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CHAPTER VII

Infinite Field Extensions

Abstract. This chapterprovides algebraicbackgroundfor directly addressingsomesimple-sounding
yet fundamental questions in algebraic geometry. All the questions relate to the set of simultaneous
zeros of finitely many polynomials in n variables over a field.
Section 1 concerns existence of zeros. The main theorem is the Nullstellensatz, which in part

says that there is always a zero if the finitely many polynomials generate a proper ideal and if the
underlying field is algebraically closed.
Section 2 introduces the transcendence degree of a field extension. If L/K is a field extension,

a subset of L is algebraically independent over K if no nonzero polynomial in finitely many of
the members of the subset vanishes. A transcendence basis is a maximal subset of algebraically
independent elements; a transcendencebasis exists, and its cardinality is independent of the particular
basis in question. This cardinality is the transcendence degree of the extension. Then L is algebraic
over the subfield generated by a transcendence basis. Briefly any field extension can be obtained by
a purely transcendental extension followed by an algebraic extension. The dimension of the set of
common zeros of a prime ideal of polynomials over an algebraically closed field is defined to be the
transcendence degree of the field of fractions of the quotient of the polynomial ring by the ideal.
Section 3 elaborates on the notion of separability of field extensions in characteristic p. Every

algebraic extension L/K can be obtained by a separable extension followed by an extension that is
purely inseparable in the sense that every element x of L has a power x pe for some integer e ∏ 0
with x pe separable over K .
Section 4 introduces the Krull dimension of a commutative ring with identity. This number is

one more than the maximum number of ideals occurring in a strictly increasing chain of prime ideals
in the ring. For K [X1, . . . , Xn] when K is a field, the Krull dimension in n. If P is a prime ideal in
K [X1, . . . , Xn], then the Krull dimension of the integral domain R = K [X1, . . . , Xn]/P matches
the transcendence degree over K of the field of fractions of R. Thus Krull dimension extends the
notion of dimension that was defined in Section 2.
Section 5 concerns nonsingular and singular points of the set of common zeros of a prime ideal

of polynomials in n variables over an algebraically closed field. According to Zariski’s Theorem,
nonsingularity of a point may be defined in either of two equivalent ways—in terms of the rank of a
Jacobian matrix obtained from generators of the ideal, or in terms of the dimension of the quotient of
themaximal ideal at the point in question factored by the square of this ideal. The point is nonsingular
if the rank of the Jacobian matrix is n minus the dimension of the zero locus, or equivalently if the
dimension of the quotient of the maximal ideal by its square equals the dimension of the zero locus.
Nonsingular points always exist.
Section 6 extends Galois theory to certain infinite field extensions. In the algebraic case inverse

limit topologies are imposed on Galois groups, and the generalization of the Fundamental Theorem
of Galois Theory to an arbitrary separable normal extension L/K gives a one-one correspondence
between the fields F with K ⊆ F ⊆ L and the closed subgroups of Gal(L/K ).
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404 VII. Infinite Field Extensions

1. Nullstellensatz

Algebraic geometry studies the geometric properties of sets defined by algebraic
equations. In the simplest case some field K is specified, the equations are
polynomial equations in several variables with coefficients in K , and one seeks
solutions to the system of equations with the variables taking values in K or some
larger field.
The nature of the subject is that even fairly simple-sounding geometric ques-

tions require algebraic background beyond what is in Basic Algebra and the
first six chapters of the present book. This chapter addresses the necessary
background, largely from the theory of fields, for addressing fundamental ques-
tions concerning existence of solutions, the dimension of the space of solutions,
singularity of the solution set at a particular point, and effects of changing fields.
The present section supplies background for the question of existence. We

have a system of polynomial equations in n variables with coefficients in K , and
we are interested in simultaneous solutions in a given extension field L of K . A
solution can be regarded as a column vector in Ln . Think of the equations as of the
form Fi (X1, . . . , Xn) = 0with each Fi a polynomial, and then the set of solutions
is the locus of common zeros of the Fi ’s in Ln . The locus of common zeros is
unaffected by enlarging the system of equations by allowing all equations of the
form

P
i Gi Fi = 0 with each Gi is arbitrary in K [X1, . . . , Xn]; thus we may as

well regard the left sides as all members of some ideal I in K [X1, . . . , Xn]. The
Hilbert Basis Theorem says that any ideal in K [X1, . . . , Xn] is finitely generated,
and hence studying the common zero locus for an ideal is always the same as
studying the common zero locus for a finite set of polynomials.
A proper ideal need not have a nonempty locus of common zeros. For example,

if K = R, then the single equation X2 + Y 2 + 1 = 0 has no solutions in R2.
Hilbert’s Nullstellensatz1 is partly the affirmative statement that any proper ideal
has a nonzero locus of common zeros under the additional assumption that K is
algebraically closed.

Theorem 7.1 (Nullstellensatz). Let K be a field, let K be an algebraic closure,
and let n be a positive integer. Then every maximal ideal J of K [X1, . . . , Xn]
has the property that K [X1, . . . , Xn]/J is a finite algebraic extension of K , and
in particular the maximal ideals of K [X1, . . . , Xn] are of the form

(X1 − a1, . . . , Xn − an),

where (a1, . . . , an) is an arbitrarymember of Kn . Consequently if I is any proper
ideal in K [X1, . . . , Xn], then

(a) the locus of common zeros of I in Kn is nonempty,
1German for “zero-locus theorem.”
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(b) any f in K [X1, . . . , Xn] that vanishes on the locus of common zeros of
I in Kn has the property that f k is in I for some integer k > 0.

Before coming to the proof, we mention an important corollary.

Corollary 7.2. Let K be a field, let K be an algebraic closure, let n be a
positive integer, and let I be a prime ideal in K [X1, . . . , Xn]. Then I contains
every polynomial in K [X1, . . . , Xn] that vanishes on the locus of common zeros
of I in K [X1, . . . , Xn].

PROOF. If f is a member of K [X1, . . . , Xn] that vanishes on the locus of
common zeros of I , then (b) in the theorem shows that f k is in I for some k.
Since I is prime, one of the factors of f k = f · · · f lies in I . §

EXAMPLE FOR COROLLARY. Let K = L = C, and let I be the principal ideal in
C[X,Y ] generated by Y 2 − X (X + 1)(X − 1). Consider C[X,Y ] as isomorphic
toC[X][Y ]. As a polynomial in Y overC[X], p(X,Y ) = Y 2− X (X+1)(X−1)
is irreducible because X (X + 1)(X − 1) is not the square of a polynomial in X .
SinceC[X,Y ] is a unique factorization domain, p(X,Y ) is prime. Therefore I =
(p(X,Y )) is a prime ideal. The corollary says that every polynomial vanishing
on the locus of points (x, y) ∈ C2 for which y2 = x(x + 1)(x − 1) is the product
of Y 2 − X (X + 1)(X − 1) and a polynomial in (X,Y ). Consequently the ring
of restrictions of polynomials to the locus for which y2 = x(x + 1)(x − 1) is
isomorphic to C[X,Y ]/

°
Y 2 − X (X + 1)(X − 1)

¢
.

Theorem 7.1b has a tidy formulation in terms of the “radical” of an ideal. If
R is a commutative ring with identity and I is an ideal in R, then the radical of
I , denoted by

p
I , is the set of all r in R such that rk is in I for some k ∏ 1. It is

immediate that the radical of I is an ideal containing I and that
p
I is proper if I

is proper. If I is an ideal in K [X1, . . . , Xn] and if f is in
p
I , then f k is in I for

some k > 0, and hence f vanishes on the locus of common zeros of I . Theorem
7.1b says conversely that any f vanishing on the locus of common zeros of I has
f k in I for some k > 0. This means that f is in

p
I . We can therefore rewrite

(b) in the theorem as follows:
(b0) the ideal of all f in K [X1, . . . , Xn] that vanish on the locus of common

zeros of I in Kn is exactly
p
I .

The proof of Theorem 7.1 will follow comparatively easily from the following
two lemmas.

Lemma 7.3. If K is a field and L is an extension field that is generated as a
K algebra by n elements x1, . . . , xn , i.e., if L = K [x1, . . . , xn], then every xj is
algebraic over K .
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REMARKS. Conversely if x1, . . . , xn are elements of an extension field L that
are algebraic over K , then K (x1, . . . , xn) = K [x1, . . . , xn]. The reason is that

K (x1, . . . , xn) = K (x1, . . . , xn−1)(xn) = K (x1, . . . , xn−1)[xn]
= K (x1, . . . , xn−2)(xn−1)[xn] = K (x1, . . . , xn−2)[xn−1][xn]
= · · · = K [x1] · · · [xn−1][xn] = K [x1, . . . , xn].

PROOF. We proceed by induction on n. For n = 1, if L = K [x1], then we
know from the elementary theory of fields that x1 is algebraic over K .
For the inductive step, suppose that L = K [x1, . . . , xn]. Since L is a field,

K (x1) ⊆ L , and hence L = K (x1)[x2, . . . , xn]. By the inductive hypothesis
applied to L and K (x1), the elements x2, . . . , xn are algebraic over K (x1). To
complete the proof, it is enough to show that x1 is algebraic over K .
Fix j ∏ 2. The element xj , being algebraic over K (x1), satisfies a polynomial

equation
Xm + am−1Xm−1 + · · · + a0 = 0

witham−1, . . . , a0 inK (x1). Clearing fractions,we see that xj satisfiesanequation

bmXm + bm−1Xm−1 + · · · + b0 = 0

with bm, . . . , b0 in K [x1] and bm 6= 0. Multiplying through by bm−1
m shows that

xj satisfies

(bmX)m + bm−1(bmX)m−1 + · · · + b0(bm)m−1 = 0,

and we see that bmxj is integral over the ring K [x1]. Let us write cj for the
element bm ∈ K [x1] that we have just produced for this j .
In the case of j = 1, we can use m = 1 and a0 = −x1 in the above argument,

andwe are then led to c1 = x1. If xl11 · · · xlnn is anymonomial in K [x1, . . . , xn] and
if l is defined as l = max(l1, . . . , ln), then the fact that the integral elements over
K [x1] form a ring implies that (c1 · · · cn)l xl11 · · · xlnn is integral over K [x1]. Hence
for any f in K [x1, . . . , xn], (c1 · · · cn)l f is integral over K [x1] for a suitable
integer l = l( f ). Since K (x1) ⊆ K [x1, . . . , xn], this conclusion applies in
particular to any member f of K (x1).
The ring K [x1] is a principal ideal domain and is therefore integrally closed

in its field of fractions K (x1). For f in K (x1), we have seen that (c1 · · · cn)l f
is integral over K [x1] for some l = l( f ). The element (c1 · · · cn)l f is in K (x1),
and the integral-closure property therefore implies that (c1 · · · cn)l f is in K [x1].
Consequently there exists a fixed element h of K [x1] such that every element f

of K (x1) is of the form g/hl for some g in K [x1] and some integer l ∏ 0. Weapply
this observation to f = q(x1)−1 for each irreducible polynomial q(X) in K [X],
and we obtain q(x1)g = hl with g and l depending on q(X). If x1 is transcen-
dental over K , this equality implies the polynomial identity q(X)g(X) = h(X)l .
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Consequently every irreducible polynomial q(X) divides h(X). If K is infinite,
this is a contradiction because there are infinitelymany distinct polynomials X−a
in K [X]; if K is finite, this is a contradiction because there exists at least one
irreducible polynomial of each degree∏ 1. We arrive at a contradiction in either
case, and therefore x1 is algebraic over K . This completes the induction and the
proof. §

Lemma 7.4. Let K be a field, and let L be an algebraic extension of K . If
I is a proper ideal in K [X1, . . . , Xn], then I L[X1, . . . , Xn] is a proper ideal in
L[X1, . . . , Xn].

REMARK. As usual, the notation I L[X1, . . . , Xn] refers to the set of sums of
products of elements of I and elements of L[X1, . . . , Xn].

PROOF. First let us identify the integral closure of K [X1, . . . , Xn] in the field
L(X1, . . . , Xn) as L[X1, . . . , Xn]. The ring L[X1, . . . , Xn] is a unique factor-
ization domain, and Proposition 8.41 of Basic Algebra shows that it is integrally
closed. Consequently the integral closure of K [X1, . . . , Xn] in L(X1, . . . , Xn) is
contained in L[X1, . . . , Xn]. On the other hand, the integral closure of
K [X1, . . . , Xn] in L(X1, . . . , Xn) contains L because L/K is algebraic, and
it contains each Xj . Therefore it contains L[X1, . . . , Xn] and must equal
L[X1, . . . , Xn].
Now we apply Proposition 8.53 of Basic Algebra to the ring K [X1, . . . , Xn],

its field of fractions K (X1, . . . , Xn), the extension field L(X1, . . . , Xn), and
the integral closure L[X1, . . . , Xn] of K [X1, . . . , Xn] in L(X1, . . . , Xn). The
proposition says that if P is any maximal ideal of K [X1, . . . , Xn], then the ideal
PL[X1, . . . , Xn] is proper in L[X1, . . . , Xn]. This result is to be applied to any
maximal ideal P of K [X1, . . . , Xn] that contains I . §

PROOF OF THEOREM 7.1. Let J be a maximal ideal in K [X1, . . . , Xn]. Then
L = K [X1, . . . , Xn]/J is a field. Hence L = K [x1, . . . , xn] is a field if the xi ’s
are defined by xi = Xi + J . Lemma 7.3 shows that each xj is algebraic over K ,
and the first conclusion of the theorem follows.
When this conclusion is applied to K instead of K , then the fact that K is

algebraicallyclosed implies that each xj lies in the cosetsdeterminedbyK , i.e., the
cosets of the constant polynomials. Consequently for each j , there is an element
aj in K such that xj − aj lies in J . Then it follows that (X1 − a1, . . . , Xn − an)
is contained in J . Since the ideal (X1 − a1, . . . , Xn − an) is maximal, J =
(X1 − a1, . . . , Xn − an). This proves that the maximal ideals are as in the
displayed expression in the theorem.
To prove (a), we applyLemma7.4 to the ideal I in K [X1, . . . , Xn] and to the al-

gebraic extension K of K . The lemma produces a proper ideal of K [X1, . . . , Xn]
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containing I , and we extend it to a maximal ideal J of K [X1, . . . , Xn]. From the
previous paragraph of the proof, J is of the form J = (X1−a1, . . . , Xn −an) for
some (a1, . . . , an) in Kn . The ideal J is therefore identified as the kernel of the
evaluation homomorphism of K [X1, . . . , Xn] at the point (a1, . . . , an). Every
member of J thus vanishes at (a1, . . . , an), and the same thing is true of every
member of I . This proves (a).
For (b), let I be a proper ideal in K [X1, . . . , Xn], and let f be as in (b). Intro-

duce an additional indeterminate Y , and let J be the ideal in K [X1, . . . , Xn,Y ]
generated by I and f Y − 1. If some point (x1, . . . , xn, y) lies on the locus of
common zeros of J in Kn+1, then (x1, . . . , xn) lies on the locus of common zeros
of I in Kn , since I ⊆ J ; thus f (x1, . . . , xn) = 0, since f is assumed to vanish
on all common zeros of I in Kn . Consequently f (x1, . . . , xn)y − 1 = −1 6= 0,
and we find that f (X1, . . . , Xn)Y − 1 does not vanish on the locus of common
zeros of J in Kn+1, contradiction. We conclude that no point (x1, . . . , xn, y) lies
on the locus of common zeros of J in Kn+1. By (a), we see that

J = K [X1, . . . , Xn,Y ]. (∗)

Let us write X for the expression X1, . . . , Xn . Then (∗) implies that

1 =
rP

i=1
pi (X,Y )gi (X) + q(X,Y )( f (X)Y − 1) (∗∗)

for some g1, . . . , gr in I and some p1, . . . , pr and q in K [X,Y ]. Let √ be the
substitution homomorphism of K [X,Y ] into K (X) that carries K into itself, X
into itself, and Y into f (X)−1. Application of √ to (∗∗) gives

1 =
rP

i=1
pi (X, f (X)−1)gi (X), (†)

since √
°
f (X)Y − 1

¢
= 0. If Y k is the largest power of Y that appears in any of

the polynomials pi (X,Y ), then we can rewrite (†) as

f (X)k =
rP

i=1

°
f (X)k pi (X, f (X)−1)

¢
gi (X)

and exhibit f (X)k as the sum of products of the members gi of I by members of
K [X]. Thus f (X)k is in I , and (b) is proved. §

2. Transcendence Degree

Let K be a field, and let L be an extension field. The algebraic construction in
this section will show that L can be obtained from K in two steps, by a “purely
transcendental” extension followed by an algebraic extension. The number of
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indeterminates in the first step (or the cardinality if the number is infinite) will be
seen to be an invariant of the construction and will be called the “transcendence
degree” of L/K .
Before coming to the details, let us mention what transcendence degree will

mean geometrically. Suppose that the field K is algebraically closed, suppose
that I is a prime ideal in K [X1, . . . , Xn], and suppose that V is the locus of
common zeros of I . Corollary 7.2 shows that I is the set of all polynomials
vanishing on V , and thus the integral domain K [X1, . . . , Xn]/I may be regarded
as the set of all restrictions to V of polynomials. If L is the field of fractions of
K [X1, . . . , Xn]/I , then the transcendence degree of L/K will be interpreted as
the “number of independent variables” or “dimension” of the locus V .
Now we can make the precise definitions. Let K be a field, and let L be

an extension field. A finite subset x1, . . . , xn of L is said to be algebraically
independent over K if the ring homomorphism K [X1, . . . , Xn] → L given by
f 7→ f (x1, . . . , xn) is one-one.2 Otherwise it is algebraically dependent.

EXAMPLE. Let K = C, and let p(X,Y ) = Y 2 − X (X + 1)(X − 1). The
principal ideal I = (p(X,Y )) was shown to be prime in C[X,Y ] in the example
with Corollary 7.2. Therefore C[X,Y ]/I is an integral domain. Let x and y be
the cosets x = X + I and y = Y + I . If L denotes the field of fractions of
C[X,Y ]/I , then we may regard x and y as members of L . The subset {x, y} of L
is algebraically dependent because the polynomial p(X,Y ) maps to 0 under the
substitution homomorphism of C[X,Y ] into L with X 7→ x and Y 7→ y.

A subset S of L is called a transcendence set over K if each finite subset of
S is algebraically independent over K . A maximal transcendence set over K is
called a transcendence basis of L over K . For each transcendence set S of L
over K , we write K (S) for the smallest subfield of L containing K and S. If some
transcendence basis S has the property that K (S) = L , then L is said to be a
purely transcendental extension of K ; in this case it follows from the definitions
that S is a transcendence basis of L over K .

EXAMPLE, CONTINUED. WithK and L as in the exampleabove, the sets S = {x}
and S = {y} are transcendence sets over K = C. It is not hard to see that {x} is a
transcendence basis of L over K . Actually, if z is anymember of L that is not inC,
then {z} is a transcendence set overC. The reason is thatC is algebraically closed;
hence either z is transcendental overC or else z lies inC. Lemma7.6 below shows
that any transcendence set of L over C can be extended to a transcendence basis,
and Theorem 7.9 shows that all transcendence bases of L over C have the same
cardinality. It follows that if z is any member of L that is not in C, then {z} is a

2By convention the empty set is algebraically independent over K .
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transcendence basis of L over C and that every transcendence basis of L over C
is of this form. The two-element set {x, y} cannot be a transcendence set by this
reasoning, but we can see this conclusion more directly just by observing that
{x, y} was shown in the example above to be algebraically dependent.

Shortly we shall establish the existence of transcendence bases in general. If
S is a transcendence basis and if K 0 is defined to be K (S), then we shall show
that L is algebraic over K 0. The subfield K 0 of L depends on the choice of S, but
there is a uniqueness theorem: the cardinality of a transcendence basis of L/K
is independent of the particular transcendence basis.

Lemma 7.5. Let L/K be a field extension, let S be a transcendence set of
L over K , let K (S) be the subfield of L generated by K and S, and let x be an
element of L not in S. Then S0 = S ∪ {x} is a transcendence set of L over K if
and only if x is transcendental over K (S).
PROOF. Suppose that x is transcendental over K (S) and is not in S. Let n

distinct elements x1, . . . , xn of S0 be given. If these are all in S, then f 7→
f (x1, . . . , xn) is one-one because S is a transcendence set. Suppose that one of
the n elements is x ; say xn = x . If f is in the kernel of the homomorphism
f 7→ f (x1, . . . , xn), i.e., if f (x1, . . . , xn) = 0, then x is a root of the polynomial
g(X) = f (x1, . . . , xn−1, X) in K (x1, . . . , xn−1)[X]. Since x is assumed to
be transcendental over K (S), the polynomial g must be 0. If we expand the
polynomial f in powers of X as

f (X1, . . . , Xn−1, X) = cl(X1, . . . , Xn−1)Xl + · · · + c0(X1, . . . , Xn−1),
the condition that g be 0 says that cj (x1, . . . , xn−1) = 0 for all j . Since the set
{x1, . . . , xn−1} is algebraically independent, we see that cj = 0. Therefore f = 0.
Hence {x1, . . . , xn} is algebraically independent, and S0 is a transcendence set.
Conversely suppose that S0 is a transcendence set of L over K . We are to

show that the only polynomial F(X) in K (S)[X] such that F(x) = 0 is the 0
polynomial. Since only finitely many coefficients of F are in question, we may
view F as inK ({x1, . . . , xn})[X] for somefinite subset {x1, . . . , xn}of S. Clearing
fractions, we can write F as

F(X) = d(x1, . . . , xn)−1
°
cl(x1, . . . , xn)Xl + · · · + c0(x1, . . . , xn)

¢

for suitable polynomials d, c0, . . . , cl in K [X1, . . . , Xn] with d(x1, . . . , xn) 6= 0.
Define

eF(X1, . . . , Xn, X) = cl(X1, . . . , Xn)Xl + · · · + c0(X1, . . . , Xn).
The condition F(x) = 0 yields eF(x1, . . . , xn, x) = 0. Since {x1, . . . , xn, x}
is by assumption algebraically independent over K , we see that eF = 0. Thus
cj (X1, . . . , Xn) = 0 for all j , and consequently cj (x1, . . . , xn) = 0 for all j .
Therefore F = 0, as required. §
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Lemma 7.6. If L/K is a field extension, then
(a) any transcendence set of L over K can be extended to a transcendence

basis of L over K ,
(b) any subset of L that generates L as a field over K has a subset that is a

transcendence basis of L over K .
In particular, there exists a transcendence basis of L over K .

PROOF. For (a), order by inclusion upward the transcendence sets containing
the given one. To apply Zorn’s Lemma, we need only show that the union of a
chain of transcendence sets in L over K is again a transcendence set. Thus let
finitelymany elements of the union of the sets in the chain be given. Since the sets
in the chain are nested, all these elements lie in one member of the chain. Hence
they are algebraically independent over K , and it follows from the definition that
the union of the sets in the chain is a transcendence set. By Zorn’s Lemma there
exists amaximal transcendence set, and this is a transcendence basis by definition.
For (b), we argue in the same way as for (a). Let the given generating set

be G. Order by inclusion upward the transcendence sets that are subsets of G.
The empty set is such a transcendence set. As with (a), the union of a chain of
transcendence sets in L over K is again a transcendence set, and the union is
contained in G if each individual set is. By Zorn’s Lemma there exists a maximal
transcendence subset S of G. To complete the proof, it is enough to show that
every member of G is algebraic over K (S). Let x be in G. We may assume that
x is not in S. By maximality, S ∪ {x} is not a transcendence set. Then Lemma
7.5 shows that x is algebraic over K (S). Hence S is the required transcendence
basis.
For the final conclusionwe apply (a) to the empty set, which is a transcendence

set of L over K . §

Theorem 7.7. If L/K is a field extension, then there exists an intermediate
field K 0 such that K 0/K is purely transcendental and L/K 0 is algebraic.

PROOF. Lemma 7.6 produces a transcendence basis S for L/K . Define K 0

to be the intermediate field K (S) generated by K and S. Then K 0 is purely
transcendental over K by definition. If x is a member of L that is not in K 0, then
S ∪ {x} is not a transcendence set of L over K by maximality of S, and Lemma
7.5 shows that x is algebraic over K (S) = K 0. Hence L is algebraic over K 0. §

As was mentioned earlier in the section, the intermediate field K 0 with the
properties stated in the theorem is not unique. In the example above withK = C
and with L equal to the field of fractions of C[X,Y ]/

°
Y 2 − X (X + 1)(X − 1)

¢
,

K 0 can be any subfield C(z) with z not in the subfield C. For an even simpler
example, let K be arbitrary, and let L = K (x) be any purely transcendental
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extension. Use of the transcendence basis {x} of L over K leads to K 0 = L in
the proof of Theorem 7.7. But {x2} is another transcendence basis, and for it we
have K 0 = K (x2). The extension L/K 0 is algebraic because x is a root of the
polynomial X2 − x2 in K (x2)[X].
We turn to the matter of showing that any two transcendence bases of L over

K have the same cardinality. We shall make use of the following result, which
was proved at the end of the appendix of Basic Algebra:

Let S and E be nonempty sets with S infinite, and suppose that to
each element s of S is associated a countable subset Ex of E in such
a way that E =

S
s∈S Es . Then card E ≤ card S.

In our application of this result, the sets Ex will all be finite sets.

Lemma 7.8 (Exchange Lemma). Let L/K be a field extension. If E is any
subset of L , let K (E) be the subfield of L generated by K and E , and let K (E)
be the subfield of all elements in L that are algebraic over K (E). If E ∪ {x} and
E ∪ {y} are finite transcendence sets of L over K and if x lies in K (E ∪ {y}) but
not K (E), then y lies in K (E ∪ {x}).

PROOF. The condition that x lie in K (E ∪ {y}) implies that there exist a finite
subset {x1, . . . , xn} of E and a member f of K (X1, . . . , Xn,Y )[Z ] such that

f (x1, . . . , xn, y, Z) 6= 0 but f (x1, . . . , xn, y, x) = 0. (∗)

Clearing fractions, we may assume that f lies in K [X1, . . . , Xn,Y, Z ]. Expand
f in powers of Y as

f (X1, . . . , Xn,Y, Z) =
lP

j=0
cj (X1, . . . , Xn, Z)Y j .

Since f (x1, . . . , xn, y, Z) 6= 0 by (∗), at least one of the coefficients, say
ci , has to satisfy ci (x1, . . . , xn, Z) 6= 0. Lemma 7.5 shows that x is tran-
scendental over K (E), and therefore ci (x1, . . . , xn, x) 6= 0. Consequently
f (x1, . . . , xn,Y, x) is nonzero. Since f (x1, . . . , xn, y, x) = 0 by (∗), y is
algebraic over K ({x1, . . . , xn, x}). Therefore y lies in K (E ∪ {x}). §

The statement of Lemma 7.8 defines an operation E 7→ K (E) on subsets of L .
Because an algebraic extension of an algebraic extension is algebraic, applying
this operation a second time does nothing new: K

°
K (E)

¢
= K (E). We shall

make use of this fact in the proof of Theorem 7.9 below.

Theorem 7.9. If L/K is a field extension, then any two transcendence bases
of L over K have the same cardinality.
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REMARKS. The cardinality is called the transcendence degree of L/K . For
applications to algebraic geometry, the situation of interest is that this cardinality
is finite, but we give a complete proof of the theorem anyway.

PROOF. First suppose that L/K has afinite transcendencebasis B. Let |B| = n.
Let B 0 be another transcendence basis, and let m = |B ∩ B 0|. We prove that
|B 0| = |B| by induction downward on m. The base case of the induction is that
m = n. Then B ⊆ B 0, and we must have B = B 0 by maximality of B.
For the inductive step, suppose that m < n and that |B 0| = |B| whenever

|B ∩ B 0| ∏ m + 1. We write the elements of B in an order such that B =
{x1, . . . , xn} and B ∩ B 0 = {x1, . . . , xm}. Lemma 7.5 shows that xm+1 is tran-
scendental over K (B − {xm+1}). Hence xm+1 does not lie in K (B − {xm+1}).
A second application of Lemma 7.5 shows that L = K (B 0). The inclusion
B 0 ⊆ K (B − {xm+1}) is impossible because otherwise we would have

L = K (B 0) ⊆ K
°
K (B − {xm+1})

¢
= K (B − {xm+1}).

Hence there exists an element y of B 0 that does not lie in K (B − {xm+1}). A
third application of Lemma 7.5 shows that (B−{xm+1})∪{y} is a transcendence
set for L/K . Since y lies in L = K (B), the Exchange Lemma (Lemma 7.8)
shows that xm+1 lies in K

°
(B − {xm+1}) ∪ {y}

¢
. Consequently B is contained in

K
°
(B − {xm+1}) ∪ {y}

¢
, and L = K

°
(B − {xm+1}) ∪ {y}

¢
. A fourth application

of Lemma 7.5 shows that the transcendence set B1 = (B − {xm+1}) ∪ {y} is a
transcendence basis. The set B1 has n elements, and the inclusion B1 ∩ B 0 ⊇
{x1, . . . , xm, y} shows that |B1 ∩ B 0| ∏ m + 1. The inductive hypothesis shows
that |B 0| = |B1|, and therefore |B 0| = |B|. This completes the proof under the
assumption that L/K has a finite transcendence basis.
We may now suppose that L/K has no finite transcendence basis. Let B be a

transcendence basis of L/K ; existence is by Lemma 7.6. To each element x of
L , we shall associate a canonical finite subset Ex of L .
Since the element x is algebraic over K (B), use of the field polynomial of x

over K (B) shows that x is algebraic over K (E) for some finite subset E of B.
Let E0 be such a finite set E with the smallest cardinality; the set E0 will be
the canonical finite subset Ex that we seek. To show that E0 is canonical, we
show that whenever x lies in K (E) for some finite subset E of B, then E0 ⊆ E .
Arguing by contradiction, suppose that y is a member of E0 that is not in E , and
define E1 = E0−{y}. By minimality of |E0|, x does not lie in K (E1). However,
x does lie in K (E1 ∪ {y}). Application of the Exchange Lemma shows that y
lies in K (E1 ∪ {x}). Since

K (E1 ∪ {x}) ⊆ K
°
E1 ∪ K (E)

¢
⊆ K

°
K (E1 ∪ E)

¢
= K (E1 ∪ E),
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y lies in K (E1 ∪ E). Since y is in B but is not in E1 ∪ E , Lemma 7.5 shows
that y is not algebraic over K (E1 ∪ E), and we arrive at a contradiction. This
completes the proof that whenever x lies in K (E) for some finite subset E of B,
then E0 ⊆ E . Hence E0 is canonical.
For each element x of L , we let Ex be the finite subset of B constructed in the

previous paragraph. Then we have a well-defined map of L to the set of all finite
subsets of B given by x 7→ Ex ⊆ B. Now let B 0 be a second transcendence basis
of L/K , and restrict the map from L to B 0. Taking S = B 0 and E =

S
x∈B 0 Ex

in the indented result quoted just before Lemma 7.8, we find that

card
° S

x∈B 0
Ex

¢
≤ card(B 0). (∗)

On the other hand, any x in B 0 lies in K (Ex) by definition of Ex . Hence B 0 ⊆

K
°S

x∈B 0 Ex
¢
. Applying the operation K ( · ) to both sides gives

L = K (B 0) ⊆ K
°
K

°S
x∈B 0 Ex

¢ ¢
= K

°S
x∈B 0 Ex

¢
.

Since
S

x∈B 0 Ex is a subset of B and since a proper subset of B cannot be a
transcendence basis of L/K , we conclude that

B =
S

x∈B 0 Ex .

Consequently
card B = card

°S
x∈B 0 Ex

¢
.

In combination with (∗), this equality implies that card B ≤ card B 0. Reversing
the roles of B and B 0 gives card B 0 ≤ card B. Therefore card B = card B 0 by the
Schroeder–Bernstein Theorem.3 §

3. Separable and Purely Inseparable Extensions

Thus far in this book, we have been interested in the detailed structure of algebraic
field extensions only when they are separable. For applications to algebraic
geometry, however, algebraic extensions that are not separable arise and even
play a special role. Thus it is essential to have some understanding of their
nature.
Let us review the material on separability in Section IX.6 of Basic Algebra.

Let K be a field. An irreducible polynomial in K [X] is defined to be separable if
it splits into distinct first-degree factors in its splitting field over K . Let L/K be
an algebraic extension of fields. An element of L is defined to be separable over
K if its minimal polynomial over K is separable. Elements of L that fail to be
separable over K are called inseparable over K . The prototype of an inseparable

3A proof of the Schroeder–Bernstein Theorem appears in the appendix of Basic Algebra.
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element is the element a1/p in the extension k(a1/p), where k = Fp(a) is a simple
transcendental extension of the finite field Fp. Corollary 9.31 of Basic Algebra
shows that the separable elements of L over K form a subfield, and L/K is
defined to be separable if every every member of L is separable over K . As
a consequence of Corollary 9.29 of Basic Algebra, we know that a separable
extension of a separable extension is separable.
One further tool from Basic Algebra is needed in order to handle the failure of

separability. This is Proposition 9.27, which says that an irreducible polynomial
f (X) in K [X] is separable if and only if f 0(X) is not the zero polynomial. It is
immediate that every irreducible polynomial is separable if K has characteristic 0.
Thus we need discuss only characteristic p in the remainder of this section.
The consequence of Proposition 9.27 for characteristic p is that an irreducible

polynomial f (X) fails to be separable over K if and only if the only powers of
X that appear with nonzero coefficient in f (X) are the powers Xkp, i.e., if and
only if f (X) = g(X p) for some g in K [X].
In this case the polynomial g(X) is certainly irreducible in K [X], and we can

repeat this process. The polynomial g(X) fails to be separable over K [X] if and
only if g(X) = h(X p) for some h in K [X]. Then f (X) = h(X p2). Repeating
this process as many times as possible, we see that to each irreducible polynomial
f (X) in K [X] correspond a unique nonnegative integer e and a unique separable
irreducible polynomial g(X) such that f (X) = g(X pe). We call pe the degree of
inseparability of f (X) over K . From the definitions an element of an algebraic
extension of K is inseparable if and only if the degree of inseparability of its
minimal polynomial over K is greater than 1.
If L/K is an algebraic field extension, then an element α of L is said to be

purely inseparable4 over K if α pµ lies in K for some integer µ ∏ 0. Let us see
in this case that the minimal polynomial of α over K is of the form X pe − α pe

for some e ∏ 0.

Proposition 7.10. If K is a field of characteristic p and if α is a member of K
such that p

p
α is not in K , then X pµ

− α is irreducible in K [X] for every µ ∏ 0.

PROOF. Let L be a splitting field of X pµ
−α over K . If β is a root of X pµ

−α,
then β pµ

= α, and hence X pµ
− α = X pµ

− β pµ
= (X − β)p

µ .
Let f (X) be a monic irreducible factor of X pµ

− α in K [X]. Let us see that
X pµ

− α = f (X)n for some n. In fact, if the contrary were true, then there
would be a second monic irreducible factor g(X) of X pµ

− α in K [X] relatively
prime to f (X). Then we can write u(X) f (X) + v(X)g(X) = 1 for suitable

4Warning: Not every element of L that is purely inseparable over K is inseparable over K . The
elements of K are counterexamples. Corollary 7.12 below shows that the elements of K are the only
counterexamples.
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polynomials u(X) and v(X) in K [X]. As members of L[X], both f (X) and
g(X) have to be powers of X − β by unique factorization, and thus they both
vanish at β. Substitution of β into u f + vg = 1 therefore yields a contradiction.
Hence X pµ

− α = f (X)n .
Since f (X) has to be (X − β)m for some m, we obtain X pµ

− α = f (X)n =
(X − β)mn . The integers m and n must divide pµ. Thus m = p∫ , and f (X) =
(X−β)p

∫
= X p∫

−β p∫ . Since f (X) is assumed to be in K [X], β p∫ lies in K . An
inequality ∫ < µ would imply that ∞ = (β p∫

)p
µ−∫−1 lies in K ; the pth power of

∞ is α, however, and the hypothesis of the proposition says that such an element
∞ cannot be in K . We conclude that ∫ = µ, and thus f (X) = X pµ

− α. In other
words, X pµ

− α is irreducible in K [X]. §

Corollary 7.11. If L/K is an algebraic extension in characteristic p, if α is
a purely inseparable element of L over K , and if e is the smallest nonnegative
integer such that α pe lies in K , then the minimal polynomial of α over K is
X pe − α pe .
PROOF. This is immediate from Proposition 7.10. §

Corollary 7.12. If L/K is an algebraic extension in characteristic p and if α
is an element of L that is separable and purely inseparable over K , then α lies
in K .
PROOF. Since α is purely inseparable over K , Corollary 7.11 says that the

minimal polynomial of α over K is X pe −α pe , where e is the smallest nonnegative
integer such that α pe lies in K . The separability of α says that this polynomial
is separable. Unless pe = 1, the polynomial has derivative 0 and thus repeated
roots. Therefore pe = 1 and e = 0, and we conclude that α lies in K . §

An algebraic field extension L/K in characteristic p is said to be purely
inseparable if every element of L is purely inseparable over K . Since purely
inseparable elements α have minimal polynomials of the form X pe − α pe , the
degree of a purely inseparable extension has to be a power of p.

Theorem 7.13. If L/K is an algebraic field extension in characteristic p and
if Ks is the subfield of all elements of L that are separable over K , then L/Ks is
a purely inseparable extension.
PROOF. Let α be an element of L , and let f (X) be the minimal polynomial

of α over K . Then we can write f (X) = g(X pe), where pe is the degree
of inseparability of f . The polynomial g(X) is irreducible over K , and it is
separable. Since α pe is a root, α pe is a separable element. Therefore α pe lies in
Ks . By definition of pure inseparability, α is purely inseparable over Ks . Since
α is arbitrary in L , L is purely inseparable over Ks . §
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Corollary 7.14. Let R be a Dedekind domain, let F be its field of fractions,
let K be a finite algebraic extension of F , and let T be the integral closure of R
in K . Then T is a Dedekind domain.

REMARKS. This result is quite important. Itwasusedextensively inChapterVI,
as was explained in the remarks with Proposition 6.7, and it plays a foundational
role in the theory of algebraic curves as presented in Chapters IX and X. Theorem
8.54 of Basic Algebra proved this result under the assumption that K is a finite
separable extension of F , and we are now dropping the hypothesis of separability.
Since K/F is automatically a separable extension in characteristic 0, we may
assume that the characteristic is not 0.

PROOF. Theorem 7.13 shows that K can be obtained in two steps from F ,
a separable extension followed by a purely inseparable extension. The integral
closure of F in the separable extension field is a Dedekind domain D by Theorem
8.54 of Basic Algebra, and the integral closure of D in K equals T by the
transitivity of integral closure. Consequently it is enough to prove the corollary
under the additional hypothesis that K is a purely inseparable extension of F .
What needs proof (in view of the statement of Theorem 8.54 of Basic Algebra)
is that T is Noetherian, i.e., that each ideal of T is finitely generated.
Let p be the characteristic. Since K/F is finite and purely inseparable, there

exists some power q = pm of p such that the field Kq is contained in F ;
specifically, the integer q is to be large enough for the q th power of each element
of a vector-space basis of K over F to lie in F . We begin by proving that

T =
©
b ∈ K | bq ∈ R

™
. (∗)

The inclusion ⊆ follows, since b ∈ T implies that bq is in T ∩ F = R. For the
inclusion⊇, let b 6= 0 be in K . Corollary 7.11 shows that theminimal polynomial
of b over F is X pe − bpe , where e is the smallest integer ∏ 0 such that bpe lies in
F . Since K pm ⊆ F , e ≤ m. Thus b is a root of a polynomial X pm − a, where
a = bpm is a member of R. Consequently b is integral over R and must lie in T .
This proves (∗).
Fix an algebraic closure Kalg of K , and let H = Fq−1 denote the inverse image

of F under the q th power isomorphism of Kalg onto itself. This is a subfield of
Kalg, and it contains K because Kq ⊆ F . Let S ⊆ H be the ring of all b in H
with bq in R. Since x 7→ xq is a field isomorphism of H onto F , x 7→ xq is a
ring isomorphism of S onto R. Therefore S is a Dedekind domain. It contains T
by (∗).
Let I be a nonzero ideal in T , and form the ideal J = SI in S generated by

I . Since S is Dedekind, J is invertible as a fractional ideal of H relative to S. If
J−1 denotes the inverse, then J−1 is a finitely generated S module in H such that
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J−1 J = S. Thus S = J−1 J = J−1SI = J−1 I . Accordingly, choose finite sets
{xi } in J−1 and {ai } in I such that

P
xiai = 1.

We shall show that {ai } is a set of generators of I as an ideal in T . We
apply the q th power mapping to

P
xiai = 1, obtaining

P
xqi a

q
i = 1 with xqi in

Hq = F ⊆ K and with aqi in Sq = R. Put bi = aq−1
i xqi . Then

P
xqi a

q
i = 1

implies that
P
aibi = 1; here ai is in I and bi is in I q−1K ⊆ K . If a is in I , thenP

(bia)ai = a, and it is enough to show that bia is in T for each i , i.e., to show
that bi I ⊆ T for each i .
The q-fold product (xi I ) · · · (xi I ) is contained in S because xi I ⊆ J−1 J = S.

Thus bi I = xqi a
q−1
i I ⊆ S. So bi I ⊆ S ∩ K . If s is any element in S ∩ K , then

we know that r = sq is a member of R because Sq = R. Hence s is a root of
Xq − r with r in R. That is, s is integral over R. Since s also is in K , s lies in the
integral closure of R in K , which is T . Thus bi I ⊆ T , and the proof is complete.

§

A field K is perfect if either it has characteristic 0 or else it has characteristic
p and the field map x 7→ x p of K into itself is onto. Examples of perfect fields
include all finite fields, all algebraically closed fields, and of course all fields of
characteristic 0.

Proposition 7.15. A field K is perfect if and only if every algebraic extension
of K is separable.
PROOF. We need to consider only the case that K has characteristic p. Suppose

that x 7→ x p fails to be onto K . Choose β in K such that X p − β has no root
in K . Proposition 7.10 shows that X p − β is irreducible over K . Since this
polynomial has derivative 0, it is not separable. Thus X p −β is a polynomial that
is irreducible but not separable, and adjunction of a root of X p −β to K produces
an extension L of K that is not separable.
Conversely suppose that the field map x 7→ x p of K to itself is onto. Then

x 7→ x pe is onto K for every e ∏ 0. Let L be an algebraic extension of K ,
and let Ks be the subfield of elements separable over K . If α is given in L ,
then Theorem 7.13 shows that there exists a nonnegative integer e such that α pe

is in Ks . Let g(X) be the minimal polynomial of α pe over K , and write g(X) =
Xm + c1Xm−1 + · · · + cm . Since K is perfect, there exists bj for each j with
1 ≤ j ≤ m such that bp

e

j = cj . Put f (X) = Xm + b1Xm−1 + · · · + bm . Then

f (α)p
e
= (α pe)m + bp

e

1 (α pe)m−1 + · · · + bp
e

m = g(α pe) = 0,

and therefore f (α) = 0. Consequently f (X) divides the minimal polynomial of
α over K , and the fact that α pe lies in K (α) implies that

[K (α) : K ] ≤ deg f (X) = deg g(X) = [K (α pe) : K ] ≤ [K (α) : K ].
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Equality must hold throughout, and therefore K (α) = K (α pe). Since K (α pe) is
contained in Ks , α lies in Ks . Therefore every member of L lies in Ks , and L is
separable over K . §

A function field in r variables over a field K is a field L that is finitely
generated over K and has transcendence degree r over K . A transcendence basis
{x1, . . . , xr } of such an extension L/K is called a separating transcendence
basis of L/K if L is a separable algebraic extension of K (x1, . . . , xr ). If the
function field L in r variables over K has a separating transcendence basis, we
say that L is separably generated over K .
The two kinds of fields of continual interest in Chapter VI were number fields

and function fields in one variable over a base field. In the latter case some results
beginning in Section VI.6 assumed in effect that the function field is separably
generated over the base field. It was asserted at the beginning of Section VI.9 that
function fields in one variable over finite fields are always separably generated;
this assertion is a special case of Theorem 7.20 below.
Proposition 4.28 of Basic Algebra gave a version of the Factor Theorem valid

for all commutative rings with identity. For the present investigation we need a
version of the division algorithm that is valid in this wider context.

Lemma 7.16. Let R be a commutative ring with identity, let f (X) and g(X)
be members of R[X] of respective degrees m and n, and let a be the leading
coefficient of g(X). For the integer k = max(m−n+1, 0), there exist q(X) and
r(X) in R[X] such that

ak f (X) = g(X)q(X) + r(X) with deg r < n or r = 0.

PROOF. Ifm < n, then k = 0, and the displayed formula holds with q(X) = 0
and r(X) = f (X). For m ∏ n − 1, we proceed by induction on m. The base
case of the induction is m = n − 1, which we have already handled. For the
inductive step, suppose thatm ∏ n. The integer k ism−n+1. If b is the leading
coefficient of f (X), then a f (X) − bXm−ng(X) is a polynomial that either is 0
or has degree less than m. The inductive hypothesis allows us to write

a(m−1)−n+1°a f (X) − bXm−ng(X)
¢

= g(X)q1(X) + r1(X)

with deg r1 < n or r1 = 0. If we set q(X) = bam−n Xm−n + q1(X) and r(X) =
r1(X), then we obtain ak f (X) = g(X)q(X) + r(X), and the lemma follows. §

Lemma 7.17. Let L/K be a field extension, let x1, . . . , xn, xn+1 be elements
of L , and suppose that x1, . . . , xn are algebraically independent over K but
that x1, . . . , xn, xn+1 are not algebraically independent. Then the ideal I of all
polynomials in K [X1, . . . , Xn+1] that vanish at (x1, . . . , xn+1) is principal with a
generator that is irreducible in K [X1, . . . , Xn+1] and involves Xn+1 nontrivially.
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PROOF. The algebraic dependence implies that I contains nonzero polyno-
mials. Let g(X1, . . . , Xn, Xn+1) be one whose degree in Xn+1 is as small as
possible, say l. Expand g as

g = c0(X1, . . . , Xn)Xln+1 + c1(X1, . . . , Xn)Xl−1n+1 + · · · + cl(X1, . . . , Xn).

The algebraic independenceof X1, . . . , Xn implies that at least one of c0, . . . , cl−1
is nonzero. Since K [X1, . . . , Xn] is a unique factorization domain, we can factor
out and discard the greatest common divisor of the coefficients c0, . . . , cl . Thus
we may assume that g is primitive as a polynomial in Xn+1. If f is any element
in I , then Lemma 7.16 applied to the ring K [X1, . . . , Xn] allows us to write
ak f = gq + r with r = 0 or deg r < k. Substituting (x1, . . . , xn+1), we see that
r is in I . The minimality of l implies that r = 0, and thus ak f = gq. Write c(h)
for the greatest common divisor of the coefficients of a polynomial h. Taking
the greatest common divisor of the coefficients on each side of ak f = gq and
applying Gauss’s Lemma, we obtain akc( f ) = c(q). Therefore ak divides q,
and we obtain f = gq0 for some q0. Consequently I is principal. If g = g1g2,
then the definition of I shows that at least one of g1 and g2 is in I , say g1. The
minimality of l implies that the degree of g1 in Xn+1 is l. Therefore g2 is in
K [X1, . . . , Xn]. Since g is primitive, g2 divides 1. Hence g2 lies in K . §

Theorem7.18 (MacLane). If L/K is a field extension that is finitely generated
and separably generated, then any set of generators contains a subset that is a
separating transcendence basis of L/K .

PROOF. Let the characteristic be p. The proof is by induction on the tran-
scendence degree of the extension. For transcendence degree 0, the required set
is the empty set, and there is nothing to prove. The main step is transcendence
degree 1.
Thus let L = K (x1, . . . , xn), and suppose that {z} is a transcendence basis of

L over K such that L is separable over K (z). Since z is transcendental, z does not
lie in K (z p). Thus Proposition 7.10 shows that X p−z p is irreducible over K (z p),
and z is inseparable over K (z p). The field L is algebraic over K (z p), and the
subset of separable elements over K (z p) is a subfield. Since L = K (x1, . . . , xn)
and since z is a member of L that is not separable over K (z p), it follows that some
xi , say x1, is inseparable over K (z p). It will be proved that {x1} is a separating
transcendence basis of L over K , i.e., that x1 is transcendental over K and that L
is separable algebraic over K (x1).
We apply Lemma 7.17 with n = 2 to the elements z, x1. The lemma pro-

duces an irreducible polynomial f (Z , X) in K [Z , X] such that f (z, x1) = 0.
Gauss’s Lemma shows that this polynomial remains irreducible when considered
in K (Z)[X], and we have a ring isomorphism K (Z)[X] ∼= K (z)[X] because z is
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transcendental over K . Up to a nonzero factor from K (z), f (z, X) is the minimal
polynomial of x1 over K (z). Since L is separable over K (z), the element x1 is
separable over K (z), and its minimal polynomial over K (z) involves some power
of X that is not a power of X p.
Let us prove that x1 is transcendental over K . In the contrary case, let g(X)

be its minimal polynomial over K . Since g vanishes when X = x1 and Z = z,
g(X) satisfies an identity g(X) = q(Z , X) f (Z , X) in K [Z , X]. It therefore
satisfies the same identity in K (X)[Z ]. Since g(X) is a unit in K (X)[Z ], so is
f (Z , X). Therefore f (Z , X) is independent of Z . Since g(X) is the minimal
polynomial for x1 over K , g(X) = c f (Z , X) for some c in K . Since f (Z , X)
involves a power of X that is not a power of X p, the same thing is true of g(X),
and consequently x1 is separable over K . Therefore x1 is separable over the larger
field K (z p), in contradiction to the defining condition on x1. We conclude that
x1 is transcendental over K .
Since L has transcendence degree 1 over K , it follows that z is algebraic over

K (x1). Let us see that z is separable over K (x1). In fact, Gauss’s Lemma shows
that f (Z , X) remains irreducible when considered in K (X)[Z ], and we have a
ring isomorphism K (X)[Z ] ∼= K (x1)[Z ] because x1 is transcendental over K .
Therefore f (Z , x1) is the product of a nonzeromember of K (x1) and theminimal
polynomial m(Z) of z over K (x1). If z were inseparable over K (x1), then m(Z)
would be a polynomial in Z p, and we would have f (Z , X) = h(Z p, X) with
h in K [Z , X]. We know that f (Z , X) involves some power of X that is not a
power of X p, and hence the same thing is true of h(Z p, X). Since h(z p, X) is
irreducible in K [X], x1 is separable over K (z p), in contradiction to the defining
property of x1. Therefore z is separable over K (x1).
The defining property of z is that all xj are separable over K (z). Since z is

separable over K (x1), all of x2, . . . , xn are separable over K (x1). Therefore L
is separable over x1, and {x1} is a separable transcendence basis of L/K . This
completes the proof of the theorem for transcendence degree 1.
The inductive step is somewhat a formal consequence of what has just been

proved. To see this, suppose that the theorem is known for transcendence de-
grees 1 and r − 1, and let L = K (x1, . . . , xn) have transcendence degree r .
The assumption is that L has a transcendence basis {z1, . . . , zr } such that L
is separable over K (z1, . . . , zr ). Put K1 = K (z1). Then the set {z2, . . . , zr }
is a transcendence basis of L over K1 consisting of r − 1 elements, and L is
separable over K1(z2, . . . , zr ) = K (z1, . . . , zr ) by assumption. By the inductive
hypothesis for the case of transcendence degree r − 1, some subset of r − 1
elements from among x1, . . . , xn forms a separating transcendence basis of L
over K1; let us say that this basis is {x1, . . . , xr−1}. This implies that L is
separable over K1(x1, . . . , xr−1) = K (z1, x1, . . . , xr−1). In other words, if
K 0 = K (x1, . . . , xr−1), then L = K 0(xr , . . . , xn) is separable over K 0(z1). Since
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L/K 0 has transcendencedegree 1, {z} is a separating transcendencebasis of L/K 0.
By the inductive hypothesis for transcendence degree 1, some xj for r ≤ j ≤ n
forms a separating transcendence basis of L/K 0. For this j , {x1, . . . , xr−1, xj } is
then a separating transcendence basis of L/K . §

Lemma 7.19. Suppose that L is a field extension of transcendence degree r
over a field K and that L is not separably generated over K . If x1, . . . , xn are
elements of L such that L = K (x1, . . . , xn), then for a suitable relabeling of the
xi ’s, the subfield K (x1, . . . , xr+1) of L is of transcendence degree r and is not
separably generated over K .

PROOF. We fix K and r , and we proceed by induction on n. The base case is
that n = r+1, and then there is nothing to prove. For the inductive step, suppose
that the lemma has been proved for n − 1 when n > r + 1. We prove the lemma
for n. Since r < n, we can renumber the xi ’s and assume that K (x2, . . . , xn)
has transcendence degree r over K . If this field is not separably generated over
K , then we are in a situation with n − 1 elements. The inductive hypothesis is
applicable, and the lemma follows in this case.
Thus suppose that K (x2, . . . , xn) is separably generated over K . Theorem7.18

shows that after a renumbering of the indices, we may assume that {x2, . . . , xr+1}
is a separating transcendence basis of K (x2, . . . , xn) over K . This implies that
K (x2, . . . , xn) is a separable extension of K (x2, . . . , xr+1). Since by assumption
L = K (x1, . . . , xn) is not separably generated over K , K (x1, . . . , xn) is not
separable over K (x2, . . . , xr+1). A separable extensionof a separable extension is
separable, andwe deduce that K (x1, . . . , xn) is not separable over K (x2, . . . , xn).
Thus x1 is inseparable over K (x2, . . . , xn) and is consequently inseparable over
the subfield K (x2, . . . , xr+1). Hence K (x1, . . . , xr+1) is not separably generated
over K . §

Theorem 7.20 (F. K. Schmidt). If K is a perfect field, then every finitely
generated field extension of K is separably generated over K .

REMARK. In particular, the theorem applies if K is a finite field or is alge-
braically closed or has characteristic 0.

PROOF. Let K have characteristic p. We induct on the transcendence degree
of the field extension of K . The base case of the induction is transcendence
degree 0, and then the theorem is handled by Proposition 7.15. For the inductive
step, assume that the theorem holds for all finitely generated field extensions of
K having transcendence degree r − 1 over K . Let L = K (x1, . . . , xn) have
transcendence degree r over K . Arguing by contradiction, suppose that L is not
separably generated over K . Lemma 7.19 shows for a suitable renumbering of the
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xi ’s that K 0 = K (x1, . . . , xr+1) has transcendence degree r and is not separably
generated over K .
We divide matters into two cases. First suppose that the transcendence degree

of K 00 = K (x1, . . . , xr ) is r − 1. The inductive hypothesis shows that K 00 is
separably generated over K , and then Theorem 7.18 shows that wemay renumber
the variables in such a way that {x1, . . . , xr−1} is a transcendence basis of K 00 over
K and K 00 is separable algebraic over K (x1, . . . , xr−1). Then {x1, . . . , xr−1, xr+1}
is a transcendence basis of K 0, and xr is algebraic over K (x1, . . . , xr−1, xr+1).
Since xr is separable over K (x1, . . . , xr−1), it is separable over the larger field
K (x1, . . . , xr−1, xr+1). Therefore K 0 is separably generated over K , contradic-
tion.
The remaining case is that every subset of r members of {x1, . . . , xr+1} is a

transcendence basis of K 0 over K . Lemma 7.17 produces an irreducible polyno-
mial f in K [X1, . . . , Xr+1] such that f (x1, . . . , xr+1) = 0. Since {x1, . . . , xr }
is a transcendence basis of K 0, application of Gauss’s Lemma shows that f is
irreducible in K (X1, . . . , Xr )[Xr+1] ∼= K (x1, . . . , xr )[Xr+1]. Hence up to a
nonzero factor from K , f (x1, . . . , xr , Xr+1) is the minimal polynomial of xr+1
over K (x1, . . . , xr ). The failure of K 0 to be separably generated over K implies
that xr+1 is inseparable over K (x1, . . . , xr ), and thus the only powers of Xr+1 that
appear in its minimal polynomial over K (x1, . . . , xr ) are powers X pk

r+1. In other
words, f is in K [X1, . . . , Xr , X p

r+1]. Since we are assuming that any r of the
elements x1, . . . , xr+1 form a transcendence basis of K 0 over K , there is nothing
special about Xr+1 in this argument. Consequently f is in K [X p

1 , . . . , X
p
r , X p

r+1].
Since K is perfect, any polynomial involving only pth powers of each indeter-
minate is the pth power of some polynomial. Consequently f is reducible in
K [X1, . . . , Xr+1], in contradiction to the irreducibility guaranteed by Lemma
7.17. All cases thus lead to a contradiction, and the proof is complete. §

4. Krull Dimension

In this section we develop the algebraic background necessary for a discussion
of dimension. Suppose that K is an algebraically closed field, suppose that I is
a prime ideal in K [X1, . . . , Xn], and suppose that V (I ) is the locus of common
zeros of I . Corollary 7.2 shows that I is the set of all polynomials vanishing on
V (I ), and thus the integral domain R = K [X1, . . . , Xn]/I may be regarded as
the set of all restrictions to V (I ) of polynomials. If L is the field of fractions
of R, then the transcendence degree of L/K is interpreted as the “number of
independent variables” on the locus V (I ). We define it to be the dimension of
V (I ). The elements Xj + I of R for 1 ≤ j ≤ n generate R as a K algebra,
and therefore they generate L over K as a field. We shall make critical use of
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the fact implied by Lemma 7.6b that some subset of {X1 + I, . . . , Xn + I } is a
transcendence basis of L . We shall speak of such a subset as a transcendence
basis of R for economy of words. We denote its cardinality by tr. deg R.

EXAMPLE. We continue with the example from Sections 1–2. Let K = C,
let I be the principal ideal

°
Y 2 − X (X + 1)(X − 1)

¢
in C[X,Y ], and let L

be the field of fractions of the integral domain R = C[X,Y ]/I . Corollary
7.2 shows that the ring R is the ring of restrictions of polynomials to the locus
V (I ) = {(x, y) ∈ C2 | y2 = x(x+1)(x−1)}. According to the above definition,
the dimension of V (I ) is the transcendence degree of L , which we have seen is 1.
This is in accord with the intuition that the locus V (I ) is a “curve” in the sense
of having one independent complex parameter.

The goal of this section is to produce an equivalent definition of dimension
that does not depend on the fact that K [X1, . . . , Xn]/I is an integral domain.
The rephrased definition will extend to any commutative ring with identity and
is essential for modern algebraic geometry.
Let R be any commutative ring with identity. The Krull dimension of R,

denoted by dim R, is the supremum of the indices d of all strictly increasing
chains

P0 $ P1 $ · · · $ Pd

of prime ideals in R. We define dim R = ∞ if there is no finite supremum.

EXAMPLES OF KRULL DIMENSION.
(1) R equal to a field. The only prime ideal is 0. Thus the Krull dimension of

any field is 0.
(2) R = Z. The prime ideals are of the form pZ for each prime number p,

together with 0. Each nonzero prime ideal is maximal. Consequently there is a
strictly increasing chain 0 $ pZ of prime ideals for each prime number p, but
there are no longer such chains. Thus dimZ = 1. More generally any principal
ideal domain R that is not a field, or even any Dedekind domain R that is not a
field, has dim R = 1 because every nonzero prime ideal is maximal.
(3) R commutativeArtinian. InChapter II a ringwith identitywas defined to be

Artinian if its two-sided ideals satisfy the descending chain condition. Problem 8
at the end of that chapter showed that every prime ideal in such a ring is maximal.
In other words, every commutative Artinian ring has Krull dimension 0.
(4) Polynomial ring R = K [X1, . . . , Xn], where K is a field. In geometric

terms for the case that K is algebraically closed, the relevant zero locus for this
R is Kn , which we certainly want to have dimension equal to n, and the field of
fractions of R is K (X1, . . . , Xn), which indeed has transcendence degree n. Let
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us examine the Krull dimension of R. If 0 ≤ k ≤ n and if we form the ideal
(X1, . . . , Xk), then the ring isomorphism

R ∼= K [Xk+1, . . . , Xn][X1, . . . , Xk]

shows that the quotient R/(X1, . . . , Xk) is isomorphic to K [Xk+1, . . . , Xn],
which is an integral domain. Therefore (X1, . . . , Xk) is prime, and we have
a strictly increasing chain

0 $ (X1) $ · · · $ (X1, . . . , Xn−1) $ (X1, . . . , Xn).

So dim K [X1, . . . , Xn] ∏ n. Actually, equality holds, as Theorem 7.22 will
show.

Lemma 7.21. Let R be a commutative ring with identity, let S−1R be the
localization relative to a multiplicative system S in R, let I be an ideal in R, and
let S be the image of S in R/I . Then

S−1R
±
S−1 I ∼= S −1(R/I )

via the mapping s−1r + S−1 I 7→ (s + I )−1(r + I ).

PROOF. Let q : R → R/I and q̄ : S−1R → S−1R/S−1 I be the quotient
homomorphisms, and let η : R → S−1R and η̄ : R/I → S −1(R/I ) be the
canonical homomorphisms of R and R/I into their localizations. To each of the
rings X1 = S−1R

±
S−1 I and X2 = S −1(R/I ) is associated a canonical map,

namely η1 : R → X1 and η2 : R → X2 with η1 = q̄η and η2 = η̄q. Let
us see that the pairs (Xi , ηi ) for i = 1, 2 have the following universal mapping
property with respect to ring homomorphisms ϕ of R into a commutative ring
T with identity such that ϕ(1) = 1, ϕ(I ) = 0, and ϕ(S) ⊆ T×: there exists a
unique homomorphism ϕi : Xi → T such that ϕ = ϕiηi .
For i = 1, we first apply the universal mapping property of the localization

S−1R to write ϕ = ϕ1η and then apply the universal mapping property of the
quotient to write ϕ = ϕ1q̄η. For i = 2, we first apply the universal mapping
property of the quotient R/I to write ϕ = ϕ2q and then apply the universal map-
ping property of the localization to write ϕ = ϕ2η̄q. From these constructionswe
deduce existence and uniqueness of ϕi in both cases. The asserted isomorphism
then follows from the general fact that objects satisfying a universal mapping
property are unique up to isomorphism; tracking down that isomorphism gives
the explicit formula in the lemma. §
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Theorem 7.22. Let K be a field, let R be an integral domain that is finitely
generated as a K algebra, and let L be the field of fractions of R. Then the Krull
dimension of R equals the transcendence degree of L over K .

PROOF. If x1, . . . , xn are generators of R as a K algebra, then R ∼=
K [X1, . . . , Xn]/I , where I is the ideal of all polynomials in K [X1, . . . , Xn]
that vanish at (x1, . . . , xn). The ideal I is prime, since R is assumed to be an
integral domain. Let r be the transcendence degree of L over K . We know from
Lemma 7.6b that some subset of {x1, . . . , xn} is a transcendence basis of L over
K ; therefore r ≤ n. To prove the theorem, we shall prove that r ∏ dim R and
that r ≤ dim R.
Suppose that P and Q are prime ideals of R with P ⊆ Q. Then the identity

map on R descends to a K algebra homomorphism ϕ : R/P → R/Q. If
αj = xj + P and βj = xj + Q are the images of xj under the respective quotient
maps R → R/P and R → R/Q, then {α1, . . . , αn} is a set of generators of R/P ,
{β1, . . . , βn} is a set of generators of R/Q, and ϕ(αj ) = βj for 1 ≤ j ≤ n. If r 0 =
tr. deg R/Q, we may assume that {β1, . . . , βr 0 } is a transcendence basis of R/Q.
Then {α1, . . . , αr 0 } is an algebraically independent subset of R/P over K because
if f is a nonzero polynomial in K [X1, . . . , Xr 0] such that f (α1, . . . , αr 0) = 0,
then application of ϕ and use of the fact that ϕ fixes each coefficient of f yields
f (β1, . . . , βr 0) = 0; the latter equation contradicts the algebraic independence of
{β1, . . . , βr 0 }. We conclude that

P ⊆ Q implies tr. deg(R/P) ∏ tr. deg(R/Q). (∗)

To prove the inequality r ∏ dim R, let a chain of prime ideals

0 ⊆ P0 $ P1 $ · · · $ Pd

of R be given. We are to show that r ∏ d. Abbreviate K [X1, . . . , Xn] as A, so
that R = A/I . Pull the chain of ideals of R back to a chain of ideals in A as

I ⊆ P 0
0 $ P 0

1 $ · · · $ P 0
d . (∗∗)

Inequality (∗) shows that

tr. deg(A/P 0
0) ∏ tr. deg(A/P 0

1) ∏ · · · ∏ tr. deg(A/P 0
d). (†)

Since taking P 0
0 = I shows that tr. deg(A/I ) = tr. deg(R) = r , every member of

(†) is ≤ r . It will follow from (†) that r ∏ d if we show that each inequality in
(†) is strict, i.e., that for prime ideals P and Q in A,

P $ Q implies tr. deg(A/P) > tr. deg(A/Q). (††)
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Since dim R is the supremum of the integers d as in (∗∗) and (†), proving (††)
will prove that r ∏ dim R.
Thus let P and Q be prime ideals in A = K [X1, . . . , Xn] with P $ Q. Put

αj = Xj + P and βj = Xj + Q, so that the mappings of A to A/P and A/Q
are f (X1, . . . , Xn) 7→ f (α1, . . . , αn) and f (X1, . . . , Xn) 7→ f (β1, . . . , βn).
Then A/P = K [α1, . . . , αn] and A/Q = K [β1, . . . , βn]. As above, if r 0 =
tr. deg A/Q, then we may assume that {β1, . . . , βr 0 } is a transcendence basis of
A/Q. Arguing by contradiction, wemay assume that tr. deg A/P = tr. deg A/Q.
Then it follows that {α1, . . . , αr 0 } is a transcendence basis of A/P . We localize A
with respect to the multiplicative system S consisting of the complement of 0 in
K [X1, . . . , Xr 0]. Then S−1A = K (X1, . . . , Xr 0)[Xr 0+1, . . . , Xn]. To understand
S−1P , we apply Lemma 7.21 to write

S−1A/S−1P ∼= S −1(A/P), (‡)

where S is the image of S in A/P . The restriction to K [X1, . . . , Xr 0] of the
map A → A/P carries f (X1, . . . , Xr 0) to f (α1, . . . , αr 0) and is one-one because
{α1, . . . , αr 0 } is a transcendence set. Therefore S ∩ P = ∅, and S → S is
one-one. Corollary 8.48d of Basic Algebra shows from S ∩ P = ∅ that S−1P
is a proper ideal of S−1A. Since S → S is one-one, let us view S as S =
{ f (α1, . . . , αr 0) | f 6= 0}. Then

S −1(A/P) = K (α1, . . . , αr 0)[αr 0+1, . . . , αn]. (‡‡)

Since αr 0+1, . . . , αn are algebraic over K (α1, . . . , αr 0) because of the assumption
tr. deg A/P = tr. deg A/Q = r 0, the remark with Lemma 7.3 shows that (‡‡) is
a field. By (‡), S−1P is a maximal ideal. Arguing similarly with Q, we see that
S ∩ Q = ∅ and that S−1Q is a maximal ideal. From P ⊆ Q, we have S−1P ⊆
S−1Q. Because S−1P and S−1Q are maximal, S−1P = S−1Q. Therefore Q ⊆
S−1P . Since Q properly contains P , we can choose g in Q that is not in P . This g
is an elementof K [X1, . . . , Xn] such that g(α1, . . . , αn) 6= 0 and g(β1, . . . , βn) =
0. From the inclusion Q ⊆ S−1P , there exist an f in P and a nonzero s in
K [X1, . . . , Xr ] with g = s−1 f . Then f = sg. Since f (α1, . . . , αn) = 0 and
s(α1, . . . , αr 0)g(α1, . . . , αn) 6= 0, we obtain a contradiction. This contradiction
proves (††) and shows that r ∏ dim R.
The argument that r ≤ dim R will proceed by induction on r . If r = 0, then

R = K [x1, . . . , xn] is a field by the remark with Lemma 7.3, and dim R = 0 by
Example 1 of Krull dimension. Now suppose inductively that r > 0 and that the
inequality is known when tr. deg R < r . Put A = K [X1, . . . , Xn], and suppose
that R = A/I = K [x1, . . . , xn] with x1 transcendental over K . We localize A
with respect to the multiplicative system S consisting of the complement of 0
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in K [X1]. Then S−1A = K (X1)[X2, . . . , Xn]. To understand S−1 I , we apply
Lemma 7.21 to write

S−1A/S−1 I ∼= S −1(A/I ),

where S is the image of S in A/I . Arguing as in the previous paragraph, we see
that

S −1(A/I ) ∼= K (x1)[x2, . . . , xn].

Combining these two isomorphisms, we see that S−1A/S−1 I has transcendence
degree r − 1 over K (x1). By the inductive hypothesis, S−1A/S−1 I has Krull
dimension ∏ r − 1. Thus there exists a strictly increasing chain

S−1 I = Q0 $ Q1 $ · · · $ Qr−1

of prime ideals in S−1A. If we put Pi = A∩ Qi for each i , then each Pi is prime
in A. From the theory of localization, we know that Qi is recovered from Pi by
Qi = S−1Pi , and thus we have a strictly increasing chain

I = P0 $ P1 $ · · · $ Pr−1 (§)

of prime ideals in A. The fact that Pr−1 is proper implies that S∩ Pr−1 = ∅. That
is, no nonzero member of K [X1] lies in Pr−1. Consequently the image of X1
in A/Pr−1 is transcendental over K . The Nullstellensatz (Theorem 7.1) shows
that Pr−1 is not maximal in A. Hence the chain (§) can be extended by a strict
inclusion in a maximal ideal Pr , and r ≤ dim A/I = dim R. This completes the
induction and the proof. §

5. Nonsingular and Singular Points

In this section we develop the initial algebraic background necessary for a dis-
cussion of nonsingular and singular points. Unlike what happened in previous
sections, we shall not try to separate completely the algebra from the geometric
setting, because the points to be investigated are the actual points of a zero locus.
The motivation comes from the Implicit Function Theorem in the calculus of

several variables. In that setting, suppose that we have l numerical-valued smooth
functions f1, . . . , fl of n variables. Let k be an integer with 1 < k < n, and ab-
breviate (x1, . . . , xn) as (x, y), where x = (x1, . . . , xk) and y = (xk+1, . . . , xn).
Suppose that (x0, y0) has the property that fi (x0, y0) = 0 for 1 ≤ i ≤ l. The hope
is that there is a smooth vector-valued function y = g(x) defined near x = x0
such that y0 = g(x0) and such that fi (x, y) = 0 for 1 ≤ i ≤ l with (x, y) near
(x0, y0) if and only if y = g(x), i.e., that the locus of common zeros of f1, . . . , fl
is locally the graph of a smooth function of k variables. According to the Implicit



5. Nonsingular and Singular Points 429

Function Theorem, a sufficient condition for this to happen is that k + l = n and
that the (square) matrix of the first partial derivatives at (x0, y0) of the fi ’s for
1 ≤ i ≤ l with respect to the yj ’s for k + 1 ≤ j ≤ n be invertible. A little more
generally but still with k + l = n, the locus of common zeros is locally the graph
of a smooth function of l of the variables in terms of the remaining k variables if
the matrix of all the first partial derivatives of the fi ’s has the maximum possible
rank, namely l.
Let us describe the setting for a comparable situation in algebraic geome-

try. Throughout this section we assume that K is an algebraically closed field.
Suppose that I is a prime ideal in K [X1, . . . , Xn], and let V (I ) be the locus of
common zeros5 of I in Kn . The Hilbert Basis Theorem shows that I is finitely
generated over K as an ideal, and we let { f1, . . . , fl} be a set of generators.
Corollary 7.2 shows that I is the set of all polynomials vanishing on V (I ), and
thus the integral domain R = K [X1, . . . , Xn]/I may be regarded as the set of all
restrictions to V (I ) of polynomials in the following sense: if x = (x1, . . . , xn) is
a member of V (I ) and f (X1, . . . , Xn) is in K [X1, . . . , Xn], then every member
of the coset f + I has the same value at x , and it is consequently meaningful to
write f (x) for f in R.
From Theorem 7.22 the transcendence degree over K of the field of fractions

of R equals the Krull dimension of the ring R, and these numbers are what is
taken as the dimension of V (I ) over K . We write dim V (I ) for this dimension.
In this setting, a point x of V (I ) is called a nonsingular point, or regular point,
if the matrix

£ @ fi
@Xj

(x)
§
has rank equal to n− dim V (I ). Otherwise x is a singular

point.
It is important to observe that these definitions do not depend on the choice of

the set { f1, . . . , fl} of generators of I . In fact, it is enough to show that the row
space of the matrix

£ @ fi
@Xj

(x)
§
is exactly the space of all row vectors

≥ @ f
@X1

(x) · · ·
@ f
@Xn

(x)
¥

for f ∈ I,

since the latter space ismanifestly independent of the choice of generators. To see
that the displayed space equals the row space of the matrix whose rank appears
in the definition of singular point, let g1, . . . , gn be arbitrary polynomials. Then
f =

P
i gi fi is the most general member of I . Use of the product rule and the

fact that fi (x) = 0 for each i shows that @ f
@Xj

(x) =
P

i gi (x)
@ fi
@Xj

(x). Since the
gi are arbitrary, we can arrange for (g1(x), . . . , gn(x)) to be any given member
of Kn . Thus the space of all row vectors

° @ f
@X1 (x) · · · @ f

@Xn (x)
¢
for f ∈ I is

the set of all K linear combinations of row vectors
° @ fi

@X1 (x) · · · @ fi
@Xn (x)

¢
for

1 ≤ i ≤ l, as asserted.
5In terminology to be used in later chapters, one says thatV (I ) is the affine variety corresponding

to I .
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EXAMPLES.
(1) Irreducible affine curve6 in K 2. Suppose that n = 2 in the notation

above and that I is nonzero and is generated by a single nonconstant polynomial
f (X,Y ). The condition that I be prime is exactly the condition that f (X,Y )
be a prime polynomial. In turn, since K [X,Y ] is a unique factorization domain,
the condition that f (X,Y ) be prime is exactly the condition that f (X,Y ) be
irreducible. Let us specialize to a case for which the first partial derivatives take
an especially simple form: suppose that

f (X,Y ) = Y 2 − h(X).

The only possible factorization is f (X,Y ) = (Y +
p
h(X) )(Y −

p
h(X) ), and

thus f (X,Y ) is irreducible in K [X,Y ] if h(X) is not the square of a member
of K [X]. The relevant integral domain is R = K [X,Y ]/( f (X,Y )), and we let
x = X + ( f (X,Y )) and y = Y + ( f (X,Y )). Then x is transcendental over
K , and the equation y2 = h(x) shows that y is algebraic over K (x). Hence
tr. deg R = 1, and the corresponding V (I ) has dim V (I ) = 1. If (x0, y0) is a
point of V (I ), then the matrix of first partial derivatives is

≥ @ f
@X

@ f
@Y

¥

(x0,y0)
= (−h0(X) 2Y )(x0,y0) .

The rank of this matrix is ≤ 1, and nonsingularity of (x0, y0) means that the
matrix has rank equal to 1. If the characteristic is 6= 2, then the condition for a
singularity is that y20 = h(x0), y0 = 0, and h0(x0) = 0 simultaneously. Hence
V (I ) is everywhere nonsingular7 if and only if h has no multiple roots in K .
(2) Irreducible affine hypersurface8 in Kn . For general n, again suppose that

I is a prime ideal generated by a single nonconstant polynomial f (X1, . . . , Xn).
The condition on f for I to be prime is that f be irreducible in K [X1, . . . , Xn].
The relevant ring is R = K [X1, . . . , Xn]/( f (X1, . . . , Xn)), and the image in R
of a polynomial g(X1, . . . , Xn) is 0 only if g is divisible by f , by Corollary
7.2. The polynomial f is nonconstant in some Xj , say for j = n. Then
no nonzero polynomial g(X1, . . . , Xn−1) maps to 0 in R. Consequently the
elements xi = Xi + ( f (X1, . . . , Xn)) have the property that {x1, . . . , xn−1} is
a transcendence set in R. The equation f (x1, . . . , xn) = 0 shows that xn is
algebraic over K (X1, . . . , Xn−1). Hence the correspondingV (I )has dim V (I ) =
tr. deg R = n − 1. The nonsingular points of V (I ) are the points of V (I ) for
which some first partial derivative of f is nonzero.

6Some authors include irreducibility in the definition of “affine curve.” This book does not.
7If K has characteristic 2 and if x0 has the property that h0(x0) = 0, then we can choose y0 with

y20 = h(x0) because K is algebraically closed, and (x0, y0) will be a singular point. Hence V (I ) is
everywhere nonsingular if and only if h has degree exactly 1.

8Some authors include irreducibility in the definition of “affine hypersurface.” This book does
not.
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Theorem 7.23 (Zariski’s Theorem). With K algebraically closed, let I be a
prime ideal in K [X1, . . . , Xn], let R = K [X1, . . . , Xn]/I , and let V (I ) be the
locus of common zeros of I in Kn . If x = (x1, . . . , xn) is a point of V (I ), define
mx to be the maximal ideal

mx = { f ∈ R | f (x) = 0}

of R, let Rx be the localization of R with respect tomx , and letMx be themaximal
ideal of Rx . Then

dimK (Mx/M2
x ) = dimK (mx/m

2
x) ∏ dim V (I ),

and x is nonsingular if and only if equality holds. The set of nonsingular points
of V (I ) is nonempty.

REMARKS. We are going to prove for each point x of V (I ) that

dimK (Mx/M2
x ) = dimK (mx/m

2
x)

and that
dimK (mx/m

2
x) + rank

£ @ fi
@Xj

§
= n,

where { fi } is a finite set of generators of I . Since by definition x is nonsingular if
and only if rank

£ @ fi
@Xj

§
= n−dim V (I ), it will follow that x is a nonsingular point

if and only if dimK (mx/m2
x) = dim V (I ). Only for the special case thatV (I ) is an

irreducible affine hypersurface do we prove that the inequality dimK (mx/m2
x) ∏

dim V (I ) always holds for all x and that equality always holds for some x . The
general casewill ultimately be reduced to the special case; we return to thismatter
in ChapterX. The partial proof that we give in the present sectionwill be preceded
by an example.

EXAMPLE 1, CONTINUED. Suppose that an affine variety V in K 2 is obtained
from the irreducible polynomial f (X,Y ) = Y 2 − h(X). Let us assume that K
has characteristic 6= 2 and that (0, 0) lies in V . The latter condition means that
h(0) = 0. Let x = X + ( f (X,Y )) and y = Y + ( f (X,Y )). Since y2 = h(x),
any polynomial in (x, y) can be rewritten in such a way that the only powers of
y that occur are 0 and 1. Thus R = {p(x) + yq(x) | p ∈ K [x], q ∈ K [x]}, and

m(0,0) =
©
xp(x) + yq(x) | p ∈ K [x], q ∈ K [x]

™
.

The ideal m2
(0,0) consists of all sums of products of two elements of this kind.

From two polynomials xp(x), we can get any polynomial x2a(x); from xp(x)



432 VII. Infinite Field Extensions

and yq(x), we can get any xyb(x); and from two polynomials yq(x), we can get
any y2c(x) = h(x)c(x). Thus

m2
(0,0) =

©
x2a(x) + h(x)c(x) + yxb(x)

™
.

What happens depends on the first-degree term in h(x). Examining the possibil-
ities, we see that

m2
(0,0) =

Ω
{xa(x) + yxb(x)} if h0(0) 6= 0,
{x2a(x) + yxb(x)} if h0(0) = 0.

Hence
m(0,0)/m

2
(0,0)

∼=

Ω Ky if h0(0) 6= 0,
Kx + KY if h0(0) = 0.

In other words, dimK m(0,0)/m
2
(0,0) equals 1 if (0, 0) is nonsingular and equals 2 if

(0, 0) is singular. Since dim V (I ) = 1, this result is consistent with the statement
of Theorem 7.23.

PARTIAL PROOF OF THEOREM 7.23. As mentioned in the remarks, one thing
that we are going to prove for each point x of V (I ) is that

dimK (mx/m
2
x) + rank

£ @ fi
@Xj

§
= n, (∗)

where { f1, . . . , fl} is a finite set of generators of I .
Let Ix be the pullback to K [X1, . . . , Xn] of the ideal mx , i.e., let

Ix =
©
f | f + I ∈ mx

™
=

©
f ∈ K [X1, . . . , Xn] | f (x1, . . . , xn) = 0

™
.

The K linear mapping f 7→ f + I carries Ix onto mx ; composing with the
quotient mapping mx → mx/m2

x gives a K linear mapping ϕ of Ix onto mx/m2
x .

If f maps under ϕ to the 0 coset, then f + I =
P

j (gj + I )(hj + I ) for suitable
polynomials gj and hj with gj + I and hj + I inmx . Then f −

P
j gj hj lies in I ,

and f is exhibited as a member of I 2x + I . Conversely ϕ does carry I 2x and I to
the 0 coset. Thus the kernel of ϕ is exactly I 2x + I , and ϕ descends to a K linear
isomorphism Ix

±
(I 2x + I ) ∼= mx/m2

x . Therefore

dimK
°
Ix

±
(I 2x + I )

¢ ∼= dimK (mx/m
2
x). (∗∗)

We define a K linear map θ of K [X1, . . . , Xn] to the space M1n(K ) of all
n-dimensional row vectors over K by

θ( f ) =
° @ f

@X1 (x) · · · @ f
@Xn (x)

¢
.
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Theproduct rule for differentiationshows that θ(I 2x ) = 0. The ideal Ix , considered
as a K vector space, is spanned by I 2x and the various polynomials Xj − xj . Since
θ(Xj − xj ) is the j th standard basis vector of M1n(K ), the vectors θ(Xj − xj )
form a basis of M1n(K ). Therefore θ descends to a K linear isomorphism
θ̄ : Ix/I 2x → M1n(K ).
We observed just before Examples 1 and 2 that the vector space of all row

vectors θ( f ) for f ∈ I equals the row space for the matrix
£ @ fi

@Xj

§
. Hence

dimK θ(I ) = rank
£ @ fi

@Xj

§
.

Since θ(I ) = θ̄
°
(I + I 2x )/I 2x

¢
and since θ̄ is one-one, this equality shows that

dimK
°
(I + I 2x )/I

2
x
¢

= rank
£ @ fi

@Xj

§
. (†)

Adding (∗∗) and (†) gives

dimK (Ix/I 2x ) = dimK (mx/m
2
x) + rank

£ @ fi
@Xj

§
.

Since, as we have seen, Ix/I 2x is isomorphic to M1n(K ) via θ̄ , the left side is n,
and (∗) is proved.
The second thing that we are going to prove now is that

dimK (mx/m
2
x) = dimK (Mx/M2

x ). (††)

If L is the field of fractions of the integral domain R, then the localization Rx is the
subring of L of all quotients g/h with g and h in R and h(x) 6= 0. The inclusion
mx ⊆ Mx induces a K linear ring homomorphism ϕ : mx/m2

x → Mx/M2
x , and

(††) will follow if ϕ is shown to be one-one onto.
If g/h is given in Mx with g ∈ mx and with h ∈ R having h(x) 6= 0, then the

decomposition
h(x)−1g = g

h +
° g
h
¢° h(x)−1h−1

1
¢

exhibits h(x)−1g in mx as mapping to g/h + M2
x . Therefore ϕ is onto.

If g in mx maps to
P

i
° gi
hi

¢° g0
i
h0
i

¢
in M2

x , then we can clear fractions and write
hg =

P
i gi g0

i h
00
i for an element h of R with h(x) 6= 0. Here

P
i gi g0

i h
00
i is in m2

x .
The set of elements f in R such that f g is inm2

x is an ideal in R that containsmx
and that contains h. Since h is not inmx and sincemx is maximal, this ideal in R
contains f = 1, and it follows that g is inm2

x . Consequentlyϕ is an isomorphism,
and (††) is proved. §
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PROOF OF REMAINDER OF THEOREM 7.23 FOR IRREDUCIBLE AFFINE HYPER-
SURFACES. Let I be the principal ideal ( f (X1, . . . , Xn)), where f is irreducible.
We saw in Example 2 above that dim V (I ) = n − 1. The matrix that appears
in (∗) has only one row, corresponding to f , and hence it has rank 1 or rank 0.
Substituting this fact into (∗), we see that dimK (mx/m2

x) ∏ n − 1 = dim V (I ).
Arguing by contradiction, suppose that strict inequality holds for every x in

V (I ). Then @ f
@Xj

(x) = 0 for all x ∈ V (I ) and for all j . By Corollary 7.2, each
@ f
@Xj

is the product of f and a polynomial. Since the degree of @ f
@Xj

in Xj is less
than the degree of f in Xj , it follows that @ f

@Xj
= 0 for all j . In characteristic 0,

this condition forces f to be constant and contradicts the assumption that f is
an irreducible polynomial (and in particular the assumption that f is not a unit).
In characteristic p, this condition forces each power of each Xj that occurs in
f to be a multiple of p. That is, it says that f (X1, . . . , Xn) = g(X p

1 , . . . , X
p
n ).

Let Fr : K → K be the field map given by a 7→ ap. This is onto K , since
K is algebraically closed. Hence there exists a polynomial h(X1, . . . , Xn) such
that hFr = g. Then f (X1, . . . , Xn) = g(X p

1 , . . . , X
p
n ) =

°
h(X1, . . . , Xn)

¢p

exhibits f as reducible, contradiction. Hence strict inequality cannot hold for all
x ∈ V (I ), and some point of V (I ) is nonsingular. §

6. Infinite Galois Groups

In this section, K denotes a field, and Kalg denotes a fixed algebraic closure of
K . We define Ksep to be the subfield of all elements of Kalg that are separable
over K . The field Ksep is called a separable algebraic closure of K . Theorem
7.13 shows that Kalg is a purely inseparable extension of Ksep. If F1 and F2 are
any fields with F1 ⊆ F2, then the group of all field automorphisms of F2 fixing
F1 is denoted by Gal(F2/F1) and is called the Galois group of F2 over F1.
The purpose of this section is to extend the theory of Galois groups to handle

infinite extensions. Such an extended theory has at least two important applica-
tions in the current context. A first application is to developments in algebraic
number theory beyond what appears in Chapters V and VI. For example one way
of viewing traditional class field theory for a number field F is that one forms
Gal(Falg/F), defines the maximal abelian extension Fab of F to be the fixed
field of the closure of the commutator subgroup of Gal(Falg/F), and asks for a
description of Fab in terms of F . A second application is to the study of varieties
over fields that are not algebraically closed. If a field K is given and a prime ideal
I in Kalg[X1, . . . , Xn] is specified by giving a finite set of generators, we can ask
whether the same ideal can be defined via generators that lie in K . The given
generators have coefficients in Kalg, and it is usually not obvious whether they
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can be adjusted to have coefficients in K . However, if Galois theory is available,
then the question becomes whether the operation of each element of the Galois
group Gal(Kalg/K ) carries each generator into a member of the ideal,9 and this
question is decidable by methods to be discussed in Chapter VIII. More generally
algebraic geometry from before 1960 frequently worked with a field K and an
algebraically closed field L that is larger than Kalg, for example with K = Q and
L = C. Under the assumption that K is perfect and L is algebraically closed,
Theorem 7.34 below shows that Gal(L/K ) fixes only the elements of K , and thus
Galois theory can still be used to decide in this situation whether a prime ideal in
L[X1, . . . , Xn] is generated by members of K [X1, . . . , Xn].
The definition of “normal field extension” inBasicAlgebrawas limited to finite

algebraic extensions, and the extensions were often assumed to be separable. We
now drop both the finiteness assumption and the separability assumption: A field
L with K ⊆ L ⊆ Kalg is said to be a normal extension of K if there exists
some nonempty family { fi }i∈S of nonconstant polynomials in K [X] such that
L is generated by K and all the roots in Kalg of all the polynomials fi . More
specifically all the polynomials fi split in Kalg, say as fi (X) = ci

Qd(i)
j=1 (X−αi j ),

and L is to be the subfield of Kalg generated by K and all the roots αi j .

Proposition 7.24. The following conditions on a field L with K ⊆ L ⊆ Kalg
are equivalent:

(a) L is a normal extension of K ,
(b) Gal(Kalg/K ) carries L to itself,
(c) any K isomorphism of L into Kalg carries L to itself,
(d) any polynomial f in K [X] that is irreducible over K and has one root in

L necessarily splits in L .

PROOF. If (a) holds, let L be generated by K and elements αi j as in the
paragraph before the proposition. If ϕ is in Gal(Kalg/K ), then ϕ(αi j ) is a root of
f ϕ
i = fi because fi has coefficients in K . Hence αi j equals some αi j 0 . Thus ϕ
permutes the generators of L over K , and ϕ(L) = L . Therefore (b) holds.
If (b) holds, then any K field map of L into Kalg extends to a K automorphism

of Kalg, by Theorem 9.23 of Basic Algebra. By (b), the extended mapping carries
L into itself. Thus (c) holds.
If (c) holds, let f in K [X] be irreducible over K , and suppose that x0 is a

root of f in L . Let x1 be another root of f in Kalg. By the uniqueness of
simple extensions, we know that there exists a K isomorphism ϕ0 : K (x0) →
K (x1) ⊆ Kalg, and we can regard ϕ0 as a K field map of K (x0) into Kalg. The
map ϕ0 extends to a K field automorphism of Kalg, and we restrict the extension

9This condition is always necessary. For it to be sufficient, one has to show that the onlymembers
of Kalg fixed by all elements of Gal(Kalg/K ) are the members of K .
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to a map ϕ : L → Kalg. By (c), ϕ(L) ⊆ L . Since K (x0) ⊆ L , we obtain
K (x1) = ϕ(K (x0)) ⊆ ϕ(L) ⊆ L . Thus x1 is in L , and (d) holds.
If (d) holds, then for each element xi of L , let fi be the minimal polynomial

of xi over K . Certainly the field L is generated by K and the elements xi . By
(d), each fi splits in L . Therefore L is generated over K by all the roots of the
polynomials fi and is normal. Thus (a) holds. §

Proposition 7.25. Every member of Gal(Kalg/K ) carries Ksep into itself, any
two members of Gal(Kalg/K ) that agree on Ksep are equal on Kalg, and any field
map of Ksep into Kalg extends to an automorphism of Kalg. Consequently the
operation of restriction from Kalg to Ksep defines an isomorphism

Gal(Kalg/K ) ∼= Gal(Ksep/K ).

PROOF. The first statement has three conclusions to it. For the first conclusion,
if ϕ is in Gal(Kalg/K ) and if x0 is in Ksep, let f be the minimal polynomial of x0
over K . By separability, f is a separable polynomial over K . Since ϕ fixes f ,
ϕ carries x0 to some root x1 of f , and hence f is the minimal polynomial of x1
over K . Since f is a separable polynomial over K , x1 is separable over K and
lies in Ksep.
For the second conclusion, let ϕ be a member of Gal(Kalg/K ) that is 1 on Ksep.

If x is in Kalg, then the pure inseparability of Kalg/Ksep implies that x p
e
= a for

some a ∈ Ksep and some integer e ∏ 0. The element x has (X − x)pe =
X pe − x pe = X pe − a and hence is the unique root of X pe − a. Since ϕ(x) has
to be a root of this polynomial, ϕ(x) = x .
The third conclusion is a special case of the extendability to all of Kalg of any

field mapping of a subfield of Kalg into Kalg.
The displayed isomorphism follows: the first conclusion shows that restric-

tion carries Gal(Kalg/K ) into Gal(Ksep/K ), the second conclusion shows that
restriction is one-one, and the third conclusion shows that restriction is onto. §

Corollary 7.26. Let L be a field with K ⊆ L ⊆ Ksep, form Gal(L/K ), and
let LGal(L/K ) be the fixed field

LGal(L/K ) = {x ∈ L | ∞ x = x for all x ∈ Gal(L/K )}.

Then L is normal over K if and only if LGal(L/K ) = K .

PROOF. Let L be normal over K , let x be in LGal(L/K ), and let f be theminimal
polynomial of x over K . Since L is normal, f splits in L . Since L ⊆ Ksep, the
roots of f in L all have multiplicity one. Arguing by contradiction, suppose
that x is not in K . Then deg f > 1, and f has another root x1 besides x .
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Hence we can find a K isomorphism ϕ : K (x) → K (x1) with ϕ(x) = x1. The
mapping ϕ extends to a field automorphism of Kalg, and Proposition 7.24 shows
that ϕ(L) = L , since L is normal. Thus ϕ defines by restriction a member of
Gal(L/K ). Since ϕ(x) = x1, we have a contradiction to the assumption that x is
in LGal(L/K ) = K .
Conversely let LGal(L/K ) = K . Let x be in L , and let f be its minimal

polynomial over K . Let x1 = x and x2, . . . , xr be the distinct images of x in
L under members of Gal(L/K ). These are all roots of f , and the roots of f
have multiplicity 1 because x lies in Ksep. Each member of Gal(L/K ) permutes
x1, . . . , xr and hence acts via a permutation in the symmetric group Sr . Put
g(X) =

Qr
i=1 (X − xi ). Expanding g gives

g(X) = Xr −
°P

i
xi

¢
Xr−1 +

° P

i< j
xi xj

¢
Xr−2 − · · · ±

°Q

i
xi

¢
.

Each permutation of {x1, . . . , xr } fixes the coefficients of g(X), which are mem-
bers of L , and hence the coefficients are in LGal(L/K ) = K . Therefore g(X) is
in K [X]. Since g(x) = 0, f (X) divides g(X). Over L , g(X) splits. By unique
factorization in L[X], f (X) must split, too. By Proposition 7.24, L is normal
over K . §

To obtain a version of the Fundamental Theorem of Galois Theory in the
present context, it is necessary to introduce a topology on each Galois group. An
example will illustrate.

EXAMPLE. Let K be the finite field Fq , where q = pr for a prime p. If Ln
is a finite extension of K of degree n, then Proposition 9.40 of Basic Algebra
shows that Gal(Ln/K ) is cyclic of order n, a generator being the Frobenius
element Frq defined by Frq(x) = xq . The thing about the Frobenius element is
that it really makes sense on all Ln’s simultaneously. We know (from Proposition
7.15 for example) that every algebraic extension of K is separable, and hence
Ksep = Kalg. Here we can view Ksep as an aligned union of the fields Ln for
n ∏ 1, and Frq really makes sense as a member of Gal(Ksep/K ) under the same
definition: Frq(x) = xq . On each Ln , some nonzero power of Frq is the identity,
but this is no longer true on the infinite field Ksep. Thus the mapping 1 7→ Frq
extends to a one-one homomorphism of Z into Gal(Ksep/K ). However, it is not
onto. Any element ∞ of Gal(Ksep/K ) has the property that for each n, there is
a unique integer kn with 0 ≤ kn < n such that ∞

Ø
Ø
Ln

= Frknq , and the sequence
{kn} determines ∞ ; nevertheless Problem 3 at the end of the chapter shows that
the sequence need not ultimately be constant, and therefore ∞ need not be in
the image of Z. The Galois group Gal(Ksep/K ) is instead a certain topological
completion of Z that is usually denoted by bZ. Taking the topology into account
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will be essential to extending the Fundamental Theorem of Galois Theory, since
Z and bZ are distinct subgroups of Gal(Ksep/K ) that have the same fixed field,
namely K itself.

If L is a normal extensionof K with L ⊆ Ksep, we shall introduce a topologyon
Gal(L/K ) to make “close” mean “equal on a large finite-dimensional subspace.”
With this intuition as a guide, we could define a basic neighborhood of an element
∞0 of Gal(L/K ) by taking finitely many elements α1, . . . , αn in K and forming

{∞ ∈ Gal(L/K ) | ∞αi = ∞0αi for 1 ≤ i ≤ n}.
It is more useful, however, to define the topology in another way, and then it will
turn out that we indeed would have obtained a neighborhood basis by the above
definition. In any event, the topology turns out to be compact Hausdorff and to
make Gal(L/K ) into a topological group.
The method we use will be to define the topology as an “inverse limit.” In-

verse limit is a general notion in category theory defined by a universal mapping
property. As usual it consists of an object and a morphism; it need not exist in a
general category, but when it does exist, it is unique up to canonical isomorphism.
For the category of interest, the objects are the compact (Hausdorff) topological
groups, and the morphisms are continuous group homomorphisms. If we wanted
to emphasize the category-theory aspects of the construction, we would also need
products of this category with itself, but we shall not belabor this point.
Let I be a directed set, i.e., a nonempty partially ordered set under an ordering

≤ such that for any a and b in I , there is an element c in I with a ≤ c and b ≤ c.
We allow ourselves to write b ∏ a in place of a ≤ b whenever convenient. Two
examples of directed sets of particular interest both have I = {1, 2, 3, . . . }; in
one case the ordering is given by a ≤ b if a divides b, and in the other case the
ordering is given by the usual notion of inequality.
An inverse system (I, {Gi }, { fi j }) in the category of compact topological

groups consists of a directed set I , a system of compact topological groups Gi ,
one for each i ∈ I , and a system of continuous homomorphisms fi j : Gj → Gi ,
defined whenever i and j are in I with i ≤ j , such that

• fii = 1 for all i ∈ I ,
• fi j ◦ f jk = fik whenever i ≤ j ≤ k.

EXAMPLES.
(1) Let I = {1, 2, 3, . . . } with a ≤ b meaning that a divides b. Let Ga be the

cyclic group Z/aZ of order a. Define fab : Gb → Ga to be the homomorphism
such that fab(1+ bZ) = 1+ aZ.
(2) Let I = {1, 2, 3, . . . } with the usual ordering. Fix a prime number p, and

define Ga to be the cyclic group Z/paZ of order pa . Define fab : Gb → Ga to
be the homomorphism such that fab(1+ pbZ) = 1+ paZ.
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An inverse limit (G, { fi }i∈I ) of the inverse system (I, {Gi }, { fi j }), often
written G = lim

√
Gi and sometimes also called the projective limit, consists

of a compact topological group G and continuous homomorphisms fi : G → Gi
such that

(i) fi j ◦ f j = fi whenever i ≤ j ,
(ii) whenever (G 0, { f 0

i }i∈I ) is a pair consisting of a compact topological group
G 0 andcontinuoushomomorphisms f 0

i : G 0 → Gi such that i ≤ j implies
fi j ◦ f 0

j = f 0
i , then there exists a unique continuous homomorphism

F : G 0 → G such that fi ◦ F = f 0
i for all i .

In the two examples the inverse limit group in the first case is bZ ; in the second
case the inverse limit is isomorphic to the additive group Zp of p-adic integers.
In the first case we omit a description of the homomorphisms fa : bZ → Z/aZ. In
the second case the homomorphisms fa are easy to describe: fa : Zp → Z/paZ
is given by the composition of the quotient homomorphism Zp → Zp/paZp and
the isomorphism Zp/paZp → Z/paZ asserted by Theorem 6.26e.

Proposition 7.27. In the category of compact topological groups, an inverse
system (I, {Gi }, { fi j }) has at least one inverse limit, namely (G, { fi }i∈I ) with

G =
n
(gi )i∈I ∈

Q

i∈I
Gi

Ø
Ø fi j (gj ) = gi whenever i ≤ j

o
,

fi = restriction to G of the i th projection
Q

j
G j → Gi .

REMARKS. It is to be understood from the statement that G gets the relative
topology from

Q
i∈I Gi . We refer to this (G, { fi }i∈I ) as the standard inverse

limit of (I, {Gi }, { fi j }).

PROOF. If (gi )i∈I and (g0
i )i∈I are inG, then the fact that each fi j is a homomor-

phism implies that fi j (gj g0
j ) = gi g0

i and that fi j (g
−1
j ) = g−1

i . Therefore (gi g0
i )i∈I

and (g−1
i )i∈I are in G, and G is a group. The subset of Gi ×Gj with fi j (xj ) = xi

is topologically closed, and it follows that G is the intersection of closed sets and
hence is closed. Since

Q
j∈I Gj is compact Hausdorff, G is compact Hausdorff.

The continuity of the multiplication and inversion is a consequence of those
properties for

Q
j∈I Gj . The i th projection of

Q
j∈I Gj onto Gi is a continuous

homomorphism, and hence so is the restriction of this projection to G.
Condition (i) in the definition of inverse limit is immediate, and we have to

prove (ii). Let (G 0, { f 0
i }i∈I ) be given with each f 0

i : G 0 → Gi having the
property that i ≤ j implies fi j ◦ f 0

j = f 0
i . For each g0 in G 0, the I -tuple

( f 0
i (g0))i∈I is a member of

Q
i Gi , and the map g0 7→ ( f 0

i (g0))i∈I is continuous
into the product topology because each entry is continuous. If i ≤ j , then
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the tuple ( f 0
i (g0))i∈I has the property that fi j ( f 0

j (g0)) = f 0
i (g0) because of the

given compatibility condition for the f 0
i ’s. Therefore the map F given by g0 7→

( f 0
i (g0))i∈I has its image in the subsetG of

Q
i Gi , and it is evidently a continuous

group homomorphism. The map F proves the existence assertion in (ii) because
fi ◦ F(g0) = fi

°
( f 0

j (g0))j∈I
¢

= f 0
i (g0).

For uniqueness, suppose that H : G 0 → G is a continuous homomorphism
such that fi ◦ H = f 0

i for all i . For each g0 ∈ G 0, we have fi (H(g0)) = f 0
i (g0).

Thus H(g0) is the member (gi )i∈I of
Q

i∈I Gi for which gi = f 0
i (g0) for all i .

Hence H is uniquely determined. §

Proposition 7.28. In the category of compact topological groups, any two
inverse limits for an inverse system (I, {Gi }, { fi j }) are canonically isomorphic.

PROOF. This is a special case of the uniqueness in category theory of objects
having a specific universal mapping property, as established in Basic Algebra. §

It is important in applications that the inverse limit of an inverse system of
compact groups depend only on what happens far out in the directed set. We have
not yet used that the indexing set is a directed set, rather than merely a partially
ordered set, and we shall use this property now.

Corollary 7.29. Let I be a directed set, let j0 be in I , and let I 0 be the set of
members of I that are ∏ j0. If (I, {Gi }, { fi j }) is an inverse system of compact
groups, then the two inverse systems (I, {Gi }, { fi j }) and (I 0, {Gi }, { fi j }) have
canonically isomorphic inverse limits, the isomorphism of the standard inverse
limit G ⊆

Q
i∈I Gi onto the standard inverse limit G 0 ⊆

Q
i∏ j0 Gi being given

by projection to the coordinates ∏ j0.

PROOF. Let P : G → G 0 be the projection, and let f 0
i : G 0 → Gi for i ∏ j0

be the associated maps. Certainly f 0
i ◦ P = fi for i ∏ j0. We shall extend the

definition of f 0
i to apply to all i ∈ I . If i ∈ I is given, we use the fact that I is

directed to choose i 0 with i 0 ∏ i and i 0 ∏ j0. Define f 0
i = fii 0 ◦ f 0

i 0 . Let us see
that f 0

i is well defined. Let i 00 have i 00 ∏ i and i 00 ∏ j0. Choose i 000 with i 000 ∏ i 0
and i 000 ∏ i 00. The computation

fii 000 ◦ f 0
i 000 = fii 0 ◦ fi 0i 000 ◦ f 0

i 000 = fii 0 ◦ f 0
i 0

shows that i 0 and i 000 yield the same definition of f 0
i , and a similar argument

shows that i 00 and i 000 yield the same definition. Therefore i 0 and i 00 yield the same
definition. Thus f 0

i is now defined for all i in I .
We shall show that (G 0, { f 0

i }i∈I ) is an inverse limit of (I, {Gi }, { fi j }), and then
the corollary follows from Proposition 7.28. Property (i) of inverse limits is built
into the definition of the homomorphisms f 0

i . For property (ii) ofG 0, suppose that
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(eG, { efi }i∈I ) is a pair consisting of a compact topological group eG and continuous
homomorphisms efi : eG → Gi such that i ≤ j implies fi j ◦ ef j = efi . By (ii) for
existencewithG, find a continuous homomorphism F : eG → G with fi ◦F = efi
for all i . Substituting from f 0

i ◦ P = fi , we obtain f 0
i ◦ (P ◦ F) = efi , and this

says that P ◦ F : eG → G 0 is the map we seek for the existence in (ii) for G 0. For
uniqueness in (ii), suppose that F 0 : eG → G 0 satisfies f 0

i ◦ F 0 = efi for all i . Then
f 0
i ◦ F 0 = f 0

i ◦ (P ◦ F) for i ∏ j0. By (ii) for uniqueness with G 0, F 0 = P ◦ F .
This says that the map from eG to G 0 in (ii) is unique. §

Let us now apply these considerations to topologize Galois groups of infinite
separable normal algebraic extensions. The topologized Galois group will be the
inverse limit of finite Galois groups, each with the discrete topology.10
We return to our field K , its algebraic closure Kalg, and its separable algebraic

closure Ksep within Kalg. Let L be a field with K ⊆ L ⊆ Ksep, and assume that
L/K is a normal extension, not necessarily finite. We shall topologizeGal(L/K ).
Let x be any element of L , and let F be the finite extension F = K (x) of K . If
f is the minimal polynomial of x over K , then f has a root in L and must split in
L because L/K is normal. Let x1, . . . , xn be the roots of f , with x1 = x . Then
E = K (x1, . . . , xn) is a finite normal extension of K with K ⊆ F ⊆ E ⊆ L .
Since x is arbitrary in L , L is the union of all the finite normal extensions of K
lying within L .
For each pair (E, E 0) of normal extensions of K with K ⊆ E ⊆ E 0 ⊆ L ,

Proposition 7.24 gives us restriction homomorphisms ϕEE 0 : Gal(E 0/K ) →
Gal(E/K ). We write ϕE for the special case that E 0 = L , so that ϕEL = ϕE .
If K ⊆ E ⊆ E 0 ⊆ E 00 ⊆ L , then ϕEE 0 ◦ ϕE 0E 00 = ϕEE 00 , and consequently the
system √(E finite normal

extension of K
in L

)

, {Gal(E/K )}, {ϕEE 0 }

!

is an inverse system of (discrete finite) topological groups. Meanwhile, we can
form the group Gal(L/K ) and the system {ϕE} of homomorphisms with ϕE =
ϕEL .

Proposition 7.30. With the above notation, the group Gal(L/K ) may be
identified with the underlying abstract group of the inverse limit lim

L√E
Gal(E/K ),

taken over finite normal extensions E/K with E ⊆ L , in such a way that the
homomorphisms ϕE become the homomorphisms of the inverse limit.

10The inverse limit of a finite group is called a profinite group. Profinite groups have special
properties by comparisonwith general compact groups, but it will not be necessary for us to undertake
a study of them.
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PROOF. Let G = lim
L√E

Gal(E/K ), put GE = Gal(E/K ), and regard G as the
standard inverse limit given as in Proposition 7.27:

G =
©
(∞E)E ∈

Q
E GE

Ø
Ø ϕEE 0(∞E 0) = ∞E whenever E ⊆ E 0

™
.

For each E , we have a homomorphism ϕE : Gal(L/K ) → GE , and the product
of the values of these defines a homomorphism8 : Gal(L/K ) →

Q
E GE . The

relations ϕEE 0 ◦ ϕE 0E 00 = ϕEE 00 show that the image of 8 is contained in the
subgroup G of

Q
E GE . We shall show that 8 : Gal(L/K ) → G is one-one

onto.
Let us see that8 is one-one. If ∞ 6= 1 is in Gal(L/K ), then there exists x ∈ K

with ∞ (x) 6= x . Let E be a finite normal extension of K within L containing x .
Then ∞

Ø
Ø
E 6= 1, and thus ϕE(∞ ) 6= 1. Hence 8(∞ ) 6= 1, and 8 is one-one.

Let us see that 8 is onto G. Let (∞E)E ∈ G be given. For x in L , choose a
finite normal E with x ∈ E and E ⊆ L , and define ∞ (x) = ∞E(x). The relations
among the ϕEE 0 show that this definition of ∞ (x) is independent of the choice of
E , and ∞ is therefore a field map of L into itself. Certainly ∞ fixes K , and we
can construct an inverse to ∞ from the mappings ∞ −1

E . Thus ∞ is in Gal(L/K ).
Application of 8 gives 8(∞ ) = (ϕE(∞ ))E = (∞E)E , and 8 is onto. §

Using Proposition 7.30, we transfer the topology from lim
L√E

Gal(E/K ) to
Gal(L/K ), and we can now regard Gal(L/K ) as a compact topological group.
For any finite normal extension F of K with F ⊆ L , consider the group
Gal(L/F). The inverse-limit topology identifies Gal(L/K ) with a subgroup
of

Q
E⊇K Gal(E/K ), the product being taken over all finite normal extensions E

of K contained in L , and Corollary 7.29 allows us to identify Gal(L/K ) with a
subgroup of

Q

E⊇F
Gal(E/K ),

the product being taken over all finite normal extensions E of F contained in L .
Under this identification Gal(L/F) is identified with the subgroup of elements ∞
of the image of Gal(L/K ) for which ϕF(∞ ) = 1. Since ϕF is continuous, this is
a closed set. In turn, this set equals the image of Gal(L/F) in the subset

Q

E⊇F
Gal(E/F).

The latter gives the standard inverse limit topology on Gal(L/F). Except for
some details, the conclusion is as follows.
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Corollary 7.31. With the notation of Proposition 7.30, give Gal(L/K ) the
inverse-limit topology. If F is a finite normal extension of K contained in L ,
then Gal(L/F) is a closed subgroup of Gal(L/K ), and the relative topology on
Gal(L/F) coincides with the inverse-limit topology of Gal(L/F). The subgroup
Gal(L/F) of Gal(L/K ) is a normal subgroup of finite index in Gal(L/K ). Being
a closed subgroup of finite index, it is an open subgroup.
PROOF. We still need to prove that Gal(L/F) has finite index in Gal(L/K ).

Proposition 7.24 shows that the restriction to F of any member of Gal(L/K ) is
an automorphism of F . Since F is a finite extension of K , there are only finitely
many possibilities for this automorphism. If two elements ∞ and ∞ 0 of Gal(L/K )
restrict to the same automorphism of F , then ∞ −1∞ 0 is a member of Gal(L/K )
fixing F , i.e., a member of Gal(L/F). Thus ∞ 0 lies in the coset ∞ Gal(L/F),
and we conclude that there are only finitely many cosets. Since every member of
Gal(L/K ) restricts on F to an automorphism of F , the subgroup of members of
Gal(L/K ) restricting to the identity on F is a normal subgroup. Thus Gal(L/F)
is normal in Gal(L/K ). §

Corollary 7.32. With the notation of Proposition 7.30, Gal(L/K ) has a system
of open normal subgroups with intersection {1}. Hence the same thing is true of
any closed subgroupof T ofGal(L/K ). Moreover, ifU is any open neighborhood
of 1 in T , then some open normal subgroup lies in U ; consequently the open
normal subgroups of T form a neighborhood base about the identity.
PROOF. The open normal subgroups in the first conclusion are the subgroups

Gal(L/F) as in Corollary 7.31. Since every member of L lies in some finite
normal extension of K within L , a member of Gal(L/K ) cannot lie in every
Gal(L/F) unless it is the identity on L .
Let U be an open neighborhood of 1 in the closed subgroup T of Gal(L/K ).

The set-theoretic complementUc ofU in T is a compact set, and the complements
of the open normal subgroups of T are open sets whose union covers Uc, by the
result of the previous paragraph. By compactness finitely many complements of
open normal subgroups of T together cover Uc. The intersection of these open
normal subgroups is then an open normal subgroup contained in U . §

Theorem 7.33 (Fundamental Theorem of Galois Theory). Let K be a field,
and let Kalg be an algebraic closure, so that K ⊆ Ksep ⊆ Kalg. Let L be a
normal extension of K lying in Ksep. Let S be the set of all closed subgroups of
Gal(L/K ), and let F be the set of all intermediate fields between K and L . Then
F 7→ Gal(L/F) is a one-one mapping of F onto S with inverse S 7→ LS , LS
being the fixed field within L of the group S.
PROOF. First we show that Gal(L/F) is closed; Corollary 7.31 shows this only

when F is a normal extension of K . Let {Fα} be the set of all finite extensions
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of K contained in F . Then F =
S

α Fα, and thus Gal(L/F) =
T

α Gal(L/Fα).
Each Fα is contained in a finite normal extension Eα of K lying in L , and hence
Gal(L/Fα) ⊇ Gal(L/Eα). Corollary 7.31 shows that Gal(L/Eα) is an open
subgroup of Gal(L/K ), and hence the larger subgroup Gal(L/Fα) is open (as
a union of cosets, each of which is open). Open subgroups are closed. Thus
Gal(L/Fα) is closed, and so is Gal(L/F) =

T
α Gal(L/Fα).

Next if F is in F, then the inclusion L ⊇ F and the fact that L is normal over
K together imply that L is normal over F . By Corollary 7.26, F = LGal(L/F).
Hence F 7→ Gal(L/F) is one-one, and S 7→ LS is a left inverse of it.
Finallywe show that S 7→ LS is a right inverseby showing thatGal(L/LS) = S

for any closed subgroup S of Gal(L/K ). Define T = Gal(L/LS). Certainly
S ⊆ T . The previous step shows that F = LGal(L/F) for all F ∈ F. Taking
F = LS gives LS = LGal(L/LS) = LT . Let V be an arbitrary open normal
subgroup of T , and put E = LV . The members of T/V give well-defined
automorphisms of E , and

ET/V = (LV )T/V = LT = LS = (LV )SV/V = ESV/V . (∗)

The group T/V is a finite group of automorphisms of E fixing K , and Corollary
9.37 ofBasicAlgebra, when applied to the group T/V and the separable extension
E/ET/V , shows that T/V = Gal(E/ET/V ). Similarly it shows that SV/V =
Gal(E/ESV/V ). By (∗), T/V = SV/V , i.e., T = SV . Corollary 7.32 shows
that the open normal subgroups of T form a neighborhood base about the identity
of T . From the equality T = SV for arbitrary V , let us see that

S is dense in T . (∗∗)

Arguing by contradiction, let g be in T but not in the closure of S. Find V small
enough so that gV−1 ∩ S = ∅. From T = SV , we can write g = sv with s ∈ S
and v ∈ V . Then svV−1 ∩ S = ∅, and hence vV−1 ∩ S = ∅. This last equality
is a contradiction, since the identity lies in vV−1, and (∗∗) is proved. Since S
is closed, it follows from (∗∗) that S = T . But T = Gal(L/LS) by definition.
Therefore Gal(L/LS) = S, and the proof of the theorem is complete. §

Theorem 7.34. Let K be a perfect field, and L be an algebraically closed field
containing K . Then the only members of L fixed by every element of Gal(L/K )
are the members of K .

PROOF. Proposition 7.15 shows that Ksep = Kalg, and Corollary 7.26 implies
that the only members of Kalg fixed by Gal(Kalg/K ) are the members of K . Thus
we are done unless L contains elements not in Kalg.
Let x and y be any twomembers of L not in Kalg, and let√ be in Gal(Kalg/K ).

The singleton sets {x} and {y} are transcendence sets over Kalg, and Lemma 7.6
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shows that they can be extended to transcendence bases of L over Kalg. Call
these transcendence bases E and F , respectively. Theorem 7.9 shows that E and
F have the same cardinality. Therefore there exists a one-one function ϕ of E
onto F such that ϕ(x) = y. This function ϕ extends uniquely to a field map
8 of Kalg(E) onto Kalg(F) that restricts to √ on Kalg. Theorem 7.7 shows that
L is an algebraic extension of Kalg(E) and of Kalg(F); hence L is an algebraic
closure of Kalg(E) and of Kalg(F). The composition of8 followed by inclusion
is a field map of Kalg(E) into L , and Theorem 9.23 of Basic Algebra shows that
it can be extended to a field map e8 of L into L . Since e8(L) is an algebraic
closure of Kalg(F), e8(L) = L . Thus there exists a member e8 of Gal(L/Kalg)
with e8(x) = y such that e8

Ø
Ø
Kalg

= √ .
Taking √ to be the identity shows that no element of L transcendental over K

is fixed by Gal(L/K ). If an element z of Kalg is given that is not in K , then the
first paragraph of the proof produces a member √ of Gal(Kalg/K ) that moves z.
Applying the result of the second paragraph to this √ with x arbitrary and with
y = x shows that √ extends to a member of Gal(L/K ) that moves z. §

7. Problems

1. Let L/K be a field extension in characteristic p. Prove that the set of elements
of L that are purely inseparable over K is a subfield of L .

2. In characteristic p, let K (α) be an algebraic extension of a field K , and form the
inclusions K ⊆ K (α pe) ⊆ K (α), where α pe is the smallest power of α that is
separable over K . Prove that the subfield of separable elements in the extension
K (α)/K consists exactly of K (α pe), i.e., that no separable elements of K (α)

over K lie outside K (α pe).
3. Partially order the positive integers by saying that a ≤ b if a divides b. Let

(bZ, { fa}a∏1) be the inverse limit of the cyclic groups Z/aZ, with the homo-
morphism fab from Z/bZ to Z/aZ being given by fab(1 + bZ) = 1 + aZ
when a divides b. Each member c of Z defines a member zc of bZ such that
fa(zc) = c + aZ for all a. Exhibit some other explicit member ofbZ.

4. Prove that the only members of C fixed by all members of Gal(C/Q) are the
members of Q. What members of R are fixed by Gal(R/Q)?

5. By making use of the field K = Q(
p
2,

p
3,

p
5,

p
7, . . . ), show that there exist

subgroups of Gal(Qalg/Q) of index 2 that are not open.

Problems 6–14 concern primary ideals and make use of the notion of the radical
p
I

of an ideal I as defined in Section 1. Throughout, R will denote a commutative ring
with identity. A proper ideal I of R is primary if whenever a and b are in R, ab is
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in I , and a is not in I , then bm is in I for some integer m > 0. It is immediate that
every prime ideal is primary.
6. Prove that an ideal I of R is primary if and only if every zero divisor in R/I is

nilpotent (in the sense that some power of it is 0), if and only if 0 is primary in
R/I .

7. (a) Prove that if I is a primary ideal, then
p
I is a prime ideal. (Educational

note: In this case the prime ideal
p
I is called the associated prime ideal

to I .)
(b) Prove that if I is any ideal and if I ⊆ J for a prime ideal J , then

p
I ⊆ J .

8. (a) Show that the primary ideals in Z are 0 and (pn) for p prime and n > 0.
(b) Let R = C[x, y] and I = (x, y2). Use Problem 6 to show that I is primary.

Show that P =
p
I is given by P = (x, y). Deduce that P2 $ I $ P and

that a primary ideal is not necessarily a power of a prime ideal.
(c) Let K be a field, let R = K [X,Y, Z ]/(XY − Z2), and let x, y, z be the

images of X,Y, Z in R. Show that P = (x, z) is prime by showing that
R/P is an integral domain. Show that P2 is not primary by starting from
the fact that xy = z2 lies in P2.

9. Prove that if I is an ideal such that
p
I is maximal, then I is primary. Deduce

that the powers of a maximal ideal are primary.
10. An ideal is reducible if it is the finite intersection of ideals strictly containing it;

otherwise it is irreducible.
(a) Show that every prime ideal is irreducible.
(b) Let R = C[x, y], and let I be the maximal ideal (x, y). Show that I 2 is

primary and that the equality I 2 = (Rx + I 2) ∩ (Ry + I 2) exhibits I 2 as
reducible.

11. Prove that if R is Noetherian, then every ideal is a finite intersection of proper
irreducible ideals. (The ideal R is understood to be an empty intersection.)

12. Suppose that R is Noetherian and that Q is a proper irreducible ideal in R. Prove
that 0 is primary in R/Q, and deduce that Q is primary in R.

13. Prove that if Q1, . . . , Qn are primary ideals in R that all have
p
Qi = P , then

Q =
Tn

i=1 Qi is primary with
p
Q = P .

14. (Lasker–Noether Decomposition Theorem) The expression I =
Tn

i=1 Qi of
an ideal I as an intersection of primary ideals Qi is said to be irredundant if

(i) no Qi contains the intersection of the other ones, and
(ii) the Qi have distinct associated prime ideals.

Prove that if R is Noetherian, then every ideal is the irredundant intersection of
finitely many primary ideals.


