
CHAPTEK XVIII. 

TRANSFORMATION OF PERIODS, ESPECIALLY LINEAR TRANSFORMATION. 

318. IN the foregoing portion* of the present volume, the fundamental 
algebraic equation has been studied with the help of a Biemann surface. 
Much of the definiteness of the theory depends upon the adoption of a 
specific mode of dissecting the surface by means of period loops ; for instance 
this is the case for the normal integrals, and their periods, and consequently 
also for the theta functions, which were defined in terms of the periods 
T{j of the normal integrals of the first kind; it is also the case for the 
places m1,...ymp of § 179 (Chap. X.), upon which the theory of the 
vanishing of the theta functions depends. The question then arises ; if we 
adopt a different set of period loops as fundamental, how is the theory 
modified, and, in particular, what is the relation between the new theta 
functions obtained, and the original functions ? We have given a geometrical 
method (§ 183, Chap. X.) of determining the places m1, ..., mp from the 
place m, from which it appears that they cannot have more than a finite 
number of positions when m is given, and coresidual places are reckoned 
equivalent ; the enquiry then suggests itself; can they take all these possible 
positions by a suitable choice of period loops, or is one of these essentially 
different from the others ? The answers to such questions as these are to be 
sought from the theory of the present chapter. 

There is another enquiry, not directly related to the Riemann surface, 
but arising in connexion with the analytical theory of the theta functions. 
Taking p independent variables , ..., , and associating with them, in 
accordance with the suggestion of §§ 138—140 (cf. § 284), the matrices 
2<ü, 2U/, 2rj, 2?/, we are thence able, with the help of the resulting equations 

2hco = 7 , 2hco' = b, rj = 2aco, t] = 2aa>' — h, 

to formulate a theta function. But it is manifest that this procedure makes 
an unsymmetrical use of the columns of periods arising respectively from 
the matrices and o>' ; and it becomes a problem to enquire whether this 

* References to the literature dealing with transformation are given at the beginning of 
Chap. XX. 
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want of symmetry can be removed; and more generally to enquire what 
general linear functions of the original 2p columns of periods, with integral 
coefficients, can be formed to replace the original columns of periods ; and, if 
theta functions be formed with the new periods, as with the original ones, 
to investigate the expression of the new theta functions in terms of the 
original ones. 

So far as the theta functions are concerned, it will appear that the 
theory of the transformation of periods, and of characteristics, includes the 
consideration of the effect of a modification of the period loops of a Riemann 
surface; for that reason we give in this chapter the fundamental equations 
for the transformation of the periods and characteristic of a theta function, 
when the coefficients of transformation are integers; but the main object 
of this chapter is to deal with the transformation of the period loops on a 
Riemann surface. The analytical theory of the expression of the transformed 
theta functions in terms of the original functions is considered in the two 
following chapters. 

In virtue of the algebraical representation which is possible for quotients 
of Riemann theta functions (as exemplified in Chap. XL), the theory of 
the expression of the transformed theta functions in terms of the original 
functions, includes a theory of the algebraical transformation of the funda­
mental algebraical equation associated with a Riemann surface ; it is known 
what success was achieved by Jacobi, from this point of view, in the case of 
elliptic functions; and some of the earliest contributions to the general 
theory of transformation of theta functions approach the matter from that 
side*. We deal briefly with particular results of this algebraical theory in 
Chap. XXII. 

319. Take any undissected Riemann surface associated with a funda­
mental algebraic equation of deficiency p. The most general set of 2p 
period loops may be constructed as follows : 

Draw on the surface any closed curve whatever, not intersecting itself, 
which is such that if the surface were cut along this curve it would not be 
divided into two pieces ; of the two possible directions in which this curve 
can be described, choose either, and call it the positive direction ; call the 
side of the curve which is on the left hand when the curve is described 
positively, the left side ; this curve is the period loop ( ) ; starting now 
from any point on the left side of {A^), a curve can be drawn on the surface, 
which, without cutting itself, or the curve (AJ, and without dividing the 
surface, ends at the point of the curve ( ) at which it began, but on the 
right side of (J^) ; this is the loop ( ), and the direction in which it has 

* See, in particular, Richelot, Creile, xvi. (1837), De transformatione...integralium Abelian-
orum primi ordinis ; in the papers of Königsberger, Creile, LXIV., LXV., LXVII., some of the 
algebraical results of Eichelot are obtained by means of the transformation of theta functions. 

. 34 
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been described is its positive direction ; its left side is that on the left hand 
in the positive description of it. The period associated with the loop (^li), 
of any Abelian integral, is the constant whereby the value of the integral 
on the left side of (A^ exceeds the value on the right side, and is equal to 
the value obtained by taking the integral along the loop ( ) in the negative 
direction, from the end of the loop ( ) to its beginning. The period 
associated with the loop ( ) is similarly the excess of the value of the 
integral on the left side of the loop ( ) over its value on the right side, and 
may be obtained by taking the integral round the loop ( ) in the positive 
direction, from the right side of the loop ( ) to the left side. These periods 
may be denoted respectively by Xlj and /. 

320. It is useful further to remark that there is no essential reason why what we have 
called the loops (A^), (J5X) should not be called respectively the loops [2?J and [J J. If 
this be done, and the positive direction of the (original) loop (Bj) be preserved, the 
convention as to the relation of the directions of the loops [A^\, [J3J will necessitate a 
reversal of the convention as to the positive direction of the (original) loop ( ). If the 
periods associated with the (new) loops [-4 J , [ ] be respectively denoted by [û] and [O'], 
we have, therefore, the equations 

[Q] = Q', [Q ' ]= -0 . 

These equations represent a process—of interchange of the loops ( ) ( ) , with retention 
of the direction of (BJ—which may be repeated. The repetition gives equations which we 
may denote by 

{Ù}=[Q'] = - Û, {&} = - [û] = - û', 

and the two processes are together equivalent to reversing the direction of loop (AJ, and 
(therefore) of the loop ( ) . The convention that the loop (Bx) shall begin from the left 
side of the loop (A-^) is not necessary for the purpose of the dissection of the surface into a 
simply connected surface; but it affords a convenient way of specifying the necessary 
condition for the convergence of the series defining the theta functions. 

321. The pair of loops (Aj), ( ) being drawn, the successive pairs 
(A2), (B2), ..., (Ap), (Bp) are then to be drawn in accordance with precisely 
similar conventions—the additional convention being made that neither 
loop of any pair is to cross any one of the previously drawn loops. If 
the Riemann surface be cut along these 2p loops it will become a £>-ply 
connected surface, with p closed boundary curves. I t may be further 
dissected into a simply connected surface by means of (p — 1) further cuts 
(GÌ), ..., (Cp-i), taken so as to reduce the boundary to one continuous closed 
curve. 

Upon the £>-ply connected surface formed by cutting the original surface 
along the loops (AJ, ( ), ..., {Ap\ (Bp), the Riemann integrals of the first 
and second kind are single-valued. In particular if Wlt ..., Wp be a set of 
linearly independent integrals of the first kind defined by the conditions 
that the periods of Wr at the loops (A^, ..., (Ap) are all zero, except that at 
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(Ar), which is 1, and if 8 be the period of Wr at the loop (Bs), the imaginary 
part of the quadratic form 

2+ + 2 12 1 2 + - % 

is necessarily positive* for real values of nlf ...,np. This statement remains 
true when, for each of the p pairs, the loops (Ar), (Br) are interchanged, 
with e.g. the retention of the direction of ( .) and a consequent change in the 
sign of the period associated with (Ar), as explained above (§ 320) ; if the 
loops (Ar), ( .) be interchanged without the change in the sign of the period 
associated with (Ar), the imaginary part of the corresponding quadratic 
form is negative")-. 

322. In addition now to such a general system of period loops as has 
been described, imagine another system of loops, which for distinctness we 
shall call the original system ; the loops of the original system may be 
denoted by (ar), (6r) and the periods of any integral, Ui, associated therewith, 
by 2 ) > r , 2U)^ r ; the general system of period loops is denoted by (Ar), (Br), 
and the periods associated therewith by [2 > -} ], [2 / -> ]. For the values of 
the integral , the circuit of the loop ( .), in the negative direction, from 
the right to the left side of the loop (Ar)y is equivalent to a certain number, 
say J to 0LjtTi of circuits of the loop (bj) in the negative direction, together 
with a certain number, say a'̂  r , of circuits of the loop (dj) in the positive 
direction (r,j=l, 2, ..., p) ; hence we have 

p 
[m,r]= 2 (<o%,j*jtr + &i,jdj,r)> 0 = 1, 2, ...} ); 

j=i 

similarly we have equations which we write in the form 

p 
[ >\ r] = 2 (mt jßj, r + * jß'j, r), (r = 1, 2, ..., p), 

the interpretation of the integers ßjtr, ßfjtT being similar to that of the 
integers Ojir> a'jjr. 

Thus, if uly ..., up denote p linearly independent integrals of the first 
kind, and the matrices of their periods for the original system of period 
loops be denoted by 2a>, 2a>', and for the general system of period loops by 
[2Û>], [2U/], we have 

[ ] = COOL •+• (ù'ay [ / ] = coß + to'ß', 

where a, a\ ß, ß' denote matrices whose elements are integers. 

* And not zero, since n1W1+ ... + npWp cannot be a constant. Cf. for instance, Neumann, 
Biemann's Théorie der Abel'sehen Integrale (Leipzig, 1884), p. 247, or Forsyth, Theory of 
Functions (1893), p. 447. (Riemann, Werke, 1876, p. 124.) 

t As previously remarked, p. 247, note. 
X A circuit of (&,) in the positive direction furnishing a contribution of - 1 to ait r. 

34—2 
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If Llt ..., Lp be a set of p integrals of the second kind associated with 
uu ..., np, as in § 138, Chap. V I I , and satisfying, therefore, the condition 

S [Dxiif
a DZL%C - Dzu*,c DxL*'a] = Dx \(z, oc) -£ - D J ( , ) ^ , 

and the period matrices of L1} ..., Lp at the original and general period 
loops be denoted respectively by — 2?;, — 2 / and — [2?;], — [2 / ] , we have, 
similarly, for the same values of a, a', ß, ß', 

M = *?a + V«', [V]= 77/3 + 7773'. 
We have used the notation 0 P for the row of P quantities 2coP + 2U>'P', 

where P , P ' each denotes a row of |? quantities ; we extend this notation to 
the matrix 2©a + 2û/a', where a, a' each denotes a matrix of ^ rows and 
columns, and denote this matrix by Qa ; similarly we denote the matrix 
277a + 277V by Ha ; then the four equations just obtained may be written 

0 ] = n a , [2 >'] = , [2v] = Hay [2V'] = Hß. (I.) 

Noticing now that the matrices [2a>], [2Û/] , [277], [2^'] must satisfy the 
relations obtained in § 140, we have 

i w* = [v] [»'] - [5] [ < | = i ( # - UaHß) 
= ( / + â'rç')(aß + <»'ß') - (™ + am') (Vß + vß') 
= ä (rjco — »?) ß + èc' (̂ '< - »'•»;) ̂  + et (»je»' — öw/') ß' + ä' (îj'w' — ä'rf) ß1 

in virtue of the relations satisfied by the matrices 2 , 2< ', 2i}, 2rç'; and 
similarly 

0 = R ] [«] - [5] fo] = i ( . - UaHa) = ( ' - ' ) J « , 
and _ _ _ _ 

0 = [v] M - [»Q M = i (EßQß - aßHß) = <ßß'- ß'ß) \m ; 
thus we have 

&- & = 1= ffa-ßüt, ' - ' = 0, ßß'-ß'ß = 0, (IL) 

namely, the matrices , / , 7, /8' satisfy relations precisely similar to those 
respectively satisfied by the matrices co, <o't 77, 77', the \iri which occurs 
for the latter case being, in the case of the matrices a, ß, ', ß\ replaced 
by — 1 ; therefore also, as in § 141, the relations satisfied by a, ß, a', /3' can be 
given in the form 

aß-ßä = l=ßfc-atß, a / 3 - / 3ä=0 , a ' ß ' - / ' ' = 0. (III.) 

In virtue of these equations, if 

denote the matrix of 2p rows and columns formed with the elements of the matrices a, £, 
a', ft, we have (cf., for notation, Appendix ii.) 

(a,ß\( ß', -j8\ / / ' -ßä ' , ßä-aß\ = (l 0\ 
V , ß7 V- «', */ \a'ß'-(¥ä', ß'ä-a'ß) \0 l) ' 
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and therefore 

—(i: -% 
and the original periods can be expressed in terms of the general periods in the form 

o> = [<»]£' — [û>']a', / = — [ ] ß + [co'] à, 

If 0 denote the matrix of p rows and columns whereof every element is zero, and 
1 denote the matrix of p rows and columns whereof every element is zero except those in 
the diagonal, which are all equal to 1, and if e denote the matrix of 2p rows and columns 
given by 

- ; -;).«.« •'=(-;:>-'• 
then it is immediately proved tha t the relations (II.), (III .) are respectively equivalent to 
the two equations 

t/e J= €, JcJ= e, 
where 

and it will be noticed that the equations (III .) are obtained from the equations (II.) by 
changing the elements of J into the corresponding elements of J. 

I t follows* from the equation J€J=e that the determinant of the matrix J is equal to 
+ 1 or to — 1. I t will subsequently (§ 333) appear tha t the determinant is equal to + 1 . 

Ex. Verify, for the case p=2, tha t the matrices 

/ 4, - 2 0 \ fl /-29, 124\ 

/ - 3 , 20\ / 22, -124\ 
a-\-8, - 7 > 3 ~ V 56, 43J 

satisfy the conditions (III.) (Weber, Creile, LXXIV. (1872), p. 72). 

323. I t is often convenient, simultaneously with the change of period 
loops which has been described, to make a linear transformation of the 
fundamental integrals of the first kind, , ..., . Suppose that we intro­
duce, in place of uu ...,up, otherp integrals wlt ..., wp, such that 

ui = Miilw1-{- +MitPwp, (i= 1, 2, ..., <p\ 

or, as we shall write it, = Mw, M being a matrix whose elements are 
constants and of which the determinant is not zero. We enquire then what 
are the integrals of the second kind associated with wX) ...,wp. We have 
(§ 138) denoted Duf a by fii{x), and the matrix of the quantities ^{CJ) by //,; 

* For another proof of the relations (II.), ( .) of the text, the reader may compare Thomae, 
Grelle, LXXV. (1873), p. 224. A proof directly on the lines followed here may of course be 
constructed with the employment only of Kiemann's normal elementary integrals of the first 
and second kind. Cf. § 142. 
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denote now, also, Dwi* by pi(%\ and the matrix of the quantities pi(cj) by p; 
then we immediately find p, = pM, and the equation (§ 138) 

L*> *> = /*-!#*> « - 2aux>a 

gives 
MLX>a = - >a - 2MaMwx>a ; 

thus the integrals of the second kind associated with wl} ..., wp are the p 
integrals given by MLx>a, and, corresponding to the matrix a for the 
integrals Li , ..., Lp' , we have, for the integrals MLx>a, the matrix 
a = MaM. If 2u, 2i/ denote the matrices of the periods of the integrals w, 
and — 2f, — 2f' denote the matrices of the periods of the integrals MLx>a, so 
that (§ 139) 

we therefore have w = Ifi/, Û>' = Mv and 

f = 2J^aifv = j^77, Ç' = 2MaMv'-%MfjL-1A=Mv'; (IV.) 

it is immediately apparent from these equations that the matrices t>, i/, f, Ç' 
satisfy the equations of § 140, 

v\t - i/î/ = 0, \g - f f = 0, v'\ - < = \<iri = Ç/ - Çv. 

324. The preceding Articles have sufficiently shewn how the equations 
of transformation of the periods arise by the consideration of the Abelian 
integrals. I t is of importance to see that equations of the same character, 
but of more general significance, arise in connexion with the analytical 
theory of the theta functions. 

Let û), a/, 7), rj' be any four matrices of p rows and columns satisfying 
the conditions (i) that the determinant of ay does not vanish, (ii) that co-1 a/ 
is a symmetrical matrix, (iii) that the quadratic form w^wn2 has its 
imaginary part positive when nlf ...,np are real, (iv) that 77ft)-1 is a sym­
metrical matrix, (v) that rj' = rjù)~1o)f — \ ~ . The conditions (i), (ii), (iv), 
(v) are equivalent to equations of the form of (B) and (C), § 140, and, 
taking matrices a, b, h such that a = ^rja)~1

> h = J 1, b = ~1 ', or 
2Ao) = 7 ', 2ha> = b, 7] = 2aco, rj' = 2aa>' — h, the condition (iii) ensures the 
existence of the function defined by 

^ . /u . Q'\ = ^eau*+Zhu[n+Q')+b(n+Q)*+2mQ(n+Q!)^ 

wherein Q, Q' are any constants (cf. § 174). 
Introduce now two other matrices [©], [©'], also of p rows and columns, 

defined by the equations 

[co] = ma + ©V, = J , say, [e/] = wß + a>'ß', = Jfì^, say, 

where , ', /3, /3', are matrices of p rows and columns whose elements are 
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integers*, it being supposed"f- that the determinant of the matrix [<*>] does 
not vanish ; and introduce^ other variables wlt ..., wp defined by 

ui=Mitlw1+ +MitPwp) ( = 1, 2, ..., j>) 

or u = Mw, where is a matrix of constants, whose determinant does not 
vanish; let the simultaneous increments of w1} ..., wp when , ...,up are 
simultaneously increased by the constituents of the j - th column of [o>] be 
denoted by vlfj, ..., vpj, and the simultaneous increments of wly ..., wp 

when , . . . , up are simultaneously increased by the elements of the j-th 
column of [a/] be denoted by v\j, ..., vPij\ then we have the equations 
2Mv = 2 [U>] = I2a, 2Mv = 2 [©'] = , where , i/ denote the matrices of 
which respectively the (i,j) elements are Vij and v'ij. 

The function b(u; ?) is a function of wx, ..., wp\ we proceed to 
investigate whether it is possible to choose the matrices a, a', ß, ß' and the 
matrix if, so that the function may be regarded as a theta function in 
wu ..., wp of order r (cf. Chap. XV. § 284). 

Let the arguments wlt ..., wp be simultaneously increased by the con­
stituents of the j-th column of the matrix 2v; thereby , ..., up will be 
increased by the constituents of the j-th column of the matrix [2Û>], and, 
since a, a', /3, ß' consist of integers, the function (u; ^ ) will (Chap. X. 
§ 190) be multiplied by a factor eLJ where 

Lj = (tfa)
(j> + i ( .)**] - ( )( ( ') ') + 2 [( )< Q' - ( ' ) ^ Q], 

( )̂ > denoting the row of p elements forming the j - t h column of the matrix 
a, and ( «)^, ( ) ^ denoting, similarly, the j-th columns of the matrices 
2«a + 2û/a', 2rja + 297V respectively ; this expression Lj, is linear in w1}..., wp, 
and can be put into the form 

Lj = r (2&J, ..., 2ÇPtj) [(wlf ..., wp) + ( u u , ..., Upf j)] + 2iriK/, 

where (w1} ..., Wp) denotes the row letter whose elements are wu ..., wp> and 
similarly ( f i j , ..., t/p^) is the row letter formed by the elements of the j - th 
column of the matrix v, r is a positive integer which is provisionally 
arbitrary, K/ and 2ÇifJ-, ..., 2fp>j are properly chosen constants, and 
(2£i,j, ..., %Çptj) is the row letter formed of the last of these. Similarly, if 
the arguments wlt ..., wp be simultaneously increased by 2v\jf ..., 2v'pj, the 
function ^ (w ; ?) takes a factor e1,', where 

i / = ( ,)< + i ( )« .] - 08)( (/3')<* + 2 * [Q3)<* Qf-(?)<* Q], 

and, with the same value of r, this can be put into the form 

Z / = r ( 2 f ' u , ,-2( >)[(^, ,wp) + ( t / i j , , 1 / , ) ] - 2 « -„ 

* The case when a, a', 0, /3' are not integers is briefly considered in chapter XX. 
t We have trior1 [ >] = 7 + '; we suppose that the determinant of 7 + & ' does not 

vanish. 
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where Kj, Ç"1>?-, ..., Ç'Ptj are properly chosen constants. In these equations 
we suppose^' to be taken in turn equal to 1, 2, ..., p. 

Comparing the two forms of Lj we have 

{Haymw, or M(Hay*w, =r(2Ç1>j} . . . , 2fAi)(w l f ...9wp\ 

so that the (i,^)th element of the matrix MHa is 2rÇij; hence if f, f denote 
respectively the matrices of the quantities faj and Ç'ij, we have 

MHa = 2r& MHß = 2 < ; (V.) 

from these we deduce, in virtue of the equations 2Mv = I2a, 2Mv = £lß, 

% = £ JET«. 2Mv = 2r£v, iHßüß = \Hß. 2Mv' = 2rÇ i/, 

and therefore, in particular, comparing the (j, j)th elements on the two sides 
of these equations, 

*(#.)<*> (O.)0 = 2r(ÇyHvY*y i W № ) № = 2r(?)V>(v')<*, 

where, as before, (v){ü is the row letter formed by the elements of the j - th 
column of the matrix v, etc.; therefore the only remaining conditions 
necessary for the identification of the two forms of Lj and Z/, are 

Kf = ( )< Q' - (e0<* Q - i («P («'A - #, = (£)< Q' - (?)<* Q - * (/3)<*(W 

and the ^ pairs of equations of this form are included in the two 

K' = -a!Q-\d(*a!), -K = ßQ-&Q-id(ßß% (VI) 

where ', are row letters of p elements and d ( '), d(ßß') are respectively 
the row letters of p elements constituted by the diagonal elements of the 
matrices ', ßß'. 

The equations (VI.) arise by identifying the two forms of Lj and L/; it is 
effectively sufficient to identify the two forms of eL> and \ thus it is 
sufficient to regard the equations (VI.) as congruences, to the modulus 1. 

We now impose upon the matrices v, v, f, f' the conditions 

f«, - = = f v - v'K\ ' - « = i « , (Vii) 
which, as will be proved immediately, are equivalent to certain conditions 
for the matrices a, /3, a', ß'; then, denoting â-(%; ^) by ( 1 ...,wp) or 
</>(w), it can be verified* that the 2p equations 

(^^wr + 2vr1jf...) = eLJ (wl (.,.,wr + 2v\h...) = eW (w)y(j^lJ...Jp)t 

where Lj, L/ have the specified forms, lead to the equation 

(w + 2vm + 2 t /m') = er№>m+2£m') (u>+vmWm')—rTrimm'+2iTÌ(mK'-mrK) / ,\ 

wherein m, m' are row letters consisting of any p integers ; and this is the 

* The verification is included in a more general piece of work which occurs in Chap. XIX. 
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characteristic equation for a theta function of order r with the associated 
constants 2v, 2i/, 2£ 2f ' (§ 284, p. 448). 

The equations (VII.) are equivalent to conditions for the matrices v, v\ 
Ç, Ç', entirely analogous to the conditions (ii), (iv), (v) of § 324 for the 
matrices ay, e/, 77, rj'. The condition analogous to (i) of § 324, namely that the 
determinant of the matrix v do not vanish, is involved in the hypothesis 
that the determinant of irla + ba do not vanish. I t will be proved below 
(§ 325) that the remaining condition involved in the definition of a theta 
function, viz. that the quadratic form v^v'n2 has its imaginary part positive 
for real values of nu ..., ftp, is a consequence of the corresponding condition 
for the matrices w, w'. We consider first the conditions for the equations 

(vu.). 
In virtue of equations (V.), the equations (VII.) require 

Saüß - UaHß = 2HaMv' - 2vMHß = 4r (fi/ - vÇ) = 2 , 

and, similarly, 
- = , Hßnß - UßHß = 0 ; 

but 
J (Hanß - ), = ( + äff}') (<*ß + »jSO - ( + à"<ò') (vß + v'ß), 

= ä (rjw — cor)) ß + ä (rjco' — ') ß' + ä' (7/60 — cò'rj) ß + ä' (>7'U/ — ® ) /3', 

and this, by the equations ( ), § 140, is equal to 

thus 
aß'- aß = ßa-£a' = , (VIII.) 

and, similarly, _ _ 
â a ' - à ' a = 0, ßß'-ß'ß = 0\ 

and as before (§ 322) these three equations can be replaced by the three 

aß = ßä, a'ß' = ßfa\ a £ ' - / 3 â ' = r = /3 'c^a '£ , (IX.) 

the relations satisfied by the matrices a, ß, a', ß' respectively being similar to 
those satisfied by , ', rj, 7/, with the change of the \iri, which occurs in the 
latter case, into — r. 

The number r which occurs in these equations is called the order of the 
transformation ; when it is equal to 1 the transformation is called a linear 
transformation. 

Ex. i. Prove that, with matrices of 2p rows and 2p columns, 

and 

CÖC-i)GÏK-i)-
The determinant of the matrix will be subsequently proved to be + 7*. 
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Ex. ii. Prove that the equations (V.) of § 324 are equivalent to 

(M 0 \ /2v 2i / \ / 2» 2Û>'\ (a ß\ 

\0 rM-i) \2C 4') " \ ') V ft) ' 

Ex. iii. If x, y, xu yx be any row letters of p elements, and X, Y, Xlt Yl be other 
such row letters, such that 

(X Y)-(a ß\(x v) or =**+* > X1=axl+ßyl, ( ) b i ( l , Ä M Y=a'x + Py, Y^a'x^ßy,, 

then the equations (VIII.) are the conditions for the self-transformation of the bilinear 
form xyx — xxy, which is expressed by the equation 

XYX -XxY=r (xyx - xxy). 

325. Conversely when the matrices a, a', /3, ff satisfy the equations 

( V I I I ) , the function ò(u; ®) satisfies the determining equation for a the ta 

function in wlf . . . , wp, of order r, with the characteristic (UT, K'), and with 

the associated constants 2v, 2v, 2Ç, 2Ç''; and in virtue of the equations (VII.) , 

the determinant of v not vanishing, matrices a, b, h, of which the first two 

are symmetrical, can be taken such tha t 

a = ^ff -1, h = ^-7rtv_1, b = rnv^v'; 

we proceed now to shew* tha t the real part of the quadratic form bn2 is 
negative for real values of , . . . , np, r being positive, as was supposed. 

The quanti ty, or matr ix, obtainable from any complex quanti ty, or 
matrix of complex quantit ies, by changing the sign of the imaginary par t 
of tha t quantity, or of the imaginary parts of every constituent of tha t 
matrix, will be denoted by the suffix 0 ; and a similar notation will be used 
for row letters ; further the symmetrical matrices or - 1«', i / - 1 i / will be denoted 
respectively by and ', so tha t b — , b = ; also , ' will be written, 
respectively, in the forms + 2, / + ', where 19 2, \ 2' are matrices 
of real quantities. Then, pu t t ing 

x' = vMw^x, and therefore x0' = VQMQTÒ^XQ, 

where x', x denote rows of p complex quantit ies, and x0', x0 the rows of the 
corresponding conjugate complex quantities, and recalling tha t 

T=T=VV-\ - = + ', co^Mv = ß + rff, 
we have _ _ _ _ 

T V # 0 ' = TvMW^X . VQMQUÒQ^XQ — v'M(ù~lX . VQM^CC^XQ 

= + /3' ) .( + ' 0) 0; 

and, if x = xx + ix2t x0 = xx — ix2, where xx, x2 are real, this is equal to 
(ß + ffrx + iffr2) (xx + ix2) . (à -h ! — iâ'r^ (xx — ix2) 

or _ _ _ _ 

\ßP + ff F + (ßQ + ffQ)] [ + â'P' - i (âQ + *V)], 

* Hermite, Compt. Rendus, XL. (1855), Weber, Ann. d. Mat., Ser. 2, t. ix. (1878—9). 
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where P , P' , Q, Q' are row letters of p real quantities given by 

P = xly
 / = 1 71- 2 ?2, Q = x2, Q , = T A + T2Ä?1, 

so that 
P Q ' - P ' Q = T 2 ( ^ - | - 0 ; 

thus the coefficient of in TXXJ is 

(âP + â'P') (ßQ + £'Q') - (/SP + ß'P') (äQ + à'Q\ 

which, in virtue of the equations (IX.), is equal to r (PQ — P'Q) or 
rr2 (#i2 + #22) j thus the coefficient of in rV#0 ' is equal to the coefficient 
of i in . Since x may be regarded as arbitrarily assigned this proves 
that the imaginary part of rx'x0 is necessarily positive ; and this includes 
the proposition we desired to establish. 

Ex, Prove that the equation obtained is equivalent to 

MQ VQ T 2 ' V M = ra>0 2 <o. 

326. Of the general formulae thus obtained for the transformation of 
theta functions, the case of a linear transformation, for which r = 1, is of 
great importance ; and we limit ourselves mainly to that case in the 
following parts of this chapter. We have shewn that a theta function of the 
first order, with assigned characteristic and associated constants, is unique, 
save for a factor independent of the argument ; we have therefore, for r = 1, 
as a result of the theory here given, the equation 

* ( * ; 2*>, 2a/, 2V) 2V'; *) = A*(w) 2i/, 2i/, 2?, 2f; £ ) . 

We suppose a, /3, a', ß' to be any arbitrarily assigned matrices of integers 
satisfying the equations (VIII.) or (IX.); then there remains a certain 
redundancy of disposable quantities ; we may for instance suppose w, œ\ 77, rf 
and M to be given, and choose v, 1/, £, f' in accordance with these equations ; 
or we may suppose G>, W', v, £ and Ç' to be prescribed and use these equations 
to determine if, 1/, 77 and 7/. I t is convenient to specify the results in two 
cases. We replace u, w respectively by U, W. 

( i ) 2U> = 1 , 2a> = T , v — a> rjj' — ar — iriy h = b = , 

2v = 1, 2v = T', f = 0, Ç" = — 7 , a = 0 , h = 7 , b = 7 , 

* 7 = i f F , i f = a + TU', (a + Ta')T' = ß + Tß', 

so that, as immediately follows from equations (IX.), 

( + , ) ( ^ - ' ,) = = ( /3 , - , ,)( + ), Ü = (a-h ') W, TT = J '- > ') , 

and, because 77' = 77 — m and f = 0, 

= 77 = ' ' ( + ')"1 = ™ ' {ft - ) , 

from which we get 
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aU* = ™ a' 08' - r'â') U* = 7ria'WU= ' ( a + ra') W\ 

These equations satisfy the necessary conditions, and lead, when r = 1, to 

*•*>+«'>W2 @ ( U\ ; J) = A® ( ; r'; f ) , (X.) 

where J. is independent of Ul9 ..., Up, and the characteristic (J5T, if') is deter­
mined from (Q, Q') by the equations (§ 324) 

K' = âQ' - â'Q - id(oa ') , -K = ßQ'- ß'Q - * d ( / 7). 

The appearance of the exponential factor outside the 0-function, in equation (X.), 
would of itself be sufficient reason for using, as we have done, the ^-function, in place of 
the e-function, in all general algebraic investigations*. 

If in § 324 we pu t 
u = 2a>U, T = Û) -1Û)', w=2vW, r ' = v ~ V 

we easily find 
via' (a + ra') W2 = ^ » - ^ - J r f u " 1 « » 1 ; 

thus (§ 189, p. 283) equation (X.) includes the initial equation of this Article. 

In general the function occurring on the left side of equation (X.) is 
a theta function in W of order r with associated constants 2v = 1, 2v = ', 
2 f=0 , 2 f = - 2 w » , and characteristic { , ) . 

(ii) A particular case of (i), when the matrix a' consists of zeros, is given 
by the formulae 

2Û) = 1, 2Û>' = , rj = 0, / = — m, = 0, = 7 , 6 = 7 , 
2i; = 1 , 2i/ = ', f = 0 , £' = - , a = 0, = , = , 

^ = , ' = 0 + /8/), = ì ( ' - / 3 ) , 

Then the function ©( t f ; ; Q') or © [a TT; J ( e / - ß) ä ; g ] is a theta 

function in TP, of order r, with associated constants 2i/= 1, 2i/ = r', 2 f = 0 , 
2£" = — 27 , and characteristic (ÜT, ÜT') given by 

= ?, -K = ßQ'~ rcr*Q - %d (rßa-% 

and, in particular, when r = 1 we have 

©( 7; ; « ' ) = ( ; ' ; | ) , (XL) 

where A is independent of C/j, ..., Up. 

* Cf. § 189 (Chap. X.); and for the case ^ = 1, Cayley, Liouville, x. (1845), or Collected 
Works, Vol. i., p. 156 (1889). 
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327. It is clear that the results just obtained, for the linear trans­
formation of theta functions, contain the answer to the enquiry as to the 
changes in the Biemann theta functions which arise in virtue of a change in 
the fundamental system of period loops. Before considering the results in 
further detail, it is desirable to be in possession of certain results as to the 
transformation of the characteristics of the theta function, which we now 
give ; the reader who desires may omit the demonstrations, noticing only the 
results, and proceed at once to § 332. We retain the general value r for the 
order of the transformation, though the applications of greatest importance 
are those for which r = 1. 

As before let d(y) denote the row of p quantities constituted by the 
diagonal elements of any matrix y of p rows and columns ; in all cases here 
arising 7 is a symmetrical matrix ; then we have 

ad(ßß') + ßd(ä«') = rd(aß), ß'd{aß) + ßd(*ß') = rd(ßß') 
_ _ _ (mod. 2) 

a'd(ßß') + ß'd(aa') = rd(^ß'), ä'd{aß) + ad(a'ß') = rd(ä<x') 

and 
d («a') d (ßßf) s (r + 1) %d (ßa) = (r + 1) td (ß'a) 

d (aß) d (a'ß') = (r + 1) Xd (aß') = (r + 1) 2d (/ ') ( m ° ' ' ' 

so that, when r = 1 or is any odd integer, 

d (äa). d (ßßf) = d (aß). d (a'ß') = 0 (mod. 2). 

The last result contains the statement that the linear transformation of 
the zero theta-characteristic is always an even characteristic. 

For the equations 
ß'ä-a'ß^r, aß = ßä, 

give 
aßß'ä-ßaa'ß = raßi 

and therefore 
ßff#-aaY = rafhtfi, 

where % is any row letter of p integers, and z—äx, y = ßx\ but if y be a symmetrical 
matrix of integers and t be any row letter of p integers yt2, =y11^1

2 + ...-f 2y12^2-f..., is 
= 7ii*i2+"'+ypA2> an(* therefore = ^ +... +ypptp, or =d(y) .t, for modulus 2 ; hence 

d(ßßf)z-d(äa)y=rd(aß)x (mod. 2) 
or 

[ad (ßß')-{-ßd (äa') - rd (aß)] x=0 (mod. 2) ; 

and as this is true for any row letter of integers, x, the first of the given equations follows 
at once. The second of the equations also follows from ß?ä-aß=r, in the same way, and 
the third and fourth follow similarly from ß'a—ßa=r. 

To prove the fifth equation, we have, since ß'ä-a'ß = ry 

ßß'äa'=ßa'ßd + rßa' 
or 

= 2 + , 
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where b—ßß, a — äd, c=ßd ; hence, equating the sums of the diagonal elements on the two 
sides of the equation, we have 

P p p p p 
2 2 bitjajti= 2 S ^ i + r S ^ i j 

therefore, as, unless i=j, bijajfi=bjtiaiji because a, b are symmetrical matrices, and as 

ci, 3 C3\ * ~ \ ci, j i 
we obtain 

p p p 
2 aitibiti= 2 (c2

iti+rciti)~(r+l) 2 cui. 
' = 1 = 1 = 1 

The sixth equation is obtained in a similar way, starting from ß'a — ßd=r. 
Of the results thus derived we make, now, application to the case when r is odd, limiting 

ourselves to the case when the characteristic (Q, Q') consists of half-integers ; we put then 
= '— SO ^n a^ 9' e a c n consist of p integers ; then , K' are also half-integers, 

respectively equal to \k, \k', say, where 

fr^äq'- aq - d (àa'), -k = ßq'-ß'q-d (ßßf). 

In most cases of these formulae, it is convenient to regard them as congruences, to 
modulus 2. This is equivalent to neglecting additive integral characteristics. 

From these equations we derive immediately, in virtue of the equations of the present 
Article 

q = ok+ßld + d (aß), q' = + ß'k' + d (aß') (mod. 2) 
and 

qq' = kk' (mod. 2). 

Further if p., p' be row letters of p integers, and 

v = up' — ä'p — d (äd), —v—ßp' — ß'p — d (ßßf), 

we find, also in virtue of the equations of the present Article, 

kv' - k'v=qpr -<fp + (ft' + ?') d (aß) + (p + q)d (dp), (mod. 2) ; 

therefore, if also 
tr = äp' -ap — d (ad), — o*=ßp' — ß'p — d (ßß'\ 

we have 
kv - k'v + va — va- + <rkf- -' = qp- q'p+pp' -pp + pq'-p'q (mod. 2). 

Denoting the half-integer characteristics \y- ) , £ ( ) , £ ( ) , , , 

and the characteristics i ( , ) , J ( ) > \ ) > which we call the transformed 

characteristics, by A', ', ', we have therefore the results (§ 294) 

| A | = \A'\, \A,B,C\ = \A', B'y C'\, (mod. 2) 

or, in words, in a linear transformation of a iheta function with half-integer 
characteristic, and in any transformation of odd order, an odd {or even) 
characteristic transforms into an odd {or even) characteristic, and three 
syzygetic {or azygetic) characteristics transform into three syzygetic {or 
azygetic) characteristics. 

Of these the first result is immediately obvious when r = l from the equation of 
transformation (§ 326), by changing w into — w. 
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Hence also it is obvious that if A be an even characteristic for which 
^-(0; A) vanishes, then the transformed characteristic A' is also an even 
characteristic for which the transformed function â (0 ; A') vanishes. 

328. If in the formula of linear transformation of the ta functions with 
half-integer characteristic, which we may write 

b[u'bfy]=A-[w'>bQ]' 
we replace by + \£lm = + am 4- w'ra', where m, m' denote rows of 
integers, and, therefore, since co = M(vß' — va'), œ' = M(— vß -f v'ä), (cf. Ex. i., 
§ 324), replace why w + vn + vn', where 

rì = ora' — â'ra, — n = ßm' — ß'm, 

we obtain (§ 189, formula (L)) 

where Ä is independent of , ..., up, and ' + '9 + n are obtainable from 
g' + m ' ^ + m by the same formulae whereby ', are obtained from q, q, 
namely 

tf + m'=ä {q' + m') - a (q + m) - d (äaf), 

-(k + m)=ß(q' + m')-ß'(q + rn)-d(ßß'); 

these formulae are different from those whereby n', n are obtained from 

m', m ; for this reason it is sometimes convenient to speak of £ y- J as a theta 

characteristic, and of ^ ( j as a period characteristic ; as it arises here the 

difference lies in the formulae of transformation ; but other differences will 
appear subsequently ; these differences are mainly consequences of the 
obvious fact that, when half-integer characteristics which differ by integer 
characteristics are regarded as identical, the sum of any odd number of 
theta characteristics is transformed as a theta characteristic, while the 
sum of any even number of theta characteristics is transformed as a 
period characteristic. In other words, a period characteristic is to be 
regarded as the (sum or) difference of two theta characteristics. 

I t will appear for instance that the characteristics associated in §§ 244,245, 
Chap. XIII . with radical functions of the form JX (2"+1) are to be regarded as 
theta characteristics—and the characteristics associated in § 245 with radical 
functions of the form JX{2fl)

} which are defined as sums of characteristics 
associated with functions 4/X(a,/+1), are to be regarded as period characteristics. 
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We may regard the distinction* thus explained somewhat differently, by taking as the 

fundamental formula of linear transformation that which expresses # \ ; £ I ̂  ) in terms 

of $\ w+\Qr\ £ ( » ) h where 

r W ( ä a ' ) , r=d(ßß')y 

and 
l' = k' + d(äa') = äq'-ä'q, -l= -lc + d{ß$) = ßq'-ß'q. 

In the following pages we shall always understand by ' characteristic/ a 
theta characteristic ; when it is necessary to call attention to the fact that a 
characteristic is a period characteristic this will be done. 

329. I t is clear that the formula of linear transformation of a theta 
function with any half-integer characteristic is obtainable from the particular 
case 

&<«)-ila [« , ;*£)] , 
where r' = d (âa'), r = d (ßß')> by the addition of half periods to the argu­
ments. I t is therefore of interest to shew that matrices a, /3, a', ft be 
chosen, satisfying the equations 

aß = ßa} a ' ^ ß ' c t ' , aff-ßa^l, 

which will make the characteristic £ I J equal to any even half-integer 

characteristic. 
Any even half-integer characteristic, being denoted by 

l foi • • • kp \ 
\tCi ...Kp/ 

we may, momentarily, call I * J the '-th column of the characteristic ; then 

the columns may be of four sorts, 

o- a o- o-
but the number of columns of the last sort must be even ; we build now a 
matrix 

s 
* Theta characteristics have also been named eigentliche Charakteristiken and Primcharak­

teristiken ; they consist of 2*>-1(2P-l) odd and 2*>-1(2*> + l ) even characteristics. The period 
characteristics have been called Gruppencharakteristiken and Elementarcharakteristiken or 
sometimes relative Charakteristiken. For them the distinction of odd and even is unimportant— 
while the distinction between the zero characteristic—which cannot be written as the sum of two 
different theta characteristics—and the remaining 22*> - 1 characteristics, is of great importance. 
The distinction between theta characteristics and period characteristics has been insisted 
on by Noether, in connection with the theory of radical forms—Cf. Noether, Math. Annal. 
xxviii. (1887), p. 373, Klein, Math. Annal, xxxvi. (1890), p. 36, Schottky, Creile, cu. (1888), 
p. 308. The distinction is in fact observed in the AbeUsche Functionen of Clebsch and Gordan, 
in the manner indicated in the text. 
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of 2p rows and columns by the following rule*—Corresponding to a column 
of the characteristic of the first sort, say the '-th column, we take <Xi,i=zß'i)i=I, 
but take every other element of the -th row and -th column of a and ß\ 
and every element of the -th row and -th column of ß and d to be zero ; 
corresponding to a column of the characteristic of the second sort, say the 
^'-th column, we take ^ = ß'jj = djj = 1, but take every other element of 
the ^'-th row and ^'-th column of a, ß', d, and every element of the j-th row 
and column of ß} to be zero ; corresponding to a column of the characteristic 
of the third sort, say the m-th column, we take am>m = ßm>m = ß'm,m= 1, but 
take every other element of the m-th row and column of a, ß, ß' and every 
element of the m-th row and column of d to be zero ; corresponding to a pair 
of columns of the characteristic of the fourth sort, say the p-th and cr-th, we 
take aPtp = ß P i P = ß'P) p = l, a(Tt<T = d^ a = ß ' ^ a = 1, aa}p = 1, ßPt „ = — 1, a '^ p = 1, 
ß'Pt a = — 1, and take every other element of the /j-th row and column and of 
the o--th row and column, of each of the four matrices a, a', /3, ß', to be zero. 
Then it can be shewn that the matrix thus obtained satisfies all the 
necessary conditions and gives k' = d (äd), k = d (ßß'). 

Consider for instance the case p = 5, and the characteristic 

, / 0 1 0 1 1\ 
* Vo l l i) ; 

the matrix formed by the rules from this characteristic is 

1 0 0 0 0 1 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 1 - 1 

0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 1 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1-1 

0 0 0 1 l [ 0 0 0 0 1 

and it is immediately verified that this satisfies the equations for a linear transformation 
(§ 324 (IX.), for r = l ) , and gives, for the diagonal elements of äa, ßßr, respectively, the 
elements 01011 and 00111. 

Since we can transform the zero characteristic into any even characteristic, we can of 
course transform any even characteristic into the zero characteristic ; for instance, when 
there is an even theta function which vanishes for zero values of the arguments, we can, 
by making a linear transformation, take for this function the theta function with zero 
characteristic. 

* Clebsch and Gordan, Abel. Fctnen (Leipzig, 1866), p. 318. 

B. 35 



546 TRANSFORMATION OF ANY AZYGETIC SYSTEM [329 

Ex. For the hyperelliptic case, when p=3, the period loops being taken as in § 200, 

the theta-function whose characteristic is -J f J vanishes for zero arguments (§ 203) ; 

prove that the transformation given by 

o = ( 1 0 0 ) , /3 = ( - l 0 0 ) , a' = ( 0 0 - l ) , ß ' = ( 1 0 1 ) , 

0 1 0 0 - 1 0 i O O O 0 1 ° 

1 - 1 0 l | I 1 0 0 I I 0 0 — 1 J I 0 0 1 I 

is a linear transformation and gives an equation of the form 

where A is independent of , . . . , up. 

330. We have proved (§ 327) that if three half-integer theta character­
istics be syzygetic (or azygetic) the characteristics arising from them by any-
linear transformation are also syzygetic (or azygetic). I t follows therefore 
that a Göpel system of 2r characteristics, syzygetic in threes (§ 297, Chap. 
XVII.), transforms into such a Göpel system. Also the 22(r Göpel systems of 
§ 298, having a definite character, that of being all odd or all even, transform 
into systems having the same character. And the 2<r + 1 fundamental Göpel 
systems (§ 300), which satisfy the condition that any three characteristics 
chosen from different systems of these are azygetic, transform into such 
systems ; moreover since the linear transformation of a characteristic which 
is the sum of an odd number of other characteristics is the sum of the 
transformations of these characteristics, the transformations of these 2a + 1 
systems possess the property belonging to the original systems, that all the 
22<r Göpel systems having a definite character are representable by the 
combinations of an odd number of them. I t follows therefore that the 
theta relations obtained in Chap. XVIL, based on the properties of the 
Göpel systems, persist after any linear transformation. 

331. But questions are then immediately suggested, such as these : What are the 
simplest Göpel systems from which all others are obtainable* by linear transformation ? 
Is it possible to derive the 22(r Göpel systems of § 298, having a definite character, by 
linear transformation, from systems based upon the 22(r characteristics obtainable by taking 
all possible half-integer characteristics in which p — a columns consist of zeros ? Are the 
fundamental sets of 2p + 1 three-wise azygetic characteristics, by the odd combinations of 
which all the 22p half-integer characteristics can be represented (§ 300), all derivable by 
linear transformation from one such set Ì 

We deal here only with the answer to the last question—and prove the following 
result: Let D, Du ..., 2>2P + I be any 2p + 2 half-integer characteristics, such that, for i<j, 

* An obvious Göpel group of 2*> characteristics is formed by all the characteristics in which 
the upper row of elements are all zeros, and the lower row of elements each = 0 or ^. 
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= 1 , . . . , 2p9 j=29 . . . , 2p + l, we have \D9 Di9 Dj\ = \ ; then it is possible to choose a half-
integer characteristic E9 and a linear transformation, stich that the characteristics 

ED, EDX, ..., ED№+1 
transform into 

0, Xj, . . . , 2 +19 

where \l9 . . . , X2p+i are certain characteristics to be specified9 o f which {by § 327) every favo are 
azygetic. I t will follow tha t if D'9 D{9 . . . , Df

2p + i be any other set of 2p + 2 characteristics 
of which every three are azygetic, a characteristic E', and a linear transformation, can be 
found such that , with a proper characteristic E9 the set ED, EDl9 . . . , ED2P+1 transforms 
into E'B9 E'D{9 . . . , '1 2 + 1. I t will be shewn that the characteristics X1} . . . , X2P+1 

can be written down by means of the hyperelliptic half-periods denoted (§ 200) by ua' c\ 
ua,a^ ua,c2^ tt^u<*,<h9 ua,c; i t h a s afc^y been remarked (§ 294, Ex.) tha t the charac­
teristics associated with these half-periods are azygetic in pairs. The proof which is to be 
given establishes an interesting connexion between the conditions for a linear transforma­
tion and the investigation of § 300, Chap. XVII . 

Taking an Abelian matrix, 

« ) • 
for which 

äa'-ä'a=0, ßß-ß'ß = 0, äß?-ä'ß=l, 

define characteristics of integers by means of the equations 

~ _ / a ' l . r > °t%ri •*•> a'p,r\ t _fßl,ri ß2,ri •••» / _ „ 
ar — [ ) j °r — \ R J) ar — — ar9 

\al,rj a2>ri •••> ap,r/ \ P l . r j P2,rj •••? P p,r/ 

where dStr is the r-th element of the 5-th row of the matrix a', etc. and r— 1, 2, . . . , p ; then 
the symbol which, in accordance with the notation of § 294, Chap. XVII . , we define by the 
equation 

\Ar > » I = fll,rß'l,8+»' + ap,r ftp,8 — « , rßhS~ »»'- <*>'p,rßp,8> 

is the (r, s)-th element of the matrix äß'-ä'ß, and may be denoted by (äß' -ä'ß)rt8\ thus 
the conditions for the matrices a, a', ß9 /3' are equivalent to the^? (2p — 1) equations 

\Ar,Br\ = l, \ 9 8\=09 \Ar,A,\=0, \Br,B9\=0, ( r+*, r9s = l9 2, ...9p\ 

whereof the first gives p conditions, the second p{p— 1) conditions, and the third and 
fourth each %p(p — 1) conditions. I t is convenient also to notice, what are corollaries 
from these, the equations 

\Bi9Ar\=-\Ar9B8\=09 \Br9Ar\=-\Ar9Br\=-l, \Br,Ar'\=-\Ar',Br\ = \Ar,Br\ = l. 

Consider now the 2p-f 1 characteristics, of integers, given by 

al9 b19a{bxa29 ( 29 a{bxa2b2aZ9 { 2 2 9 . . . , a{bx...bp_xbV9 a^blt%.ap
fbP9 

whereof the first 2p are pairs of the type 

cù1
fb1,»,a,

r^1hr^iar9 a^bltt.a
r
r-1br^1br9 

for r = l , 2, . . . , p9 and a{bxa2 means the sum, without reduction, of the characteristics a{9 

bl9 Og, and so in general. The sum of these characteristics is a characteristic consisting 
wholly of even integers. If these characteristics be denoted, in order, by cl9 c29 . . . , c2p+l, 
i t immediately follows, from the fundamental equations connecting au . . . , bP9 tha t 

35—2 
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Thus the (2p + l ) half-integer characteristics derivable from cl9 c2> . . . , c2p + l , namely 
01 = ^c1, ...y C2p + 1=$c2p+u are azygetic in pairs. 

Conversely let D, Du . . . , D2P + 1 be any half-integer characteristics such that , for i<j, 
= 1, . . . , 2p> j = 2, . . . , 2p + l , we have | 2), , Z),| = l , so that (§ 300, p. 496) there exist 

connecting them only two relations (i) that their sum is a characteristic of integers, and 
(ii) a relation connecting an odd number of them ; putting =1 {({=1, . . . , 2p), where 
D' = — D, we obtain a set of independent characteristics Cx, . . . , C2P, such tha t for i<j, 

i«.« -«. ( ::::; ')= 
taking 2 + 1= 1' 2 3' ±... ,

2 -1 2 , where (7 2 / . - i= — Cg r-i , we have also the 2p equa­
tions 

I Cm, C i p + i H l i ( m = l , 2, . . . , 2p ) . 

Thus putting 6^ = !<?!, . . . , 2 + 1 = 2 + 1) w e c a n obtain an Abelian matrix by means of 
the equations, previously given, 

the '-th column of this matrix consisting of the elements of the lower and upper rows of 
the integer characteristic or oi? according as i<p + l or >_ . We proceed now to find 
the result of applying the linear transformation, given by this Abelian matrix, to the 
half-integer characteristics , . . . , C2 p + 1 . 

The equations for the transformation of the characteristic \ ( ) to the characteristic 

j ( J ) , which are (§ 324, VL), 

k'=àq'-àfq-d(àa% -k = ßq''~Pq-d(ßp), 

are equivalent, in the notation here employed, to 

*i/ = M i , e | - [ r f ( s d ' ) ] < , - J H ^ e i - E d C f t * ) ! , ( = 1,2, .. . ,jp), 

where J . i = ^ a i , Q=±q; taking 

Q=%al'b1...a'r_lbr_1ar) =%a1'b1...a'r_lbr_1br, and =$ ' 1... , 

in turn, we immediately find that the transformations of the characteristics C 2 r -u C2ri 

C2P+1, are given, omitting integer characteristics, by 

l / r f ( a a ' ) \ / 1 1 . . . 1 0 0 . . . 0 , / r f ( e a ' ) \ , i / l l . . . H 0 . . . 0 \ , (d (aa')\ , / 1 1.. \ 

4^(W^4ii - . . i io . . .o ; ' *\d(ßp)J+*\ .. ... ) ' *\d@p))+*\ii...i)' 
or, say, by 

» 8>* "'» +» '" ) "'-» )+» -
respectively. 

Now let the characteristics 

»( ( '* )(1 '••••*(:)' 
be respectively denoted by 

Au A2, . . . , A2r_li \ 2 r , . . . , X 2 p+i î 

then we have proved that the half-integer characteristic DDi transforms, save for an 

integer characteristic, into \ + $( J, where r=d(ßß)9 r'=d(âa) ; since the transforma-
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tion of the sum of two characteristics is the sum of their transformations added to \ ( ) , 

and since the characteristic j ( ) , where 8'= ( '(3'), s=d(aß), transforms into the zero 

characteristic (§ 327), it follows that the transformation of the characteristic -j( \+DDi 

is the characteristic X* ; hence, putting E~\ ( j+B, and omitting integer characteristics, 

the characteristics 
ED, EDXi . . . , EB2p+l 

transform, respectively, into 
0 , X 1 ? . . . , X2P+1 > 

and this is the result we desired to prove. 
The number of matrices of integers, of the form 

in which ad — a ' a=0 , ßß' — ß'ß=0, aß' — dß=l, is infinite; but it follows from the 
investigation just given that if all the elements of these matrices be replaced by their 
smallest positive residues for modulus 2, the number of different matrices then arising is 
finite, being equal to the number of sets of 2p +1 half-integer characteristics, with integral 
sum, of which every two characteristics are azygetic. As in § 300, Chap. XVII . , this 
number is 

( 2 2 p _ l ) 2 2 ^ - 1 ( 2 2 P - 2 - l ) 2 2 ^ - 3 ( 2 2 - l ) 2 ; 

we may call this the number of incongruent Abelian matrices, for modulus 2. Similarly 
the number* of incongruent Abelian matrices for modulus n is 

(n2*>-1) n2**-1 (n2?-2- 1) n2*-3 (n2-1) n. 

Ex. By adding suitable integers to the characteristics denoted by 1, 2, 3, 4, 5, 6, 7 in 
the table of § 205, for p = 3, we obtain respectively 

* \ - l 0 0/' * \ 0 -1 0/' 4 0 0 l)9 4 0 1 1J' 

H i 0 - I / ' Hi 1 °/' *\1 1 V 
denoting these respectively by Clt C2, . . . , C7, we find, for i<j9 tha t 

| CI, Q | = 1, ( = 1 , ...96ij = 2, . . . , 7 ) . 

The equations of the text 

c2 r_1=a1 '61 a ' r - i^ r - i a r j c 2 r = V ^ i «'r-i^r-ibr» 
give 

0^. = C]_C2 ^2 -3 2 —2^2r—1 > ^ = = ^1^2 ^2 —3 2r—2^2? ) 

and therefore, in this case, we find 

/ - 1 0 0 \ / - 1 0 1 \ / 0 0 - 1 \ 
ai={-i ooj ' ^ H - i n J ' a*=\po-i)> 

'1-io)' "!!!)' 4o!"o); 

* Another proof is given by Jordan, Traité des Substitutions (Paris, 1870), p. 176. 
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hence the linear substitution, of the text, for transforming the fundamental set of 
characteristics Cl9 . . . , C7 is 

( _ 1 _ 1 ! 0 - 1 0 ) 

JO 1 0 j - 1 2 1 

0 1 - 1 0 I 0 

- 1 - 1 0 - 1 - 1 0 

0 0 0 - 1 1 1 

I 0 1 — 1 I 0 1 - 1 I 

From this we find \ ) =^\ , a ^ I =\ ( J ; since the sum of Cl9 . . . , C7 is an 

integral characteristic, i t follows by the general theorem, that if the characteristic 

i ( ) ^e udded t0 eac^ °f @D •••> ^r> and then the linear transformation given by the 

matrix be applied^ they will he transformed respectively into the-characteristics Xx, . . . , X?. 
A further result should be mentioned. On the hyperelliptic Riemann surface suppose 

the period loops drawn as in the figure (12) ; 

then the characteristics associated with the half-periods ua' c\ ua> a\ . . . , ua' Cp, ua> °^y 

ua* c will be, save for integer characteristics, respectively \ l t X2, . . . , X2P, A2J)+1 ; this the 
reader can immediately verify by means of the rule given at the bottom of page 297 of the 
present volume. 

Ex. Prove tha t if the characteristics 0, X b . . . , X2 P + 1 be subjected to the transforma­

tion given by the Abelian matrix of 2p rows and columns which is denoted by ( ' ] , 

then, save for integer characteristics, X* is changed to 2 t + £( ) , where 
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are the characteristics which arise in § 200, Chap. XI. as associated with the half-periods 
ua,Cr, , , ua,c respectively. The characteristics 2l9 ..., 22p+1 satisfy the p(2p — 1) 
conditions | Si, 2y | = 1, for i<j. 

332. We proceed now to shew how any linear transformation may be 
regarded as the result of certain very simple linear transformations performed 
in succession. As a corollary from the investigation we shall be able to infer 
that every linear transformation may be associated with a change in the 
method of taking the period loops on a Biemann surface ; we have already 
proved the converse result, that every change in the period loops is associated 
with matrices, a, a', ßf ß\ belonging to a linear substitution (§ 322). 

I t is convenient to give first the fundamental equations for a composition 
of two transformations of any order. I t has been shewn (§ 324) that the 
equations for the transformation of a theta function of the first order, in the 
arguments uy with characteristic (Q, Q') and associated constants 2to, 2 / , 
2rj, 2rj', to a theta function of order r, in the arguments w, where = Mw, 
with characteristic ( , ') and associated constants 2u, 2i/, 2f, 2f', are 

K' = aQf - ÌQ - hd («0, -K = ßQ- ß'Q - \d (ßß'\ 

(M, 0 \ /2i/, 2i/\ _ /2Û>, 2* /a , ß \ 

[ , - \% 2?) - \2V, tof) U ß') ; ' 
and from the last equation, writing it in the form /xU = A, it follows, in 
virtue of the equations 12 = — ^7 , UeU' = — \ (§ 140, Chap. VII.), and 
the easily verifiable equation jiefi = re, where the matrix e is given by 

6 = (?~J ) ' 
that also = re, as in Ex. i., § 324. And, just as in § 324, it can be proved 
that equations for the transformation of a theta function of order r in the 
arguments wy with characteristic ( , '), and associated constants 2v, 2v, 2Ç, 
2Ç', to a theta-function of order rs, in the arguments , given by w = Nuly 

with characteristic (Qlt Qf), and associated constants 2œl} 2«/, 2r)ly 277/, are 

Qf = W - y'K - \rd (77'), - & = IK' - ' - \rd (§8'). 

(N, _0 \ /2 >1} 2a>1\_(2v> 2i / \ / 7 , « V 
V 0, SN-*) \2Vl} 2Vl') \2Ç, 2f7 V/, «7 ' 

and writing the last equation in the form i/fìj = UV, we infer as before that 
^eV = se. 

Now from the equations / 11 = , i;H1=UVJ we obtain /z,z>fl1=/i,UV=nAV, 
or, if Aj = V, 

/ , _0_ \ /2©!, 2« / \ /2», 2 '\ . 
V 0 , ' \2Vl, 277// V277, 2*// 
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from this equation we find as before that the matrix given by 

Al - AV - U'7 + / , «'S + W - W, Ä'J ' Say' 

satisfies the equation Ä1€A1 = rse. Similarly from the two sets of equations 
transforming the characteristics, by making use of the equations 

d(ä^) = yd(äa) + y'd (ßß') + rd (77 ), 

d (&&') = ( ') + I'd (ßß') + rd (8S')t (mod. 2), 

which can be proved by the methods of § 327, we immediately find 

Q/ = à.q - «/ - \d (aA'), -Qi = M - ßi'Q - ¥ (&&'), (mod. 2). 

Hence any transformation of order rs may be regarded as compounded of 
two transformations, of which the first transforms a theta-function of the 
first order into a theta function of the r-th order, and the second transforms 
it further into a theta function of order rs. 

I t follows therefore that the most general transformation may be con­
sidered as the result of successive transformations of prime order. I t is 
convenient to remember that the matrix of integers, A1? associated with 
the compound transformation, is equal to AV, the matrix A, associated 
with the transformation which is first carried out, being the left-hand 
factor. 

One important case should be'referred to. The matrix 

--(-J i) 
is easily seen to be that of a transformation of order r ; putting it in place of , the final 
equations for the compound transformation Vi may be taken to be 

= , 2<ÙX = 2<», 2(01=20)', 2 ^ = 27, 2rjì = 2rf. 

The transformation rA~l is called supplementary to A (cf. Chap. XVII., § 317, Ex. vii.). 

333. Limiting ourselves now to the case of linear transformation, let 
Ak (k = 2, 3, ..., p) denote the matrix of 2p rows and columns indicated by 

Ak = (jik, 0 ), 

' 0 , fik I 

where fik has unities in the diagonal except in the first and k-th places, in 
which there are zeros, and has elsewhere zeros, except in the k-ih place of 
the first row, and the k-th place of the first column, where there are unities ; 
let denote the matrix of 2p rows and columns indicated by 
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= ( 0 - 1 ), 
I l I 

1  

1  

1  

1 

0 1 

I i l 
which has unities in the diagonal, except in the first and (p + l)-th places, 
where there are zeros, and has elsewhere zeros except in the (p + l)-th place 
of the first row, where there is — 1, and the (p 4- l)-th place of the first 
column, where there is + 1 ; let G denote the matrix of 2p rows and columns 
indicated by 

0 = ( 1 - 1 ), 
I l 0 I 

1 0 | ' 
1 0 I 

0 1 
0 1 

0 1 

I ° i l 
which has unities everywhere in the diagonal and has elsewhere zeros, 
except in the (p + l)-th place of the first row, where it has — 1 ; let D denote 
the matrix of 2p rows and columns indicated by 

D = ( l 0 - 1 ), 
I I - 1 0 I 

1 . 0 
1 0 

0 1 
0 1 

0 1 
I 1 1 

which has unities everywhere in the diagonal and has elsewhere zeros, except 
in the (p + 2)-th place of the first row and the (p + l)-th place of the second 
row, in each of which there is — 1. I t is easy to see that each of these 
matrices satisfies the conditions (IX.) of § 324, for r= 1. 

Then it can be proved that every matrix of 2p rows and columns of 
integers, 
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for which aß = ßä, a'ß' = ß'a, aß' — ßa! = 1, can be written* as a product of 
positive integral powers of the (p + 2) matrices A2, ..., Ap> B, C, D. The 
proof of this statement is given in the Appendix (II) to this volume. 

We shall therefore obtain a better understanding of the changes effected 
by a linear transformation by considering these transformations in turn. We 
have seen that any linear transformation may be considered as made up of 
two processes, (i) the change of the fundamental system of periods, effected 
by the equations 

[co] = œa + « V, [©'] = cuß + Û>73', 

M = ^ + 7?V, [v'] = vß + v'ß', 
(ii) the change of the arguments, effected by the equation u = Mw, and 
leading to _ _ 

[w] = Mv, [<*'] = Mv', Ç=M[V], ?= [ ,' , 

of these we consider here the first process. Applying the equations "f* 

[a>] = wot + 'a', [a/] = (uß -f ouß', 
respectively for the transformations Aki B, G, D, we obtain the following results : 

For the matrix (Ak) we have 

O r , i ] = « ,*, [û>r,fc] = û>r,i, [Vr, i ] = « ' ,*, Wr,k] = ö'r.i, (r= 1, 2, . . . , p) ; 

or, in words, if 2uv,i, 2 >' , be called the -th pair of periods for the argument 
urt the change effected by the substitution A^ is an interchange of the first 
and &-th pairs of periods—no other change whatever being made. 

When we are dealing with p quantities, the interchange of the first and £-th of these 
quantities can be effected by a composition of the two processes (i) an interchange of the 
first and second, (ii) a cyclical change whereby the second becomes the first, the third 
becomes the second, . . . , thejt?-th becomes the (p— l)-th, and the first becomes the p-th. 
Such a cyclical change is easily seen to be effected by the matrix 

* Other sets of elementary matrices, by the multiplication of which any Abelian matrix can 
be formed, can easily be chosen. One other obvious set consists of the matrices obtained by 
interchanging the rows and columns of the matrices Ak> B, C, D. 

+ We may state the meaning of the matrices Ak, B, C, D somewhat differently in accordance 
with the property remarked in Ex. iii., § 324. 
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which verifies the equations (IX.) § 324, for r = l . Hence the matrices ASi ..., Ap can 
each be represented by a product of positive powers of the matrices E and A2. Thereby 
the (jo + 2) elementary matrices A2, ..., Ap, B, (7, D can be replaced by only 5 matrices E, 
A2, B, O, D*. 

Considering next the matrix we obtain 

0 ) 1 ] = >' , 1 , | > ' r f i ] = - u > r , i > [û>rf<] = û>r,i, [*»' ,<] = ' , ( • _ ' ' """ )» 

\* — • ••> _ / 
so that this transformation has the effect of interchanging >1 and > , 
changing the sign of one of them ; no other change is introduced. 

The matrix G gives the equation 

K i ] = w' r j l-û) r ) 1 , 0*=1 , 2, ...,_p), 

but makes no other change. 

The matrix D makes only the changes expressed by the equations 

[u>'r, l ] = û) r, l — ^r , a, [û>V, 2] = ^'r, 2 — û>r, 1 • 

In applying these transformations to the case of the theta functions we 
notice immediately that Ajtt G and D all belong to the case considered in 
§ 326 (ii), in which the matrix a = 0. 

Thus in the case of the transformation A^ we have 

®{U;T\%) = A®{W; T ' | £ ) , 

where w differs from only in the interchange of and , ' differs from  
only in the interchange of the suffixes 1 and in the constituents )8 of the 
matrix T, and Ky K' differ from Q, Q' only in the interchange of the first and 
&-th elements both in Q and Q'. Thus in this case the constant A is equal 
to 1. 

In the case of the matrix (G), the equations of § 326 (2) give 

( ; \$) = { ; '\*), 
where 

u—wy T ' = T save that T ,
1 J 1 =T 1 | 1 —1, and K'=Q', K=Q save that Ki=Qi+Qi—^; 

now the general term of the left-hand side, or 

flniu (n+ QO+iirr (n+ Qf+2iriQ(n+ Qf) 

is equal to 
^mwin+K^+iwr' (n+K')*+iir (nl+Ql')2+2niK(n+K')-2iTT (Qx'-è) («i + Q,') 

= e~iir (Qi'2- Qi') e27r*w («+-K'/)+t'rT,(̂ +-K'/)2+2iriÄ'(n+JK:'). 

thus in the case of the transformation ( 0 ) the constant A is equal to 

erMT(Q1*-Ql') . w h e n Q/ is a half-integer, this is an eighth root of unity. 

* See Krazer, Ann. d. Mat., Ser. ., t. xii. (1884). The number of elementary matrices is 
stated by Burkhardt to be further reducible to 3, or, in case p = 2, to 2; Götting. Nachrichten, 
1890, p. 381. 
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In the case of the matrix (D), the equations of § 326 (ii) lead to 

B(u; T\%)=AB(W; T ' | £ ) , 

where u = w, ' = save that rlf2 = 1)2 — 1, 2 1 = 2)1 — 1, and ' = Q\ =Q 
save that K1 = Q1 + Q2, K2 = Q2 + Q/ ; now we have 

e2iriu (n+Q')+mT(n+Q'ß+2TnQ (n+Q') — (n^- QX'Q2') e2mw {n+K') + ' ( + ')*+2 ( + ') . 

thus, in the case of the matrix (D) the constant A is equal to e"2iri^^'. 
We consider now the transformation (B)—which falls under that con­

sidered in (i) § 326. In this case ma (a -f ') w2 is equal to TTIT^W^, and 
the equation (a 4- ') ' = ß + /3' leads to the equations 

T'i, i = — I /Ti, i ? T'I, r = Tlf / 1} x, r'r, « = ) s — Th r Th 8frh !, 

or, the equivalent equations (r, s = 2, 3, ..., ^ ) , 

/ T I , I J Ti,»* = — T i , r / T 3 j l , T r j S = T r > s — T i ^ T y / T ^ ; 

also 2 = r l t l ^ , / = 1 w1 + wr, so that w1 = — r\t , wr — ur — \} 1) and 
Ti,!^!2 = - r\tl

 2 ; further we find 

K' = Q' save that K( = - Q1} and = Q save that K, = Q/ ; 

with these values we have the equation 

e*ir» x w? e ( ; I f ) = 4 ® (w ; \ *'). 

334. determine the constant A in the final equation of the last 
Article we proceed as follows* :—We have 

(i) f e2irimwdw = 0 or 1, 
Jo 

according as m is an integer other than zero, or is zero ; 

(ii) if a be a positive real quantity other than zero, and /3, 7, 8 be real 
quantities, 

ei-a+iß) (z+y+ü)* dx= f-^-~, 

where for the square root is to be taken that value of which the real part is 
positive*!*; 

* For indications of another method consult Clebsch u. Gordan, Abel. Funct^ § 90 ; Thomae, 
Creile, Lxxv. (1873), p. 224. 

t By the symbol *//*, where /A is any constant quantity, is to be understood that square root 
whose real part is positive, or, if the real part be zero, that square root whose imaginary 
part is positive. 
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(iii) with the relations connecting w and , ' given in the previous 

Article, 
un=(wn)1 + (rltln1+ + rltPnp)wl9 

where (wn^ denotes 2 + + wp np ; 

(iv) the series representing the function © {w, r) is uniformly con­
vergent for all finite values of wlf . . . , wpy and therefore, between finite limits, 
the integral of the function is the sum of the integrals of i ts terms. 

Therefore, tak ing the case when ( ? ) and therefore (^') are (°), and 

integrat ing the equation 

e»*i.i«>i*©(tt; T) = A0®(W; T ' ) , 

in regard to wlt . . . , wp, each from 0 to 1, we have 

00 —00,00 /*1 1 

— 2 2 I . . . ƒ eniTl' i w1»+2irt(w»)1+2irt ( 1 ! »i + . . .+r1 ) pnp) ^ + 2 ^ ^ ^ ^ ^ 
Wi=-oo n2,...,Wp^0 •/0 

where, on the r ight hand, the integral is zero except for n2 = 0, . . . , np = 0 ; 

thus 
oo  

rii=-oo JO 

oo 1 

= S I Ô^bi («*i+»i)a diu! 
m= -oo j  

J - c o 

hence since the real par t of irirhl is negative (§ 174), we have 

A = / -.— = / — , 
V — 9 V Tlfl 

where the square root is to be taken of which the real par t is positive. 
Hence 

V   

and from this equation, by increasing w by + ' ', we deduce t ha t 

^ ,«.» (w ; T I £) = / — . 2 ( ^ ' (w ; ' | £'). 

Hence, when the decomposition of any linear transformation into trans­
formations of the form Ak, C, D is known, the value of the constant 
factor, A, can be determined. 

335. But, save for an eighth root of unity, we can immediately specify the value in 
the general case ; for when Q, $ are zero, the value of the constant A has been found to 
be unity for each of the transformations Aki (7, D, and for the transformation to have a 
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value which is in fact equal to \fil\M\, \M\ denoting the determinant of the matrix M. 
Hence for a transformation which can be put into the form 

if the values of the matrix M for these component transformations be respectively 

the value of the constant A, when Ç, ty are zero, for the complete transformation, will be 

-Wiki)" Wmf' ; 

but if the complete transformation give u = Mw, we have M=...M2M1...; thus, for any 
transformation we have the formula 

where = + , u=Mw, and is an eighth root of unity, r, / being as in § 328, p. 544. 
Putting 2© 2vw for w, as in § 326, this equation is the same as 

where [o>| is the determinant of the matrix <a, etc. 
Of such composite transformations there is one which is of some importance, that, 

namely, for which 

so that 

O r , J = û>'r>l-, [ö>V,J= -«r,<; (r9 = 1 , 2, . . . ,p) . 
Then 

M = , ' — — 1 , U ss TW, irla' (a + ) w2 = TTÌTÌV2 = 7 ? = — ITITU2. 

We may suppose this transformation obtained from the formula given above for the 
simple transformation —thus—Apply first the transformation which interchanges 
*>r, i > G>V, i with a certain change of sign of one of them ; then apply the transformation 
A2BAg which effects a similar change for the pair 2, e>'r,2> then the transformation 
A3BA3, and so on. Thence we eventually obtain the formula 

™ ( ; r\ %) = J±- J^JJ^ /W«,«.'+...+<WMe(w. • ) - « ) , 
V r L l V r 2, 2 V r 3, 3 

where 
- 2 _'2 

,-' — ,- 2 _// _ „ / r 2,3 r 2, 2 — r 2 , 2 ~ ~ J T 3, 3 ~ r 3 , 3 — ~7 > • •• » T l , 1 r 2, 2 

and, save for an eighth root of unity, 

/— /~*~ / m i 
V^i,i Vr'2>2 V r \ 3 - - V H ' 

where |r| is the determinant of the matrix r. 

file:///fil/M/


336] ELEMENTARY TRANSFORMATIONS OF PERIOD LOOPS. 559 

The result can also be obtained immediately, and the constant obtained by an integra­
tion as in the simple case of the transformation ; we thus find, for the value of the 

constant here denoted by ^ / — * / -^— .. . , the integral* 
^ T i , i v r2,2 

/ ... / <Firx*dx1...dxp. 
J -CO J - 0 0 

Ex. i. Prove that another way of expressing the value of this integral is 

i t 2 tan-1 X- 4/ — 

where, if the matrix be written p 4- -, | 0 | is the determinant of the matrix p2 + cr2, 
which is equal to the square of the modulus of the determinant of the matrix r, also 
\19 . . . , \p are the (real) roots of the determinantal equation \p — Xcr| = 0 , and tan -1X,. lies 
between - -/2 and /2. Of the fourth root the positive real value is to be taken. 

Ex. ii. For the case p = 1, the constant for any linear transformation is given by 

« '( + ")№* |- . r | i Q - b e ( w . Tl=L
a'i\-^+W 

according as a or a' is odd ; where a is positive, and 

as' — ds = aa', j _ -r— s2 / i 
ß$'-ß!s = ßß, V a ' ( a W ) ' 

336. Returning now to consider the theory more particularly in con­
nexion with the Biemann surface, we prove first that every linear trans­
formation of periods such as 

[ ] = WOL + n'a, [<o'] = coß + (u'ß', 
where 

aß-ßä = 0, a'fi* - ß'ä' = , aß' - ßä' = 1, 

can be effected by a change in the manner in which the period loops are 
taken. For this it is sufficient to prove that each of the four elementary 
types of transformation, Ak) B, C, D, from which, as we have seen, every 
such transformation can be constructed, can itself be effected by a change in 
the period loops. 

The change of periods due to substitutions can clearly be effected 
without drawing the period loops differently, by merely numbering them 

* Weber has given a determination of the constant A for a general linear transformation by 
means of such an integral, and thence, by means of multiple-Gaussian series. See Creile, LXXIV. 
(1872), pp. 57 and 69. 
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differently—attaching the numbers 1, to the period-loop-pairs which were 
formerly numbered and 1. No further remark is therefore necessary in 
regard to this case. 

The substitution which makes only the change given by 

[û>r, l ] = u>'r, l , [u> r, J = — u>rt l > 

can be effected, as in § 320, by regarding the loop ( ) as an [o^] loop, with 
retention of its positive direction ; thus the direction of the (old) loop (a^), 
which now becomes the [6J loop, will be altered ; the change is shewn by 
comparing the figure of § 18 (p. 21) with the annexed figure (13). 

The change, due to the substitution C, which is given by 

Wr,i] = u>'r,i — u>r,i> 

is to be effected by drawing the loop [ a j in such a way that a circuit of it 
(which gives rise to the value [2û/r,J for the integral ur) is equivalent to a 
circuit of the original loop (oj) taken with a circuit of the loop (6X) from the 
positive to the negative side of the original loop ( 

This may be effected by taking the loop [ a j as in the annexed figure (14) 
(cf. § 331). 

For the transformation D the only change introduced is that given by 

[w rt J = u>'r, i
 — a>rt 2, [ft) r, 2] = u/r, 2 — a>r, 1 ? 

and this is effected by drawing the loops [G^], [a2], so that a circuit of 
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[a j is equivalent to a circuit of the (original) loop (c^) together with a 
circuit of (62), in a certain direction, and similarly for [og]. This may be 
done as in the annexed diagram (Fig. 15). 

For instance the new loop [a2] in this diagram (Fig. 15) is a deformation of a loop 
which may be drawn as here (Fig. 16) ; 

since the integrand of the Abelian integral ur is single-valued on the Riemann surface, 
independently of the loops, the doubled portion from L to M is self-destructive ; and 
a circuit of this new loop [a2] gives û>'r, 2 - «r, i •> a s desired. 

Hence the general transformation can be effected by a composition of the 
changes here given. I t is immediately seen, for any of the linear transform­
ations of § 326, that if the arguments there denoted by U1> ..., TJP be a set 
of normal integrals of the first kind for the original system of period loops, 
then Wlt ..., Wp are a normal set for the new loops associated with the 
transformation. 

337. Coming next to the question of how the theory of the vanishing of 
the Riemann theta function, which has been given in Chap. X., is modified 

B. 36 
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by the adoption of a different series of period loops, we prove first that when 
a change is made equivalent to the linear transformation 

[co] = w a + œ'a, [œ] = coß + <*>ß'> 

the places Wj, . . . , mp of § 179, Chap. X., derived from any place m, upon 
which the theory of the vanishing of the theta function depends, become 
changed into places m/, ..., mp which satisfy the p equations 

uf. •• + ... + u?' ^^W (aß)]i + i 4 l [d (afß% + . . . + h ? [ i ( " ' № > 
( = 1 , ..., ) , 

wherein u1} ..., up denote the normal integrals of the first kind for the 
original system of period loops. 

For let wlt ..., wp be the normal integrals of the first kind for the new 
period loops, and let w/, .. . , mp be the places derived from the place m, in 
connexion with the new system of period loops, just as 1? ..., mp were 
derived from the original system. In the equation of transformation 

e* <a+ra', * <H) L ; T | \ d (a'|T| = AS (w ; T'), 
L i i « ( a p ) j 

put 

so that the right-hand side of the equation vanishes when x is at any one of 
the places w/, .. . , mp\ then we also have 

= ^> — *»™* — . . . — uxp>ìnp' ; 
hence the function 

. UL - ' |Jd(a0)J 
vanishes when is at any one of the places a ,̂ ..., xp ; therefore, by a 
proposition previously given (Chap. X., § 184 (X.)), the places m/, ..., / 
satisfy the equivalence stated above. 

I t is easy to see that this equivalence may be stated in the form 

< ' • - + . . . + < — ' = i [d{ßß')l + [d(ä*% + ... + i A , [ d ( ä a ' ) ] p , 

(i = l,2,...,p). 

I t may be noticed also that, of the elementary transformations associated 
with the matrices Aki B, 0, of § 333, only the transformation associated 
with the matrix gives rise to a change in the places mlt ...,mp; for each 
of the others the characteristic \^d{aß)} £d(a'/8')] vanishes. 

338. From the investigation of § 329 it follows, by interchanging the 
rows and columns of the matrix of transformation, that a linear trans-
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formation can be taken for which the characteristic [^d(aß)y \d(otß!)\ 
represents any specified even characteristic; thus all the 2p~1(2p -\- 1) sets*, 

mj, ..., mp', which arise by taking the characteristic \ f J in the equivalence 

M<« Wl + + um'p>mp = jnM i „> 

to be in turn all the even characteristics, can arise for the places m/, ..., mp. 
In particular, if £HMj ̂  be an even half-period for which ® (i^V h') vanishes, 
we may obtain for w/, ..., mp a set consisting of the place m and p — 1 
places / , ..., n'p-l9 in which n/, ..., rip_^ are one set of a co-residual lot of 
sets of places in each of which a -polynomial vanishes to the second order 
(cf. Chap. X., § 185). 

Ex. If in the hyperelliptic case, with ?̂ = 3, the period loops be altered from those 
adopted in Chap. XI. , in a manner equivalent to the linear transformation given in the 
Example of § 329, the function 0 (w ; r'), defined by means of the new loops, will vanish 
for w = 0; and the places m/ , m2', m3', arising from the place a (§ 203, Chap. XL), as 
ml7 ..., mp arise from m in § 179, Chap. X., will consistt of the place a itself and two 
arbitrary conjugate places, z and Js. 

339. We have, on page 379 of the present volume, explained a method 
of attaching characteristics to root forms VX(1), V F ( 3 ) ; we enquire now how 
these characteristics are modified when the period loops are changed. I t will 
be sufficient to consider the case of V F ^ ; the case of VX(1) arises (§ 244) by 
taking 0 V3H« in place of v 7 F 4 Altering the notation of § 244, slightly, to 
make it uniform with that of this chapter, the results there obtained are as 
follows ; the form X® is a polynomial of the third degree in the fundamental  

-polynomials, which vanishes to the second order in each of the places 
Alf ..., -4 _3, mly ..., mp> where Aly ..., A2p-S are, with the place m, the 
zeros of a -polynomial 0; the form Y{3) is a polynomial, also of the third 
degree in the fundamental -polynomials, which vanishes to the second order 
in each of the places Alt ..., _3) / ^ ..., fip; if 

, ^ ,,,+^%4(}. + ? / . 1 + , , , + ; . ( = 1,2, ..., \ 

where ulf . . . , up are the Riemann normal integrals of the first kind, the 

characteristic associated with the form F(3) is that denoted by J M J; and^: 

it may be defined by the fact that the function */Y®/'<JX{*>, which is single-
valued on the dissected Riemann surface, takes the factors (— 1)*/, (— l)qi 

respectively at the -th period loops of the first and second kind. 
Take now another set of period loops; let m/, ..., mp be the places 

* Or lot of sets, when the equivalence has not an unique solution, 
t Cf. the concluding remark of § 185. 
X Integer characteristics being omitted. 

36—2 
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which, for these loops, arise as 7 , ..., mp arise for the original set of period 
loops; let Z{s) be the form which, for the new loops, has the same character 
as has the form X(3) for the original loops, so that Z® vanishes to the second 
order in each of Alt ..., A2p-3y m/, ..., mp \ then from the equivalences 
(§337) 

( = 1, ...,i>), 
where w1} ..., wp are the normal integrals of the first kind, it follows, as in 
§ 244, that the function VZ'(3> /'VX(3) is single-valued on the Kiemann surface 
dissected by the new system of period loops, and at the r-th new loops, 
respectively of the first and second kind, has the factors 

e-iri[d (5a')]r em[d (00'))r> 

The equations of transformation, 

[U>] = eoa + 'a', [©'] =• coß 4- a/ß', 

of which one particular equation is that given by 

express the fact (cf. § 322) that a negative circuit of the new loop [br] is 
equivalent to ai>r negative circuits of the original loop (bi) and ^ positive 
circuits of the original loop ( ) ; thus a function which has the factors e~7dql^ 
evi% at the -th original loops, will at the r-th new loop [ar] have the factor 
ß-irür^ where lr' is an integer which is given by 

p 
- lr' = % [ - qìoitr + qi a'i,r], (mod. 2) ; 

thus the factors of VF(3)/VX(3) at the new period loops are given by e~wiV, 
e7^, where Z, V are rows of integers such that 

V = âq' - ü'q, -l = ßq'~ ß'qy (mod. 2). 

Therefore the factors of V p W / V J w ^ ( V F W / V I ^ ) / ( V ^ / V Z W ) , at the 
new period loops, are given by e_,ri*', e"**, where 

&' = âq' -â'q-d (Sa'), -k = ßq'-ß'q-d (ßß')> (mod. 2) ; 

now the characteristic associated with VF (3> corresponding to the original 
system of period loops may be defined by the factors of VT^/VX ( 3 ) at those 
loops; similarly the characteristic which belongs to VF(3) for the new system 

of loops is defined by the factors of V F ^ / V Z ^ , and is therefore \ L J ; the 

equations just obtained prove therefore that the characteristic associated with 

VF*3* is transformed precisely as a theta characteristic, 
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The same result may be obtained thus ; the p equations of the form 

#'"* + ...+u^m»=i(qi+qiTi,1 + ...+qp4p), ( =1, ..., ), 

are immediately seen, by means of the equation ( + ) (ßr - ) = 1 to lead to p equations 
expressible by 

subtracting from these the equations 

lvf'm' + ...+wf-^=i[d(ßß%+yi,1[d(äa% + ... + ir^p[d(äa')l>, (i=ì,...,p), 

we obtain equations from which (as in § 244) the characteristic of *JY^\ for the new 
loops, is immediately deducible. 

Similar reasoning applies obviously to the characteristics of the forms 
VX(2"+1) considered on page 380 (§ 245). But the characteristic for a form 
*/X(2ft) (p. 381), which is obtained by consideration of the single-valued 
function VX{2ll) / —into which the form VX(3), depending on the places 
mj, ..., 7 , does not enter—is transformed in accordance with the equations 

k' = äq -aq, -Jc = ßq' - ß'q, (mod. 2), 

and may be described as a period-characteristic, as in § 328. 

340. Having thus investigated the dependence of the characteristics 
assigned to radical forms upon the method of dissection of the Riemann 
surface, it is proper to explain, somewhat further, how these characteristics 
may be actually specified for a given radical form. The case of a form 
V X ^ differs essentially from that of a form VX(2l,+1). When the zeros of a 
form s/X^ are known, and the Riemann surface is given with a specified 
system of period loops, the factors of a function \/ (2/ )/ (/1) at these loops 
may be determined by following the value of the function over the surface, 
noticing the places at which the values of the function branch—which places 
are in general only the fixed branch places of the Riemann surface; the 
process is analogous to that whereby, in the case of elliptic functions, the 
values of Vg> (u + 2 ^ ) — e-^js/f (u) — e1} ^/%>(u + 2a)2) — 0i/V|p(w) — e1 may be 
determined, by following the values of \/̂ > ( *) — ex over the parallelogram of 
periods. But it is a different problem to ascertain the factors of the function 
\/F(3)/^/X® at the period loops, because the form \/X{z) depends upon the 
places ml9 ..., mp, and we have given no elementary method of determining 
these places ; the geometrical interpretation of these places which is given in 
§ 183 (Chap. X.), and the algebraic process resulting therefrom, does not 
distinguish them from other sets of places satisfying the same conditions; 
the distinction in fact, as follows from § 338, cannot be made algebraically 
unless the period loops are given by algebraical equations. Nevertheless we 
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may determine the characteristic of a form F3 ) , and the places rrh, ...,mp, 
by the following considerations*:—It is easily proved, by an argument like 
that of § 245 (Chap. XIII.), that if there be a form VZ(1) having the same 
characteristic as VF*3*, there exists an equation of the form VZ*1» VF*3* = (2> ; 
and conversely, if q + 1 linearly independent polynomials, of the second 
degree in the p fundamental -polynomials, vanish in the zeros of VF*3*, and 

*2) denote the sum of these q + 1 polynomials, each multiplied by an 
arbitrary constant, that we have an equation V F ( 1 ) VY{S] = M*2*, where \/F (1) is 
a linear aggregate of q -f-1 radical forms like \/Z(1), all having the same 
characteristic as VF*3* ; in general, since a form ^ 2 ) can contain at most 
3 (p — 1) linearly independent terms (§ 111, Chap. VI.), and the number of 
zeros of V F ( 3 ) is 3 (p - 1), we have £ + 1 = 0 ; in any case the value of q -f- 1 
is capable of an algebraic determination, being the number of forms (2) 

which vanish in assigned places. Now the number of linearly independent 
forms VZ(1) with the same characteristic is even or odd according as the 
characteristic is even or odd (§§ 185, 186, Chap. X.) ; hence, without deter­
mining the characteristic of VF*3* we can beforehand ascertain whether it is 
even or odd by finding whether q + 1 is even or odd. Suppose now that 
fiu ..., fjLp and fii, ..., fip' are two sets of places such that 

(m\ A1} ..., A^) = (tf, ..., /V) = 0* •.., /V2)> 

m being an arbitrary place, and m, A1} ..., ^_ being the zeros of any 
</>-polynomial 0; so that fi1} ...,fip and yu,/, . . . j / ^ ' a r e two sets arbitrarily 
selected from 22p sets which can be determined geometrically as in § 183, 
Chap. X. (cf. § 244, Chap. XIII.) ; let F(3) vanish to the second order in each 
of fjilf ..., fjLp, A1} ..., A2p_s and Y^ vanish to the second order in each of 
fa> ..., fjbp, Alt ..., A2p_3; by following the values of the single-valued 
function VF 1

( 3 ) /V , F ( 3 ) on the Riemann surface, we can determine its factors at 
the period loops; at the r-th period loops of the first and second kind let 
these factors be (—1 )*»*', (—l)*r respectively; then if J(^i, ..., qp) and 
b(Qi> •••> Qp) be respectively the characteristics of VF*3* and *JY-}*\ which we 
wish to determine, we have (§ 244) 

/ = Qr - ?/, h = Qr- - (mod. 2). 

Take now, in turn, for /A/, ..., fip't all the possible 2^ sets which, as in § 183, 
are geometrically determinable from the place m; and, for the same form 
VF ( 3 ) , determine the 22^ characteristics of all the functions V ¥ {3)/VF<3) arising 

* Noether, Jahresbericht der Deutschen Mathematiker Vereinigung, Bd. iii. (1894), p. 494, 
where the reference is to Fuchs, Creile, LXXIII. (1871) ; cf. Prym, Zur Theorie der Functionen in 
einer zweiblättrigen Fläche (Zürich, 1866). 
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by the change of the forms V F ^ ; then there exists one, and only one, 

characteristic, \ I ] , satisfying the condition that the characteristic 

*__ oo 
is even when s/Y-^ has an even characteristic and odd when \ ^ ( 3 ) has an odd 

characteristic ; for, clearly, the characteristic J f ^ J is a value for \ ( J which 

satisfies the condition, and if \ I J were another possible value for \ ( ) 

we should have 

(* + <r) (k' + a') = {k + q)(k + q) (mod. 2), 
or 

k(a'-q') + ' ( - q) = qq' - ' 

/k'\ 
for all the 2^ possible values of £ ( , J ; and this is impossible (Chap. XVII., 

§295). _ _ 

Hence we have the following rule :—Investigate the factors of V F^ /V F(3) 

for an arbitrary form VY{3) and all 2^ forms V F ^ ; corresponding to each 
form VFX(3) determine, by the method explained in the earlier part of this 
Article, whether its characteristic is even or odd ; then, denoting the factors of 
any function VF1

( 3 ) /V'F ( 3 ) respectively at the first and second kinds of period 

loops by quantities of the form (— 1)*,(— 1)*, determine the characteristic i ( ) , 

satisfying the condition that the characteristic \ ( , J is, for every form 

JY^Z), even or odd according as the characteristic of that form, V F ^ , is even or 

odd ; then J y* ) is the characteristic of the form V F ( 3 ) ; this being determined 

the characteristic of every form v F ^ is known; the particular form vF1
(3) for 

which the characteristic, thus arising, is actually zero, is the form previously 
denoted by s/X{3)—namely the form vanishing in the places m1} ...,mp which are 
to be associated (as in § 179, Chap. X.) with the particular system of period 
loops of the Riemann surface which has been adopted. 

Thus the method determines the places m1? ..., mp and determines the 
characteristic of every form VF (8); the characteristic of any other form 

4/F (2H" l ) is then algebraically determinable by the theorems of § 245 (p. 380). 

341. For the hyperelliptic case we have shewn, in Chap. XL, how to 
express the ratios of the 2^ Riemann theta functions with half-integer 
characteristics by means of algebraic functions ; the necessary modification 
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of these formulae when the period loops are taken otherwise than in 
Chap. XL, follows immediately from the results of this chapter. If the 
change in the period loops be that leading to the linear transformation 
which is associated with the Abelian matrix formed with the integer 
matrices % ß, a', /3', we have (§ 324) 

where 
V = ' -ä'q-d (Sa'), -k = ßq'-ß'q-d (ßß'). 

If now, considering as sufficient example the formula of § 208 (Chap. XL), we 
have 

ur a = <liœrti + ... + qP<Oryp + qi<*>'r,i + ... + qp'< > 

then we have 

wr'
a = liVrtl + ... +lpVrtp + l1'v'rjl+ ... +lpVrtP, 

where _ _ _ 
F = * g ' - a ' g = # + d ( S a / ) , -1 = ßq'- ß'q = -k + d(ßß')', 

therefore, if the characteristic J (d (ßß'), d (äa')) be denoted by /- , the function 

à i L ; ì (, J is a constant multiple of ai \w; i ( ? ) + A4 ; and we may 

denote the latter function by ^ [w\wb>a + /x]. Thus the formula of § 208 is 
equivalent to 

V(b )...( ) - %(w\n) ' 

where is independent of the arguments wlf ..., wp, and, as in § 206, 

«V = < ' e ' + .•. + < ' ' * , ( r = 1,2, ...,/>). 

Similar remarks apply to the formula of §§ 209, 210. I t follows from 

§ 337 that the characteristic p is that associated with the half-periods 

where ra/, ..., mp are the places which, for the new system of period loops, 
play the part of the places mlt ..., mp of § 179, Chap. X. It has already 
(§ 337) been noticed that for the elementary linear substitutions , , D the 
characteristic / is zero. 

342. In case the roots clt alt c2, a2, ..., c, in the equation associated with 
the hyperelliptic case 

y2 » 4 (x — d) (x — dj (x — c2) (x — a2)... (x — Cp) ( — ap) (x — c), 

be real and in ascending order of magnitude, we may usefully modify the 
notation of § 200, Chap. XL Denote these roots, in order, by bWi 6ap-*i> •••> 0, 
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so that bai, ktf-i are respectively c^-i+i, Up-i+i and b0 is c, and interchange 
the period loops (a^), (& ), with retention of the direction of (&;)> a s m the 
figure annexed (Fig. 17). 

Then if U*,a, ..., ET*'61 are linearly independent integrals of the first kind, 

such that dUx,a/dx = ylrr/y, where yfrr is an integral polynomial in x, of degree 

p — 1 at most, with only real coefficients, the half-periods 

^ • • " - ' » [ « r . i l ^ 1 , e " - * = [ » ' r , i ] - [ « ' r , i - J , ( ' = 1 , 2 , . . . , p ; [o/]r,0 = 0), 

are respectively real and purely imaginary, so that [ >' , ] is also purely 

imaginary ; if now w*'a, ..., w**a be the normal integrals, so that 

Ur = [2(0ril]w1+ ... + [2u>rtP]wpt wr = Lr}1U1+ ... +LrfPUp, 

then the second set of periods of w*'a, ..., wx'a, which are given by 

T'rii = Lril[2c0'hi] + ... + Z r i J ,[2û/P iJ, (r, 5 = 1 , 2, . . . , ^ ) } 

are also purely imaginary* ; forming with these the theta function @(w ; ) , 
the theta function of Chap. XI. is given (§ 335) by 

where K, K' are obtainable from Q, Q' respectively by reversing the order 
of the p elements, and A is the constant / / / ^ / 2/ 3 . . . , in which  

= Thl, 2 = T1}1T2f2 — T2
1J2, etc. We find immediately that 

?-1-a = - K J -... - j+[«;,*], F *••=- [ ),, +1] -... - [«,, j + [»;,<], 

( = 0, 1, . . . ,p) , and may hence associate with bs^u b2i the respective odd and 
even characteristics 

1«- -* -1-?:::- .-*©"(-1)(- -
-*«1_?:::_5-»( )(- -

* The quantities rf>y of Chap. XI. (of which the matrix is given in terms of the r'i>; of § 342 
hy rr'= - 1) are also purely imaginary when cx, alf ..., cp, ap, are real and in ascending order 
of magnitude. 
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and may denote the theta functions with these characteristics respectively by 
®2i-i(w; T'), ©2^(W; T ' ) ; if bkt bu bmi..., be any of the places b^y •••> b0>

 n o t 

more than p in number, and if, with 0 >̂ - < 2, 0 ^ q{ < 2, we have 

U**-*+U*'a+ ... = - ? l [ « r i J - . . . - 8 p [ ® r f j i ] + ft4®VJ + . . .+ fc / [« / r i pl 

then the function whose characteristic is ^ [ ^ J may be denoted by 

This function is equal to, or equal to the negative of, the function with 

characteristic £ ( J, according as the characteristic is even or odd. 

We have thus a number notation for the 2^ half-integer characteristics*, 
equally whether the surface be hyperelliptic or not ; this notation is under­
stood to be that of Weierstrass (Königsberger, Grelle, LXiv. (1865), p. 20). 
For the numerical definition of the half-periods, which are given by the rule 
at the bottom of p. 297, precise conventions are necessary as to the allocation 
of the signs of the single valued functions Vfx — br on the Riemann surface 
(cf. Chap. XXII.). 

In the hyperelliptic case p — % the characteristics of the theta functions given in the 
table of § 204 are supposed to consist of positive elements less than unity ; when Ql9 Q2i 

Qi, Q2' are each either 0 or £, the formula of the present article gives 

e ^ e [ « ; r i I ' £ ] = ^ « ' e [ a , ; • [ _% _ * ] ; 

the number notations for the transformed characteristics are then immediately given by 
the table of § 204. The result is that the numbers 

02, 24, 04, 1, 13, 3, 5, 23, 12, 2, 01, 0, 14, 4, 34, 03 

are respectively replaced by 

3, 1, 13, 24, 04, 02, 5, 0, 4, 2, 34, 23, 14, 12, 01 , 03. 

* For convenience in the comparison of results in the analytical theory of theta functions, it 
appears better to regard it as a notation for the characteristics rather than for the functions. 


