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CHAPTER XV.
RELATIONS CONNECTING PRODUCTS OF THETA FUNCTIONS—INTRODUCTORY.

280. As preparatory to the general theory of multiply-periodic functions
of several variables, and on account of the intrinsic interest of the subject, the
study of the algebraic relations connecting the theta functions is of great
importance. The multiplicity and the complexity of these relations render
any adequate account of them a matter of difficulty; in this volume the plan
adopted is as follows:—In the present chapter are given some preliminary
general results frequently used in what follows, with some examples of their
application. The following Chapter (XVI.) gives an account of a general
method of obtaining theta relations by actual multiplication of the infinite
series. In Chapter XVII. a remarkable theory of groups of half-integer
characteristics, elaborated by Frobenius, is explained, with some of the theta
relations that result ; from these the reader will perceive that the theory is of
great generality and capable of enormous development. References to the
literature, which deals mostly with the case of half-integer characteristics, are
given at the beginning of Chapter X VIL

281. Let ¢(uy, ..., up) be a single-valued function of p independent
variables w,, ..., up, such that, if a,, ..., qa, be a set of finite values for
Uy, ..., U, respectively, the value of ¢ (u,, ..., up), for any set of finite values
of u, ..., u,, is expressible by a converging series of ascending integral
positive powers of u, — @, Uy — @y, ..., Up — @p. Such a function is an integral
analytical function. Suppose further that ¢ (u,, ..., u,) has for each of its
arguments, independently of the others, the period unity, so that if m be any
integer, we have, fora =1, 2, ..., p, the equation

G (g, ooy Ua+ My s, Up) = (U, ..o, Up).

Then* the function ¢ (u,, ..., u,) can be expressed by an infinite series of
the form

@

5o 5 4,

n=-o Np=—00

o np e21ri(u,n1+...+upnl,)’

* For the nomenclature and another proof of the theorem, see Weierstrass, 4bhandlungen
aus der Functionenlehre (Berlin, 1886), p. 159, ete.
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wherein n,, ..., n, are integers, each taking, independently of the others, all
positive and negative values, and 4, .., », is independent of u,, ..., u,.

]

Let the variables u,, ..., u, be represented, in the ordinary way, each by
the real points of an infinite plane. Put 2, = e*, ..., z,, = ¢?™»; then to
the finite part of the u,-plane (a=1, ..., p) corresponds the portion of an
z,-plane lying between a circle I'; of indefinitely great but finite radius R,,
whose centre is at #,=0, and a circle , of indefinitely small but not zero
radius 7,, whose centre is at #,=0. The annulus between these circles may
be denoted by T,. Let a, be a value for x, represented by a point in the
annulus 7, ; describe a circle (4,) with centre at a,, which does not cut the
circle ry, ; then for values of z, represented by points in the annulus 7', which
are within the circle (4,), u, may be represented by a series of integral
positive powers of #, —a,; and by the ordinary method of continuation, the
values of u, for all points within the annulus 7, may be successively re-
presented by such series; the most general value of u,, for any value of z,, is
of the form «,+ m, where m is an integer. Thus, in virtue of the definition,
¢ (uy, ..., up) 18 a single-valued, and analytical, function of the variables
&, ..., Tp, which is finite and continuous for values represented by points
within the annuli 7, ..., T, and upon the boundaries of these. So considered,
denote it by ¥ (2, ..., @)

Take now the integral

1 Y (b, -n, by)
| e e s LT

wherein y, ..., #, are definite values such as are represented by points
respectively within the annuli T, ..., T; let its value be formed in two
ways ;

(1) let the variable £, be taken counter-clockwise round the circum-
ference I, and clockwise round the circumference . (=1, ..., p); when ¢, is
upon the circumference I, put

2 h,
1 1 2 & S T
=_+—2-+ —§+ ...... = E ha+1;
tu. — Za ta. ta tu ha=0 @

when ¢, is upon the circumference vy, put

, .
1 1t ta S %
=——(—-+—2+—§+---)=_ Z PREE
ta._wu La Lo o

then the integral is equal to
h
>

k
1 » 2 =
il B 13, i 3 ),

where dZ, represents an element df, taken counter-clockwise along the
circumference T',, and dz, represents an element df, taken clockwise along
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the circumference , ; since the component series are uniformly and absolutely
convergent, this is the same as
! ff f\p(tl .. ———l‘ -2 dt, ... dt,
(2m)p”l=_w it ’ o t;pﬂ

where for ¢, the course of integration is a single complete circuit coincident
with I', when n, is positive or zero, and a single complete circuit coincident
with v, when =, is negative, the directions in both cases being counter-
clockwise ; thus we obtain, as the value of the integral,

S .3 A-n,,...,n,uw;Ll w:p’
m=-o Np=—p0
where
1 r ‘P‘(t ) *te» t )
v m= oy [ [Fleta . a,
. t e by

and the course of integration for ¢, may be taken to be any circumference
concentric with I, and ry,, not lying outside the region enclosed by them ;

(i) let the variable ¢, be taken round a small circle, of radius p,,
whose centre is at the point representing z, (¢ =1, ..., n); putting

tu =T + Puei¢“>
we obtain, as the value of the integral, ¥ (2, ..., @p).

The values of the integral obtained in these two ways are equal*; thus
we have

Qo a0
Dy, )= S o 2 A, g, et
ny=-—Po Np= —~®
where

1
n, """”=,f f e 2 manttngus) o (0 L, up) dy L. ity
o Jo

By the nature of the proof this series is absolutely, and for all finite
values of u,, ..., up, uniformly convergent. If uo=1v.+ tw.(a=1, ..., p), and
M be an upper limit to the value of the modulus of ¢ (u,, ..., u,) for assigned
finite upper limits of w, ..., w,, given suppose by |w.|$ W,, we have

| A, . ny| 3 Mem 2wkt Ny W)
where N, =|n,|.
Ez.i. Prove that
0 .
Cvoull TILE ﬁe-zm(n,vl+...+npvp) &2 (o, ..+ npr0p) ¢ (v, + 1wy, ..., vp+7w,) dv, ... dv,=0.

Ez. ii. In the notation of § 174, Chap. X.,
z"'("'11”12"‘ 2T Ry .. )_/ / —2mi(nu, +... +npup) e (uli . up) dul dup

* Cf., for instance, Forsyth, Theory of Functions, p. 47. The reader may also find it of
interest to compare Kronecker, Vorlesungen iiber ...... Integrale (Leipzig, 1894), p. 177, and
Pringsheim, Math. Annal. xrvir. (1896), p. 121, ff,
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282. Further it is useful to remark that the series obtained in § 281 is
necessarily unique; in other words there can exist no relation of the form

@

@
n, np
2 .. 2 A, am...zp =0,
m=—o Mp=-w

valid for all values of #,, ..., z, which are given, in the notation of § 281, by
7a <|Za|< R, unless each of 4, .., ., be zero. For multiplying this equation

—n,—1 —np—1 . . . .
by ;" ...z, ' d=, ... d=z,, and integrating in regard to z, round a circle,

centre at x, =0, of radius lying between 7, and R,, (a=1, ..., p), we obtain
@mi)? A4y, . 0, =0

An important corollary can be deduced. We have remarked (§ 175,
Chap. X.) on the existence of 2% theta functions with half-integer character-
istics; it is obvious now that these functions are not connected by any linear
equation in which the coefficients are independent of the arguments. For an
equation

2; Oga, s § § e2hu(n+§k3)+b(n+§k,,)’+i1rg, (n+iky) — O,
s=1 n=—o Np=—®

where the notation is as in § 174, Chap. X,, and %,, g, denote rows of p
quantities each either O or 1, can be put into the form

s s Ay . @mUON+. TNy = ()
N1=-w Np=~m 1y sory AV D
where 2miU,, ..., 2miU, are the quantities denoted by hu, Ay, . w, is
given by

-AN| f Np = 2 C!]a, ks eb(?H—}ka) Hings (n-+}ky ]
Js

where the summation includes 27 terms, and Ny, ..., N, take the values
arising, by the various values of n and %, for the quantities 2n + k;; it is clear
that the aggregate of the values taken by 2n + k, when n denotes a row of p
unrestricted integers, and k, a row of quantities each restricted to be either 0
or 1, is that of a row of unrestricted integers.

Hence by the result obtained above it follows that Ay, .., ,= 0, for all
values of n and k,. Therefore, if A denote a row of arbitrarily chosen
quantities, each either 0 or 1, we have

e—b(n+}k,,)z+i1r)\(n-|-§k,) AN“ s Np= 2 Cﬂs. ks eiw{g3+k) (n+3ks) — 0 ;
gs

adding the 2P equations of this form in which the elements of n are each
either 0 or 1, the value of %; being the same for all, we have

2 Oy, 1, €000tV [1 + gimm] L. [1 + eime],
9s

where p,, ..., pp are the elements of the row letter w given by p=g,+\;
the product (1 + e™)... (1 + ei™») is zero unless all of u, ..., p, are even,
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that is, unless every element of g, is equal to the corresponding element of A.
Hence we infer that O, x,=0; and therefore, as A is arbitrary, that all the 2
coefficients C,, z, are zero.

Similarly the 7% possible theta functions whose characteristics are rth
parts of unity are linearly independent.

283. Another* proof that the 2% theta functions with half-integer
characteristics are linearly independent may conveniently be given here: we
have (§ 190), if m and ¢ be integral,

S (% + Qp; ) = enttmimg—ma § (y; 1g)
and therefore if k& be integral and @' =¢' + &, Q=q + £k,
g hntO ik Sy (- O ) =MD (u; 4g).

Therefore a relation
o

20N (u; 39,)=0
s=1
leads to

22p

2 Cse"l‘i(sz"‘m‘Qs) N7 (u; %qs) = O’

s=1
where Q; = ¢, +k, @ =¢; + %’; in this equation let (m, m’) take in turn all
the 2% possible values in which each element of m and m’is either O or 1;
then as

Eem:('mQa""m'Qa)’ = []_ +g"f'5(Qa'h] []_ + e‘"’i(Qs')p} [1 + g~ ™t@ l:] o [1 + e—ﬂ'(Qs)p]

is zero unless every one of the elements (@), ..., (Qs), is an even integer,
that is, unless ¢; =k, ¢;'=k’, we have

22p
3 3 Ceemitm@—mW N (u; Lq,) =22C, (u; $k)=0;
m §g=1
thus, for any arbitrary characteristic (%, £’), Cx=0. Thus all the coefficients
in the assumed relation are zero.

284. We suppose now that we have four matrices o, »’, 3, 7', each of p
rows and columns, which satisfy the conditions, (i) that the determinant of w
is not zero, (ii) that the matrix o'’ is symmetrical, (iit) that, for real values
of n,, ..., np, the quadratic form w™w'n? has its imaginary part positive,
(iv) that the matrix g™ is symmetrical, (v) that ' = g™’ — 4 miw; then
the relations (B) of § 140, Chap. VIIL, are satisfied; we put a = 390,
h=}me™, b=mio ', so that (cf. Chap. X., § 190)

n=2a0, 7' =20 —h, ho=3m, ho'=1}b;

* Frobenius, Crelle, Lxxxix. (1880), p. 200.
+ Which requires that the imaginary part of the matrix w™lw’ has not a vanishing de-
terminant.
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as in § 190 we use the abbreviation
A (W) = Hy (u + 3 Q) — womnd/,
where
Hy,=29m + 29'm/, Q= 20m + 20'm’.
We have shewn (§ 190) that a theta function % (u, ¢) satisfies the

equation
Y (u + Qp, @) =M@ +2milmg -m')) § (y, g),

m and m’ each denoting a row of integers; it follows therefore that, when
m, m’ each denotes a row of integers, the product of » theta functions,

I (u) =% (u, ¢V) Y (u, ¢®)...... S (u, gn),
satisfies the equation
II (u + Qm) = grAm(u)terim@—m'Q) T] (u)’

wherein Q;, @/ are, for =1, 2, ..., p, the sums of the corresponding com-
ponents of the characteristics denoted by ¢®, ..., g.

Conversely*, @, @ denoting any assigned rows of p real rational
quantities, we proceed to obtain the most general form of single-valued,
integral, and analytical function, II (v), which, for all integral values of
m and m', satisfies the equation just set down. We suppose r to be an
integer, which we afterwards take positive. Under the assigned conditions
for the matrices w, @', 7, %', such a function will be called a theta function
of order r, with the associated constants 2w, 20’, 27, 27', and the characteristic
@ Q).

Denoting the function 9(u; @), of § 189, either by 9 (u; 20, 20', 29, 29'; @, §) or
S(u; a,b, k; @ ), the function I (u; 2w/r, 20’y 29, 2ry’; @, &'/r) is a theta function of
the first order with the associated constants 2e/r, 20', 27, 2ry, and (@, €'/r) for charac-
teristic; increasing # by 2wm+2«'m/, where m, m' are integral, the function is multiplied
by a factor which characterises it also as a theta function of order r, with the associated
constants 2w, 2, 25, 27" and (@, €') for characteristic. We have, also,

S (u; ra, rb, rk)=29 (u; 2;‘"—, 20’, 21, 2rq'>=9(ru; 20, 2ra’; 27", 2q’>=8(ru; g, h, rb),
where the omitted characteristic is the same for each.

Let &; be the least positive integer such that £:Q; is an integer,=f;, say;
denote the matrix of p rows and columns, of which every element is zero
except those in the diagonal, which, in order, are k;, k,, ..., ky, by k; the
inverse matrix k! is obtained from this by replacing %, ... respectively by

* Hermite, Compt. Rend. t. xL. (1855), and a letter from Brioschi to Hermite, ¢bid. t. xuvir.
Schottky, Abriss einer Theorie der Abel’'schen Functionen von drei Variabeln (Leipzig, 1880), p. 5.
The investigation of § 284 is analogous to that of Clebsch and Gordan, Abel. Funct., pp. 190, ff.
The investigation of § 285 is analogous to that given by Schottky. Cf. Konigsberger, Crelle, Lx1v.
(1865), p. 28,
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1/k;, ...; in place of the arguments u introduce arguments v determined by
the p equations
hiqu+ ... + hi, pup = kv, =1, ..,p),
which we write hu =kv; then, by the equations hw = {1, ho'=}b, it follows
that the increments of the arguments » when the arguments  are increased
by the quantities constituting the p rows of a period Q,,, are given by the p
rows of Uy, defined by
kUp = mim +bm’;
we shall denote the right-hand side of this equation by T,; thus
U =k = mik—'m + k20’
Now we have
@ (u+ Qp)? — au?=2auQ,, + aQ,z,,,
and, since* the matrix @ is symmetrical, and H,, =2aQ,, — 2hm’, this is

equal to
2001 + aQyy = 200, (4 + 3 Q) = (Hou + 2hn’) (u + Q)

and therefore equal to

A (w) + mimm’ + 2hum’ + AQ,,m’
or
A (@) + wemm’ + 2kvm’ + T,ym’;
thus, by the definition equation for the function II (u), we have
e U+ 0m)? II (u + Qm) = e—mu‘z I (u) . e—¢[1rimm’+2(kv+wm)m’]+21ri(mQ'—m'Q) ;

therefore, if ¢ (v) denote e=* II (u),
Q (.v + Um) = Q (’U) e—r[-;rimm’+2(lcv+§Ym)m’]+2ni(mQ'—m’Q) ;

now let m’ = 0, and m = ks, where s denotes a row of integers s;, ..., s,; then
mQ =ksQ =k,s;,Q/ + ...... + kps,Qp =skQ', =sf, is also a row of integers;
and U, = mik™‘m + k~bm’ = s ; thus we have
Qv+ mis) =Q (v),
or, what is the same thing, the function @ (v) is periodic for each of the
arguments vy, ..., U, sSeparately, the period being =i; it follows then (§ 281)
that the function is expressible as an infinite series of terms of the form
Ch,, ny, ..., np €™ +%%)  where my, ..., n, are summation letters, each of
which, independently of the others, takes all integral values from — o to
+ 00, and the coefficients C,, .., », are independent of v, ..., »,. This we
denote by putting
Q (v)= e II (u) = ZC, e
To this relation, for the purpose of obtaining the values of the coefficients

* By a fundamental matrix equation, if x be any matrix of p rows and columns, and u, v be
row letters of p elements, p u v=p v u.

B. 29



450 EXPRESSION OF A GENERAL : [284

C,, we apply the equation, obtained above, which expresses the ratio to
Q (v) of Q(v+ Uy) or Q(v+£k7T,,); thence we have

20”32(v+k-1Ym)n — [208 em] e—r[wi'rmn'+2(kv+§‘{m)m']+2n-i me' —m’'Q) ;
n s

in this equation, corresponding to a term of the left-hand side given by the
summation letter n, consider the term of the right-hand side for which the
summation letter s is such that

si=ni+rk,;m.i', (i=1’ 21 ""p);
thus s=n + rkm/, and 2v;s; = 2v;n; + 2rk;v;m;, or 2vs = 2vn + 2rkvm’; hence
we obtain

>C,e O+~ 1Ym)n — [2 Gn+rkm'3m] e~ (mima' +Yum') +omi @ —m' Q) ;
n n

therefore, equating coefficients of products of the same powers of the
quantities e, ..., €®%, we have

—1 : ’ Np— ’
C'n+rkm' . O'n . e2k Ymn+7 (mimm’+Ymm') —2mi (m@Q —m/ Q),

and this equation holds for all values of the integers denoted by =, m, m’.

By taking the particular case of this equation in which the integers m’
are all zero we infer that the quantity
l —1 - 1 ~1 (g = ISI‘ 1 ¢
m.lc Tn —m, —;ik (mim) n—mQ', = s:1m8 (Ens-— Qs)
must be an integer for all integral values of the numbers m; and n,; therefore
the only values of the integers n which occur are those for which the
numbers (n; — k;Q,')/k, are integers; thus, by the definition of k,, we may put
n=f+kN, N denoting a row of integers, and /= kQ)".
With this value we have
ETpn — k7t (mim) n= k1 (b)) n = k'n (b)) =k~ n . b
=+ N).bm'=(Q + N).bm'=bm' (Q + N);
hence, as m@’' = kmn — mN, the equation connecting C, and C, 1w becomes
C ko RN = 0 ik Nezbm’ (Q+N)+[renmim+bm') +2miQlm’

9 , cnar ot
— Cf+kNerbm -+2bm’ N+-2miQm' +2bQ’m’

emrmm’ being equal to unity because r is an integer, and b’'Q = bQ'm’ = bQ'm’;
therefore
1
~2b(m'r+N)? ~loe ,
e’ Crikmremy =€ 7 Cripy . Y07,
Tq being 7iQ + b@’, or

1
g PO Y -LNriavgN] O
'f+EN >

)]
Criewerm) =€
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thus, if the right-hand side of this equation be denoted by Dy, we have, for
every integral value of m’, Dy, = Dy ; therefore every quantity D is equal
to a quantity D for which the suffix is a row of positive integers (which may
be zero) each less than the numerical value of the integer 7. If then p be
the numerical value of r, the series breaks up into a sum of p* series; let D,
be the coefficient, in one of these series, in which the integers u are less than
p; then the values of the integers N occurring in this series are given by
N =pu+rM, M being a row of integers, which, as appears from the work,
may be any between — o0 and o ; and the general term of @ (v) is

1
—(bN2+2Y,N)+2k(Q +N
™ = (e = Cpp gy @10 = Dyer 0 PHRETNY

ro{ M+EY +ov, (M+2) +2ru (rM+ @ 4p)
D r ¢ r
= M+1‘Me )

for k. (Q+N)v=kv(Q +N)=kv(Q + N)=hu(Q + N); thus the general
term is
L e e ),

now, as T, =miQ + bQ', and b is a symmetrical matrix, the quantity
2
7b <M+E) +27, (M+E>
T r
is immediately seen to be equal to
(a4 L+ UV ) ami (1 + T - T

therefore the general term of II (u), or € @ (v), with the coefficient D,, is
e¥*x, where

Q@ rp T ) T
¥ = raut + 2rhu (M+ CEE) b <M+——r—) +2miQ <M+ T)

“_lige

r r

x=—2m
and this is the general term of the function

Qe 1, . y
e—Zm—r—-;bQ’ S’ (U/; Q, Q :',LL),

where & denotes a theta function differing only from that before represented
(§ 189, Chap. X.) by 9, in the change of the matrices @, b, k respectively into
ra, b, rh; the condition for the convergence of the series Y requires that »
be positive ; thus p=1r; recalling the formulae

hQp=miP+bP, LH,=aQp—LP,
we see, as already remarked on p. 448, that, instead of

/ ’
W, ©, N 7,
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the quantities to be associated with the function § are

[ ’ .
',;,: w, N TN ;

with this notation then we may write, as the necessary form of the function
II (w),
mw=3K3 (u; @ €34,

QQ’I

—omi ¥ __po2 . .
wherein K,, =D,e m " isan unspecified constant coefficient, u denotes

a row of p integers each less than the positive integer r, and the summation
extends to the 72 terms that arise by giving to w all its possible values.

From this investigation an important corollary can be drawn; if a single-
valued integral analytical function satisfying the definition equation of the
function II (w) (p. 448), in which r is a positive integer and the quantities
Q, @ are rational real quantities, be called a theta function of the rth order
with characteristic (@, @), then* any 1? + 1 theta functions of the rth order,
having the same associated quantities 2w, 20, 27, 29" and the same charac-
teristic, or characteristics differing from one another by integers, are connected
by a linear equation or by more than one linear equation, wherein the
coefficients are independent of the arguments w,, ..., u,; and therefore any
of the functions can be expressed linearly by means of the other 1® functions,
provided these latter are not themselves linearly connected.

For the determining equation satisfied by II (u) is still satisfied if, in
place of the characteristic (@, @), we put (@ + N, @ + N'), N and N’ each
denoting a row of p integers; and if

p+ N =v(mod. 7), say u+ N =v+rL,
we have (§ 190, Chap. X.)

( Q+n, LY +'“> (u; Q+ X, Q-;—F—"+L’>

@Y
=y (u; Q,Q(:'»'>,

and therefore

3K, (0 @+ N LHEE ) _sry (u; @ €1Y),

A @+ ’
where H,=K,e™™ + ; and the aggregate of the r* values of Q : Y is the
/
same as that of the values of Q’,‘i‘b .

Thus any 77+ 1 theta functions of the rth order, with the same charac-
teristic, or characteristics differing only by integers, and associated with the

* The theorem is attributed to Hermite : cf. Compt. Rendus, t. xu. (1855), p. 428,
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same quantities 2w, 2w’, 29, 27, are all expressible as linear functions of

Q+p
r

U, ..., Up. Hence the theorem follows as enunciated.

the same 7P quantities (u; Q, > with coefficients independent of

Q+v
p

Ez.i. Prove that the 7 functions $ (u ; @ ) are linearly independent (§ 282).

Ez. ii. The function 3 (u+a; @) 9 (u—a; Q) is a theta function of order 2 with
(2€Q, 2€') as characteristic. Hence, if 2741 values for the argument a be taken, the
resulting functions are connected by a linear relation.

For example, when p=1, we have the equation
(@)oo (u—0)a (u+bd)—a2(d)o (u—a)o (uta)=d? (). o (a—Db)o (a+d).

Ez. iii. The function 9 (ru, @) is a theta function of order 72 with (@, r¢’) as
characteristic. Prove that if 9 denote a theta function with the associated constants

o, %0, %, 7', in place of w, &', 7, 7’ respectively, then we have the equations

@ Q@+
S(u; @ Q’):SQ(ru; Q, %:"1' , 3(ru; @, Q:'p-):ze_%w TS(u; Q+v )’
I

)
r v r

where the summation letters u, v are row letters of p elements all less than 7, and each
summation contains 77 terms.
Ez. iv. The product of £ theta functions, with different characteristics,

9 (u+u; QU). ... 9 (u+u® ; QF)
is a theta function of order £ for which the quantities

5 _ K k k

[2 QI—27 5w, 3 Q042 3 um:],
r=1 r=1 r=1 r=1

enter as characteristic. Thus a simple case is when %W+ .., +2®=0.

For p=1 a linear equation connects the five functions

4 4 4 4
I o (u+u;), I o (u+u;+e), n‘ o (u+u;+o), II1 o (u+u;+w+o’),
i=1 i=1 i= i=

- (2u+u1+u21-u3+u4> )

Exz.v. Any (p+2) theta functions of order r, for which the characteristic and the
associated constants o, o', 5, ' are the same, are connected by an equation of the form
P=0, where P is an integral homogeneous polynomial in the theta functions. For the
number of terms in such a polynomial, of degree , is greater than (¥7)?, when ¥ is taken
great enough. That such an equation does not generally hold for (p+ 1) theta functions
may be proved by the consideration of particular cases.

285. The following, though partly based on the investigation already
given, affords an instructive view of the theorem of § 284.

Slightly modifying a notation previously used, we define a quantity,
depending on the fundamental matrices o, @', 7, 7', by the equation

Au; P, Py=Hp(u+3Qp) — miPP
=(29P + 29'P) (v + 0P + &' P’) — m PP,
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where P, P’ each denotes a row of p arbitrary quantities. The corresponding
quantity arising when, in place of o, @', 5, 7' we take other matrices o®,
©'®, n0, 2’0 may be denoted by A® (w; P, P’). With this notation, and in
case :

o, '@, g 5’0
are respectively

24 ’ ’
;,(D,"},?‘"),

where 7 is an arbitrary positive integer, we have the following identity
A [u +27ws; N, m’]
=0 [u+ Q05 & 0] +A0 [u; m, m] — A0 [u; s, 0] — 2mim’k,

where s, N, m, m/, k each denotes a row of p arbitrary quantities subject to
the relation
s+rN=m+k;

this the reader can easily verify; it is a corollary from the result of Ex. ii,
§ 190.

Let the abbreviation R (u; f) be defined by the equation

A
R(u; f) = ze—'ZTIk(u+m;)—2ﬂtf; II <u+ 2w lf‘) ,
k
[y 0]—2mif
= S s 02wt (u+2wl—c>,
k T
wherein & denotes a row of p positive integers each less than », and the

summation extends to all the 77 values of k& thus arising, f is a row of p
arbitrary quantities, and II (u) denotes any theta function of order 7.

Consider now the value of R (u + Q% ; f); by definition we have

II [u+2w§+023] =1I (u+2wk—t—m+20'm'>;

therefore, if m + k= s (mod. r), say m + k=s+rN, we have, by the defin-
ition equation (§ 284) satisfied by II (u),
I I:u+2m’7—‘f + Q(,:,’:I =1I [u + 20" s + 20N + 20'm’
=TI (u + 20®s) erA[u+?Aoms; N, w'1+2mi (NQ’—m'Q)’
where (@, ¢') is the characteristic of II («), and hence
Ru+Q); f)= ML (u+ 2005),

in which

Y=—20[u+ OF; &k 0]+ [u+20s; N, m] — 2m'f§ +2mi (NQ — m'Q);
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by the identity quoted at the beginning of this Article, 4 can also be put
into the form
Y =A"[u; m, m]—A® [u; s, 0] 2mim'k — 2'm_'f§ +2m (NQ' —m'Q),
=AY [u; m, m]—A0[u; s, 0] — 2mim'k — 2mim'Q + 2N (Q' —f)
+ 2mif

m-—s
r b

in the definition equation for IT (u), the letters m, m’ denote integers; and
k has been taken to denote integers; if further f be chosen so that Q' — f is
a row of integers, we have, since, by definition; N denotes a row of integers,

AV m, m)+2mE (m I m’Q) —aA® (3 ; 5, 0) —2mif £
r Se

Ru+0Y; fl=e 7T (u + 20" 5)

AV (9 ; m, mI+2mE (1

S
.
=e " mQ)R(u;f).
Hence R(u; f) satisfies a determining equation of precisely the same
form as that satisfied by IT (u), the only change being in the substitution of
g, ', 7, v’ respectively for w, o', 9, 7' ; so* considered R(u; f) is a theta

f

function of the first order with (Q, ;) as characteristic; putting, in ac-

cordance with the definition of f above, f= @'+ u, where p is a row of p
integers, we therefore have, by § 284,

’ Q+
Bl @ re)=Kend <u; 9 Q_:ll‘)’=KQ'+»S(r“5 g,h, rb; ‘7“),
Q

(p. 448) where K¢, is a quantity independent of », and % is the same theta
function as that previously so denoted (§ 284), having, in place of the usual
matrices a, b, h, respectively ra, rb, rh.

Remarking now that the series
ke
Se ™,
"~

wherein p denotes a row of p integers (including zero), each less than 7, and
the summation extends to all the #? terms thus arising, is equal to 7 when
the p integers denoted by k are all zero, and is otherwise zero, we infer that
the sum

1 /
;.5 ER (u’ ’ Q + :u'):
which, by the definition of R (u, f), putting f= @ + , is equal to
_1_ 2 l:e—z\(l)(u.; k, 0)-2#iQ'§ Il (u+ %0 ]E) 26-—2”«&,.‘,%] ,
P g 7/ n

* R (u; f) may also be regarded as a theta function of order r, with the associated constants
2w, 20/, 27, 27’ and characteristic (Q, f).
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is, in fact, equal to II (). Hence as before we have the equation

() = 3K (w5 @ LK.

r

286. Kw. 1. Suppose that m is an even half-integer characteristic, and that

are s,=2p, half-integer characteristics such that the characteristic formed by adding the
three characteristics m, a;, a; is always odd, when ¢ is not equal to j. Thus when m
is an integral, or zero, characteristic, the condition is that the characteristic formed by
adding two different characteristics a;, @; may be odd. The characteristic whose elements
are formed by the addition of the elements of two characteristics @, b may be denoted by
a+b; when the elements of ¢+ b are reduced, by the subtraction of integers, to being less
than unity and positive (or zero), the reduced characteristic may be denoted by ab.

For instance when p=32, if q, B, y denote any three odd characteristics, so that* the
characteristic aBy is even, and if p be any characteristic whatever, characteristics satis-
fying the required conditions are given by taking m, a,, a,, @, a, respectively equal to
aBy, u, pBy, pya, paf; in either case a characteristic ma;a; is one of the three a, 8, y and is
therefore odd.

When p=3, corresponding to any even characteristic m, we can in 8 ways take seven
other characteristics o, B, v, k, A, p, v, such that the combinations a, B, v, k, A, p, v, Maf3,
mak, mAp constitute all the 28 existent odd characteristics ; this is proved in chapter
XVIIL ; examples have already been given, on page 309. Hence characteristics satisfying
the conditions here required are given by taking

My Ay, Agy Qgy ey g
respectively equal to
m, my a, By ..., v.

Now, by § 284, every 2°+1 theta functions of the second order, with the same periods
and the same characteristic, are connected by a linear equation. Hence, if p, ¢,  denote
arbitrary half-integer characteristics, and », w be arbitrary arguments, there exists an
equation of the form

8
49 (w0 @) I (uw; = 3 A [utv; (g+r—p-a)] I [u=v; p+a))
A=
wherein 4, A, are independent of u ; for each of the functions involved is of the second
order, as a function of u, and of characteristic g +7.

We determine the coefficients 4, by adding a half period to the argument «; for u
put %+ Qg —p; then by the formula

9 (’M+QP, g)_:g)\ (UVH P)-21riP'9,9 (u ; P+q)’
where
A (u; P)=Hy (ut+3Q,)—niPP,

noticing, what is easy to verify, that
Autv; P)+A (u—v; P)—X (u+w; P)—A (u—w; P)=0
=—mP [q+1‘—p—a)‘+p+a)‘—q—r],

* As the reader may verify from the table of § 204 ; a proof occurs in Chap. XVII.
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we obtain
A3[utw; (m—aj—p+ ]I [u—w; (m—a;-p+1)]
=,\§.1 A3 [u+v; (m—a;—a,+g+r—2p)] 3 [u—v; (m—a;+a,)]

But since m —a;+a, (which, save for integers, is the characteristic maa,) is an odd
characteristic when j is not the same as A, we can hence infer, putting »=v, that

A/ A=3[v+w; (m—a,—p+9))3[v—w; (m—a, —p+7))/9[20; (m - 2a, +¢ +7—2p)]$[0; m].

Hence the form of the relation is entirely determined. The result can be put into
various different shapes according to need. Denoting the characteristic m + ¢+
momentarily by %, so that % consists of two rows, each of p half-integers, and similarly
denoting the characteristic a, +p momentarily by «,, and using the formula for integral ¥,

3 (us g+ U)="HT3 (u; g),
we have )
9[20; (m—20,+g+7— 2p)]=e 4" 9 (9p; B);

we shall denote the right-hand side of this equation by
e~ 4 @xtp) (' +g' +1) g [22; (m+q+1];
hence the final equation can be put into the form

S[utw; 9] [u—w; 7] 9[2v; (m+g+r)]9$[0; m]

= 3 OO g [o; (gr—p-a)] 9 [u=v; (p+0,)]

I[v+w; (m—a,—p+q)] I [v—w; (m—a, —p+r)]

It may be remarked that, with the notation of Chap. XL, if b,, ..., b, be any finite
branch places, and 4, denote the characteristic associated with the half-period u’ ¢, and
we take for the characteristics ay, ..., a, the 2° characteristics 4, 44, ... 4, formed by
adding an arbitrary half-integer characteristic 4 to the combinations of not more than p
of the characteristics 4,, ..., 4,, and take for the characteristic m the characteristic
associated with the half-period ub:% +...+ > %, then each of the hyperelliptic functions
9(0; ma;a;) vanishes (§ 206), though the characteristic ma;a; is not necessarily odd.
Hence the formula here obtained holds for any hyperelliptic case when m, a,, ..., @,, have
the specified values.

Ez. ii. When p=2, denoting three odd characteristics by a, 8, y, we can in Ex. i. take

Py @ Ty My Qyy Ay A3y Oy
respectively equal to
aBy, ¢, 0, aBy, 0, By, ya, aB,
wherein 0 denotes the characteristic of which all the elements are zero, and 8y denotes
the reduced characteristic obtained* by adding the characteristics 3 and y. Then the
general formula of Ex. i. becomes, putting v=0 and retaining the notation m for the
characteristic aBy,

S(utw; ¢)I(u—w; 0)3(0; ¢g+m)I(0; m)

4
= 3 rioatmim' +0) 9 (u; g—m—an) I (u; mtan) I (w; ¢—ar) I(w; an).
A=1

* So that all the elements of By are zero or positive and less than unity.
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Ex. iii. As one application of the formula of Ex. ii. we put

10 10 01 01
1=3(30)> «=3 (10)> 8=3 (11)> =4 (or):
and therefore

=t () = (30): =t (), = (1), - 5

hence we find, comparing the table of § 204, and using the formula
3 (us f+H)=emur 9 (u; f)

M’M ’ . . £ , , ,
Mll M:)’ consists of integers, f= <§11/;i ) , and Mf'=M, f;'+M,f,, that*
$(utw; q)= -3 (utw), 3 (w—w; 0)=39;(u—w), $(0; g+m)=34,(0), $(0; m)=34(0),
Susg-m—a)=Ip(u),Iu;mta)=IJy(u),3(w;9-a)=—Ip(w),3(w; a))=I; (w),
Susg—m—ay)= I (u),¥(u;m+a)=-Iuu),d(w;q-a)=Iu(w),3(w;a,)=Iy(w),
Yusg-—m—az)= Ip(u)3(u;m+az)=—Iy(u), I w;g—az)= I;(w)I(w;az)=Iy(w),
Husg—m—a)= -9 (u)I(u;mta)=—9; (u)$(w;g—a)= I (w),$(w; a)= — Iy (w),
all the factors of the form efmil@a+m)(m +4) being equal to 1; by substitution of these
results we therefore obtain

oz (4 +w) 5 (w—w) 915 (0) Ig (0) =31230130295+90235§12§01 + 30192493910+ 939149019245
where 3,, denotes 9, (u), etc., and 3,z denotes 9y, (w), etc.; this agrees with the formula
of §§ 219, 220 (Chap. XL.).

Ez. iv. By putting in the formula of Ex. ii. respectively

10 11 01
a=} (10), B:%(Ol)’ ')’='% (11 y p=g=m=afy=0,

obtain the result
3 (u+w) 95 (u—w) 5 =92 (u) 9% (w) + 95, () 95, () + 95, () 93, (w0) + 954 () %oy (w),
which is in agreement with the results of §§ 219, 220.

Dividing the result of Ex. iii. by that of Ex. iv. we obtain an addition formula for the
theta quotient 9, (%)/9; (%), whereby 9y, (u+w)/9; (v +w) is expressed by theta quotients
with the arguments » and w.

where M, =(

Ex.v. The formula of Ex. ii. may be used in different ways to obtain an expression
for the product 9 (u+w; ¢) $(u—w; 0). It is sufficient that the characteristics m and
g+m be even and that the three odd characteristics a, B, y have the sum m. Thus,
starting with a given characteristic g, we express it, save for a characteristic of integers,
as the sum of two even characteristics, m and ¢+m, which (unless ¢ be zero) is possible
in three wayst, and then express m as the sum of three odd characteristics, a, 8, v,
which is possible in two ways}; then§ we take a;=0, ay=8y, a3=vya, @,=aB. Taking

9=% Gg> , we have

* In Weierstrass’s reduced characteristic symbol the upper row of elements is positive, and
the lower row negative ; cf. §§ 203, 204, and p. 337, foot-note.

+ This is obvious from the table of § 204, or by using the two-letter notation ; for instance
the symbol (a,as)=(a,¢) + (axc) =(a,¢,) + (ast;) = (a;65) + (agc,).

+ For example, (ac)=(a,a)+ (a,a) + (c,¢5)=(a,a5) + (c,¢) +(ccy).  See the final equation of § 201.
The six odd characteristics form a set which is a particular case of sets considered in
chapter XVII. )

§ Moreover we may increase » and w by the same half-period. But the additions of the half-
periods P, P+, lead to the same result; and, when ¢ is one of a, 8, v, the same result is
obtained by the addition of P +Q,, and of P+Q,, + Q.
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$(10)=4 (00) 3 (30) =4 (l0) + (00) =2 (1) +4 (o0):

putting m=4% (ég) , We may take
=4 (on)> 83 (10)> 7-3(10):

Soa (+10) 35 (u—0) 315 (0) 951 (0)= 912901 F02F5 + 90492491495+ 9913925905+ 9549, 9590,

where, on the right hand, $,; denotes 9,, (x), etc., and 9, denotes 9, (), etc. Comparing
this result with the result of Ex. iii., namely

S0z (w+0) 35 (1 — 1) 915 (0) o5 (0)=913901 90235+ 0295 F15. 01 + 301 21 5 914 + 95914 94 3545

Hence obtain the result

we deduce the remarkable identity
Iy () 913 (22) Sg5 (w) Sg3 () + Iy (w) I34 (1) 3¢ (w) I, (w)
= G0p () 95 () 912 (w) Joy () +95 (w) 914 () o4 () 354 (),

wherein u, w are arbitrary arguments; this is one of a set of formulae obtained by
Caspary, to which future reference will be made.

Ex. vi. By taking in Ex. v. the characteristics ¢, m to be respectively

) 1)

and resolving m into the sum a+8+1y in the two ways

HGo)+2(0)+4 o) # () +on)+4 ()

respectively, obtain the formulae
Sz (u+1w) 95 (=) I9(0) 95 (0) =95 9059, 30+ 909:902 %5 — 94915954904 — 3049249139,
S5 (w+0) 35 (w—0) 9 (0) 5 (0) =999, 30395 — 33490193915 — 91493905 935 + 9549, 4 912,

and the identity o o o o
3491 901912+ 95913920904 = 95902 99 F2 + 91493 03 93-

Putting in this equation w =0, we obtain a formula quoted without proof on page 340.

Ez. vii. Obtain the two formulae for 9, (u+w) 9, (u—w) which arise, similarly to
those in Exs. v. vi, by taking for m the characteristic 4 ((l)(l)> , the characteristic ¢ being
unaltered.

Ez. viii. Obtain the formulae, for p=2,

9y (Ut 0) 9y (w—w) 2(0) = 9232, + 92 32, — 9232 92 32
a3 (u+10) 35 (1 —0) 95 (0) 955 (0) = 95955 F5 955+ 91 90491 F01 — 93929595 — 915912913915,
where the notation is as in Ex. v.

For tables of such formulae the reader may consult Konigsberger, Crelle, Lx1v. (1865),
p. 28, and #bid., LXV. (1866), p. 340. Extensive tables are given by Rosenhain, Mém. par
dvwers Savants, (Paris, 1851), t. XL, p. 443; Cayley, Phil. Trans. (London, 1881),
Vol. 171, pp. 948, 964 ; Forsyth, Phil. Trans. (London, 1883), Vol. 173, p. 834.
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Ex. ix. We proceed now to apply the formula of Ex. i. to the case p=3; taking the
argument »=0, the characteristics p, » both zero, and the characteristics m, a,, ay, ...... , Qg
to be respectively m, m, a, B, ......, », Where a, B, ¥, &, A, p, v are seven characteristics
such that the combinations a, B8, y, &, A, s, v, maB, max, mAp are all odd characteristics,
m being an even characteristic, and removing the negative signs in the characteristics by
such steps¥ as

(—w; m—ax—p)=93(w; ar+p—m)=%(w; ar+p+m—2m)
=e—4uim(u’A+p'+m’)3(w; a,\+p+m)

=e~4mmpteN § (w; p+artm),
the formula becomes+

I(utw; ¢)I(u—-w; 0)9(0; g+m)I(0; m)

='\§le‘4"i("‘“’)\+q'“l\) S(u; gtan)d(u; an) Iw; g+m+ar) 3 (w; m+an).
In order that the left-hand side of this equation may not vanish, the characteristic
g+m must be even; now it can be shewn that every characteristic (g), except the zero
characteristic, can be resolved into the sum of two even characteristics (m and ¢+m)
in ten ways, and that, to every even characteristic (m) there are 8 ways of forming such
a set as a, B, 7, & A, g, v (cf. p. 309, Chap. XI.). Hence, for any characteristic ¢ there
are various ways of forming such an expression of 9 (u+w; ¢)3(x—w; 0) in terms
of theta functions of » and w; moreover by the addition of the same half-period to
and w, the form of the right-hand side is altered, while the left-hand side remains
effectively unaltered. In all cases in which ¢ is even we may obtain a formula by
taking m =0.

Ex. x. Taking, in Ex. ix., the characteristics ¢, m both zero, prove in the notation
of § 205, when a, B, ......, v are the characteristics there associated with the suffixes
L2, ... , 7, that

Y (ut+u) I (u—w)I2= ; 9.2 (u) 92 (w).
i=0

Prove also, taking m=0, ¢=4% 111) , that 945 (w+w) 9 (u—w) 9456 9 is equal to

000
3 () 3 (0) 3456 (1) 56 () + 34 () 34 (w) I3 () I56 (w) + I3 () I5 (w) Ig4 () Ig4 ()
+ 36 (1) 36 (0) I5 () 345 (w)
=37 () 97 (w) 9125 () 125 (1) — Iy () Iy (W) Y37 (%) S5y () — I () I (w) I3p7 () Y317 ()
— 33 (w) 5 (w) 9197 () $197 (w),
where 9, 9,5, denote respectively 9 (0), 94:6 (0).

Hence we immediately obtain an expression for 9, (u+w)/3 (u+w) in terms of theta
quotients 9; (u)/9 (w), I; (w)/I (w).

Ez. xi. The formula of Ex. i. can by change of notation be put into a more symmetrical
form which has theoretical significance. As before let m be any half-integer even
characteristic, and let a, ...... , @ be s, =2r, half-integer characteristics such that every

’ ’ ’
* Wherein the notation is that the characteristic p is written (1;1 Py Ps ) and p’ denotes the
1 3
row (py, po, p5') ; and similarly for the characteristics m, a,. *

+ This formula is given by Weber, Theorie der Abel'schen Functionen vom Geschlecht 3
(Berlin, 1876), p. 38.
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combination ma;a;, in which ¢ is not equal to j, is an odd characteristic; let £, g, 2 be
arbitrary half-integer characteristics ; let J denote the matrix of substitution given by

and from the arbitrary arguments u, », w determine other arguments U, ¥V, W, T by the
reciprocal linear equations
(Lri’ Vi, Wi, Ti)=J(ui; viy Wi, 0), (t=1,2, ...... ) P),
or, as we may write them,
(Z/rv v, IV’ T) =J(u: v, w0, 0);

further determine the new characteristics F, ¢, H, K by means of equations of the
form
(F, G, H, K)=J(f, g, k, m),

noticing that there are 2p such sets of four equations, one for every set of corresponding
elements of the characteristics ; :

then deduce from the equation of Ex. i. that

3(0; m)I(u; )05 9)3(w; &)
2r
=3

Amia @\ 2mia) (S G TR Am) g (T K+ a\) (U F+a) $(V; G+a) 3 (W; Hta,)
=1

29 . .
=A=1e4mz«ms(0; F-a,)3(V; G—a)$(W; H-a,)$(T; K+a,).

>

Putting m =0, we derive the formula

$(0; 0)$ (v+w; g+h) 3 (wtu; h+f)$(utv; f+9)
2P
= 213(u+v+w;f+g+/z+aA)S(u;f—a,\)ﬂ(v; g—a,) ¥ (w; h—-a,),
A=

wherein %, v, w are any arguments and f, g, 2 are any half-integer characteristics.

Ez. xii. Deduce from Ex. i. that when p=2 there are twenty sets of four theta
functions, three of them odd and one even, such that the square of any theta function can
be expressed linearly by the squares of these four.

287. The number, 7?, of terms in the expansion of II(u) may be
expected to reduce in particular cases by the vanishing of some coefficients
on the right-hand side. We proceed to shew* that this is the case, for
instance, when II (u) is either an odd function, or an even function of the
arguments v. We prove first that a necessary condition for this is that the
characteristic (@, @) consist of half-integers.

For, if TI (— u) = eIl (u), where € is + 1 or — 1, the equation

[[ (’ll/ + Qm) — er)\m('u) +2mi(mQ —m'Q) H (u)
1ves
8 ell (— u — Q,,) = et +2miom@—mQ) ¢TI (— ),

* Schottky, Abriss einer Theorie der Abel'schen Functionen von drei Variabeln (Leipzig, 1880).
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while, the left-hand side of this equation is, by the same fundamental
equation, equal to
ee"A-mi—w) —emim@—m'Q) T (_ u) ;

hence, for all values of the integers m, m’, the expression
7 Do (1) = M (= 0)] + deri (mQ’ — m'Q)
must be an integral multiple of 27¢; since, however,
A () = Hyp (0 + § Q) — mimm’ = A_y, (— u),

this requires that 2 (m@’ —m’Q) be an integer; thus 2¢), 2@’ are necessarily
integers.

‘Suppose now that @, @ are half-integers; denote them by ¢, ¢’; and
suppose that II (u)=ell (—u), where € is +1 or —1. Then from the
equation

0 ()= 3K,9 (u; 7 q-:—“) :

since, for any characteristic, ¥ (u, ¢) =% (— u, — ¢), we obtain

7,

0= - 0= 303 (v 7] 38 (-0 22

.r

r r

_SELS [u; q—2q,v+q _p-+v+2q:l’
I

where v is a row of positive integers, each less than 7, so chosen that
v == (u+2¢), (mod. r);

thus the aggregate of the values of » is the same as the aggregate of the
values of u; therefore, by the formula (§ 190), SN (u; ¢+ M, ¢ + M)
= emMIY (u; g, ¢), wherein M, M’ are integers, we have

7

: g™
S8 (1 ¢ 7HL) = M@= SKue ™™ 7' (u5 ¢, 7 5L);
m

comparing these two forms for II (u) we see that in the formula
II (v)=3K,Y (u; q, ’i;l:—q—>
m

the values of w that arise may be divided into two sets; (i) those for which ~
2p + 2¢' =0 (mod. r); for such terms the value of » defined by the previously
written congruence is equal to u, and the transformation effected with the

help of the congruence only reproduces the term to which it is applied ; thus,
—4mig" T
Jor all such values of w which occur, e T s equal to €; (i) those terms
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for which 24 + 2¢"% 0 (mod. ); for such terms K, =eK,e :mq——' Hence
on the whole II () can be put into the form

EKS(“ ot q)+2K{ (v q’wq)“""m’#%(u;q,vj(i)},

where the first summation extends to those values of p for which
2u + 29’ = 0 (mod. r), and the second summation extends to half those values
of u for which 2u + 2¢'% 0 (mod. 7). The single term

. vtq
¢(u,,.4,)=§<u; q,’l' q)+ee4’"” S(u q,v+q>,

which can also be written in the form

S(u q +q>+ee rqg(u;q,—”—;q),

is even or odd according as II (u) is even or odd ; and this is also true for the

term $ (u; 9 L -: q) arising when 2p + 2¢' = 0 (mod. 7).

Hence if # be the number of values of u, incongruent for modulus 7,

which satisfy the congruence 2u + 2¢’= 0 (mod. 7), and y be the number of

these solutions for which also the condition e r =g 1s satisfied, the

number of undetermined coefficients in II (u) is reduced to, at most,
y+%(@?—2).

288. We proceed now to find # and y; we notice that y vanishes when
x vanishes, for the terms whose number is y are chosen from among possible
terms whose number is #. The result is that when = is even and the
characteristic (g, ¢') is integer or zero, and TI (—u) = eIl (u), the number of
terms in II (u) is 3 2 + 2°7Ye; while, when r s odd, or when r is even and
the half-integer characteristic (q, q’) does not consist wholly of integers, or
zeros, the nmumber of terms in IL(u) is 7P+ }[1 —(—)]eem?.

Suppose 7 is even ; then the congruence 2u + 2¢' =0 (mod. r) is satisfied
by taking pu=M g — ¢, and in no other way, M denoting a row of p arbitrary

integers. Thus unless ¢’ consists of integers, # is zero, and therefore, as
remarked above, y is zero, and the number of terms in I1 («) is $72. While,
when ¢’ is integral, the incongruent values for u (modulus r) are obtained by

taking the incongruent values for M for modulus 2, in number 2?; in that
—amightY
case # = 27; the condition ¢ "° 7 =e is the same as e-2rieH = €; when ¢ is

integral, this is satisfied by all the 27 values of M, or by no values of M,
according as eis +1 oris —1; in both cases y=27"1(1 +¢); when ¢ is not
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integral, p— 1 of the elements of M can be taken arbitrarily and the con-
dition e~2"4¥ = ¢ determines the other element, so that y=2¢"1 Thus,
when 7 is even, we have

(1) when g, ¢’ are both rows of integers (including zero), =22,
y=2"1(1 +¢), and the number of terms in II (u) is

2 (L+)+3 (7 —2) =4+ 2716,

as stated, there being 4 72 + 2P terms when II () is an even function, and
1r? — 2P71 terms when II () is an odd function;

(2) when ¢’ is integral, and q is not integral, « = 27, y =271, and there-

fore the number of terms in II (u) is
201 4 L (rP — 27) = 1P,

in accordance with the result stated ;

(3) when ¢’ is not integral, both # and y are zero, and the number of
terms is 4 r®, also agreeing with the given formula.

Suppose now that = is odd, then the equation
rM— 2¢ —2¢

2 2
wherein M is a row of integers, requires M to have the form 2¢’ + 2N, where
N is a row of integers, and therefore

2u+2¢=rM, or p= , = integer +

E_rM—2q' _ , _1)

r 2r N+q (1 r)’
this equation, since u consists of positive integers all less than r, determines
the value of ¥ uniquely; hence #=1. The condition
—4mig*tY

o €, or ¢ 9@+ N) =¢ or ¢~ =¢

determines y =1 or y =0 according as e =+1 or =—1; hence the
number of terms in II (u) is

1+3@?—1), or $(r?—1),

according as ee*7 =+ 1 or —1; this agrees with the given result when r is
odd, the number of terms being always one of the numbers % (r? + 1).

289. It follows from the investigation just given that if we take pro-
ducts of theta functions, forming odd or even theta functions of order r, with
the same half-integer characteristic (¢, ¢'), and associated with the same
constants 2w, 2e’, 27, 27", then when » is even, the number of these which
are linearly independent is, at most, 4 77 + 2°~1¢ when the characteristic is
integral or zero, and is otherwise }7#; while, when r is odd, the number
which are linearly independent is, at most, ¥ (r?+ee*%7), € being + 1 accord-
ing as the products are even or odd functions.
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Ezx. i. In case p=2 there are six odd characteristics, and the sum of any three of
them is even®, as the reader can easily verify by the table of page 303. Letaq, 8,9, 8, ¢, ¢
denote the odd characteristics, in any order, and let aBy denote the characteristic formed
by adding the characteristics a, 8, . Then the product

I (u)=3 (u, a) 3 (u, B) $ (%, v) 3 (¥, aBy)
is an odd theta function of the fourth order with integral characteristic. Hence this
product can be written in the form

M (w)=24x3(%; 0, Ii) ’

where p has the 42 values arising by giving to each of the two elements of u, independently
of the other, the values 0, 1, 2, 3. Changing the sign of « we have

n(u)=—zA.&(—u; 0,%), =-34,8(u;0, -8), =—24u8 (u; o,g—"f{”),

where v is chosen so that .
p+rv=0 (mod. 4).

This congruence gives 16 values of v corresponding to the 16 values of u; of these
there are 4 values for which p=v» and 2u=0 (mod. 4); these are the values

u=(0,0), (0,2), (2,0), (2 2)
greater values for the elements of p being excluded by the condition that these elements
must be less than 4. We have by the formula (§ 190) 9 (u; ¢+ M )=e*™M7 9 (),

O (z)=-34u9(u; 0, i);

comparing this with the original formula for II (%), we see that
4y=— AI‘» ’

so that the terms in the original formula for IT (%) for which y=pu are absent, and the
remaining twelve terms may be arranged as six terms in the form

m()=34u[9u; 0,%) -2 (w3 0,-4) |=3u[ 3w 0.5) -3 (~ws 0,4) ],

where the summation extends to the following values of u,
p=(0,1), (1,0), (1, 1), (1,2), (1,3), (23);
these values may be interchanged respectively with
r=(0,3) (3,0), (3,3) (3,2), (3 1) (% 1),
if a proper corresponding change be made in the coefficients 4.
The number 6 is that obtained from the formula }7?42r-1l¢, by putting r=4,
e=—1, p=2.

Ez. ii. In case p=2, denoting the odd characteristics by a, 8, v, 8, ¢, {, and the sum
of two of them, say a and 3, by af3, and so on, each of the four products

9 (u’ a) 9 (u: af(), 9 (u) B) 3 (ur B‘O’ 3 (ux 7) 3 (uy 'Y‘(); 9 ('”" 8) 3 (ua 8‘())
or, in Weierstrass’s notation, if a, 3, y, §, ¢, ¢ be taken in the order in which they occur in
the table of page 303, each of the products

S0p () Sg4 (0)y Ja4 () S0 (w)y o4 (w) I35 (), 3, (w) 35 (),

* This is a particular case of a result obtained in chapter XVII.
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is an odd theta function of order 2, and of characteristic differing only by integers
from the characteristic denoted by e{, or, in the arrangement here taken, % (i(l))’ thus

any three of these products are connected by a linear equation whose coefficients do not
depend upon .

Similarly each of the products
9 (u} 1136) 3 (u: aa(), S(u, ﬁa‘) ‘S(u) ﬁsc)s 3 (ul 78‘) S(uv 78()1 S(u: ‘) 9(“7 ())

or, in Weierstrass’s notation, if a, B, v, 8, ¢, ¢ be taken in the order in which they occur
in the table of p. 303, each of the products

10 () 34 (u), Ig1 (u) Ip(w); 912 (w) 95 (), 943 (%) 95 (u),
is an even theta function of order 2, and of characteristic differing only by integers
from the characteristic denoted by e, or, in the arrangement here taken, } G?) ; thus

any three of these products are connected by a linear equation whose coefficients do not
depend upon u.

Ez. iii. For p=2 the number of linearly independent even theta functions of the
fourth order and of integral characteristic is $424+2=10. If ¢, » be any half-integer
characteristics, it follows that any eleven functions of the form 9% (u, ¢) 92 (u, r) are

connected by a linear equation. Taking now, with Weierstrass’s notation, the four
functions*
t=3;(u)y #=33 (), y=9;2(w), 2=39,(u),

it follows that there exists an identical equation
Ayt + A 24+ Ayt + A2+ 2Ctxyz + Fy22 + Fya? + G 2222 + Gyt + H o%y2 + H,y222=0,
in which the eleven coefficients 4,, ...... , H, are independent of .

The characteristics of the theta functions 9;(w), 954 (¢), 9;5(2), 9 (x) may be taken,
respectively, to be (cf. § 220, Chap. XI.)

(o) (3)=Coutn)=rs (o) = (o) oors G 9) = (7)o
hence, by the formulae (§ 190)
I(utQ,p; q)=er@=2iPag (45 gL P), 9 (u; g+ M )= M 9 (u; g),
wherein M denotes a row of integers, we obtain
95+ Q) = 20 35, (w), Iy (w+ ©,) = M I (), Iy (u + 0y) = P2 I (a0,
90 (u+ 9,) = 2209, )

hence the substitution of #+ @, for % in the identity replaces ¢, z, y, z respectively by
z, t, 2, y. Comparing the new form with the original form we infer that

Ay=A,, 4,=A4,, G,=G,, H=H,.

Similarly the substitution of »+ @, for « replaces ¢, , 7, z respectively by v, z, ¢, x;
making this change, and then comparing the old form with the derived form, we infer
that

do=4,, A\=4;, F\=F,, H=H,.

* Which are all even and such that the square of every other theta function is a linear
function of the squares of these functions. It can be proved that these functions are not
connected by any quadratic relation.
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Thus the identity is of the form
a2ttt + A+ 20kwyz+ F (y%% + 2%2) + G (22 + y22) + H (222 4 2%2) =0,
Taking now the three characteristics

(f 1 le) — (07 ) (.q 1 92’) - <§) 0) (kl’7 k2’) - (ﬁ" é)

oo fa 0,0/’ \ g1, 92 0,0/’ \ Ay, &y 0,0/’

and adding to the argument %, in turn, the half-periods @, ©,, ; and then putting % =0,
we obtain the three equations

I+ 95+ G995, =0, 95 +93+F9 92=0, 9L +9+ HY. 9, =0,

where 9 denotes 3: (0), etc., and the notation is Weierstrass’s, as in § 220. By these
equations the constants F, G, H are determined in terms of zero values of the theta

functions. The value of €' can then be determined by putting =0 in the identity
itself.

Thus we may regard the equation as known; it coincides with that considered
in Exx. i. and iv. § 221, Chap. XI,, and represents a quartic surface with sixteen nodes.
With the assumption of certain relations connecting the zero values of the theta functions,
proved by formulae occurring later (Chap. XVIIL. § 317, Ex. iv.), we can express the
coefficients in the equation in terms of the four constants 9;(0), 95,(0), 9,5(0), 3,(0).
We have in fact, if these constants be respectively denoted by d, a, b, ¢

9+ =dttat—bt—ct, Y+, =di—at+bi-c, 9+ 9, =dl-at-btict,
9 =da? b, 9 =dW-ca® , 959, =d-a?;
hence the identity under consideration can be put into the form

i at—bt—ct A4bi—ct_qt

t‘+x4+y4 '*'»Z4 - —W (t2x2 + y222) - W (t2y2+22.2?2)
€1, €&
Btd—at=bt o dabe T [@+e@+ebitagd]
~ @i PPN (e (- dad) (@ - o) Y =0

where the ‘i:’[egdenotes the product of the four factors obtained by giving to each of e, ¢,
both the values +1 and —1. The quartic surface represented by this equation can be
immediately proved to have a node at each of the sixteen points which are obtainable
from the four,

(d, a, b, ¢), (&, @, —b, —¢), (d, —a, b, —¢), (d, —a, —b, ¢),
by writing respectively, in place of d, a, b, ¢,
@) (d, @, b, ¢), (i) (@, d, ¢, ), (iii) (b, ¢, &, @), (iV) (¢, b, @, d).

Ez. iv. We have in Ex. iii. obtained a relation connecting the functions

35 (u)y I35 (W), 912 (w)y Io ()

in Ex. iv. § 221 we have obtained the corresponding relation connecting the functions

35 (w)y So1 (u)y 35 (w); 353 () 5

and in Ex. i, § 221 we have explained how to obtain the corresponding relation connecting
the functions
35 (u)y g3 (u)y Foq (w), 9 (w).
30—2
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There are* in fact sixty sets of four functions among which such a relation holds ; and
these sixty sets break up into fifteen lots each consisting of four sets of four functions,
such that in every lot all the sixteen theta functions occur, and such that in every lot one
of the sets of four consists wholly of even functions while each of the three other sets
consists of two odd functions and two even functions. This can be seen as follows : using
the letter notation for the sixteen functions, as in § 204, and the derived letter notation
for the fifteen ratios of which the denominator is 9 (u), as at the top of page 338, it is
immediately obvious, as on page 338, that any four ratios of the form

L v Tk, 10 oy
wn which the letters k, 1, &, 1,, k, constitute in some order the letters a,, a,, ¢, ¢;, ¢, are
connected by a relation of the form in question. Now such a set of four ratios can be

formed in fifteen ways; there are firstly six such sets in which all the ratios are even
functions of u, obtainable from the set

L 9o qalr e Ya,

by permuting the three letters ¢, ¢;, ¢, among themselves in all possible ways ; and nextly
nine such sets in which two of the ratios are odd functions, obtainable from the set

L 90 q"'u ay’ q"n’a

by taking instead of the pair @,a, each of the three pairst a,a,, aa,, aa,, and instead of
the pair ¢,¢, each of the three pairs ¢;c,, ce;, cc,. Since (§ 204) the letter notation for an
odd function consists always of two a-s or two ¢-s, and for an even function consists of
one @ and one ¢, the number of odd and even functions will remain unaltered. Further
from each of these fifteen sets we can obtain three other sets of four ratios by the addition
of half-periods to the argument u, in such a way that all the sixteen theta functions
enter into each lot of sets. The fifteen lots obtained may all be represented by
the scheme

1, a , B, a

a, aa, Ba, aBa

Bi, aBy, BB, aff

afy, aaBy, BaB;, aBaf,

where 1, a, 8, a8 denote the characteristics of one of the fifteen sets of four theta functions
just described, such as 9 (u), 9, (u), Salc‘ (u), .‘)a’c2 (u), or 3 (u), ¥, (u), .9%% (u), ‘90. e (),
aB denoting the characteristic formed by the addition of the characteristics q, 8; and ay, 8,
denote any other two characteristics other than a, 8, or aB, and such that aB is not the
same characteristic as a;8;. This scheme must contain all the sixteen theta functions ;
for any repetition (such as a=pa,3,, for example) would be inconsistent with the
hypothesis as to the choice of a;, 3, (would be equivalent to aB=a;8;). It is easily seen,
by writing down a representative of the six schemes in which the first row consists
wholly of even functions, and a representative of the nine schemes in which the first

row contains two odd functions, that in every scheme there are three rows in which two
odd functions occuri.

Ez.v. There are cases in which the number of linearly connected theta functions, as
given by the general theorem, is subject to further reduction. For instance, suppose we

* Borchardt, Crelle, Lxxxim. (1877), p. 237. Each of the sixty sets of four functions may be
called a Gopel tetrad.

+ The letter a, when it occurs in a suffix, is omitted.

+ A table of the sixty sets of four theta functions is given by Krause, Hyperelliptische
Functionen (Leipzig, 1886), p. 27.
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have m=2P~! odd half-integer characteristics 4,, ..., 4,,, and another half-integer charac-
teristic P, not (integral or) zero, such that the characteristics* 4,27 ..., 4,,P, obtained
by adding P to each of 4,, ..., 4,,, are also odd+; suppose further that 4 is an even
half-integer characteristic, and that 4 P is also an even characteristic, and that the theta
functions 9 (u ; 4), 9 (x; AP) do not vanish for zero values of the argument. Then, by
§ 288 the 2771+1 following theta functions of order 2,

Y(u; AY Y (u; AP), 3(u; 4,) 3 (w; A,\P), ..., 3 (u; 4,) 3 (u; 4,P),

which are all even functions with a characteristic differing only by integers from the
characteristic P, are connected by a linear equation with coefficients independent of u.
But in fact, if we put #=0, all these functions vanish except the first. Hence we infer
that the coefficient of the first function is zero, and that in fact the other 2P-1 functions are
theimselves connected by a linear equation.

Ez. vi. In illustration of the case considered in Ex. v. we take the following :—When
p=3, it is possible}, if P be any characteristic whatever, to determine six odd characteristics
4, ..., 44, whose sum is zero, such that the characteristics 4,P, ..., 44,P are also odd, and
such that all the combinations of three of these, denoted by 4;4; 4y, 4;4;4,P, are even.
By the previous example there exists an equation

AS(u; A)3 (u; A,P)
=M (u; A) F(u; A P)+NI (w; Ag) 9 (w; AP) 409 (s Ay) 9 (w5 A5P),

wherein A, A, Ag, A; are independent of . Adding to % any half-period Q,, this equation
becomes

A3 (u; 44Q) 3 (u; 4,PQ)
=N (w5 4,Q) 9 (u; A, PQ) 4N, (w5 A;0) 3 (u 5 APQ)+Nge5% (15 450) § (w5 APQ),

where ¢;(t=1, 2, 3) is a certain square root of unity depending on the characteristics
A4,, 4;, P, @, whose value is determined in the following example. Taking in particular
for @, the half-period associated with the characteristic 4,4,, so that the characteristics
4,PQ, A,PQ become respectively the odd characteristics A4;P, 4,P, and putting =0,
we infer

A (0; 4,4,45)3(0; A44,45P)=0e/3(0; A,4545)3(0; 4,4,4,P),
where ¢’ is the particular value of ¢, when @ is 4,4,. This equation determines the ratio

of A; to A ; similarly the ratios A, : A and A; : X are determinable.

Ez. vii. If §r, g be half-integer characteristics whose elements are either 0 or %, and
4k=4rq be their reduced sum, with elements either 0 or 4, prove§ that

ka. =r¢+q“ - 27'“9“, ka.'=ra.’ +QG’_ 2ru'q¢” (a= 1’ 2, oo p)’
and thence, by the formulae (§ 190)

9 (ut0r; @)= AEFUY (s Phg), I(u; g+ H)="M I (u; g),

* A characteristic formed by adding two characteristics 4, P is denoted by 4 +P. Its
reduced value, in which each of its elements is 0 or 3, is denoted by 4P.

+ It is proved in chapter XVIL. that, when p>2, the characteristic P may be arbitrarily
taken, and the characteristics 4, ..., 4,, thence determined in a finite number of ways.

+ This is proved in chapter XVIL

§ Schottky, Crelle, ci1. (1888), pp. 308, 318.
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where # is integral, prove that

y 4 F4
ANu; §r)+7t 2 (raqaq¢’+q rr')-%mi 2 r'q
a=1

I (u+30,; bg)=e e e=1% "9 (u; }rg).

If 47, a, 3¢ be any reduced characteristics, infer that

I(@+39,; 3a) $ (w+30,5 3ag) _ awsyn I (w; $ar) S (u; pagr)
3 (u+32,; 19) 3 (us 3gr) ’

where

in B [ty + s 47,0247, 2]
e=e o=1 .

Ex. viii. If 4,, 4,, 43, 4, denote four odd characteristics, for p=2, and B denote an
even characteristic, the 227+27714+1=5 theta functions, of order 2 and zero (or integral)
characteristic, 92(w; B), 92(%; 4,), ..., 92 (u; 4,) are, by § 288, connected by a linear
equation. As in Ex. v. we hence infer an equation of the form

A9 (w5 A) =N (w5 A)+0g9 (u; Ay)+A59 (u; 4y);
adding to w the half-period associated with the characteristic 4,4, and putting »=0, we
deduce by Ex. vii. that

AT 92 (0; A, 4,4) =060 92(0; 4,4,4,),

where A,4;=%k,, A,=%a,, A,=%a,. Hence we obtain an equation which we may write
in the form
92(0; Aydydg) 9 (u; A4)=(ijs) 92(0; A Aydy) 9 (u; 4y)
144

434 4.4
#5200 205 4du) 9 s a9+ (§14) 905 Aid) 9 (w; ),
where (jgg"‘) denotes a certain square root of unity. Such a relation holds between every

144

four of the odd theta functions.
If 4,, ..., A5 be the odd characteristics, and € be any other characteristic, the six

characteristics 4,Q, ..., 4, are said to form a Rosenhain hexad. It follows that the
squares of every four theta functions of the same hexad are connected by a linear relation.



