
Appendix B

Analysis from a Geometric Point of View

B.1. Smooth Functions

We start with the notion of field of view as in Chapter 2, Problems 2.1 and 2.2.

DEFINITION. A function f from a neighborhood U of a point p in Rn to Rm is smooth if
the graph G of f is a smooth n-submanifold of Rn × Rm = Rn+m and the projection of each
tangent space of G to Rn is a one-to-one and onto. An n-submanifold M is a subset of a
Euclidean space such that M is infinitesimally n-spatial; that is, for every point p in M,
there is an n-hyperplane Tp (called the tangent space at p) such that, for every tolerance
τ = (1/N), there is a radius ρ = (1/M), such that in any f.o.v. centered at p with radius
less than ρ, the projection of M onto Tp is one-to-one and onto and moves each point
less than τρ (we describe this by saying that if you zoom in on p, then M and Tp become
indistinguishable). The submanifold is said to be smooth if the zooming is uniform in
the sense that (for each tolerance) the same ρ can be used for every point in some neigh-
borhood of p.

LEMMA. The last sentence above is equivalent to saying that the tangent spaces vary

continuously over M.

The proof is essentially the same as Problems 2.2.e and 3.1.e.

DEFINITION. If f is a smooth function from a neighborhood U in Rn to Rm, then for each p
in U, the differential, dfp, is the linear function from Rn to Rm such that the tangent
space Tp is the graph of the affine linear function  t(q) = f(p) + dfp(q − p). In the termi-
nology of Appendix A.1, we can more accurately say that dfp is a linear transformation
from the tangent space (Rn)p to the tangent space (Rm)f(p).

THEOREM B.1. A function, which maps a neighborhood U of p in Rn to Rm, is smooth (in
the above geometric sense) if and only if it is C1 (in the sense of having for every point p

in U a differential dfp that varies continuously with p).

The proof is essentially the same as the proofs of Problem 2.2.b,c,e and Problem 3.1.e.

B.2. Invariance of Domain

In the next section we will need the following result:

THEOREM B.2. Any continuous function that maps an open subset of n-space one-to-one

to n-space is open (that is, the image of every open set is open).

This result is commonly known as Brouwer’s Invariance of Domain. It was first proved in about
1910 by L.E.J. Brouwer. The proofs of this theorem involve the topological fields of dimension theory or
homology theory, and all require a fair amount of machinery. There are proofs in any of the three books
listed in the Bibliography in Section Tp. Topology. In the context of differentiable functions, there is an
easier proof, which involves explicitly constructing a continuous inverse (see [An: Strichartz], the proof
of Theorem 13.1.1.)



B.3. Inverse Function Theorem
THEOREM B.3. If f is a smooth function from n-space to n-space such that, for the point

po = (yo,f(yo)) on the graph of f, the tangent space Tp projects one-to-one onto the range,

then there is a neighborhood U of xo = f(yo) and a smooth function g from U to n-space

such that f(g(x)) = x, for every x in U. Furthermore, g maps U one-to-one onto a neigh-

borhood V of yo and g(f(y)) = y, for every y in V.

Proof: This proof uses the Invariance of Domain but is otherwise shorter and more geometric than
the usual proofs in analysis. The only nontrivial things to show are (a) that f is one-to-one in a neighbor-
hood of yo, and (b) that f maps a neighborhood of yo onto a neighborhood of xo. 

(a) Suppose f is not one-to-one in a neighborhood of yo. Then there is a sequence of point pairs
{an,bn} such that f (an) = f (bn), for all n, and both sequences {an} and {bn} converge to yo. Let ln be the
line segment joining an to bn. Applying the Mean Value Theorem for Space Curves (Problem 4.2.b), there
is a point cn on ln between an and bn such that a vector tangent to the graph of f |ln (and, therefore, tangent
also to the graph of f ) projects to a point on the range n-space. But then the tangent spaces to the graph
of f cannot be varying continuously.

(b) The fact that f is onto a neighborhood follows from  Invariance of Domain (B.2).
For an analytic proof of B.3, see [An: Strichartz], Theorem 13.1.2.

B.4. Implicit Function Theorem
THEOREM B.4.1. Let F(x,y)  be a smooth function defined in a neighborhood of x0 in Rn

and y0 in Rm taking values in Rm, with F(x0,y0) = c. Then, if the function f(y) = F(x0,y) is
such that, for the point p0 = (x0,y0,f(y0)) on the graph of f, the tangent space Tp projects

one-to-one onto the range, then there is a neighborhood U of x0 and a smooth function h

from U to Rm such that h(x0) = y0 and F(x,h(x)) = c for every x in U. 

Note that the condition on the graph of f is equivalent to the analytic condition that Fy(x0,y0) is
invertible, where Fy is the submatrix of dF corresponding to using only the partial derivatives with
respect to y.

Proof: We will describe three different proofs:

1. Define f(x,y) = (x,F(x,y)). Then it is easy to check that f satisfies the hypotheses of Theorem B.3.
Thus, if there is a smooth inverse function g defined on a neighborhood of (x0,F(x0,y0)), then there is a
function h(x) such that  g(x,c) = (x,h(x)). This h is the desired function.

2. It is possible to construct a direct geometric proof (using Invariance of Domain) along the same lines
as the proof of Theorem B.3.

3. There is an analysis proof that explicitly constructs the function h. (See [An: Strichartz], Theorem
13.1.1.)

THEOREM B.4.2. Let F: Rn→Rn-m be a C1 function, and suppose dF(x) has maximal rank

n−m at every point on a level set M = {x | F(x)=c}. Then M is a C1 m-submanifold of Rn.

We can prove this as a corollary of B.4.1, (see [An: Strichartz], Theorem 13.2.2.) But there is a
more geometric proof. First, change the hypotheses to geometric ones. That dF has maximal rank at p is
equivalent to the tangent space Tp,F(x) of the graph of F projecting onto the range space. Now, if we take
the inverse of c under this projection, we get a linear m-dimensional subspace of the tangent space. The
projection of this m-subspace onto the domain is a tangent space of the level set M. We have proved:

THEOREM B.4.3. Let F: Rn+m → Rm be a smooth function, such that, for every point p =
(x,y,c) on the graph of the level set M = {x | F(x,y)=c}, the tangent space Tp projects

onto the range. Then M is a C1 m-submanifold of Rn+m.
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