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CHAPTER XVIIL

TRANSFORMATION OF PERIODS, ESPECIALLY LINEAR TRANSFORMATION.

318. IN the foregoing portion* of the present volume, the fundamental
algebraic equation has been studied with the help of a Riemann surface.
Much of the definiteness of the theory depends upon the adoption of a
specific mode of dissecting the surface by means of period loops; for instance
this is the case for the normal integrals, and their periods, and consequently
also for the theta functions, which were defined in terms of the periods
7;,; of the normal integrals of the first kind; it is also the case for the
places m,, ..., m, of § 179 (Chap. X.), upon which the theory of the
vanishing of the theta functions depends. The question then arises; if we
adopt a different set of period loops as fundamental, how is the theory
modified, and, in particular, what is the relation between the new theta
functions obtained, and the original functions ? We have given a geometrical
method (§ 183, Chap. X.) of determining the places m,, ..., m, from the
place m, from which it appears that they cannot have more than a finite
number of positions when m is given, and coresidual places are reckoned
equivalent ; the enquiry then suggests itself; can they take all these possible
positions by a suitable choice of period loops, or is one of these essentially
different from the others? The answers to such questions as these are to be
sought from the theory of the present chapter.

There is another enquiry, not directly related to the Riemann surface,
but arising in connexion with the analytical theory of the theta functions.
Taking p independent variables u, ..., u,, and associating with them, in
accordance with the suggestion of §§ 138—140 (cf. § 284), the matrices
2w, 20’, 27, 29/, we are thence able, with the help of the resulting equations

2hw =i, 2he’'=b, n=20w, 7 =2aw —h,

to formulate a theta function. But it is manifest that this procedure makes
an unsymmetrical use of the columns of periods arising respectively from
the matrices w and o’; and it becomes a problem to enquire whether this

* References to the literature dealing with transformation are given at the beginning of
Chap. XX.
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want of symmetry can be removed; and more generally to enquire what
general linear functions of the original 2p columns of periods, with integral
coefficients, can be formed to replace the original columns of periods; and, if
theta functions be formed with the new periods, as with the original ones,
to investigate the expression of the new theta functions in terms of the
original ones.

So far as the theta functions are concerned, it will appear that the
theory of the transformation of periods, and of characteristics, includes the
consideration of the effect of a modification of the period loops of a Riemann
surface; for that reason we give in this chapter the fundamental equations
for the transformation of the periods and characteristic of a theta function,
when the coefficients of transformation are integers; but the main object
of this chapter is to deal with the transformation of the period loops on a
Riemann surface. The analytical theory of the expression of the transformed
theta functions in terms of the original functions is considered in the two
following chapters.

In virtue of the algebraical representation which is possible for quotients
of Riemann theta functions (as exemplified in Chap. X1.), the theory of
the expression of the transformed theta functions in terms of the original
functions, includes a theory of the algebraical transformation of the funda-
mental algebraical equation associated with a Riemann surface; it is known
what success was achieved by Jacobi, from this point of view, in the case of
elliptic functions; and some of the earliest contributions to the general
theory of transformation of theta functions approach the matter from that
side*. We deal briefly with particular results of this algebraical theory in
Chap. XXII.

319. Take any undissected Riemann surface associated with a funda-
mental algebraic equation of deficiency p. The most general set of 2p
period loops may be constructed as follows :

Draw on the surface any closed curve whatever, not intersecting itself,
which is such that if the surface were cut along this curve it would not be
divided into two pieces; of the two possible directions in which this curve
can be described, choose either, and call it the positive direction; call the
side of the curve which is on the left hand when the curve is described
positively, the left side; this curve is the period loop (4,); starting now
from any point on the left side of (4,), a curve can be drawn on the surface,
which, without cutting itself, or the curve (4,), and without dividing the
surface, ends at the point of the curve (4,) at which it began, but on the
right side of (4,); this is the loop (B,), and the direction in which it has

* See, in particular, Richelot, Crelle, xvi. (1837), De transformatione...integralium Abelian-

orum primi ordinis; in the papers of Konigsberger, Crelle, Lx1v., LXv., Lxvil., some of the
algebraical results of Richelot are obtained by means of the transformation of theta functions.

B. 34
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been described is its positive direction; its left side is that on the left hand
in the positive description of it. The period associated with the loop (4,),
of any Abelian integral, is the constant whereby the value of the integral
on the left side of (4,) exceeds the value on the right side, and is equal to
the value obtained by taking the integral along the loop (B,) in the negative
direction, from the end of the loop (B,) to its beginning. The period
associated with the loop (B,) is similarly the excess of the value of the
integral on the left side of the loop (B,) over its value on the right side, and
may be obtained by taking the integral round the loop (4,) in the positive
direction, from the right side of the loop (B,) to the left side. These periods
may be denoted respectively by Q, and Q.

320. 1t is useful further to remark that there is no essential reason why what we have
called the loops (4,), (B,) should not be called respectively the loops [B,] and [4,]. If
this be done, and the positive direction of the (original) loop (B,) be preserved, the
convention as to the relation of the directions of the loops [4,], [B;] will necessitate a
reversal of the convention as to the positive direction of the (original) loop (4,). If the
periods associated with the (new) loops [4,], [B,] be respectively denoted by [@] and [2'],
we have, therefore, the equations

[e]=2, [2]=-o.

These equations represent a process—of interchange of the loops (4,), (B,), with retention
of the direction of (B,)—which may be repeated. The repetition gives equations which we
may denote by

{e}=[0]=-0, {2}=-[e]=-2,
and the two processes are together equivalent to reversing the direction of loop (4,), and
(therefore) of the loop (B;). The convention that the loop (B,) shall begin from the left
side of the loop (4,) is not necessary for the purpose of the dissection of the surface into a

simply connected surface; but it affords a convenient way of specifying the necessary
condition for the convergence of the series defining the theta functions.

321. The pair of loops (4,), (B, being drawn, the successive pairs
(4,), (By), ..., (4p), (Bp) are then to be drawn in accordance with precisely
similar conventions—the additional convention being made that neither
loop of any pair is to cross any one of the previously drawn loops. If
the Riemann surface be cut along these 2p loops it will become a p-ply
connected surface, with p closed boundary curves. It may be further
dissected into a simply connected surface by means of (p—1) further cuts
(CY), ..., (Cp), taken so as to reduce the boundary to one continuous closed
curve.

Upon the p-ply connected surface formed by cutting the original surface
along the loops (4,), (By), ..., (4,), (Bp), the Riemann integrals of the first
and second kind are single-valued. In particular if W,, ..., W, be a sét of
linearly independent integrals of the first kind defined by the conditions
that the periods of W, at the loops (4,), ..., (4,) are all zero, except that at
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(4,), Which is 1, and if 7, , be the period of W, at the loop (B;), the imaginary
part of the quadratic form

T2+ .. + 21Ny + ... + Tppp

is necessarily positive* for real values of n,, ..., np. This statement remains
true when, for each of the p pairs, the loops (4,), (B,) are interchanged,
with e.g. the retention of the direction of (B,) and a consequent change in the
sign of the period associated with (4,), as explained above (§ 320); if the
loops (4,), (B,) be interchanged without the change in the sign of the period
associated with (4,), the imaginary part of the corresponding quadratic
form is negativet-

322. In addition now to such a general system of period loops as has
been described, imagine another system of loops, which for distinctness we
shall call the original system; the loops of the original system may be
denoted by (a,), (b,) and the periods of any integral, «;, associated therewith,
by 2w; », 20'; ,; the general system of period loops is denoted by (4,), (B,),
and the periods associated therewith by [2w; ,], [20";, +]- For the values of
the integral w;, the circuit of the loop (B,), in the negative direction, from
the right to the left side of the loop (4,), is equivalent to a certain number,
say}! to aj,, of circuits of the loop (b;) in the negative direction, together
with a certain number, say a’; ,, of circuits of the loop (a;) in the positive
direction (r, j=1, 2, ..., p); hence we have

2
[@i,/]= 2 (@i, %, r + @' ot 1), (r=12 ..., p)
]:
similarly we have equations which we write in the form

P
[0 ] = _El(wi,jﬁj, &% i85 0, (r=1,2,...,p),
.

the interpretation of the integers B;,, B » being similar to that of the
integers a; ,, o ,.

Thus, if u, ..., , denote p linearly independent integrals of the first
kind, and the matrices of their periods for the original system of period
loops be denoted by 2w, 20’, and for the general system of period loops by
[20], [207], we have

[0]=0a+ o'd, [0]=0B+of,

where a, &/, 8, B’ denote matrices whose elements are integers.

* And not zero, since n,W;+...+n,W, cannot be a constant. Cf. for instance, Neumann,
Riemann’s Theorie der Abelschen Integrale (Leipzig, 1884), p. 247, or Forsyth, Theory of
Functions (1893), p. 447. (Riemann, Werke, 1876, p. 124.)

.t As previously remarked, p. 247, note.
1 A circuit of (b;) in the positive direction furnishing a contribution of -1 to a;,.

34—2
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If L, ..., L, be a set of p integrals of the second kind associated with
Uy, ..., Up, a8 in § 138, Chap. VIL, and satisfying, therefore, the condition

$ [Dy® D, I2° = Dpi**D, L7 = D, [(z, ) %f] - D, [(a:, 2) ‘fi—ﬂ ,
i=1

and the period matrices of L, ..., L, at the original and general period
loops be denoted respectively by — 29, — 29" and —[29], — [27], we have,
similarly, for the same values of a, o, 8, &,

(1] =na+nd, [7]=98+%B.

We have used the notation Qp for the row of P quantities 2wP + 20'F,
where P, P’ each denotes a row of p quantities; we extend this notation to
the matrix 2wa 4+ 20’a’, where a, o' each denotes a matrix of p rows and
columns, and denote this matrix by Q,; similarly we denote the matrix
2na + 27'a’ by H, ; then the four equations just obtained may be written

[20]=Qa, [207]=Q4, [29]=H., [27]= H,. (L)

Noticing now that the matrices [20), [2w0), [27], [29'] must satisfy the
relations obtained in § 140, we have

tmi =[] [o] - [@] [7] = 1 (HQs — QuHp)

= (an + o) (0B + ') — (0o + &) (1B + 7' B)
=a(e—an)B+d (To— o) B+a(me’ —an) B +o (7’ — o) B
= @B - aB) §m,
in virtue of the relations satisfied by the matrices 2w, 20’, 29, 29’; and
similarly
0 =[7][0] - [@][7] = 1 (H.Q — QuH,) = (ad — &a) } i,

0=[7][]—[@][n] = } (HsQs — QpHy) = (B — BB) }mi;
thus we have

a8 —adB=1=Ra— Lo, ad —da=0, BB —BB=0, (IL)
namely, the matrices a, 8, «, B’ satisfy relations precisely similar to those
respectively satisfied by the matrices o, @', 5, %, the 477 which occurs
for the latter case being, in the case of the matrices a, B, «, 8, replaced

by —1; therefore also, as in § 141, the relations satisfied by a, 8, a’, 8’ can be
given in the form

aB —Ba’'=1=Ra—dB, aB—Ba=0, «B —Ba =0. (I11.)

In virtue of these equations, if
()
a, B

denote the matrix of 2p rows and columns formed with the elements of the matrices a, 8,
o, B, we have (cf., for notation, Appendix ii.)

@) (% 5= Cham sl -(),

an
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J—l=< é:’ _é) ’

-a, a

and the original periods can be expressed in terms of the general periods in the form
o=[0]F ~[=]d, o'=-[0]B+[]3,
1=[1]8-[r1a, #=-[]1B+[7]a

If 0 denote the matrix of p rows and columns whereof every element is zero, and
1 denote the matrix of p rows and columns whereof every element is zero except those in
the diagonal, which are all equal to 1, and if ¢ denote the matrix of 2p rows and columns

given by
(% -1 2_(_1: 0n_ _
s—(l’ O)’ so that €= 0, —1)= 1,

then it is immediately proved that the relations (I1.), (II1.) are respectively equivalent to
the two equations

and therefore

z.’_eJ=s, Jej=s,

T-(2 % > .

(%)

and it will be noticed that the equations (ILI.) are obtained from the equations (IIL.) by
changing the elements of J into the corresponding elements of J.

where

It follows* from the equation JeJ/=e that the determinant of the matrix J is equal to
+1lorto —1. It will subsequently (§ 333) appear that the determinant is equal to +1.

Ex. Verify, for the case p=2, that the matrices

_ 4, —20 _ —29, 124
«=( 37 s=(Z% Zo);

, (-3, 20 [ 22, —124
(& —7>’ g=( 3 )

satisfy the conditions (III.) (Weber, Crelle, Lxx1v. (1872), p. 72).

323. It is often convenient, simultaneously with the change of period
loops which has been described, to make a linear transformation of the
fundamental integrals of the first kind, w,, ..., u,. Suppose that we intro-
duce, in place of u,, ..., u,, other p integrals w,, ..., w,, such that

wy=M; ;w4 ...... + M;, pwy, (=12, ...,p),

or, as we shall write it, w = Mw, M being a matrix whose elements are
constants and of which the determinant is not zero. We enquire then what
are the integrals of the second kind associated with w,, ..., w,. We have
(§ 188) denoted Du;’® by u;(«), and the matrix of the quantities u;(c;) by p;

* For another proof of the relations (IL.), (IIL) of the text, the reader may compare Thomae,
Crelle, Lxxv. (1873), p. 224. A proof directly on the lines followed here may of course be
constructed with the employment only of Riemann’s normal elementary integrals of the first
and second kind. Cf. § 142.
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denote now, also, Dw;"® by p; (), and the matrix of the quantities p;(c;) by p;
then we immediately find p = pM, and the equation (§ 138)

Lz, o — ,u—l Hx, @ _ Qqu® ¢

gives _ —
MI% e =p H% ¢ —2MaMw® @

thus the integrals of the second kind associated with w, ..., w, are the p
integrals given by ML%¢? and, corresponding to the matrix a for the
integrals Ly? ..., Lz’ “ we have, for the integrals MI#e the matrix
a=MaM. If 2v, 2v’ denote the matrices of the periods of the integrals w,
and — 2§, — 2¢’ denote the matrices of the periods of the integrals ML= ¢, so
that (§ 139)

{=2av, ' =2av —3}plA,

we therefore have o = Mv, o’ = My’ and
¢=2MaMv=Mn, ¢ =2MaMv —}Mu—A=My,; av.)

it is immediately apparent from these equations that the matrices v, v/, §, &’
satisfy the equations of § 140,

vl =V =0, &' —¢C=0, vi— vl =kmi=8—'v.

324. The preceding Articles have sufficiently shewn how the equations
of transformation of the periods arise by the consideration of the Abelian
integrals. It is of importance to see that equations of the same character,
but of more general significance, arise in connexion with the analytical
theory of the theta functions.

Let w, o', 7, 7" be any four matrices of p rows and columns satisfying
the conditions (i) that the determinant of @ does not vanish, (ii) that o 'e’
is a symmetrical matrix, (iii) that the quadratic form «—'w'n? has its
imaginary part positive when =y, ..., n, are real, (iv) that no™ is a sym-
metrical matrix, (v) that "= o0 —}mi@2. The conditions (i), (ii), (iv),
(v) are equivalent to equations of the form of (B) and (C), § 140, and,
taking matrices @, b, A such that ¢ =470, h=1ime?, b=mlo @, or
2hw = i, 2he’ =b, 1= 2aw, 7’ = 2de’ — k, the condition (iii) ensures the
existence of the function defined by

S (u; g) = Sem+2hu(n+Q)+b(n+Q) +2mi Qn+Q)
wherein @, @' are any constants (cf. § 174).

Introduce now two other matrices [w], [o'], also of p rows and columns,
defined by the equations

[w] =wa+w'd, =340, say, [0]=0B+ oS, =1 say,

where a, o/, B, B’, are matrices of p rows and columns whose elements are
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integers*, it being supposed+ that the determinant of the matrix [w] does
not vanish ; and introduce p other variables w,, ..., w, defined by

ui=Mi,1’w1+ ...... +Mi,pwp, (‘i=]., 2,,p)
or u = Mw, where M is a matrix of constants, whose determinant does not
vanish; let the simultaneous increments of w, ..., w, when w,, ..., u, are

simultaneously increased by the constituents of the j-th column of [w] be
denoted by v, j, ..., vp, j, and the simultaneous increments of w,, ..., w,
when u,, ..., u, are simultaneously increased by the elements of the j-th
column of [@’] be denoted by v/ j, ..., v/p ;; then we have the equations
2Mv =2 [w] = Q., 2Mv' = 2[0'] = Qp, where v, v’ denote the matrices of
which respectively the (7, j) elements are v; ; and v’ ;.

The function ® (u; g) is a function of w;, ..., w,; we proceed now to
investigate whether it is possible to choose the matrices a, @, B, 8 and the
matrix M, so that the function may be regarded as a theta function in
w,, ..., Wy of order r (cf. Chap. XV. § 284).

Let the arguments w,, ..., w, be simultaneously increased by the con-
stituents of the j-th column of the matrix 2v; thereby w, ..., u, will be
increased by the constituents of the j-th column of the matrix [20w], and,
since a, o, B, B consist of integers, the function & (u; g will (Chap. X.
§ 190) be multiplied by a factor ¢’ where

L= (H2)% [u+§ (2)2] =7 (@9 (@) + 2 [0 @ = (@) Q)
(2) denoting the row of p elements forming the j-th column of the matrix
a, and (Qq)Y, (H,)¥ denoting, similarly, the j-th columns of the matrices
2wa+ 20'd, 2na + 2n'a’ respectively ; this expression L;, is linear in w, ..., w,,
and can be put into the form

Lj=’l‘(2§1’j, ey 2{1,’]') [(w,, ey wp)+ (Ul,j; ceey Up,j)] + 277'2:}(]'1,

where (w,, ..., wp) denotes the row letter whose elements are w;, ..., wp, and
similarly (v,;, ..., vp,;) is the row letter formed by the elements of the j-th
column of the matrix v, r is a positive integer which is provisionally
arbitrary, K; and 2§, ;, ..., 2§, ; are properly chosen constants, and
(28, ---» 28p, ) is the row letter formed of the last of these. Similarly, if
the arguments w,, ..., w, be simultaneously increased by 2¢/, j, ..., 2v'p, ;, the
function & (u; g) takes a factor ¢4, where

Lj = (Hp)" [u+% (Qp)?] — wi (B) 1 (8)7 + 2mi [(8)? @ — (B) €],
and, with the same value of 7, this can be put into the form

Li=r@¢,j, -.on.. 728, ) [(wy, ... s Wp) + (Vg jy weveee , Up, )] — 2mi K,

* The case when a, o', 8, 8’ are not integers is briefly considered in chapter XX.
+ We have miw ' [w]=wia+ba’; we suppose that the determinant of wia+ba’ does not
vanish.
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where Kj, §j, ..., {'p,j are properly chosen constants. In these equations
we suppose j to be taken in turn equal to 1, 2, ..., p.
Comparing the two forms of L; we have

(H.)9 Mw, or M(H)Pw, =7 (28, ..., 28y, ) (w, ..., wp),
so that the (4, j)th element of the matrix MH, is 2r¢; ;; hence if §, ¢’ denote
respectively the matrices of the quantities §; ; and ¢’ ;, we have
MH,=2r¢ MH,=2¢ ; (V.
from these we deduce, in virtue of the equations 2Mv = Q,, 2Mv' = g,
yH, 0, =3H,. 2Mv=2rlv, $HpQp=3Hs . 2Mv =2rFv,

and therefore, in particular, comparing the (j, j)th elements on the two sides
of these equations,

(Y (Q0)9 =2r (DY ()9, F(Hp)P (@) =20 (§)9 ()9,

where, as before, (v)¥ is the row letter formed by the elements of the j-th
column of the matrix v, etc.; therefore the only remaining conditions
necessary for the identification of the two forms of L; and L/, are

K/ = ()0 Q — ()" Q — 3 () (), — K;=(B)"Q — (B Q — 1 (B)V(B),
and the p pairs of equations of this form are included in the two
K'=aQ -aQ~4$d(ad), - K =BQ - BQ—$d(BB), (VL)

where K’, K are row letters of p elements and d (aa’), d (Bf) are respectively
the row letters of p elements constituted by the diagonal elements of the
matrices aa’, B3’

The equations (VI.) arise by identifying the two forms of L; and L;; it is
effectively sufficient to identify the two forms of e% and e%'; thus it is

sufficient to regard the equations (VL) as congruences, to the modulus 1.
We now impose upon the matrices v, v/, ¢, ¢’ the conditions

o—it=0=¢v —-v'¢, &' -t =4%m, (VIL)
which, as will be proved immediately, are equivalent to certain conditions

for the matrices a, B, «, B8'; then, denoting S(u; g) by ¢ (w, ..., w,) or
¢ (w), it can be verified* that the 2p equations

G W+ 2vp 5. )= P (w), (..., w,+ 20,5, ...) =€ P (w), (j=1,...,p),
where L;, L; have the specified forms, lead to the equation

& (w + 2um + 20'm") = grEm+Rm) -tomtv'm) ~rmimm +erimE =W E) ¢ (),
wherein m, m’ are row letters consisting of any p integers; and this is the

* The verification is included in a more general piece of work which occurs in Chap. XIX.
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characteristic equation for a theta function of order » with the associated
constants 2v, 2v/, 2¢, 2¢' (§ 284, p. 448).

The equations (VIL.) are equivalent to conditions for the matrices v, v/,
& ¢, entirely analogous to the conditions (ii), (iv), (v) of § 324 for the
matrices , @', 7, 7. The condition analogous to (i) of § 324, namely that the
determinant of the matrix v do not vanish, is involved in the hypothesis
that the determinant of mia +ba’ do not vanish. It will be proved below
(§ 325) that the remaining condition involved in the definition of a theta
function, viz. that the quadratic form v~%'n* has its imaginary part positive
for real values of n,, ..., n,, is a consequence of the corresponding condition
for the matrices o, . We consider first the conditions for the equations
(VIL).

In virtue of equations (V.), the equations (VIL.) require

H,.0p — Q.Hy = 2H,Mv — 20 MH;; = 4r (&' — 5¢') = 2,
and, similarly,

0.~ QH, =0, H:Qp— QsHz =0
but

1 (HuQp - Qu.Hy), = (@ + &7) (0B + @'B) — (86 +&@) (18 + 7',
=ad(Mw—wn)B+a(ne’ —on)B +& (No—on)B+& 7o' - o) g,
and this, by the equations (B), § 140, is equal to
ymi(ag’ —aB);
a8 —aB=Ra—pd =r, (VIIL)
ad —da=0, BB —RBB=0;

and as before (§ 322) these three equations can be replaced by the three

aB=pRa, of =R, af — B =r=pR'a—aB, ax.)

the relations satisfied by the matrices a, 8, ', 8’ respectively being similar to
those satisfied by o, o', m, 7', with the change of the i, which occurs in the
latter case, into — 7.

The number » which occurs in these equations is called the order of the
transformation ; when it is equal to 1 the transformation is called a linear
transformation.

thus

and, similarly,

Ex. 1. Prove that, with matrices of 2p rows and 2p columns,
GO ) 6)-GHE )
(26 DGH-C D

The determinant of the matrix will be subsequently proved to be + 7.
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Ex. ii. Prove that the equations (V.) of § 324 are equivalent to

M 0 2v 2v')_ 20 20"\ [a B)
0 rM-1 (2§ 2¢) = \2n 27)\a B)°
Egx. iii. If @, y, 2, y, be any row letters of p elements, and X, ¥, X,, ¥; be other

such row letters, such that
X=azx+By, X;=ax,+By,
X V)= "" B/) y 41 1 1
X 1)=(5 ) o) or Y ie e
then the equations (VIIL.) are the conditions for the self-transformation of the bilinear
form wy, — 2,9, which is expressed by the equation

XY, - X, ¥V =r (zy, - 2,9).

325. Conversely when the matrices a, a/, 8, B satisfy the equations
(VIIL), the function & (u; g) satisfies the determining equation for a theta
function in w,, ..., wp, of order r, with the characteristic (K, K’), and with
the associated constants 2v, 2v/, 2§, 2¢’; and in virtue of the equations (VIL),
the determinant of v not vanishing, matrices a, b, h, of which the first two
are symmetrical, can be taken such that

=31&v, h=3mv, b=mwv;

we proceed now to shew* that the real part of the quadratic form bn* is
negative for real values of ny, ..., n,, r being positive, as was supposed.

The quantity, or matrix, obtainable from any complex quantity, or
matrix of complex quantities, by changing the sign of the imaginary part
of that quantity, or of the imaginary parts of every constituent of that
matrix, will be denoted by the suffix 0; and a similar notation will be used
for row letters ; further the symmetrical matrices ™o, v=v" will be denoted
respectively by = and ', so that b = wir, b =mi7"; also =, 7 will be written,
respectively, in the forms 7, + i1y, 7 + ¢7,, where 7, 7, 7/, 7,/ are matrices
of real quantities. Then, putting

&’ = vMw 'z, and therefore z, = v,M,0, ,,

where 2,  denote rows of p complex quantities, and x,, #, the rows of the
corresponding conjugate complex quantities, and recalling that

T"=F =01, o Mv=a+7d, oMV =8+8,
we have _ _ _ _
r'x) = T'i Moz . i, M@, %, = vV Mo x . t,Mo;" z,
=B+ B T)x.(@+aT)x;
and, if & =a; + iz,, % = 2, — 12, where x,, , are real, this is equal to
(B + B +1B'm) (1 +im) . (@ + &1, — 1@'7,) (7, — 12,)
[BP+B'P +1(BQ+BQ)][aP +aP —i(aQ+aQ)]

* Hermite, Compt. Rendus, x1. (1855), Weber, 4nn. d. Mat., Ser. 2, t. ix. (1878—9).

or
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where P, P, Q, Q' are row letters of p real quantities given by
P=um, P=mz— 712, Q=2 @=mm+ 7,

PQ—PQ=r1(z+2);
thus the coefficient of ¢ in T'2'z, is
@P +aP)(BQ + BQ)—(BP+BP)(@Q+aQ),

which, in virtue of the equations (IX.), is equal to r(PQ — P'Q) or
r7, (2% + 2,Y); thus the coefficient of ¢ in 72’z is equal to the coefficient
of ¢ in rraz,. Since &’ may be regarded as arbitrarily assigned this proves
that the imaginary part of 7''z, is necessarily positive; and this includes
the proposition we desired to establish.

so that

Ex.  Prove that the equation obtained is equivalent to

Myvyr, v M =royry6.

326. Of the general formulae thus obtained for the transformation of
theta functions, the case of a linear transformation, for which r=1, is of
great importance; and we limit ourselves mainly to that case in the
following parts of this chapter. We have shewn that a theta function of the
first order, with assigned characteristic and associated constants, is unique,
save for a factor independent of the argument ; we have therefore, for r =1,
as a result of the theory here given, the equation

Y (u; 20, 20, 20, 20’5 §) = A% (w3 20, 20/, 24, 2¢'; §).

We suppose «, 3, «, 8’ to be any arbitrarily assigned matrices of integers
satisfying the equations (VIIL) or (IX.); then there remains a certain
redundancy of disposable quantities; we may for instance suppose o, ', 5, 7’
and M to be given, and choose v, v/, §, ' in accordance with these equations ;
or we may suppose o, o, v, { and ¢’ to be prescribed and use these equations
to determine M, v/, p and n’. It is convenient to specify the results in two
cases. We replace u, w respectively by U, W.

Q) 20=1, 20’ =71, n=aqa, ' =ar—m, h=mi, b=miT,
=1, 20 =7, ¢(=0,¢=—-m ,a=0, h=7i, b=mi7,

U=MW, M=a+rd, (a+7d)7=8+718,
so that, as immediately follows from equations (IX.),
(a+ 7o) (B —7'&) =7 =(8'~o'r) (@ + &), U=(a+7a) W, W=1 B—ra)U,
and, because ' =97 — v and {=0,
» a=n=mid (a+7d) = 7;—.?' o (B —7a),

from which we get
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™, .5 _ . .
al?= - o (B —7d) U= aia WU = i@’ (a+ 7o’) W2

These equations satisfy the necessary conditions, and lead, when r =1, to

T (atTa) WL @ (U; T g) =40 (W; 7 Ilg)’ (X)

where A is independent of U, ..., U, and the characteristic (X, K') is deter-
mined from (@, @) by the equations (§ 324)

K =aQ -aQ-4d@), —K=B8Q -BQ-4d(Bp).

The appearance of the exponential factor outside the ©-function, in equation (X.),
would of itself be sufficient reason for using, as we have done, the 3-function, in place of
the ©-function, in all general algebraic investigations*.

If in § 324 we put

=20l, r=0"lo, w=2W, r'=v=1
we easily find
mi@ (a+71d) Wi=}no w2 —§rfv=1u?;

thus (§ 189, p. 283) equation (X.) includes the initial equation of this Article.

In general the function occurring on the left side of equation (X.) is
a theta function in W of order » with associated constants 2v=1, 2v" =7,
2¢=0, 2¢ = — 2w, and characteristic (X, K').

(ii) A particular case of (i), when the matrix a' consists of zeros, is given
by the formulae

=1, 20' =11,

7=0, 9 =—m, a=0, h=m1, b=mir,
=120 =7,¢=0¢=— =0, h=

0, , a=0, 7w, b=mir,
U=aW, '=a(8+8), 7=+ (@'~ B,

a B\ _(apB = ox

(a’ /3') = (0 r&“) , where a8 = Ba.

Then the function ® (U; 7; g’) or ®[aW; %(a-r’—/g) a; g’] is a theta

function in W, of order », with associated constants 2v=1, 2v' =17/, 2¢ =0,
2¢' = — 2mv, and characteristic (K, K’) given by

K=aQ, —K=8Q —ra—Q— +d (rBa),
and, in particular, when » =1 we have
@(U;T;%)=A@(W;T’;§, (XL)
where 4 is independent of U, ..., U,,.

* Cf. § 189 (Chap. X.); and for the case p=1, Cayley, Liouville, x. (1845), or Collected
Works, Vol. 1., p. 156 (1889).
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327. It is clear that the results just obtained, for the linear trans-
formation of theta functions, contain the answer to the enquiry as to the
changes in the Riemann theta functions which arise in virtue of a change in
the fundamental system of period loops. Before considering the results in
further detail, it is desirable to be in possession of certain results as to the
transformation of the characteristics of the theta function, which we now
give; the reader who desires may omit the demonstrations, noticing only the
results, and proceed at once to § 332. We retain the general value r for the
order of the transformation, though the applications of greatest importance
are those for which »=1.

As before let d(y) denote the row of p quantities constituted by the
diagonal elements of any matrix y of p rows and columns; in all cases here
arising v is a symmetrical matrix; then we have

ad (BR)+Bd@d)=rd(aB), Bd(aB)+Bd(«B)=rd(BB)
dd(BR)+Bd(ad)=rd(@B), &d(aB)+ ad(«B)=rd(ax)

and

(mod. 2)

d(aa’)d (BR) = (r+ 1) 3d (Bd) = (r + 1) 3d (B'a)
d(aB)d («¢B) = (r + 1) 2d (aB) = (r + 1) 2d (B&)

so that, when =1 or is any odd integer,
d@d).d(BR)=d@aB).d(dB)=0 (mod. 2).

The last result contains the statement that the linear transformation of
the zero theta-characteristic is always an even characteristic.

(mod. 2),

For the equations ~
Ba- alﬁ=r, af3=pa,

give

aBBa— BadB=raB,
and therefore

BBZ%— da'y’= TaE.z&,
where z is any row letter of p integers, and z=axz, y=PBx; but if y be a symmetrical
matrix of integers and ¢ be any row letter of p integers yt2, =vy,;2,2+... 4+ 2y tits+..., i
=yntl+ ... +ypptyh and therefore =yt +... +yppty, or =d (y).¢, for modulus 2 ; hence

d(BR)z—d (@aa)y=rd (aB)x (mod. 2)
[ad (BB')+Bd (ad’)—rd (aB)] =0 (mod. 2);

and as this is true for any row letter of integers, z, the first of the given equations follows
at once. The second of the equations also follows from 8@ —o/8=r, in the same way, and
the third and fourth follow similarly from B'a—Ba’=r.

or

To prove the fifth equation, we have, since B'a—a'B=r,
BR'aa’ =Bd'Bd +rBd
ba=ct+re,

or
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where b=Bp, a=ad', c=PBa’; hence, equating the sums of the diagonal elements on the two

sides of the equation, we have
? P » » »
S 3 b ia5,=3 32 €i6,i+73 Cii;
J=1i=1 J=1i=1 i=1

therefore, as, unless i=j, b; ; 4;, ;=b;,; a;, ;, because a, b are symmetrical matrices, and as

. Ci,3 G,s=G,i Ciy 5>
we obtain

» AN »
S ;b= 3 (B itre)=r+1) 2 ¢
=1 i=1 i=1

The sixth equation is obtained in a similar way, starting from B'a—Ba’'=r.

Of the results thus derived we make, now, application to the case when 7 is odd, limiting
ourselves to the case when the characteristic (@, €') consists of half-integers ; we put then
@=13q, @=1¢/, so that ¢, ¢’ each consist of p integers; then K, K’ are also half-integers,
respectively equal to 3£, 34, say, where

¥=aq —a'q—d(ad), —k=Bqg—Bq-d(BB).

In most cases of these formulae, it is convenient to regard them as congruences, to
modulus 2. This is equivalent to neglecting additive ¢ntegral characteristics.

From these equations we derive immediately, in virtue of the equations of the present
Article _ _

g=ak+Bk +d(aB), ¢=dk+B¥ +d(dB) (mod. 2)
g9 =kt (mod. 2).
Further if p, p’ be row letters of p integers, and
v=ay ~au—d(a), —v=By-Bu-d(@ER),
we find, also in virtue of the equations of the present Article,
b —Fv=qi ~gu+( +¢) d (@B +(u+q) d(@B), (mod. 2);
therefore, if also

and

a"=ﬁp, - &’p—d(ﬁa'), - 0’=Ep’—EIP"d(BB,>’
we have

B - Ev+vo' —vo+ok —dk=qu —qgutpp —pp+pg —p'g (mod. 2).

Denoting the half-integer characteristics % (g ) , & (:: ) , % (::) by 4, B, C,

and the characteristics %(Z ) , % (V), 3 (Z_) , which we call the transformed

v
characteristics, by A’, B, C', we have therefore the results (§ 294)

|4|=|4’|, |4,B,C|=|4, B, ], (mod. 2)

or, in words, in a linear transformation of a theta function with half-integer
characteristic, and in any transformation of odd order, an odd (or even)
characteristic transforms into an odd (or even) characteristic, and three
syzygetic (or azygetic) characteristics transform into three syzygetic (or
azygetic) characteristics.

Of these the first result is immediately obvious when r=1 from the equation of
transformation (§ 326), by changing w into —w.
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Hence also it is obvious that if A be an even characteristic for which
S(0; A) vanishes, then the transformed characteristic A’ is also an even
characteristic for which the transformed function & (0; A’) vanishes.

328. If in the formula of linear transformation of theta functions with
half-integer characteristic, which we may write

s 3 (7)] =z [wi 3 (7)].

we replace v by u+3Q,,=u+ wom + o'm’, where m, m’ denote rows of
integers, and, therefore, since @ =M (vB' — V@), @' = M (—vB +v'a), (cf. Ex. i,
§ 324), replace w by w + vn + v'n’, where

w=am' —a&m, —n=Bm —B8'm,

we obtain (§ 189, formula (L))

. ql+m/ _ \ . k/ + nl
S":UW %(Q‘i"m')jl_Ag [w7 %(k_,_n):l 5
where 4’ 1is independent of w,, ..., u,, and k' + 7/, k+n are obtainable from
¢ +m’, g+m by the same formulae whereby %/, & are obtained from ¢, g,
namely .
K+m'=a (g +m)—a (¢g+m)—d(a),
—(k+m)=B (¢ +m)~ B (g+m)—-d(BB);

these formulae are different from those whereby »’/, n are obtained from
7.
m/, m; for this reason it is sometimes convenient to speak of % (g) as a theta

’
characteristic, and of %(z) as a pertod characteristic; as it arises here the

difference lies in the formulae of transformation; but other differences will
appear subsequently; these differences are mainly consequences of the
obvious fact that, when half-integer characteristics which differ by integer
characteristics are regarded as identical, the sum of any odd number of
theta characteristics is transformed as a theta characteristic, while the
sum of any even number of theta characteristics is transformed as a
period characteristic. In other words, a period characteristic is to be
regarded as the (sum or) difference of two theta characteristics.

It will appear for instance that the characteristics associated in §§ 244, 245,
Chap. XIIL. with radical functions of the form /X®+) are to be regarded as
theta characteristics—and the characteristics associated in § 245 with radical
functions of the form /X ®, which are defined as sums of characteristics

associated with functions /X ®+9, are to be regarded as period characteristics.
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We may regard the distinction* thus explained somewhat differently, by taking as the

fundamental formula of linear transformation that which expresses 3 [u . (g )] in terms
of 3| w+3Q,; % (g >], where

r'=d(ad), r=d(Bg),
and S,
U=k +d(ad)=aq' -aq, —l=-k+d(BB)=By-BY
In the following pages we shall always understand by ‘ characteristic, a
theta characteristic ; when it is necessary to call attention to the fact that a

characteristic is a period characteristic this will be done.

329. It is clear that the formula of linear transformation of a theta
function with any half-integer characteristic is obtainable from the particular

case ,
S ()= 43 [w; %(:)]

where 7’ =d (a«), r=d (BR'), by the addition of half periods to the argu-
ments. It is therefore of interest to shew that matrices a, B, o/, 8 can be
chosen, satisfying the equations

aB=pa, o =R of-pa=1,

which will make the characteristic % (:) equal to any even half-integer
characteristic.
Any even half-integer characteristic, being denoted by

(7).

) the ¢-th column of the characteristic; then

we may, momentarily, call (Z’

(2
the columns may be of four sorts,

(o) (o) () ()

but the number of columns of the last sort must be even; we build now a

matrix
(¢ )

* Theta characteristics have also been named eigentliche Charakteristiken and Primcharak-
teristiken ; they consist of 2P—1(2P—-1) odd and 2P~!(2P+1) even characteristics. The period
characteristics have been called Gruppencharakteristiken and Elementarcharakteristiken or
sometimes relative Charakteristiken. For them the distinetion of odd and even is unimportant—
while the distinetion between the zero characteristic—which cannot be written as the sum of two
different theta characteristics—and the remaining 27 -1 characteristics, is of great importance.
The distinction between theta characteristics and period characteristics has been insisted
on by Noether, in connection with the theory of radical forms—Cf. Noether, Math. Annal.
xxvir. (1887), p. 873, Klein, Math. Annal. xxxvi. (1890), p. 36, Schottky, Crelle, ci. (1888),
p. 308. The distinction is in fact observed in the Abel’sche Functionen of Clebsch and Gordan,
in the manner indicated in the text.
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of 2p rows and columns by the following rule*—Corresponding to a column
of the characteristic of the first sort, say the i-th column, we take «; ;=8'; ;=1,
but take every other element of the i-th row and ¢-th column of « and &,
and every element of the ¢-th row and ¢-th column of 8 and & to be zero;
corresponding to a column of the characteristic of the second sort, say the
Jj-th column, we take a; j= ' j=d;,;=1, but take every other element of
the j-th row and j-th column of a, 8, &, and every element of the j-th row
and column of B, to be zero; corresponding to a column of the characteristic
of the third sort, say the m-th column, we take @ = Bmm = B'mm=1, but
take every other element of the m-th row and column of «, 8, 8 and every
element of the m-th row and column of &’ to be zero; corresponding to a pair
of columns of the characteristic of the fourth sort, say the p-th and o-th, we
take a, , =By, p =80 p=1,00,0=00 =80, o=1,2,,=1,8, ,==1,d, ,=1,
B, - =—1, and take every other element of the p-th row and column and of
the o-th row and column, of each of the four matrices a, o/, B, B, to be zero.
Then it can be shewn that the matrix thus obtained satisfies all the
necessary conditions and gives &' =d (a«), k=d (88).

Consider for instance the case p=5, and the characteristic
301011,
00111/’

the matrix formed by the rules from this characteristic is

1 6000|000 O0TO0
010 0O0(0O0O00O0O0
001000010
0001O0[0O0O0OT1 -
00011;000O0 O
00O0OO0O|1 0O0DO
010000100
0000O0|0O0T1O0
000O0O0|0O0O0T1 -
0 0011]0O0O0CO0 1

and it is immediately verified that this satisfies the equations for a linear transformation
(§ 324 (IX.), for r=1), and gives, for the diagonal elements of aa', B8, respectively, the
elements 01011 and 00111.

Since we can transform the zero characteristic into any even characteristic, we can of
course transform any even characteristic into the zero characteristic ; for instance, when
there is an even theta function which vanishes for zero values of the arguments, we can,
by making a linear transformation, take for this function the theta function with zero
characteristic.

* Clebsch and Gordan, Abel. Fetnen (Leipzig, 1866), p. 318.
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Ez. For the hyperelliptic case, when p=3, the period loops being taken as in § 200,

the theta-function whose characteristic is é(i ? i) vanishes for zero arguments (§ 203) ;

prove that the transformation given by

a=( 100) B=(-1 00) d=(00-1) F=(101),
010 l0-10| i00 0 010
-101 i1 00| loo-1] 001

is a linear transformation and gives an equation of the form

s[u; 5(} o }>]=A9[w; ol

where 4 is independent of #,, ..., u,.

330. We have proved (§ 327) that if three half-integer theta character-
istics be syzygetic (or azygetic) the characteristics arising from them by any
linear transformation are also syzygetic (or azygetic). It follows therefore
that a Gopel system of 27 characteristics, syzygetic in threes (§ 297, Chap.
XVIL), transforms into such a Gopel system. Also the 2% Gopel systems of
§ 298, having a definite character, that of being all odd or all even, transform
into systems having the same character. And the 2¢ +1 fundamental Gopel
systems (§ 300), which satisfy the condition that any three characteristics
chosen from different systems of these are azygetic, transform into such
systems; moreover since the linear transformation of a characteristic which
is the sum of an odd number of other characteristics is the sum of the
transformations of these characteristics, the transformations of these 20 + 1
systems possess the property belonging to the original systems, that all the
2% Gopel systems having a definite character are representable by the
combinations of an odd number of them. It follows therefore that the
theta relations obtained in Chap. XVII., based on the properties of the
Gopel systems, persist after any linear transformation.

331. But questions are then immediately suggested, such as these: What are the
simplest Gopel systems from which all others are obtainable* by linear transformation ?

Is it possible to derive the 227 Gopel systems of § 298, having a definite character, by

linear transformation, from systems based upon the 227 characteristics obtainable by taking
all possible half-integer characteristics in which p — ¢ columns consist of zeros? Are the
fundamental sets of 2p+ 1 three-wise azygetic characteristics, by the odd combinations of
which all the 2% half-integer characteristics can be represented (§ 300), all derivable by
linear transformation from one such set?

We deal here only with the answer to the last question—and prove the following
result: Let D, Dy, ..., Dypyq be any 2p+2 half-integer characteristics, such that, for 1<j,

* An obvious Gopel group of 2¢ characteristics is formed by all the characteristics in which
the upper row of elements are all zeros, and the lower row of elements each =0 or }.
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=1, ..., 2p, j=2, ..., 2p+1, we have |D, D;, D;|=1; then it is possible to choose a half-
integer characteristic K, and a linear transformation, such that the characteristics
ED, ED,, ..., ED,,,,
transform into .
0y Apy vees Agpiys
where Ny, ..., Agp+1 @re certain characteristics to be specified, of whick (by § 327) every two are
azygetic. It will follow that if D', D/, ..., D'y, ,, be any other set of 2p+2 characteristics
of which every three are azygetic, a characteristic £, and a linear transformation, can be
found such that, with a proper characteristic £, the set £D, ED,, ..., ED,, ., transforms
into E'D, E'D/, ..., E'Dy, ;. It will be shewn that the characteristics Ay, ve.y Agpyy
can be written down by means of the hyperelliptic half-periods denoted (§ 200) by «® %,
Ubh yh e y® % 4™ it has already been remarked (§ 294, Ex.) that the charac-
teristics associated with these half-periods are azygetic in pairs. The proof which is to be
given establishes an interesting connexion between the conditions for a linear transforma-
tion and the investigation of § 300, Chap. XVIIL.
Taking an Abelian matrix,
a B
(%)

@' —aa=0, BB -PB=0, af-aB=1,

define characteristics of integers by means of the equations

’ ’ ’ 43 7
a a veey @ vee
ar=( L7y 27y ’ p.r>, br=(§l,7‘! ﬁz,r’ ) B’p.‘l‘>’ ar'=_a7‘)

1y Bory weey Cppr 1rs Bars <5 Bpr

for which

where o, is the r-th element of the s-th row of the matrix o', etc. and =1, 2, ..., p; then
the symbol which, in accordance with the notation of § 294, Chap. XVII., we define by the
equation

{Ary By|=ay,sB'rs+ e+ ap,2B80,0— 0", Bra— oo = 0'n, v Bp,as

is the (7, 5)-th element of the matrix @3’ —a’8, and may be denoted by (aB’ - a'B),,,; thus
the conditions for the matrices a, a, 8, ' are equivalent to the p (2p —1) equations

|4,y Br|=1, |4, B,|=0, |A4,, 4,]=0, |B,, By|=0, (r+s, r,s=12, ..., p),

whereof the first gives p conditions, the second p (p—1) conditions, and the third and
fourth each 4p(p—1) conditions. It is convenient also to notice, what are corollaries
from these, the equations

| By, dp|==|4r, By|=0, |By, dy|=~|4dy, Br|= -1, | By, 4,/ |=—| 4, Br|=|4y, Be|=1.
Consider now the 2p+1 characteristics, of integers, given by
ay, by, ay'bjay, a'bib,, a)/bia)byay, a'baybbs, ..., a'b...by_1bp, @by a)by,
whereof the first 2p are pairs of the type
LY 7Y Y O Al S/ Y I

for r=1, 2, ..., p, and a,'b;a, means the sum, without reduction, of the characteristics a,/,
by, a5, and s0 in general. The sum of these characteristics is a characteristic consisting
wholly of even integers. If these characteristics be denoted, in order, by ¢, ¢;, ..., Cap+ 1,
it immediately follows, from the fundamental equations connecting ay, ..., b,, that

i=1,2, ..,2 >

Ci,1C5,1F e =410 o =1, (i<j’ J=2,3,..,2p+1

35—2
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Thus the (2p+1) half-integer characteristics derivable from e¢;, ¢5, ..., Cyp41, Damely
Ci=%¢qy -y Cops1=3%C9p 41, are azygetic in pairs.

Conversely let D, D,, ..., Dy, ., be any half-integer characteristics such that, for i<j,
i=1, ..., 2p, =9, ..., 2p+1, we have | D, D;, D;]=1, so that (§ 300, p. 496) there exist
connectmg them only two relations (i) that their sum is a characteristic of integers, and
(ii) a relation connecting an odd number of them ; putting C;=D'D;(?=1, ..., 2p), where
D= — D, we obtain a set of independent characteristics C}, ..., Cyp, such that for i<y,

o i=1,2, ..., 2p-1\
|Cis Gi]=1, (j=2,3, ey 2p ’

taking Cyp41=C{C05Cy... C'yp— 1 Cop, Where €’y = ~C,,_;, we have also the 2p equa-
tions

| Ciny Copir|=1, (m=1,2, ..., 2p).

Thus putting C;=3c¢,, ..., Cops1=5%Csp+1, We can obtain an Abelian matrix by means of
the equations, previously given,

! ’ ey ! ’ ) ’
Copy=0'by e 1 bp Ay Copp=aby.e. b 1bry Copi1=0yDy...a)Dy,

the 7-th column of this matrix consisting of the elements of the lower and upper rows of
the integer characteristic a; or b;, according as ¢<p+1 or ¢>p. We proceed now to find

the result of applying the linear transformation, given by this Abelian matrix, to the
half-integer characteristics Cy, ..., Cpp41-

The equations for the transformation of the characteristic ¥ <g> to the characteristic

3 (’; ) which are (§ 324, VL),
K=aq—a'q-d(ad), -k=Bg—Bq—d(BR),
are equivalent, in the notation here employed, to
k{=\4i, Q|~[d @ad)}, -ki=|Bi, @|-[d(BB)):, (i=1,2 ..., p),
where 4;=3a,;, @=1¢ ; taking
Q@=%a/b,...d'r_1b,_ ., =%a)'D,...a/,_1b,_b,, and =4a,'b;...a,'p,

in turn, we immediately find that the transformations of the characteristics Cyr—1, Cor,
0’2,,“, are given, omitting integer characteristics, by

i)+ (127070) 1 (@(3) (1 0070) (@) +1(0)
or, say, by

a1 Q) QO 1G0T 66 (G Q)
respectively.

Now let the characteristics

)0 106 -1 0O T OO -6

be respectively denoted by
A1y Ay ooy Agrogs Agry woey Agpag

then we have proved that the half-integer characteristic DD; transforms, save for an

integer characteristic, into \;+3% <:,), where r=d (B8'), 7 =d (aa’); since the transforma-
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tion of the sum of two characteristics is the sum of their transformations added to ¥ (f) )
and since the characteristic 4 (:) , where ¢=d(dR'), s=d (aB), transforms into the zero
characteristic (§ 327), it follows that the transformation of the characteristic 4 <:> +DD;

is the characteristic A; ; hence, putting £=1% (:) + D, and omitting integer characteristics,

the characteristics
. . ED, ED,, ..., ED,, .,
transform, respectively, into
0, Ay ooey Agpirs
and this is the result we desired to prove.
The number of matrices of integers, of the form

a B .
(< %)
in which @d’—a'a=0, B8’ —B'8=0, af’—a'8=1, is infinite; but it follows from the
investigation just given that if all the elements of these matrices be replaced by their
smallest positive residues for modulus 2, the number of different matrices then arising is
finite, being equal to the number of sets of 2p +1 half-integer characteristics, with integral
sum, of which every two characteristics are azygetic. As in § 300, Chap. XVIL., this
number is
(2% —1)2%-1(22%-2-1)2%-3_ ... (22-1)2;

we may call this the number of incongruent Abelian matrices, for modulus 2. Similarly
the number* of incongruent Abelian matrices for modulus 7 is

(n% 1) n%-1(n2-2-1)n2-3,.... (n2—-1) n.

Ex. By adding suitable integers to the characteristics denoted by 1, 2,3, 4,5,6,7 in
the table of § 205, for p=3, we obtain respectively
1
1)’

-100 -1-10 -1-11 -10
%<—1 00)’ é( 0-1 0)’ ‘5( 0 01)’ é( 01
00 -1 01-1 010
%(1 0 —1)’ Jﬂ'(l 1 o)’ %(1 1 1)’
denoting these respectively by C;, C,, ..., C;, we find, for i<j, that
|C;y Gil=1, (i=1,...,6;7=2, ..., 7).

The equations of the text
’ ’ 4
) Cora1=" by veire @y by Oyy  Cpp=0a) by @ bp by
give
/ ’ /
Wp=0C1Cy.cren Cor_gCor—gCor—1y Op=01C9c.cu.. Cor—3C ar—oCors

and therefore, in this case, we find
/-1 00 _ 1 we(00-1
“=\-1 o00) “7 1) % \oo-1)
-1-10 1 01 -1\,
bl:( 0-1 0)’ b2=< 1)’ b3=(01 o)’

* Another proof is given by Jordan, Traité des Substitutions (Paris, 1870), p. 176.

-10
-11
-11
-12
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hence the linear substitution, of the text, for transforming the fundamental set of
characteristics Cy, ..., C; is

(-1 -1 0! 0-1 0)
0 1 0|-1 2
0 1-1/ 0 1 0

[

-1-1 0|-1-1 0
0O 0 o0!-1 1 1
0o 1 -1 o 1 -1

From this we find § (:’) =%(d(alﬁ )> =§(2 g 2) ; since the sum of €}, ..., Oy is an
/

d(aB) 121
integral characteristic, it follows by the general theorem, that if the characteristic

3 ((1) g ?) be added to each of Cy, ..., Cy, and then the linea'r transformation given by the

matriz be applied, they will be transformed respectively into the-characteristics Ny, ..., Ay.
A further result should be mentioned. On the hyperelliptic Riemann surface suppose
the period loops drawn as in the figure (12) ;

then the characteristics associated with the half-periods «® %, w® %, ..., u® % 4™ %,
u™ ° will be, save for integer characteristics, respectively A, Ag, ...y Agp, Agp+y; this the
reader can immediately verify by means of the rule given at the bottom of page 297 of the
present volume.

Ez. Prove that if the characteristics 0, A,, ..., A3p+, be subjected to the transforma-

tion given by the Abelian matrix of 2p rows and columns which is denoted by ((l)’ - i) ,
el

then, save for integer characteristics, \; is changed to 25+§<(1)>p, where

SO [T ) AT
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are the characteristics which arise in § 200, Chap. XI. as associated with the half-periods
u™ o, 4 %, u™ ° respectively. The characteristics S, ..., 5,4, satisfy the p(2p—1)

conditions | 3;, 3;|=1, for <.

332. We proceed now to shew how any linear transformation may be
regarded as the result of certain very simple linear transformations performed
in succession. As a corollary from the investigation we shall be able to infer
that every linear transformation may be associated with a change in the
method of taking the period loops on a Riemann surface; we have already
proved the converse result, that every change in the period loops is associated
with matrices, a, o/, B, B/, belonging to a linear substitution (§ 322).

It is convenient to give first the fundamental equations for a composition
of two transformations of any order. It has been shewn (§ 324) that the
equations for the transformation of a theta function of the first order, in the
arguments u, with characteristic (@, @) and associated constants 2w, 26,
27, 27/, to a theta function of order r, in the arguments w, where uw= Mw,
with characteristic (X, K’) and associated constants 2v, 2v, 2§, 2¢’, are

K—aQ-aQ-}d(a), —K=pBY-FQ—1d(BB),
(M, 0 ) 2v, 21/)_(2(0, 2&)') a, ,3)
0, rM— (2; 2L) 7 \29, 29/ (a’, g’
and from the last equation, writing it in the form uU= QA, it follows, in

virtue of the equations QeQ) = — Jrie, UeU =— 4rie (§ 140, Chap. VIL), and
the easily verifiable equation zeu = re, where the matrix e is given by

_ (0 - 1)
=\ o)
that also AeA =re, as in Ex. 1,8 324. And, just as in § 824, it can be proved
that equations for the transformation of a theta function of order r in the
arguments w, with characteristic (K, K’), and associated constants 2v, 2v/, 2¢,

2¢’, to a theta-function of order s, in the arguments u,, given by w = Nu,,
with characteristic (@,, "), and associated constants 2w,, 2w/, 27,, 27,’, are

Q' =7vK —¥ K —3rd (yy), —@Q=8K —&K —}rd(8%),

N, O ) <2w1, 2m1'>-_ <2v, 2v’) <fy, 8>'
(0, sN—)\2q,, 29/ —\2¢, 28/ \y/, &)’
and writing the last equation in the form vQ, = UV, we infer as before that
VeV = se.
Now from the equations pU=0Q4, »Q,=UV, we obtain urQ,=uUV=0AV,
or, if A, = AV,
(MN, 0 (2(91, 2w1'\_ <2w, 2w')A )
0, rsMN- \2n,, 20/ " \2p, 24/ 7%
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from this equation we find as before that the matrix A,, given by

v (B 2048 _(m, B
AI_AV_(Q"Y-‘-B"YI, a,8+B;8/> = alr’ 131/ , say,

satisfies the equation A,eA, =rse. Similarly from the two sets of equations
transforming the characteristics, by making use of the equations

d(@e) =¥d(a) +yd (BR)+rd (¥v),
d(B.B)) = 8d (ax)+&d (BB) +rd (88), (mod. 2),
which can be proved by the methods of § 327, we immediately find

Ql’ = alQ, - EI,Q - %d (&1511,), - Q1 = EIQ’ - EI/Q - ’}d (3131’)1 (m0d° 2)°

Hence any transformation of order »s may be regarded as compounded of
two transformations, of which the first transforms a theta-function of the
first order into a theta function of the r-th order, and the second transforms
it further into a theta function of order 7s.

It follows therefore that the most general transformation may be con-
sidered as the result of successive transformations of prime order. It is
convenient to remember that the matrix of integers, A,, associated with
the compound transformation, is equal to AV, the matrix A, associated
with the transformation which is first carried out, being the left-hand
factor.

One important case should be referred to. The matrix
rA~l= ( é’ - é)
—a a

is easily seen to be that of a transformation of order r ; putting it in place of v/, the final
equations for the compound transformation V,; may be taken to be

uy=ru, 20;=20, 20,/=20", 2y=2, 2n'=27"
The transformation 7A~1 is called supplementary to A (cf. Chap. XVIL., § 317, Ex. vii.).

333. Limiting ourselves now to the case of linear transformation, let
Ay (k=2, 3, ..., p) denote the matrix of 2p rows and columns indicated by

Ap=(px, 0),

0 > Mg |
where p; has unities in the diagonal except in the first and k-th places, in
which there are zeros, and has elsewhere zeros, except in the £-th place of

the first row, and the %-th place of the first column, where there are unities;
let B denote the matrix of 2p rows and columns indicated by
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B=(0 -1 ),

which has unities in the diagonal, except in the first and (p + 1)-th places,
where there are zeros, and has elsewhere zeros except in the (p + 1)-th place
of the first row, where there is —1, and the (p + 1)-th place of the first
column, where there is +1; let € denote the matrix of 2p rows and columns

indicated by
C=(1 -1 )

which has unities everywhere in the diagonal and has elsewhere zeros,
except in the (p + 1)-th place of the first row, where it has —1; let D denote
the matrix of 2p rows and columns indicated by

D=(1 0-1 )
1 -1 0
1 .0
1 0
0 1
0 1
0 1
0 1

which has unities everywhere in the diagonal and has elsewhere zeros, except
in the (p + 2)-th place of the first row and the (p + 1)-th place of the second
row, in each of which there is —1. It is easy to see that each of these
matrices satisfies the conditions (IX.) of § 324, for r=1.

Then it can be proved that every matrix of 2p rows and columns of

integers,
a, /3)
(aI’ BI )
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for which a8 = Ba, a’8 =B'a, aB’ — Ba =1, can be written* as a product of
positive integral powers of the (p +2) matrices 4,, ..., 4,, B, C, D. The
proof of this statement is given in the Appendix (II) to this volume.

We shall therefore obtain a better understanding of the changes effected
by a linear transformation by considering these transformations in turn. We
have seen that any linear transformation may be considered as made up of
two processes, (i) the change of the fundamental system of periods, effected
by the equations

[e]=wa+od, [o]=w8+o'B,
(n]=na+n'd, [7]=28+7'8,
(ii) the change of the arguments, effected by the equation = Mw, and
leading to _ _
le]=My, [o]=MV, {=M[n], §=M[7];
of these we consider here the first process. Applying the equations+
[w]=wa + 0'd, [0]=eB+ o8,
respectively for the transformations 4y, B, C, D, we obtain the following results:
For the matrix (4;) we have

[wr,l] = Wy k, [wr,k] = Wy 1, [w,r,l] = m"r,k; [wlr, k] = w'r,l’ (”' = 1’ 2: ceey P) N
or, in words, if 2w,,;, 20',,; be called the ¢-th pair of periods for the argument
u,, the change effected by the substitution Ay is an interchange of the first
and £-th pairs of periods—no other change whatever being made.

When we are dealing with p quantities, the interchange of the first and £-th of these
quantities can be effected by a composition of the two processes (i) an interchange of the
first and second, (ii) a cyclical change whereby the second becomes the first, the third

becomes the second, ..., the p-th becomes the (p—1)-th, and the first becomes the p-th.
Such a cyclical change is easily seen to be effected by the matrix

E=(0 1
1 :

0
10

10

* QOther sets of elementary matrices, by the multiplication of which any Abelian matrix can
be formed, can easily be chosen. One other obvious set consists of the matrices obtained by
interchanging the rows and columns of the matrices 4,, B, C, D.

+ We may state the meaning of the matrices 4;, B, C, D somewhat differently in accordance
with the property remarked in Ex. iii., § 324.
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which verifies the equations (IX.) § 324, for r=1. Hence the matrices 4,, ..., 4, can
each be represented by a product of positive powers of the matrices £ and 4,. Thereby
the (p+2) elementary matrices 4,, ..., 4,, B, C, D can be replaced by only 5 matrices E,
A,, B, C, D*,

Considering next the matrix B we obtain
r=1,2,..., p>

[wr,l] = wlr,lx [w,r, 1] =—y, [wr,i] = Wy, i, [wlr,i] = w,r,i’ ( .

' 1= 2,..,p
so that this transformation has the effect of interchanging w,, and ', .,
changing the sign of one of them; no other change is introduced.

The matrix C gives the equation

[w,'r,l] =w,7‘,l—w’r,l) (7'=1, 2: sevey p)y

but makes no other change.

The matrix D makes only the changes expressed by the equations

[w,'r,l] = w’r,l — Wr,s, [w’r,z] = wlr,2 - Wr.

In applying these transformations to the case of the theta functions we
notice immediately that Az, C and D all belong to the case considered in
§ 826 (ii), in which the matrix a’ = 0.

Thus in the case of the transformation A; we have

®(u; 7| g):A@ (w; -r’lf),
where w differs from u only in the interchange of u, and wu, 7" differs from 7
only in the interchange of the suffixes 1 and % in the constituents , ; of the
matrix 7, and K, K’ differ from @, @ only in the interchange of the first and
k-th elements both in @ and . Thus in this case the constant 4 is equal
to 1. ’

In the case of the matrix (C'), the equations of § 326 (2) give

O (u; 7|8) =40 (w; 7|%),
where
u=w, 7'=7 save that 7,,=7,,—1, and K'=¢’, K= save that K,=Q,+Q,'—3;
now the general term of the left-hand side, or
g2min(n+ @)+t (14 QP+2miQ(n+ Q)
is equal to
e2miwn+K)+int (n+K')2+im (n,+ Q)')2+2miK (n+K') - 26 (Q)' - 3) (m+Q/')

= ¢~ (Q?- Q) g2miw (n+K')+imr’' (n+ K'P+2miK (n+K') ;

thus in the case of the transformation (C) the constant A4 is equal to
e ™(Q™Q); when @, is a half-integer, this is an eighth root of unity.

* See Krazer, Ann. d. Mat., Ser. 11, t. xii. (1884). The number of elementary matrices is
stated by Burkhardt to be further reducible to 3, or, in case p=2, to 2; Gitting. Nachrichten,
1890, p. 381.
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In the case of the matrix (D), the equations of § 326 (ii) lead to
(G] (u; Tlgl) =46 (w; T'[?),
where u=w, 7' =7 save that 7, ,=7,,— 1,75, =7y;—1, and K'=Q, K=Q
save that K, = Q,+ Q., K, = @, + Q,'; now we have
g2mit (-t Q) +imr (n+ QP-+2miQ (n+ Q) — gin (mimy- Q'Qy) gmino (n+K) +imt (n+ K'Y 4+2miK (n+K) 5

thus, in the case of the matrix (D) the constant 4 is equal to e~2m@/Q/,

We consider now the transformation (B)—which falls under that con-
sidered in (i) § 826. In this case mia@ (a+ 7o) w? is equal to mir,, w? and
the equation (a + Ta) 7 = 8+ 78’ leads to the equations

T/l,l =— 1/""1,1, '7',1,r = "'1,7-/‘7'1,1, '7"7-,3 =Tr,s— Tyr 71,3/71,1,

or, the equivalent equations (r, s=2, 3, ..., p),

T,1 = — 1/7,1,1: Ti,r = — 7',1,1'/7"1,1, Tr,s= 'Tlr,s - '7"1,1- 7,1,3/7,1,1;
also w, =7, %, U =T, W+ W,, so that w, =—7",,%, w, =, — 7,4, and
T WE=— 7, u?; further we find

K’ = () save that K= —@,, and K =@ save that K, =Q,;
with these values we have the equation

et @ (u; 7| 3) =40 (w; 7| ).

334. To determine the constant A4 in the final equation of the last
Article we proceed as follows* :—We have

1
(i) f eZmimwdw=0 or 1,
0

according as m is an integer other than zero, or is zero;

(i) if @ be a positive real quantity other than zero, and 3, v, & be real
quantities,
f ” gl—ati®) @y = /T
o a—13’
where for the square root is to be taken that value of which the real part is
positivet;

* For indications of another method consult Clebsch u. Gordan, Abel. Funct., § 90; Thomae,
Crelle, Lxxv. (1873), p. 224.

+ By the symbol A/i, where u is any constant quantity, is to be understood that square root
whose real part is positive, or, if the real part be zero, that square root whose imaginary
part is positive.
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(i) with the relations connecting u, w and 7, 7 given in the previous
Article,
un = (wn), + (T, + ...... + Ty, p Mp) Wy,

where (wn), denotes wyn, + ...... + wpny ;

(iv) the series representing the function © (w, 7’) is uniformly con-
vergent for all finite values of w,, ..., w,, and therefore, between finite limits,
the integral of the function is the sum of the integrals of its terms.

Therefore, taking the case when ( g) and therefore (%) are ({), and
integrating the equation

erina el © (u; ) = 4,0 (w; T),
in regard to w,, ..., Wy, each from 0 to 1, we have

© -, 1 T . . .
Ao — 2 S f .. f @ity L W 2w (wn), +2mi (7, Ty M) Wy FimTa? dwl ... d,wp’
Nn==00 Ng, ..., NpJ 0 0
where, on the right hand, the integral is zero except for n,=0, ..., n,=0;
thus

® 1
A= p Emimy 1 ATy, ey iy, dwl
nm=-oJ0

) 1
2 e"’i"n 1 (w01 +m,)? d/wl
m=-o0 JO

I

f e dg;
hence since the real part of i, is negative (§ 174), we have

T )
Ao — —_— = /\/»_ s
— Ty, Ty

where the square root is to be taken of which the real part is positive.
Hence

et @ (u; 1) = g/ - O (w; ),
T1,1
and from this equation, by increasing w by K + 7'K’, we deduce that
x)-

Hence, when the decomposition of any linear transformation into trans-
formations of the form A, B, C, D is known, the value of the constant
factor, 4, can be determined.

e"’iﬁn w? @) (u 3T | QI) = \/;?,_ gg’rinQx' @ (w 5 'TI
1,1

335. But, save for an eighth root of unity, we can immediately specify the value in
the general case ; for when €, @ are zero, the value of the constant 4 has been found to
be unity for each of the transformations 4;, €, D, and for the transformation B to have a
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value which is in fact equal to 4/2/| M|, | M| denoting the determinant of the matrix M.
Hence for a transformation which can be put into the form

a B " : N
(al By)=-uBr2...A;....D ...Br...cm...Ak...,

if the values of the matrix M for these component transformations be respectively

U000 TOUS DORP L0 DU B

the value of the constant 4, when @, € are zero, for the complete transformation, will be

(o) e ) s

but if the complete transformation give u=Mw, we have M=...M,M,...; thus, for any
transformation we have the formula

o Y] € r
& (a+7a’) w e (u’ T)=,\/-—Iﬁe w, 1"]% (r>])

where M =a+7ad, u=Mw, and ¢ is an eighth root of unity, », #* being as in § 328, p. 544.
Putting 20u, 2vw for u, w, as in § 326, this equation is the same as

—9 20, 20, 29, 27)= ———9 v, 2v', 2¢, 2¢’
«/lml v n )= e L 6 3014(;)]

where || is the determinant of the matrix o, etc.
Of such composite transformations there is one which is of some importance, that,

namely, for which
a B\ _/0-1
d ﬁ, - 1 0 ’

[ond=0"ri;, [0'hid=—an:; (rt=1,2 ..., p)

so that

Then
M=z, v'=-1, w=rw, nid (a+rd)wi=nirw?=niuw=—nmir'u

We may suppose this transformation obtained from the formula given above for the
simple transformation B—thus—Apply first the transformation B which interchanges
wr,1, @', With a certain change of sign of one of them ; then apply the transformation
4,B4, which effects a similar change for the pair w3, @’y; then the transformation
A;BA3, and so on. Thence we eventually obtain the formula

i g (u ; rl Q =xn/ — ; ,,1: ...... 2R+ B g (w; | —g,),
b1

"'2.2 T3
where
2 ’2
r_ ™9 v T3
To2=Te~ =) T g3=Tg3 7 )y
™h1 T22

and, save for an eighth root of unity,

/* AR 1
L1 a2 s A

where |7| is the determinant of the matrix r.
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The result can also be obtained immediately, and the constant obtained by an integra-
tion as in the simple case of the transformation B; we thus find, for the value of the

constant here denoted by \/ = ,1' ..., the integral ¥

L1 T22

[0 a0 . "
et day . day.
—00 —00

Ez.i. Prove that another way of expressing the value of this integral is

4
e

2
> tan—1\,
=1

= /4/]1:1-],

where, if the matrix r be written p+io, |779| is the determinant of the matrix p2+o?
which is equal to the square of the modulus of the determinant of the matrix r, also
Ay, «.oy Ap are the (real) roots of the determinantal equation |p—2Ae|=0, and tan~! A, lies
between — /2 and /2. Of the fourth root the positive real value is to be taken.

Ex. ii. For the case p=1, the constant for any linear transformation is given by

., , ’ a -1 _”ia )2
e1rza.(a.+‘ru.)wze[u; Tlé(Z)]'%e (w; T’)IL Se & (ptia)?

»n=0

, wia ni ,
=L@ (5) 7% or Ly (§)e s TR
a

according as a or o’ is odd ; where o’ is positive, and

, ’ ’ ria’ .
—ds= —— 82 ?
as —as$=aa, L—cha

B —pB's=pA, d (a+7d)’

336. Returning now to consider the theory more particularly in con-
nexion with the Riemann surface, we prove first that every linear trans-
formation of periods such as

[0] = wa+ o'd, [0]=wB+o'B,
where

B pa=0, (F-BT=0, oF -G =1,

can be effected by a change in the manner in which the period loops are
taken. For this it is sufficient to prove that each of the four elementary
types of transformation, Az, B, C, D, from which, as we have seen, every
such transformation can be constructed, can itself be effected by a change in
the period loops.

The change of periods due to substitutions 4 can clearly be effected
without drawing the period loops differently, by merely numbering them

* Weber has given a determination of the constant 4 for a general linear transformation by
means of such an integral, and thence, by means of multiple-Gaussian series. See Crelle, Lxx1V.
(1872), pp. 57 and 69.
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differently—attaching the numbers 1, £ to the period-loop-pairs which were
formerly numbered % and 1. No further remark is therefore necessary in
regard to this case.

The substitution B, which makes only the change given by

[wr,l] = w,r,l, [wlr,l] == Wy,

can be effected, as in § 320, by regarding the loop (b,) as an [a,] loop, with
retention of its positive direction; thus the direction of the (old) loop (a,),
which now becomes the [b,] loop, will be altered; the change is shewn by
comparing the figure of § 18 (p. 21) with the annexed figure (13).

\.zo)r:ﬂ

Fie. 13.

The change, due to the substitution C, which is given by

[“”r, = ""m — W1,

is to be effected by drawing the loop [a,] in such a way that a circuit of it
(which gives rise to the value [2w',,] for the integral u,) is equivalent to a
circuit of the original loop (a,) taken with a circuit of the loop (b,) from the
positive to the negative side of the original loop (a,).

This may be effected by taking the loop [a,] as in the annexed figure (14)
(cf. § 331).

For the transformation D the only change introduced is that given by
[w'a',l] = w"f,l — Wy, [w',., 2] = a”r,z — Wr,1,

and this is effected by drawing the loops [a,], [a.], so that a circuit of
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[a,] is equivalent to a circuit of the (original) loop (a,) together with a
circuit of (b,), in a certain direction, and similarly for [a,]. This may be
done as in the annexed diagram (Fig. 15).

For instance the new loop [a,] in this diagram (Fig. 15) is a deformation of a loop
which may be drawn as here (Fig. 16);

since the integrand of the Abelian integral u, is single-valued on the Riemann surface,
independently of the loops, the doubled portion from Z to M is self-destructive; and
a circuit of this new loop [a,] gives o'y, 3 — @, 1, as desired.

Hence the general transformation can be effected by a composition of the
changes here given. It is immediately seen, for any of the linear transform-
ations of § 326, that if the arguments there denoted by U, ..., U, be a set
of normal integrals of the first kind for the original system of period loops,
then W,, ..., W, are a normal set for the new loops associated with the
transformation. '

337. Coming next to the question of how the theory of the vanishing of
the Riemann theta function, which has been given in Chap. X., is modified
B, 36
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by the adoption of a different series of period loops, we prove first that when
a change is made equivalent to the linear transformation

[0]=w2+ o'd, [0]=0B+ 'S,

the places my, ..., m, of § 179, Chap. X., derived from any place m, upon
which the theory of the vanishing of the theta function depends, become
changed into places m,/, ..., m, which satisfy the p equations

w4l 2 3 [d @B+ ria[d (@B)h+ o+ iy [ (2B,
=1, ...,p),
wherein 1w, ..., u, denote the normal integrals of the first kind for the
original system of period loops.

For let w,, ..., w, be the normal integrals of the first kind for the new
period loops, and let my, ..., m,” be the places derived from the place m, in
connexion with the new system of period loops, just as m,, ..., my were
derived from the original system. In the equation of transformation

em® (atra)w? @ l:u ;T td(a B )] =4,0 w; 1),

3d(aB)
put
w=wWH™ — P — | — yfmp
‘so that the right-hand side of the equation vanishes when « is at any one of
the places my’, ..., m,’; then we also have
U=UH™ — Y™ — | — e

hence the function

v 2, m 2, M, __ My’ %d(alé’)
9[“ Y ""“””"””fwd(a/s)]

vanishes when « is at any one of the places #,, ..., #,; therefore, by a
proposition previously given (Chap. X., § 184 (X.)), the places my, ..., m,’
satisfy the equivalence stated above.

It is easy to see that this equivalence may be stated in the form

Wit ™ = 3 [d (BB 37 [ @)+ . + 3y [d @),
=12, ...,p)
"It may be noticed also that, of the elementary transformations associated
with the matrices i, B, €, D, of § 3383, only the transformation associated

with the matrix C' gives rise to a change in the places m,, ..., m,; for each
of the others the characteristic [§d (a8), 4d («'8’)] vanishes.

338. From the investigation of § 329 it follows, by interchanging the
rows and columns of the matrix of transformation, that a linear trans-
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formation can be taken for which the characteristic [4d (aB), 3d (¢B))
represents any specified even characteristic; thus all the 2771 (22 + 1) sets*,

m), ..., my’, which arise by taking the characteristic § (:: ) in the equivalence

’ ’
ML + ume = 3O,

to be in turn all the even characteristics, can arise for the places my, ..., m,’.
In particular, if 40, . be an even half-period for which ® ($Q, ) vanishes,
we may obtain for m,, ..., m, a set consisting of the place m and p—1
places ny, ..., Wy, in which /), ..., n/p_, are one set of a co-residual lot of

sets of places in each of which a ¢-polynomial vanishes to the second order
(cf. Chap. X, § 185).

Ez. If in the hyperelliptic case, with p=3, the period loops be altered from those
adopted in Chap. XI., in a manner equivalent to the linear transformation given in the
Example of § 329, the function © (w; '), defined by means of the new loops, will vanish
for w=0; and the places m,, my, my, arising from the place a (§ 203, Chap. XIL.), as
My, ...y My arise from m in § 179, Chap. X., will consistt of the place a itself and two
arbitrary conjugate places, z and z.

339. We have, on page 379 of the present volume, explained a method
of attaching characteristics to -root forms ¥X® ~Y® ; we enquire now how
these characteristics are modified when the period loops are changed. It will
be sufficient to consider the case of VT ®; the case of ¥X® arises (§ 244) by
taking ¢, ¥ X @ in place of V¥ ®, Altering the notation of § 244, slightly, to
make it uniform with that of this chapter, the results there obtained are as
follows; the form X® is a polynomial of the third degree in the fundamental
¢-polynomials, which vanishes to the second order in each of the places
A,, ..., Aypy, my, ..., my, where 4,, ..., Ay, ; are, with the place m, the
zeros of a ¢-polynomial ¢,; the form ¥ @ is a polynomial, also of the third
degree in the fundamental ¢-polynomials, which vanishes to the second order
in each of the places 4,, ..., Ay, pr, ..., pp; if

w M U = (i T+ G T ), (=12, ., p),
where u,, ..., u, are the Riemann normal integrals of the first kind, the

characteristic associated with the form Y'® is that denoted by % (Z), and}

it may be defined by the fact that the function ¥V¥® /v X®, which is single-
valued on the dissected Riemann surface, takes the factors (—1)%, (—1)%
respectively at the ¢-th period loops of the first and second kind.

Take now another set of period loops; let m,, ..., m,” be the places

* Or lot of sets, when the equivalence has not an unique solution.
+ Cf. the concluding remark of § 185.
1 Integer characteristics being omitted.
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which, for these loops, arise as m,, ..., m, arise for the original set of period
loops; let Z® be the form which, for the new loops, has the same character
as has the form X @ for the original loops, so that Z® vanishes to the second
order in each of 4,, ..., Agp—s, m, ..., m,’; then from the equivalences
(§ 337)
W™ 4w "= 3 [ BB+ 3o [d @]+ . + 37 5[4 @),
¢=1,..,p),
where w, ..., w, are the normal integrals of the first kind, it follows, as in

§ 244, that the function VZ® /¥ X® is single-valued on the Riemann surface
dissected by the new system of period loops, and at the »-th new loops,
respectively of the first and second kind, has the factors

g-mild @)y gmild BB,
The equations of transformation,
[0] = va+ 0'd, [0]=wB+ o',
of which one particular equation is that given by
[wn,r] = @n 10,5+ oo + @n, pp,r + @1 @yt i + Oy p &y, (n,r=1, ., p),

express the fact (cf. § 322) that a negative circuit of the new loop [b,] is
equivalent to a;, negative circuits of the original loop (b;) and a; , positive
circuits of the original loop (@;); thus a function which has the factors e,
e™% at the ¢-th original loops, will at the r-th new loop [a,] have the factor
e~ where /,’ is an integer which is given by

- r, = § [_' q'i' ai,r + Qi a,i, r]’ (mOd’ 2)’
=1

thus the factors of Y ® /+/X® at the new period loops are given by e-"%,
e™, where [, I’ are rows of integers such that
I=ag-&g —l1=Bf—FBq (mod2)
Therefore the factors of VY ®/VZ0 = (WY ® NV X®)/(WVZ® /VX®), at the
new period loops, are given by e—™*, ¢", where
¥=ag-adqg—d(@), —k=pBy—BFg—d(BR) (mod. 2);
now the characteristic associated with ¥Y® corresponding to the original

system of period loops may be defined by the factors of VY ® /¥ X® at those
loops ; similarly the characteristic which belongs to ¥ Y @ for the new system

of loops is defined by the factors of ¥ Y ®/¥Z®, and is therefore § (112) ; the

equations just obtained prove therefore that the characteristic associated with
NY® is transformed precisely as a theta characteristic,
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The same result may be obtained thus ; the p equations of the form

u‘i‘“ ml+"‘+u?p' mpz'% (Gi+ @it +gpm,0), (E=1, ..., ?)

are immediately seen, by means of the equation (a+ra’) (8'—+a')=1 to lead to p equations
expressible by

Wt =) (B - By)+ 3 (ag - 79)
subtracting from these the equations
m,’, m, my', mp —

w; +otw; =3 [d(BR))i+3:1 [d @) +...+ 37, p[d (@) ]p, (E=1, ..y P),

we obtain equations from which (as in § 244) the characteristic of 4/ ¥®), for the new
loops, is immediately deducible.

Similar reasoning applies obviously to the characteristics of the forms
VX @ considered on page 380 (§ 245). But the characteristic for a form
VX@ (p. 381), which is obtained by consideration of the single-valued
function VX @ /P®W_—into which the form ¥ X®, depending on the places
My, ..., My, does not enter—is transformed in accordance with the equations

K¥=aq-aq —-k=Bq—Bq (mod 2),

and may be described as a period-characteristic, as in § 328,

340. Having thus investigated the dependence of the characteristics
assigned to radical forms upon the method of dissection of the Riemann
surface, it is proper to explain, somewhat further, how these characteristics
may be actually specified for a given radical form. The case of a form
VX differs essentially from that of a form ¥X®+. When the zeros of a
form ¥ X®) are known, and the Riemann surface is given with a specified
system of period loops, the factors of a function ¥X® /®® at these loops
-may be determined by following the value of the function over the surface,
noticing the places at which the values of the function branch—which places
are in general only the fixed branch places of the Riemann surface; the
process is analogous to that whereby, in the case of elliptic functions, the
values of ¥V (u+ 2w,) — &,/Vp () — &1, V9 (u+2w,) — /¥ (u) — ¢, may be
determined, by following the values of ¥/ (x) — ¢, over the parallelogram of
periods. But it is a different problem to ascertain the factors of the function
VY® /VX® at the period loops, because the form v X® depends upon the
places m,, ..., m,, and we have given no elementary method of determining
these places; the geometrical interpretation of these places which is given in
§ 183 (Chap. X.), and the algebraic process resulting therefrom, does not
distinguish them from other sets of places satisfying the same conditions;
the distinction in fact, as follows from § 338, cannot be made algebraically
unless the period loops are given by algebraical equations. Nevertheless we
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may determine the characteristic of a form ¥Y®, and the places m,, ..., my,
by the following considerations*:—It is easily proved, by an argument like

that of § 245 (Chap. XIIL), that if there be a form ¥ X® having the same
characteristic as VY ®, there exists an equation of the form VX® VY ®=®®;
and conversely, if ¢+ 1 linearly independent polynomials, of the second
degree in the p fundamental ¢-polynomials, vanish in the zeros of ¥ ¥ @, and
W@ denote the sum of these ¢+ 1 polynomials, each multiplied by an

arbitrary constant, that we have an equation ¥ ¥® ¥/ ¥® = ¥, where ¥/ 7@ is
~ a linear aggregate of ¢ +1 radical forms like ¥X®, all having the same
characteristic as VY®; in general, since a form W® can contain at most
3 (p — 1) linearly independent terms (§ 111, Chap. VL), and the number of
~zeros of VY@ is 8 (p — 1), we have ¢ +1=0; in any case the value of g+1
is capable of an algebraic determination, being the number of forms ®®
which vanish in assigned places. Now the number of linearly independent
forms ¥XW with the same characteristic is even or odd according as the
characteristic is even or odd (§§ 185, 186, Chap. X.); hence, without deter-
mining the characteristic of ¥ ¥® we can beforehand ascertain whether it is
even or odd by finding whether ¢+ 1 is even or odd. Suppose now that
Ha, -oes pp and w, ..., p," are two sets of places such that

(m37 Al: AAAS] A2p—3) = (/"12: LA /"pz) = (I"‘1,2) AR I-"plg))

m being an arbitrary place, and m, 4,, ..., Ay being the zeros of any
¢-polynomial ¢,; so that u,, ..., m, and g, ..., p, are two sets arbitrarily
selected from 2% sets which can be determined geometrically as in §. 183,
Chap. X. (cf. § 244, Chap. XIIL); let Y™ vanish to the second order in each
of py, vovy pip, 4i, ..., Agyp_s and Y,® vanish to the second order in each of
My ooy pys Ay, ..., Ay g; by following the values of the single-valued
function ¥VY,®/¥V¥® on the Riemann surface, we can determine its factors at
the period loops; at the r-th period loops of the first and second kind let
these factors be (— 1), (—1)¢ respectively; then if %(q, ..., ¢o) and
% (@, ..., @) be respectively the characteristics of NY® and ¥V ¥,®, which we
wish to determine, we have (§ 244) '

k'r, = Qr' - Qr', kr = Qr —4r (mOd' 2)‘

Take now, in turn, for u,, ..., u,’, all the possible 2% sets which, as in § 183,
are geometrically determinable from the place m; and, for the same form
VYW, determine the 2% characteristics of all the functions ¥ ¥,9/¥ ¥® arising

* Noether, Jahresbericht der Deutschen Mathematiker Vereinigung, Bd. iii. (1894), p. 494,
where the reference is to Fuchs, Crelle, Lxxui. (1871) ; cf. Prym, Zur Theorie der Functionen in
einer zweiblattrigen Fliche (Ziirich, 1866).
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by the change of the forms ¥¥,®; then there exists one, and only one,

’

characteristic, (:) , satisfying the condition that the characteristic

s kK
1))
is even when VY@ has an even characteristic and odd when ¥ 7,® has an odd

characteristic; for, clearly, the characteristic (g) is a value for % (:) which

g
g

satisfies the condition, and if 1}( ) were another possible value for } (z)

we should have

k+a)® +o)=(h+q)(k+q)  (mod. 2),
or
k(e’—q)+ K (e —q)=qq — oo’

for all the 2% possible values of % (Z,) ; and this is impossible (Chap. XVIL,
§ 295).

Hence we have the following rule :—Investigate the factors of ¥ V,®/N ¥®
for an arbitrary form VY® and all 2% forms NY,® ; corresponding to each
form VY@ determine, by the method ewplained in the earlier part of this
Avrticle, whether its characteristic s even or odd ; then, denoting the factors of
any function ¥ Y ©/VY® respectively at the first and second kinds of period

loops by quantities of the form (— 1)¥,(— 1)k, determine the characteristic % (g ) ,

satisfying the condition that the characteristic % (g _T_Z) 18, for every form
JY®, even or odd according as the characteristic of that form, ¥V ¥,®, is even or
odd ; then } (Z) is the characteristic of the form NVY® ; this being determined

the characteristic of every form N Y\® is known ; the particular form VY@ for
which the characteristic, thus arising, is actually zero, is the form previously
denoted by ¥ X9—namely the form vanishing in the places m,, ..., m, which are
to be associated (as in § 179, Chap. X.) with the particular system of period
loops of the Riemann surface which has been adopted.

Thus the method determines the places m,, ..., m, and determines the
characteristic of every form ¥Y®; the characteristic of any other form
J Y@+ is then algebraically determinable by the theorems of § 245 (p. 380).

341. For the hyperelliptic case we have shewn, in Chap. XI., how to
- express the ratios of the 2% Riemann theta functions with half-integer
characteristics by means of algebraic functions; the necessary modification
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of these formulae when the period loops are taken otherwise than in
Chap. XI,, follows immediately from the results of this chapter. If the
change in the period loops be that leading to the linear transformation
which is associated with the Abelian matrix formed with the integer
matrices a, 8, o/, B, we have (§ 324)

o [us 4 (1)]=am s 4 (5],

kK=aq —-aq—d(ax), —k=Bq —Bq—d(BR)
If now, considering as sufficient example the formula of § 208 (Chap. XI.), we
have

where

b! -_— 4 ’ ’
U, Y2 qogt e F GO p+ GOt s+ @ O,
then we have

w:’“ shv+ o H by + UV o+ LY,
where

=g —@g=k +d (@), —l=Fq—BFq=—k+d(BB);
therefore, if the characteristic } (d (88'), d (a’)) be denoted by g, the function
Y, l:w; % (i )] is a constant multiple of &, [w; 1 (ll) + p.] ; and we may

denote the latter function by %, [w|w>®+ u]. Thus the formula of § 208 is
equivalent to

Y, (wlwb e + w)
T (wlp)
where (' is independent of the arguments w,, ..., w,, and, as in § 206,

No=z)...—ap) =C

we=w " 4L+ w” (r=12,...,p).

Similar remarks apply to the formula of § 209, 210. It follows from
§ 337 that the characteristic u is that associated with the half-periods

m,’

y @ my’, @
w Lt w

where m/, ..., m," are the places which, for the new system of period loops,
play the part of the places m,, ..., m, of § 179, Chap. X. It has already
(§ 337) been noticed that for the elementary linear substitutions 4y, B, D the
characteristic p is zero.

342. In case the roots ¢, a,, ¢s, @, ..., ¢, In the equation associated with
the hyperelliptic case

PY=4d(@x—c)(z—a) (@ —c) (x—as)...(z— ¢p) (. — ap) (z—¢),

be real and in ascending order of magnitude, we may usefully modify the
notation of § 200, Chap. XI. Denote these roots, in order, by by, by, ---, by,
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so that by, by, are respectively cp_iy1, @p—isa and b, is ¢, and interchange
the period loops (a;), (b;), with retention of the direction of (b;), as in the
figure annexed (Fig. 17).

ot

Then if U7'", ..., Uy ® are linearly independent integrals of the first kind,
such that U */dx =]y, where ¥, is an integral polynomial in #, of degree
p — 1 at most, with only real coefficients, the half-periods

U =le,], Up" =[o)]=[ohal, (=12 .., p; [0],.=0),
are respectively real and purely imaginary, so that [&’,;] is also purely
imaginary ; if now w? ..., 7' * be the normal integrals, so that

U, =20, ]Jw + ... +[20, p] wp, w,=L, U, +...+L, ,U,,
then the second set of periods of w(’%, ..., w:’ ?, which are given by
Tri=Ly, [20]+ ... + L, , [20p, 3], (r,s=1,2,..., p),

are also purely imaginary* ; forming with these the theta function ® (w; '),
the theta function of Chap. XI. is given (§ 335) by
-K

e @ (u; 7(3) =470 (w; 7| K),
where K, K’ are obtainable from @, Q' respectively by reversing the order

of the p elements, and 4 is the constant ¥ z/f1 v 1A /A, v 1A,/A, ..., in which
A=, Dy=T1,,Ts,— 74,5, etc. We find immediately that

U:z“" = —[w,]—...— [0, p] +[&'s:], Uf"'“ =—[w, i) ... — [0, p] + [@"],

(t=0, 1, ..., p), and may hence associate with b,;_,, b, the respective odd and
even characteristics

-1=4(g70 1 _1-1) =H0) (L) (LD
@i=4(o 0 0 -17-1)=8(0) )1

* The quantities 7, ; of Chap. XI. (of which the matrix is given in terms of the +; ; of § 342

by 77'= -1) are also purely imaginary when c,, a,, ..., cp, a,, ¢ are real and in ascending order
of magnitude.



570 WEIERSTRASS'S RULE. : [342

and may denote the theta functions with these characteristics respectively by
Oy (w; 7)), Oy (w; 77); if by, by, b, ..., be any of the places by, ..., b, not
more than p in number, and if, with 0 } ¢; < 2, 0 p ¢; <2, we have

Uk + U2+ o= —qlon]— . — gy [0, 5] + ¢/ [@7] + ... + ¢ [0, 5],
then the function whose characteristic is :}(_Z) may be denoted by

B3, m- - (w; 7).
This function is equal to, or equal to the negative of, the function with
characteristic (g ) , according as the characteristic is even or odd.

We have thus a number notation for the 2% half-integer characteristics*,
equally whether the surface be hyperelliptic or not; this notation is under-
stood to be that of Weierstrass (Konigsberger, Crelle, LX1v. (1865), p. 20).
For the numerical definition of the half-periods, which are given by the rule
at the bottom of p. 297, precise conventions are necessary as to the allocation

of the signs of the single valued functions ¥z — b, on the Riemann surface
(cf. Chap. XXIL.).

In the hyperelliptic case p=2, the characteristics of the theta functions given in the
table of § 204 are supposed to consist of positive elements less than unity ; when @,, @,,
@', @ are each either 0 or 4, the formula of the present article gives

I g [u ; .,-r 8:' g:’]:Ae_z"iQQ’ (<] [w R l _82, _8:,] H

the number notations for the transformed characteristics are then immediately given by
the table of § 204. The result is that the numbers

02, 24, 04, 1, 13, 3, 5, 23, 12, 2, 01, 0, 14, 4, 34, 03
are respectively replaced by
3, 1, 13, 24, 04, 02, 5, 0, 4, 2, 34, 23, 14, 12, 01, 03.

* For convenience in the comparison of results in the analytical theory of theta functions, it
appears better to regard it as a notation for the characteristics rather than for the functions.



