 6.= 6 = |C1|. Thus the only exceptions have k 
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18. In the composition series given for S4 in Section 8, take G to be A4, N to 
be the 4-element subgroup in the series, and M to be the 2-element subgroup. For 
another example, take G to be the dihedral group D4, N to be the cyclic subgroup of 
the 4 rotations, and M to be the 2-element subgroup of N . 
19. If GCD(r, s) = 1, define a homomorphism ϕ : Z → (Z/rZ) × (Z/sZ)

by ϕ(n) = (n mod r, n mod s). This is 0 for n = rs. Thus it descends to a 
homomorphism ϕ : Z/rsZ → (Z/rZ) × (Z/sZ). The kernel of ϕ consists of 
all integers n divisible by r and s. Since r and s are relatively prime, such integers 
are divisible by rs. Thus ker ϕ = rsZ, and ϕ is one-one. Since the domain and range 
have the same number of elements, ϕ is onto. 
Conversely if GCD(r, s) 6= 1, then some prime p divides both r and s. The number 

of elements in Crs of order p is then p − 1, while the number of elements in Cr × Cs 
of order p is p(p − 1) + (p − 1) = p2 − 1. So Crs cannot be isomorphic to Cr × Cs . 
20. Three, namely C27, C9 × C3, and C3 × C3 × C3. µ 3 2 5 

∂
21. The matrix relating the bases is C = 0 1 3 . A row interchange and a 

0 1 5 µ 1 0 3 
∂

column interchange move the entry 1 in the center to the upper left and give 2 3 5 . 
1 0 5 

Two row operations and one column operation eliminate the other entries in the first µ 1 0 0 
∂

column and first row, yielding 0 3 −1 . The remaining steps pass from there to 
0 0 2 

µ 1 0 0 
∂ µ 1 0 0 

∂ µ 1 0 0 
∂ µ 1 0 0 

∂ 
0 −1 3 7→ 0 1 −3 7→ 0 1 −3 7→ 0 1 0 . 
0 2 0 0 2 0 0 0 6 0 0 6 

Hence H = Z ⊕ Z ⊕ 6Z, and G/H ∼= C6. 
22. Let the four generators for G be x1, x2, x3, x4, and let the four generators for H 

be y1, y2, y3, y4. Since each is linearly independent over Q, it is linearly independent  
2 −1 0 0 

 

−1 2 −1 −1over Z. The matrix of the yi ’s in terms of the xj ’s is C = . The 
0 −1 0 2 
0 −1 2 0 

1 0 0 0 
 

0 1 0 0 reduction procedure on this leads to . Hence G/H ∼= C2 × C2. 
0 0 2 0 
0 0 0 2 

23. Each step of row reduction or column reduction preserves the rank of the matrix
as a member of Mnn(Q) since row rank equals column rank. Following through the
steps of the procedure, we may assume that the matrix is diagonal with diagonal
entries D11, . . . , Dnn with Dj j 6 = 

Lr
j= 0 exactly for 1 ≤ j ≤ r . Then H =1 Dj j Z,

and we can read off that H has rank r and the Q rank of the matrix is r . 
24. Let G be an abelian group, and let Ge = 

L
g∈G Z. For each g, form the 

homomorphism ϕg : Z → G given in additive notation by ϕg(n) = ng. Then the 
universal mapping property of direct sums gives the desired homomorphism of the
free abelian group Ge onto G. 
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25. For (a), right translation by any element of H ∩ K sends xH to itself and yK 
to itself, hence sends xH ∩ yK to itself. Therefore xH ∩ yK is a union of left cosets 
of H ∩ K . We are to see that at most one left coset is involved. Thus suppose we have
two elements g1 and g2 in xH ∩ yK . Write g1 = xh1 = yk1 and g2 = xh2 = yk2. 
Then g−1g1 = 2 h1 = k1, and g2 

−1g1 is exhibited as in H ∩ K . So g1 is in 2 h−1 k2 
−1 

g2(H ∩ K ). 
For (b), if the sets x1 H, . . . , xm H exhaust G and the sets y1 K , . . . , yn K exhaust 

G, then G is the union of the mn sets xi H ∩ yj K . By (a), G is exhibited as the union 
of ≤ mn left cosets of H ∩ K . 
26. Returning to Problem 23, we see that H = 

Ln
j 6 0.=1 Dj j Z with each Dj j = 

Then the index of H in G is 
Qn

j=1 Dj j . 
27. In (a), take H2 = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3), (2 4), 

(1 2 3 4), (1 4 3 2)}. The number of such subgroups is 2k + 1 and divides 3. 
Since H2 is not normal, the number is > 1. Therefore it is 3. 
In (b), take H3 = {(1), (1 2 3), (1 3 2)}. The number of such subgroups is 

3k + 1 and divides 8. Since H3 is not normal, the number is 4. 
28. Disproof: In S3, take H = {(1), (1 2)}. Then N (H) = H , and this is not 

normal. 
29. Since 168/7 = 24, the number of Sylow 7-subgroups is 7k + 1 and divides 24. 

The group G is assumed simple, and so k 6 0. Then k must be 1, and there are 8= 
distinct Sylow 7-subgroups. Any two of these intersect only in the identity, and each
contains 6 elements of order 7. Hence there are 48 elements of order 7. 
30. The number of Sylow q-subgroups is qk + 1 and divides p, hence must be 1. 

So Sq is normal, and the set SpSq of products is a subgroup. An argument in the proof
of Proposition 4.60 shows that each element of G is uniquely a product of a member 
of Sp and a member of Sq , and hence G is a semidirect product. 
31. Let 0 be the set of subgroups conjugate to H , and form the action G × 0 → 0 

by conjugation. The isotropy subgroup at H is N (H), which must have index 1 or 
index p in G. If it has index 1, then H is normal, and |0| = 1. Otherwise it has index 
p. Then N (H) = H , the orbit of H has |G|/|H | = p elements, and |0| = p. 
32. In (a), the subgroup H is a Sylow 2-subgroup, and the number of its conjugates 

must then be 2k +1 and divide 24/8 = 3. Since H is assumed not normal, the number 
of conjugates has to be 3.
In (b), call the conjugates H , H 0, and H 00. Each member g of G acts on the 

set {H, H 0 , H 00} by conjugation of the subgroups, sending H to gHg−1, H 0 to 
gH 0g−1, and H 00 to gH 00g−1. The result is that we obtain a function 8 from G to the 
permutation group S3 on {H, H 0 , H 00}. This function 8 is a group homomorphism. 
In (c), the subgroup ker 8 is normal, and it is enough to show that this subgroup is 

neither {1} nor G. The image of 8 is not the identity subgroup since some member 
g of G has gHg−1 = H 0; thus ker 8 6 G. Since 24/| ker 8| = |G|/| ker 8| == 
| image 8| ≤ 6, we have 6| ker 8| ∏ 24 and | ker 8| ∏ 4; thus ker 8 6= {1}. 
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33. Let H be a Sylow 3-subgroup, of order 9. If H is normal, then G/H is a 
subgroup of order 4, necessarily either C2 × C2 or C4. Both of these groups of order 
4 are isomorphic to subgroups of S4, and thus there is a nontrivial homomorphism 
of G onto a subgroup of order 4 in S4. 
If H is not normal, then the number of conjugates of H is 3k + 1 and divides 

4. Then the number of conjugates must be 4. Arguing as in the previous problem
we obtain a homomorphism of G into S4 by having each element of g map to the 
corresponding permutation of the conjugates of H . This homomorphism is nontrivial 
since H can be moved to any of its conjugates by some element of G and since the 
number of such conjugates is > 1. 
34. Let K be a Sylow q-subgroup. The number of conjugates of K is of the form 

kq + 1 and divides 2 p. If k = 0, then K is normal. This conclusion disposes of (a)
and the first statement of (b) for this case. We come back to the remainder of (b) for
this case in a moment. 
If k > 1, then kq + 1 ≤ 2 p is impossible since p < q. Thus the only other 

possibility besides k = 0 is k = 1. Then q + 1 divides 2p. So q + 1 equals 1, 2, p, or 
2 p. Since q > p, the only possibility is q + 1 = 2 p. This completes the argument 
for (a).
For the rest we may assume that q + 1 = 2 p. If either of H or K is normal, then 

an argument in the proof of Proposition 4.60 shows that HK is a subgroup with pq 
elements. Since 2p = q + 1, p divides q + 1. If p also divides q − 1, then p divides 
the difference, which is 2, and we obtain a contradiction. So p does not divide q − 1,
and Proposition 4.60 shows that HK is abelian, hence cyclic.
Thus we are reduced to the situation that q +1 = 2 p and K is not normal; we are to 

prove that H is normal. We have seen in this case that the number of conjugates of K 
is q +1, and hence the number of elements of order q is (q +1)(q −1) = 2 p(q −1) = 
2pq−2p. The number of conjugates of H is of the form lp+1 and divides 2q. If l = 0,
then H is normal, and we are done. If l ∏ 1, then the number of elements of order p is 
(lp+1)(p−1) ∏ ( p+1)( p−1) = p2 −1. Thus the total number of elements of order 
1, p, or q is ∏ 1+( p2 −1)+(2pq −2p) = 2pq +(p−1)2 −1 ∏ 2pq +22 −1 > 2pq,
and we have obtained a contradiction. 
35. Certainly √ is one-one and onto. For (h, k) and (h0 , k0) in H ×ϕ2 K , we have 

√((h, k)(h0 , k0)) = √(hh0, ((ϕ2)h0−1 (k))k0) = (ϕ(hh0), ((ϕ2)h0−1 (k))k0) 

and 

√(h, k)√(h0 , k0) = (ϕ(h), k)(ϕ(h0), k0) = (ϕ(hh0), ((ϕ1)ϕ(h0)−1 (k))k0). 

The right sides are equal because (ϕ2)h0−1 = (ϕ1 ◦ ϕ)h0−1 = (ϕ1)ϕ(h0−1) = (ϕ1)ϕ(h0)−1 . 
36. Again √ is visibly one-one and onto. The formula for ϕ2 in terms of ϕ1 is 

given more concretely as (ϕ2)h(k) = a 
° 
(ϕ1)h(a−1(k))

¢
. For (h, k) and (h0 , k0) in 
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H ×ϕ1 K , we then have 

√((h, k)(h0 , k0)) = √(hh0, ((ϕ1)h0−1 (k))k0) 

= 
°
hh0 , a 

° 
((ϕ1)h0−1 (k))k0¢¢ 

= 
°
hh0 , a 

° 
(ϕ1)h0−1 (k)

¢
a(k0)

¢ 

and 

√(h, k)√(h0 , k0) = (h, a(k))(h0 , a(k0)) = 
°
hh0 , 

° 
(ϕ2)h0−1 (a(k))

¢
a(k0)

¢ 

= 
°
hh0 , 

° 
a 
° 
(ϕ1)h0−1 (a−1(a(k)))

¢¢
a(k0)

¢
. 

The right sides are equal because a−1(a(k)) = k. 
∼37. An action of Cp on Cq is a homomorphism of Cp into Aut Cq = Cq−1. If a 

is a generator of Cp and b is a generator of Cq−1, we may assume that a 7→ bk for 
some k. Since the action is nontrivial, 0 < k < q − 1. Then 1 = a p maps to bkp,
and therefore bkp must be 1. This means that kp must be a multiple of q − 1. So 
kp = r(q − 1). Since 0 < k < q − 1, we see that p > r . Therefore p does not 
divide r and must divide q − 1. 
38. Put n = (q − 1)/ p. Let a be a generator of Cp, and let b be a generator 

∼of Aut Cq = Cq−1. For reference, take τ (a) = bn . This defines a nontrivial 
homomorphism of Cp into Cq−1. Any other one is of the form τ1(a) = bk1 with 
0 ≤ k1 < q − 1. As in the previous problem, we know that k1 p = r(q − 1). Hence 
k1 = nr for some r with 1 ≤ r ≤ p − 1. The mapping ϕ(as ) = ars is then an 
automorphism of Cp, and τ1(a) = bk1 = bnr = τ (ar ) = (τ ◦ ϕ)(a). So τ1 = τ ◦ ϕ. 
Problem 35 applies and yields the desired isomorphism. 
40. For (a), D4 ⊇ C4 ⊇ C2 ⊇ {1}, where C4 is the subgroup of rotations. For (b), 

H8 ⊇ C4 ⊇ C2 ⊇ {1}, where C4 is the subgroup {±1, ±i}. 
41. For (a), the trivial subgroup, the whole group, and all subgroups of index 2

are automatically normal. The only other possibility is order 2. Since −1 is the only 
element of order 2, the only subgroup of order 2 is {±1}. This is the center of H8 and 
hence is normal. 
For (b), the five conjugacy classes are {±i}, {±j}, {±k}, {−1}, and {1}. 
For (c), Problem 15 shows that the inner automorphisms form a normal subgroup

isomorphic to the quotient of H8 by its center. The center is {±1}, and thus the inner
automorphisms form a subgroup of the group of all automorphisms isomorphic to
C2 × C2. The nontrivial inner automorphisms multiply two of i, j, k by −1 and fix 
the third one. In addition, the cyclic map i 7→ j 7→ k 7→ i is an automorphism and
gives an automorphism of order 3. So is its square. One more automorphism fixes
i and has j 7→ k 7→ −j 7→ −k. Consequently the group of automorphisms G acts 
transitively on the set of six elements of order 4, and |G| = 6|H |, where H is the 
subgroup fixing i. With i fixed, an automorphism can carry j to any of ±j and ±k. 
Thus |H | = 4|K |, where K is the subgroup fixing i and j. Since i and j generate H8,
K is trivial. Hence | Aut H8| = 24. 
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42. The only possible orders are the divisors of 8. If it were to have an element of
order 8, it would be cyclic, hence abelian. If all elements other than the identity were
to have order 2, it would be abelian by Problem 1. Hence it must have an element of
order 4. 
43. Let C2 be the subgroup generated by the element of order 2. Proposition 4.44 

shows that G is a semidirect product C2 ×τ K , and τ has to be nontrivial for G to 
be nonabelian. By Problem 16a, there is only one possibility for τ . Since D4 is one 
such semidirect product, G must be isomorphic to D4. 
44. Let the elements of K be the powers of i. By assumption every element 

outside K has order 4. Thus i2 is the only element of order 2. Its conjugacy class
therefore contains no other element, and it is central. Let us write −1 for this element. 
No element other than ±1 can be central since if the center has order 4, then it
commutes with any other element and together they generate an abelian G. So 
ZG = {±1}. Next let j be an element of order 4 not in K . Define k = ij. We know 
that j2 = k2 = −1, and thus the 8 elements are ±1, ±i, ±j, ±k. From k = ij, we 
obtain kj = (i)(−1) = −i and similarly ik = −j. Finally we know that i and j do not 
commute (since G would otherwise be abelian) and that neither ij nor ji is a power of 
i or j. Thus ji has to be ±k and cannot be k. So ji = −k, and we then obtain jk = i 
and ki = j. Thus the multiplication table in G matches that in H8, and we have an 
isomorphism. 

∼ C4.46. Suppose K = If H acts nontrivially on K , then there is a nontrivial 
homomorphism of H ∼ = Aut C4 ∼= C3 into Aut K ∼ = C2. Since C2 has no element of 
order 3, this is impossible.
If K ∼ C2 × C2, then Aut K ∼ S3, the automorphisms being the permutations = = 

of the set {(1, 0), (0, 1), (1, 1)}. Thus there are two nontrivial homomorphisms of C3 
into Aut K . Since the elements of order 3 in S3 are conjugate in S3, Problem 36
applies and shows that the two resulting semidirect products are isomorphic. The 
group A4 meets the conditions of this problem, and hence the given G must be 
isomorphic to A4. 
47. Certainly one of those conditions holds, and G is abelian if (i) holds. If (ii) 

holds, then τ has order 2, and τ is determined by its kernel. Let us rewrite the group 
K as C2 × C2 with the second factor as the kernel of τ , so that τ factors through to 
a homomorphism of the first factor. Then (C2 × C2) ×τ C3 ∼ == C2 ×τ (C2 × C3) ∼
C2 ×τ C6 ∼ D6. If (iii) holds, we have a nonnormal subgroup of order 4 in G, and = 
this does not happen in A4 or D6. 
48. If (iii) holds, the homomorphism C4 → Aut C3 has to be nontrivial and is then 

uniquely determined since Aut C3 ∼= C2. This proves the uniqueness of the group
up to isomorphism. The group has 1 element of order 1, 3 elements of order 2, 2
elements of order 3, and 6 elements of order 4. 
49. Let H be a Sylow q-subgroup, and let K be a Sylow p-subgroup. The number 

of conjugates of H is of the form qk + 1 and divides p2. Since p is prime, qk + 1 
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must be 1, p, or p2. If H is not normal, then k > 0 and we cannot have qk + 1 = p
since p < q; therefore qk + 1 = p2. In this case the number of elements of order q
is (qk + 1)(q − 1) = p2(q − 1) = p2q − p2, and a Sylow p-subgroup then accounts 
for all the remaining elements. Consequently H not normal implies K normal. 
Now let us analyze what k must be when qk = p2 − 1. Since q is prime, q divides 

p +1 or q divides p −1. But the condition q divides p −1 is impossible since p < q,
and thus q divides p + 1. Since 2q > p +q > p +1, we must in fact have q = p + 1. 
Since all primes but 2 are odd, this says that p = 2 and q = 3. We conclude that 
either p2q = 12 or else the condition qk = p2 − 1 is impossible; when qk = p2 − 1 
fails, we have seen that H is normal. 
50. We form three distinct semidirect products, two with Sylow p-subgroup Cp2 

and one with Sylow p-subgroup Cp × Cp. For each a Sylow q-subgroup Cq is 
to be normal. We know from Problem 16a and Corollary 4.27 that the group of
automorphisms of the cyclic group Cq is isomorphic with Cq−1. We obtain one 
homomorphism Cp2 → Cq−1 by mapping a generator of Cp2 to an element in Cq−1 

of order p2 and a second homomorphism by mapping a generator of Cp2 to an element 
in Cq−1 of order p. The third semidirect product comes by having the first factor Cp
of Cp × Cp act trivially on Cq and having the second factor act with a generator of 
Cp mapping to an element of order p in Cq−1. 
51. The second and third groups constructed in the previous problem make sense

when p divides q − 1. 
52. If p does not divide q −1, then p2q 6= 12. Problem 49 then shows that a Sylow 

q-subgroup is normal. Hence the group has to be a semidirect product. The action
of a Sylow p-subgroup on Cq corresponds to a homomorphism of Cp2 or Cp × Cp
into Cq−1, and the condition that p not divide q − 1 means that Cp2 or Cp × Cp must 
map to the identity. Therefore the group is abelian. 
53. In (a) and (b), the automorphism group of Z/9Z is given by multiplication by 

the members of (Z/9Z)× = {1, 2, 4, 5, 7, 8}. The element 4 has square 7 and cube 1
modulo 9, and hence the multiplications by 1, 4, 7 yield a group of automorphisms of 
order 3 of C9. Hence C3 has a nontrivial action by automorphisms on C9, and there 
exists a nonabelian semidirect product of C3 and C9 with C9 normal. 
In (c), let a be a generator of C9, let b be a generator of C3, and let τb be the 

automorphism a 7→ a7. Then τb−1 is the automorphism an 7→ a4n , and τb− p (an) = 
a4pn . Proposition 4.43 says that (bm , an)(bp, aq ) = (bm+p, (τb− p (an))aq ), and the 
right side equals (bm+p, a4pn+q ). Taking m = −1, n = 1, p = 1, and q = 0, we 
obtain (b−1 , a)(b, 1) = (1, a4). Abbreviating (1, a) as a and (b, 1) as b, we obtain 
a9 = b3 = b−1aba−4 = 1. 
54. In such a group the subgroup H is normal by Proposition 4.36, and thus the

group of order 27 is a semidirect product of C3 and C9 with C9 normal. A nonabelian 
such semidirect product must have a generator of C3 mapping into an automorphism 
of order 3 of C9. There are two possibilities, and Problem 35 shows that they lead to
isomorphic semidirect products. 
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55. |GL(2, F)| = (q2 − 1)(q2 − q) and |SL(2, F)| = (q − 1)−1|GL(2, F)|
because |GL(2, F)| = | ker det | | image det |. This handles (a) and (b). For (c), the
scalar matrices of determinant 1 are those for which the scalar has square 1. Since the
characteristic is not 2, both ±1 qualify. Since F is a field, the polynomial X2 − 1 can 
have only two roots. So we factor by a group of order 2, and the number of elements 

1is cut in half. For (d), the order in general is (q
2−
2(
1
q
)(
−
q
1
2

) 
−q) = 2 (q − 1)q(q + 1). Then 

|PSL(2, F7)| = 168. 
56. Regard G as a group of invertible linear mappings that is to be written in the 

standard basis 6. Let 0 = (u, v). If A = 
≥ 
M 

¥
, then A = 

≥ 
0 −1 

¥
, the upper right 

00 1 c ¥ ≥ 
M 

¥ 
A 

≥ 
Mentry being −1 because det M = 1. Then 

≥ 
M = 

¥−1
. Products 

66 60 60 

AB go into products of such expressions, and conjugates h Ah−1 by matrices of 
determinant 1 go into expressions 

° ≥ 
M 

¥ 
h 

≥ 
M 

¥−1 ¢° ≥ 
M 

¥ 
A 

≥ 
M 

¥−1 ¢° ≥ 
M 

¥ 
h 

≥ 
M 

¥−1 ¢−1 
60 60 60 60 60 60 

that are conjugates of such expressions. Thus if A and such expressions generate 
SL(2, F), then the conjugates generate the conjugates, again giving SL(2, F). 
57. In (a), B−1 A−1 BA is the product of the conjugate B−1 A−1 B of the inverse of 

A by A itself and hence is in G. Direct computation shows that the matrix in question 

is 
≥ 
a−2 c(a−2−1) 

¥
. In (b), the diagonal entries are equal if and only if a−2 = a2, hence 

0 a2 

if and only if a4 = 1. In (c), the result of (b) shows that there are at most 4 choices 
of a to avoid. We must also avoid a = 0. Thus if the field has more than 5 elements, 
a can be chosen nonzero so that a4 6= 1. 
58. As in Problem 57a, the conditions that C is in G and det D = 1 imply that 

C DC−1 D−1 is in G. The product in question is 
≥ 
1 x2−1 

¥
. Since x = ±6 1, ∏ = x2 −1

0 1
is not 0. ≥ 

1 ∏59. Let 3 be the set of ∏ such that E(∏) = 
¥ 
is in G. Since E(∏ + ∏0) = 0 1 

E(∏)E(∏0) and E(∏)−1 = E(−∏), 3 is closed under addition and negation. Since ≥ 
α 0 

¥ 
E(∏) 

≥ 
α 0 

¥−1 
= E(α2∏), 3 is closed under multiplication by squares of 0 α−1 0 α−1 

nonzero elements. 
60. The previous problems produce some ∏0 6= 0 in 3, and −∏0 is in 3 since 3 is 

closed under negatives. If x 6 4 (x + 1)2 and 1= ±1, then 1 
4 (x − 1) are nonzero squares, 

and hence 14 (x + 1)2∏0 and 4
1 (x − 1)∏0 are in ∏. Subtracting, we see that x∏0 is in 3. 

Thus all multiples of ∏0 except possibly for those by 0, +1, −1 are in 3. However, 
we have seen separately that 0, ∏0, −∏0 are in 3. Hence 3 = F. 

0 1 
¥ ≥ 

1 ∏ 
¥ ≥ 

0 1 
¥−1 ≥ 

1 0 
¥

61. The conjugacy follows from 
≥ 

= . Next we 
−1 0 0 1 −1 0 −∏ 1¥ ≥ 

1 0 
¥ ≥ 

1 c 
¥ ≥ 

1+ab c+cab+ahave 
≥ 
1 a = 

¥
, and it follows that every member of 0 1 b 1 0 1 b bc+1 
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0 1 SL(2, F) with lower left entry nonzero is in G. Conjugating by 
≥ ¥

, we obtain 
−1 0 ¥ ≥ 

α 0 
¥

the same conclusion when the upper right entry is nonzero. Finally 
≥ 
1 1 = 0 1 0 α−1 

≥ 
α α−1 

¥ 
says 

≥ 
α 0 

¥ 
= 

≥ 
1 −1 

¥ ≥ 
α α−1 

¥ 
and shows that every matrix 

≥ 
α 
0 α

0 
−1 

¥ 
is in 

0 α−1 0 α−1 0 1 0 α−1 

G. Hence G = SL(2, F). 
62. Let ϕ : SL(2, F) → PSL(2, F) be the quotient homomorphism. If H is a 

normal subgroup 6= {1} in PSL(2, F), then ϕ−1(H) is a normal subgroup of SL(2, F)

containing an element not in the center. By Problem 61, ϕ−1(H) = SL(2, F). 
Therefore H = ϕ(ϕ−1(H)) = ϕ(SL(2, F)) = PSL(2, F). 
63. If a differs from c in a set A of k places and if b differs from c in a set B of 

l places, then a differs from b at most in the places of A ∪ B, hence in at most k + l 
places. Therefore d(a, b) ≤ d(a, c) + d(c, b). 
If d(w, a) ≤ (D − 1)/2 and d(w, b) ≤ (D − 1)/2 with a and b distinct in C ,

then it follows that d(a, b) ≤ (D − 1) and hence that δ(C) = minx 6=y in C d(x, y) ≤ 
d(a, b) ≤ (D − 1) < D. 
64. Since C is linear, 0 is in C . Then δ(C) ≤ d(0, c) for every c in C , and we obtain 

δ(C) ≤ minc∈C d(0, c). On the other hand, we certainly have d(a, b) = d(0, a − b)
for all a, b in Fn . If a and b are in C , then the linearity of C forces a − b to be in C ,
and hence d(a, b) = d(0, a − b) ∏ minc∈C d(0, c). Taking the minimum over all a 
and b, we obtain δ(C) ∏ minc∈C d(0, c). Hence equality holds. 
65. n + 1 and 0, 1 and n, n and 1, 2 and n − 1. 
66. In (a), a basis vector c is 1 in one of the entries corresponding to the corner

variables, and it is 0 in the other entries corresponding to corner variables. At worst
it could be 1 in every entry corresponding to an independent variable. The number
of independent variables is n minus the rank, i.e., n minus dim C . Thus wt(c) ≤ 
1 + n − dim C . Since δ(C) ≤ wt(c), dim C + δ(C) ≤ n + 1. 
For (b), one can take the parity-check code.
For (c), the alternative would be dim C+δ(C) = n+1. Then dim C+wt(c) ∏ n+1 

for every c in C . Consequently every basis vector of C must have a 1 in every position 
corresponding to an independentvariable. Sincedim C ∏ 2, there are at least two such
basis vectors. Their sum gets a contribution of 2 to its weight from the corner variables 
and can have a 0 in at most 1 position corresponding to an independent variable. But
their sum is 0 in every position corresponding to an independent variable. Hence there
is at most one such position, and we conclude that n − dim C = 1, in contradiction 
to the hypothesis dim C ≤ n − 2. 
67. A direct check of all seven nonzero elements of C shows that each has weight 

3. Therefore δ(C) = 3. 
68. In (a), the basis vectors each have one 1 in positions 3, 5, 6, 7, and at least 

two of the parity bits in positions 1, 2, 4 are 1 since none of 3, 5, 6, 7 is a power of 
2. Any sum of two distinct basis vectors has two 1’s in positions 3, 5, 6, 7, and the
parity bits cannot all be 0 since the parity bits for each of the basis vectors identify the 
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basis vector and since the two basis vectors in question are distinct. Finally the sum
of three or more basis vectors has 1 in three or more positions 3, 5, 6, 7 and hence has 
weight ∏ 3. Thus all code words have weight ∏ 3, and therefore δ(C7) ∏ 3. Since 
the first basis vector has weight 3, δ(C7) = 3. 
In (b), each word in C8 is a word of C7 plus a parity bit. The part from C7 has 

weight ∏ 3, by (a), and the parity bit means that the weight has to be even. Thus the
weight of every word in C8 is ∏ 4. 
In (c) for C2r −1, we distinguish between the r bits whose indices are a power of 

two and the other 2r − 1 − r bits. The first are the check bits, and the others are the
message bits. The message bits are allowed to be arbitrary, and the check bits will
depend on them. Thus dim C8 = 2r − r − 1. For a given pattern of message bits, 
the check bit in position 2 j counts, modulo 2, the number of 1’s in message bits that
occur is positions requiring 2 j in their binary expansions. Then C2r is obtained by 
adjoining a parity bit to each word of C2r −1. 
The first conclusion of (d) was proved in the course of answering (c), and the other

two conclusions follow by the same argument that was given for r = 3 in (a) and (b). 
69. In (a), the dimension of the null space of H is the number of columns minus 

the rank, hence is 7 − 3 = 4. Since C7 lies in the null space and dim C7 = 4, the null 
space equals C7. 
In (b), let c be in C7. If ei denotes the usual i th basis vector, then H(c + ei ) = 

Hc + Hei = Hei , and this is the i th column of H . 
70. Take a basis of C , write it as the rows of a matrix, row reduce the matrix,

and permute the variables so that all the corner variables precede all the independent
variables. The resulting matrix in block form is (I A) for some matrix A with dim C 
rows and n − dim C columns. Since each basis vector has weight ∏ 3, each row of 
A has at least two 1’s. Since each sum of two distinct basis vectors has weight ∏ 3,
the sum of two distinct rows of A cannot be 0. Thus the rows of A must be distinct. 
Arguing by contradiction, suppose that dim C > n − r , so that A has ≤ r − 1 

columns. The number of possible rows in A with at least two 1’s is then ≤ 2r−1 −1 − 
(r − 1) = 2r−1 − r . Hence n − r < dim C ≤ 2r−1 − r , and n < 2r−1, contradiction. 
71. For (a), the answers are Xn , (X + Y )n , Xn + Yn , 2

1 ((X + Y )n + 2
1 (X − Y )n), 

X6 + 7X3Y 3, X7 + 7X4Y 3 + 7X3Y 4 + Y 7, and X8 + 14X4Y 4 + Y 8. The last three 
are by a direct count of the number of code words of each weight.
In (b), the 0 word is the unique code word of weight 0, and it is present in every

linear code. 
In (c), the expression Xn−wt(c)Y wt(c) makes a contribution of 0 to the coefficient 

Nk (C) of Xn−kY k if wt(c) 6 k and makes a contribution of 1 to the coefficient if = 
wt(c) = k. Summing on c yields 

Pn
k=0 Nk(C)Xn−kY k = 

P
c∈C Xn−wt(c)Y wt(c). 

72. The equality (1+ X +X2 + X4)(1+ X + X3) = 1+ X7 produces a member of C 
with weight 2. Therefore δ(C) ≤ 2. On the other hand, the product of 1+X + X2 +X4 

with a polynomial can never be a monomial, and therefore no code word has weight
1. Thus δ(C) > 1. 
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73. In essence we use the method suggested by the solution to Problem 70, except
that we put coefficients corresponding to low degrees on the left and we row reduce
the matrix into the form (A I ). Let 8 ≤ n ≤ 19. Form the images of as many of the 
following polynomials as have degree ≤ n: 

1, X, X2 , X3 , X4 , X5 , X6 + 1, X7 + X + 1, Xk (X8 + X2 + X + 1) for k ∏ 0. 

The list stops with k = n − 16. Assemble the coefficients of the image polynomials
as the rows of a matrix as in Problem 70. The images form a basis of C . They all 
have weight 4, and thus every member of C has even weight. Since the image of 1 
has weight 4, δ(C) must be 2 or 4. 
Imagine doing a row reduction as in the solution of Problem 70. We want to rule

out δ(C) = 2, and it is enough to show that the basis vectors and all sums of two
distinct basis vectors have weight > 2. To handle the basis vectors, it is enough to 
show that the A part of the reduced matrix (A I ) never has just one 1 in a row. To
handle the sums of two distinct basis vectors, it is enough to show that the sum of
two rows of A is never 0, i.e., that the rows of A are distinct. 
The matrix A will have 8 columns, corresponding to powers Xl with l ≤ 7. The 

rows of (A I ) are thus to correspond to polynomials of the form Xm +“lower,” where 
each expression “lower” has degree at most 7 and m takes on the values 8, 9, . . . , n. 
The polynomials whose images correspond to the rows of the reduced matrix are 

1, X, . . . , X5 , X6 + 1, X7 + X + 1, 

X8 + X2 + X + 1, X (X8 + X2 + X + 1), . . . , X3(X8 + X2 + X + 1), 

and the left part A of the reduced matrix is 
 1 1 1 0 0 0 0 0 
0 1 1 1 0 0 0 0 
0 0 1 1 1 0 0 0 


 
0 0 0 1 1 1 0 0  


0 0 0 0 1 1 1 0 


 
 0 0 0 0 0 1 1 1 A = .
1 1 1 0 0 0 1 1 


 
 1 0 0 1 0 0 0 1 



1 0 1 0 1 0 0 0 


 

0 1 0 1 0 1 0 0 


 
0 0 1 0 1 0 1 0 
0 0 0 1 0 1 0 1 

No row of A is 0, and no two distinct rows are equal. This completes the proof. 
74. Suppose that {Xs }s∈S is an object in CS and that fs : Xs → A for each s is 

a function, A being a particular set. The disjoint union of the Xs ’s consists of all 
ordered pairs (xs , s) with s ∈ S and xs ∈ Xs , and we define is (xs ) = (xs , s). To 
define a function f from the disjoint union of the Xs ’s into A such that f is = fs for 
all s, we let f (xs , s) = fs (xs). Then f is (xs) = f (xs , s) = fs (xs ). Thus f exists. 
On the other hand, the condition that f is = fs forces f (xs , s) to be fs (xs), and hence 
the f in the universal mapping property is unique, as it is required to be. 
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76. Peeking ahead to Problem 80, we take the category to be C opp, where C is the 
category defined in Section 11 after Example 4 of products. The category C has no 
product functor when S has two elements. 
77. The existence of the identity and associativity are part of the definition. The

existence of inverses is given in the hypothesis. The answer to the question is “yes”;
if a group G is given, define a category with one object, namely the set G, define 
Morph(G, G) to be the set G, and let the law of composition be the group law. 
78. To see that ◦opp is well defined, let f be in MorphC opp (A, B), and let g be 

in MorphC opp (B, C). The definition is g ◦opp f = f ◦ g, and this is meaningful 
since g is in MorphC(C, B) and f is in MorphC(B, A). The associativity and the
existence of the identity are straightforward to check. It is clear from the definition
that (C opp)opp = C. 
In a diagram the vertices stay where they are, and so do the morphisms, since the

objects and the sets of morphisms do not change. However, the direction of each
arrow is reversed since “domain” and “range” are interchanged in passing from C to 
C opp. Thus diagrams map to diagrams with the arrows reversed.
Compositions correspond because of the definition of ◦opp, and it follows that 

commutative diagrams map to commutative diagrams. 
79. Let A and B be sets such that A has three elements and B has one element. 

The number of functions from A to B is then one, and the number of functions from B 
to A is three. Since MorphC opp (A, B) = MorphC(B, A), MorphC opp (A, B) has three 
elements and cannot be accounted for by functions from A to B. 
80. For (a), if (X, {ps }s∈S) is a product of {Xs }s∈S , we set up the diagram of the

universal mapping property of the product. Passing to C opp and using Problem 78, 
we obtain the same diagram in C opp but with the arrows reversed. Then it follows that 
(X, {ps }s∈S), when interpreted in C opp, satisfies the condition of being a coproduct.
The other half proceeds in the same way.
For (b), we start with two coproducts in C and pass to C opp, where they be-

come products, according to (a). Proposition 4.63 shows that the two products are
canonically isomorphic in C opp. This isomorphism, when reinterpreted in C, is still an 
isomorphism, and the result is that the two coproducts in C are canonically isomorphic. 

Chapter V 

1. For (a), we have ((g1, h1)((g2, h2)x)) = (g1, h1)(g2xh−1) = g1g2xh−1h−1 =2 2 1 
(g1g2)x(h1h2)−1 = (g1g2, h1h2)x and (1, 1)x = 1x1−1 = x . 
For (b), left multiplications by GL(m, C) preserve the row space, hence the rank, 

and right multiplications by GL(n, C) preserve the column space, hence the rank.
Hence all members of an orbit have the same rank. 
Row operations, which correspond to left multiplications by elementary matrices,

can be used to bring the matrix into reduced row-echelon form, and then column 
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operations, which correspond to right multiplications by elementary matrices, can be
used to bring the result into reduced column-echelon form. If r = min(m, n), then 
the resulting matrix is 1 in entries (1, 1), (2, 2), . . . , (l, l) for some l ≤ r and 0 
elsewhere. This has rank l and answers (c) and the remainder of (b). 
2. If A has minimal polynomial Xk + ck−1 Xk−1 + · · · + c1 X + c0, with c0 = 0,

then I = A(−c0 
−1(Ak−1 + ck−1 Ak−2 + · · · + c1 I )), and A is invertible. Conversely 

if c0 = 0, then X is a factor of the minimal polynomial and must be a factor of the
characteristic polynomial, by Corollary 5.10. Then 0 is an eigenvalue, and the null
space is nonzero. Hence A is not invertible. 
3. Proposition 5.12 shows that lj ∏ max(rj , sj ). For u in U , we know that 

P1(L)r1 · · · Pk (L)rk (u) = 0. For w in W , we know that P1(L)s1 · · · Pk (L)sk (w) = 
0. Thus any v in U or W has P1(L)max(r1,s1) · · · Pk (L)max(rk ,sk )(v) = 0. Forming 
sums, we see that P1(L)max(r1,s1) · · · Pk(L)max(rk ,sk )(v) = 0 for all v in V . Thus the 
minimal polynomial divides P1(X)max(r1 ,s1) · · · Pk (X)max(rk ,sk ), and we must have 
lj ≤ max(rj , sj ). 
4. For any monomial P(X) = X j , the monomial Q(X) = X P(X) = X j+1 

has Q(BA) = BA(BA) j = B(AB) j A = BP(AB)A. Taking suitable linear 
combinations of this result as j varies, we obtain (a). 
For (b), let MAB (X) and MBA(X) be the minimal polynomials of AB and BA. 

Part (a) implies that MBA(X) divides XMAB (X). Reversing the roles of A and B, we 
see that MAB (X) divides XMBA(X). By unique factorization all the prime powers in 
the prime factorizations of MAB (X) and MBA(X) are the same except for the power 
of X . The powers of X in the factorizations of MAB (X) and MBA(X) differ at most 
by 1. 
5. Theorem 5.14 allows us to write Kn = U1 ⊕ · · ·⊕Uk and Kn = W1 ⊕ · · ·⊕ Wl ,

where the Uj are the eigenspaces for the distinct eigenvalues of D and the Wj are 
the eigenspaces for the distinct eigenvalues of D0. These decompositions are the
primary decompositions as in Theorem 5.19, and (e) of that theorem shows that
Wj = (Wj ∩ U1) ⊕ · · · ⊕ (Wj ∩ Uk ) for 1 ≤ j ≤ l. Summing on j , we see that Kn is 
the direct sum of all Ui ∩ Wj . Each of D and D0 is scalar on Ui ∩ Wj , and (a) follows 
by translating this result into a statement about matrices. 
The matrices N = 

≥ 
0 1 

¥ 
and N 0 = 

≥ 
0 2 

¥ 
commute, and both have N uniquely0 0 0 0 

as Jordan form. If C were to exist with C−1 NC and C−1 N 0C both in Jordan form, 
we would have C−1 NC = C−1 N 0C and N = N 0, contradiction. This answers (b). 
6. If E is the projection of V on U along W , then each member of U is an eigen-

vector with eigenvalue 1, and each member of W is an eigenvector with eigenvalue 0. 
The union of bases of U and W is then a basis of eigenvectors for E , and (a) follows
from Theorem 5.14. In view of Proposition 5.15, two projections are given by similar
matrices if and only if they have the same rank. 
7. For (a), EF = F implies image F ⊆ image E , which implies EF = F . 

Reversing the roles of E and F , we see that FE = E if and only if image E ⊆ 
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image F . 
For (b), EF = E implies ker F ⊆ ker E , while FE = F implies ker E ⊆ ker F . 

So EF = E and FE = F implies ker E = ker F . Conversely if ker F ⊆ ker E , then 
EF = E on ker F and EF = E on image F ; so EF = E . Reversing the roles of E 
and F , we see that ker E ⊆ ker F implies FE = F . 
8. If EF = FE , then (EF)2 = EFEF = E(FE)F = E(EF)F = E2 F2 = 

EF . So EF is a projection. This proves (a). 
For (b), let E = 

≥ 
1 0 

¥ 
and F = 

≥ 
1 1 

¥ 
. Each is a projection, and EF = F , so 0 0 0 0 

that EF is a projection. However, FE = E . Since E 6 F , EF = FE .= 6

9. If E is a projection, then U = 2E − I has U 2 = 4E2 − 4E + I = 
4E − 4E + I = I ; so U is an involution. If U is an involution, then E = 12 (U + I )

1 1 1has E2 = 4 (U 2 + 2U + I ) = 4 (I + 2U + I ) = 2 (U + I ) = E . So E is a projection. 
The two formulas U = 2E − I and E = 2

1 (U + I ) are inverse to each other. 
10. Apply Theorem 5.19, and take U to be the primary subspace for the prime 

polynomial X and W to be the sum of the remaining primary subspaces. Then (i),
(ii), and (iii) are immediate from the theorem. For (iv), let Uj be the primary subspace 
for some other prime polynomial P(X). The theorem shows that L

Ø
Ø
Uj 
has a power 

of P(X) as minimal polynomial. Since X does not divide P(X), Problem 2 shows 
that L

Ø
Ø
Uj 
is invertible. Hence L

Ø
Ø
Uj 
is invertible on the direct sum of the Uj ’s other 

than the one for the polynomial X . 
11. Let V = U1 ⊕ · · ·⊕ Uk be the primary decomposition, with U1 corresponding

to the prime X . By (ii) and Theorem 5.19e, U = (U1 ∩ U) ⊕ · · · ⊕ (Uk ∩ U ) and 
similarly for W . Then Uj ∩ U = 0 for j ∏ 2 by (iii), and hence U ⊆ U1. By (iv), 
U1 ∩ W = 0, so that W ⊆ U2 ⊕ · · · ⊕ Uk . By (i), U = U1 and W = U2 ⊕ · · · ⊕ Uk . 
12. Part (a) is immediate, and a basis for (b) consists of the union of bases for the

individual Uj ’s. Part (f) is evident.
For (d) and (e), since D is a linear combination of the Ej ’s and each Ej is a 

polynomial in L , D is a polynomial in L , say D = P(L). Then N = L − P(L)

commutes with L , and this is (d). Applying the division algorithm to P , we have 
P = AM + R with R = 0 or deg R < deg M . Evaluating at L gives D = P(L) = 
A(L)M(L) + R(L) = R(L) since M(L) = 0. Thus R will serve in place of P if 
deg P ∏ deg M . This proves the existence in (e) of the polynomial for D. Since 
N = L − D, N is a polynomial in L , and again we can take this polynomial to be 
0 or to have degree < deg M . This proves the existence in (e) of the polynomial for 
N . For uniqueness if P1 is a second polynomial that yields D, then 0 = D − D = 
P(L) − P1(L) shows that P − P1 is a multiple of M , and the condition on the 
degrees of P and P1 forces P − P1 = 0. So P is unique. Similarly the polynomial 
representing N is unique. This completes the proof of uniqueness in (e). 
If Qj (X) is the polynomial (X − ∏0)lj , then Nlj = (L − D)lj = Qj (L) on Uj , and 

Theorem 5.19f shows that Qj (L) is 0 on Uj . Therefore a power of N is 0 on each 
Uj , and N is nilpotent. This proves (c). Part (g) now follows. 
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13. Each eigenvector of D must lie in some Uj by Theorem 5.19e. If Vi is the 
eigenspace of D with eigenvalue ci , it follows that Vi ⊆ Uj (i) for some j = j (i). 
Thus each Uj is the sum of full eigenspaces of D. Property (d) forces N to carry Vi 
into itself. By (c), (L − D)n is 0 on Vi for n = dim V ; hence (L − ci I )n is 0 on 
Vi . Since Vi ⊆ Uj , (L − ∏j I )n is 0 on Uj . Application of Problem 10 to L − ci I 
shows that L − ∏j I is nonsingular on Vi if ci 6= ∏j , in contradiction to the fact that 
(L − ∏j I )n is 0 on Uj , and therefore ci = ∏j . The conclusion is that Vi = Uj (i), and 
the desired uniqueness follows.
A slightly shorter argument is available if one takes the constructive proof of

existence of a decomposition L = D + N as known, so that Problem 12 is available
for that decomposition. If there is a second decomposition L = D0 + N 0 satisfying
(a) through (d), then D0 and N 0 commute with L and hence with all polynomials in 
L . Thus they commute with D and N . The equality L = D + N = D0 + N 0 implies
D − D0 = N 0 − N . Problem 5a shows that D − D0 has a basis of eigenvectors, and 
N 0−N is nilpotent because the commutativity of N and N 0 shows that the the Binomial 
Theorem applies, in view of Problem 15 in Chapter I. Thus D − D0 = N 0 − N = 0. 
14. In (a), Lemma 5.22 says that det(X I − N 0) = Xn0 . Consequently

det(X I − (N 0 + cI )) = det((X − c)I − N 0) = (X − c)n0 . 
In (b), form the primary decomposition of L as in Theorem 5.19, and let notation 

be as in Problem 12. On the subspace Uj , which is carried to itself by L , L = D + N 
acts as ∏j I + N , and the characteristic polynomial on that subspace is (X − ∏j )nj ,
by (a). On the whole space V , the characteristic polynomial of L is the product 
of the contributions from each Uj , since as a consequence of Proposition 5.11, the
determinant of a block diagonal matrix is the product of the determinants of the
blocks. Therefore L has characteristic polynomial 

Qn 
=1(X − ∏j )nj , and this matches j

the characteristic polynomial of D. 
15. The characteristic polynomial is X2 − 2X + 1 = (X − 1)2. Since A − I 6= 0,

the minimal polynomial is (X − 1)2 rather than X − 1. Thus the Jordan form is 
J = 

≥ 
1 1 

¥
. Solving shows that ker(A − I ) consists of the multiples of 

≥ 
3/2 

¥
. Use 0 1 1≥ 

3 
≥ 
3 

≥ 
1 
¥¥ 

as the first column of C , and solve (A − I )X = 
¥ 
to get X = as one 2 2 1≥ 

3 1 
¥ 
, C−1 

≥ 
1 −1answer for the second column. Then C = = 

¥
, and one readily 2 1 −2 3 

checks that C−1 AC = J . 
16. The characteristic polynomial is P(X) = det(X I − A) = X3. Thus A is µ 0 1 0 

∂
nilpotent, and in fact A2 = 0. Then J = 0 0 0 , and the computation proceeds as 

0 0 0  
1 


0 0 µ 4 1 −1 
∂ 8

1in Example 1 in Section 7, yielding C = −8 0 4 and C−1 =  1 1 
4 − 4 . 

8 0 0 
 
0 1 1 
4 4 

17. The characteristic polynomial is (X − 2)6(X − 3) by inspection. Thus there 
is a primary subspace for X − 2 with dimension 6 and a primary subspace for X − 3 
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with dimension 1. For the Jordan form let Kj = ker(A − 2I ) j . By raising A − 2I 
to powers and row reducing, we see that dim K3 = 6, dim K2 = 5, and dim K1 = 3. 
We do not have to proceed beyond K3 since we have reached the full dimension 6 of 
the primary subspace for X − 2. Therefore the number of Jordan blocks for X − 2 of 
size ∏ 3 is 6 − 5 = 1, of size ∏ 2 is 5 − 3 = 2, and of size ∏ 1 is 3. Hence there is 
one block of each size 1, 2, and 3, and 

 2 1 0 
2 1 2 


J = 


2 1 


. 


2 


 

2 
3 

Solving (A − 3I )X = 0, we find that the eigenvectors for eigenvalue 3 are the 
multiples of (5, 2, 2, 3, 2, 1, 1). Thus this vector can be taken to be the last column 
of C . 
The next step is to express K1, K2, and K3 explicitly in terms of parameters by

using the standard solution procedure for systems of homogeneous linear equations.
The result is that 

 x1 
  x1 

  x1 
 

x2 x2 x2 x3 



 x3 




 x3 


     
K1 = 


0 


, K2 = 


x4 


, K3 = 


x4 


.     


0 

 
x5 

 
x5 


 

0 
  

0 
  





 x6 

     
0 0 0 

Following the method of Example 1 in Section 7, we choose W2 such that K3 = 
K2 ⊕ W2, and then we form U1 = (A − 2I )(W2): 

 0   0  
0 x6

 0 



 0 


   

W2 = 


0 


and U1 = 


x6 


.   


0 

 
x6 


    x6 




   
0 0 

We choose W1 such that K2 = K1 ⊕U1 ⊕W1, and we form U0 = (A−2I )(U1 +W1): 
 0   x4+2x6 

 
0 0 0 





x6 


   

W1 = 


x4 


and U0 = 


0 


.   


0 

 
0 


    0 


 0 

   
0 0 

Finally we choose W0 such that K1 = K0 ⊕ U0 ⊕ W0. Here K0 = 0, and we can 
take W0 = {(0, x2, 0, 0, 0, 0, 0)}. 
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To form C we take a basis of each Wj , apply powers of A−2I in turn to its members,
and line up the resulting columns, along with the eigenvector for eigenvalue 3, as C : 

 2 0 0 1 0 0 5 
0 1 0 0 0 1 2  1 0 0 0 0 0 2 


C = 


0 1 0 0 1 0 3 


. 


0 1 0 0 0 0 2 


 
0 0 1 0 0 0 1 
0 0 0 0 0 0 1 

18. In (a), if every prime-power factor of the minimal polynomial is of degree 1,
then the matrix is similar to a diagonal matrix, and the multiplicities of the eigenvalues
can be seen from the characteristic polynomial. If the minimal polynomial is (X −c)2,µ c 1 0 

∂
then the matrix has to be similar to 0 c 0 . If the minimal polynomial instead is 

0 0 c µ c 1 0 
∂ 

(X − c)2(X − d), then the matrix has to be similar to 0 c 0 . If the minimal 
0 0 d µ c 1 c ∂

polynomial is (X − c)3, then the matrix has to be similar to 0 c 1 . There are no 
0 0 c

other possibilities.  
0 1 0 0 

  
0 1 0 0 

 

0 0 0 0 0 0 0 0 For (b),  and  both have minimal polynomial X2 and charac- 
0 0 0 1 

 
0 0 0 0 

0 0 0 0 0 0 0 0 

teristic polynomial X4, but they are not similar because their ranks are unequal. 
19. If the diagonal entries are c and N denotes the strictly upper-triangular part, 

then Jk = (cI + N )k = 
Pk

j=0 

°k
j
¢
ck− j N j . The term from j = 1 is not canceled by 

any other term, and hence J k is not diagonal. 
20. Choose J in Jordan form and C invertible with J = C−1 AC . Then Jn = 

C AnC−1 = CC−1 = I . By Problem 19, every Jordan block in J is of size 1-by-1. 
Thus A is similar to a diagonal matrix D, and each diagonal entry of D must be an 
nth root of unity. Any n-tuple of nth roots of unity can form the diagonal entries, and
the corresponding matrices are similar if and only if one is a permutation of the other. 
21. The minimal polynomial has to divide X (X2 − 1) = X (X + 1)(X − 1). 

Hence there is a basis of eigenvectors, the allowable eigenvalues being 1, −1, and 0.
A similarity class is therefore given by an unordered triple of elements from the set 
{1, −1, 0}. There are three possibilities for a single eigenvalue, six possibilities for
one eigenvalue of multiplicity 2 and one of multiplicity 1, and one possibility with
all three eigenvalues present. So the answer is ten. 
22. If A2 = N and Nn = 0, then A2n = 0. So A is nilpotent and An = 0. Since 

Nn−1 6= 0, A2n−2 6= 0. Therefore n > 2n − 2, and n = 1. 
23. If J is of size n, then the matrix C with Ci,n+1−i = 1 for 1 ≤ i ≤ n and 

Ci j = 0 otherwise has C−1 JC = J t . 
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24. Choose C with C−1 AC = J in Jordan form. Problem 23 shows that there 
is a block-diagonal matrix B with B−1 J B = J t . Then B−1C−1 AC B = J t and 
Ct At (C−1)t = J t . So B−1C−1 AC B = Ct At (C−1)t , and the result follows. 

25. The matrices A and B have A2 = B2 = 0 and hence are nilpotent. Since each 
of A and B has rank 2, dim ker A = dim ker B = 2. The numbers dim ker Ak and 
dim ker Bk being equal for all k, the two matrices have the same Jordan form and are 
therefore similar. 

26. If M(X) is the minimal polynomial of L , then M(L)v = 0. Hence M(X) is 
in Iv . Then Proposition 5.8 shows that Mv(X) exists. 

27. The polynomial Mv(X) has to divide the minimal polynomial of L
Ø
Ø
P(v)

, and 
the latter has degree ≤ dim P(v). Hence deg Mv(X) ≤ dim P(v). If v, L(v), . . . ,
Ldeg Mv −1(v) are linearly dependent, then there is a nonzero polynomial Q(X) of 
degree ≤ deg Mv − 1 with Q(L)(v) = 0, and that fact contradicts the minimality 
of the degree of Mv(X). Hence they are independent, and deg Mv(X) ∏ dim P(v). 
Thus equality holds, and the linearly independent set is a basis. This proves (a) and
(b).
Since Mv(X) divides the minimal polynomial of L

Ø
Ø
P(v)

, which divides the char-
acteristic polynomial of L

Ø
Ø
P(v)

, and since the end polynomials have degree dim P(v), 
these three polynomials are all equal. This proves (c). 

28. Use the ordered basis (Ld−1(v), Ld−2(v), . . . , L(v), v). 

29. Since P(X) is prime and does not divide Q(X), there exist polynomials 
A(X) and B(X) with A(X)P(X) + B(X)Q(X) = 1. Using the substitution that 
sends X to L and applying both sides to v, we obtain B(L)Q(L)(v) = v. Hence 
P(Q(L)(v)) ⊇ P(v). Since the reverse inclusion is clear, the result follows. 

30. In (a), the base case of the induction is that dim V = deg P(X), and then
the result follows from Problem 27. For the inductive step, the same problem shows
that there must be a nontrivial invariant subspace U . Proposition 5.12 shows that 
the minimal polynomial for U and V/U is P(X), and induction shows that the 
characteristic polynomial for U and V/U is a power of P(X). Proposition 5.11 then 
shows that the characteristic polynomial for V is a power of P(X). 
For (b), we induct on l, using (a) to handle the case l = 1. For general l, form 

the invariant subspace U = ker P(X)l−1, for which the minimal polynomial is some 
P(X)r with r < l. The minimal polynomial of V/U is certainly P(X). By induction, 
U and V/U have characteristic polynomials equal to powers of P(X), and Proposition 
5.11 shows that the same thing is true for V . 
In (c), (b) says that the characteristic polynomial is of the form P(X)r for some 

r . Then the degree of the characteristic polynomial is rd, where d = deg P(X). 

32–34. These are proved word-for-word in the same way as Lemmas 5.23 through
5.25 except that n is to be replaced by l and N is to be replaced by P(L). 
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35. If Q(X) is in K[X], we successively apply the division algorithm to write 

Q = A0 P + B0 with deg B0 < deg P, 

A0 = A1 P + B1 with deg B1 < deg P, 

A1 = A2 P + B2 with deg B2 < deg P, 

etc., and then we substitute and find that 

Q = A0 P + B0 = A1 P2 + B1 P + B0 = A2 P3 + B2 P2 + B1 P + B0 

= · · · = Aj P j+1 + Bj P j + · · · + B2 P2 + B1 P + B0 

with each Bi equal to 0 or of degree < deg P . The fact that Wj ⊆ Kj+1 implies that 
P j+1(L)(v) = 0. Consequently 

P(v) = {(Bj P j + · · · + B1 P + B0)(L)(v) | Bi = 0 or deg Bi < d for 0 ≤ i ≤ j}, 

and the given set spans P(v). 
For the linear independence suppose that some such expression is 0 with not all 

Bi (X) equal to 0. Fix i as small as possible with Bi (X) 6= 0. Since P(L) j+1(v) = 0,
Br (L)P(L)r (v) is annihilated by P(L) j−i if r > i . Application of P(L) j−i to the 
dependence relation yields 

j−i j i+1 iP(L) (Bj (L)P(L) (v) + · · · + Bi+1(L)P(L) + Bi (L)P(L) )(v) = 0 

and therefore also Bi (L)P(L) j (v) = 0. Since deg Bi < deg P , Problem 29 shows 
that P(L) j (v) = 0. Therefore v is in Kj . Since Wj ∩ Kj , we conclude v = 0,
contradiction. 
36. We show at the same time that it is possible to arrange for each Uj and Wj to 

be such that Kj + Uj and Kj + Wj are invariant under L . We proceed by induction 
downward on j . The construction begins with Ul−1 = 0 and Wl−1 chosen such 
that Kl = Kl−1 ⊕ Wl−1. Then we have L(Wl−1) ⊆ Wl−1 + Kl−1 and L(Ul−1) ⊆ 

(l−1)Ul−1 + Kl−1. Select some v 6 61 = 0 in Wl−1. If there is a polynomial B(X) = 0 with 
(l−1)deg B < deg P such that B(L)(v1 ) is in Kl−1, then it follows from Problem 29 

(l−1)and the invariance of Kl−1 under L that v is in Kl−1, contradiction. So there is 1 
(l−1) (l−1) (l−1)no such polynomial, and the vectors v , L(v ), . . . , Ld−1(v ) are linearly 1 1 1 

independent with span T (l−1) such that Kl−1 + T (l−1) is a direct sum. 1 1 
(l−1)If Kl−1 + T (l−1) 6 Kl , then we form v and T (l−1) in the same way. If=1 2 2 

(l−1)there is a polynomial B(X) 6 0 with deg B < deg P such that B(L)(v2= ) is in 
(l−1)Kl−1 + T (l−1), then Problem 29 shows that v is in Kl−1 + T (l−1), contradiction. 1 2 1 

+ T (l−1)We conclude that Kl−1 + T (l−1) is a direct sum. Continuing in this way, 1 2 
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we obtain enough linearly independent vectors to have a basis for a complement
= T (l−1) + T (l−1)Wl−1 + · · · to Kl−1.1 2

Now suppose inductively in the construction of Uj and Wj that j ≤ l − 2 
and that Uj+1 + Kj+1 and Wj+1 + Kj+1 are invariant under L . We define Uj = 
P(L)(Uj+1 ⊕ Wj+1), and the assumed invariance implies that Uj + Kj is invariant 
under L . We now construct Wj in the same way that we constructed Wl−1, insisting 

( j)that (Uj + Kj ) ∩ Wj = 0. If we choose v1 in Kj+1 but not Uj + Kj , then the 
( j) ( j) ( j)invariance of Uj + Kj under L implies that the vectors v , L(v ), . . . , Ld−1(v )1 1 1 

are linearly independent and their linear span T ( j) is such that Uj + Kj + T ( j) is a 1 1
direct sum. Continuing in this way, we obtain the required basis of a complement Wj
to Kj ⊕ Uj . 

( j)37. Problem 36 arranges that the vectors Lr (v ) for 0 ≤ r ≤ d − 1 and all i jij
form a basis of Wj . We show by induction downward for j ≤ l − 1 that the vectors 

( j+k)Lr P(L)k (v ) for 0 ≤ r ≤ d − 1, k > 0, and all i j+k form a basis of Uj . Thisi j+k
holds for j = l − 1 since Ul−1 = 0. If it is true for j + 1, then Uj+1 ⊕ Wj+1 has a 

( j+1+k)basis consisting of all Lr P(L)k (v ) for 0 ≤ r ≤ d − 1, k ∏ 0, and all i j+1+k .i j +1+k
Since Problem 33 shows that P(L) is one-one from Uj+1 ⊕ Wj+1 onto Uj , Uj has a 

( j+1+k)basis consisting of all Lr P(L)k+1(v ) for 0 ≤ r ≤ d −1, k ∏ 0, and all i j+1+k ,i j+1+k 
( j+k)i.e., all Lr P(L)k (v ) for 0 ≤ r ≤ d − 1, k > 0, and all i j+k . This completes the i j+k

induction. 
( j)38. Problem 35 gives a basis for the cyclic subspace generated by v , Problem i j

37 shows that the members within Ui ⊕ Wi of the union of these bases, as j and i j
vary, form a basis of Ui ⊕ Wi , and Problem 34 allows us to conclude that as i varies, 
we obtain a basis of V . 
39. Because of the linear independence proved in Problem 38, the left side of the

formula in question equals the number of vectors vi
(

k

k) in any Wk with k ∏ j , which 
equals 

P
k∏ j (dim Wk )/d. Iterated application of Problem 33 gives 

dim Kj+1 − dim Kj = dim Uj + dim Wj = dim Uj+1 + dim Wj+1 + dim Wj 

= · · · = 
P

k∏ j dim Wk , 

and the result follows. 
40. The minimal polynomial for any cyclic subspace must divide the minimal

polynomial for V and hence must be a power of P(X). Problem 28 shows that the 
restrictions of L to any two cyclic subspaces with the same minimal polynomial are
isomorphic. Hence the decomposition into cyclic subspaces will be unique up to
isomorphism as soon as it is proved that the number of cyclic direct summands with
minimal polynomial of the form P(X)k with k ∏ j +1 equals (dim Kj+1−dim Kj )/d. 
Suppose that V is the direct sum of cyclic subspaces Ci , with vi as the generator 

of Ci . Since each Ci is invariant under L , each Kr is the direct sum of the subspaces 
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Kr ∩ Ci . Thus 

dim Kj+1 − dim Kj = 
X ° 

dim(Kj+1 ∩ Ci ) − dim(Kj ∩ Ci )
¢
. 

i 

If P(X)k is the minimal polynomial of Ci , it is enough to show that the right side 
of this displayed formula equals d if k ∏ j + 1 and equals 0 if k ≤ j . By Problem 
35, Ci has a basis consisting of all vectors Lr P(L)s (vi ) with 0 ≤ r ≤ d − 1 and 
0 ≤ s ≤ k − 1. The nonzero vectors among the Lr P(L)s+ j+1(vi ) are still linearly 
independent; these are the ones with s + j + 1 < k, i.e., s < k − j − 1. The vectors 
Lr P(L)s (vi ) that are not sent to 0 by P(L) j+1 are a basis of Kj+1 ∩ Ci . These are 
the ones with s ∏ k − j − 1. This is the full basis of Ci if j + 1 > k, and there are 
d( j + 1) such vectors if j + 1 ≤ k. Thus 

Ω dk if j + 1 > k,
dim Kj+1 ∩ Ci = 

d( j + 1) if j + 1 ≤ k. 

Similarly Ω dk if j > k,
dim Kj ∩ Ci = 

d j if j ≤ k. 

Subtracting and taking the cases into account, we see that 
Ω d if j + 1 ≤ k,

dim(Kj+1 ∩ Ci ) − dim(Kj ∩ Ci ) = 
0 otherwise. 

41. (a) 
≥ 

cos t sin t 
¥ 
, (b) 

≥ 
cosh t sinh t 

¥ 
, (c) the diagonal matrix with diagonal 

− sin t cos t sinh t cosh t 
entries ed1 , . . . , edn . 
42. Suppose that J has diagonal entry c. Let N be the strictly upper-triangular 

1part of J . Then et J = etcI +t N = etcet N . Here et N = I + t N + 2! t
2 N 2 + · · · + 

1 
(n−1)! t

n−1 Nn−1 since Nn = 0. The powers of N were observed to have the diagonal
of 1’s move one step at a time up and to the right. 

43. 
dt 
d 

(et Av) = (Aet A)v = A(et Av). 

44. Suppose that y(t) is a solution. The product rule for derivatives is valid in this
situation by the usual derivation. Hence dt 

d (e−t A y(t)) = dt 
d (e−t A)y(t)+e−t A y0(t) = 

−e−t A Ay(t)+e−t A y0(t) = e−t A(−Ay(t)+y0(t)). The right side is 0 since y(t) solves 
the differential equation. Since dt 

d (e−t A y(t)) = 0, each component of e−t A y(t) is 
constant. Thus for a suitable vector v of complex constants, e−t A y(t) = v, and the 
conclusion is that y(t) = et Av. 
45. The first formula follows by making a term-by-term calculation with the

defining series. Multiplication of C has to be interchanged with the infinite sum, and 
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similarly for C−1, but these operations are simply the operations of taking certain
linear combinations of limits. 
Suppose that z(t) satisfies dt 

d z(t) = (C−1 AC)z(t) and z(0) = u. Multiplying
by C gives dt 

d Cz(t) = ACz(t). Thus y(t) = Cz(t) satisfies dt 
d y(t) = Ay(t) and 

y(0) = Cz(0) = Cu. We can invert the correspondence by using C−1. 
µ 3 1 0 

∂
46. Example 3 in Section 7 says that C−1 AC = J holds for J = 0 3 0 and 

0 0 2 µ 
−1 1 0 

∂ 

C−1 
µ 1 

∂ µ 0 −1 0 
∂µ 1 

∂ µ 
−2 

∂
C = −1 0 0 . Define u = 2 = 1 −1 0 2 = −1 . Problems 

−1 0 1 3 0 −1 1 3 1 

42–43 show that the unique solution of dt 
d z(t) = J z(t) with z(0) = u is z(t) = et J u. 

Problem 45 shows that the unique solution to dt 
d y(t) = Ay(t) with y(0) = Cu = µ 1 

∂ 

2 is y(t) = Cz(t) = Cet J u. By Problem 42, this is 
3 

≥ −1 1 0 ¥
µ 
e3t 0 0 

∂µ 1 t 0 
∂≥ −2 ¥ ≥ −1 1 0 ¥

µ 
e3t te3t 0 

∂≥ −2 ¥
y(t) = −1 0 0 0 e3t 0 0 1 0 −1 = −1 0 0 0 e3t 0 −1

−1 0 1 0 0 e2t 0 0 1 1 −1 0 1 0 0 e2t 1 
µ 

−e3t −te3t +e3t 0 
∂≥ −2 ¥

µ 
e3t +te3t 

∂ 

= −e3t −te3t 0 −1 = 2e3t +te3t . 
−e3t −te3t e2t 1 2e3t +te3t +e2t 

Chapter VI 

1. In (a), the linear function ϕ : V → V 0 given by ϕ(v) = hv, · i has kernel 
equal to the left radical of the bilinear form, hence 0. Therefore ϕ is one-one, 
and dim image ϕ = dim V = dim V 0. Since dim V 0 < ∞, ϕ is onto V 0. In (b), 
v 7→ (v, · ) is a linear functional and by (a) is of the form (v, u) = hw, ui for some 
unique w depending on v. Set w = L(v). The uniqueness shows that L(v1 + v2) = 
L(v1) + L(v1) and L(cv) = cL(v). Hence L is linear. 
2. Since Mt AM would have to be nonsingular, the only possibility would be 

Mt AM equal to the identity. Writing M−1 as 
≥ 
a b 

¥
, we obtain the conditions c d 

a + c = b + d = 0 and ab + cd = 1. A check of cases shows that these have no 
solution. ≥ 

−1 1 
¥

3. Take M = .1 1 

5. Define (a + bi)w = aw + bJ (w) for a and b real. The crucial property to
show in order to obtain a complex vector space is that ((a + bi)(c + di))(w) = 
(a + bi)((c + di)w); expansion of both sides shows that both sides are equal to 
(ac − bd)w + (bc + ad)J (w) since J2 = −I . Thus W = VR for a suitable V . 
Next define (v, w) = hJ (v), wi + ihv, wi. This is bilinear over R. It is complex 

linear in the first variable because (J (v), w) = hJ 2(v), wi+ihJ (v), wi = −hv, wi+ 
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ihJ (v), wi = i(v, w). It is Hermitian because (w, v) = hJ (w), vi − ihv, wi = 
hJ 2(w), J (v)i − ihw, vi = −hw, J (v)i − ihw, vi = hJ (v), wi + ihv, wi = (v, w). 
6. For (a), U isotropic implies U⊥ ⊇ U . If v is a vector in U ⊥ but not U , then 

U ⊕Kv is isotropic. Maximality thus implies that U⊥ = U . Proposition 6.3 says that 
dim V = dim U + dim U⊥, and we conclude that dim V = 2 dim U . So dim U = n. 
The proof of (b) goes by induction on the dimension, the base case being dimen-

sion 2, where there is no problem. Assuming the result for spaces of dimension less
than dim V , let S1 be maximal isotropic in V , so that dim S1 = 2

1 dim V by (a). Fix a 
basis {v1, . . . , vn} of S1. Choose u1 with hv1, u1i = 1; this exists by nondegeneracy. 
Put U = Kv1 ⊕ Ku1. Then h · , · i

Ø
Ø
U×U is evidently nondegenerate, and Corollary 

6.4 shows that V = U ⊕ U⊥. Certainly S1 ∩ U⊥ is an isotropic subspace of U⊥. 
It contains the n − 1 linearly independent elements vj − hvj , u1iv1 for 2 ≤ j ≤ n 
and hence has dimension ∏ n − 1. Therefore it is maximal isotropic. By induction,
there is a maximal isotropic subspace T of U ⊥ with (S1 ∩ U⊥) ∩ T = 0. Put 
S2 = T ⊕ Ku1. Since hu1, U⊥i = 0, hu1, T i = 0. Therefore S2 is isotropic, hence 
maximal isotropic in V . Suppose that the element t + cu1 of S2 lies in S1. From 
hv1, t + cu1i = 0, v1 ∈ U , t ∈ U⊥, and hv1, u1i = 1, we obtain c = 0. Then t + cv1 
lies in (S1 ∩ U ⊥) ∩ T , which is 0. We conclude that S1 ∩ S2 = 0. 
For (c), if h · , s2i is the 0 function on S1, then the fact that S1 is maximal isotropic 

implies that s2 = 0. Therefore the mapping s2 7→ h · , s2i
Ø
Ø
S1 
is one-one. A count of 

dimensions shows that it is onto S1
0 . 

In (d), choose any basis {p1, . . . , pn} of S1, and let {q1, . . . , qn} be the dual basis 
of S1

0 , which has been identified with S2 by (c). 
7. In (a), first suppose that h : 

L
Us → V is given. Then his is in HomK(Us , V ),s

and the map from left to right may be taken to be h 7→ {his }s∈S . Next suppose that 
hs : Us → V is given for each s. Then the universal mapping property of 

L
Uss

supplies h : 
L

Us → V with his = hs for all s. The map from right to left may be s
taken as {hs }s∈S 7→ h. These two maps invert each other.
In (b), first suppose that hs : U → Vs is given for each s. Then the universal 

mapping property of the direct product produces h : U → 
Q

Vs . The map from s
right to left may be taken as {hs }s∈S 7→ h. Next suppose that h : U → 

Q
Vs is given. s

Then psh is in HomK(U, Vs ) for each s ∈ S. Consequently the S-tuple {hs }s∈S is in Q
HomK(U, Vs ). Then the map from left to right can be taken as h 7→ { psh}s∈S .s

These two maps invert each other.
For (c), we treat (a) and (b) separately. In the case of (a), take S countably infinite 

with each Us = K and with V = K. Then HomK(
L

s∈S Us , V ) has uncountable 
dimension and 

L
s∈S HomK(Us, V ) has countable dimension. 

In the case of (b), take S to be countably infinite with each Vs = K and with 
U = 

L
s∈S Vs . Each member of HomK(U, Vs0 ) has its values in Vs0 , and hence each 

member of 
L

HomK(U, Vs ) has its values in finitely many Vs . On the other hand, s
the identity function from U into 

L
Vs is in HomK(U, 

L 
Vs ) and takes values in s

all Vs ’s. 
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8. For (a), we have g1(g2(x)) = g1(g2xg2
t ) = g1g2xg2

t g1
t = (g1g2)x(g1g2)t = 

(g1g2)(x). If x is alternating, then (gxgt )t = gxt gt = −gxgt , and (gxgt )i i = P
j,k gi j xjk gik = 

P
j<k gi j xjk gik + 

P
j>k gi j xjk gik = 

P
j<k gi j (xjk − xjk)gik = 0; 

hence gxgt is alternating. If x is symmetric, then (gxgt )t = gxt gt = gxgt , and gxgt 
is symmetric.
For (b), certainly x and gxgt have the same rank if g is nonsingular. Theorem 

6.7 shows that an alternating matrix x can be transformed by some nonsingular g to 
0 1 a matrix gxgt that is block diagonal with k blocks of the form 

≥ ¥
, where 2k is

−1 0 
the rank, followed by 0’s down the diagonal. This proves that any two alternating
matrices of the same rank lie in the same orbit. It also gives an example of a matrix
in each orbit. 
For (c), certainly x and gxgt have the same rank if g is nonsingular. The Principal

Axis Theorem (Theorem 6.5) shows that any symmetric matrix over C can be trans-
formed by some nonsingular g to a matrix gxgt that is diagonal, say with diagonal 
entries d1, . . . , dn . We may assume that d1, . . . , dk are nonzero and the others are 0. 
Taking h to be the diagonal matrix with diagonal entries (d−1/2 

, . . . , d−1/2 
, 0, . . . , 0)1 k

and forming h(gxgt )ht , we obtain a diagonal matrix in the same orbit whose first 
k diagonal entries are 1 and whose other diagonal entries are 0. As k varies, these
matrices have different ranks and hence lie in different orbits. They provide examples
of matrices in each orbit. 
9. In (a), the formula is TU V 

°P
i (ui

0 ⊗vi )
¢
(u) = 

P
i ui

0 (u)vi , and we may assume 
that {vi } is linearly independent. If this is 0 for all u, then the linear independence 
of the vi ’s implies that u0

i (u) = 0 for all i and all u. Then all u0
i are 0, and hence P

i (ui
0 ⊗ vi ) = 0. Thus TU V is one-one. 

In (b), Problem 7a shows that it is enough to handle U = K. Thus we are to 
show that K0 ⊗K V maps onto HomK(K, V ) ∼= V . One member of K0 is the identity 
function 10 on K, and 10 ⊗ V certainly maps onto V . 
For (c), if U = V and if dim U is infinite, every member of the image of TUU has 

finite rank, but HomK(U, U) contains the identity function, which has infinite rank. 
In (d), let L : U1 → U and M : V → V1 be given, so that F(L , M) carrying 

(U 0⊗K V ) to (U1
0 ⊗K V1) is given by F(L , M)(u0⊗v) = Lt (u0)⊗ M(v) and G(L , M)

carrying HomK(U, V ) to HomK(U1, V1) has (G(L , M)(ϕ))(u1) = M(ϕ(L(u1)) 
Then 

TU1 V1 F(L , M)(u0 ⊗ v)(u1) = TU1 V1 

°
Lt (u0) ⊗ M(v)

¢
(u1) 

= Lt (u0)(u1)M(v) = u0(L(u1))M(v), 

G(L , M)TU V (u0 ⊗ v)(u1) = M((TU V (u0 ⊗ v))(L(u1))) 
= M(u0(L(u1))v) = u0(L(u1))M(v). 

The right sides are equal, and hence {TU V } is a natural transformation. 
In (e), the answer is no because the maps TU V need not be isomorphisms, according 

to (c). 
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10. To see that 9(E) is a vector space, one has to verify that (l + l 0)ϕ = lϕ + l 0ϕ,
l(ϕ + ϕ0) = lϕ + lϕ0, and (ll 0)ϕ = l(l 0ϕ), and these are all routine. If µ is in 
HomK(E, F), then 9(µ) : HomK(L, E) → HomK(L, F) has to be given by left-
by-µ, and the key step is to show that 9(µ) is L linear, not merely K linear. For ϕ 
in HomK(L, E) and l, l 0 in L, we have (9(µ)(lϕ))(l 0) = µ((lϕ)(l 0)) = µ(ϕ(ll 0)) = 
(9(µ)ϕ)(ll 0) = (l(9(µ)ϕ))(l 0). Hence 9(µ)(lϕ) = l(9(µ)ϕ) as required. It is 
routine to check that 9(1) = 1 and that µ → 9(µ) respects compositions, and 
hence 9 is a functor. 
11. Let 0 = (v1, . . . , vn) be an ordered basis of E , 1 = (w1, . . . , wm ) be 

an ordered basis of F , and A = [Ai j ] be the matrix of L in these ordered bases. 
Put 0R = (v1, iv1, . . . , vn, ivn) and 1R = (w1, iw1, . . . , wm, iwm ). Then the 
matrix of LR in these ordered bases is obtained by replacing Ai j by the 2-by-2 block ≥ 
Re Ai j − Im Ai j 

¥ 
.Im Ai j Re Ai j 

12. Let 01 = (u1, . . . , um ) and 11 = (v1, . . . , vn), and put 

ƒ1 = (u1 ⊗ v1, u1 ⊗ v2, . . . , u1 ⊗ vn, u2 ⊗ v1, . . . , u2 ⊗ vn, . . . , um ⊗ vn). 

Form ƒ2 from the ordered bases 02 and 12 similarly. Members of ƒ1 are indexed by 
pairs (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n, and members of ƒ2 are indexed similarly 
by pairs (r, s). Then C(r,s),(i, j) = Ari Bsj . 
13. Define F to be the vector space KU ⊕ KV , and let l be the linear map 

l : F → T (E) given by l(U) = Y and l(V ) = X2 + XY + Y 2. Let L be the 
extension of l to an algebra homomorphism L : T (F) → T (E) with L(1) = 1. The 
subalgebra in question is the image of L , and the affirmative answer to the question 
comes by showing that L is one-one. It is enough to show that the basis elements
consisting of all iterated products Ui1 ⊗ V j1 ⊗ Ui2 ⊗ · · · ⊗ V jn are carried by L 
to linearly independent elements. The image of this element is homogeneous of
degree 

Pn
k=1(ik + 2 jk), and it is enough to consider only those images with the same

homogeneity, i.e., with 
Pn

k=1(ik + 2 jk ) constant. A failure of linear independence
would mean that among these, the ones with the highest total power of X , namely 
with 

Pn
k=1 2 jk maximal, must cancel together. These terms are monomials with 

P 
ik 

factors of Y and 
P 

jk factors of X2, and all such monomials, being also monomials 
in X and Y , are linearly independent. 
14. Let ∂E : E → S(E) be the one-one linear map that embeds E as S1(E) ⊆ 

S(E), and define ∂F similarly. The composition ∂F ϕ is a linear map of E into the 
commutative associative algebra S(F), and Proposition 6.23b yields a homomorphism 
8 : S(E) → S(F) of algebras with identity such that ∂F ϕ = 8∂E . We take 8 as S(ϕ),
and this addresses (a). Part (c) is part of the construction of S(ϕ). For (b), it is plain that 
S(1E ) = 1S(E). For compositions, suppose that √ : F → G is linear and that S(√)

is formed similarly. Proposition 6.23b says that S(√ϕ) is the unique homomorphism 
of S(E) into S(G) carrying 1 into 1 and satisfying ∂G √ϕ = S(√ϕ) ∂E . On the other 
hand, S(√)S(ϕ) is another homomorphism of S(E) into S(G) carrying 1 into 1, and 
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it satisfies ∂G (√ϕ) = (∂G √)ϕ = (S(√) ∂F )ϕ = S(√)(∂F ϕ) = S(√)(S(ϕ) ∂E ) = 
(S(√)S(ϕ))∂E . Therefore S(√ϕ) = S(√)S(ϕ) by uniqueness, and S is a functor. 
15. The homomorphism e Since e8 carries each T n(E) into itself. 8 carries 

commutators into commutators, e Thus e8(I ) ⊆ I . 8(T n(E) ∩ I ) ⊆ T n(E) ∩ I . 
Also, e Sn(E) into itself. 8 commutes with the symmetrizer operator and hence carries e
We are given the equation qe 8 carries e8(x) = 8q(x) on all of T n(E). Since e Sn(E)

into itself, we can interpret this as saying that e Sn (E) is well defined, and then all the 8
Ø
Ø

assertions in the problem have been addressed. 
e

16. Fix an ordered basis and check the result directly for L’s that correspond
to elementary matrices. The determinant and the scalar effect on 

Vdim E (E) both 
multiply under composition, and the result follows. 
17. Part (a) is a consequence of uniqueness. The formula for (b) is 8(g)P(v) = 

8(g−1v) for v in Kn . 
18. For (a), take A to be the category of commutative associative algebras over K 

with identity, V to be the category of vector spaces over K, and F : A → V to be 
the forgetful functor that takes an algebra and retains only the vector-space structure.
If a vector space E is given, then (S, ∂) is taken to be (S(E), ∂E ), where S(E) is the 
symmetric algebra of E and ∂E : E → F(S(E)) is the identification of E with the 
first-order symmetric tensors.
For (b), take V again to be the category of vector spaces over K. Define A to be the 

category whose objects are pairs (A, F) in which A is an associative algebra over K 
with identity and F is a vector subspace of A such that every element f of F has f 2 = 
0 and whose morphisms ϕ ∈ Morph((A, F), (A1, F1)) are algebra homomorphisms 
ϕ : A → A0 such that ϕ(F) ⊆ F1. The functor F : A → V is to take the pair (A, F) 
to F and is to take the morphism ϕ to ϕ

Ø
Ø
F : F → F1. If a vector space E is given, 

we take (S, ∂) to be ((
V
E, 

V1 E), ∂E ), where ∂E : E → 
V1 E = F(

V
E, 

V1(E)) is 
the identification of E with the first-order alternating tensors. 
For (c), let the nonempty index set be J . Take V = CJ and A = C. The functor 

F : C → CJ is the “diagonal functor” taking an object A to the J -tuple whose j th 

coordinate is A for every j ; this functor takes any morphism ϕ ∈ MorphC(A, A0) to 
the J -tuple whose j th coordinate is ϕ for every j . The given E is to be a J -tuple of 
objects {Xj }j∈J , S is to be the coproduct 

` 
j∈J Xj , and ∂ : {Xj }j∈J → F(S) is to be 

the given J -tuple {i j }j∈J of morphisms of Xj into X . 
19. Let L be the unique member of MorphA(S, S0) given as corresponding to 

∂0 in MorphV(E, F(S0)), i.e., satisfying F(L)∂ = ∂0. Similarly let L 0 be the unique 
member of MorphA(S, S0) corresponding to ∂ in MorphV(E, F(S)), i.e., satisfying 
F(L 0)∂0 = ∂. Then L 0 L and 1S are in MorphA(S, S) and have F(1S)∂ = 1F(S)∂ = ∂ 
and F(L 0 L)∂ = (F(L 0)F(L))∂ = F(L 0)(F(L)∂) = F(L 0)∂0 = ∂. By uniqueness, 
1S = L 0 L . Similarly LL 0 = 1S0 . 
20. By definition, TA satisfies TA(L) = F(L)∂ for L ∈ MorphA(S, A). For 

ϕ in MorphA(A, A0), we are to show that G(ϕ)(TA(L)) = TA0 (F(ϕ)(L)). Sub-
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stitution from the definitions gives G(ϕ)(TA(L)) = F(ϕ)F(L)∂ = F(ϕL)∂ and 
TA0 (F(ϕ)(L)) = TA0 (ϕL) = F(ϕL)∂. These are equal, and hence {TA} is a natural 
transformation. Since each TA is one-one onto by hypothesis, the system {TA} is a 
natural isomorphism. 
21. The previous problem shows that F is naturally isomorphic to G and that F 0 

is naturally isomorphic to G. Hence F is naturally isomorphic to F 0. The hypotheses
of Proposition 6.16 are satisfied, and the conclusion is that the object S is isomorphic 
in A to the object S0 by a specific isomorphism described in the proposition. 
22. Let E and F be in Obj(V ), and let ϕ be in MorphV(E, F). Then ∂F ϕ is in 

MorphV(E, F(S(F))), and the universal mapping property of (S(E), ∂E ) produces a 
unique 8 in MorphA(S(E), S(F)) such that F(8)∂E = ∂F ϕ. We define S(ϕ) = 8. 
There is no difficulty in checking that S(1E ) = 1S(E). Let us check that if we are 
given also √ in MorphV(F, G), then S(√)S(ϕ) = S(√ϕ). We know that S(√ϕ) is 
the unique member of MorphA(S(E), S(G)) satisfying ∂G √ϕ = F(S(√ϕ)) ∂E . On 
the other hand, S(√)S(ϕ) is another member of MorphA(S(E), S(G)), and it satisfies 
∂G (√ϕ) = (∂G √)ϕ = (F(S(√)) ∂F )ϕ = F(S(√))(∂F ϕ) = F(S(√))(F(S(ϕ)) ∂E ) = 
(F(S(√))F(S(ϕ)))∂E = F(S(√)S(ϕ))∂E . Therefore S(√ϕ) = S(√)S(ϕ) by
uniqueness, and S is a functor. 
23. Pfaff(J ) = 1 because the only nonzero term comes from τ = 1. 
24. The terms in which σ contains a 1-cycle are each 0 because the diagonal 

entries of X are 0. The remaining terms in which σ contains some cycle of odd
length will be grouped in disjoint pairs that add to 0. If such a σ is given, choose 
the smallest label 1, . . . , 2n that is moved by a cycle of odd length within σ , and let 
τ be that cycle. Let σ 0 be the product of τ −1 and the remaining cycles of σ . The 
resulting unordered pairs {σ, σ 0} are disjoint. For the indices i moved by τ , xi,σ (i) = 
xi,τ (i) while xi,σ 0 (i) = = Then 

Q
=i xi,σ (i) 

Q
τ (i)6xi,τ −1(i) −xτ−1(i),i . τ (i)6 = =i xi,τ (i) 

and we obtain 
Q

=i xi,σ 0(i) = 
Q

= (−1)length τ Q = =i xi,τ−1(i) =i xτ−1(i),i 
(−1)length τ Q (−1)length τ Q − 

Qτ (i)6 τ (i)6 τ (i)6

=i xi,τ (i) = = =i xi,σ (i). Ifτ (i)6 τ (i)=6 i xi,σ (i) τ (i)6
τ (i) = i , then xi,σ (i) = xi,σ 0(i). Thus 

Q
i xi,σ (i) = − 

Q
i xi,σ 0(i). Since sgn σ = 

sgn σ 0, the terms for σ and σ 0 sum to 0. 
25. If σ is good, let A0 consist of the smallest index in each cycle of σ , let A be 

the union of all σ 2k (A0) for k ∏ 0, and let B be the union of all σ 2k+1(A0) for all 
k ∏ 0. Certainly A ∪ B = {1, . . . , 2n}, σ (A) = B, and σ (B) = A. We have to 
prove that A ∩ B = ∅. If the intersection is nonempty, we have σ 2k (a0) = σ 2l+1(a0

0 )

for some a0 and a0
0 in A0. Possibly by increasing l by an even multiple of the order 

of σ , we may assume that l ∏ k. Then σ 2(l−k)+1a0
0 = a0. This says that a0

0 and a0 
lie in the same cycle. Being least indices in cycles, they must be equal. Then some
odd power of σ fixes a0, and the cycle of σ whose least element is a0 must have odd 
length, contradiction.
The definitions of A and B in terms of A0 are forced by the conditions in the 

statement of the problem, and therefore A and B are unique. 
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26. Since A ∪ B = {1, . . . , 2n} and A ∩ B = ∅, we have y(σ )z(σ ) = Q
l
2
=
n 
1 xi,σ (i). The definitions of τ and τ 0 make y(σ ) = s(τ ) 

Qn
k=1 xτ (2k−1),τ (2k) and 

z(σ ) = s0(τ 0) 
Qn

k=1 xτ 0(2k−1),τ 0(2k). The construction has made the integers τ (2k −1)
increasing and has made the inequalities τ (2k − 1) < τ (2k) hold, and similarly for 
τ 0. This proves the desired equality, apart from signs. 
27. The previous problem shows that (sgn σ ) 

Q
l
2
=
n 
1 xi,σ (i) equals 

n nY Y
(sgn σ )s(τ )s0(τ 0) xτ (2k−1),τ (2k) xτ 0(2k−1),τ 0(2k). 

k=1 k=1 

Thus we want to see that 

(sgn σ )s(τ )s0(τ 0) = (sgn τ )(sgn τ 0). (∗) 

In proving (∗), we retain the step in which factors xi j of y(σ ) and z(σ ) are replaced 
by xji with a minus sign if j < i , but we may disregard the step in which the factors 
are then rearranged so that τ and τ 0 can be defined. In fact, this rearranging does not 
affect the signs of τ and τ 0. The reason is that if ρ is in Sn and if ρein S2n is defined 
by ρe(2k − 1) = 2ρ(k) − 1 and ρe(2k) = 2ρ(k), then sgn ρe = +1; it is enough to 
check this fact when ρ is a consecutive transposition, and in this case ρ is the product 
of two transpositions and is even.

e

Turning to (∗), we first consider the case in which σ , when written as a disjoint 
product of cycles, takes the integers 1, . . . , 2n in order. In this case we compute 
directly that τ = 1, that s(τ ) involves no sign changes, and that τ 0 is the product of 
cycles of odd length, with an individual cycle of τ 0 permuting cyclically all but the 
last member of a cycle of σ . Thus τ 0 is even. In the adjustment of factors of z(σ ),
one minus sign is introduced because of each cycle in σ and comes from the last and 
first indices in the cycle. Thus s0(τ 0) is (−1)p, where p is the number of cycles in σ ,
and this is also the value of sgn σ . Hence (∗) holds for this σ . 
A general σ is conjugate in S2n to the one in the previous paragraph. Thus it is 

enough to show that if (∗) holds for σ , then it holds for σ 0 = (a a + 1)σ (a a + 1). 
First suppose that σ (a) 6 a + 1 and σ (a + 1) = a. Then a factor of y(σ ) gets= 6
replaced with a minus sign for σ if and only if it gets replaced for σ 0, and similarly 
for z(σ ). Hence s(τ ) and s0(τ 0) are unchanged in passing from σ to σ 0. The effect 
on τ and τ 0, in view of the observation immediately after (∗), is to multiply each on 
the left by (a a + 1). Thus sgn τ and sgn τ 0 are each reversed. Since sgn σ = sgn σ 0,
(∗) remains valid for σ 0. 
Now suppose that σ (a) = a+1. We may assume that σ (a+1) 6= a since otherwise 

σ 0 = σ . To fix the ideas, first suppose that a is in A. Then one factor in y(σ ) is 
xa,a+1, and the corresponding factor of y(σ 0) is xa+1,a . As a result τ is unchanged 
under the passage from σ to σ 0, but the number of minus signs contributing to s(τ )

is increased by 1 and s(τ ) is therefore reversed. Meanwhile, τ 0 is left multiplied by 
(a a + 1), and s0(τ 0) is unchanged. Thus (∗) remains valid for σ 0. If a instead is in 



658 Hints for Solutions of Problems 

B, then the roles of τ and τ 0 are reversed in the above argument, but the conclusion 
about (∗) is not affected. Finally suppose that σ (a + 1) = a and σ (a) 6 a + 1.= 
Then the argument is the same except that the number of signs contributing to s(τ ) 
or s0(τ 0) is decreased by 1. In any event, (∗) remains valid for σ 0. 
28. What is needed is an inverse construction that passes from the pair (τ, τ 0) to 

σ . Define ω ∈ S2n to be the commuting product of the n transpositions (2k − 1 2k)
for 1 ≤ k ≤ n. 
Assuming for the moment that we know that some index a is to be in A, we see 

from the definitions above that b = σ (a) is to be given by b = τ (ω(τ −1(a))) and b 
is to be in B. If, on the other hand, we know that some index b is to be in B, then 
σ (b) is to be given by τ 0(ω(τ 0−1(b))) and is to be in A. Thus the cycle within σ to 
which a belongs has to be given by applying alternately τωτ −1 and then τ 0ωτ 0−1. 
The critical fact is that this cycle is necessarily even. In the contrary case we 

would have τωτ −1(τ 0ωτ 0−1τωτ −1)k (a) = a for some k. If k = 2l, then this equality 
gives (τωτ −1τ 0ωτ 0−1)l (τωτ −1)(τ 0ωτ 0−1τωτ −1)l (a) = a, which we can rewrite as 
(τωτ −1)(τ 0ωτ 0−1τωτ −1)l (a) = (τ 0ωτ 0−1τωτ −1)l (a); this equation is contradictory 
since τωτ −1 is a permutation that moves every index. If k = 2l + 1, then this equal-
ity gives (τωτ −1)(τ 0ωτ 0−1τωτ−1)l (τ 0ωτ 0−1)(τωτ −1τ 0ωτ 0−1)l (τωτ −1)(a) = a and 
hence (τ 0ωτ 0−1)(τωτ−1τ 0ωτ 0−1)l (τωτ −1)(a) = (τωτ −1τ 0ωτ 0−1)l (τωτ−1)(a);
this equation is contradictory since τωτ −1 is a permutation that moves every index.
What we know is that the smallest index in each cycle is to be in A. Thus we can 

use this process to construct σ from (τ, τ 0), one cycle at a time. For the first cycle 
the index 1 is to be in A; for the next cycle the smallest remaining index is to be in 
A, and so on. We have seen that the constructed σ will be the product of even cycles, 
and we can define A as the union of the images of the even powers of σ on the least 
indices of each cycle, with B as the complement. In this way we have formed σ and 
its disjoint decomposition {1, . . . , 2n} = A ∪ B, and it is apparent that τ and τ 0 are 
indeed the permutations formed in the usual passage from σ to (τ, τ 0) via (A, B). 
29. It is enough to prove that ϕ|Vn : Vn → V # is an isomorphism for every n.n

We establish this property by induction on n, the trivial case for the induction being 
n = −1. Suppose that 

ϕ|Vn−1 : Vn−1 → V # is an isomorphism. (∗)n−1 

By assumption 

grn ϕ : (Vn/Vn−1) → (Vn 
#/Vn

# 
−1) is an isomorphism. (∗∗) 

If v is in ker(ϕ|Vn ), then (grn ϕ)(v + Vn−1) = 0 + Vn
# 
−1, and (∗∗) shows that v 

is in Vn−1. By (∗), v = 0. Thus ϕ|Vn is one-one. Next suppose that v# is in Vn 
#. 

By (∗∗) there exists vn in Vn such that (grn ϕ)(vn + Vn−1) = v# + Vn
# 
−1. Write 

# #ϕ(vn) = v# + vn−1 with vn−1 in Vn
# 
−1. By (∗) there exists vn−1 in Vn−1 with 

#ϕ(vn−1) = v Then ϕ(vn − vn−1) = v#, and thus ϕ|Vn is onto. This completes n−1. 
the induction. 
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30. We define a product (Am /Am−1) × (An/An−1) → Am+n/Am+n−1 by 

(am + Am−1)(an + An−1) = aman + Am+n−1. 

This is well defined since am An−1, Am−1an , and Am−1 An−1 are all contained in 
Am+n−1. It is clear that this multiplication is distributive and associative as far as it
is defined. We extend the definition of multiplication to all of gr A by taking sums
of products of homogeneous elements, and the result is an associative algebra. The
identity is the element 1 + A−1 of A0/A−1. 
31. [x, x] = xx − xx = 0, and also [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 

(xyz − xzy − yzx +zyx)+(yzx − yxz −zxy + xzy)+(zxy −zyx − xyz + yxz) = 0. 
32. In (a), let x and y be in g. Then we have 

[x, y]t A + A[x, y] = (xy − yx)t A + A(xy − yx) 

= yt xt A − xt yt A + Axy − Ayx 

= yt (xt A + Ax) − xt (yt A + Ay) + (xt A + Ax)y − (yt A + Ay)x = 0. 

Part (b) is the special case A = I . 
33. Uniqueness follows from the fact that 1 and ∂(g) generate U(g). For existence 

let eL : T (g) → A be the extension given by the universal mapping property of T (g)

in Proposition 6.22. To obtain L , we are to show that eL annihilates the ideal I 00. It is 
enough to consider eL on a typical generator of I 00, where we have 

L(∂X ⊗ ∂Y − ∂Y ⊗ ∂X − ∂[X, Y ]) = eL(∂X)eL(∂Y ) − eL(∂Y )eL(∂X) − eL(∂[X, Y ])e

= l(X)l(Y ) − l(Y )l(X) − l[X, Y ] 
= 0. 

34. First one proves the following: if Z1, . . . , Zp are in g and σ is a permutation 
of {1, . . . , p}; then (∂Z1) · · · (∂Zp) − (∂Zσ (1)) · · · (∂Zσ (p)) is in Up−1(g). In fact, it 
is enough to prove this statement when σ is the transposition of j with j + 1. In 
this case the statement follows from the identity (∂Zj )(∂Zj+1) − (∂Zj+1)(∂Zj ) = 
∂[Zj , Zj+1] by multiplying through on the left by (∂Z1) · · · (∂Zj−1) and on the right 
by (∂Zj+2) · · · (∂Zp). 
For the assertion in the problem, if we use all monomials with 

P
jm ≤ p,m

we certainly have a spanning set, since the obvious preimages in T (g) span 
⊕k≤pTk(g). The result of the previous paragraph then implies inductively that the
monomials with monotone increasing indices suffice. 
35. We shall construct the map in the opposite direction without using the

Poincaré–Birkhoff–Witt Theorem, appeal to the theorem to show that we have
an isomorphism, and then compute what the map is in terms of a basis. Let
Tn(g) = 

L
k
n 
=0 T k(g) be the nth member of the usual filtration of T (g). Define 
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Un(g) to be the image in U(g) of Tn(g) under the passage T (g) → T (g)/I 00. Form 
the composition 

Tn(g) → (Tn(g) + I 00)/I 00 = Un(g) → Un(g)/Un−1(g). 

This composition is onto and carries Tn−1(g) to 0. Since T n(g) is a vector-
space complement to Tn−1(g) in Tn(g), we obtain an onto linear map T n(g) → 
Un(g)/Un−1(g). Taking the direct sum over n gives an onto linear map 

√ : T (g) → gr U(g)e

that respects the grading.
Let I be the two-sided ideal in T (g) such that S(g) = T (g)/I . It is generated 

by all X ⊗ Y − Y ⊗ X with X and Y in T 1(g). Let us show that the linear map 
√ : T (g) → gr U(g) respects multiplication and annihilates the defining ideal Ie
for S(g); then we can conclude that √ descends to an algebra homomorphism 

√ : S(g) → gr U(g) 

that respects the grading.
To do so, let x be in T r (g) and let y be in T s (g). Then x + I 00 is in Ur (g), and 

we may regard √e(x) as the coset x + Tr−1(g) + I 00 in Ur (g)/Ur−1(g), with 0 in 
all other coordinates of gr U(g) since x is homogeneous. Arguing in a similar 
fashion with y and xy, we obtain 

√(x) = x + Tr−1(g) + I 00 y + Ts−1(g) + I 00 , √(y) = ,e e

and √(xy) = xy + Tr+s−1(g) + I 00 .e

Since I 00 is an ideal, √e(x)√e(y) = √(xy). General members x and y of T (g) aree
sums of homogeneous elements, and hence √e respects multiplication. 
Consequently ker √e is a two-sided ideal. To show that ker √e ⊇ I , it is enough 

to show that ker √e contains all generators X ⊗ Y − Y ⊗ X . We have 

X ⊗ Y − Y ⊗ X + T1(g) + I 00 √(X ⊗ Y − Y ⊗ X) =e

= [X, Y ] + T1(g) + I 00 

= T1(g) + I 00 , 

and thus √e maps the generator to 0. Hence √e descends to a homomorphism √ 
as asserted. 
Finally we show that this homomorphism is an isomorphism. Let {Xi } be 

an ordered basis of g. We know that the monomials X j1 · · · X jk in S(g) withi1 ik 
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i1 < · · · < ik and with 
P

jm = n form a basis of Sn(g). Let us follow the effect m
of √ on such a monomial. A preimage of this monomial in T n(g) is the element 

Xi1 ⊗ · · · ⊗ Xi1 ⊗ · · · ⊗ Xik ⊗ · · · ⊗ Xik , 

in which there are jm factors of Xim for 1 ≤ m ≤ k. This element maps to the 
monomial in Un(g) that we have denoted by X j1 · · · X jk , and then we pass to the i1 ik
quotient Un(g)/Un−1(g). The Poincaré–Birkhoff–Witt Theorem shows that such 
monomials modulo Un−1(g) form a basis of Un(g)/Un−1(g). Consequently √ is 
an isomorphism. 
36. This is quite similar to Problem 33. 
37. This is similar to Problem 34. 
38. What is needed here is a description of a triple product of generators in

terms of permuting indices and replacing repeated pairs of indices by a scalar;
the description does not depend on the way that the parentheses are inserted in a
triple product, and then associativity follows. The details are omitted. 
39. Using the universal mapping property of Problem 36, construct an algebra

homomorphism L : Cliff(E, h · , · i) → C carrying 1 into 1 and extending the 
mapping ei 7→ ei . Since the ei ’s and 1 generate C , L is onto C . Problem 37 
shows that dim Cliff(E, h · , · i) ≤ 2n , and we know that dim C = 2n . Since L is 
onto, L must be one-one, as well as onto. 
40. This is similar to Problem 35. The substitute for the Poincaré–Birkhoff– 

Witt Theorem is the fact established by Problem 39 that the spanning set of 2n 

elements in Problem 37 is actually a basis. 
41. The matrix that corresponds to X0 has r = −2. 
42. To see that has the asserted properties, form the quotient map 

e

e∂ 
T (H(V )) → T (V ) by factoring out the two-sided ideal generated by X0 − 1. The 
composition T (H(V )) → W (V ) is obtained by factoring out the two-sided ideal 
generated by X0−1 and all u⊗v−v⊗u−hu, vi1, hence by all u⊗v−v⊗u−hu, viX0 
and by X0 − 1. Thus T (H(V )) → W (V ) factors into the standard quotient map 
T (H(V )) → U (H(V )) followed by the quotient map of U(H(V )) by the ideal 
generated by X0 − 1. By uniqueness in the universal mapping property for
universal enveloping algebras, ∂ is given by factoring out by X0 − 1. 

eee

43. Let P be the extension of ϕ to an associative algebra homomorphism of 
U(H(V )) into A. Then P(X0) = 1 since ϕ(X0) = 1. The previous problem shows 
that P descends to W (V ), i.e., that there exists ϕ with P ϕ ◦ ∂. Restriction to = 
V gives ϕ = eϕ ◦ ∂. 
44. This is immediate from Problem 42 and the spanning in Problem 34. 
46. The linear combination L j = ϕ(pj ) + 2πϕ(qj ) of the two given linear 

mappings ϕ(pj ) = @/@xj and ϕ(qj ) = mj replaces P(x) in e−π |x |2 P(x) by 
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k1 kn@ P/@xj . Take a nonzero e−π |x |2 P(x) in an invariant subspace U , let x · · · x be1 n 

a monomial of maximal total degree in P(x), and apply L1 
k1 · · · Lknn to e−π |x |2 P(x) 

to see that e−π |x |2 is in U . Then apply products of powers of the various mj ’s to 
this to see that all of V is contained in U . 
47. Let ri = pi + 2πqi , so that ϕ(ri ) 

°
Pe−π |x |2 ¢ 

= (@ P/@xi )e−π |x |2 . It is 
enough to prove that no nontrivial linear combination of the members of the

k1 kn l1 lnspanning set q1 · · · qn r1 · · · rn maps to 0 under ϕ. Let a linear combination e
of such terms map to 0 under ϕ. Among all the terms that occur in the lin-e
ear combination with nonzero coefficient, let (L1, . . . , Ln) be the largest tuple 
of exponents (l1, . . . , ln) that occurs; here “largest” refers to the lexicographic 

L1 Lnordering taking l1 first, then l2, and so on. Put P(x1, . . . , xn) = x1 · · · xn . If 
l1 ln(l1, . . . , ln) < (L1, . . . , Ln) lexicographically, then ϕ(r · · · rn ) 

°
Pe−π |x |2 ¢ 

= 0.1e
k1 kn l1 lnThus ϕ(q · · · qn r · · · rn ) 

°
Pe−π |x |2 ¢ 

is 0 if (l1, . . . , ln) < (L1, . . . , Ln) lexico-1 1e
k1 kngraphically and equals x · · · xn L1! · · · Ln!e−π |x |2 if (l1, . . . , ln) = (L1, . . . , Ln).1

The linear independence follows immediately.
48. This is similar to Problems 35 and 40. The key fact needed is the linear

independence established in the previous problem.
52. In (a), for [a, b, c] to be alternating means that [a, a, c] = [a, b, a] = 

[b, a, a] = 0. These say that (aa)c −a(ac) = (ab)a −a(ba) = (ba)a −b(aa) = 0. 
For (b), [a, a, c] = [b, a, a] = 0 and the 3-linearity together imply that [a, b, a] = 
[a, b, a]+[b, b, a] = [a+b, b, a] = [a+b, b, a]+[a+b, a, a] = [a+b, a+b, a] = 
0. 
53. For (a), (1, 0)(c, d) = (c, d) and (a, b)(1, 0) = (a, b) directly from 

the definition. Also, the definition (a, b) ∗ = (a∗ , −b) makes (1, 0) ∗ = (1, 0), 
(a, b) ∗∗ = (a∗∗ = (a∗ , −b) ∗ , b) = (a, b), and (c, d) ∗ (a, b) ∗ = (c∗ , −d)(a∗ , −b) = 
(c∗a∗−bd∗ , −c∗∗b−a∗d) = ((c∗a∗−bd∗ ) ∗ , a∗d +cb) ∗ = (ac−db∗ , a∗d +cb) ∗ = 
((a, b)(c, d)) ∗ . 
For (b), (c), and (d), we observe that 

((a, b)(c, d))(e, f )=(ac·e−db∗·e− f ·d∗a+ f ·b∗c∗ , c∗a∗· f −bd∗· f +e·a∗d+e·cb) 

and 

(a, b)((c, d)(e, f ))=(a·ce−a· f d∗−c∗ f ·b∗−ed·b∗ , a∗·c∗ f +a∗·ed+ce·b− f d∗·b), 

and the results are immediate. 
In (e), (i) is the usual construction, and (ii) has 1 = (1, 0), i = (i, 0), j = (0, 1),

and k = (0, −i), with the identity of H written now as 1. 
54. For (a), (a, b) ∗+(a, b) = (a∗ , −b)+(a, b) = (a∗+a, 0), which is a real mul-

tiple of (1, 0). Also, (a, b)(a, b) ∗ = (a, b)(a∗ , −b) = (aa∗ + bb∗ , a∗ (−b) + a∗b) 
= (aa∗ + bb∗ , 0), and this is a positive multiple of (1, 0) since aa∗ and bb∗ are ∏ 0 
and at least one of them is positive. A similar argument applies to (a, b) ∗ (a, b). 
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In (b), certainly (a, b) is bilinear over R, the expression for (a, b) is manifestly 
symmetric, and we know that (a, a) = aa∗ is ∏ 0 with equality only for a = 0. 
In (c), we are to prove that (xx)y = x(xy) and (yx)x = y(xx) in B. It is 

enough to prove the first identity since application of ∗ to it gives the second 
identity. We use (c, d) = (a, b) and substitute into the displayed formulas above 
for Problem 53. We find that ((a, b)(a, b))(e, f ) equals 

(aa · e − bb∗ · e − f · b∗a − f · b∗a∗ , a∗a∗ · f − bb∗ · f + e · a∗b + e · ab) 

and that (a, b)((a, b)(e, f )) equals 

(a · ae − a · f b∗ − a∗ f · b∗ − eb · b∗ , a∗ · a∗ f + a∗ · eb + ae · b − f b∗ · b). 

Taking into account the associativity of A, we see that it is enough to show that 
(bb∗ )e = e(bb∗ ), f b∗ (a + a∗ ) = (a + a∗ ) f b∗ , (bb∗ ) f = f (bb∗ ), and e(a + a∗ ) = 
(a + a∗ )e. These all follow from the fact that A is nicely normed. 
55. Part (a) follows from (a) and (c) of the previous problem.
In (b), we have (xx∗ )y = (x(c1 − x))y = cxy − (xx)y = cxy − x(xy) = 

x(cy − xy) = x((c1 − x)y) = x(x∗ y). The equality x(yy∗ ) = (xy)y∗ follows by 
applying ∗ and renaming the variables.
In (c), use of (b) and the definitions of the norm and ∗ gives kabk2a = 

((ab)(ab) ∗ )a = (ab)((ab) ∗a) = (ab)((b∗a∗ )a) = (ab)(b∗ (a∗a)) = kak2((ab)b∗ ) 
= kak2a(bb∗ ) = kak2kbk2a. 
For (d), the norm equality of (c) implies that the R linear maps left-by-a and 

right-by-a are one-one, and the finite dimensionality of O allows us to conclude 
that they are onto. Hence they are invertible.
For (e), use of (b) gives a(kak−2a∗b) = kak−2a(a∗b) = kak−2(aa∗ )b = 

kak−2kak2b = b. This proves the result for left multiplication, and the argument
for right multiplication is similar.
For (f), the table is as follows, with each entry representing the product of the

element at the left (the row index) by the element at the top (the column index): 

(1, 0) (i, 0) (j, 0) (k, 0) (0, 1) (0, i) (0, j) (0, k) 
(i, 0) −(1, 0) (k, 0) −(j, 0) −(0, i) (0, 1) −(0, k) (0, j) 
(j, 0) −(k, 0) −(1, 0) (i, 0) −(0, j) (0, k) (0, 1) −(0, i) 
(k, 0) (j, 0) −(i, 0) −(1, 0) −(0, k) −(0, j) (0, i) (0, 1) 
(0, 1) (0, i) (0, j) (0, k) −(0, 1) −(0, i) −(0, j) −(0, k) 
(0, i) −(1, 0) −(k, 0) (j, 0) (0, i) −(0, 1) −(0, k) (0, j) 
(0, j) (k, 0) −(1, 0) −(i, 0) (0, j) (0, k) −(0, 1) −(0, i) 
(0, k) −(j, 0) (i, 0) −(1, 0) (0, k) −(0, j) (0, i) −(0, 1) 

56. Although B is nicely normed, the steps of (b) in Problem 55 are not justified
for it because we cannot conclude that B is alternative. Since the argument for
(b) breaks down, so do the arguments for (c) and (d). 
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Chapter VII 

1. The only integer < 60 that is not the product of powers of at most two primes is
30. Thus Burnside’s Theorem assures us that the only possible order less than 60 for
a nonabelian simple group is 30. The integer 30 is of the form 2 pq with p = 3 and 
q = 5, and q + 1 = 2p. Part (b) of Problem 34 at the end of Chapter IV is applicable
and shows that the group has a subgroup of index 2; subgroups of index 2 are always
normal. 
2. For (a) and (b), (xyx−1 y−1)−1 = yxy−1x−1 is a commutator, and so is 

a(xyx−1 y−1)a−1 = (axa−1)(aya−1)(axa−1)−1(aya−1)−1. 
3. Let H be generated by a and b, and let K be generated by bab2 and bab3. 

Certainly K ⊆ H . Since bab2 and bab3 are in K , so is (bab2)−1(bab3) = b and 
then so is (b−1)(bab2)(b−2) = a. Hence H ⊆ K . 
4. If H is characteristic, then in particular every inner automorphism x → gxg−1 

carries H to itself, and H is normal. If ϕ : G → G is an automorphism and z is 
in ZG , then the equality ϕ(z)ϕ(g) = ϕ(zg) = ϕ(gz) = ϕ(g)ϕ(z) and the fact that 
ϕ is onto G show that ϕ(z) is in ZG . If √ : G → G is an automorphism, then 
√(xyx−1 y−1) = √(x)√(y)(√(x))−1(√(y))−1 shows that √ carries commutators 
to commutators; hence √ carries the generated subgroup G 0 to itself. 
5. H8, ZH8 , and {1} are characteristic. But the subgroups of order 4 are not,

because, for example, there exists an automorphism of H8 carrying i to j. 
6. Yes. The proof of Proposition 7.7, which takes S = G, gives a finite presenta-

tion. 
µ p ¥µ p

2 0 
∂≥ 

1 t 2 0 
∂−1 ≥ 

1 t 
¥−1 ≥ 

1 t 
¥

7. In (a), p1 p1 = .0
2 0 1 0

2 0 1 0 1 

0 1 
¥ ≥ 

es 0 
¥ ≥ 

0 1 
¥−1 ≥ 

es 0 
¥−1 ≥ 

e−2s 0In (b), we have also 
≥ 

= 
¥ 
and

−1 0 0 e−s −1 0 0 e−s 0 e2s µ 
p1
2 p
0 

∂≥ 
1 0 

¥µ 
p1
2 p
0 

∂−1 ≥ 
1 0 

¥−1 
= 

≥ 
1 0 

¥ 
. Thus 

≥ 
1 0 

¥ 
, 
≥ 
1 t 

¥
, and 

≥ 
a 0 

¥ 

0 2 r 1 0 2 r 1 r 1 r 1 0 1 0 a−1 

¥ ≥ 
1 0 

¥ ≥ 
a 0 

¥ ≥ 
1 b/a 

¥
are in G 0 for a > 0. Since 

≥ 
a b = 

¥
, the matrix 

≥ 
a b 

c d c/a 1 0 a−1 0 1 c d ¥ ≥ 
1 0 

¥ ≥ 
a+br b is in G 0 if a > 0. If a < 0, we have 

≥ 
a b = 

¥
; if b 6 0, then = c d r 1 c+dr d ¥ ≥ 
a+br b 

¥ ≥ 
1 0 

¥
a + br > 0 for suitable r and therefore the equality 

≥ 
a b = c d c+dr d −r 1 

exhibits 
≥ 
a b 

¥ 
as in G 0. Similarly if c =6 0, then a + cr > 0 for suitable r and hence 

≥ 
1 r 

¥ ≥ 
a b 
c d ¥ ≥ 

a+cr b+dr = 
¥ 
exhibits 

≥ 
a b 

¥ 
as in G 0. Thus all members of G are in 0 1 c d c d c d 

0 0G0 except possibly for 
≥ 
a 

¥ 
with a < 0. So it is enough to prove that 

≥ 
−1 

¥ 
is0 a−1 0 −1 

0 1 in G 0. This follows since 
≥ ¥ 

has been shown to be in G 0 and has square equal to 
−1 0 ≥ 

−1 0 
¥ 

0 −1 . 
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≥ 
−1 0 

¥
In (c), suppose that (xyx−1)y−1 = . Then xyx−1 = −y. Taking the 0 −1 

trace of both sides and using the fact that Tr xyx−1 = Tr y, we see that Tr y = − Tr y
° r s ≥ 

a band Tr y = 0. Put x = 
¢ 
and y = 

¥
, and substitute into the equality t u c −a 

xy = −yx . The entry-by-entry equations are ra + sc = −ra − tb, rb = −ub, 
uc = −rc, and tb − ua = −sc + ua. The first and fourth equations together say 
that 2ra = −tb − sc = −2ua. Thus we have (r + u)a = 0, (r + u)b = 0, and ≥ 

r s 
¥

(r + u)c = 0. Since at least one of a, b, c is nonzero, r + u = 0 and x = .t −r 
Writing out the equality xy = −yx , we obtain the necessary and sufficient condition 

2ra = −sc − tb. (∗) 

The determinant conditions are −r2 − st = 1 and −a2 − bc = 1. Multiplying 
(∗) by sc and substituting st = −1 − r2 and bc = −1 − a2, we obtain 2rsac = 
−s2c2 − (−1 − r2)(−1 − a2) and then 0 = −s2c2 − 2rsac − 1 − a2 − r2 − r2a2 = 

0−(ra + sc)2 − 1 − a2 − r2, contradiction. Thus 
≥ 

−1 
¥ 
is not a commutator. 0 −1 

8. By Proposition 7.8 the constructed group is a quotient of the group given by
generators and relations. We actually have an isomorphism if each element of the
group given by generators and relations is of the form bpaq with 0 ≤ p ≤ 2 and 
0 ≤ q ≤ 8 because the group given by generators and relations then has order 
≤ 27. Right multiplication by a carries this set to itself. Right multiplication by b 
has bpaqb = bpb(b−1aqb) = bp+1(b−1ab)q = bp(a4)q = bpa4q , and this equals 
a suitable element bp0 aq 0 with 0 ≤ p0 ≤ 2 and 0 ≤ q 0 ≤ 8. Hence the group
defined by generators and relations has at most 27 elements, and we have the desired
isomorphism. 
9. Let Fn be free on x1, y1, . . . , xn, yn , let ϕ : Fn → Fn/F 0 be the homomorphism n

of Corollary 7.5, and let 9 : Fn → Gn be the given quotient homomorphism. Then 
ker ϕ ⊆ ker 9, and Proposition 4.11 shows that there exists a group homomorphism 
√ : Gn → Fn/F 0 such that √ ◦ 9 = ϕ. Since Fn/F 0 is abelian, √ factors as n n 
√̄ ◦ q, where q : Gn → Gn/G 0 is the quotient and √̄ : Gn/G 0 → Fn/F 0 is a n n n 

¯homomorphism. Thus √ ◦ q ◦ 9 = ϕ. Since ϕ is onto, √̄ is onto; thus the image 
¯of √ is isomorphic with Fn/F 0 , which is free abelian of rank 2n. The group Gn/G 0 

n n
is abelian and has a generating set of 2n generators, thus is a homomorphic image 
ξ : An → Gn/G 0 , where An is free abelian with 2n generators. The composition n
√̄ ◦ ξ is a homomorphism from a free abelian group of rank 2n onto a free abelian 
group of rank 2n. Taking into account the proof of Theorem 4.46, we see that √ ◦ ξ¯

¯is one-one. Since ξ is onto Gn/G 0 
n , √ is one-one. Therefore Gn/G 0 is free abelian n

of rank 2n. 
10. Let F be a free group of rank n, let q : F → F/F 0 be the quotient homo-

morphism, let x1, . . . , xk with k < n be generators of F , let Fe = F({x1, . . . , xk }),
and let 8 : F → F be the quotient homomorphism. The composition q ◦ 8e
is a homomorphism of Fe onto the abelian group F/F 0, and it factors through to a 
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homomorphismof Fe/Fe0 onto F/F 0. Here the domain is abelian with k generators, and 
the image is free abelian with n generators, and there can be no such homomorphism. 

11. For (a), we can use 1 and a. For (b), the proof of Theorem 7.10 says that we are 
to multiply each of these by a, b, c on the right and take the H part of the result. The H 
parts that are not 1 form a free basis. We have 1a = a and 1aρ(a)−1 = 1, 1b = ba−1a 
and 1bρ(b)−1 = ba−1, 1c = c = ca−1a and 1cρ(c)−1 = ca−1, aa = a21 and 
aaρ(a2)−1 = a2, ab = ab1 and abρ(ab)−1 = ab, and ac = ac1 and acρ(ac)−1 = 
ac. Thus a free basis of the generated subgroup is {ba−1 , ca−1 , a2 , ab, ac}. 

12. The thing to prove, by induction on n, is that if a1a2 · · · an is a reduced word 
in variables u0, u1, u2, . . . and their inverses, and if we then substitute xk yx−k for 
uk and reduce in terms of x, y, then the reduced form involves a total of n factors of 
y or y−1, the factor to the left of the first y or y−1 is x p if a1 = u±

p 
1, and the factor 

to the right of the last y or y−1 is x−q if an = u±
q 
1. 

13. The remarks with Proposition 7.15 show that the reduced words in C2 ∗ C2 are 
all words whose terms are alternately x and y. Let H be a normal subgroup 6= {1}. 
Then H contains a conjugate of a nontrivial such word. Form the shortest such word 
6= 1 in H . If the word begins and ends with x and has length > 1, we can conjugate 
by x and reduce the length by 2; similarly if it begins and ends with y and has length 
> 1, we can conjugate by y and reduce the length by 2. We conclude that the word 
has length 1. Then H contains x or y and is a quotient of either hy; y2i or hx; x2i,
which give C2 and {1}. 
Thus we may assume that a shortest nontrivial reduced word in H is a product 

xy · · · xy with 2n factors or a product yx · · · yx with 2n factors. Then G/H is a 
quotient of ha, b; a2 , b2, (ab)ni, and we saw in an example in Section 2 that this 
group is Dn . We readily check that all quotients of Dn are of the form {1}, C2,
C2 × C2, and Dm for certain values of m ∏ 3. 

14. Argument #1: When the irreducible representations are all 1-dimensional,
Corollary 7.25 shows that the number of irreducible representations must be |G|, and 
Corollary 7.28 shows that the number of conjugacy classes must be |G|. Therefore 
each conjugacy class contains just one element, and G is abelian. 
Argument #2: Theorem 7.24 shows that the irreducible representations separate

points in G in the sense that for any pair x, y in the group, there is some irreducible 
R with R(x) 6 R(y).= When the irreducible representations are all 1-dimensional,
the multiplicative characters separate points. Since every multiplicative character is
trivial on the commutator subgroup, the commutator subgroup must be {1}. Then 
every pair x, y has xyx−1 y−1 = 1 and xy = yx . 

15. This is immediate from Lemma 7.11. 

16. For (a), every cochain f has the property that m f = 0. Hence the same thing 
is true of cocycles and of cohomology elements. 
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For (b), the cocycle condition for f says that 

(−1)n f (g1, . . . , gn) = g1( f (g2, . . . , gn+1)) 
n−1

+ 
P 

(−1)i f (g1, . . . , gi−1, gi gi+1, gi+2, . . . , gn+1)
i=1 

+ (−1)n f (g1, . . . , gn−1, gngn+1). 

Summing over gn+1 in G gives 

(−1)n|G| f (g1, . . . , gn) = g1(F(g2, . . . , gn)) 
nP−1 

+ (−1)i F(g1, . . . , gi−1, gi gi+1, gi+2, . . . , gn)
i=1 

+ (−1)n F(g1, . . . , gn−1). 

The right side we recognize as (δn−1 F)(g1, . . . , gn), which is the value of a cobound-
ary at (g1, . . . , gn). Therefore |G| f is a coboundary and becomes the 0 element in 
H2(G, N ). Thus f , when regarded as an element of H2(G, N ) has order dividing 
|G|. 
17. The two parts of the previous problem show that every element of H2(G, N )

is of finite order dividing both |G| and |G/N |. Since GCD(|G|, |G/N |) = 1, every 
element of H2(G, N ) has order 1. Thus H2(G, N ) = 0, and the only extension is 
the semidirect product. 
18. The only automorphism of C2 is the trivial automorphism, and therefore τ is 

trivial. The two possibilities for G are C2 × C2 and C4. With G = C2 × C2, the 
group E can be C2 × C2 × C2 or H8, and with G = C4, E can be C2 × C4 or C8. 
For the cases E = C2 × C2 × C2 and E = C2 × C4, the extension is the direct
product, and no further discussion is necessary. For the cases E = H8 and E = C8,
the embedding of N = C2 is unique, and we therefore get only one extension in each
case. Thus there are exactly two inequivalent extensions for each choice of G. 
19. If N embeds as a summand C2, then the quotient E/N has one fewer summand 

C2, is still the countable direct sum of copies of C2 and C4, and is therefore isomorphic 
to E . If N embeds as a 2-element subgroup of a summand C4, then the quotient E/N 
has one fewer summand C4 and one more summand C2, is still the countable direct 
sum of copies of C2 and C4, and is therefore isomorphic to E . 
The action τ has to be trivial because C2 has only the trivial automorphism. 
If an equivalence 8 of extensions were to exist, it would have to satisfy 8 i1(x) = 

i2(x) for the nontrivial element x of N = C2. But i1(x) is an element of order 2 that 
is not the square of an element of order 4, while i2(x) is an element of order 2 that 
is the square of an element of order 4. Since 8 is an isomorphism, it has to carry 
nonsquares to nonsquares, and we cannot have 8 i1(x) = i2(x). 
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20. Let us write i1 and i2 for the inclusions of N into E1 and E2. For (i1(x), 1) 

.

to be in Q, i1(x) must be 1; hence x must be 1. Thus x 7→ (i1(x), 1)Q is one-one. 

.

The image of ϕ is the same as the image of ϕ1, which is G. Suppose that (e1, e2)
is in (E1, E2) ∩ Q. Then ϕ1(e1) = ϕ2(e2) and (e1, e2) = (i1(x), i2(x)−1) for some 
x ∈ N . Then ϕ(e1, e2) = ϕ1(i1(x)) = 1, and ϕ descends to the quotient. 
If (e1, e2)Q is in the kernel of the descended ϕ, then (e1, e2) is in the kernel 

. 

of the original ϕ, and e1 is in the kernel of ϕ1. Therefore e1 = i1(x) for some 
x ∈ N . Since ϕ2(e2) = ϕ1(e1), e2 is in the kernel of ϕ2 and e2 = i2(y) for some 

.

y ∈ N . The element (i1(y), i2(y)−1) is in Q, and we therefore have (i1(x), i2(y))Q = 
(i1(x), i2(y))(i1(y), i2(y)−1)Q = (i1(xy), 1)Q. Thus (i1(x), i2(y))Q is exhibited 
as in the image of the embedded copy of N . 
21. Since Q is normal, we have (ū,e v,e = uv)Qu)( ̄ v)Q (a(u, v)uv, b(u, v)f = 

(b(u, v), b(u, v)−1)(a(u, v)uv, b(u, v)ufv)Q = (b(u, v)a(u, v)uv, 1fuv)Q = 
(b(u, v)a(u, v), 1)(uv, fuv)Q). Thus the cocycle for (E1, E2)Q is {b(u, v)a(u, v)} = 
{a(u, v)b(u, v)}. 
22. Let 81 : E1 → E1

0 and 82 : E2 → E2
0 be isomorphisms exhibiting the 

equivalences of the extensions. Define 8(e1, e2) = (8(e1), 8(e2))Q0, and check 
that this descends to the required isomorphism 8 : (E1, E2)/Q → (E1

0 , E2
0 )/Q0. 

t) = 
P

t∈G/H F(t) t)
P P

23. f f t tb(χ) ( )χ( )= G =t .
∈ t∈G/H 

P
h∈H f (t+h) . . 

χ( χ( 

F(b . 
χ).= 

F(
χ∈[G/H 

b .. 
χ)χ(x). 

. 

25. For (a), if C = 0, then all a ∈ Fn have (a, 0) = 0, and hence C⊥ = Fn . 
For (b), the repetition code has C = {0, (1, . . . , 1)}. The members a of Fn with 
(a, (1, . . . , 1)) = 0 are the members of even weight, hence the members of the
parity-check code. For (c), it is enough to check that (a, c) = 0 for each pair of 
members a, c of a basis of C , and this one can do by hand.
For (d), Proposition 6.3 shows that n = dim C + dim C⊥. Since C = C⊥,

dim C = n/2. 
For (e), every member c of C is in C⊥ and must in particular have (c, c) = 0. 

Therefore c has even weight.
For (f), let c and c0 be in C , and write cc0 for the entry-by-entry product (logical 

“and”). Then wt(c + c0) = wt(c) + wt(c0) − 2wt(cc0), and hence 12wt(c + c0) = 
1 1 
2wt(c) + 2wt(c

0) − wt(cc0). Considering this equality modulo 2 shows that it is 
enough to prove that C ⊆ C⊥ implies that wt(cc0) is even whenever c and c0 are in 
C . Modulo 2, we have wt(cc0) ≡ (c, c0), and (c, c0) = 0 since C ⊆ C⊥. 
26. In (a), every element of Fn has order at most 2, and thus χ takes only the 

values ±1. Define (aχ )i to be 0 if χ(ei ) = +1 and to be 1 if χ(ei ) = −1. Then 
χ(ei ) = (−1)(a,ei ) for each i . The two sides extend uniquely as homomorphisms of 

.. 
24. Fourier inversion and Problem 23 give F(x) = |G/H |−1 P

= |G/H |−1 P χ(x). Pulling backχ to the member χ of Gbwith χ
Ø
Ø
H

and substituting the definition of F , we obtain the desired result. 
G/H 

bf (χ)
χ∈[ = 1 
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Fn to {±1}, and it follows that χ(c) = (−1)(a,c) for all c ∈ Fn . The remainder of (a) 
is routine. 
In (b), let χ correspond to a. Then bf (a) = bf (χ) = 

P
c∈Fn f (c)χ(c) = P

f (c)(−1)(a,c).c∈Fn 

In (c), we have 
Q bfi (ai ) = 

Q P 
fi (ci )(−1)ai ci 

i i ci ∈F 

= 
P 

f1(c1)(−1)a1c1 · · · 
P 

fn(cn)(−1)ancn 

c1∈F cn ∈F 

= 
P 

f1(c1)(−1)a1c1 · · · fn(cn)(−1)ancn = 
P 

f (c)(−1)(a,c) = bf (a). 
c∈Fn c∈Fn 

27. In (a), bf0(0) = 
P

c0∈F f0(c0)(−1)0c0 = f0(0)(+1) + f0(1)(+1) = x + y and 
bf0(1) = 

P
c0∈F f0(c0)(−1)1c0 = f0(0)(+1) + f0(1)(−1) = x − y. 

In (b), Problem 26c gives 
nQ ° Q 

(x + y)
¢° Q 

(x − y)
¢bf (a) = bf0(ai ) = 

i=1 i with ai =0 i with ai =1

= (x + y)n−wt(a) wt(a)(x − y) . 

28. In (a), the members of G[/H lift exactly to the members ω of Gbwith ω
Ø
Ø
H = 1. 

Under the mapping of Problem 26a, any member χ of Gb yields a unique member aχ 

of Fn with χ(c) = (−1)(aχ ,c) for all c ∈ Fn . If aχ is in C⊥, then this formula gives 
χ(c) = 1, i.e., χ

Ø
Ø
H = 1. If aχ is not in C⊥, then χ(c0) =6 1 for some c0 ∈ C , i.e., 

χ
Ø
Ø
H 6= 1. 
In (b), we apply the special case of Problem 24 mentioned in the educational note.

Then the result is immediate, in view of (a).
xn−wt(c) ywt(c)In (c), we let f (c) = . Problem 27b says that bf (a) = 

(x + y)n−wt(a)(x − y)wt(a). Substituting into the formula of the previous part gives P
c∈C xn−wt(c) ywt(c) = |C⊥|−1 P

a∈C⊥ (x + y)n−wt(a)(x − y)wt(a), and this says that 
WC (x, y) = |C⊥|−1WC⊥ (x + y, x − y). 
In (e), parts (d) and (e) of Problem 25 show that the only monomials XkY l in 

WC (X, Y ) with nonzero coefficients are those with k and l even. Therefore WC (X, Y )
is invariant under the transformations X 7→ −X and Y 7→ −Y . The MacWilliams 
identity shows that WC (X, Y ), apart from a constant, is the same polynomial in X +Y 
and X − Y . Therefore WC (X, Y ) is invariant also under (X + Y ) 7→ −(X + Y ) and 
under (X − Y ) 7→ −(X − Y ). Thus WC (X, Y ) is invariant under the group of
symmetries of a regular octagon centered at 0 with one of its sides centered at (1, 0). 
This symmetry group is D8. 
29. The characters of G are the ones with χn(1) = ≥ n for 0 ≤ n < m. Such a m

character is trivial on H if and only if χn(q) = 1, i.e., if and only if ≥m
nq = 1; this 

means that nq is a multiple of m, hence that n is a multiple of p. 
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The element 1 of H is the element q of G. Thus the question about the identification
of the descended characters asks the value of χn(1) when n is a multiple j p of p. The 

j p jvalue is χn(1) = ≥m
n = ≥pq = ≥q . 

If we have computed F on G/H and want to compute Fb from the definition of 
Fourier coefficients, we have to multiply each of the q values of F by the values of 
each of the q characters of G/H and then add. The number of multiplications is q2. 
The actual computation of F from f involves p additions for each of the q values of 
.
t , hence pq additions. 

j p+k Pm−1 −( j p+k)i Pm
=
−
0
1( f (i)≥ −ki − j p 30. bf (≥m ) = i=0 f (i)≥m = i m )≥m . The variant of 

f for the number k is then i 7→ f (i)≥ −ki . Handling each value of k involves m = pq m 
steps to compute the variant of f and then the q2 + pq steps of Problem 29. Thus we 
have q2 + 2pq steps for each k, which we regard as of order q2 + pq. This means 
p(q2 + pq) steps when all k’s are counted, hence pq(p + q) steps. 
32. By inspection, (`v1 , ̀ v2 )V 0 = (v1, v2)V has the properties of an inner product.

The definition is set up so that the linear mapping `v 7→ v of V 0 into V preserves 
inner products. 
33. The contragredient has (Rc(x)`v)(v

0) = `v(R(x−1)v0) = (R(x−1)v0, v)V = 
(v0 , R(x)v)V = `R(x)v(v

0). Hence Rc(x)`v = `R(x)v , and (Rc(x)`v, Rc(x)`0 )V 0 = v

(R(x)v, R(x)v0)V = (R(x)v0 , R(x)v)V = (v0, v)V = (v, v0)V = (`v, ̀ v0 )V 0 . 
34. If {vj } is an orthonormal basis of V , then {`vj } is an orthonormal basis of 

V 0 by Problem 32, and (Rc(x)`vj , ̀ vj )V 0 = (`R(x)vj , ̀ vj )V 0 = (vj , R(x)vj )V = 
(R(x)vj , vj )V . Summing on j gives the desired equality of group characters. 
35. In view of Problem 34 a necessary condition on a 1-dimensional representation

for it to be equivalent to its contragredient is that it be real-valued. Hence the two
nontrivial multiplicative characters of C3 are not equivalent to their contragredients. 
36. Following the notation in the discussion before Theorem 7.23, let ρi j (x) = 

(R(x)uj , ui ), let l be the left-regular representation, and let `v(u) = (u, v)V be as 
above. Consider, for fixed j0, the image of Rc(g)` ui under the linear extension to V 0 of 
the map E 0(` uk )(x) = (R(x)uj0 , uk )V . This is E

0(`P )(x) = E 0 
°P

k c̄k ̀  uk 
¢
(x)

kckuk 
= 

P
k c̄k E 0(` uk )(x) = 

P
k c̄k (R(x)uj0 , uk )V = (R(x)uj0 , 

P
k ckuk )V , and hence 

E 0(`v)(x) = (R(x)uj0 , v)V . Then the image of interest is 

E 0(Rc(g)` ui )(x) = E 0(`R(g)ui )(x) = (R(x)uj0 , R(g)ui )V 

= (R(g−1x)uj0 , ui )V = (l(g)ρi j0 )(x). 

Therefore l carries a column of matrix coefficients to itself and is equivalent on such 
a column to Rc. ≥ 

0 −1 
≥ 

0 137. Let x = 
¥ 
and y = 

¥
, and let 0 be the subgroup generated 1 0 −1 −1 ≥ 

−1 −1 
≥ 

1 0 by x and y. Observe that −I = x2, y−1 = 
¥
, and yx = 

¥ 
are in 0.1 0 −1 1 
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≥ 
a b 

¥
Arguing by contradiction, suppose that 0 6 = c d 

= SL(2, Z). Choose a matrix z 
in SL(2, Z) but not 0 such that max(|a|, |b|) is as small as possible. If ab = 0,
then one of |a| and |b| is 1 and the other is 0 because the matrix has determinant 
1. If |a| = 0, then zy−1 has top row ( ±1 0 ); so in either event we see that some ≥ 

1 0 member of SL(2, Z) outside 0 is of the form ± 
¥
. Since x2 = −I is in 0 andt 1≥ 

1 0 yx = 
¥ 
is in 0, this is a contradiction. 

−1 1 
Thus the matrix z cannot have ab = 0. Suppose that ab > 0. Then zy has 

top row ( −b a − b ), and zy−1 has top row ( −a + b −a ). The minimality of 
max(|a|, |b|) for z says that 

max(|a|, |b|) ≤ max(|− b|, |a − b|) and max(|a|, |b|) ≤ max(|− a + b|, |− a|). 

Now |a − b| < max(|a|, |b|) since ab > 0, and the only way that we can have the 
above inequalities is if a = b. In this case, zy is a member of SL(2, Z) outside 0 
whose top-row entries have product 0, and we have seen that this is a contradiction.
Thus we must have ab < 0. Then zx has top row ( b −a ). The product of these 

entries is positive and the maximum of their absolute values is the same as that for z. 
So we are reduced to the situation in the previous paragraph, which we saw leads to
a contradiction. We conclude that 0 = SL(2, Z). 
38. In PSL(2, Z), we have x2 = y3 = 1, and Problem 37 shows that x and 

y generate PSL(2, Z). Proposition 7.8 therefore produces a homomorphism car-
rying hX, Y ; X2 , Y 3i onto PSL(2, Z). Proposition 7.16 shows that C2 ∗ C3 ∼= 
hX, Y ; X2 , Y 3i, and the composition of these two maps yields the desired homo-
morphism 8. 
39. Let us drop the “mod ± I ” in order to simplify the notation. In (a), yx = ≥ 
0 1 

¥ ≥ 
0 −1 

¥ 
= 

≥ 
1 0 

¥ 
and y−1x = 

≥ 
−1 −1 

¥ ≥ 
0 −1 

¥ 
= 

≥ 
−1 1 

¥
. Then zyx = 

−1 −1 1 0 −1 1 1 0 1 0 0 −1≥ 
a−b b 

¥
, and µ(zyx) = max(|a − b|, |b|). If ab ≤ 0, then |a − b| ∏ |a| and hence c−d d ≥ 

−a a−b
µ(zyx) ∏ µ(z). Similarly zy−1x = 

¥
, and µ(zy−1x) = max(|a|, |a − b|).

−c c−d 

If ab ≤ 0, then |a − b| ∏ |b| and hence µ(zy−1x) ∏ µ(z). The arguments with ∫ 
are similar. ≥ 

b −aIn (b), we have zx = 
¥
. Then µ(zx) = max(|b|, |a|) = µ(z) and ∫(zx) = d −c 

max(|d|, |c|) = ∫(z). 
In (c), the entries of z are limited to ±1 and 0. We may take the first nonzero entry 

in the first column to be +1 by adjusting by −I if necessary. Then the possibilities ¥ ≥ 
1 1 

¥ ≥ 
1 −1 

¥ ≥ 
1 0 

¥ ≥ 
1 −1 

¥ ≥ 
1 0 

¥ ≥ 
1 1 

¥
with determinant 1 are 

≥ 
1 0 , , , , , , ,0 1 0 1 0 1 1 1 1 0 −1 1 −1 0 ≥ 

0 −1 
¥ ≥ 

0 −1 
¥ 

, 
¥
, and 

≥ 
0 −1 .1 0 1 1 1 −1

In (d), let us prove by induction on n that if Z = a1 · · · an is reduced and ends ≥ 
a b in X , then 8(Z) = 

¥ 
has ab ≤ 0. The base cases of the induction are n = 1c d 
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and n = 2, where we have Z = X , Z = Y X , and Z = Y −1 X ; since 8(Z) is≥ 
0 −1 

¥ ≥ 
1 0 1 , 

¥
, and 

≥ 
−1 

¥ 
in the three cases, we have ab ≤ 0 for each. For the 1 0 −1 1 0 −1

inductive step we pass from Z , which ends in X , to anything obtained by adjoining
factors at the right in such a way that the new word is still reduced and has X at 
the right end. This means that Z is replaced by ZY X or by ZY −1 X . Suppose that 
8(Z) = 

≥ 
a b 

¥
. We are assuming that ab ≤ 0. According to the calculation in the c d 

solution of (a), the entries in the first row of 8(ZY X) are a − b and b, with product 
(a − b)b = ab − b2 ≤ ab ≤ 0, and the entries in the first row of 8(ZY −1 X) are −a 
and a − b, with product −a(a − b) = −a2 + ab ≤ ab ≤ 0. Thus the induction goes 
forward, and our assertion follows.
Now we can prove by induction that 

µ(8(a1 · · · an)) ∏ µ(8(a1 · · · an−1)) (∗) 

if Z = a1 · · · an = Z 0an is reduced. The result is trivial for n = 1, and we let n ∏ 2 be 
given and assume the inequality for words of length < n. Let a word of length n ∏ 2 
be given. If an = X , then (∗) is immediate from (b). If an 6 X , then an−1 = X and= 
an is Y or Y −1. Also, Z X is a reduced word. From the previous paragraph we know
that the product of the entries in the first row of µ(8(Z 0)) is ≤ 0. Applying (b) and 
then (a), we obtain µ(8(Z)) = µ(8(Z X)) = µ(8(Z 0an X)) ∏ µ(8(Z 0)), and this 
proves (∗). Similar arguments apply to ∫. 
For (e), we are to prove that if W is a nonempty reduced word, then 8(W ) is 

not the identity of PSL(2, Z). Assuming the contrary, we may assume without loss 
of generality that W is as short as possible with this property. If W = a1 · · · an ,
and 8(W ) is the identity, then µ(8(W )) = µ(I ) = 1 and similarly ∫(8(W )) = 1. 
By (d), we must have µ(8(a1 · · · ak )) = ∫(8(a1 · · · ak)) = 1 for 1 ≤ k ≤ n. 
Then, for each k with 1 ≤ k < n, 8(a1 · · · ak ) lies in the set of 10 matrices in 
(c) but is not the identity. The 10 matrices in (c) are obtained by applying 8 to 
the elements 1, XY , Y −1 X , XY −1, XY X , Y X , Y −1, X , Y , and XY −1 X . The 
remaining words W of length 3 are Y XY , Y XY −1, Y −1 XY , Y −1 XY −1, and the 
ones of length 4 are XY XY , XY XY −1, XY −1 XY , XY −1 XY −1, Y XY X , Y XY −1 X ,
Y −1 XY X , Y −1 XY −1 X . We compute 8 directly on these 12 reduced words and 

0 1 
¥ ≥ 

−1 −1 
¥ ≥ 

−1 −2 
¥ ≥ 

2 1 
¥ ≥ 

1 2 
¥ ≥ 

2 1 
¥ ≥ 

1 1 
¥ ≥ 

1 0 
¥ ≥ 

1 0 
¥

obtain 
≥ 

, , , , , , , , ,
−1 −2 2 1 1 1 −1 0 0 1 1 1 1 2 2 1 −2 1 ≥ 

1 −1 
¥ ≥ 

2 −1 
¥ ≥ 

1 −2 , , 
¥
. Consequently 8(W ) is not the identity for W of positive 

−1 2 −1 1 0 1 
length ≤ 4. The inequality of (d) shows that µ(8(W )) ∏ 2 if W has length > 4, and 
therefore 8(W ) is the identity only if W is the empty word. 

40. The definition of σm is σm 

≥ 
a b 

¥ 
= 

≥ 
a+mZ b+mZ 

¥
. We readily check that σme e c d c+mZ d+mZ 

e
respects multiplication and hence is a homomorphism into some group of matrices.
Since (a + mZ)(d + mZ) − (b + mZ)(c + mZ) = (ad − bc) + mZ = 1 + mZ, the 
image group is contained in SL(2, Z/mZ). The kernel is the set of matrices 

≥ 
a b 

¥ 

c d 
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in SL(2, Z) with a + mZ = 1 + mZ, b + mZ = 0 + mZ, c + mZ = 0 + mZ,
d + mZ = 1 + mZ, and these are exactly the matrices M in SL(2, Z) with every entry 
of M − I divisible by m. Therefore kereσm = 0(m). This proves (a). 
In (b), let ∞ = GCD(α, m), so that α∞ −1 and m∞ −1 are relatively prime. Applying

Dirichlet’s theorem on primes in arithmetic progressions, take p > |β| to be a prime of 
the form p = α∞ −1+rm∞ −1 for some r . Then α+rm = p∞ , and GCD(α+rm,β) = 
GCD( p∞ , β) = GCD(∞ , β) = GCD(GCD(α, m), β) = GCD(α, β, m) = 1. 
For (c), corresponding to any member of SL(2, Z/mZ) is a matrix 

≥ 
a b 

¥ 
with 

integer entries with ad − bc ≡ 1 mod m. If p is a prime dividing a
c d 
− b and 

c − d, then ad − bc ≡ bd − bd ≡ 0 mod p, and hence p does not divide m. 
Therefore GCD(a − b, c − d, m)=1. Applying (b), we obtain an integer r such that 
GCD(a + rm − b, c − d) = 1. Let us then work instead with 

≥ 
a+rm b 

¥
. Adjusting c d 

notation to call this matrix 
≥ 
a b 

¥
, we may assume that GCD(a − b, c − d) = 1.c d 

Since m divides ad − bc − 1, there exist integers C and A with 

1−(ad−bc)(a − b)C + (d − c)A = .m 

Then det 
≥ 
a+mA b+mA 

¥ 
is equal to c+mC d+mC 

(ad − bc) + (d − c)mA + (a − b)mC = (ad − bc) + m 
° 1−(ad−bc) ¢ 

= 1,m 

and 
≥ 
a+mA b+mA 

¥ 
is a member of SL(2, Z) whose image under σm is the given c+mC d+mC 

matrix in SL(2, Z/mZ). 
e

41. For the remainder of the problems in this set, it will be convenient to regard
∼the isomorphism C2 ∗ C3 = hX, Y ; X2 , Y 3i of Proposition 7.16 as an equality: 

C2 ∗ C3 = hX, Y ; X2 , Y 3i. 
In (a), 8m is well defined as a consequence of the second conclusion of Proposition 

7.8. 
In (b), it is immediate from Proposition 7.8 that the kernel of 8m is the smallest 

normal subgroup of C2 ∗ C3 containing the element (XY )m . Under the isomorphism 
8 : C2 ∗ C3 → PSL(2, Z), we have 8((XY )m ) = (xy)m mod ±I . Since the 
smallest normal subgroup Hm of PSL(2, Z) containing (xy)m mod ±I = 8((XY )m )

is 8 of the smallest normal subgroup of C2 ∗ C3 containing (XY )m , we have Hm = 
8(ker 8m ). 
In (c), if passage to the quotient is denoted by qm , Proposition 4.11 shows that the

point needing verification is that the scalar matrices in SL(2, Z) lie in the kernel of 
0qm ◦ σm , and this follows since 

≥ 
−1 

¥ 
maps under σm to the matrix with entries e 0 −1 

e
taken modulo m and then maps to the identity under qm . 
In (d), Km is a normal subgroup of PSL(2, Z), and it is thus enough to show that ¥ ≥ 

0 1 
¥ ≥ 

1 1 the element (xy)m mod ±I of Hm is in Km . Since 
≥ 
0 −1 = 

¥ 
and1 0 −1 −1 0 1 

since the mth power of this matrix is in 0(m), (xy)m mod ±I is indeed in Km . 
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For (e), part (d) shows that 
≥ 
1 m 

¥ 
mod ±I is in Km , and its t th power 

≥ 
1 tm 

¥ 
mod0 1 0 1 

1 0 
¥ ≥ 

1 tm 
¥

±I , for t an integer, has to be in Km . Then 
≥ 

= x x−1 mod ±I is in 
−tm 1 0 1 

tm 
¥ ¥ 

tm 
¥

Km since Km is normal, and so are 
≥ 
1+tm = y−1 

≥ 
1 tm y and 

≥ 
1−tm = 

−tm 1−tm 0 1 −tm 1+tm 

xy−1 
≥ 
1 tm 

¥ 
yx−1, for the same reason. 0 1 

42. Let x and y be the listed images in the stated permutation groups of X and Y . 
The homomorphisms in this problem come from Proposition 7.8 since in each case 
x2 = 1, y2 = 1, and (xy)m can be verified to be 1. What needs to be verified in each 
case is that x and y generate the stated permutation group.
In (a), the image group has a subgroup of order 2 and a subgroup of order 3 and

hence must be the whole 6-element S3. 
In (b), Lemma 4.41 shows that (1 2 3)(1 2)(3 4)(1 2 3)−1 = (2 3)(1 4), and

hence the image group has a subgroup of 4 even permutations and a subgroup of 3
even permutations, therefore must be all of A4. 
In (c), we have (1 2)(2 3 4) = (1 2 3 4). Thus the image group contains 

(1 2 3 4)2 = (1 3)(2 4), (2 3 4)(1 3)(2 4)(2 3 4)−1 = (1 4)(2 3), and 
(2 3 4)(1 2)(2 3 4)−1 = (1 3), hence a subgroup of order 8 and a subgroup of 
order 3. Therefore it is all of S4. 
In (d), we have (1 2)(3 4)(1 3 5) = (1 4 3 5 2). Thus the image group

contains a subgroup of order 5, a subgroup of order 3, and a subgroup of order 2, all
contained in A5. The image group is not of order 30 because A5 has no nontrivial 
normal subgroups, and hence it must be all of A5. 
43. As with Problem 39, let us drop the “ mod ±I ” in order to simplify the notation. ≥ 

1 0 
¥ ≥ 

1 −1 
¥ ≥ 

0 1 
¥ ≥ 

0 1 
¥

In (a), we can take g1 = , g2 = , g3 = , g4 = ,0 1 0 1 −1 −1 −1 0 ≥ 
−1 −1 

¥ ≥ 
1 0 

¥
g5 = , g6 = .1 0 −1 1 ≥ 

0 1 
¥

For (b), first we compute the six values of gib1 as g1b1 = , g2b1 = 
−1 0 ≥ 

1 1 
¥ ≥ 

−1 0 
¥ ≥ 

−1 0 
¥ ≥ 

1 −1 
¥ ≥ 

0 1 
¥ 

, g3b1 = , g4b1 = , g5b1 = , g6b1 = ,
−1 0 1 −1 0 −1 0 1 −1 −1≥ 

0 1 
¥ ≥ 

1 2 
¥

and then we compute the six values of gib2 as g1b2 = , g2b2 = ,
−1 −1 −1 −1≥ 

−1 −1 
¥ ≥ 

−1 −1 
¥ ≥ 

1 0 
¥ ≥ 

0 1 
¥

g3b2 = , g4b2 = , g5b2 = , g6b2 = . Next we 1 0 0 −1 0 1 −1 −2
locate each of these products in a coset, writing them with some gi on the right. 
We find that, up to mod ± I , the results are g1b1 = g4, g2b1 = g5, g3b1 = g6,≥ 

3 2 
¥

g4b1 = g1, g5b1 = g2, g6b1 = g3, g1b2 = g3, g2b2 = g6, g3b2 = g5,−2 −1≥ 
1 2 

¥ ≥ 
1 0 

¥
g4b2 = g2, g5b2 = g1, g6b2 = g4. The conclusion is that generators 0 1 −2 1 

3 2 
¥ ≥ 

1 2 
¥ ≥ 

1 0 
¥

of K2 are the three matrices 
≥ 

, , .
−2 −1 0 1 −2 1 

For (c), the second and third of the generators in (b) are in H2 by Problem 41e. 
3 2 

¥ ≥ 
1 −2 

¥ ≥ 
1 0 The equality 

≥ 
= − 

¥ 
exhibits the first of the generators as in 

−2 −1 0 1 2 1 
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H2. Hence all the generators are in H2 and K2 ⊆ H2. Therefore K2 = H2.≥ 
1 0 

¥
For (d) with m = 3, we can take the 12 coset representatives to be g1 = 0 1 

, g2 = 
≥ 
1 −1 

¥ ≥ 
1 1 

¥ ≥ 
0 1 

¥ ≥ 
0 1 

¥ ≥ 
0 1 

¥ ≥ 
1 −1 

¥ 
, g3 = , g4 = , g5 = , g6 = . g7 = ,0 1 0 1 −1 0 −1 1 −1 −1 1 0≥ 
1 1 

¥ ≥ 
1 1 

¥ ≥ 
1 −1 

¥ ≥ 
1 0 

¥ ≥ 
1 0 

¥
g8 = , g9 = , g10 = , g11 = , g12 = . Then1 2 −1 0 −1 2 1 1 −1 1 ≥ 

0 1 
¥ ≥ 

1 1 
¥ ≥ 

−1 1 
¥

we compute that g1b1 = = g4, g2b1 = = g9, g3b1 = = 
−1 0 −1 0 −1 0 ≥ 

−1 0 
¥ ≥ 

−1 0 
¥ ≥ 

−1 0 
¥

g7, g4b1 = = g1, g5b1 = = = =0 −1 −1 −1 
g11, g6b1 1 −1 

g12, 
≥ 
1 1 

¥ ≥ 
−1 1 

¥ ≥ 
−1 0 

¥ ≥ 
−1 1 

¥
g7b1 = = g3, g8b1 = = g10, g9b1 = = g2,0 1 −2 1 −3 −1 0 −1≥ 

1 1 
¥ ≥ 

1 0 
¥ ≥ 

0 1 
¥ ≥ 

0 1 
¥

g10b1 = = g8, g11b1 = = g5, g12b1 = = g6.−2 −1 −3 1 −1 1 −1 −1≥ 
0 1 

¥ ≥ 
1 2 

¥ ≥ 
4 3 

¥ ≥ 
−1 0 

¥
Also, g1b2 = = g6, g2b2 = = = 

−1 −1 −1 −1 −3 −2 
g10, g3b2 −1 −1≥ 

−1 −1 
¥ ≥ 

−1 −1 
¥ ≥ 

−1 −1 
¥ 

= g11, g4b2 = = g3, g5b2 = = g8, g6b2 = = g9,0 −1 −1 −2 1 0≥ 
1 2 

¥ ≥ 
1 3 

¥ ≥ 
−1 0 

¥ ≥ 
−1 0 

¥ ≥ 
−1 0 

¥
g7b2 = = g2, g8b2 = = g12, g9b2 = = 0 1 0 1 −2 −1 −3 −1 0 −1≥ 

1 2 
¥ ≥ 

−2 3 
¥ ≥ 

0 1 
¥ ≥ 

0 1 
¥ 

= = = = =g1, g10b2 −2 −3 3 −5 
g7, g11b2 −1 0 

= g4, g12b2 −1 −2≥ 
1 0 

¥ 
g5.−3 1 ≥ 

−1 0 
¥ ≥ 

1 0 
¥ ≥ 

4 3 
¥ ≥ 

1 3 
¥ ≥ 

−1 0 
¥ ≥ 

−2 3 
¥

Thus generatorsof K3 are , , , , , ,
−3 −1 −3 1 −3 −2 0 1 −3 −1 3 −5≥ 

1 0 4 3 3 4 3 
¥¥

. All but 
≥ ¥ 

and 
≥ 

−2 
¥ 
are certainly in H3. The expressions 

≥ 

−3 1 −3 −2 3 −5 −3 −2≥ 
1+3 3 3 

¥ ≥ 
1−3 −3 

¥ ≥ 
1 −3 = 

¥ 
and 

≥ 
−2 = 

¥ 
show that these two generators are 

−3 1−3 3 −5 3 1+3 0 1
in H3. Therefore K3 = H3. 
44. Problem 41 produces a homomorphism σm of Gm onto PSL(2, Z/mZ) with 

kernel isomorphic to Km /Hm . The given fact Hm = Km for 2 ≤ m ≤ 5 implies 
that σm is an isomorphism for these values of m. This proves the first isomorphism
in each part. Problem 42 gives us homomorphisms of Gm for these m’s onto the 
third group listed in each part. Composition with σ −1 then gives a homomorphism of m
PSL(2, Z/mZ) onto the third group. In each case the statement of Problem 43 gives
the number of elements in PSL(2, Z/mZ), and this matches the number of elements
in the third group. It follows that these homomorphisms are isomorphisms. 
45. For (a), linearity gives Rθ T(a,b) R−1(x, y) = Rθ (R−1(x, y) + (a, b)) = θ θ 

Rθ R−1(x, y) + Rθ (a, b) = (x, y) + Rθ (a, b) = TRθ (a,b)(x, y).θ
For (b), the result of (a) says that we get a semidirect product. Let us show that

the two sets—the elements of the semidirect product and the union of the translations
and rotations—coincide. In one direction a rotation about (x0, y0) is of the form 
(x, y) 7→ Rθ (x − x0, y − y0)+(x0, y0) = Rθ (x, y)+(a, b) = T(a,b) Rθ (x, y), where 
(a, b) = −Rθ (x0, y0) + (x0, y0). Hence it is in the semidirect product. In the reverse 
direction suppose that T(a,b) Rθ is in the semidirect product and is not a translation. 
Then θ is not a multiple of 2π , and we can put (x0, y0) = (1 − Rθ )

−1(a, b). Then we 
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have T(a,b) Rθ (x, y) = Rθ (x, y)+(a, b) = Rθ (x −x0, y−y0)+ Rθ (x0, y0)+(a, b) = 
Rθ (x − x0, y − y0) + Rθ (1 − Rθ )

−1(a, b) + (a, b) = Rθ (x − x0, y − y0)− 
(1− Rθ )(1− Rθ )

−1(a, b)+(a, b)+(1− Rθ )
−1(a, b) = Rθ (x −x0, y − y0)+(x0, y0). 

Hence T(a,b) Rθ is a rotation about (x0, y0). 
46. In (a), we need to show only that rc = rarb. In (b), we need to show that 

rbrarbrarb is a translation but not the identity. Then it follows from (b) that the 
group G generated by ra and rb is infinite. Since (a) and Proposition 7.8 yield a 
homomorphism of G6 = 

≠
X, Y ; X2 , Y 3, (XY )6

Æ 
onto the infinite group G, it follows 

that G6 is infinite. Since PSL(Z/6Z) is finite, (c) follows.
To establish the two facts that need checking, we may, without loss of generality,p

take T to be the triangle with vertices a = (0, 0), b = (0, −1), and c = ( 3, 0). The 
formulas for ra , rb, and rc are ra(x, y) = (−x, −y), 

rb(x, y) = (x cos 2π − (y + 1) sin 23 
π , x sin 2π + (y + 1) cos 2π − 1)3 3 3 

p p p
= 

° 
− x/2 − y 3/2 − 3/2, x 3/2 − y/2 − 1/2 − 1

¢
, 

and 
p p p

rc(x, y) = ((x − 3) cos π 
3 + y sin π 

3 + 3, −(x − 3) sin π 
3 + y cos π 

3 ) 
p p p p p

= 
° 
(x − 3)/2 + y 3/2 + 3, −(x − 3) 3/2 + y/2

¢
. 

Then rarb(x, y) = −rb(x, y) = rc(x, y) by inspection. 
To verify that rbrarbrarb is a translation, we write rbrarbrarb(x, y) = rbrc 2(x, y). 

The formula above for rc gives 
p p p

rc 
2(x, y) = ((x − 3) cos 23 

π + y sin 23 
π + 3, −(x − 3) sin 23 

π + y cos 23 
π ) 

p p p p p
= 

° 
− (x − 3)/2 + y 3/2 + 3, −(x − 3) 3/2 − y/2

¢
. 

p p p
Then the first coordinate of rbrc 2(x, y) is −

1
2 (−(x − 3)/2 + y 3/2 + 3)+ p p p p

((x − 3) 3/2 + y/2) 3/2 − 3/2 = x − 2
p
3, while the second coordinate p p p p p p

is (−(x − 3)/2 + y 3/2 + 3) 3/2 + ((x − 3) 3/2 + y/2)/2 − 3/2 = y. So 
rbrc 2(x, y) = (x − 2

p
3, y) is a translation. 

47. We may suppose that the representations are unitary. Let {v1,i } and {v2, j } be 
orthonormal bases of V1 and V2. Then 

(χR1 
∗ χR2 

)(x) = 
P 

χR1 
(xy−1)χR2 

(y) 
y 

= 
P 

(R1(xy−1)v1,i , v1,i )(R2(y)v2, j , v2, j ) 
y,i, j 

= 
P 

(R1(x)(R1(y−1)v1,i , v1,k )v1,k , v1,i )(R2(y)v2, j , v2, j ) 
y,i, j,k 

= 
P 

(R1(x)v1,k, v1,i ) 
P 

(R1(y)v1,k , v1,i )(R2(y)v2, j , v2, j )
i, j,k y 
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For (a), the inside sum is 0, and the argument is complete. For (b), let R1 = R2 and 
v2, j = v1, j . Then the right side of the display continues as 

= 
P 

(R1(x)v1,k , v1,i )|G|d−1(v1, j , v1,k )(v1, j , v1,i )R1
i, j,k 

= |G|d−1 P 
(R1(x)v1,k , v1,i )δjkδj i R1 

i, j,k 

= |G|d−1 P(R1(x)v1,i , v1,i ) = |G|d−1 (x). R1 R1 
χR1

i 

48. We have Eα Eβ = |G|−2dαdβ R(χα)R(χ ) = |G|−2dαdβ R(χα ∗ χ ). Prob-β β

lem 47a shows that this is 0 if Rα and Rβ are inequivalent; this proves (b). Problem 47b 
shows that the computation with Rα = Rβ continues as = |G|−1dα R(χα) = Eα; this 
proves (a). 
49. Let S be the set of all finite-dimensional irreducible invariant subspaces Vs of 

V . Call a subset T of S “independent” if the sum 
P

t∈T Vt is direct. This condition 
means that for every finite subset {t1, . . . , tn} of T and every set of elements vi ∈ Vti ,
the equation 

v1 + · · · + vn = 0 

implies that each vi is 0. From this formulation it follows that the union of any
increasing chain of independent subsets of S is itself independent. By Zorn’s Lemma 
there is a maximal independent subset T0 of S. By definition the sum V0 = 

P
t∈T0 

Vt 
is direct. Consequently the problem is to show that V0 is all of V . Since every 
member of V lies in a finite direct sum of finite-dimensional irreducible invariant 
subspaces of V , it suffices to show that each Vs is contained in V0. If s is in T0,
this conclusion is obvious. Thus suppose s is not in T0. By the maximality of T0,
T0 ∪{s} is not independent. Consequently the sum V0 + Vs is not direct, and it follows 
that V0 ∩ Vs 6 0. But this intersection is an invariant subspace of Vs .= Since Vs is 
irreducible, a nonzero invariant subspace must be all of Vs . Thus Vs is contained in 
V0, as we wished to show. 
50. Let us impose an inner product on V0 that makes R

Ø
Ø
V0 
unitary. Let {v1, . . . , vn}

be an orthonormal basis of V0. If we write R(x)vj = 
Pn 

=1 Ri j (x)vi , then Ri j (x) =i
(R(x)vj , vi ). Consequently the character χα of R

Ø
Ø
V0 
is given by χα(x) = 

P
i Rii (x). 

Then we have 

Eαvj = |G|−1dα 
P 

χα(x)R(x)vj = |G|−1dα 
P P 

Rkk (x)Ri j (x)vi = vj , 
x∈G x∈G i,k 

and Eα is the identity on V0. 
51. Problem 49 allows us to write V as the direct sum of possibly infinitely many

finite-dimensional irreducible invariant subspaces V = 
L 

V∞ . If any v in V is∞ 
given, we can write v = 

P 
∞ v∞ with only finitely many terms nonzero. Applying 
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Eα and using Problem 50, we see that Eαv is the sum of those v∞ such that R
Ø
Ø
V∞ 
is 

equivalent to Rα . Thus each nonzero v∞ has the property that Eαv∞ = v∞ for some α. 
On the other hand, this equality cannot hold for two distinct α’s. In fact, if Rα 

and Rβ are inequivalent and we have Eαv∞ = v∞ and Eβv∞ = v∞ , then application 
of Eα to the second equality gives Eα Eβv∞ = Eαv∞ = v∞ . But Eα Eβ = 0 by 
Problem 48b, and hence v∞ = 0. 
The conclusion is that for each nonzero v∞ , there is one and only one Eα such 

that Eαv∞ 6 0, and that α has Eαv∞ = v∞ . Applying 
P 

Eα to v = 
P

= ∞ v∞ , we α 
obtain 

P 
α Eαv = 

P 
∞ ,α Eαv∞ = 

P 
∞ v∞ = v. Thus 

P 
α Eα = I . Problem 50 

shows that Eα is the identity on any finite sum of vectors lying in finite-dimensional
irreducible invariant subspaces equivalent to Rα . The direct-sum decomposition just 
proved shows that Eα is 0 on any vector in the direct sum of the images of the other 
Eβ ’s. Thus the image of Eα is as asserted. 

52. For α as given and for any v in V , we have Eαv = |G|−1 P
x∈G ω(x)R(x)v. 

The members of the image of Eα are exactly the vectors v for which Eαv = v, hence 
exactly the vectors v for which |G|−1 P

x∈G ω(x)R(x)v = v. Applying R(y) to both 

sides gives R(y)v = |G|−1 P
x∈G ω(x)R(yx)v = |G|−1 P

x∈G ω(y−1x)R(x)v = 

ω(y−1)|G|−1 P
x∈G ω(x)R(x)v = ω(y−1)v = ω(y)v. 

Chapter VIII 

1. In (a), ϕ fixes 1 and must therefore fix the subfield generated by 1; this is Q. 
2For (b), ϕ(a2) = ϕ(a) . For (c), if a ≤ b, then b − a = c2 for some c. Hence 

ϕ(b) − ϕ(a) = ϕ(c)2, and ϕ(a) ≤ ϕ(b). For (d), let r be any real, let ≤ > 0 be 
given, and choose rationals q1 and q2 with q1 ≤ r ≤ q2 and q2 − q1 < ≤. Then 
q1 = ϕ(q1) ≤ ϕ(r) ≤ ϕ(q2) = q2 by (a) and (c). Hence |ϕ(r) − r | < ≤. Since ≤ is 
arbitrary, ϕ(r) = r . 
2. (1 + r)−1 = 1 − r + r2 − r3 + · · · ± rn−1 if rn = 0. 
3. This follows from the universal mapping property of the field of fractions. 
4. Suppose that X divides A(X)B(X), i.e., A(X)B(X) = XC(X). If a0 and b0 

are the constant terms of A(X) and B(X), we then have a0b0 = 0. If a0 = 0, then X 
divides A(X); if b0 = 0, then X divides B(X). Hence X is prime. 
5. In (a), take (X) as the ideal. It is prime by Problem 4. Suppose that a is a 

member of R with no inverse in R. then (X) is not maximal since (a, X) strictly
contains it and does not contain 1. For (b), we can use (a, X). 
6. In (a), Ix0 is certainly an ideal. Suppose J is an ideal with Ix0 $ J . Choose f 

in J that is not in Ix0 . The function x − x0 is in Ix0 . Therefore g = f 2 + (x − x0)2 

is in J . This function is everywhere > 0, and consequently 1/g is in R. Hence 
1 = (1/g)g is in J , and J cannot be proper. So Ix0 is maximal. 
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Part (b) uses the Heine–Borel Theorem. For each point p in [0, 1], choose a 
function fp in I with fp(p) 6 0. By continuity, fp is nonvanishing on some open = 
set Np containing p. As p varies, these open sets Np cover [0, 1]. The Heine– 
Borel Theorem produces finitely many Np1 , . . . , Npk that cover [0, 1]. Then fpj is 
nonvanishing on Npj . If x is a member of [0, 1], then x is in some Npj , and fpj does 
not vanish at x . Thus the functions fp1 , . . . , fpk have no common zero. 
For (c), suppose that the maximal ideal I is not some Ix0 . Using (b), we form the 

function g = fp21 
+ · · · + f 2 . This is in I and is everywhere positive. The function pk

1/g is therefore in R, and 1 = (1/g)g is in I . Hence I = R, in contradiction to the 
fact that I is proper. 

7. In (a), I∞ is an ideal, and it is properly contained in the proper ideal of all 
members of R vanishing at −∞. Part (b) follows from Proposition 8.8. The reason 
for (c) is that for each x0 in R, there is a member of R that is nonzero at x0 and 
vanishes at infinity; this function has to be in I , and thus I cannot equal Ix0 . 

8. For (a), let a + bi be a nonzero member of I . Then (a + b
p

−5)(a − b
p

−5) = 
a2 + 5b2 is a positive integer in I . p
For (b), I is an additive subgroup of Z + Z −5, which is free abelian of rank 2. 

Therefore I is free abelian of rank 1 or 2. We can rule out rank 1 because I contains 
a nonzero integer and also the product of that integer and 

p
−5. p p

For (c), a Z basis of I consists of x1 = a1 + b1 −5 and x2 = a2 + b2 −5. Put p
y1 = r x1 + sx2 = (ra1 + sa2) + (rb1 + sb2) −5 and y2 = t x1 + ux2, and aim to 
have y1, y2 form a Z basis with y1 not involving 

p
−5. We thus want rb1 + sb2 = 0,

and the most economical way of achieving this equality is to put d = GCD(b1, b2)
and to take r = b2d−1 and s = −b1d−1. Then GCD(r, s) = 1, and we can choose ¥ ° r s ¢ ≥ x1 

¥
t and u with ru − st = 1. With these choices we have 

≥ y1 = . Sincey2 t u x2 

det 
° r s ¢ 

= 1, this change is invertible. In other words, y1 and y2 form a Z basist u 
in which y1 is some nonzero integer n. We may assume that n > 0. Let m be the 
smallest positive integer in I . Then n must be a multiple of m by an application of 
the division algorithm. Since y1 and y2 form a Z basis of I , we see that n equals m. 

9. It is straightforward to see that P is an ideal and that xy ∈ P implies x ∈ P or 
y ∈ P . The ideal P is proper since the presence of 1 in ϕ−1(P 0) would mean that 
ϕ(1) = 1 is in P 0. But P 0 is proper, and thus 1 is not in P 0. 

10. (a) {(r, 0) | r ∈ R} and {(0, r) | r ∈ R}. 
(b) (X). 
(c) (X − 1) and (X − 2). 
(d) (0). 

11. For (a), Q[X]/I is a field and hence is a unique factorization domain. For
(b), one can give a counterexample. The ring Z[

p
−5] is an integral domain and is 

the quotient of Z[X] by the ideal (X2 + 5); therefore I = (X2 + 5) is prime. On the 
other hand, Z[

p
−5] is not a unique factorization domain. 
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12. For (a), choose x and y with xd + yc = 1. Dividing by n gives xc−1 + yd−1 = 
n−1. Then (a) follows by multiplying through by m. Part (b) uses an induction. Group 

k1 kr−1 kr k1 kr −1n as (p1 · · · pr−1 )pr and apply (a) to write mn−1 = a( p1 · · · pr−1 )
−1 + bpr −kr . 

k1 kr −1Repeat the process with a(p · · · pr−1 )
−1, and continue. 1 

13. For (a), proceed as in the argument in Section 4 until near the end, obtaining xp 1 3and y just as in that construction. Then δ(x + y −2) = x2 + 2y2 ≤ 14 + 2 · = p 4 4 . 
Then we have δ(r + s −2) < δ(c + d

p
−2), and the argument goes through. p 1For (b), we would get δ(x + y −3) = x2 + 3y2 ≤ 14 + 3 · 4 = 1, and then the p

step δ(r + s −3) < δ(c + d
p

−3) fails. 
14. The map extends to an R module homomorphism by the universal mapping 

property of RG, and it is one-one onto by inspection. To check that it respects 
multiplication, it is enough to show that the product g1g2 in RG maps to fg1 ∗ fg2 , i.e., 
that fg1 ∗ fg2 = fg1 g2 . The computation is ( fg1 ∗ fg2 )(x) = 

P
y∈G fg1 (xy−1) fg2 (y) = 

fg1 (xg
−1), and this is 1 if and only if xg−1 = g1, i.e., if and only if x = g1g2. For 2 2

other values of x , it is 0. Therefore ( fg1 ∗ fg2 )(x) = fg1 g2 (x) for all x . 
15. Let the monic polynomial in question be P(X). We prove by induction on 

m that any polynomial A(X) in I of degree m is a multiple of P(X). The base case 
of the induction is all polynomials of degree < n in I ; only 0 fits this description. 
Assume the result for all degrees < m, and let A(X) be any polynomial in I , say 
with leading term am Xm , am =6 0. Then am Xm−n P(X) is in I , and so is B(X) = 
A(X) − am Xm−n P(X). The coefficient of Xm in B(X) is 0, and hence B(X) = 0 
or else deg B(X) < m. If B(X) = 0, then A(X) = am Xm−n P(X), and A(X) is a 
multiple of P(X). If deg B(X) < m, then induction gives B(X) = C(X)P(X), and 
therefore A(X) = (am Xm−n + C(X))P(X). So again A(X) is a multiple of P(X). 
16. Let p1, . . . , pn be n distinct positive primes in Z, put qk = p1 · · · pk for 

0 ≤ k ≤ n, and take In+1 = (qn, qn−1 X, qn−2 X2 , . . . , q0 Xn). This can be written 
with n + 1 generators but not with fewer than that. 
17. In (a), certainly ker ϕ ⊇ (y2 − x3). In the reverse direction, suppose that P
n
N 
=0 Pn(x)yn is in ker ϕ. Since y2 ≡ x3 mod (y2 − x3), we can reduce this element 

of ker ϕ to the form Q0(x)+Q1(x)y. Substituting with t gives Q0(t2)+Q1(t2)t3 = 0. 
The first term involves only even powers of t , and the second term involves only odd
powers. Thus each is 0 separately. We are thus to determine what members Q0(x)
and Q1(x)y of K[x, y] are in ker ϕ. For Q0(t2) to be 0, every coefficient of Q0 must 
be 0. For Q1(t2)t3 to be 0, every coefficient of Q1 must be 0. Therefore only 0 is of 
the stated form, and every member of ker ϕ lies in (y2 − x3). 
For (b), image ϕ contains t2, t3, and every power tn such that n = 2a + 3b with a 

and b nonnegative integers. It follows that image ϕ consists of all linear combinations 
of powers tn for n ∏ 2. 
19. Write A(X) = B(X)Q(X) in F[X], and let A(X) = c(A)(c(A)−1 A(X)),

B(X) = c(B)(c(B)−1 B(X)), and Q(X) = c(Q)(c(Q)−1 Q(X)) be the decomposi-
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tions of Proposition 8.19. Then we have 

c(A)(c(A)−1 A(X)) = c(B)c(Q) 
° 
(c(B)−1 B(X))(c(Q)−1 Q(X))

¢
. 

By Gauss’s Lemma and the uniqueness in Proposition 8.19, we obtain c(A)−1 A(X) = 
(c(B)−1 B(X))(c(Q)−1 Q(X)), apart from unit factors. Therefore the member B0(X) 
= c(B)−1 B(X) of R[X] is exhibited as dividing A0(X) = c(A)−1 A(X) with a 
quotient c(Q)−1 Q(X) in R[X]. 
20. Let R be a finite integral domain, and let a 6= 0. Multiplication by a is one-one 

since R is an integral domain, and it must be onto R by the finiteness. Therefore there 
is some b with ab = 1, and we have produced an inverse for a. 
21. Let R0 = R/(p). Suppose that A(X) = B(X)C(X) nontrivially in R[X] with 

B(X) = bk Xk + · · · + b0, C(X) = bl Xl + · · · + c0, and k + l = N . Since p divides 
a0 but p2 does not, p divides exactly one of b0 and c0, say the former. In R0[X],
we have A(X) ≡ aN X N , C(X) ≡ cl Xl + · · · + c0, and A(X) = B(X)C(X). Now 
X is prime in R0[X] by Problem 4, and XN divides B(X)C(X) in R0[X]. Using the 
defining property of a prime, one power at a time, we find that XN divides B(X). 
Since deg B < N , we must have B(X) ≡ 0 in R0[X]. Thus p divides bk in R, and p
divides aN , contradiction. 
22. In (a), we regard WZ − XY as a first-degree polynomial in W , with Z being a 

prime in the ring of coefficients. A nontrivial factorization of WZ − XY must be of 
the form A(X, Y, Z) 

°
B(X, Y, Z)W +C(X, Y, Z)

¢ 
with Z = A(X, Y, Z)B(X, Y, Z). 

Since Z is prime, one of these factors must be a unit, hence a scalar. If A(X, Y, Z)

is a scalar, then the factorization of WZ − XY is trivial. Otherwise we may assume 
that the factorization is WZ − XY = Z

°
W + C(X, Y, Z)). Then Z divides XY , and 

we arrive at a contradiction since Z does not appear in XY . 
In (b), we expand in cofactors about the top row. Using induction, we see that 

we can regard the determinant det[Xi j ] as a first-degree polynomial in X11 with an 
irreducible coefficient P(X22, X23, . . . , Xnn). A nontrivial factorization must be of 
the form det[Xi j ] = PX11 + Q = A(BX11 + C), where Q, A, B, C are polynomials 
in the remaining indeterminates. Then AB = P and P irreducible implies that 
A or B is a unit, hence a scalar. If A is a scalar, our factorization of det[Xi j ] is 
trivial. Otherwise we may assume that the factorization is det[Xi j ] = PX11 + Q = 
P(X11 +C). Then P must divide Q. Taking the degrees of homogeneity into account, 
we see that Q must be the product of P and a homogeneous polynomial of degree 1. 
Every term of P is of the form 

Qn 
=2 X2,σ (2) for some permutation σ of {2, . . . , n},i

and thus such a factor must appear in every term of Q. However, the only terms of 
det[Xi j ] that contain a factor 

Qn 
=2 X2,σ (2) also contain the factor X11, and this factor i

is absent in Q. Thus the assumed reducibility has led to a contradiction. 
23. The ideal of Z[X] generated by A(X) and B(X) consists of all polynomials 

A(X)C(X)+ B(X)D(X) with C(X) and D(X) in Z[X]. If such an expression equals 
some integer n, then a GCD within Q[X] of A(X) and B(X) divides A(X) and B(X) 
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and hence must divide n. It is therefore of degree 0 and is a unit in Q[X]. Thus A(X)

and B(X) are relatively prime in Q[X].
Conversely if A(X) and B(X) are members of Z[X] that are relatively prime in 

Q[X], we can find P(X) and Q(X) in Q[X] with A(X)P(X) + B(X)Q(X) = 1. 
Multiplying by a common denominator of the coefficients of P(X) and Q(X), we 
obtain a relation A(X)C(X) + B(X)D(X) = n with all polynomials in Z[X]. Thus 
n is in the ideal of Z[X] generated by A(X) and B(X). 

¥ ≥ u1 
¥ ≥ 

0 
≥ 
1+i 2−i 

¥
24. We are given 

≥ 
1+i 2−i = 

¥ 
with coefficient matrix C = .3 5i u2 0 3 5i

Left multiplication on C by a matrix with determinant a unit does not change the 
total set of conditions on 

≥ u1 
¥
, and right multiplication by such a matrix changes the u2

generators but not the module they generate. In the first column of C , we observe 
that GCD(1 + i, 3) = 1 because 1 + i divides 2 and GCD(2, 3) = 1. Then we have ≥ 

−(1−i) 1−(1− i)(1+ i)+1 ·3 = 1, and we are led to the matrix A = 
¥
, which has 

−3 1+i≥ 
1 −1+8ideterminant 1. We can thus replace C by AC = 

¥
. An invertible column 0 −11+8i

operation replaces the upper right entry by 0. Thus we are led to the diagonal matrix≥ 
1 0 

¥ 
. In other words, we may assume that the Z[i] module was given to us 0 −11+8i 

with generators t1, t2 satisfying t1 = 0 and (−11 + 8i)t2 = 0. Therefore the given 
Z[i] module is cyclic and is Z[i] isomorphic to Z[i]/(−11 + 8i). 
25. In (a), δ(z) = zz̄. Then δ(zw) = zwz̄w̄ = zz̄ww̄ = δ(z)δ(w). 
In (b), we start with two nonzero members α and β of R. We are to find ∞ and 

ρ in R with α = β∞ + ρ and δ(ρ) < δ(β). It is the same to find ∞ and ρ with 
α/β = ∞ + ρ/β and δ(ρ/β) < 1. Apply the hypothesis with z = α/β, and let ∞ be 
the element r such that δ(z − r) < 1. Then ρ may be defined as β(z − r), and all the 
conditions are satisfied. 

p 1 p p
26. Given z = x + y −m, define r = a + 2 b(1 + −m) in Z[ 12 (1 + −m)] by 

choosing b to be an integer with |2y − b| ≤ 12 and then choosing a to be an integer 
with |x − a − 12 b| ≤ 2

1 . Since |y − 12 b| ≤ 4
1 , we then have 

2 11δ(z − r) = (x − a − 12 b) + m(y − 12 b)
2 ≤ 4

1 + m 16
1 ≤ 14 + 16 < 1. 

27. In (a), complex conjugation is an automorphism of Z[i] and must therefore 
carry primes to primes.
In (b), we know that (a + bi)(a − bi) is the integer N (a + bi). Suppose that 

N (a + bi) = mn nontrivially with GCD(m, n) = 1. Since a + bi is prime, it 
divides one of m and n. Say that m = (a + bi)(c + di). Then m2 = N (m) = 
N (a + bi)N (c + di) = mnN (c + di). Any prime number dividing n must divide 
the left side m2, and hence there can be no such prime. We conclude that N (a + bi)
does not have nontrivial relatively prime divisors. Hence it is a power of some prime
number p. 
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In (c), let N (a + bi) = pk . The left side is the product of two primes of Z[i]. If p
is the product of l primes of Z[i], then pk is the product of kl primes. Then we must 
have kl = 2, and k must divide 2. 
In (d), suppose N (a + bi) = p2, so that k = 2 in (c). Then l = 1, and p is prime 

in Z[i]. 
28. The equation N (a + bi) = p says that a2 + b2 = p. The right side is 

≡ 3 mod 4, but 3 is not the sum of two squares modulo 4. Hence N (a + bi) = p
is impossible when p ≡ 3 mod 4. Problem 27c then forces N (a + bi) = p2, and 
Problem 27d says that p is prime in Z[i]. 
29. If N (a + bi) = 2, then |a| = |b| = 1, and we obtain 1 + i and its associates. 

If N (a + bi) = 4, then a = ±2 with b = 0 or else a = 0 with b = ±2; in these cases 
a + bi is an associate of 2, which is (1 + i)(1 − i) and is not prime in Z[i]. 
30. The multiplicative group of Fp is cyclic of order p − 1. If p is of the form 

4n + 1, then F× 
p has order 4n. The nth power of a generator then has to be an integer 

whose square is ≡ −1 mod p. 
31. For (a), we obtain ϕ1 by mapping Z[X] to Fp[X] with a substitution homo-

morphism and following this with a passage to the quotient. Similarly ϕ2 is obtained 
from the substitution homomorphism Z[X] → Z[i] followed by the passage to the 
quotient.
For (b), the kernel of ϕ1 consists of all polynomials that aremultiplesof X2+1 when 

their coefficients are taken modulo p. This is pZ[X] + (X2 + 1)Z[X] = (p, X2 + 1). 
The kernel of ϕ2 consists of all polynomials with the property that when taken modulo 
X2 + 1, they are multiples of p. This too is the ideal (p, X2 + 1). 
For (c), Problem 30 shows that the polynomial X2 +1 factors nontrivially in Fp[X].

Therefore X2 + 1 is not prime, the ideal (X2 + 1) is not prime, and Fp[X]/(X2 + 1)
is not an integral domain. By (b), Z[i]/(p) is not an integral domain, and the ideal 
(p) is not prime. Hence p is not prime in Z[i]. By (c) and (d) in Problem 27, p is of 
the form N (a + bi) for some prime a + bi in Z[i].
For (d), if we have p = N (a + bi) = N (a0 + b0i), we obtain two prime 

factorizations of p in Z[i] as p = (a + bi)(a − bi) = (a0 + b0i)(a0 − b0i), and 
unique factorization in Z[i] implies that a0 + b0i is an associate of a + bi or a − bi . 
32. For (a), multiply C on the left by the matrix A that is the identity except in the 

first column, where the i th entry is Cii . 
For (b) and (c), the step of row reduction leads to a first column that is 0 in all

entries but the first, where it is GCD(C11, . . . , Cnn). In other words, the new entry 
in position (1, 1) divides all entries in the new C . Therefore one step of column 
reduction leaves the entry unchanged in position (1, 1), leaves the remainder of the
first column equal to 0, and makes the remainder of the first row equal to 0. What
is left in the rows and columns other than the first is a matrix whose entries are all 
divisible by GCD(C11, . . . , Cnn). Hence we can induct on the size. 
33. In (a), changing notation slightly from Lemma 8.26, write AE = DB with 

det A and det B in R×. Over the field of fractions of R, the m-by-n matrices E and D 
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must have the same rank since A and B are invertible, and consequently D and E have 
the same number of nonzero diagonal entries. Thus for some l with 0 ≤ l ≤ k, we 
are given that Dj j divides Dj+1, j+1 and Ej j divides Ej+1, j+1 whenever 1 ≤ j < l. 
Fix i with 1 ≤ i ≤ l, and consider all possible i-by-i determinants that can be formed 
using the first i rows of B and one of the 

° n¢ 
sets of i columns. Since det B is in R×, iti

follows from the expansion-by-cofactors formula that these determinants have GCD
equal to 1. Each corresponding determinant for DB equals D11 · · · Dii times such a 
determinant, and hence the GCD for DB is D11 · · · Dii . 
Meanwhile, the GCD of the determinants for A is also 1, and, because of the 

divisibility property of the diagonal entries of E , E11 · · · Eii divides each of the 
determinants for AE . Hence E11 · · · Eii divides the GCD of the determinants for 
AE , which equals the GCD of the determinants for DB, which equals D11 · · · Dii . 
Thus E11 · · · Eii divides D11 · · · Dii . 
Arguing similarly with the determinants formed from the first i columns of A, AE ,

B, and BD, we see that D11 · · · Dii divides E11 · · · Eii . Therefore D11 · · · Dii and 
E11 · · · Eii are associates for 1 ≤ i ≤ l. Since none of the factors in question is 0, we 
see that each of the first l diagonal entries of D is an associate of the corresponding 
diagonal entry of E . This proves the desired uniqueness. 

34. For (a), we have seen in this setting that the decomposition of V as a direct 
sum of cyclic K[X] modules means a decomposition of V as a direct sum of vector 
subspaces, each of which is invariant under L . Also, if V0 is one of these vector 
subspaces, the cyclic nature of the module means that there is some vector v0 in 
V0 such that K[X]v0 = V0, and the diagonal entry of the matrix D in the proof 
of Theorem 8.25 is a polynomial M[X] such that V0 ∼ K [X]/(M(X)) as a K [X]= 
module. Referring to Problems 26–31 of Chapter V, we see that v0 is a cyclic vector 
for the cyclic subspace V0, and M[X] is the minimal polynomial of L on this subspace.
The divisibility property of the minimal polynomials and also the uniqueness

assertion now follow from what has been proved in Problems 32–33. We know 
from Problem 28 in Chapter V that the data of a cyclic subspace and the minimal
polynomial yield a particular matrix for the linear mapping and hence determine
the linear mapping on that subspace up to similarity. Consequently the uniqueness 
statement that has just been observed says that L is determined up to similarity by 
the integer r and the sequence of minimal polynomials. 

35. Let A and B be members of Mn(K). Form the data for each from the rational 
canonical form in Problem 34. Now consider everything as involving vector spaces
over the larger field L. We are given that the two matrices are similar over L, i.e., are 
conjugate via GL(n, L). Problem 34 shows that the respective decompositions have
the same data. The two matrices still have the same data when we again consider the
field to be K. Hence they are similar over K, i.e., are conjugate via GL(n, K). 

36. The fact that the homomorphisms are isomorphisms follows from the compo-
sition rule. 
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38. In (b), we can write any member of F[X1, . . . , Xn, X] as 

An(X1, . . . , Xn)Xn + · · · + A1(X1, . . . , Xn)X + A0(X1, . . . , Xn), 

and σ ∗∗ acts by having σ ∗ act on each coefficient. Invariance under all σ ∗∗’s therefore 
means that each coefficient is invariant under all σ ∗’s and hence is a symmetric 
polynomial. 
39. In (a), if, for example i < j and ki < kj , then the monomial aXk1 · · · Xkn is1 n 

increased in the ordering by replacing the factors Xi
ki Xkj 

j by Xi
kj Xkj 

i . 
For (b), we need only take the largest monomial in each Ei , raise it to the ci power, 

and multiply the results.
For (c), let the largest monomial in A be aXk1 · · · Xnkn . To define M , choose r = a 

and define cj = kj − kj+1 for 1 ≤ j < n and c
1 
n = kn . 

For (d), the construction in (c) yields 0 coefficient for Xk1 · · · Xnkn , and A − rM 1
has no larger monomials. So if A − rM = 0, the largest monomial is below that 
monomial X1 

k1 · · · Xnkn . 
For (e), iteration of the construction in (c) and (d) shows that any homogeneous

symmetric polynomial equals a homogeneous polynomial in the elementary sym-
metric polynomials. Problem 37 shows that any symmetric polynomial is a linear
combination of homogeneous symmetric polynomials, and hence every symmetric
polynomial is a polynomial in the elementary symmetric polynomials. 
40. Suppose that z0 and w0 in Cm have P(z0) 6 6= 0 and P(w0) = 0. As a function 

of t ∈ C, P(z0 + t (w0 − z0)) is a polynomial function nonvanishing at t = 0 and 
t = 1. The subset of t ∈ C where it vanishes is finite, and its complement in C 
is necessarily pathwise connected and therefore connected. Thus z0 and w0 lie in a 
connected subset of Cm where P is nonvanishing. Taking the union of these connected 
sets with z0 fixed and w0 varying, we see that the set of w0 ∈ Cm where P(w0) 6= 0 
is connected. 
41. For (a), two applications of the formula relating Pfaffians and determinants

gives us Pfaff(At X A)2 = det(At X A) = (det A)2 det X = (det A)2Pfaff(X)2. Tak-
ing the square root gives the desired result.
For (b), we fix X with Pfaff(X) 6 0 and allow A to vary. On the set where = 

det A 6= 0, the function A 7→ Pfaff(At X A)/ det A is a continuous function with image 
in the two-point set {±Pfaff(X)}, by (a). The domain of the function is connected by
Problem 40, and therefore the image has to be connected. Hence the function has to
be constant. Checking the value of the function at A = I , we see that the function 
has to be constantly equal to Pfaff(X). 
42. Form the ring S = Z[{Ai j }, {Xi j }]. We can then regard Pfaff(At X A) and 

(det A)Pfaff(X) as two polynomials with entries in S. If we fix arbitrary elements 
ai j ∈ Z for all i and j and also xi j ∈ Z for i < j , then Proposition 4.30 gives us 
a unique substitution homomorphism 9 → Z such that 9(1) = 1, 9(Ai j ) = ai j , 
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and 9(Xi j ) = xi j . Assemble the ai j and xi j into matrices a = [ai j ] and x = [xi j ]
with x alternating. Problem 41b shows that the identity in question holds when the
entries are in C, and in particular it holds when the entries are in Z. Therefore 
Pfaff(at xa) = (det a)Pfaff(x). Since Z is an integral domain and since a and x are 
arbitrary with x alternating, Corollary 4.32 allows us to conclude that Pfaff(At X A) = 
(det A)Pfaff(X) as an equality in S. 
To pass from S to K, let 1K be the identity of K, and let ϕ1 : Z → K be the 

unique homomorphism of rings such that ϕ1(1) = 1K. If we fix arbitrary elements 
ai j of K for all i and j , as well as arbitrary elements xi j of K for i < j , then 
Proposition 4.30 gives us a unique substitution homomorphism 8 : S → K such 
that 8(1) = ϕ1(1) = 1K, 8(Ai j ) = ai j for all i and j , and 8(Xi j ) = xi j whenever 
i < j . Applying 8 to our identity in S, we obtain Pfaff(at xa) = (det a)Pfaff(x) as 
an equality in K. 
43. From Problem 42 and the hypothesis on g, we have 1 = Pfaff(J ) = 

Pfaff(gt Jg) = (det g)Pfaff(J ) = det g. Hence det g = 1. 
45. For (a), if ϕ : R → R/Pk is the quotient homomorphism, then ϕ−1 of any 

ideal of R/Pk is an ideal I of R containing Pk . If Q is a prime ideal dividing I , then 
Q divides Pk , and it follows that Q = P . Thus the only possibilities for I are the 
powers Pi of P , necessarily stopping with i = k. 
For (b), we know that π i lies in Pi but not Pi+1. For 1 ≤ i ≤ k − 1, it follows that 

the principal ideal (π i + Pk)/Pk is contained in the ideal Pi /Pk but not in Pi+1/Pk . 
Since the ideals P j /Pk for j ≤ k are nested and there are no other ideals in R/Pk ,
we must have (π i + Pk )/Pk = Pi /Pk . Thus Pi /Pk is principal. 
46. Corollary 8.63 and Problem 44 together show that every ideal of R/I is 

principal if it can be shown that every ideal of R/Pk is principal when P is a nonzero 
prime ideal. The two parts of Problem 45 together show that every ideal of R/Pk is 
principal. 
47. We may assume that (a) $ I since otherwise the result follows with b = 0. 

Since a 6 0, the ideal I/(a) in R/(a) is a principal ideal by Problem 46c. If b0= 
is a generator of this ideal, then 

°
R/(a)

¢
b0 = I /(a). Since b0 is in I/(a), we can 

write it as b0 = b + (a) for some b in I . Every member of I/(a) is then of the form ° 
r + (a)

¢°
b + (a)

¢ 
= rb + (a), and we conclude that every member of I is of the 

form rb + sa with r and s in R. 
48. Any R submodule of R is an ideal. 
49. Write M = Rx1 + · · · + Rxn with x1, . . . , xn in F . Each xi is of the form 

ri s−1 with ri and si in R and with si 6= 0. Then aM lies in R for a = 
Qn 

=1 si . So i i
aM is an ideal in R, by Problem 48. If N is a second fractional ideal, choose b 6= 0 
such that bN is an ideal in R. Then (aM)(bN ) is an ideal in R, and the formula 
MN = (ab)−1(aM)(bN ) shows that MN is a fractional ideal. 
50. Since I is a finitely generated R module, we can write I = Ra1 + · · · + Ran 

with all ai in R. The condition for x ∈ F to be in I −1 is that x I ⊆ R, and it is 
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necessary and sufficient that xai be in R for all i . Thus it is necessary that x be 
in (a1 · · · an)−1 R. Consequently I −1 is an R submodule of the singly generated R 
module (a1 · · · an)−1 R. Since R is Noetherian, I −1 is finitely generated. 
51. If I is maximal among the nonzero ideals of R for which there is no fractional 

ideal M of F with I M = R, then Lemma 8.58 shows that I is not prime. Choose 
a nonzero prime ideal P with I $ P . Then Lemma 8.58 and the definitions give 
I ⊆ I P−1 ⊆ I I −1 ⊆ R. We cannot have I = I P−1 since otherwise I P = 
(I P−1)P = I (P−1 P) = I and Proposition 8.52 gives I = 0. By maximality of I ,
we can find some fractional ideal N with (I P−1)N = R. Then I (P−1 N ) = R, and 
we can take M = P−1 N , by Problem 49. 
52. Every member x of M has x I ⊆ R, and thus M ⊆ I −1. On the other hand, if 

x is in I −1, then x I ⊆ R, x = x I M ⊆ RM = M , and x is in M . 
53. If M is a fractional ideal, then Problem 49 produces c 6= 0 in F with cM ⊆ R,

and Problem 48 shows that cM is an ideal of R. Using Problem 52, we can write 
M = (c)−1(c)M = (c)−1(cM). This proves that M = I J −1 for ideals I and J . Then 
(a) follows from Theorem 8.55 and Problem 52, and (b) follows from Problem 52. 

Chapter IX 

1. The equation for r gives r3 = 3r − 4 and r4 = 3r2 − 4r . Therefore the inverse 
has 1 = (r2 +r +1)(ar2 +br +c) = ar4 +(a +b)r3 +(a +b+c)r2 +(b +c)r +c = 
r2(4a + b + c) + r(−a + 4b + c) + 1(−4a − 4b + c), and we are led to the system 
of linear equations 

4a + b + c = 0, 
−a + 4b + c = 0, 

−4a − 4b + c = 1. 

17 17Then (a, b, c) = (− 49
3 , − 49

5 , 49 ), and (r2 + r + 1)−1 = − 49
3 r2 − 49

5 r + 49 . 
2. Multiplication by a nonzero r is a one-one F linear mapping from the F vector 

space R onto itself. Since dimF R < ∞, this linear mapping must be onto. The 
element s such that rs = 1 is a multiplicative inverse of r . 
3. Let z0 be a nonreal element of K. Then the closure of the Q vector space 

Q + Qz0 contains R + Rz0 = C. 
4. If y = F(x)/G(x), then G(x)y = F(x). Arranging the terms as powers of x 

with coefficients of the form ay + b with a and b in k, we see that x is a root of a 
polynomial in one indeterminate over k(y). Therefore x is algebraic over k(y). 
5. The condition is that N be the square of an integer. For any other N , X2 − Np p

is irreducible over Q, and [Q( N ) : Q] = 2. Since 2 does not divide 3, Q( N )p
cannot be a subfield of Q( 3 2 ). 
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6. X 7→ Y + 1. 
7. No, since 8 is not a power of 4. See Corollary 9.19. 
8. Let g be a generator of the cyclic group K×, and let q be the order of K. Then 

1 
g · g2 · g3 · gq−1 = g1+2+3+···+(q−1) 2 q(q−1)· · = g . 

If q is even, then this is (gq−1)q/2 = 1q/2 = 1 = −1. If q is odd, it is (g 2
1 (q−1))q = 

(−1)q = −1. 
9. Proof 1: Let F(X) = Xn + cn−1 Xn−1 + · · · + c0 be the minimal polynomial 

of r . We are given that n is odd. Write the equation F(r) = 0 as 

r(rn−1 + cn−2rn−3 + · · · + c1) = −cn−1rn−1 − cn−3rn−3 − · · · − c0. 

Then r is expressed as an element of k(r2) unless rn−1 + cn−2rn−3 + · · · + c1 = 0. 
But this expression cannot be 0 because this polynomial has degree n − 1 and the 
minimal polynomial for r has degree n. 
Proof 2: The element r of K is a root of the polynomial X2 − r2 in k(r2)[X], and 

hence [k(r) : k(r2)] ≤ 2. Since [k(r) : k] = [k(r) : k(r2)] [k(r2) : k] with the left 
side odd by assumption, [k(r) : k(r2)] has to be odd. Thus it is 1. 
10. Let dr = [k(r) : k] and ds = [k(s) : k]. Since K contains k(r) and k(s), we 

see that dr and ds divide [K : k]. Since GCD(dr , ds ) = 1, dr ds divides [K : k]. The 
minimal polynomial M(X) of r over k is a polynomial over k(s) such that M(r) = 0. 
Thus the minimal polynomial N (X) of r over k(s) divides M(X). If c is the degree 
of N (X), we then have c ≤ dr . Since drds divides [K : k], we obtain 

drds ≤ [K : k] = [k(r, s) : k] = [k(s)(r) : k] = c[k(s) : k] = cds ≤ drds . 

Equality must hold throughout. Equality at the right end says that c = dr , and this 
proves (a). Equality at the left end says that drds = [K : k], and this proves (b). 

p
11. In (a), we have ∞ = β + cα = β(1 + cω). Here r = 1 + cω lies in Q( −3 ),

and so does r3. Therefore r3 is a root of a quadratic polynomial Y 2 + pY + q. Then 
∞ 6 + a∞ 3 + b = r6β6 + ar3β3 + b = 4r6 + 2ar3 + b = 4(r6 + 12 ar

3 + 14 b), and 
the right side is 0 if a and b are chosen such that p = 2

1 a and q = 14 b. p
β3( 1In (b), ∞ = β + α = β(1 + ω), and ∞ 3 = 2 (1 + −3 ))3 = 2(−1) = −2. 

Then ∞ satisfies ∞ 3 + 2 = 0, and this is irreducible since −2 is not a cube in Q. 
1 p 1 p

In (c), the field Q(∞ ) contains ∞ 3 = β3( 2 (3 − −3 ))3 = 4 (3 − −3 )3 = 
1 p p p
4 (27 − 9

p
−3 + 3 · 3(−3) − (−3) −3 ) = − 3 −3. Thus Q( −3 ) is a subfield of p 2 

Q(∞ ), and 2 divides [Q(∞ ) : Q]. Since Q( −3 ) is a subfield, β = ∞ (1−ω)−1 lies in p
Q(∞ ). Thus Q( 3 2 ) is a subfield of Q(∞ ), and 3 divides [Q(∞ ) : Q]. Consequently 
6 divides [Q(∞ ) : Q], and the minimal polynomial of ∞ has degree ∏ 6. By (a), it 
has degree exactly 6. 
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12. Let the characteristic be p. If F(X) has F 0(X) = 0, then all the exponents 
an Xnp + an−1 X (n−1)p +of X appearing in F(X) are multiples of p. Let F(X) = 

· · · + a1 X p + a0. Since the Frobenius map is onto in the case of a finite field, we
can choose members cn, . . . , c0 of k such that cn

p = an , cp = an−1, . . . , cp = a0.n−1 0 
Put G(X) = cn Xn + cn−1 Xn−1 + · · · + c0. Then F(X) = G(X)p, and F(X) is 
reducible. 

13. In (a), if F(X) = G(X)H(X) is reducible and r1 is a root of G(X), then σ (r1)
is a root of G(X) for any σ ∈ Gal(K/k). Consequently the orbit of r1 under Gal(K/k)

is a proper subset of the set of roots of F(X). Conversely if F(X) is irreducible and rj
is given, then the uniqueness of simple extensions gives us a k isomorphism of k(r1) 
onto k(rj ). Theorem 9.130 shows that this isomorphism extends to a k automorphism
of K, and hence Gal(K/k) is transitive on the set of roots of F(X). 
In (b), the transitivity follows from (a) and the irreducibility of 88(X) over Q. Let 

≥ = e2π i/8. The roots of 88(X) = X4 + 1 are ≥, ≥ 3 , ≥ 5 , ≥ 7. So if σ is in Gal(K/Q), 
then σ (≥ ) = ≥ k with k odd. Then σ 2(≥ ) = σ (≥ k) = σ (≥ )k = (≥ k )k = ≥ k

2 . Since 
the square of any odd integer is congruent to 1 modulo 8, σ 2(≥ ) = ≥ . Thus each σ 
has σ 2 = 1, and Gal(K/Q) cannot contain a 4-cycle.
In (c), the irreducibility of F(X) implies that F(X) is the minimal polynomial of 

r1. Hence [k(r1) : k] = n. Since k(r1) ⊆ K, [k(r1) : k] must divide [K : k], and 
n divides [K : k]. Therefore n divides the equal integer Gal(K/k). If n is prime, 
then the fact that n divides the order of Gal(K/k) implies that Gal(K/k) contains an 
element of order n, by Sylow’s Theorems. The only elements of order n in Sn are 
the n-cycles, and hence Gal(K/k) contains at least one n-cycle. 

p14. In (a), we have Lk+1 = Lk ( ak+1 ), and hence [Lk+1 : Lk ] equals 1 or 2. By 
induction, [Lk : Q] is a power of 2, and the power is at most the number of steps in
the induction, namely k. 
In (b), associate to each subset S of {1, . . . , k} the element vS = 

Q
j∈S 

paj in 
Lk . The product of any two such elements is an integer multiple of a third such
element, and hence the elements vS span Lk linearly over Q. Since there are 2k 
such elements, they form a vector-space basis. The extension Lk /Q is separable, 
being in characteristic 0, and it is normal as the splitting field of 

Qk 
=1 (X2 − aj ).j

So it is a finite Galois extension. Any member σ of Gal(Lk /Q) must permute the 
proots of each X2 − aj and hence must send 

paj to ± aj . On the other hand, σ is 
determined by its effect on each 

paj . Since Gal(Lk/Q) has order 2k , there exists for 
p peach subset S of {1, . . . , k} one and only one σ such that σ ( aj ) = − aj for j ∈ S 

p pand σ ( aj ) = + aj for j ∈/ S. The group Gal(Lk /Q) consists exactly of these 
elements. 

p pIn (c), let σj be the member of Gal(Lk /Q) with σj ( ai ) = − ai for i = j and p p
σj ( ai ) = + ai for i 6 j . Then σj (vS) = −vS if j is in S, and σj (vS) = +vS if j= 
is not in S. 
Arguing by contradiction, let pak+1 = 

P 
cSvS with each cS in Q. If 
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p p
σj ( ak+1 ) = ak+1, then we have 

p pP 
cSvS = ak+1 = σj ( ak+1 ) = 

P 
cSσj (vS) = − 

P 
cSvS + 

P 
cSvS, 

all S all S S with j∈S S with j∈/S 

pand it follows that cS = 0 whenever j is in S. On the other hand, if σj ( ak+1 ) = 
p

− ak+1, then we have 

p pP 
cSvS = ak+1 = −σj ( ak+1 ) = − 

P 
cSσj (vS) = 

P 
cSvS − 

P 
cSvS, 

all S all S S with j∈S S with j∈/S 

and it follows that cS = 0 whenever j is not in S. 
p pDefine S0 = { j | σj ( ak+1 ) = − ak+1 }. From the above it follows that 

cS = 0 whenever some member of S0 is not in S, and that cS = 0 whenever some 
member of the complement of S0 is in S. In other words, cS = 0 except for cS0 . We 
conclude that pak+1 = cS0 vS0 = cS0 

qQ
j∈S0 

aj and hence that ak+1 = cs20 

Q
j∈S0 

aj . 
This contradicts the hypothesis that {a1, . . . , an} are relatively prime and square free. 
Hence pak+1 does not lie in Lk . This proves (c), and we obtain [Lk+1 : Lk ] = 2. By 
induction we see that [L : Q] = 2n . This proves (d). 
15. For (a) and (b), Lemma 9.45 shows that X p − a is irreducible over Q. Hence 

[Q(r) : Q] = p. Let ≥ be a primitive pth root of 1. Then [Q(≥ ) : Q] = p − 1 
is relatively prime to [Q(r) : Q] = p. Problem 10a shows that 8p(X) is irre-
ducible in Q(r). Since ≥ and r generate K, Problem 10b shows that [K : Q] = 
[Q(r) : Q] [Q(≥ ) : Q] = p( p − 1). 
In (c), the Galois correspondence between intermediate fields and subgroups of 

G = Gal(K/Q) associates Q(≥ ) to the subgroup N = Gal(K/Q(≥ )), and it associates 
Q(r) to the subgroup H = Gal(K/Q(r)). Since Q(≥ )/Q is a normal extension, N 
is a normal subgroup of G. Any member of H ∩ N fixes r and ≥ , hence fixes all of 
K; thus H ∩ N = {1}. The order of N is [K : Q(≥ )] = p, and the order of H is 
[K : Q(r)] = p − 1. Therefore |G| = |H ||N |, and G is a semidirect product with N 
normal. 
Proposition 4.44 says that the action of an internal semidirect product is given by 

τh (n) = hnh−1. Let us identify τh . Let h ∈ H = Gal(K/Q(r)) have h(r) = r and 
h(≥ ) = ≥ k , and let n in N = Gal(K/Q(≥ )) have n(≥ ) = ≥ and n(r) = r≥ l . Then 
hnh−1(r) = hn(r) = h(r≥ l ) = r≥ kl , and hnh−1(≥ ) = hn(≥ k

0 
) = h(≥ k

0 
) = ≥ . So if 

n sends r to r≥ l and h(≥ ) = ≥ k , then hnh−1 is the member of N sending r to ≥ kl . 
This n is the member of N corresponding to l ∈ Fp, and this h is the member of 

H corresponding to k ∈ F× 
p . We have just shown that hnh−1 is the member of N 

corresponding to kl ∈ Fp. Hence the action corresponds to multiplication of F× 
p on 

additive Fp. 
16. [K : k] = Gal(K/k), and Gal(K/k) is a subgroup of Sn . Being a subgroup, 

its order divides the order of Sn , which is n!. 
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17. In (a), the most general element of K is of the form x + yr with x and y in k,
and its square is (x2 + y2r2) + 2xyr . This is in k if and only if xy = 0, i.e., if and 
only if x + yr is in k or in rk. In other words, the only squares in K that lie in k are 
the obvious ones. 
In (b), the same remarks apply unless the characteristic is 2. If the characteristic

2is 2, then (x + yr) = x2 + y2r2 and this is in k for all x and y. Hence every element 
of K is a square. 

18. The finite group G may be regarded as a subgroup of the symmetric group 
Sn for n = |G|. It was shown in Example 3 of Section 17 that there exists a finite 
Galois extension K of Q with Galois group Sn . Let k be the fixed field of G within 
Sn . Then Gal(K/k) = G. 

19. The polynomial in question in fixed by every element of the Galois group.
Hence its coefficients are in the subfield of K fixed by all elements of Gal(K/k). This 
is k. 
20. For (a), define F(X) = 

Qn
j=1 (X − xj ). For ϕ in H , we have Fϕ(X) = 

Qn 
=1 (X − ϕ(xj )) = 

Qn 
=1 (X − xj ) = F(X). Thus F(X) is in KH [X]. Let M(X)j j

be the minimal polynomial of x1 over KH . Since F(x1) = 0, M(X) divides F(X). On 
the other hand, the equalities Mϕ(X) = M(X) and M(x1) = 0 imply that M(xj ) = 0 
for each j . Thus M(X) has degree at least n, and we conclude that F(X) = M(X). 
In (b), n is the number of elements in an orbit of H and hence divides |H |. 
In (c), when the isotropy subgroup of H at x1 is trivial, n = |H |. Therefore 

[KH (x1) : KH ] = n = |H | = [K : KH ], the last equality following from Corollary 
9.37. Since KH (x1) ⊆ K, it follows that KH (x1) = K. 

az+b21. For (a), let ϕ(z) = cz+d with ad − bc 6 0. Then we have a substitution = 
homomorphism of C[X] into C(z) fixing C and sending X into z. Since the range 
is a field, this factors through the field of fractions of C[X] to give a field mapping 
C(X) → C(z). We can regard the result as a map of C(z) into itself, and we write the 
map of C(z) into itself as 8ϕ−1 . The formula is 8ϕ−1 (r) = r ◦ ϕ for r = r(z) in C(z). 
Then 8√ϕ(r) = r ◦ (√ϕ)−1 = (r ◦ ϕ−1) ◦ √−1 = 8√ (r ◦ ϕ−1) = 8ϕ(8√ (r)), and 
hence 8√ϕ = 8√ ◦ 8ϕ . From this it follows that 8ϕ−1 is a two-sided inverse of 8ϕ . 
Hence 8ϕ is an automorphism.
For (b), 8σ (w(z)) = w(σ −1(z)) = (−z)2 + (−z)−2 = z2 + z−2 = w(z),

and 8τ (w(z)) = w(τ −1(z)) = (1/z)2 + (1/z)−2 = z2 + z−2 = w(z). Since 
8ϕ√ = 8ϕ8√ by (a), it follows that every element of H fixes w. Since each 8ϕ is 
a field automorphism, C(w) lies in KH . 
For (c), we know from (b) that C(w) ⊆ KH . The orbit of z under H has 4 elements, 

and Problem 20a shows that the minimal polynomial of z over KH has degree 4 and 
is equal to 

F(X)=(X −z)(X +z)(X −z−1)(X +z−1) = (X2−z2)(X2−z−2)= X4−w(z)X2+1. 
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The polynomial F(X) is irreducible over KH , and its formula shows that its coef-
ficients are in the smaller field C(w). Hence it is irreducible over C(w) and is the 
minimal polynomial of z over C(w). 
For (d), (c) shows that [KH (z) : C(w)] = 4. Problem 20c shows that K = KH (z),

and hence [K : C(w)] = 4. Since [K : C(w)] = [K : KH ] [KH : C(w)] and since 
[K : KH ] = 4 by Corollary 9.37, KH = C(w). 

p p
22. For (a), let L = K( u ) and K = k( v ). The minimal polynomial of 

p
u 

over K is X2 − u, and this must divide the minimal polynomial of 
p
u over k. The p

degree of the latter polynomial equals [k( u ) : k], which must divide 4. Hence 
it must be 2 or 4. If it is 2, then X2 − u lies in k[X], and u is in k. We return 
to this case in a moment. Suppose that the minimal polynomial of 

p
u over k has p

degree 4. Let us write u = r + s v for some r and s in k. Then 
p
u is a root of p p

(X2 −r −s v )(X2 −r +s v) = (X2 −r)2 −s2v = X4 −2r X2 +(r2 −s2v), which 
is a quartic polynomial in k[X]. Since the minimal polynomial over k has degree 4, p
this is the minimal polynomial and is irreducible. Thus (a) holds with r = u. p p
The remaining case is that u is in k but 

p
u is not in k. Consider ± u ± v. 

None of these is in k. The computation 

p p p p p p p p
(X + u + v))(X + u − v)(X − u + v)(X − u − v) 

p p
= ((X + u)2 − v)((X − u)2 − v) 

= (X2 + u − v + 2X
p
u)(X2 + u − v − 2X

p
u) 

= (X2 + u − v)2 − 4uX2 = X4 + 2uX2 − 2v X2 + (u − v)2 − 4uX2 

= X4 − 2(u + v)X2 + (u − v)2 = X4 + bX2 + c 

shows that these are all roots of a quartic polynomial in k[X] of the correct kind, 
and the question concerns its irreducibility over k. As in the previous paragraph,
reducibility implies that it is the product of two irreducible quadratic members of 
k[X]. Then the product of two of the first-order factors is in k[X], and the sum p
of those two roots must be in k. The six possible sums of pairs of roots are ± u,p
± v, and 0 twice. Since 

p
u and 

p
v are not in k, the irreducible quadratic must p p p p

be X2 − ( u + v)2 or X2 − ( u − v)2. However, the fact that 
p
u is not in p p

K = k( v) implies that neither of 
p
u ± v is in k. Thus the quartic polynomial is 

indeed irreducible. This completes (a).
In (b), we have 4 = [L : k] = [L : k(r)] [k(r) : k] = 4[L : k(r)]. Thus 

[L : k(r)] = 1, and L = K(r). 
In (c), suppose that c = t2 for the given F(X). Find members u and v of k with 

−2(u + v) = b and u − v = t . Then the displayed computation in (a) shows that p p
± u ± v are the roots of X4 − 2(u + v)X2 + (u − v)2 = X4 + bX2 + c. The given p p
root r must be one of these. Say that r = u + v without loss of generality. Since 
[k(r) : k] = 4 and [L : k] = 4 and k(r) ⊆ L, we have L = k(r). On the other hand, p p p p p p p p
k(r) ⊆ k( u, v ), and [k( u, v ) : k] = [k( u, v) : k( u)] [k( u) : k] ≤ 
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p p p p
2 · 2 = 4. Hence k( u, v ) = k(r) = L. Then all four roots ± u ± v of F(X)

lie in L, L is the splitting field of F(X) over k, and L/k is normal. The Galois group p
is generated by one element that sends 

p
u to − u and fixes 

p
v, and by a second p

element that fixes 
p
u and sends 

p
v to − v. Hence it is C2 × C2. 

Conversely suppose that L/k is normal with Galois group G = Gal(L/k) = 
C2 × C2. Let an irreducible polynomial X4 + bX2 + c in k[X] with a root r in L be 
given. Since L/k is normal, X4 + bX2 + c splits in L. Let the four roots be ±r and 
±s. The square u of any of these roots satisfies u2 + bu + c = 0 and therefore lies 
in a quadratic extension within K, the same quadratic extension for each root. Let p
us define K to be this extension. Then K = k( b2 − 4c ). Because of the structure 
of G, there exists exactly one element σ in G whose fixed field is K. The minimal 

1 p
polynomial of ±r over K is X2 + 2 b ± 1 b − 4c for one of the two choices of sign, 2
and the minimal polynomial of ±s over K is the one for the other choice of sign. The 
element σ must then permute the roots of each of these polynomials, and it follows 
that σ (r) = ±r and σ (s) = ±s. Since neither r nor s is in K, we must in fact have 
σ (r) = −r and σ (s) = −s. Therefore σ (rs) = rs. One of the other two nontrivial 
members τ of G has τ (r) = s. Since τ 2 = τ , we have τ (s) = r . Thus τ (rs) = rs,
and we see that every member of G fixes rs. Consequently rs is in k. Since rs is 
equal for some choice of signs to 

±
q

− 12 b + 1 
p
b2 − 4c

q

2 b − 1 
p
b2 − 4c = ±

q 
1
4 b2 − 4

1 (b2 − 4c) = ±
p
c,2 − 1

2 
p
c is in k. In other words, c is the square of a member of k, as asserted. 
In (d), suppose that c−1(b2 − 4c) for the given F(X) is a square in k. Arguing p

with r2 as in (c), we see that K = k( b2 − 4c ). Making the same computation as p
in the display just above, we see that rs = c. Since c−1(b2 − 4c) is a square in k,p p
c lies in K. One of the roots, say r , lies in L, and the product rs = c lies in K,

hence in L. We conclude that ±r and ±s all lie in L. In other words, L is the splitting 
field of F(X) over k and is normal. Thus L/k is normal. The Galois group must be 
either C2 × C2 or C4. If it is C2 × C2, then (c) shows that 

p
c lies in k. Under our 

assumption that c−1(b2 − 4c) is a square, 
p
b2 − 4c lies in k. Consequently F(X) is 

reducible, contradiction. We conclude that the Galois group is C4. 
Conversely suppose that L/k is normal with Galois group G = Gal(L/k) = C4. 

Let an irreducible polynomial X4 + bX2 + c in k[X] with a root r in L be given. p
Arguing with r2, we see that r2 lies in K = k( b2 − 4c ). Since L is generated by 
k and r , a generator of G cannot send r into ±r . On the other hand, some element 
of G has to send r into −r since −r is a root of the given polynomial. Therefore 
σ 2(r) = −r . Then we have σ (rσ (r)) = σ (r)σ 2(r) = −rσ (r), and we see that 
σ 2(rσ (r)) = rσ (r). Consequently rσ (r) lies in K. Computing as in (c), we find that p
c lies in K. This member of K has its square in k, and Problem 17 shows that 

p
cp

lies in k or in the set of products k b2 − 4c. By (c), 
p
c cannot lie in k, and therefore 

p p
c = d b2 − 4c for some d in k. Hence c−1(b2 − 4c) = d−2 for an element d of 

k. 
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p p
For (e), one can take L = K( 4 2 ) and K = Q( 2 ). We can easily see directly 

that L is not normal. But let us use (c) and (d). The minimal polynomial F(X) in 
question is X4 + 2, with b = 0 and c = 2. The conditions in (c) and (d) say that 
L/k is normal if and only if either 2 is a square in Q or −1 is a square in Q. Neither 
condition is satisfied, and hence L/k is not normal. 
23. A cubic will be irreducible if it is divisible by no degree-one factor over Q,

hence if it has no root in Q. Since these cubics are monic and are in Z[X], they will
be irreducible if they have no integer root. An integer root must divide the constant
term, and we check that neither of ±1 is a root in either case. Hence both cubics are 
irreducible. By Problem 13 the Galois group in each case is a transitive subgroup of 
S3, hence is S3 or A3. The discriminant −4 p3 − 27q2 is 81 in the first case and −31 
in the second case; this is a square in the first case but not in the second case. Thus
X3 − 3X + 1 has Galois group A3, and X3 + X + 1 has Galois group S3. 
24. The extension field is either K itself, in which case the Galois group remains 

S3, or it is L = K[
p

−3 ]. Since K/Q is normal, Gal(L/K) is a normal subgroup of 
Gal(L/Q) of order 2 with quotient isomorphic to Gal(K/Q) = S3. The groups of
order 12 are classified in Problems 45–48 at the end of Chapter IV. Two such groups
are abelian, one is A4, and one is D6 ∼= C2 × S3. 
Write a general element of L as a + b

p
−3. Define τ (a + b

p
−3 ) = a − b

p
−3. 

This is the nontrivial member of the 2-element group Gal(L/K). If σ is in Gal(K/Q),
then σ extends to a member σ of Gal(L/Q) by the definition σ (a + b

p
−3) = p

σ (a) + σ (b) −3. In fact, σ respects addition. To see that it respects multiplication, 
we compute 

p p
σ (a + b

p
−3 )σ (c + d

p
−3 ) = 

° 
σ (a) + σ (b) −3

¢°
σ (c) + σ (d) −3 

¢ 

= 
° 
σ (a)σ (c) − 3σ (b)σ (d)

¢ 
+ 

° 
σ (b)σ (c) + σ (a)σ (d)

¢p
−3 

p
= σ (ac − 3bd) + σ (bc + ad) −3 

p
= σ 

° 
(ac − 3bd) + (bc + ad) −3 

¢ 

p p
= σ 

° 
(a + b −3 )(c + d −3 )

¢
. 

It follows that Gal(L/Q) is the direct product C2 × S3, the subgroup C2 being
Gal(L/K). 
25. Yes. Let L be the intermediate field corresponding to the subgroup {(1), (1 2)}. 

Since the subgroup is not normal, L/k is not normal. Let r be any element of L not 
in k. Then the minimal polynomial of r over k has degree 3, and it does not split in 
L since L/k is not normal. Its splitting field has to be something between L and K,
and the only choice is K. 
26. Yes, substitute and check it. 
28. In (a), direct expansion of the right side gives (X −r)(X2 +r X + (r2 + p)) = 

X3 + pX − r3 − pr . Since −r3 − pr = q, the assertion follows. 
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For (b), let us check that r2(−4 p3 − 27q2) = (−3r2 − 4p)(3q + 2pr)2, from 
which the assertion follows. In fact, the right side equals 

−(3r2 + 4 p)(9q2 + 12pqr + 4p2r2) 

= −(36pq2 + 48p2qr + 27q2r2 + 16 p3r2 + 36pqr3 + 12p2r4) 

= −r2(4p3 + 27q2) − 12p3r2 − 36 pq2 − 48 p2qr − 36 pqr3 − 12p2r4 

= −r2(4p3 + 27q2) − 12p3r2 − 36 pq2 − 48 p2qr 

− 36pq(−pr − q) − 12p2r(−pr − q) 

= −r2(4p3 + 27q2). 
29. No. For example, F(X) could have three real roots, and then K would be a 

subfield of R. A concrete example is X3 − 12X + 1, which is < 0 at −4, is > 0 at 
0, is < 0 at 1, and is > 0 at 4; the Intermediate Value Theorem shows that F(X) has 
three real roots. 
30. The group in question is a subgroup of S5. It is transitive because of the 

irreducibility, and it is a subgroup of A5 since the discriminant is a square. Problem
13c shows that it contains a 5-cycle. The other cycle structures in A5 are the 3-cycles
and the pairs of 2-cycles. If a 3-cycle is present, then the group is all of A5 because 
15 divides its order, all groups of order 15 are cyclic, and A5 contains no subgroup 
of order 30, being simple.
Suppose there are no 3-cycles. A Sylow 2-subgroup may be taken to be a subgroup 

of H = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, and it acts on the group of powers
of a 5-cycle. The only nontrivial action of a 2-element group on a 5-element group
carries elements to their inverses. Since no nontrivial element of H commutes with a 
5-cycle (because S5 has no elements of order 10), the Sylow 2-subgroup contains at
most two elements. If it is trivial, then the group in question is of order 5, consisting
of the powers of a 5-cycle. If the Sylow 2-subgroup has 2 elements, we obtain a
semidirect product of a 2-element group with the powers of the 5-cycle, and the result
has to be isomorphic to the dihedral group D5. 
Thus the only possibilities are C5, D5, and A5. 
31. Computation shows that the discriminant is 21272192, which is a square. 

By Proposition 9.63 the Galois group is a subgroup of A5. Modulo 3, the given 
polynomial is 2 + 2x + x5 and is irreducible. By Theorem 9.64 the Galois group
contains a 5-cycle. The given polynomial factors as (7 + x)(7 + 10x + 7x2 + x3)
modulo 11, and Theorem 9.64 shows that the Galois group contains a 3-cycle. The
5-cycle and 3-cycle generate all of A5, and thus the Galois group is A5. 
32. Write e and f for e1 and f1. The proof of Theorem 9.64 showed that f 0 = f . 

Then e0 f 0 = |GP | = |G|/g = e f g/g = e f = e f 0, and e0 = e. 
= 

Q
i P

e(Pi |p) = 
Q

j Q
e(Qi j |Pi ) = 

Q
i (P

e(Pi |p)33. If pT i and PiU i j , then pU i U ) = 
Q

i (PiU)e(Pi |p) = 
Q

i (
Q

j Q
e
i j 
(Qi j |Pi ))e(Pi |p). Hence e(Pi |p) = e(Qi j |Pi ))e(Pi |p). 

The formula for the f ’s follows from Corollary 9.7. 
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34. Corollary 9.58 shows that the norm and the trace are the product and sum of 
a + b

p
m and a − b

p
m. Hence they are a2 − b2m and 2a. This proves (a). 

In (b), the minimal polynomial of r = a + b
p
m has degree 2 if b =6 0, and this

is the same as the degree of the field polynomial. Hence the two polynomials are
equal, and the minimal polynomial is X2 − (Tr r)X + N (r). An algebraic integer is 
an algebraic element whose minimal polynomial over Q has integer coefficients, and 
(b) follows.
In (c), if r = a + b

p
m is a unit with inverse s, then N (r)N (s) = N (rs) = 

N (1) = 1 shows that N (r) is a unit with inverse N (s). Conversely if r is in T with 
N (r) = ±1, then r(a − b

p
m) = ±1, and ±(a − b

p
m) is an inverse element in T . 

For (d), 
p
2 − 1 is a unit in the algebraic integers of Q[

p
2]. Its inverse is 

p
2 + 1. 

p p3 335. With respect to the ordered basis 
°
1, 2, ( 2)2

¢
, the matrix of multiplication p p

by a + b 3 2 + c( 3 2)2 is µ a 2c 2b 
∂ 

b a 2c . 
c b a 

The trace and norm are the trace and determinant of this matrix, namely 3a and 
a3 + 2b3 + 4c3 − 6abc. 
36. In (a), if ξ is any number algebraic over Q of degree r , then the norm relative 

to Q(r)/Q of ξ is (−1)r M(0), where M(X) is the minimal polynomial of ξ over 
Q. Since M(1 − (1 − ξ)) = 0, the minimal polynomial of 1 − ξ is the polynomial 
M(1 − X) adjusted so as to be monic. That is, it is P(X) = (−1)r M(1 − X). Hence 
the norm of 1 − ξ is (−1)r P(0) = (−1)2r M(1) = M(1). In the case of the given ≥ ,
the minimal polynomial of ≥ is 8n(X), and therefore the norm of 1 − ≥ is 8n(1). 
For (b), division of both sides of the identity 

Q
d|n 8d (X) = Xn − 1 by X − 1 

gives 
Q

d|n, d>1 8d (X) = Xn−1 + Xn−2 + · · · + 1. Therefore 
Q

d|n, d>1 8d (1) = n. 
If n is a prime power, say with n = pk , let us see by induction on k that 8n(1) = p. 

The base case of the induction is k = 1, and the result of the previous paragraph 
applies. Assuming that 8n(1) = p for n = pk , we have pk+1 = 

Q
l
k
=
+
1
1 8pl (1) = 

8pk+1 (1) 
Q

l
k 
=1 p. Therefore 8pk+1 (1) = p, and the induction is complete. 

Inducting on n, let us now show that 8n(1) = 1 if n is divisible by more than one 
k1 krpositive prime. The base case of the induction is n = 2. Assume that n = p1 · · · pr 

and that the result is known for integers less than n. We may assume that n is divisible 
by at least two positive primes. Then 

r ks
n = 

Q 
8d (1) = 

Q ° Q
8pl (1)

¢ Q
8d (1), sd|n, d>1 s=1 l=1 other d 

where the “other d” are the divisors of n that are divisible by at least two primes. 
These include n itself. So one of the corresponding factors is 8n(1), and the others 
are 1 by the inductive hypothesis. The factor in parentheses is pl

kl by the result of
the previous paragraph, and the product of the factors in parentheses is n. Therefore 
8n(1) = 1, and the induction is complete. 
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37. For (a), the imaginary part of p−1x ± p−1p−1 is not an integer, and therefore p
p−1(x ± −1 ) is not a Gaussian integer. Consequently p does not divide either of p
x ± −1. Since p divides x2 + 1 in Z and hence in Z[

p
−1 ], p is not prime in 

Z[
p

−1 ].
For (b), it follows since p is not prime that p = αβ nontrivially in Z[

p
−1 ]. Then 

p2 = N (p) = N (α)N (β). Problem 34c shows that nontrivial factorization implies 
that N (α) and N (β) are not units. Thus they are both p. If α = a + b

p
−1, then the 

equation p = N (α) says that p = a2 + b2. 
p

38. Let N be the norm function in Q( −2). Since p divides x2 + 2 = p p p
(x + −2 )(x − −2 ) and since neither of p−1(x ± −2 ) is of the form a + b

p
−2 

with a and b in Z, p is not prime in Z[
p

−2]. Write p = αβ nontrivially. Then 
p2 = N ( p) = N (α)N (β) and N (α) = N (β) = p. If α = a + b

p
−2, then 

p = N (α) says that p = a2 + 2b2. 
39. This is similar to Problem 38 except that the members of the ring are of the

1form a+b
p

−3 with a, b in Z or a, b in Z+ 2 . Thus p = N (α) says that p = a2 +3b2 
p

either with a, b in Z or with a, b in Z+ 12 . In the latter case, let ω
±1 = 12 (−1− −3 ). 

These have N (ω±1) = 1. Therefore 
p

p = N (α) = N (αω±1) = N
° 
(a + b

p
−3 )(− 2

1 ± 1 −3 )
¢

2 
p

N
° 1 1= 2 (−a ∓ 3b) + 2 (±a − b) −3 

¢ 

p
= 

° 
2
1 (−a ∓ 3b)

¢2 
+ 3

° 1
2 (±a − b) −3 

¢2 
. 

Since a, b are in Z + 2
1 , one of a + b and a − b is even, and the other is odd, the sum 

2a being odd. If a + b is even, then a − 3b is even since their difference 4b is even, 
and vice versa. Hence one of the two choices of sign exhibits p as c2 + 3d2 with c, d 
in Z. 
40. Write L0 = k(x) by the Theorem of the Primitive Element, and let K be 

a splitting field of the minimal polynomial of x over k. Then K is a finite Galois 
extension of k by Corollary 9.30, and we have k ⊆ L ⊆ L0 ⊆ K. For a in L0 and b in 
L, Corollary 9.58 says that NL0/k(a) = 

Q
σ ∈G/H 0 σ (a), NL/k(b) = 

Q
σ ∈G/H 0 σ (b), 

and NL0/L(a) = 
Q

τ∈H/H 0 τ (a). Hence NL/k(NL0/L(a)) = 
Q

σ ∈G/H σ (NL0/L(a)) = 
Q

σ ∈G/H σ 
°Q

τ∈H/H 0 τ (a)
¢ 

= 
Q

σ ∈G/H 
Q

τ ∈H/H 0 στ (a) = 
Q

σ ∈G/H 0 σ (a) = 
NL0/k(a). The formula for traces follows similarly by replacing the products by
sums in the above computation. 
41. Since P is symmetric, P(Xσ (1), . . . , Xσ (n)) = P(X1, . . . , Xn) for every 

permutation σ . Therefore P(rσ (1), . . . , rσ (n)) = P(r1, . . . , rn) for every σ . Problem 
39e at the end of Chapter VIII implies that P(r1, . . . , rn) = Q(s1, . . . , sn) for a 
polynomial Q(X1, . . . , Xn) in k[X1, . . . , Xn], where s1, . . . , sn are the elementary 
symmetric polynomials in r1, . . . , rn . The elements s1, . . . , sn are the coefficients of 
F(X), up to sign, and hence are in k. Therefore P(r1, . . . , rn) = Q(s1, . . . , sn) is in 
k. 
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42. Inspection of the formula gives H1(X) = 
Qm

i=1 G(X − ri ). For each i , we 
can expand G(X − ri ) in powers of X as 

G(X − ri ) = Xn + bn−1(ri )Xn−1 + · · · + b1(ri )X + b0(ri ), 

and each of bn−1, . . . , b0 is a member of k[X]. Whenwemultiply these for 1 ≤ i ≤ m,
each power of X in the product has a coefficient that is unchanged if we permute 
r1, . . . , rn . Problem 41 says that the coefficient of each power of X is therefore in k. 
Thus H1(X) is in k[X]. A similar argument shows that H2(X) is in k[X]. 
43. For (a), we use F(X) = X2 − 2 and G(X) = X2 − 3 in the previous problem. p

Then 
p
2 + 3 is a root of 
p p p p p p p p

(X − ( 2 + 3 ))(X − ( 2 − 3 ))(X − (− 2 + 3 ))(X − (− 2 − 3 )), 

which must have coefficients in Q. 
44. Proposition 4.40 extends the action by an element σ in Sn uniquely from the 

set {r1, . . . , rn} to k[r1, . . . , rn] fixing k. The extended σ is a one-one homomor-
phism of k[r1, . . . , rn] into itself, hence into k(r1, . . . , rn). It extends uniquely to a 
field mapping of k(r1, . . . , rn) into itself by Proposition 8.6. The homomorphism
corresponding to a composition is the composition of the homomorphisms, and
consequently the homomorphism corresponding to σ −1 is a two-sided inverse of the 
homomorphism corresponding to σ . Thus the extension of σ is an automorphism, as 
required.
Conclusion (a) is immediate from Problem 20a. For (b), since K is generated by 

k and r1, . . . , rn , K is certainly generated by KSn and r1, . . . , rn . We have arranged 
that F(X) splits over K, and hence K is the splitting field. Conclusion (d) follows
from Corollary 9.37 once (c) is proved. Thus we are to prove (c).
The argument for (c) is similar to that in Problem 21. Since F(X) is in KSn , its 

coefficients are in KSn . Thus k(u1, . . . , un) ⊆ KSn . Consequently Corollary 9.37 
gives n! = [K : KSn ] ≤ [K : k(u1, . . . , un)]. Problem 16 shows that the right 
side divides n!. Therefore equality holds throughout, and we see that [K : KSn ] = 
[K : k(u1, . . . , un)]. Since k(u1, . . . , un) ⊆ KSn , we must have k(u1, . . . , un) = 
KSn . 
45. For (a), we have 

c1 = 
P 

θi = 2 
P 

si sj = 2p, 
i i< j 

c2 = 
P 

θi θj = 
P 

si
2sj
2 + 3 

P 
si sj sk (si + sj + sk ) + 6s1s2s3s4, 

i< j i< j i< j<k 

c3 = θ1θ2θ3 = 
P 

si
3sj
2sk + 2s1s2s3s4 

°P 
s2

¢
i

i, j,k i 
unequal 

+ 2 
P 

si
2sj
2sk
2 + 4s1s2s3s4 

° P 
si sj 

¢
. 

i< j<k i< j 
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Part (b) is a calculation with symmetric polynomials and is omitted. For (c), we
have 

θ1 − θ2 = −(s1 − s4)(s2 − s3), 
θ1 − θ3 = −(s1 − s3)(s2 − s4), 
θ2 − θ3 = −(s1 − s2)(s3 − s4). 

The square of the product of the left sides is the discriminant of the cubic resolvent,
and the square of the product of the right sides is the discriminant of the given quartic. 
46. In (a), the subgroups in question are 

H = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} 

and A4. In (b), one considers the possibilities for a Sylow 2-subgroup and is led to
conclude that the only possibilities for the subgroups in question are the powers of a
4-cycle, the dihedral group (generated by H and (1 2 3 4)), and S4. (The group H 
and any 2-cycle generate S4, and thus the dihedral group cannot be generated by H 
and a 2-cycle.) 
47. In (a), the discriminant reduces when q = 0 to 16p4r − 128p2r2 + 256r3 = 

16r(p4 − 8 p2r + 16r2) = 16r( p2 − 4r)2. This is 0 if r = 0 or r = p2/4. If it is 
nonzero, it is a square if and only if r is a square. Hence in all cases it is a square if 
and only if r is a square. 
In (b), let Y = X2. The equation is Y 2 + pY + r = 0, which can be solved with

a square root. For each of the two solutions, we can then solve for X with a square
root. Hence all the roots lie in an extension obtained by adjoining at most three square
roots. Thus [K : Q] divides 8, and |G| divides 8. Consequently G cannot have any 
element of order 3. 
In (c), the irreducibility shows that the possibilities for G are as in Problem 46. 

Since r is a square, the discriminant is a square, by (a). Proposition 9.63 shows that
the possibilities are as in Problem 46a. Part (b) rules out A4, and then (c) follows. 
In (d), r nonsquare and F(X) irreducible implies that G is a transitive subgroup of 

S4 but not a subgroup of A4, by (a). Problem 46b shows that G is S4, or the powers 
of a 4-cycle, or the dihedral group D4. By (b), there is no element of order 3, and S4 
is therefore ruled out. 
48. The polynomial remains irreducible when reduced modulo 2, and a prime

factorization modulo 3 is (X + 2)(X3 + X2 + X + 2). Thus G is a transitive subgroup 
of S4 containing a 3-cycle. The discriminant is 257, not square. By Problem 46b, 
G = S4. 
49. Part (a) is just a computation; the answer is 21234. The factorization in (b)

is routine to check, and the only issue is the irreducibility of the cubic factor. For 
a cubic polynomial, irreducibility follows if the polynomial has no root in the field.
Thus we need only verify that none of 0, 1, 2, 3, 4 is a root modulo 5. 
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For (c), the conclusion of (b) shows that the only possible reducibility over Q is 
into a degree-one factor and a cubic factor. For X4 + 8X + 12 to have a degree-one
factor, it must have a rational root, and this root must be an integer dividing 12. Let 
r be an integer dividing 12. If r is even, then r4 + 8r is divisible by 16, but 12 is not; 
so an even r cannot be a root. We are left with ±1 and ±3 as the possibilities, and 
we check that none of these is a root. 
In (d), F(X) is irreducible, and G is transitive. It is a subgroup of A4 since the 

discriminant is a square. By (b) and Theorem 9.64, G contains a 3-cycle. Problem 
46a shows therefore that G = A4. 

50. We saw in Problem 49 that G = A4 for X4 + 8X + 12, in Problem 47c that 
G = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} for X4 + 1, in Problem 48 that 
G = S4 for X4 + X +1, and via Eisenstein’s criterion that G = C4 for 85(X). Since p
X4 − 2 does not split in Q( 4 2 ), the Galois group in this case cannot be of order 4, 
and Problem 47d shows that G must be D4 in this case. 

51. For (a), let C correspond to a set of polynomials I of degree at most n −1. If C 
is cyclic, then I is at least a vector space over F. If F(X) = c0 +c1 X +· · ·+cn−1 Xn−1 

is in I , then XF(X) = c0 X + c1 X2 + · · · + cn−1 Xn is congruent modulo (Xn − 1) 
to cn−1 + c0 X + · · · + cn−2 Xn−1, which is in I since C is cyclic. Hence I is closed 
under multiplication by X mod (Xn − 1) and hence under arbitrary multiplications 
modulo (Xn − 1). Therefore I is an ideal in F[X]/(Xn − 1). 
Conversely if I is an ideal in F[X]/(Xn − 1), then it is a vector space and is 

closed under multiplication by X mod (Xn − 1) in F[X]/(Xn − 1). If F(X) = 
c0 +c1 X +· · ·+cn−1 Xn−1 is in I , then XF(X) = c0 X +c1 X2 +· · ·+cn−1 Xn mod I 
has to be in I , and the corresponding member of C is (cn−1, c0, c1, . . . , cn−2). Hence 
C is cyclic.
For the remaining parts, we identify the cyclic code C with the corresponding ideal 

I in F[X]/(Xn−1). In (b), let the lowest degree of a member of I be n−k, and let G(X)

be a member of I of this degree. If there is a second member of this same degree,
then their difference has lower degree since both polynomials are monic, and the
difference must be in I , contradiction. Thus G(X) is uniquely defined. Regard G(X)

as a member of F[X] of degree n − k, and let M(X) = GCD(G(X), Xn − 1). Then 
we can choose A(X) and B(X) in F[X] with A(X)(Xn − 1) + B(X)G(X) = M(X). 
Passing to F[X]/(Xn − 1), we have B(X)G(X) ≡ M(X) mod (Xn − 1). Therefore 
M(X) is in the ideal I . Since the degree of M(X) is at most deg G(X) and since 
G(X) has the minimum degree among the nonzero members of I , either M(X) = 0 
or M(X) = G(X). The conclusion M(X) = 0 is ruled out since M(X) is a greatest 
common divisor of nonzero polynomials, and thus M(X) = G(X). Therefore G(X)

divides Xn − 1. 
Let eI be the inverse image of I in F[X]. This is an ideal, it contains G(X), and 

it contains no nonzero element of degree < deg G(X). Since eI has to be principal, 
I = (G(X)). In other words, eI consists of all products of G(X) by a member of e
F[X]. If F(X)G(X) is such a product, then the division algorithm gives F(X)G(X) = 
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B(X)(Xn − 1) + R(X) with R(X) = 0 or deg R < n. Since G(X) divides Xn − 1,
G(X) divides R(X). Therefore every member of eI is congruent modulo Xn − 1 to a 
product G(X)S(X) that is 0 or has degree < n. Then (c) is clear. 
For (d), (b) showed that G(X) divides Xn −1 in F[X]. Write Xn −1 = G(X)H(X). 

If B(X) in F[X]/(Xn −1) corresponds to a member of C , then (b) shows that B(X) = 
F(X)G(X) for some F(X) in F[X]. Multiplying by H(X) gives B(X)H(X) = 
F(X)G(X)H(X) = F(X)(Xn − 1). Hence B(X)H(X) ≡ 0 mod (Xn − 1). Con-
versely if B(X)H(X) = A(X)(Xn − 1), then B(X)H(X) = A(X)G(X)H(X), and 
B(X) = A(X)G(X). 
52. In (a), if r1, r2, r3 denote the rows and if v1 = r1 + r3, v2 = r2, and v3 = r3,

then v1, v2, v3 form a basis for the row space, and they cycle into one another when
the columns are shifted in cyclic fashion. Consequently the code is cyclic. Part (b)
involves looking at the 7 nonzero members of the space, and one can just do that
directly.
In (c), one such matrix is 

 
0 0 0 1 1 0 1 

 

0 0 1 1 0 1 0 H =  . 
0 1 1 0 1 0 0 
1 1 0 1 0 0 0 

A little check shows that the matrix product HG t is the 4-by-3 zero matrix, and hence 
Hv = 0 for each v in C . Thus C is contained in the null space of H. The rank of H 
is 4 since the rows are certainly linearly independent. Since the sum of the rank and
the dimension of the null space is the number of columns, namely 7, the dimension
of the null space is 3. Therefore the null space is C and is no larger. 
For (d), the general matrix H is to have n columns and n − k rows. The entries 

of the top row are the coefficients of H(X) with the constant term at the right, the 
coefficient of X in the next-to-last position, and so on. In each successive row these
coefficients are shifted one position to the left.
Let G(X) = g0 + g1 X + · · · + gn−k Xn−k and H(X) = h0 + h1 X + · · · + Xk . 

We know that {0, XG(X), X2G(X), . . . , Xk−1G(X)} is a basis of C . In terms of 
members of Fn the l th such vector has the entries g0, g1, . . . , gn−k beginning in the 
l th position. The (1, j)th entry of H is hn− j with 0’s elsewhere in the row, and the 
(i, j)th entry is hn− j−i+1 with 0’s elsewhere in the row. The product of the i th row of 
H and the l th basis vector of C is 

Pn
j=
−
n
i+
−
1 
k−i+1 hn− j−i+1gj−l , which is the coefficient 

of Xn−i+1−l in G(X)H(X). Here 1 ≤ i ≤ n −k and 1 ≤ l ≤ k, so that 2 ≤ i +l ≤ n. 
Thus the power of X in question varies from 1 to n − 1. Since G(X)H(X) = Xn − 1,
the coefficient is 0. Thus C lies in the null space of H. The same argument with rank 
as in the previous paragraph shows that C is exactly the null space. 
53. Since Xn − 1 has derivative nXn−1, we have GCD(Xn − 1, nXn−1) = 1 when 

n is odd. Lemma 9.26 then shows that Xn−1 is separable. If n is even, write n = 2k. 
Then Xn − 1 = (Xk − 1)2 in characteristic 2 by Lemma 9.18, and hence every root 
has multiplicity at least 2. 
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54. In (a), we have 0 = P(α j ) = c0 + c1α j + c2α2 j + · · · + cn−1α(n−1) j for 
r ≤ j ≤ r + s, and therefore the column vector (c0, c1, . . . , cn−1) satisfies 

 
αr α2r α(n−1)r  c0   0  

··· c1 0 
αr+1 α2(r+1) α(n−1)(r +1)···  c2 

 
0 


. 
 = 

.. 
 


.
. 







.. 
 . 

. 
. 

αr+s α2(r+s) α(n−1)(r +s)··· cn−1 0 

In (b), since s + 1 ≤ n, the number s + 1 of rows is ≤ the number n of columns. 
Any square submatrix of size s + 1 is a Vandermonde matrix after factoring a power 
of α from each column and transposing, and the determinant of the square submatrix
is therefore the product of a power of α and the differences αr+ j − αr+i with j > i . 
Since α is nonzero and since two powers of α can be equal only when the exponents 
differ by a multiple of n, the determinant of the square submatrix is nonzero. 
In (c), suppose that s + 1 or fewer of the coefficients c0, c1, . . . , cn−1 are nonzero. 

Choose s + 1 of them, say cij for 1 ≤ j ≤ s + 1, such that the remaining ones are 0.
If we discard the others from the matrix equation in (a) and discard the corresponding
columns of the coefficient matrix, then the matrix equation is still valid since we have
discarded only 0’s from the given equations. The resulting system is square with an
invertible coefficient matrix, and hence the unique solution has cij = 0 for all j . But 
then P(X) = 0, in contradiction to the assumption that F(X) 6= 0. 
In (d), if some nonzero member P(X) of C has weight less than s + 2, then (c) 

leads to a contradiction. Hence every nonzero weight is ∏ s + 2, and δ(C) ∏ s + 2. 
55. Since α is a root of Xn − 1, so is every α j . Since Fj is the minimal polynomial 

of α j , Fj divides Xn − 1. Also, 1 + X = X − 1 divides Xn−1, and no Fj equals
X − 1, since α j 6= 1 for 1 ≤ j ≤ 2e when 2e < n. Therefore G(X) divides Xn − 1. 
Applying Problem 54 with r = 0 and s = 2e, we see that the code C generated by 
G(X) has δ(C) ∏ s + 2 = 2e + 2. 
56. In (a), if an irreducible polynomial F(X) of degree d has a root β in K, then 

K ⊇ F(β) ⊇ F, and [F(β) : F] = d must divide [K : F] = m. In the previous 
problem it follows that each Fj (X) has degree dividing m, hence degree ≤ m. The 
worst case for the degree of G(X) is that the LCM equals the product, and then the 
degree of G(X) is the sum of 1 (from 1 + X) and the sum of the degrees of the 
Fj (X)’s. Hence deg G ≤ 2em + 1 in all cases. 
In (b), let nr = 2r − 1, and let K be a field with 2r elements. Theorem 9.14 shows 

that K is a splitting field for X2r − X over F. Hence it is a splitting field for Xnr − 1 
over F. Let e = r , so that e < nr /2 as soon as r ∏ 3. Using this e in the previous 
problem, we obtain a cyclic code Cr in Fnr with δ(Cr ) ∏ 2r + 2. According to (a), 
the generating polynomial Gr (X) has degree at most 2er + 1 = 2r2 + 1. Therefore 
kr = dim Cr = nr − deg Gr ∏ nr − 2r2 − 1 = 2r − 2r2 − 2. Then kr /nr tends to 1, 
and δ(Cr ) tends to infinity, as required. 
57. In (a), the polynomial F1(X) splits over K because every finite extension of 

a finite field is Galois. The Galois group Gal(K/F) consists of the powers of the 
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Frobenius isomorphism x 7→ x2, by Proposition 9.40, and is transitive on the roots 
of F1(X), by Problem 13a. Hence all the roots are of the form α2

k , and all these 
elements are roots. Taking k = 0, 1, 2, 3, we get distinct roots, which is necessary 
since K/F is separable.
For (b), we start from 1 + α + α4 = 0 and compute the powers of α in terms of 

1, α, α2 ,α3. The interest is in only the powers α0 ,α3 ,α6 ,α9 ,α12, but some of the 
intermediate powers help in the computation. We have 

3 3α = α , 

α4 = 1 + α, 
5 2α = α + α , 
6 2 3α = α + α , 
9 3 6 3 2 3 5 6 3α = α α = α (α + α ) = α + α = α + α , 
12 2 3 2 4 6 2 3α = (α + α ) = α + α = 1 + α + α + α . 

Then we form the equation a + bα3 + cα6 + dα9 + α12 = 0, substitute from above,
and equate coefficients. The result is a homogeneous system of four linear equations
with five unknowns in F. Solving, we find that the space of solutions is 1-dimensional 
with a = b = c = d = e. Therefore the minimal polynomial of α3 has degree 4 and 
is 1 + α + α2 + α3 + α4. 
In (c), we apply Problem 55 with n = 15 and e = 2. Part (a) shows that F1 = 

F2 = F4, and part (b) computed F3 as something else of degree 4. Therefore G(X) = 
(1+ X)LCM(F1, F2, F3, F4) = (1 + X)LCM(F1 F3) = (1+ X)F1(X)F3(X), which 
has degree 9. Then dim C = 15 − 9 = 6, and Problem 55 gives δ(C) ∏ 2e + 2 = 6. 
59. In (a), Problems 12–13 are applicable when the scalars are extended to K 

because the minimal polynomial becomes a product of first-degree factors. The 
existence in the conclusion is immediate by applying (a) through (d) in Problem 12
to L ⊗ 1, and the uniqueness is immediate from Problem 13.
In (b), fix a basis {vi } of V over k. Any member of V K has a unique expansion as P
i (vi ⊗ ci ) with each ci in K. Since ϕ(1) = 1, application of the given identity to 

v ⊗ 1 gives 
T (v ⊗ 1) = T (1 ⊗ ϕ)(v ⊗ 1) = (1 ⊗ ϕ)T (v ⊗ 1). 

If we expand T (v ⊗ 1) as 
P

i (vi ⊗ ci ), the displayed equation says that 

P
i (vi ⊗ ci ) = (1 ⊗ ϕ) 

P
i (vi ⊗ ci ) = 

P
i (vi ⊗ ϕ(ci )). 

Hence ϕ(ci ) = ci for all i . Since ϕ is arbitrary, Theorem 9.38 implies that ci is in k 
for all i . Thus 

P
i (vi ⊗ ci ) is in V . If we write T v for this element of V , then T is a 

k linear map of V to itself such that T = T ⊗ 1. 
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In (c), we multiply the identity L ⊗ 1 = S + N on the left by 1 ⊗ ϕ−1 and on the 
right by 1 ⊗ ϕ to obtain 

L ⊗ 1 = (1 ⊗ ϕ−1)(L ⊗ 1)(1 ⊗ ϕ) = (1 ⊗ ϕ−1)S(1 ⊗ ϕ) + (1 ⊗ ϕ−1)N (1 ⊗ ϕ). 

The equation 
° 
(1⊗ϕ−1)N (1⊗ϕ)

¢n 
= (1⊗ϕ−1)N n(1⊗ϕ) shows that N is nilpotent. 

Since 
° 
(1 ⊗ ϕ−1)S (1 ⊗ ϕ)

¢°
(1 ⊗ ϕ−1)N (1 ⊗ ϕ)

¢ 
= (1 ⊗ ϕ−1)SN (1 ⊗ ϕ) = 

(1 ⊗ ϕ−1)NS(1 ⊗ ϕ) = 
° 
(1 ⊗ ϕ−1)N (1 ⊗ ϕ)

¢°
(1 ⊗ ϕ−1)S(1 ⊗ ϕ)

¢
, the maps 

(1 ⊗ ϕ−1)S(1 ⊗ ϕ) and (1 ⊗ ϕ−1)N (1 ⊗ ϕ) commute. Finally if 
P

i (vi ⊗ ci ) is 
an eigenvector of S with eigenvalue ∏, we have S 

°P
i vi ⊗ ci )

¢ 
= 

P
i vi ⊗ ∏ci . 

Therefore (1 ⊗ ϕ−1)S(1 ⊗ ϕ) 
°P

i (vi ⊗ ϕ−1(ci ))
¢ 

= (1 ⊗ ϕ−1) 
P

i (vi ⊗ ∏ci ) = P
i (vi ⊗ϕ−1(∏)ϕ−1(ci )), and 

P
i (vi ⊗ϕ−1(ci )) is an eigenvector of (1⊗ϕ−1)S(1⊗ϕ) 

with eigenvalue ϕ−1(∏). Then it follows that (1 ⊗ ϕ−1)S(1 ⊗ ϕ) has a basis of 
eigenvectors. By uniqueness of the decomposition L ⊗ 1 = S + N, we must have 
(1 ⊗ ϕ−1)S(1 ⊗ ϕ) = S and (1 ⊗ ϕ−1)N (1 ⊗ ϕ) = N. Since ϕ is arbitrary in 
Gal(K/k), (b) shows that S = S ⊗ 1 and N = N ⊗ 1. 
In (d), (Nn ⊗1) = (N ⊗1)n = N n , and N nilpotent implies N nilpotent. Similarly 

SN = NS implies SN = NS. Then the fact that SK = S ⊗ 1 = S has a basis of 
eigenvectors implies that S is semisimple. 
In (e), S ⊗ 1 and N ⊗ 1 can be expressed uniquely as polynomials in L ⊗ 1 that 

are 0 or have degree less than the degree of the minimal polynomial of L ⊗ 1; the 
coefficients of these polynomials are in K. Application of a member ϕ to a polynomial 
expression S⊗1 = P(L ⊗1) just affects the coefficients and gives another polynomial 
expression for S unless ϕ fixes each coefficient. By uniqueness and Theorem 9.38,
we see that the coefficients are in k. A similar argument applies to N ⊗ 1. 
60. This is proved by the same argument as for Problem 13 in Chapter V. 
61. The splitting field for the minimal polynomial is C. According to the procedure

in the solution of Problem 59, we are first supposed to find a decomposition over C. 
In a suitable basis we know that A is the sum of a diagonal matrix and a strictly upper
triangular matrix, and this is the Jordan–Chevalley decomposition. Section V.6 shows
how to find the Jordan form and the basis over C in which it is realized. We transform 
the D and N back separately to find the semisimple and nilpotent components of A 
relative to the standard basis. The result is that 

 
0 −1 0 1/2 

  
0 0 0 −1/2 

 

1 0 1/2 0 0 0 1/2 0S = and N = 
0 0 0 −1 

  
0 0 0 0 

 . 

0 0 1 0 0 0 0 0 

62. In (a), if there were a basis of eigenvectors over K, then the fact that the 
eigenvalues are equal would mean that A is similar to a scalar matrix. This is 
manifestly not so. Thus A is not semisimple. 
In (b), a matrix 

≥ 
a b 

¥ 
that commutes with A is necessarily of the form 

° a cx ¢
c d c a 

and has characteristic polynomial X2 + a2 + c2x since the characteristic is 2. If the 
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characteristic polynomial reduces to 0, and then a = c = 0. In this case, A is the 0 
matrix. 
In (c), suppose that A = S + N is a Jordan–Chevalley decomposition. Then (a) 

says that A is not semisimple and hence cannot be S. On the other hand, (b) says 
that N has to be 0 and therefore that A = S is the only possibility. The result is a 
contradiction, and thus there is no Jordan–Chevalley decomposition. 
63. This comes down to what is happening in Problem 12 in Chapter V. In terms

of matrices, the problem reduces to the case that a square matrix A is upper triangular 
with a certain nonzero scalar c in every diagonal entry. Then D = cI , and U is taken 
to be D−1 A. 
64. In (e), for characteristic p > 0, −1 is the sum of p − 1 copies of 1. Hence k 

cannot be formally real. 
65. In (e), we have (b−1 − a−1)ab = a − b. The right side is in P , and so are 

a and b. Thus the remaining factor, b−1 − a−1, has to be in P . In (f), the sum of 
a(c−d) > 0 and (a −b)d > 0 is ac−bd > 0. In (g), expansion of (a −b)(c−d) > 0 
gives ac + bd > ad + bc. 

66. The definition is that am xm +···+a0 is positive if amb−1 is in P . It is routine bnxn +···+b0 n 

to check that the set P 0 of positive elements of k(x) is closed under addition and 
multiplication, and certainly every nonzero element is in exactly one of P 0 and −P 0. 
67. In (a), one ordering has a + b

p
2 in P if a + b

p
2 > 0 in the ordinary sense, p

and the other has a + 2 in P if a − b
p
2 > 0 in the ordinary sense. 

In (b), for any element a + b
p
c with a2 > b2c, define a + b

p
c to be in P 0 if and 

only if a is in P . For any element a + b
p
c with b2c > a2, define a + b

p
c to be 

in P 0 if and only if b is in P . The only element left undecided by this process is 0, 
which is not to be in P 0. The elements a + b

p
c in P 0 with a2 > b2c will be said to 

be of type I, while those with a2 < b2c will be said to be of type II. It is clear that 
each nonzero element x of K is in exactly one of P 0 and −P 0, and we have to verify 
that P 0 is closed under addition and multiplication.
The verification is a little complicated. It uses parts (f) and (g) of Problem 65

repeatedly. Consider addition. There are cases. Case 1 is that a + b
p
c and a0 + b0pc 

are in P 0 with both of type I. If the sum is of type II, then addition of a2 > b2c, 
a02 > b02c, and (b + b0)2c > (a + a0)2 gives bb0c > aa0 upon cancellation. Squaring 
and taking into account that aa0 > 0, we obtain (b2c)(b02c) > a2a02. On the other 
hand, a2 > b2c and a02 > b02c together imply a2a02 > (b2c)(b02c), contradiction. 
Thus the sum is of type I. Since a and a0 are in P , so is a + a0. Thus the sum is in P 0. 
Case 2 is that a + b

p
c and a0 + b0pc are in P 0 with both of type II. If the sum is 

of type I, then addition of a2 < b2c, a02 < b02c, and (b + b0)2c < (a + a0)2 gives 
bb0c < aa0 upon cancellation. Squaring and taking into account that bb0 > 0, we 
obtain (b2c)(b02c) < a2a02. On the other hand, a2 < b2c and a02 < b02c together
imply a2a02 < (b2c)(b02c), contradiction. Thus the sum is of type II. Since b and b0 

are in P , so is b + b0. Thus the sum is in P 0. 
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Case 3 is that a + b
p
c is of type I and a0 + b0pc is of type II (or vice versa).

The argument now depends on the type of the sum. Case 3A is that the sum is of
type I. Adding a2 > b2c, b02c > a02, and (a + a0)2 > (b + b0)2c and canceling gives 
a(a + a0) > b(b + b0)c. We want to see that a + a0 > 0. If a + a0 < 0, then the left
side is negative, and hence both sides are negative. Thus the squares of the two sides

2are related in the opposite order: a2(a + a0) < b2(b + b0)2c2. Here the right side is 
< a2(b + b0)2c, and we get (a + a0)2 < (b + b0)2c, in contradiction to the fact that 
the sum is of type I. So a + a0 is > 0, and the sum is in P 0. Case 3B is that the sum 
is of type II. Adding a2 > b2c, b02c > a02, and (b + b0)2c > (a + a0)2 and canceling 
gives b0(b + b0)c > a0(a + a0). We want to see that b + b0 > 0. If b + b0 < 0, then
both sides are negative. Thus the squares of the two sides are related in the opposite
order: b02(b + b0)2c2 < a02(a + a0)2. Here the right side is < b02c(a + a0)2, and 
thus (b + b0)2c < (a + a0)2, in contradiction to the fact that the sum is of type II. So 
b + b0 is > 0, and the sum is in P 0. 
This completes the verification that P 0 is closed under addition. We now consider 

multiplication, again dividing matters into cases. Case 1 is that a +b
p
c and a0+b0pc 

are in P 0 with both of type I. Applying Problem 65g to the inequalities a2 > b2c and 
a02 > b02c, we obtain a2a02 +b2b02c2 > a2b02c+a02b2c, which says that the product 
is of type I. We are to show that aa0 + bb0c is > 0. From a2 > b2c and a02 > b02c,
we obtain 0 < a2a02 − b2b02c2 = (aa0 + bb0c)(aa0 − bb0c). Thus aa0 + bb0c and 
aa0 − bb0c are both > 0 or both < 0, and they are the same as their sum, which is 
2aa0. Since a and a0 are in P , we have aa0 > 0, we conclude that the product is in 
P 0. 
Case 2 is that a + b

p
c and a0 + b0pc are in P 0 with both of type II. Applying 

Problem 65g to the inequalities b2c > a2 and b02c > a02, we obtain a2a02 +b2b02c2 > 
a2b02c+a02b2c, which says that the product is of type I. We are to show that aa0+bb0c 
is > 0. From a2 < b2c and a02 < b02c, we see that 0 < b2b02c2 − a2a02 = 
(bb0c + aa0)(bb0c − aa0). Thus bb0c + aa0 and bb0c − aa0 are both > 0 or both < 0,
and they are the same as their sum, which is 2bb0. Since b and b0 are in P , we have 
bb0 > 0, we conclude that the product is in P 0. p
Case 3 is that a + b

p
c is of type I and a0 + b0 c is of type II (or vice versa). From 

(a2 − b2c)(b02c − a02) > 0, we obtain c(a02b2 + a2b02) > a2a02 + b2b02c2. Addition 
of 2aa0bb0c to both sides yields (ab0 + a0b)2c > (aa0 + bb0c)2, an inequality that 
shows the product to be of type II. To show that the product is in P 0, we are to show 
that ab0 + a0b > 0. The product of a2 > b2c and b02c > a02 gives a2b02 > b2a02 

upon cancellation of c, c being positive. Then (ab0 + ba0)(ab0 − ba0) > 0, and the 
two factors have the same sign. Now a > 0 and b0 > 0 since the given elements 
are in P 0. Thus ab0 > 0. Arguing by contradiction, suppose that ab0 < ba0. Then 
ab0 > 0 implies (ab0)2 < (ba0)2, in contradiction to a2b02 > b2a02. We conclude 
that ab0 > ba0, hence that ab0 − ba0 > 0. Thus ab0 + ba0 > 0, as required. 
These steps complete all the verifications that P 0, as we have defined it, is a positive 

system. It remains to define a second version of P 0 and to carry out the verifications 
for it. For the definition, there is no change if a2 > b2c, but if b2c > a, then a + b

p
c 
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is to be in P 0 if and only if −b is in P . The verifications are essentially unchanged 
except that the roles of b and −b are interchanged throughout. 
68. In (a), the integer n, if it exists, cannot be 0 because k is formally real by pProblem 64d. So n ∏ 1. We write ξj = aj + bj cn with each aj and bj in p pk( c1, . . . , cn−1 ) and expand out the squares. p pIn (b), let k0 = k( c1, . . . , cn−1 ). If the coefficient of 

pcn is 0, then (∗)

becomes an equality in k0 that exhibits k0 as not formally real, in contradiction to the 
definition of n. If the coefficient of pcn is not 0, then (∗) exhibits pcn as a member of 
k0, again in contradiction to the definition of n. The conclusion is that K is formally 
real. 
69. Order the formally real subfields of k by inclusion upward. The set of such 

subfields is nonempty since k is one. The union of a chain of such subfields is again
such a subfield because any expression of a sum equal to −1 has to be valid in a finite 
such union. By Zorn’s Lemma, there is a maximal element K. By maximality, K is 
a real closed field. 

p
70. In (a), if c is not a square in k, then k( c ) is a proper algebraic extension p

of k. Since k is maximal among formally real subfields of k, k( c ) is not formally p
real. Therefore −1 is a sum of squares in k( c ), as indicated. 
In (b), expansion gives −1 = 

P 
a2j +c 

P 
b2j +2

p
c 

P 
ajbj . Equating coefficients 

of 1 and 
p
c shows that −1 = 

P 
aj
2 + c 

P 
b2j . We cannot have 

P 
b2j = 0 because 

otherwise we would have −1 = 
P 
aj
2 and k would not be formally real. Thus 

−c = (1 + 
P 
a2j )/ 

P 
b2j , and −c is exhibited as a sum of squares, hence a member 

of P . Thus if c is not a square in k, then c cannot be a sum of squares in k. The 
contrapositive is: every sum of squares in k is a square in k. 
In (c), the equality −c = (1 + 

P 
a2j )/ 

P 
b2j , in view of (b), exhibits −c as the 

quotient of two squares, hence as a square.
In (d), let P be the set of nonzero squares. We see from (a) through (c) that every

nonzero element is in P or in −P . By (b), every sum of squares is a square; thus 
P is closed under addition. It is clear that P is closed under multiplication. Thus F 
becomes an ordered field. Problem 64b shows that every nonzero square has to be in
P , and thus P is the only possibility for the set of positive elements. 
71. In (a), let n be the least odd positive integer such that some polynomial over 

k of degree n has no root in k. If this polynomial were reducible, some factor of it
would have smaller odd degree and would have a root. So the polynomial in question
has to be irreducible. 
In (b), if −1 is a sum of squares in k(α), then we have −1 = 

Pk
j=1 Rj (α)2 

for suitable polynomials Rj (X) in k[X], necessarily of degree ≤ n − 1. In other 
words, 

Pk
j=1 Rj (X)2 + 1 is a member of k[X] that vanishes at α. Since Q(X) 

is the minimal polynomial of α, Q(X) divides 
Pk

j=1 Rj (X)2 + 1, and we obtain 

−1 = 
Pk

j=1 Rj (X)2 + Q(X)A(X) for a suitable polynomal A(X) in k[X] of degree 
≤ n − 2. 
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In (c), the equality of the coefficients of X2n−2 in the polynomial identity of (b) 
shows that the −1 equals the sum of squares of the leading coefficients of the Rj ’s 
plus the coefficient of Xn−2 in A(X). The coefficient of Xn−2 in A(X) cannot be 0, or 
else −1 would be exhibited as a sum of squares in k. Thus A(X) has degree exactly 
n − 2, which is odd. The inductive hypothesis applies to A(X) and says that A(X)

has a root r . We evaluate the polynomial identity from (b) at r , take into account that 
A(r) = 0, and obtain −1 = 

Pk
j=1 Rj (r)2. Again we have a contradiction to the fact 

that k is formally real, and thus the minimal integer n in (a) cannot exist. 
72. The indicated proof goes through without essential change. 

73. Problem 68 shows that k is contained in a certain formally real subfield L of k,
Problem 69 shows that L is contained in a real closed subfield K of k, and Problem 70 
shows that K becomes an ordered field. The set of positive elements for K includes 
all squares by Problem 64b, and all the members of k in P have become squares in 
L by definition of L. Therefore all members of P are squares in K. The fact that p
k = K( −1 ) follows from Problem 72. 

Chapter X 

1. If R is a field, then the only ideals are 0 and R, and they certainly satisfy the
descending chain condition. Conversely if the ideals satisfy the descending chain
condition, then there is a minimal nonzero ideal I . Fix m 6= 0 in I . For any nonzero 
element a ∈ I , Ra = 6I since I is a simple module. If x = 0 is in R, we apply this 
observation to xm, which is nonzero since R is an integral domain. Since Rxm = I ,
there exists y in R with yxm = m. Then (1 − yx)m = 0. Since R is an integral 
domain and m 6 = 0. Therefore y = x−1= 0, we obtain 1 − yx . 

≥ 
1 0 

≥ 
1 1 

¥
2. In (a), let C2 = {±1}. Define r(1) = 

¥ 
and r(−1) = . Then r0 1 0 1 

is a representation since 1 + 1 = 0 in F. The subspace U = F 
≥ 
1 
¥ 
is invariant. 0

If there were a complementary invariant subspace, there would be an eigenvector of 
r(−1) not in U . However, the roots of the characteristic polynomial are both 1, and a
second eigenvector would mean that r(−1) is the identity, which it is not. For (b), the 
representation in (a) makes F2 into a unital left R module, the R submodules being 
the invariant subspaces. There is no complementary R submodule to U , and hence 
F2 is not semisimple as an R module. 
3. If {as } is a set of generators of M as a right R module and {bt } is a set of 

generators of N as a left R module, then {as ⊗ bt } is a set of generators of M ⊗R N 
as an abelian group. Then (a) follows from this fact and the fact that 1 generates both 
Z/kZ and Z/ lZ. 
In (b), if l = dk for some d and if b has b = qk + r with 0 ≤ r < |k|, then 

a1 ⊗ b1 = aqk(1 ⊗ 1) + (a1 ⊗ r1) = aq(k1 ⊗ 1) + (a1 ⊗ r1) = a1 ⊗ r1, and it 
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follows that the map a1⊗b1 7→ a1⊗(b mod k)1 is a well-defined group isomorphism 
of (Z/kZ) ⊗Z (Z/ lZ) onto (Z/kZ) ⊗Z (Z/kZ). 
In (c), let b(x1, y1) = xy mod k for x, y ∈ Z/kZ. This is Z bilinear from 

Z/kZ×Z/kZ into Z/kZ and extends to a group homomorphism L : Z/kZ⊗Z Z/kZ 
→ Z/kZ with L(x1 ⊗ y1) = xy mod k. In particular, L(1 ⊗ 1) = 1 mod k. 
Therefore k divides the order of 1 ⊗ 1, and Z/kZ × Z/kZ has at least |k| elements. 
In (d), we have 0 = k1 ⊗ 1 = k(1 ⊗ 1) and 0 = 1 ⊗ l1 = l(1 ⊗ 1). If xk + yl = d,

then d(1 ⊗ 1) = x(k(1 ⊗ 1)) + y(l(1 ⊗ 1)) = 0. Hence 1 ⊗ 1 has order dividing d. 
By (c), 1 ⊗ 1 has order at least |d|. The result follows. 
4. In (a), each ker ϕn is an R submodule of M , and these R submodules form 

an ascending chain. Hence they are the same from some point on. Similarly each
image ϕn is an R submodule of M , and these form a descending chain. Hence they 
are the same from some point on.
In (b), if x is in K ∩ I, then ϕN x = 0 and x = ϕN y for some y. Then 0 = ϕN x = 

ϕ2N y. Since y is in ker ϕ2N = ker ϕN , we obtain 0 = ϕN y = x , and x = 0. 
In (c), if x is in M , then ϕN x is in image ϕN = image ϕ2N . Hence ϕN x = ϕ2N z = 

ϕN (ϕN z) for some z ∈ M , and ϕN x = ϕN y with y = ϕN z. 
For (d), if x is in M , let y be as in (c), and write x = (x − y) + y. Then 

ϕN (x − y) = ϕN x − ϕN y = 0 and y = ϕN z show that x − y is in K and y is in I. 
Thus M = K + I. Since K ∩ I = 0 by (b), M = K ⊕ I. 
In (e), we know that ϕ(image ϕn) = image ϕn+1 for all n. Taking n > N , we see 

that ϕ(I ) = I. From (b), ker(ϕ
Ø
Ø
I) ⊆ K ∩ I = 0. Therefore ϕ is one-one from I 

onto itself. In addition, ϕ(ker ϕn) ⊆ ker ϕn−1 for all n. Taking n > N shows that 
Nϕ(K) ⊆ K. For x in K, we have ϕN x = 0. Therefore (ϕ

Ø
Ø
K) = 0. 

5. If (i) holds, then √
Ø
Ø
N 0 is one-one from N 0 onto P . Let σ be its inverse. Then 

σ : P → N 0 is one-one with √σ = 1P . So (ii) holds. 
If (ii) holds, then any n in N has the property that n −σ√(n) has √(n −σ√(n)) = 

√(n) − 1P √(n) = 0 and is therefore in image ϕ. Write n − σ√(n) = ϕ(m) for 
some m depending on n; m is unique since ϕ is one-one. If τ : N → M is defined 
by τ (n) = m, then τ is an R homomorphism by the uniqueness of m. Consider 
τ (ϕ(m)) for m in M . The element n = ϕ(m) has n − σ√(n) = ϕ(m) − σ √ϕ(m) = 
ϕ(m) − σ (0) = ϕ(m), and the definition of τ says that τ (ϕ(m)) = m. Hence 
τϕ = 1M , and (iii) holds.
If (iii) holds, then N 0 = ker τ is an R submodule of N . If n is in N 0 ∩ image ϕ,

then n = ϕ(m) for some m ∈ M and also 0 = τ (n) = τϕ(m) = 1M (m) = m. So 
n = 0, and N 0 ∩ image ϕ = 0. If n ∈ N is given, write n = (n − ϕτ (n)) + ϕτ (n). 
Then ϕτ (n) is certainly in image ϕ, and τ (n − ϕτ (n)) = τ (n) − 1M τ (n) = 0 shows 
that n − ϕτ (n) is in N 0. Therefore N = N 0 ⊕ image ϕ. Since image ϕ = ker √ , we 
see that N = N 0 ⊕ ker √ and that (i) holds. 
6. For (a), the conjugation mapping C on R, carrying 1 to itself and carrying i, j,

and k to their negatives, respects addition and satisfies C(xy) = C(y)C(x). Hence 
it exhibits R and Ro as isomorphic. Then the result follows from Proposition 10.14. 
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For (b), again by Proposition 10.14, we need a noncommutative ring R with identity 
such that R is not isomorphic to Ro. Let F be a field with two elements, and let R 

be the 8-element ring consisting of all matrices 
≥ 
a b 

¥ 
with a, b, c in F. Define x0 c

to be the matrix with a = 1 and b = c = 0, and define y to be the matrix with 
b = 1 and a = c = 0. Computation shows that x2 = x , y2 = 0, xy = y, and 
yx = 0. A ring isomorphism of R with Ro is the same as an additive isomorphism
that reverses the order of multiplication, and we call this an “antiautomorphism” of
R. Suppose that an antiautomorphism ϕ of R exists. We must have ϕ(1) = 1. 
Suppose that ϕ(x) = u and ϕ(y) = v. Then u = ϕ(x) = ϕ(x2) = ϕ(x)2 = u2 and 

20 = ϕ(y2) = ϕ(y)2 = v . Expanding u and v in terms of the basis {1, x, y} and 
computing, we find that u = k1 + lx and v = my with k, l, m in F. Since ϕ reverses 
the order of multiplication, we have uv = ϕ(x)ϕ(y) = ϕ(yx) = ϕ(0) = 0. Thus 
0 = (k1 + lx)(my) = km1 + lmxy = (km)1 + (lm)y, and km = lm = 0. Therefore 
either m = 0 or k = l = 0. In the first case, ϕ(y) = v = my = 0; in the second case 
ϕ(x) = u = k1 + lx = 0. In either case, ϕ fails to be one-one. We conclude that no 
antiautomorphism ϕ of R exists. 
7. Take the sum of all simple R submodules of M . 
8. Example 4 in Section 5 shows that A ⊗F K is a vector space over K in such a 

way that k0(a ⊗ k) = a ⊗ k0k. It is therefore enough to show that the multiplication 
is K linear in each variable of the product. Additivity is known, and it is enough to
check that k0 

° 
(a1 ⊗k1)(a2 ⊗k2)

¢ 
= 

°
k0(a1 ⊗k1)

¢
(a2 ⊗k2) = (a1 ⊗k1) 

°
k0(a2 ⊗k2)

¢
. 

Since scalar multiplication by k0 equals left multiplication by 1 ⊗ k0, the left equality
is immediate from associativity of multiplication, and the right equality follows from
associativity and from the formula (a1 ⊗ k1)(1 ⊗ k0) = a1 ⊗ k1k0 = a1 ⊗ k0k1 = 
(1 ⊗ k0)(a1 ⊗ k1). 
9. Define µ(x)(y) = [x, y] for x and y in g, and let ∫(c)(d) = cd for c and d in L. 

Then µ(x) : g → g and ∫(c) : L → L are K linear. Therefore b(x, c) = µ(x) ⊗∫(c)
is K bilinear from g × L into the K vector space EndK(g ⊗K L), and it extends to a 
K linear mapping L : g ⊗K L → EndK(g ⊗K L). Define [X, Y ] = L(X)(Y ). 
With the Lie algebra multiplication now well defined in g⊗K L, one readily checks 

the two required properties. Therefore g ⊗K L is a Lie algebra over K satisfying the 
two required identities.
Meanwhile, we know that g ⊗K L is a vector space over L because of a change of

rings. To complete the proof, we need to show that the multiplication is L linear, not 
just K linear. It is enough to check L linearity in the second variable because of the 
alternating property. Let s be in L, and let x ⊗ c and y ⊗ d be elements of g ⊗K L. 
Then we have [x ⊗ c, s(y ⊗ d)] = [x ⊗ c, y ⊗ sd] = [x, y] ⊗ csd = s([x, y] ⊗ cd) = 
s[x ⊗ c, y ⊗ d]. Forming K linear combinations, we obtain the desired L linearity
in the second variable of the Lie algebra product. 
10. This problem will follow from the uniqueness of the tensor product as given in

Theorem 10.18 if it is shown that ((A ⊗Z B)/H, qb2) is a tensor product of A and B 
over R. Thus let β : A× B → G be an R bilinear function from A× B into an abelian 
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group G. Since β is automatically Z bilinear, there exists a group homomorphism 
ϕ : A ⊗Z B → G such that ϕ(a ⊗ b) = β(a, b) for all a ∈ A and b ∈ B. Then 
ϕ(ar ⊗ b − a ⊗ rb) = ϕ(ar ⊗ b) − ϕ(a ⊗ rb) = β(ar, b) − β(a, rb). The right side 
is in H , and hence ϕ descends to a group homomorphism ϕ : (A ⊗Z B)/H → G 
such that ϕq = ϕ. Then β(a, b) = ϕ(a ⊗ b) = ϕqb2(a, b) shows that ϕ(qb2) = β. 
Thus ϕ is the required additive extension of β. For uniqueness, suppose ϕ0 is a second 
additive extension of β. Then ϕ0qb2(a, b) = ϕqb2(a, b) for all a ∈ A and b ∈ B,
and hence ϕ0q(a ⊗ b) = ϕq(a ⊗ b). The elements a ⊗ b generate A ⊗Z B, and hence 
ϕ0q = ϕq on A ⊗Z B. Since q maps onto (A ⊗Z B)/H , ϕ0 = ϕ on (A ⊗Z B)/H . 

11. We are to show that if C is a commutative associative R algebra with 
identity and if ϕ1 : A1 → C and ϕ2 : A2 → C are homomorphisms of commu-
tative associative R algebras with identity, then there exists a unique homomorphism 
ϕ : A1 ⊗R A2 → C of R algebras with identity such that ϕi1 = ϕ1 and ϕi2 = ϕ2. 
Define b(a1, a2) = ϕ1(a1)ϕ2(a2). This is R bilinear into C because b(a1r, a2) = 
ϕ1(a1r)ϕ2(a2) = ϕ1(a1)rϕ2(a2) = ϕ1(a1)ϕ2(ra2) = b(a2, ra2), and hence there 
exists a unique homomorphism ϕ : A1 ⊗R A2 → C of abelian groups such that 
ϕ(a1⊗a2) = b(a1, a2) = ϕ1(a1)ϕ2(a2). Then ϕi1(a1) = ϕ(a1⊗1) = ϕ1(a1)ϕ2(1) = 
ϕ1(a1)1 = ϕ1, and ϕi1 = ϕ1. Similarly ϕi2 = ϕ2. To complete the proof, it is enough 
to show that the homomorphism ϕ of abelian groups is a homomorphismof R algebras.
The fact that ϕ is a homomorphism of R modules is immediate from Corollary 10.19. 
Also, ϕ(1 ⊗ 1) = ϕ1(1)ϕ2(1) = 1 shows that ϕ carries identity to identity. Finally 
the computation ϕ 

° 
(a1 ⊗ a2)(a1

0 ⊗ a2
0 )

¢ 
= ϕ(a1a1

0 ⊗ a2a2
0 ) = ϕ1(a1a1

0 )ϕ2(a2a2
0 ) = 

ϕ1(a1)ϕ1(a1
0 )ϕ2(a2)ϕ2(a2

0 ) = ϕ1(a1)ϕ2(a2)ϕ1(a1
0 )ϕ2(a2

0 ) = ϕ(a1 ⊗ a2)ϕ(a1
0 ⊗ a2

0 )

shows that ϕ respects multiplication on a set of additive generators of A1 ⊗R A2. 

12. Part (a) is immediate from Proposition 10.1. If √ is a nonzero map in ME , then 
√(E) is a submodule of M isomorphic to E . Hence √(E) ⊆ ME by construction, 
and (b) follows. Part (c) is immediate from (b). 

13. With d ∈ DE = HomR(E, E), we can form √d = √ ◦ d if √ is in 
HomR(E, ME ), and we can form de = d(e) if e is in E . These definitions give 
the required unital DE module structures for (a) and (b). The members of DE = 
HomR(E, E) commute with the left R action on E by definition, and this is (c). 

14. In view of (c) in the previous problem, the left action of R on E can be regarded 
as a right Ro action on E in such a way that it commutes with the left DE action on 
E . In other words, E is a unital (DE , Ro) bimodule. Corollary 10.19b shows that 
ME ⊗DE E becomes a unital right Ro module, hence a unital left R module. 

15. Define a map b : ME × E → M , additive in each variable, by b(√, e) = 
√(e). For d in DE , this has b(√ ◦ d, e) = (√ ◦ d)(e) = √(d(e)) = b(√, d(e)). 
Hence b is DE bilinear and has an additive extension 8 : ME ⊗DE E → M with 
8(√ ⊗ e) = √(e). 
The map 8 is R linear since 8(r(√ ⊗ e)) = 8(√ ⊗ re) = √(re) = r(√(e)) = 

r(8(√ ⊗ e)). Since √ is in ME , √(e) is in ME ; thus 8 has image in ME . 
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To see that 8 is onto ME , write ME = 
L

s∈T Ms with each Ms simple, and fix 
an isomorphism αs ∈ HomR(E, Ms ) for each s ∈ T . For any element m ∈ ME , we 
can find a finite subset T 0 of T such that m = 

P
s∈T 0 ms with ms ∈ Ms . If we let 

es = αs 
−1(ms ), then 8 

°P
s∈T 0 αs ⊗ es

¢ 
= m. Thus 8 maps onto ME . 

To see that 8 is one-one, we observe from Problem 12 and Lemma 10.3 that 

ME =HomR(E, M)=HomR(E, ME )=HomR 
°
E, 

M 
Ms

¢
=

M 
HomR(E, Ms ). 

s∈T s∈T 

Each summand on the right side is isomorphic to DE . That is, the collection of 
isomorphisms {αs }s∈T from the previous paragraph is a basis of ME as a right DE 
vector space. Consequently every element of ME ⊗DE E may be written as a finite 
sum 

P 
αs ⊗ es with es ∈ E . The image of the element 

P 
αs ⊗ es is 

P 
αs (es ). If 

this is 0, then each αs (es) is 0 because of the independence of the Ms ’s. Since αs is 
an isomorphism, it follows that es = 0 for each s. Therefore 

P 
αs ⊗ es = 0. Thus 

8 is one-one. 
16. The composition in one order is 

N 7→ HomR (E, N ) 7→ HomR(E, N ) ⊗DE E . (∗) 

For N = ME , the map 8, when applied to the composition, recovers ME , since 
Problem 15 says that 8 is onto. For general N , we can write ME = N ⊕ N 0. When 
we apply 8 to (∗) for N and N 0 separately, we recover R submodules of N and N 0,
respectively. To have a match for all of ME , we must recover all of N and N 0. 
The composition in the other order is 

W 7→ W ⊗DE E 7→ HomR(E, W ⊗DE E). (∗∗) 

For W = ME , the image corresponds under the map Hom(1, 8) to HomR(E, ME ) = 
ME . For general W , we can write ME = W ⊕ W 0. When we apply Hom(1, 8) 
to (∗∗) for W , we get an R submodule of ME that contains W . In fact, for any 
w ∈ W , HomR(E, E ⊗DE E) contains the map e 7→ w ⊗ e. Composing with 8 
gives e 7→ w(e). Thus the members of W are in the image. Similarly the members 
of W 0 are in the image for W 0. The direct sum of the images must be ME , and thus 
the images must be exactly W and W 0. 
17. The computation 

Eϕ(8M (√ ⊗ e)) = ϕ(√(e)) = (ϕ ◦ √)(e)) = 8N ((ϕ ◦ √) ⊗ e) = 8N (ϕ (√) ⊗ e) 

proves the formula in the last line of the statement of the problem. For the inverse,
suppose we are given a map τ ∈ HomDE (ME , NE ). Then τ induces an R linear map 

τE
0 : ME ⊗DE E → NE ⊗DE E 
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defined by 
τE

0 (√ ⊗ e) = τ (√) ⊗ e. 

Composition with the isomorphism of Problem 15 gives an R homomorphism 

τE E ◦ 8−
M 
1 : ME → NE .= 8N ◦ τ 0

We show that ϕ 7→ ϕE and τ 7→ τE are inverses. If a map ϕ in HomR(ME , NE ) is 
given, we are to calculate (ϕE )E ∈ HomR(ME , NE ). It is enough to find the effect 
of (ϕE )E on elements 8M (√ ⊗ e) with √ ∈ ME and e ∈ E . For such an element, 

E E )0 E(ϕ )E (8M (√ ⊗ e)) = 8N ((ϕ (√ ⊗ e)) = 8N (ϕ (√) ⊗ e) 
E= ϕ (√)(e) = ϕ(√(e)) = ϕ(8M (√ ⊗ e)). 

Thus (ϕE )E = ϕ. Similarly for τ ∈ HomDE (ME , NE ), we find that (τE )
E = τ . 

Thus ϕ 7→ ϕE and τ 7→ τE are inverses. 
18. Let us write M = 

L
s∈S Ms with each Ms semisimple. Each Ms is contained 

in some ME , and hence M = 
P

E∈E ME . Let us see that the sum is direct. If 
ME has nonzero intersection with ME1 + · · · + MEn , where E1, . . . , En are simple 
R modules with no two isomorphic, then there is a nonzero R linear map from E 
into ME1 + · · · + MEn . We can write each MEj as a sum of simple R submodules 
isomorphic to Ej , and Proposition 10.1 shows that 

M 
M 0ME1 + · · · + MEn = s 

s∈T 

with each M 0 isomorphic to one of E1, . . . , En . If all of E1, . . . , En are nonisomor-s
phic with E , then Lemma 10.3 and Proposition 10.4a show that 

HomR(E, ME1 + · · · + MEn ) = 0, 

contradiction. We conclude that the sum M = 
P

E∈E ME is direct. This proves the
equality at the left in the displayed formula of the problem, and the isomorphism on
the right in that display follows from Problem 15. 
19. If N is a left R submodule of M , then NE ⊆ ME for every E . Conversely the 

previous problem shows that a system of NE ’s defines an R submodule N . Thus this 
problem is a restatement of Problem 16. 
20. We have 

HomR(M, N ) =∼
Q
HomR(ME , N ) = 

Q
HomR(ME , NE ), 

E∈E E∈E 

and the rest follows from Problem 17. 






