
Chapter 7 

AREA  AND HOLONOMY 

 
 We [my student and I] are both greatly amazed; and my share in the satisfaction is a double one, for he sees 

twice over who makes others see. 

— Jean Henri Fabre, The Life of the Fly, New York: Dodd, Mead and Co., 1915, p. 300. 

 

There are many things in this chapter that have amazed us and our students. We hope you, 

the reader, will also be amazed by them. We will find a formula for the area of triangles on 

spheres and hyperbolic planes. We will then investigate the connections between area and 

parallel transport, a notion of local parallelism that is definable on all surfaces. We will 

also introduce the notion of holonomy, which has many applications in modern differential 

geometry and engineering. 
 

 

Figure 7.1 Lune or biangle 

 DEFINITION: A lune or biangle is any of the four regions deter- mined by two (not 

 coinciding) great circles (see Figure 7.1).  

The two angles of the lune are congruent. (Why?) 
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PROBLEM 7.1  THE AREA  OF  A TRIANGLE  ON  A  SPHERE 
 

a. The two sides of each interior angle of a triangle ∆ on a sphere determine two 

congruent lunes with lune angle the same as the interior angle. Show how the 

three pairs of lunes determined by the three interior angles, , , , cover the 

sphere with some overlap. (What is the overlap?) 

 

Draw this on a physical sphere, as in Figure 7.2. 

 
 

 

Figure 7.2 Finding the area of a spherical triangle 

b. Find a formula for the area of a lune with lune angle  in terms of  and the 

(surface) area of the sphere (of radius ), which you can call S. Use radian 

measure for angles. 

Hint: What if  is ? /2? 

 

c. Find a formula for the area of a triangle on a sphere of radius . 

 
SUGGESTIONS  

This is one of the problems that you almost certainly must do on an actual sphere. There 

are simply too many things to see, and the drawings we make on paper distort lines and 

angles too much. The best way to start is to make a small triangle on a sphere and extend 

the sides of the triangle to complete great circles. Then look at what you’ve got. You will 

find an identical triangle on the other side of the sphere, and you can see several lunes that 

extend out from the triangles. The key to this problem is to put everything in terms of areas 

that you know. We will see later (Problem 14.3) that the area of the whole sphere with 

radius ρ is Sρ = 4πρ2, or you may find a derivation of this formula in a multivariable 

calculus text, or you can just leave your answer in terms of Sρ. 

 C 

B  
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HISTORICAL NOTE 

Formulas expressing the area of a spherical triangle and polygon in terms of their respective 

angular excesses appeared in print for the first time in the paper “On a newly discovered 

measure of area of spherical triangles and polygons” published as an appendix to A new 

invention in algebra (Invention nouvelle en l’algebre, Amsterdam, 1629) by the Flemish 

mathematician Albert Girard (1595–1632). For Girard’s proof, see [HI: Rosenfeld], pp. 

27–31. A proof similar to the one indicated here was first published in 1781 by the 

mathematician Leonhard Euler (1707–1783). 
 

PROBLEM 7.2   AREA OF HYPERBOLIC TRIANGLES 

Before we start to explore the area of a general triangle on the hyperbolic plane, we first 

look for triangles with large area. 
 

a. On your hyperbolic plane draw as large a triangle as you can find. Compare 

your triangle with the large triangles that others have found. What do you 

notice? 
 

This part of the problem is best to do communicating with other people. 

 

 We can try to mimic the derivation of the area of spherical triangles, but of course 

there are no lunes and the area of the hyperbolic plane is evidently infinite. Nevertheless, 

if we focus on the exterior angles of a hyperbolic triangle and look at the regions formed, 

we obtain a picture of the situation in the annular hyperbolic plane. See Figure 7.3. Draw 

this picture on your hyperbolic plane. 

 In Figure 7.3, a triangle is drawn with its interior angles,   , and exterior angles, 

− − −. The three extra lines are geodesics that are asymptotic at both ends to an 

extended side of the triangle. We call the region enclosed by these three extra geodesics an 

ideal triangle. In the annular hyperbolic plane these are not actually triangles because their 

vertices are at infinity. In Figure 7.3 we see that the ideal triangle is divided into the original 

triangle and three “triangles” that have two of their vertices at infinity. We call a “triangle” 

with two vertices at infinity (and all sides geodesics) a 2/3-ideal triangle. You can use this 

decomposition to determine the area of a hyperbolic triangle in much the same way you 

determined the area of a spherical triangle. So first we must investigate the areas of ideal 

and 2/3-ideal triangles. 
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Figure 7.3 Triangle with an ideal triangle and three 2/3-ideal triangles 

Now let us look at 2/3-ideal triangles. 
 

b. Show that on the same hyperbolic plane, all 2/3-ideal triangles with the same angle 

 are congruent. 

 

Think of the proof of SAS (Problem 6.4). If you have two 2/3-ideal triangles with angle , 

then by reflections you can place one of the -angles on top of the other. The triangles will 

then coincide except possibly for the third side, which is asymptotic to the two sides of the 

angle . Now you must argue that these third sides must coincide. Or, in other words, why 

is the situation in Figure 7.4 impossible for 2/3-ideal triangles on a hyperbolic plane? Note, 

from Problem 5.4, that we can rotate so that any geodesic we pick is (after rotation) a radial 

geodesic. Problem 5.2 may be helpful. 

 

Figure 7.4 Are 2/3-ideal triangles with angle ᶿ congruent? 

 Because all the 2/3-ideal triangles are congruent, we can define an area function as  

A() = area of a 2/3 ideal triangle with exterior angle  on a hyperbolic plane with  

radius . 
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c. Show that the area function A is an additive function. That is,  

A( + ) = A() + A(). 

 

Look at the picture in Figure 7.5 and show that the area of ∆ADE is the sum of the areas of 

triangles ∆ABC and ∆ACE by showing that ∆PDE is congruent to ∆PBC. 
 

Figure 7.5 Area of 2/3-ideal triangles is additive 

We now have shown that the area function A is additive and it is also clearly continuous. 
 

 THEOREM 7.2. A continuous additive function (from the real numbers to the real 

 numbers) is linear. 

 

Because the area function is additive, it also is true that it is linear over the rational 

numbers. For example, 2A() = A() + A() = A( +) = A(2), and, if you set  = 2, 

then the same equations show that ½A() = A(½). Thus, because the area function is 

continuous, the function must be linear (over the real numbers). 

 Therefore, A() = constant  , for 0   < . We can conclude that A(0) = 0. If 

we let the finite vertex of 2/3-ideal triangle go to infinity, then the interior angle will go to 

zero and the exterior angle will go to . Thus A() must be the area of an ideal triangle. 

We have proved the following: 

 All ideal triangles on the same hyperbolic plane have the same area, which we can 

 call I. 

So, we can write the area function as A() =   (I /). 

 In fact, we will show in Problem 17.4 that all ideal triangles (on the same hyperbolic 

plane) are congruent. This is a result you may have guessed from your work in part a, you 

can also prove it using part b. We will also show in Problem 17.4 that the formula for the 

area of an ideal triangle is I = 2.   
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Then it follows that A() = 2. Notice that it is only after 17.4 that we know for certain 

that 2/3-ideal triangles (and ideal triangles) have finite area, though you may have surmised 

that from your work on part a. 

 

d. Find a formula for the area of a hyperbolic triangle. 

 

Look at Figure 7.3 and put it together with what we have just proved. 
 

HISTORICAL NOTE 

The proof is based on a proof that C. F. Gauss included in an 1832 letter to J. Bolyai’s 

father that is published in his collected works. 

 

PROBLEM 7.3   SUM OF THE ANGLES OF A TRIANGLE 

 
a. What can you say about the sum of the interior angles of triangles on spheres and 

hyperbolic planes? Are there maximum and/or minimum values for the sum? 

 

Look at triangles with non-zero area and use your formulas from Problems 7.1 and 7.2. 

 

b. What is the sum of the (interior) angles of a planar triangle? 
 

Let ∆ABC be a triangle on the plane and imagine a sphere of radius  passing through 

the points A, B, C. These three points also determine a small spherical triangle on the 

sphere. Now imagine the radius  growing to infinity and the spherical triangle converging 

to the planar triangle. 

This result for the plane is usually proved after invoking a parallel postulate. Here, we are 

making the assumption that the plane is a sphere of infinite radius. We will turn to a 

discussion of the various parallel postulates in Chapter 10. 

 

INTRODUCING PARALLEL TRANSPORT 

Imagine that you are walking along a straight line or geodesic carrying a horizontal stick 

that makes a fixed angle with the line you are walking on. If you walk along the line 

maintaining the direction of the stick relative to the line constant, then you are performing 

a parallel transport of that “direction” along the path. (See Figure 7.6.) “Parallel transport” 

is sometimes called “parallel displacement” or “parallel transfer”. 
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Figure 7.6 Parallel transport 

 

To express the parallel transport idea, it is common terminology to say that 

 

• r' is a parallel transport of r along l; 

• r is a parallel transport of r' along l; 

• r and r' are parallel transports along l; 

• r can be parallel transported along l to r'; or 

• r' can be parallel transported along l to r. 
 

 On the plane there is a global notion of parallelism — two lines in the same plane 

are parallel if they do not intersect when extended. As we will see in Problem 8.2 (or, for 

the plane, from standard results in high school geometry), if two lines are parallel transports 

along another line in the plane or the hyperbolic plane, then they are also parallel in the 

sense that they will not intersect if extended. On a sphere this is not true — any two great 

circles on the same sphere intersect and intersect twice. In Problem 10.1 you will show that 

if two lines in the plane are parallel transports along a third line, then they are parallel 

transports along every line that transverses them. This is also not true on a sphere and not 

true on a hyperbolic plane. For example, any two great circles (longitudes) through the 

north pole are parallel transports of each other along the equator, but they are not parallel 

transports along great circles near the north pole. We will explore this aspect of parallel 

transport more in Chapters 8 and 10. 

 Parallel transport has become an important notion in differential geometry, physics, 

and mechanics. One important aspect of differential geometry is the study of properties of 

spaces (surfaces) from an intrinsic point of view. As we have seen, it is not in general 

possible to have a global notion of direction that will determine when a direction (vector) 

at one point is the same as a direction (vector) at another point. However, we can say that 

they have the same direction with respect to a geodesic g if they are parallel transports of 

each other along g. 
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An image of a south-pointing chariot from Sancai Tuhui (first published 1609) (Wikipedia) 

 

 Parallel transport can be extended to arbitrary curves, as we shall discuss at the end 

of this chapter. There is even a mechanical device (first developed c.200-265 CE in 

China!), called the “South-Seeking (or pointing) Chariot,” which will perform parallel 

transport along a curve on a surface. See [DG: Santander].  

 With the notion of parallel transport, it is possible to talk about the rate at which a 

particular vector quantity changes intrinsically along a curve (covariant differentiation). In 

general, covariant differentiation is useful in the areas of physics, classical and quantum 

mechanics. In physics, the notion of parallel transport is central to some of the theories that 

have been put forward as possible candidates for a “unified field theory,” a hoped-for but 

as yet unrealized theory that would unify all known physical laws about forces of nature. 

 

HISTORICAL NOTE 

According to [HI: Kline], p. 1132, parallel transport was first introduced in 1906 by L. E. 

J. Brouwer (1881–1966) in the context of surfaces that are locally Euclidean, spherical, or 

hyperbolic. The general notion of parallel transport was introduced in 1917 independently 

by Tullio Levi- Civita (1873–1941) and Gerhard Hessenberg (1874–1925). 
 

INTRODUCING HOLONOMY 

In February 2020 a US Marine’s post accidentally went viral on social media after he 

posted a video of turning his hand over without moving his wrist. Try this yourself:  

▪ with your palm up, bend your right arm in 90o angle (as you were accepting some 

nuts), then rotate your lower right arm straight up to your shoulder;  

▪ next, without moving your wrist, rotate your lower right arm left across your face. 

At this point notice that your palm is perpendicular to the floor.  

▪ Then move the arm out to the original position. Notice that your palm is no longer 

facing up! It should still be perpendicular to the floor. 
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▪ Repeat these same steps again, still without moving your wrist. You should end 

with your palm facing down. But you never turned it! What is going on?   

 

Figure 7.7 The holonomy of a double-right triangle on a sphere 

 Let us explore what happens when we parallel transport a line segment around a 

triangle. For example, consider on a sphere an isosceles triangle with base on the equator 

and opposite vertex on the north pole (see Figure 7.7). Note that the base angles are right 

angles. Now start at the North Pole with a vector (a directed geodesic segment — the gray 

arrows in Figure 7.7) and parallel transport it along one of the sides of the triangle 

until it reaches the base. Then parallel transport it along the base to the third side. Then 

parallel transport back to the north pole along the third side. Notice that the vector now 

points in a different direction than it did originally. You can follow a similar story for the 

right hyperbolic triangle represented in Figure 7.8 and see that here also there is a difference 

between the starting vector and the ending parallel transported vector. This difference is 

called the holonomy of the triangle. Note that the difference angle is counterclockwise on 

the sphere and clockwise in the hyperbolic plane. 

 

 

Figure 7.8 Holonomy of a hyperbolic triangle 

 This works for any small triangle (that is, a triangle that is contained in an open 

hemisphere) on a sphere and for all triangles in a hyperbolic plane. We can define the 

holonomy of a (small, if on a sphere) triangle, H(∆), as follows: 

 If you parallel transport a vector (a directed geodesic segment) counterclockwise 

around the  three sides of a small triangle, then the holonomy of the triangle is the 

smallest angle from the original position of the vector to its final position with counter- 

clockwise being positive and clockwise being negative. 
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 For the spherical triangle in Figure 7.7 we see that the holonomy is positive and 

equal to the upper angle of the triangle. For the hyperbolic triangle in Figure 7.8 we see 

that the holonomy is negative (clockwise). Now you should be able to explain the wrist-

challenge. 

 Holonomy can also be defined for large triangles on a sphere, but it is more 

complicated because of the confusion as to what angle to measure. For example, what 

should be the holonomy when you parallel transport around the equator — 0 radians or 2 

radians? Compare with the formula for the area of a spherical triangle from Problem 7.2. 

PROBLEM 7.4   THE HOLONOMY OF A SMALL TRIANGLE 
 

 Find a formula that expresses the holonomy of a small triangle on a sphere and a 

 formula that expresses the holonomy of any triangle on a hyperbolic plane. What is 

 the holonomy of a triangle on the plane? 

SUGGESTIONS 

What happens to the holonomy when you change the angle at the north pole of the triangle 

in Figure 7.7? What happens if you parallel transport around the triangle a vector pointing 

in a different direction? Parallel transport vectors around different triangles on your model 

of a sphere. Try it on triangles that are very nearly the whole hemisphere and try it on very 

small triangles. What do you notice? Try this also on your models of the hyperbolic plane, 

again for different size triangles. 

  

 
 

Figure 7.9 Holonomy of a general triangle 
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A good way to approach the formula for general triangles is to start with any 

geodesic segment at one of the angles of the triangle and follow it as it is parallel 

transported around the triangle. Keep track of the relationships between the angles this 

segment makes with the sides and the exterior angles. See Figure 7.9, which is drawn for 

spherical triangles; the reader should be able to draw an analogous picture for a general 

hyperbolic triangle. 

Pause, explore, and write out your ideas for this problem before reading further. 

 

THE GAUSS-BONNET FORMULA FOR TRIANGLES 

In working on Problem 7.4 you should find (among other things) that 

 

 The holonomy of a (small, if on a sphere) triangle is equal to 2 minus the sum of 

 the exterior  angles or equal to the sum of the interior angles minus . 

 

 Let    be the interior angles of the triangle and    the exterior angles. 

Then algebraically the statement above can be written as 
H(∆) = 2 − ( +  + ) = ( +  + ) − . 

The quantity [ i −  ] = [ 2 − i ] is also called the excess of ∆, and when the excess is 

negative, the positive quantity [  − i ] = [ i − 2 ] is called the defect of ∆. 

 If you have not already seen it, note now the close connection between the 

holonomy, the excess, and the area of a triangle. Note that the holonomy is positive for 

triangles on a sphere and negative for triangles in a hyperbolic plane (and zero for triangles 

on a plane). One consequence of this formula is that the holonomy does not depend on 

either the vertex or the vector we start with. This is to be expected because parallel transport 

does not change the relative angles of any figure. 

 Following Problems 7.1, 7.2, and 7.4, we can write the result for triangles on a 

sphere with radius  in this form: 

Sphere: 

H(∆) = ( +  + 3) −  = Area(∆) 4/S = Area(∆) −2 

 

For a hyperbolic plane made with annuli with radius , we get: 

Hyperbolic: 

H(∆) = ( +  + 3) −  = −Area(∆) /I = −Area(∆) −2. 

 The quantity −2 is traditionally called the Gaussian curvature or just plain 

curvature of the sphere and −−2 is called the (Gaussian) curvature of the hyperbolic plane.  
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If K denotes the (Gaussian) curvature as just defined, then the formula 

( +  + 3) −  = Area(∆) K 
 

is called the Gauss-Bonnet Formula (for triangles). The formula is originally due to C. F. 

Gauss (1777–1855, German) and was extended by O. Bonnet (1819–1892, French), as we 

will describe at the end of this chapter. 

 Can you see how this result gives a bug on the surface an intrinsic way of 

determining the quantity K and thus also determining the extrinsic radius ? 

 The Gauss-Bonnet Formula not only holds for triangles in an open hemisphere or in 

a hyperbolic plane but can also be extended to any simple (that is, non-intersecting) 

polygon (that is, a closed curve made up of a finite number of geodesic segments) contained 

in an open hemisphere or in a hyperbolic plane. 

 

PROBLEM 7.5 GAUSS-BONNET FORMULA FOR POLYGONS 

 DEFINITION. The holonomy of a simple polygon, H(), in an open hemisphere or in 

 a hyperbolic plane is defined as follows: 

 If you parallel transport a vector (a directed geodesic segment) counterclockwise 

 around the sides of the simple polygon, then the holonomy of the polygon is the  

 smallest angle measured counterclockwise from the original position of the  vector 

 and its final position. 

 

 

Figure 7.10 Exterior angles 

If you walk around a polygon with the interior of the polygon on the left, the exterior angle 

at a vertex is the change in the direction at that vertex. This change is positive if you turn 

counterclockwise and negative if you turn clockwise. (See Figure 7.10.) 

 We will first look at convex polygons because this is the only case we will need 

later, and it is easier to understand. A region is called convex if every pair of points in the 

region can be joined by a geodesic segment lying wholly in the region. 
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a. Show that if   is a convex polygon in an open hemisphere or in a hyperbolic plane, 

then 

H() =  − i = i − (n − ) = Area() K, 

 where i is the sum of the exterior angles, i is the sum of the interior angles, 

  n is the number of sides, and K is the Gaussian curvature. 

 

Divide the convex polygon into triangles as in Figure 7.11. Now apply Problem 7.4 to each 

triangle and carefully add up the results. You can check directly that H() =  − i. 

 

b. Prove that every simple polygon on the plane or on a hemisphere or on a hyperbolic 

plane can be dissected into triangles without adding extra vertices. 

 

Figure 7.11 Dividing a convex polygon into triangles  

SUGGESTIONS 

Look at this on the plane, hemispheres, and hyperbolic planes. The difficulty in this 

problem is to come up with a method that works for all polygons, including very general 

or complex ones, such as the polygon in Figure 7.12. 

 

Figure 7.12 General polygon 

 You may be tempted to try to connect nearby vertices to create triangles, but how 

do we know that this is always possible? How do you know that in any polygon there is 

even one pair of vertices that can be joined in the interior? The polygon may be so complex 

that parts of it get in the way of what you’re trying to connect. You might start by giving a 

convincing argument that there is at least one pair of vertices that can be joined by a 

segment in the interior of the polygon. Note that there is at least one convex vertex (a vertex 

with interior angle less than ) on every polygon (in fact, it is not too hard to see that there 
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must be at least three such vertices). To see this, pick any geodesic in the exterior of the 

polygon and parallel transport it toward the polygon until it first touches the polygon. It is 

easy to see that the line must now be intersecting the polygon at a convex vertex. 

 To see that there is something to prove here, there are examples of polyhedra in 3-

space with no pair of vertices that can be joined in the interior. This interesting fact was 

first published in 1911 by N. J. Lennes; therefore, such polyhedra are often called Lennes’ 

Polyhedra. One example of a Lennes’ Polyhedron is depicted in Figure 7.13. The 

polyhedron consists of eight triangular faces and six vertices. Each vertex is joined by an 

edge to four of the other vertices, and the straight-line segment joining it to the fifth vertex 

lies in the exterior of the polygon. Therefore, it is impossible to dissect this polyhedron 

into tetrahedra without adding extra vertices. This example and some history of the 

problem are discussed in [DI: Eves, p. 211] and [DI: Ho]. In 1928 E. Schönhard described 

another example: Imagine a right prism with an equilateral triangle as the base. Let the 

bottom triangle be ABC and the upper A'B'C', with the natural correspondence of the 

vertices. Draw the side diagonals AB', BC', CA'. Think of all the line segments involved 

as rigid material pieces. Rotate the upper base π/6 degrees around the vertical axis through 

its center. The result is Schönhard's polyhedron. Any tetrahedron with vertices at the 

vertices of Schönhard' model contains an exterior piece of the latter.  

 

 

Figure 7.13 A polyhedron with vertices not joinable in the interior 

 

c. Show that if  is a simple polygon in an open hemisphere or in a hyperbolic plane, 

then 

H() =  − i = i − (n − ) = Area() K, 

 where i is the sum of the exterior angles, i is the sum of the interior angles, 

 and K is the Gaussian curvature. 

 

Start by applying part b. Then proceed as in part a, but for this part you may find it easier 

to show that the holonomy of the polygon is the sum of the holonomies of the triangles by 

removing one triangle at a time. Again, you can check directly that H() =  − i. 
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GAUSS-BONNET FORMULA FOR POLYGONS ON SURFACES 

The above discussion of holonomy is in the context of an open hemisphere and a hyperbolic 

plane, but the results have a much more general applicability and constitute an important 

aspect of differential geometry. We can extend this result even further to general surfaces, 

even those of non-constant curvature. In fact, Gauss defined the (Gaussian) curvature K(p) 

at a point p on any surface to be 

K(p) = lim∆→p H(∆) / A(∆), 

where the limit is taken over a sequence of small (geodesic) triangles that converge to p. 

The reader can check that the Gaussian curvature of a sphere (with radius ) is 1/2 and that 

the Gaussian curvature of a hyperbolic plane (with radius , the radius of the annular strips) 

is −1/2. This definition leads us to another formula, namely, 

THEOREM 7.5a. The Gauss-Bonnet Formula for Polygons on Surfaces 

On any smooth surface (2-manifold), if  is a (geodesic) polygon that bounds 

a contractible region, then 

H() =  −  i = I() K(p) dA, 

where the integral is the (surface) integral over I(), the interior of the polygon. 

A region is said to be contractible if it can be continuously deformed to a point in its 

interior. See Figure 7.14 for examples. 

Contractible  Not contractible  

Figure 7.14 Contractible versus non-contractible region 

The proof of this formula involves dividing the interior of  into many triangles, 

each so small that the curvature K is essentially constant over its interior, and then applying 

the Gauss-Bonnet Formula for spheres and hyperbolic planes to each of the triangles. 

All of the versions of the Gauss-Bonnet Formula given thus far can be extended to 

arbitrary, simple, piecewise smooth, closed curves. (It is this extension that was Bonnet’s 
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contribution to the Gauss- Bonnet Formula.) If  is such a curve, then we can define the 

holonomy H() = lim H(i), where the limit is over a sequence (which converges point-wise 

to ) of geodesic polygons {i} whose vertices lie on . Using this definition, the Gauss-

Bonnet Formula can be extended even further. 

THEOREM 7.5b.  The Gauss-Bonnet Formula for Curves That Bound a 

Contractible Region 

On a sphere or hyperbolic plane, with (constant) curvature K, 

H()  =  A() K, 

where A() is the area of the region bounded by . 

On general surfaces, 

H() = I()K(p) dA, 

where I() is the interior of the region bounded by . 

Another version of the Gauss-Bonnet Formula is discussed in Problem 17.6, where 

the integral is over the whole surface. 

Gauss-Bonnet Theorem links intrinsic and extrinsic geometry of the surface, it is also a 

bridge between differential geometry and topology. For further discussions, see 

Differential Geometry: A Geometric Introduction [DG: Henderson], Chapters 5 and 6, 

especially Problems 5.4 and 6.4. 




