
CHAPTER V. 

ON CERTAIN FORMS OF THE FUNDAMENTAL EQUATION OF THE RIEMANN 

SURFACE. 

51. W E have already noticed that the Riemann surface can be expressed 
in many different ways, according to the rational functions used as variables. 
In the present chapter we deal with three cases : the first, the hyperelliptic 
case (§§ 51—59), is a special case, and is characterised by the existence of a 
rational function of the second order ; the second, which we shall often 
describe as that of Weierstrass's canonical surface (§§ 60—68), is a general 
case obtained by choosing, as independent variables, two rational functions 
whose poles are at one place of the surface : the third case referred to 
(§§ 69—"71) is a^so a general case, which may be regarded as a generalization 
of the second case. I t will be seen that both the second and third cases 
involve ideas which are in close connexion with those of the previous chapter. 
The chapter concludes with an account of a method for obtaining the funda
mental integral functions for any fundamental algebraic equation whatever 
<§§ 73-79) . 

I t may be stated for the guidance of the reader that the results obtained for the 
second and third cases (§§ 60—71) are not a necessary preliminary to the theory of the 
remainder of the book ; but they will be found to furnish useful examples of the actual 
application of the theory. 

52. We have seen that when p is greater than zero, no rational function 
of the first order exists. We consider now the consequences of the hypothesis 
of the existence of a rational function of the second order. Let f denote 
such a function ; let be any constant and a, ß denote the two places where 
£ = c , so that (£— c)"1 is a rational function of the second order with poles 
at a, ß. The places a, ß cannot coincide for all values of c, because the 
rational function d^jdx has only a finite number of zeros. We may therefore 
regard a, ß as distinct places, in general. The most general rational function 
which has simple poles at a, ß cannot contain more than two linearly entering 
arbitrary constants. For if such a function be X + / i + \g/ 2 + ..., X, \lt... 
being arbitrary constants, each of the functions flt / 2 , . . . must be of the 
second order at most and therefore actually of the second order : by choosing 
the constants so that the sum of the residues at a is zero, we can therefore 
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obtain a function infinite only at ß, which is impossible*. Thus the most 
general rational function having simple poles at a, ß is of the form 
A (£ — c)_1 + Ä Therefore, from the Riemann-Roch Theorem (Chapter III., 
§ 37), Q-q=p-(T + l), putting Q = 2, q = l, we obtain - ( + 1) = 1 ; 
namely, the number of linearly independent linear aggregates 

n (x) = XifÎ! ( ) + ... + \pf l p (x), 

which vanish in the two places a, ß is p - 1 . Since a may be taken arbitrarily 
and determined from it, and p — 1 is the number of these linear aggregates 
which vanish in an arbitrary place, we have therefore the result—When there 
exists a function of the second order, every place a of the surface determines 
another place ß: and the determination may be expressed by the statement 
that every linearly independent linear aggregate fi (x) which vanishes in 
one of these places vanishes necessarily in the other. 

53. Conversely when there are two places or, ß in which p — 1 linearly 
independent il (x) aggregates vanish, there exists a rational function having 
these two places for simple poles. To see this we may employ the formula 
of § 37, putting Q = 2 , r + l = p — 1, and obtaining g = l . Or we may 
repeat the argument upon which that result is founded, thus—Not every 
one of Oi (x),..., fip (x) can vanish at a ; let (a) be other than zero. Since 
p — 1 linearly independent 12 (x) aggregates vanish in a, and, by hypothesis, 
p — 1 linearly independent fi (x) aggregates vanish in both a and ß, it 
follows that every fi (x) aggregate which vanishes in a vanishes also in /3. 
Hence each of the p — 1 aggregates 

fì2 (a) r^ (x) - n x (a) 2 ( ), , fip (a) Qx (x) - ß x (a) fip (x)t 

vanishes in ß, namely, we have the p — 1 equations 

ai(a)fi1(ß)-fi1(a)fii(ß) = 0> ( = 2, , . . . , ^ ) . 

Therefore the function 

n1(ß)r:^fi1(a)T; 

has each of its periods zero. Thus it is a rational function whose poles are at 
a and ß : and ^ (ß) cannot be zero since otherwise the function would be of 
the first order. 

Hence when there are two places at which ^ — 1 linearly independent 
fi (x) aggregates vanish, there is an infinite number of pairs of places having 
the same character. For any pair of places the relation is reciprocal, namely, 
if the place a determine the place /3, a is the place which is similarly 
determined by ß : in other words, the surface has a reciprocal (1, 1) corre
spondence with itself. I t can be shewn by such reasoning as is employed in 

* By the equation Q - q = p - ( +1), if q were 2, +1 would be p, or all linear aggregates ) 
would vanish in the same places, which is impossible (Chap. II. § 21). 

. 
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Chap. I. (p. 5), that if (x1} ) , (x2l y2) be the values of the fundamental 
variables of the surface at such a pair of places, each of x1} yx is a rational 
function of x2 and y2y and that conversely x2, y2 are the same rational 
functions of xx and yx. 

54. We proceed to obtain other consequences of the existence of a rational 
function, f, of the second order. If the poles of £ do not fall at finite distinct 
ordinary places of the surface, choose a function of the form (f — c)_1, in 
accordance with the explanation given, for which the poles are so situated. 
Denote this function by z. Then* the function dzjdx has 2.2+2p—2=2p-\-2 
zeros at each of which z is finite. Denote their positions by x1} x2)..., < +2. 
If these are not all finite places we may, if we wish, suppose that, instead of 
x, such a linear function of x is taken that each of x1}..., % +2 becomes 
a finite place. They are distinct places. For if the value of z at xi be C{, 
z — d is there zero to the second order : that another place Xj should fall at 
Xi would mean that z — a is there zero to higher than the second order, 
which is impossible because z is only of the second order. By the expla
nations previously given it follows that a linear aggregate ( ), which 
vanishes at any one of these places xl}..., x^+^ vanishes to the second order 
there. Hence there is no linear aggregate il (x) vanishing at p or any 
greater number of these places, for (x) has only 2p — 2 zeros. The general 
rational function which has infinities of the first order at the places xlt...t xp+r 

will therefore f contain a number of q + 1 of constants given by p + r — q = p, 
namely, will contain r + 1 constants. Such a function will therefore not 
exist when r = 0. In order to prove that a function actually infinite in the 
prescribed way does exist for all values of r greater than zero, it is sufficient, 
in accordance with §§ 23—27 (Chap. III.), to shew that there exists no 
rational function having X\ , X2 , . • • , X ì for poles of the first order for any 
value of i less than p + 1 . Without stopping to prove this fact, which will 
appear a posteriori, we shall suppose r chosen so that a function of the 
prescribed character actually exists. For this it is certainly sufficient that r 
be as great as p J. Denote the function by A, so that h has the form 

h = \ + XjSi + ... + Xr%r> 

X, Xj, ..., \ r being arbitrary constants. 

Let , denote the values of h at the two places (x, y), (x', y'\ where 
z has the same value. Then to each value of z corresponds one and only one 
value of A + A', or A + h' may be regarded as an uniform function of z : the 
infinities of A + A' are clearly of finite order, so that A + A' is a rational 
function of z. Consider now the function (z - Cj) (z - c2) ... (z - cp+r) (A + A'). 

* Chap. I. § 6. 
t Chap. III. § 37. 
t Chap. . § 27. For the need of the considerations here introduced compare § 37 of 

Chap. III. 
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Since A and A' are only infinite at places of the original surface at which 
z is equal to one or other of cx , . . . , cp+r> this function is only infinite for 
infinite values of z. As it is a rational function of z, it must therefore be a 
polynomial in z of order not greater than p + r. Hence we may write 

A + A' = (z, 1 V H V O - où • • • * - °P+r)-

But here the left hand is only infinite to the first order, at most, at any 
one of Ci, ..., Cp+r—and the denominator of the right hand is zero to the 
second order at such a place. Hence the numerator of the right hand must 
be zero at each of these places, and must therefore be divisible by the 
denominator. Thus A -f A' is an absolute constant, =2(7 say. From the 
equations 

A = X + X Ä + ... + , 
A' = X + XiS'i + ... + X r2' r, 

we infer then that Si -f 2 ' is also a constant, = 20$ say : for A was chosen to 
be the most general function of its assigned character and the coefficients 
X, ..., X,. are arbitrary. Thence we obtain 

C = \ + \lC1+...+\rCr. 
We can therefore put 

8 = h-C=-J = -(h'-C) = \(Zl-C1)+...+\rÇ2,r-Cr), 

so that s will be a function of the same general character as A, such however 
that s + s' = : in its expression the constants Xx, ..., Xr are arbitrary, while 
the constants G19 ..., Gr depend on the choice made for the functions 
Zi, ..., 2 r . 

55. Consider now the two places a, a' at which z is infinite. Choose the 
ratios Xx : X2 : ... : Xy so that s is zero to the (r — l)th order at a. This can 
always be done, and will define s precisely save for a constant multiplier, 
unless it is the case that when s is made to vanish to the (r — l) th order 
at a, it vanishes, of itself, to a higher order. In order to provide for this 
possibility, let us assume that s vanishes to the (r — 1 + &)th order at a. 
Since s' = — s, s will also vanish to the (r — 1 + k)th order at a'. There will 
then be other p + r — 2 (r — 1+k), or p - r + 2 — k, zeros of s. From the 
manner of formation this number is certainly not negative. Consider now 
the function 

/ = ( ^ - c 1 ) . . . ( ^ - o 1 ? + r ) s 2 . 

At the places where z is infinite ƒ is infinite of order p 4- r — 2 (r — 1 + ) , 
or p — r + 2 — 2Ä? times. At the places, œlt ..., œp+r where s is infinite, it is 
finite; each of the factors z — clt . . . , — cp+r is zero to the second order at 
the place where it vanishes. Since s2= — ss', ƒ is a symmetrical function of 
the values which s takes at the places where z has any prescribed value. 
Hence, by such reasoning as is previously employed, it follows that the func-

6—2 
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tion ƒ is a rational integral polynomial in z of order p — r + 2 — 2k. Denote 
this polynomial by H. By consideration of the zeros of ƒ it follows that the 
2 (p — r + 2 - 2k) zeros of the polynomial H are the zeros of s2 which do not 
fall at a or a'. But since the sum of the values of s at the two places where 
z has any prescribed value is zero, it follows that s is zero at each of the 
places xp+r+1, . . . , #2p+2« F ° r each of these is formed by a coalescence of two 
places where z has the same value, and at each of them s is not infinite. 
Hence the polynomial H must be divisible by (z — cp+r+i)... (z — Cap+a). 
Thus, as H is a polynomial of order p — r + 2 — 2k in £, p — r + 2 — 2k must 
be at least equal to 2p -f 2 — (p + r) or to |) — r + 2. Hence is zero, and 
the value of is determinate save for a constant multiplier. Supposing 
this multiplier absorbed in s we may therefore write 

(z - d) ... 0? - c^+r) s2 = - Cp+r+1)... (z - +2) (A) ; 

and s is determined uniquely by the conditions, (1) of being once infinite at 
#i> •••> #p+r> (2) of being (r — 1) times zero at each of the places a, at where z 
is infinite. Denote s, now, by 5p+r, and denote the function h from which we 
started, which was defined by the condition of being once infinite at each of 
œu ..., + ) by hp+r} and consider the function {z - cp+r) Sp+r. This function 
is once infinite at each of x1} ..., #p+r_i, it is zero to the first order at œp+r, 
and it is r— 1 — 1, = r - 2 times zero at each of the places a, a' where z is 
infinite. Hence the function 

(z - ^ + r ) sp+r (A+A&+...+ Ar_2 zr~*) + 5 , 

wherein B, A, Al9 ...t Ar_2 are arbitrary constants, has the property of being 
once infinite at each of xu . . . , ocp+r_ly and not elsewhere. I t is then exactly 
such a function as would be denoted, in the notation suggested, by hp+r-lt 

and it contains the appropriate number of arbitrary constants—and we can 
from it obtain a function sp+r_1} having the property of being once infinite at 
each of xXi ..., ^+ and vanishing (r — 2) times at each of the places a, a' 
where z is infinite. 

Ex. 1. Determine sp+r^l in accordance with this suggestion. 

Ex. 2. Prove that Ap+r is of the form sp + r{A + A1z+... + Ar-iz
r-1) + B. 

Ex. 3. Prove that hp+r+t is of the form *p + r(A+A1z+...+Ar+t_1*+*-i) + R 
{Z—Cp + r + 1)...{Z-Cp + r + t) 

Ex. 4. Shew that the square root /^-cP^+1)y{z-c2p+2) ^ ^ i n t e r p r e t e d a g a n 

V \z — c1)^,{z — cp+r) 
one-valued function on the original surface. 

56. The functions, z, sp+r are defined as rational functions of the x,  
of the original surface. Conversely x, are rational functions of z, sp+r. 
For* we have found a rational irreducible equation (A) connecting z and 

* See Chap. I. § 4. 
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sp+r wherein the highest power of sp+r is the same as the order of z. Hence 
this equation (A) gives rise to a new surface, of two sheets, with branch places 
at z=c1}..., C2P+2, whereon the original surface is ratimially and reversibly 
represented. 

It is therefore of interest to obtain the forms of the fundamental integral 
functions and the forms of the various Riemann integrals for this new surface. 
I t is clear that the function 

(z-d)...(z-cp+r)sp+r(zt l)k^, 

where is a positive integer, and (zf 1)*_! denotes any polynomial of order  
— 1, is infinite only at the places a, a' where z is infinite, and in fact 

to orderp + r — (r —1) + & — l, = p + k: and that, therefore,by suitable choice 
of the coefficients in another polynomial (zf l)p+k> we can find a rational 
function 

0 - cO ... (z - cp+r) sp+r (zt 1)*.! + (z, l)p+k, 

which is not infinite at a', and is infinite at a to any order, p -f k} greater 
than p. Now, of rational functions which are infinite only at a, there are p 
orders for which the function does not exist*. Hence these must be the 
orders 1, 2, ...9p. 

Hence, of functions infinite only in one sheet at z = 00 , on the surface 

(z-d)...(z- Cp+r) S2p+r = (Z- Cp+r+1) . . . ( * - C2p+2), 

that of lowest order is a function of the form 

V = (* - Ci) - - - {? - Cp+r) Sp+r + (Z, l)p+lt 

which becomes infinite to the (p + l)th order. Hence by Chapter IV. § 39, 
every rational function which becomes infinite only at the places z = 00, can 
be expressed in the form 

(z, 1)A + CZ, 1)^4, 

and if the dimension of the function, namely, the number which is the order 
of its higher infinity at these places, be p + 1 , X and fi are such that 

/>4-l>X, p + 1% fi+p + l. 

Therefore also, if a = (z — Cj) ... (z - cp+r) sP+r = V — (^ l)i>+i> m which case 
equation (A) may be replaced by the equation 

a2 = (z - d) (z - c2) ... {z - c2p+2), 

we have the result that all such functions can be also expressed in the form 

(*, l)A ' + (*f I V o-, 
with 

p + l>\', /) + l > / * ' + p + l. 

* Chap. III. § 28. 
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By means of this result, hitherto assumed, the forms for the various 

integrals given Chapter IL, § 17, Chapter IV., § 46, are immediately 

obtainable by the methods of Chapter IV. 

57. Or we can obtain the forms of the integrals of the first kind thus— 

Let v be such an integral. Consider the rational function 

sp+r (z - d) . . . (Z - Cp+r) ^fe

lt can only be infinite (1) where z is infinite (2) where dz = 0, that is at 

the branch places of the (sp+r, z) surface. It is immediately seen that the 

latter possibility does not arise. Where z is infinite the function is infinite 

to the orders + 1 — 2, orjp— 1. Hence it is an integral polynomial in z of 

order p — 1. Namely, the general integral of the first kind* is 

J (z- d ) . . . (z - cp+r)sp+r ' 

58. Ex. 1. A rational function _*, infinite only at the places where z—c19 ..., cp_k9 

contains - - + +1 + 1 = +2- arbitrary constants, where r + 1 is the number of 
coefficients in a general polynomial (z, l)p-1 which remain arbitrary after the prescription 
that (2, l)p-i shall vanish at clf ..., Cp_fc. Prove this: and infer that hpi Ap_1} ...do not 
exist. 

Ex. 2. It can be shewn as in § 57 that at any ordinary place of the surface 

(r2=(z-c1)...(z-c2p + 2), 

rational functions exist, infinite only there, of orders p + l,p + 2, ...: the gaps indicated by 
Weierstrass's theorem (Chapter III. § 28) come therefore at the orders 1, 2, ...,p. At a 
branch place, say at z = c, the gaps occur for the orders 1, 3, 5, ..., (2p-1). For, all other 
possible orders, which a rational function, infinite only there, can have, are expressible in 
one of the forms 2(p-k), 2p+2r+1, 2p + 2r, where is a positive integer less than p, or 
zero, and r is a positive integer: and we can immediately put down rational functions 
infinite to these orders at the branch place z=c and nowhere else infinite. Prove in fact 
that the following functions have the respective characters 

fe l)p-k fa l)ro- +(*-<?)(*» l)g + r fa l)p+r 
( - )»-*> (z-c)*>+r + 1 ' (z-c)*>+r' 

wherein (z, 1) _*, fa l) r , (2, l)p+r are polynomials of the orders indicated by their suffixes 
with arbitrary coefficients. 

Shew further that the most general Q(x) aggregate which vanishes 2p-2k times at the 
branch place contains arbitrary coefficients: and infer that the expressions given 
represent the most general functions of the prescribed character (see Chapter III. § 37). 

Ex. 3. Prove for the surface 

that the function 
z=n+\x/y, 

* Cf. the forms quoted from Weierstrass. Forsyth, Theory of Functions, p. 456. 
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wherein X and p. are arbitrary constants, is of the second order. And that there are six 
values of z for which the pairs of places at which z takes the same value, coincide, these 
places of coincidence being zeros of the function 

2(Ax2 + Bxy+Cy2) + Px*+Qx2y + Rxy2+SyS. 

Prove further that a rational function which is infinite at these six places is given by 

2 (A x2 + Bxy + Cy2) + P'x3 + Q'x2y + R'xy2+S'y* 
2{Ax2 + Bxy + Cy2)+Px* + Qx2y+Rxy2+8y* 

for arbitrary values of the constants P', ', R', S'. 

This function is, therefore, such a function as has been here called hp+r : and since there 
are six places at which dz is zero, p is equal to 2 and r equal to 4. 

Prove that the sum of the values of A at the two places other than (0, 0) at which z has 
the same value is constant and equal to 2. 

We may then proceed as in the text and obtain the transformed surface in the simple 
hyperelliptic form. But a simpler process in practice is to form the equation connecting 
z and A. Writing k—h-l and Z=x/y, prove that 

h2 {{PZ3 + qZ2+RZ+ S)2 - 4 (AZ2 + BZ+ C) (a^Z*+axZ*+a^Z2+a3Z+ a4)} 

= {(P- P)Z3 + (Q'-Q)Z2+(R'-R) Z+(S'-S)}2. 

Hence, if the coefficient of k2 on the left be written (Z, 1)6, and we write 

Y=[(P'-P)Zs+(Q'-Q)Z2+(R'-R)Z+(S'-S)]/k 

= [2( 2+ + 2) + *+ 2 + 2+8 3]/ *, 

we have 
r*=(z, i)6, 

which is the equation of the transformed surface. And, as remarked in the text, the 
transformation is reversible ; verify in fact that x, y are given by 

x=2Z(AZ2 + BZ+C)l[Y-(PZ3+QZ2 + RZ+S)l  

= 2 (AZ2+BZ+ 0)/[Y- (PZ3 + QZ2 + RZ+S)]. 

Hence any theorem referred to one form of equation can be immediately transformed so 
as to refer to the other form. 

59. The equation 

o-s = (z - d ) (z - c2) . . . (z - c2p+2) 

by which, as we have shewn, any hyperelliptic surface can be represented, 
contains 2p + 2 constants, namely clf c2,..., < +2. If we write z — (ax + b)j(x + c) 
we introduce three new disposable constants ; by suitable choice of these 
the equation of the surface can be reduced to a form in which there are only 
2p — 1 parametric constants. For instance if we put 

(z - d) (c3 - c2)/(z - c2) ( - d) = x\(x - 1) 

and then, further, 

s = ACT (Z - C3)-*-1, 

where the constant A is given by 

A = (c3 - cxy (c3 - 2 /( - c2y+ì (c3 - c4)* (c3 - c5)*... (c3 - c ^ ) * , 
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the equation becomes 

s* = x (x — 1) (x - a4) (x - a5) ... ( ? - a2p+2), 
wherein 

ar = (c2 - c3) (cr - ^ - c2) (c3 - cr\ 

and the right-hand side of the equation is now a polynomial of order 2p + 1 
only. Of its branch places three are now at # = 0, x=l, # = o o , and the 
values of x for the others are the parametric constants upon which the 
equation depends. I t is quite clear that the transformation used gives sr x 
as rational function of c, z. Thus 

The hyperelliptic surface depends on 2p — 1 moduli only. Among the 
positions of the 3p — 3 branch places upon which a general surface depends 
(Chapter I. § 7), there are, in this case, 3p — 3 — (2p — Y)=p — 2 relations. 

Thus a surface for which p = 2 is hyperelliptic in all cases. There are in 
fact (p—l)p(p + l) = 6 places* for which we can construct a rational 
function of order 2 infinite only at the place. 

A surface for which p = 1 is also hyperelliptic—but it is more than this 
(Chapter I. § 8), being susceptible of a reversible transformation into itself in 
which an arbitrary parameter enters. 

Ex. 1. On the surface of six sheets associated with the equation 

y 6 =x {x - a) (x - ò)4 

there are four branch places, one at (0, 0) where six sheets wind, and at (a, 0) where six 
sheets wind, two at (6, 0) at each of which three sheets wind. These count f in all as 

w = 6 - 1 + 6 - 1 + 2 ( 3 - 1 ) = 14. 

Hence, by the formula 
w=2w + 2/?-2, 

putting n = 6, we obtain p — % 

Thus there exists a rational function J of the second order, and the surface can be 
reversibly transformed into the form rj2 = (£, 1)6. In fact the function 

t_x — b 

is infinite to the first order at each of the branch places (ô, 0), (a, 0) and is not elsewhere 
infinite. 

To obtain the values of f at the branch places of the new surface, we may express either 
x or y in terms of £. Since there are two places at which f takes any value, each of x and 
y will be determined from £ by a quadratic equation—which may reduce to a simple 
equation in particular cases. When £ has a value such that the corresponding two places 
coincide, each of these quadratic equations will have a repeated root. 

Now we have 

? x{x-a) ( + £)( - + $ 

* Chap. III. § 31, f Forsyth, Theory of Functions, p. 349, 
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Hence 
^-1)- £ ( +-2 ) - ( - )? = 0. 

The condition then is 

£1 0(a-26)2+46(a-6)£4(£6-l)=0, or £4[a2(£6-l) + (a-26)2] = 0. 

The factor 
a*(É»-l) + (a-2ò)*, 

is equal to 
[ 2 {(x -b)2-x (x- a)} + (a- 2b)2 x(x- a)]/x (x-a\ 

which is immediately seen to be the same as 

[x (a - 26)+ab]/x (x - a) 
or 

{[x (a - 2b) + ab] [x - bf/f}2. 

Thus this factor gives rise to the six places at which x= - abfta - 2b). And if we put 

rj=[x {a - 26) + ab] [x - bf/y*, 
we obtain 

!2= 2{?-\) + ( -2 ) \ 

which is then the equation associated with the transformed surface. 

Then, from the equation 
^ - 3=[x (a - 26) + ab]/[x - 6], 

we obtain 
=1 , + ]/[ ,- ( -2 )], 

^ 2 6 ( a - 6 ) £ 2 ] / f o - £ 3 ( a - 2 6 ) ] , 

which give the reverse transformation. 

Ex. 2. Prove for the surface 

y3=x(x-a)(x-~ 6)2 (x - c)2 

that p — 2 and that the function 
$=(x-b)(x-c)/y 

is of the second order. Prove further that 

[ ^ 3 - 6 - ]2 + 4 (53-1)={[ - 6 - ) 72 + 2 ^ - 6 ] /^(^- )}2 

Hence shew that the surface can be transformed to 

v
2 = [a^-b-cf+4bc(^-l) 

and that 
x=[a2£3+ari+26c - ab - ]/[ £3+rj + 6 + - 2 ], 

y = 2^2[bc + a2-ab-ac][a2^ + arì + 2bc-ab-ac]/[a^+rJ-\-b-\-c-2a]2. 

Ex. 3. In the following five cases shew that p = 2, that £ is a function of the second 
order, that in each case rj2 is either a quintic or a sextic polynomial in £, and obtain each 
of x and as rational functions of £ and rj ; 

(a) y10=x(x- (x-6)5, £ = (x- a) (x-b)/y% rì = >Ja.(x-a)2(x- bf 
(ß) y&=x(x-af(x-b)% £ = { - )( - )1 \ v = Vä. (x - a)2 (x - bf/y5 

(y) f=x{x-a){x-by, $=(x-b)/y, v = [x(a-2b) + ab][x-b]2/y* 

(ô) f=x2{x-af{x-bf{x-c)\ £=x(x-a)(x-b)(x-c)/y2, rj = cx(x-a)2(x-b)2(x-c)/yZ 
(e) y*=x (x - a)2 (x - 6)2 (x - c)3, £ = (x - a) (x -b)(x- cf\y\ r) = c{x-a){x-b) (x - c)/xy. 
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Ex. 4. Shew tha t the surface 

yn={x-alf\..{x-arf-

can always be transformed to such form that nXi ..., nr are positive integers whose sum is 
divisible by n : and in tha t form determine the deficiency of the surface. Shew also that , 
in tha t form, the only cases in which the deficiency is 2 are those given in Exs. 1, 2, 3. 
Prove tha t the cases in which p = l a r e * 

y6=x(x-a)2(x- 6)3, y3=x (x - a) (x—b)t 

y*=x(x-a)(x-6)2, y2=x(x-a)(x-b)(x-c). 

The results here given have been derived, with alterations, from the dissertation, 
E. Netto, Be Transformatione Aequaiionis yn=R(x) (Berlin, 1870, G. Schade). 

The equation 
^ - ^ ^ -

is considered by Abel, Œuvres Completes (Christiania, 1881), vol. i., pp. 188, etc. 

I t is to be noticed tha t in virtue of Chapter IV. we are now in a position, immediately 
to put down the fundamental integrals for the surfaces considered in Examples 1, 2, 3. 

60. Passing from the hyperelliptic case we resume now the considera
tion of the circumstances considered in Chapter III . §§ 28, 31—36. 

Consider any place, c, of a Riemann surface : and consider rational 
functions which are infinite only at this place: all such functions will be 
denoted by symbols of the form gNi the suffix N denoting the order of infinity 
of the function at the place. 

Let ga be the function of the lowest existing order. The suffixes of all 
other existing functions gN can be written in the form N=fia + i, where  

< a. Since there are only p orders for which functions of the prescribed 
character do not exist, all the values i = 0,1, ..., (a — 1) will arise. Let /j^a +  
be the suffix of the function of lowest order whose order is congruent to i for 
modulus a. We obtain thus a functions 

ffa> g^a+ij flWi+2) •••> 5r/*a_1a+a—I» 

Then, if gma+i be any other function that occurs, m cannot be less than , 

and a constant \ can be chosen so that gma+i—ty * *% g*a+u which is clearly 

a rational function infinite only at c, is not infinite to the order -f- . 
Thus we have an equation of the form 

gma+i — g^a+i + fffta+jì 

wherein fia +j is less than ma + i. Proceeding then similarly with g^,a+jf we 
clearly reach an equation of the form 

gma+i = -4 + Bg^a+i + fyw+ + • • • + ^ & * a . ^+a-i ( i ) 

wherein the coefficients A, B, . . . , K, whose number is a, are rational integral 
polynomials in ga. 

* Cf. Forsyth, p. 486. Briot and Bouquet, Theorie des Fönet. Ellipt. (Paris, 1875), p. 390. 
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In particular, if gr be any rational function whatever of the gN functions, 
we have equations 

gr = + ^ ^ + + -f $1 _ ̂ +a-i 

gr
2 = A2 +B2glll(H.1 + + # ^ _1< 1_1 (ii). 

9 = ^ " - 1 "*" Ba-ifffiid+i + + Ka^g^ __ ̂ +a-i • 

61. If these equations, regarded as equations for obtaining g^a+i,---, 
gÌL _ a+a-i i n terms of ga and # r, be linearly independent, we can obtain, by 
solving, such results as 

S V H = Qi,i (gr - A ) + Qi,2 (g/ - A2) + . . . + Q,,M ( j ^ - 1 - 4 ), 

wherein Q^, ..., ft*,o-i are rational functions of ga, which are not necessarily 
of integral form. 

If however the equations be not linearly independent, there exist equations 
of the form 

Pl(gr-Al) + Pt(gS-A9) + ..,+Pa-l(fi-
l-A1M) = 0 

or say 
Pa-, 9a

r-
1+Pa-,ff

a
r-*+...+ + P = 0 (iii), 

wherein Ply P2, ..., Pa-U P are integral rational polynomials in ga. Denote 
the orders of these in ga by \ly X2, ..., \a-i> ^ respectively; here P denotes 
the expression 

+ P*A2 + ... + - -1 . 

Then Pjc gk is of order a\jc + rk at the place of the surface. In order 
that such an equation as (iii) may exist, the terms of highest infinity at 
the place must destroy one another: hence there must be such an 
equation as 

a\jfc + rk = a\# -f rk\ 
and therefore 

rja = (\v - \k)/(k - if). 

Now & and &' are both less than a : this equation requires therefore that 
r and a have a common divisor. 

62. Take now r prime to a ; then it follows that the equations (ii) must 
be linearly independent. And in that case each of g^a+i, •--, g* _ a+a-i can 
be expressed rationally in terms of ga and gr> the expression being integral 
in gr but not necessarily so in ga. 

Also by equation (i) it follows that every function infinite only at is 
rationally expressible by ga and gT: and in particular that there is an 
equation of the form 

Lga
r + Ll9

a
r-

1 + ... + La^gr + La = 0 (iv), 
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wherein L, Llt . . . , La are integral rational polynomials in ga, of which 
however, since gr is only infinite when ga is infinite, L is an absolute 
constant. I t follows from the reasoning given that the equation (iv) is 
irreducible, and therefore belongs to a new Riemann surface, wherein ga and 
gr are independent and dependent variables. Further, any rational function 
whatever on the original surface can be modified into a rational function 
which is infinite only at the place c, by multiplication by an integral 
polynomial in ga of the form (ga — E^f* (ga — E2)

r* Hence any rational 
function on the surface is expressible rationally by ga and gr. Hence the 
surface represented by (iv) is a surface upon which the original surface can 
be rationally and reversibly represented. 

Since g~l is zero to order a at the place where ga is infinite, it is clear that 
the new surface is one for which there is a branch place at infinity at which all 
the sheets wind. 

To every value of gr there belong r places of the old surface, at which gr 

takes this value, and therefore also, in general*, r values of ga. Hence the 
highest power of ga in equation (iv) is the rth, and this term does actually 
enter. While, because ga only becomes infinite when gr is infinite, the 
coefficient of the term gr

a is a constant (and not an integral polynomial in gr). 

The equation (iv) is the generalization of that which is used in introducing what are 
called Weierstrass's elliptic functions, namely of the equation 

This equation is satisfied by writing ff-^fPWi 9 — ̂ ( )'- it is a known fact that the 
poles of ( ) are at one place (where w = 0). This is not true of the Jacobian function 
snw. 

63. I t follows from equation (i) that the functions 

form a fundamental set for the expression of rational functions infinite only 
at the place of the surface, that is, a fundamental set for the expression 
of the integral rational functions of the surface (iv). And, defining the 
dimension D of such an integral function F as the lowest positive integer 
such that g^D F is finite at infinity on the surface (iv), in accordance with 
Chap. IV., § 39, it is clear that in the expression of an integral function by 
this fundamental system there arise no terms of higher dimension than the 
function to be expressed : this fundamental set is therefore entirely such 
an one as that used in Chapter IV. If be the order of infinity of an 
integral function F, at the single infinite place of the surface (iv), it is obvious 

that the dimension of F is the least integer equal to or greater than - . 

* That is, for an infinite number of values of gr. 
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64. We shall generally call the equation (iv) Weierstrass's canonical form; 
a certain interest attaches to the tabulation of the possible forms which the 
equation can have for different values of the deficiency p. I t will be sufficient 
here to obtain these forms for some of the lowest values of p ; it will be seen 
that the method is an interesting application of Weierstrass's gap theorem. 

Take the case 2>=4, and consider rational functions which are only infinite 
at a single place of a surface which is of deficiency 4. Such functions do 
not exist of all orders—there are four orders for which such functions do not 
exist ; these four orders may be 1, 2, 3, 4, and this is the commonest case*, 
or they may fall otherwise. We desire to specify all the possibilities : their 
number is limited by the considerations— 

(i) If functions of orders klf Jc2,... exist, say Flf F2,..., then there exists 
a function of order n^ + 2 + ... , where , ?i2,... are any positive integers. 
In fact FilF%*... is such a function. 

(ii) The number of non-existent functions must be 4. 

(iii) The highest order of non-existent function cannot bef greater than 
2p - 1 or 7. 

I t follows that a function of order 1 does not exist, and if a function of 
order 2 exists then a function of order 3 does not exist ; for every positive 
integer can be written as a sum of integral multiples of 2 and 3. 

Consider then first the case when a function of order 2 exists. Write 
down all positive integers up to 2p or 8. Draw J a bar at the top of the 
numbers 2, 4, 6, 8 to indicate that all functions of these orders exist— 

1 2 3 4 5 6 7 8 (a). 

If then the functions of orders 5 or 7 existed there would need to be 
a gap beyond 8, which is contrary to the consideration (iii) above. Hence 
the non-existent orders are 1, 3, 5, 7. We have thus a verification of the 
results obtained earlier in this chapter (§ 58, Ex. 2). 

Consider next the possibility that a function of order 3 exists, there being 
no function of order 2. If then a function of order 4 exists, the symbol 
will be 

1 2 3 4 5 6 7 8, 

a function of order 6 being formed by the square of the function of order 3, 
that of order 7 by the product of the functions of orders 3 and 4, and the 
function of order 8 by the square of the function of order 4. Thus there 
would need to be a gap beyond 8. Hence when a function of order 3 exists 

* Chap. III. 31. 
t Chap. III. § 34. Also Chap. III. § 27. 
t Cf. Chap. III. § 26. 
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there cannot be one of order 4. If however functions of orders 3 and 5 
exist the symbol would be 

1 2 3 4 5 6 7 8 (/3), 

the function of order 8 being formed by the product of the functions of orders 
3 and 5. So far then as our conditions are concerned this symbol represents 
a possibility. Another is represented by the symbol 

1 2 3 4 5 ~8 (7). 

In this case however the existent integral function of order 8 is not expressible 
as an integral polynomial in the existent functions of orders 3 and 7. 

When a function of order 3 exists there are no other possibilities ; other
wise more than 4 gaps would arise. 

Consider next the possibility that the lowest order of existent function 
is 4. Then possibilities are expressed by 

1 2 3 4~5~6 7 8 (8), 

1 2 3 4 6 7~8 (e), 

1 2 3 4 5 6~7~8 (f), 

as is to be seen just as before. 

Finally, there is the ordinary case when no function of order less than 
5 exists, given by 

1 2 3 4 5 6 7 8 (77). 

For these various cases let a denote the lowest order of existent function 
and r the lowest next existent order prime to a. Then the results can be 
summarised in the table 

l i Dimensions of « of 
«-J. /. ~ I Gaps at Fundamental functions of. fEïrSs Lu./» 1 i/„ iw«. i\ *J 

\ p~* \ a \ r \ orSers system of orders fundamental « « * ; \P+*-l *( «-D< r - l ) - p 
i | | system mensions 
• ' I I 

a ! 2 9 J 1, 3, 5, 7 0, 9 0, 5 5 I 5 0 

I ß J 3 5 ! 1, 2, 4, 7 0, 5, 10 0, 2, 4 6 ! 6 0 
i 

\ j 3 7 I 1, 2, 4, 5 0, 7, 8 0, 3, 3 6 6 2 

\ Ò J 4 5 J 1, 2, 3, 7 0, 5, 6, 11 0, 2, 2, 3 7 I 7 2 

€ 4 5 1, 2, 3, 6 0, 5, 7, 10 0, 2, 2, 3 7 7 2 

I 4 7 j 1, 2, 3, 5 0, 6, 7, 9 0, 2, 2, 3 7 j 7 5 

I V I 6 1, 2, 3, 4 0, 6, 7, 8, 9 0, 2, 2, 2 8 I 8 6 
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That the seventh and eighth columns of this table should agree is in 
accordance with Chapter IV., § 41. The significance of the last column is 
explained in § 68 of this Chapter. 

Similar tables can easily be constructed in the same way for the cases 
p = l , 2, 3. 

Ex. 1. Prove tha t for p = 3 the results are given by 

I Dimensions of « f I 
« - „ *. Gaps at Fundamental functions of + "„ | L . « -J 

\ p-A \ a \ r '• orSers system of orders fundamental L * S 5 j £ : p + 

| ! system mensions 

a j 2 ' 7 ' 1, 3, 5 0, 7 ! 0, 4 4 \ 4 

, I ! H i 

i ß 3 | 4 ! 1, 2, 5 0, 4, 8 I 0, 2, 3 5 j 5 | 

| | 3 I 5 | 1, 2, 4 0, 5, 7 0, 2, 3 5 ! 5 

Ò 4 5 1, 2, 3 0, 5, 6, 7 0, 2, 2, 2 6 6 

Ex. 2. Prove tha t for jt? = 5, 6, 7, 8, the possible cases in which the lowest existing 
function is of the third order are those denoted by the symbols 

t f l 2 3 4 5 6 7 8 9 10 
P = 5< -

( 1 2 3 4 5 6 7 8 9 10 

„ ( 1 2 3 4 5 6 7 8 9~T0 2 

[ l 2 3 4 5 6 7 8 9 10 11 12 

/ 1 2 3 4 5 6 7 8 9 10 Ì 1 12 13 14 

p = ï J l 2 3 4 5 6 7 8 9 Ï Ö l l 12 13 14 

( l 2 3 4 5 6 7 8 9 10 2 13 Ï4 

(I 2 3 4 5 6 7 8 9 10 11 Ï2TÏ3T4 15T6 

p=S 1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 

( l 2 3 4 5 6 7 8 9~ÏÖ 11 12 13 14 15 16 

65. We have already stated (Chap. IV. § 38) that when the fundamental 
set of integral functions are so far given that we know the relations expressing 
their products in terms of themselves, the form of an equation to represent 
the surface can be deduced. We give now two examples of how this may be 
done : these examples will be sufficient to explain the general method. 

Take first the case p = 4t, a = 3, r = 7. Denote the corresponding func
tions by g3, g7. In accordance with § 60 preceding, all integral functions can 
be expressed by means of gz and two functions g7i g8 whose orders are respec
tively = 1 and 2 for modulus 3 : in particular there are equations of the form 

g?2 = 9s (gz> 1)2 + 97 (g*, i )a + (g*> 1)4 

9?9s = 9s (#>> 1)2 + 9i (9z> 1)2 + (99, l)s 

#82 = 98 (gS, 1 ) 2 + # 7 ( 0 8 , 1)3 + ( ^ 3 , 1 ) 5 



96 FORMATION OF THE EQUATION. [65 

wherein (gòì 1)2 denotes an integral polynomial in g3 of order 2 at most, the 
upper limit for the suffix being determined by the condition that no terms 
shall occur on the right of higher dimension than those on the left. Similarly 
for the other polynomials occurring here on the right. 

Instead of g7, g8 we may clearly use any functions g7 — (g3i 1)2, g8 — (#3, 1)2. 
Choosing these polynomials to be those occurring on the right in the value of 
g7g%> we may write our equations 

g?2 = « + &SV + a4, gi = 72#8 + <*sg7 + «5> g7g8 = Ä (A), 

where the Greek letters denote polynomials in g3 of the orders given by 
their suffixes. 

Multiplying the first and last equations by g8 and g7 respectively, and 
subtracting, we obtain 

g?ß5 = g8 (a#8 + ß&i + a*) 

= a2 (72̂ 8 + « #7 + a5) + » + ^ 4 , 
and thence, since* 1, g7> g8 cannot be connected by an integral equation of 
such form, 

O272+a4=0, , - = 0, > + > = 0, 

from which, as o^ is not identically zero,—for then g7 would satisfy a quadratic 
equation with rational functions of g3 as coefficients—we infer 

5 + 82« = 0 ( ). 

Similarly from the last two equations (A) we have 

# A = g - t (7^8 + ? + ««) 

= 72Ä + a3 (a^8 + Ä#z + «4) + *&?> 
and thence 

&-«2Us = 0, 3& + 5 = 0, 7 Ä + a A = , 

so that, since a3 cannot be zero—as follows from the second of equations (A)— 
we have 

7202 + 04 = 0 (C). 

The equations (B) and (C) have been formed by the condition that the 
equations (A) should lead to the same values for g7

2g8 and g8gly however these 
latter products be formed from equations (A). We desire to shew that, con
versely, these equations (B) and (C) are sufficient to ensure that any integral 
polynomial in g7 and g8 should have an unique value however it be formed 
from the equations (A). Now any product of powers of g7 and g8 is of one of 

the three forms g7i g8) g7g6K. In the first two cases it can be formed from 
equations (A) in one way only. In the third case let us suppose it proved 
that has an unique value however it be derived from the equations (A); 

* Chap. IV. § 43. 
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then to prove that g7g8 has an unique value we require only to prove that 
g7.g8K=g8.g7 K. Let be written in the form g8L + g7M -f N. Then the 
condition is that g7 (Lg8

2 + Mg7g8 + Ng8) shall be equal to g8 (Lg7g8 + Mg7
2 -f- Ng7). 

This requires only g7. g8
2 = g8. g7g8 and g7. g7g8 = g8. #7

2 : and it is by these 
conditions that we have derived equations (B) and (C). Hence also g7g3   

has an unique value. 

Thus every rational integral polynomial in g7 and g8 will, when the con
ditions ( ), ( ) are satisfied, have an unique value however it be formed from 
equations (A). 

The equations (B) and (C) are equivalent to ±= - <* < 2) ß5 = a2a3, 
a5 = — ûf3/32, and lead to 

g?2 = + ß*9i -»272» g* = * + - «sÄ, 7 * = 2«3. 

Thence 

^ 2 = «2 ^ 3 + ÄtfV - «272, 

or #7
3 - ß2#7

2 + a2y2g7 - a2
2a3 = 0, 

which is the form of equation (iv) which belongs to the possibility under 
consideration. 

The expression of the fundamental set of integral functions 1, gr> g8 in terms of g3 and 
g7 is therefore 

h 9n - • 
a2 

66. Take as another example the possibility e, § 64 above, where 
a = 4, r = 5, the orders of non-existent functions being 1, 2, 3, 6. For a 
fundamental system of integral functions we may take 1, g5) g5

2, g7. 

We have then such an equation as 

g*g7 = g7(g*> l)i + cg5
2 + g5(g4, l)i + (#4, l)3 

where is a constant : let this be written in the form 

9 = <*i#7 + gi + ßig* + «3, 

the constant being supposed absorbed in g5
2. 

Write h5 for g5 — < and h7 for g7 — h5 — ß1 — 2ax. 

Then 

h5h7 = «12 + a i& + as-

Replacing now 5, 7 by the notation g5, g7 and a3 + <x1ßl +
 2 by a3 we may 

write 

= «s, g7
2 = & + * + ^gi + /3,#7, /75

3 = 73 + &#5 + 7i^2 + 72*77. 
. 7 
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Hence the condition g5. g7
2 = g5g7. g7 requires 

a3g7 = ß*g5 + a2g5
2 + ax [7s + ß2g5 + 7lg5

2 + 7 ^ ] + &a3, 

from which 

a3 = ai72, A + «iA = 0, a 2+ai7i=°> ai7s = - Ä 0 s , 
and thence 

ai73=—Aai72, o r if «l i s n ° t zero, 73=— ß1y2-

Substituting this value for 73 and the value g7 — a3/^5= «172/9« *n the 
expression for ^5

3 we obtain 

#>3 = - Â 7 2 + &#> + 7i#52 + «i722/^5 
or 

#54 - 7l^53 - & & * + ßl72#5 - «l722 = 0, 

which is then a form of the equation (iv) corresponding to the possibility (e). 

In this case the fundamental integral functions may be taken to be 

!> 9 9 \ Ì9b-yi9b- &95+/W/y2. 

I t is true in general, as in these examples, that the terms of highest order 

of infinity in the equation (iv) are the terms ga, g*. For there must be two 
terms (at least) of the highest order of infinity which occurs ; and since r is 

prime to a, two such terms as gagr> ffaffr cannot be of the same order of 
infinity. 

Ex. 1. Prove that for p = 3 the form of the equation of the surface in the case where 
a = 3, r=4 is 

9*+9i(9z> 1\+94(9 , 1) +(&> )4=0, 

and shew that this is reducible to the form 

y3 +yx (x + a) + 4 •+- axx^ + a^2 + a^c -f a 4 = 0 , 

x being of the form Ag3+B, of the form ± + 1) + , A, By C, D> E being constants. 

Thus the surface depends on Sp - 4 or 5 constants, at most. 

Ex. 2. The reader who is acquainted with the theory of plane curves may prove tha t 
the homogeneous equation of a quartic curve which has a point of osculation, can be put 
into the form 

By putting x=Tf/£, y=<*>/$, this takes the form of the final equation of Example 1. Com
pare Chapter I I I . § 32. 

Ex. 3. Prove tha t for p=3, the form of the equation of the surface in the case where 
a = 3, r=b is 

9 3+9 2(9 > 1\+9 9 (9 > ^ + ^ C ^ 1 ) = ° -

Ex. 4. Denoting the left hand of equation (iv) by f(gr, ga\ df/dgr by f(gr) and the 
operator 
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by J), prove that if gm be any rational function which is infinite only where ga and gr are 
infinite, there exists an equation 

where X0, , Xa _ are polynomials in ga. 

67. We have already in Chapter IV. referred to the fact that an integral 
function is not necessarily expressible integrally in terms of the coordinates 
x, by which the equation of the surface is expressed, even though be an 
integral function. The consideration of the Weierstrass canonical surface 
suggests interesting examples of integral functions which are not expressible 
integrally. 

In order that an integral function g whose order is /J, should be expressible 
as an integral polynomial in the coordinates ga, gr of the surface, in the form 

m n , 
9=9a9r + 

it is necessary that there should be a term on the right hand whose order of 
infinity is the same as that of the function ; we must therefore have an 
equation of the form 

fi = ma + nr 

wherein mt n are positive integers. Since a polynomial in ga and gr can be 
reduced by the equation of the surface until the highest power of gr which 
enters is less than a, we may suppose n less than a. 

This equation is impossible for any value of pu of the form nr — ka. And 
since herein may be taken equal to any positive integer less than nr/a, the 
number of integers of this form, with any value of n, is E(nr/a), or the 
greatest integer contained in the fraction nr/a. Hence on the whole there 
are 

aÌ E(nr/a) 

orders of integral functions which are not expressible integrally by ga and gr. 

Corresponding to any order which is not expressible in the form nr — ka, 
which is therefore of the form nr + ma, we can assign an integrally expressible 

integral function * namely grga ' hence the p orders corresponding to which, 
according to Weierstrass's gap theorem, no integral functions whatever exist, 
must be among the excepted orders whose number we have proved to be 

*2 E (nr/a) orf l O - 1 ) ^ - 1 ) -
n=l 

* Though it does not follow that every integral function whose order is of the form nr + ma 
can be expressed wholly in integral form. 

t If a right-angled triangle be constructed whose sides containing the right angle are 
respectively a and r, and the interior of the triangle be ruled by lines parallel to the sides 

7—2 
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Hence the number of orders of actually existing integral functions which are 
not expressible integrally is 

In the table which we have given for p = 4 (§ 64) the existing integral 
functions which are not expressible integrally are, for the case (7), of orders 8 
and 11 ; for the case (8) of orders 6 and 11 ; for the case (e) of orders 7 and 
11 ; for the case (f) of orders 6, 9, 10, 13, 17 ; for case (77) of orders 7, 8, 9,13, 
14, 19. The reader can easily assign the numbers for the cases in which 
p = S. 

Ex. 1. Prove tha t for the surface 

9*+9 (9*~ )+9 9 ^ ^ + S ^ f e 1) = °> 
the function 

9i=9btib-c)l9z 
is an integral function which is not expressible as an integral polynomial in and gb. 

Ex. 2. Prove that for the surface 

9r3+9r2ß2+9ïa№ + «22« = , 
where 2 = ( - ) { - 2\ 

#2 = ( # Ì - W I + &I> 

/ being of the first order in g3, and cy bly klt being constants, the two following functions 

are integral functions not integrally expressible— 

98=9r (0V + ft)/«2i 9n=97 (97 + bi)/($3-ki)-

68. The number ^ (a— 1) (r — l)—p is susceptible of another interpre
tation which is in close connexion with the last. Let the set of fundamental 
integral functions for the Weierstrass canonical surface be denoted by 
1, G1} G2,..., ffa_!. From the equations whereby 1, gri gr,---, 9r~ are 
expressed in terms of them we are able (Chapter IV., § 43) to deduce an 
equation 

(1, gr, ...,
 1) = V2. A (1, Gu ft, ..., Go-

wherein A (1, gr, •••, <7r_1) is formed as a determinant whose (i,^')th element 
is the sum of the values of gl

r
+j~2 at the a places of the surface where ga has 

the same value, and is therefore an integral polynomial in ga> A(l, Glt..., Ga-i) 
is formed as a determinant whose ( , j)th element is the sum of the values of 
Gi^Gj-i for the same value of gay which also is an integral polynomial in 

containing the right angle, and at unit distances from these sides and each other, so describing 
squares interior to the triangle, the number of angular points interior to the triangle is easily 

a-l 
seen to be 2 E (nrja). On the other hand if the right-angled triangle be regarded as the half of 

» = l 
a rectangle whose diagonal is the hypotenuse of the right-angled triangle, and the ruled lines be 
continued into the other half, it is easily seen that the total number of angular points of the 
squares interior to the whole rectangle is ( a - l ) (r-1). 
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gay and V is a determinant whose elements are those integral polynomials in 

ga which arise in the expressions of 1, gr> . . . , ga
r~

x in terms of 1, Qu . . . , ö a _i . 

The determinant (1 , gri . . . , s £ - 1 ) is the square of the product of all the 
differences of the values of gr which correspond to any value of ga. I t 
therefore vanishes, for finite values of ga, when and only when two of these are 
equal. If the form of the equation of the surface be denoted byf(gr, ga) = 0, 
this happens when, and only when, df/dgr=Q. Now df/dgr is an integral 
polynomial in ga and gr, of order a— 1 in the latter. Regarded as a rational 
function on the surface it is only infinite when ga and gr are infinite. I t 
follows from the fact (§ 66), tha t ga is a term of the highest order of infinity 
which enters in the polynomial f(gr, ga), tha t df/dgr is infinite, at ga = oc , 
to an order r(a— 1). This is therefore the number of finite places on the 
surface at which df/dgr vanishes. Hence we infer tha t the polynomial 

M l f ^ r , . . . ! ^ " 1 ) i s o f «kg1 ,00 r ( a - l ) in ga. 

Since there is a branch place a t infinity counting for (a— 1) branch 

places, the polynomial A ( l , GY,..., Ga-i) is of order 2a + 2p — 2 — (a— 1) 

= a - l + 2 p m s r e ( § § 4 8 , 6 1 ) . 

Thus V is of order 

i [ r ( a - l ) - ( a - l + 2 p ) ] , 
tha t is, of order 

This interpretation of the degree of v is of interest when taken in connexion with the 
theorem—Every integral function can be written in the form 

(#*> 9r)l{ga> 1), 

the numerator being an integral polynomial in ga and gry and the denominator being an 
integral polynomial in ga. All the polynomials (ga, 1) thus occurring are divisors of the 
polynomial v. See § 48 and § 88 Exx. ii, iii*. 

When the factors of v are all simple we may therefore expect to be able to associate 
each of them, as denominator, with an integral function which is not integrally expressible. 
In this connexion some indications are given in a paper, Camb. Phil. Trans, xv. pp. 430,436. 
For Weierstrass's canonical surface see also a dissertation, De aequatione algebraica...in 
quandam formam canonicam transformata. G. Valentin. Berlin, 1879. (A. Haack.) 
Also Schottky, Creile, 83. Conforme Abbildung.. .ebener Flächen. 

69. The method which has been exemplified in §§ 6ot 66 for the formation 
of the general form of the equation of a surface when the fundamental set 
of integral functions is given, is not limited to Weierstrass's canonical surface. 

Take for instance any surface of three sheets, and let 1, glt g2 be any set 

* Cf. Harkness and Morley, Theory of Functions, p. 268, § 186. 
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of fundamental integral functions with the properties assigned in Chapter IV. 
§ 42. Then there exist equations of the form 

£i#2 = 7 + ß 9i + « 92 

gi2 = yi + ßigi + *i92 

wherein the Greek letters denote polynomials in the independent variable 
of the surface, x, whose degrees are limited by the condition that no terms 
occur on the right of higher dimensions than those on the left. 

Thus the dimension of ß is not greater than that of g2 and the dimension 
of a is not greater than that of gx. Hence we may use g1 — a, g2 — ß instead 
of gY and g2 respectively, and so take the first equation in the form gxg2 = y, 
the form of the other equations being unaltered. As before, there are con
ditions that these equations should lead to unique values for every integral 
polynomial in gx and g2t namely 

92 (YI + ßi9i + «ïft) = 9 9i ( + M i + &&) = flW-

These lead to the equations 

Y = a i « 2 , 7i = - a i ^ 2 , 7 2 = -<*2&, 
and thence to 

#i3 - ßi9i2 + «LÄft - *i2«2 = 0 
gi - ßigi+*2/3i#2 - *2 = 0. (v) 

Since every rational function can be represented rationally by x and 
gx and g2 = a1a2/gl, it follows that every rational function can be represented 
rationally by x and gx. Hence the surface represented by the first of these 
two final equations is one upon which the original surface is rationally and 
reversibly represented. So also is the surface represented by the second of 
these equations. 

The fundamental integral functions are derived immediately from the 
equation, being 

!>#i> ( # i 2 - ß i 9 i + « i & ) / a i -

Ex. 1. Prove tha t the integrals of the first kind for the surface 

f(9i, x)=9i3-ßi9i2+«iß29i -«i2a2=0 
are given by 

where ^ + l , r2 + l are the dimensions of gx and g2 and f (gx) =^fßgx. 

Ex. 2. Prove that for the case quoted in Ex. i, § 40, Chapter IV, the form of the 
equation is, (i) whenp is odd = 2n— 1, say, 

gn3-angn
2 + an_1an + lgn-a2

n.1an+2 = 0, 
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where an_1? an, a n + 1 , on + 2 are polynomials in x of the orders indicated by their suffixes, 
(ii) when p is even = 2n - 2, say, 

9n* - <* $ + ß n - ßn2yn= , 

where , /3n , yn , Ön are polynomials in ? of the nth. order. 

.Ék. 3. Writing gi = a1yi the first of the equations (v) becomes 

« i y 3 - & y 2 + fe/--a2 = 0. (A) 

If the dimensions of gx and g2 be 7̂  + 1, 2 4-1 , find the degrees of the polynomials 
ai> ßi> a2i &• And prove that if the positive quadrant of a plane of rectangular co
ordinates ( , ) be divided into squares whose sides are each 1 unit in length, and a convex 
polygon be constructed whose angular points are determined from this equation (A), by 
the rule that a term xry* in the equation determines the point (r, s) of the plane, then the 
number of angular points of the squares which lie within this polygon is p. 

70. In obtaining the equation 

9is - Ä#i2 + aJSfr - afa = 0 (E) 

we have spoken as if the original surface were of three sheets. It is im-
portant to notice that this is not necessary. 

Suppose our given surface to be any surface for which a rational function 
of the third order, f, exists. Take so that the poles of the function (£ — c)~\ 
which is also a function of the third order, are distinct ordinary places of the 
surface. So determined denote the function by x. Let a1} a2, a3 denote these 
poles. Then just as in § 39 of Chapter IV. it can be shewn that there exist 
two rational functions and g2> only infinite in ax and a2, such that every 
rational function which is infinite only in a1} a2) a3 can be expressed in the 
form 

wherein 7, a, ß are integral polynomials in x whose degrees have certain 
upper limits determined by the condition of dimensions. 

And as before we can obtain the equation (E). Further, if F be any 
rational function whatever and Al9 A2, ... be the values of x at the places 
other than aly a2, at which F becomes infinite, it is clearly possible to find 
a polynomial of the form (x — A^ (x — A2)

n*... such that KFonly becomes 
infinite at a1} a2y a3. Hence every rational function of the original surface 
can be expressed rationally by x and . 

Thus as w, gx are rational functions on the original surface, (E) represents 
a new surface upon which our canonical surface is rationally and reversibly 
represented. And it is as much the proper normal form for surfaces upon 
which a rational function of the third order exists as is the equation 
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(T2=Z(Z} L)2p+2, previously derived, for the hyperelliptic surfaces upon which a 
function of the second order exists. 

Ex. Obtain the hyperelliptic equation in this way. 

71. I n the same way we can obtain a canonical form for surfaces upon 
which a function of the fourth order exists. We can shew tha t there exist 
three functions glt g2) g3 satisfying such equations as 

gi = atfi + Kg2 + cYg3 + h 

= + h 

wherein the nine coefficients are integral polynomials in a rational function x, 
which is of the fourth order; and that the surface is rationally and reversibly 
representable upon a surface given by the equation 

g% - gi + Ci) - gi (a2b3 + h - a3cY) + - {<hh - hk2 + aj>& + aJcY) 

+ (hbzk2 + ajbjc2 + ^ = 0. 

Ex. These coefficients a1? ..., k3 satisfy certain relations; prove that the conditions 

that g2.g3
2=g2gz.g3i 91- 3

2=919 -9 ^ 9\9 -92=929 '9\ a r e t h a t the following nine 

polynomials should be divisible by a polynomial , whose value is ^ 3 — 3 - ^ ; 

a2nx ( 3 — 3 ) — {a2hx — ajc2\ ^ — (ajb^ — 3), ^ % — 3 

— 2
2 + a^ajix + at

2k2, — hx { 3 -f a2bj) + at ( 2 3 1 - axk3)y — k2 {axa3+a2hl) 4-<î %k3 

( , + a3n^ ( 3 - a3bx) - (ajtfii - bxk3\ 3 { 3 - a3bj) - b3 {hxb3+bxk3\ 

Herein = 3 — 19 hl — a2b3—k1. 

In fact if 

9i92 = ab9i+h92 + cb93 + hi 922=ai9i + hg2 + ctg3 + h> 9i2=a6g1+b6g2+c6g3+k6, 

the results of the division of these nine polynomials by are respectively 
aóì bbì còì a4, 64, c4, a6y 66, c6, 

while 
k\ = a2cb ~ C1C± ì k§ = ^1^5 + 03C4 , KQ = TI^CQ + 03Cà. 

72. When the order of the independent function, denoted in §§ 69—71 by x, is known, 
and the dimensions of the fundamental integral functions in regard thereto, the general 
forms of the polynomial coefficients in the equations, whereby the products of pairs of 
these integral functions are expressed as linear functions of themselves, can be written 
down. And thence, if the necessary algebra (such as that indicated in the example of 
§ 71), which serves to limit the forms of these polynomial coefficients, can be carried out, a 
canonical form of the equation of the surface can be deduced. 

But the converse process may arise : when we are given a form of the fundamental 
equation associated with the surface, we may require to replace the given equation by one 
in which the dependent variable is one of the set of fundamental integral functions. More 
generally we may replace it by an equation in which the dependent variable is an integral 
function of the form 

v = (x, 1) +( ?, l )A#i+ ... + ( , 1)A gn-i-
1 n —l 
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This replacement possesses a high degree of interest (§ 88. Ex. iii). In either case 
it is necessary to be able to calculate the fundamental integral functions. 

73. We give now sufficient explanation to enable the reader to calculate the expression 
of the fundamental integral functions for any given form of the fundamental equation 
associated with the Riemann surface. This equation may* be taken in the form 

yn+ya-1al + .,.+yan_1+an=0y (A) 

«!, ..., an being integral polynomials in x ; thus y is an integral function of x (§ 38). 

The n values of any rational function, rf} which arise for the same value of x, will be 
denoted by rçW,..., rç(n) and called conjugate values ; their sum will be denoted by . If 
any of the possible rational expressions of TJ be ( , y)/^ ( , y\ and / being integral 
polynomials in x and y, and if in the expression of i/W, 

we multiply numerator and denominator by the product of the n — 1 values conjugate to 
•fy (x, y(l)\ the denominator will become an integral symmetric function of yW,..., y(n\ and 
can therefore be expressed by means of the equation (A), as an integral polynomial in x ; 
and the numerator will take a form which can be expressed as an integral polynomial in 
x and yV). Hence the value of any rational function, on the surface associated with the 
equation (A), can be expressed in the form 

rj = ^ , ( ) 

,..., _ denoting integral polynomials in x, with no common divisor. 

Thus, to determine the expression of the fundamental integral functions, we may 
enquire what modification this general form undergoes when rj is an integral function. 

74. In the first place the denominator D must be such that J)2 is a factor of the 
integral polynomial f ( l ,y , . . . , # n - 1 ) ; so that D is capable only of a limited number of 
forms. For let x—a be a factor of Z), repeated r times, and write 

^ i = ( * - « ) r A + C i , ( t = 0 , l , . . . , ( » - l ) ) 

wherein d is a polynomial of order less than r ; since A, .•., An^1 have no common divisor 

which divides D, not all of C, Gly..., Cn_x can be divisible by x — a. Then the function 

^ / ( * - ) ' - ( + 1 + . . . + ,_ 1 - 1 = ( + 1 + . . . + ,.-13 - 1 ) / ( * - ) ' , 

is an integral function, when rj is an integral function, as appears from its first form of 

expression. Denote it by f. 

Suppose Ci not divisible by x — a. From the equation f 

A ( l , y ) . . . , ^ - 1 , f , ^ + 1 , . . . , y w - 1 ) = V 2 i A ( l ^ 1 , . . . ^ n - i ) , 
recalling the form of the determinant which is the square root of the left hand side, we 
infer 

(-^pA(i^,...^ i-syJy+s.-.^n- i)=v i
2A(i,^1,...,^_1). 

Hence, save for sign, 
V/Vi=(x-ay/Ci, 

so that (x—a)r divides v. 

Thus the first step in the determination of the integral functions is to put A( l ,y , 

. . . , y n - 1 ) into the form 1*1 . . . * , wherein 19..., are polynomials having only simple 

* Chap. IV. § 38. t Chap. IV. § 43. 
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factors. This can always be done by the rational process of finding the highest divisor 
common to ( l ,y , . . . ,y* 1 - 1 ) and its differential coefficients in regard to x. I t will include 
most cases of practical application if we further suppose all the linear factors of 

(1, , . . . , y n _ 1 ) to be known*. 

75. Suppose then that x — a is a factor which occurs to at least the second order in  
( l ,y , . . . , y n - 1 ) . Denote x — a by u. By the solution of a system of linear equations, 

we can (below, § 78) find all the existing linearly independent expressions of the form 

(a + a1y + . . .+an- iy n ~ 1 ) /^ , 
wherein a, al9 ...yan-i are constants, which represent integral functions. If the highest 
power of y actually entering be the same in two of these integral functions, say in f and f', 
we can use instead of f a function of the form (' — £ where p, is a certain constant. By 
continued application of this method of reduction we obtain, suppose, integral functions, 
of the form 

fr = (a4«1y+...+«Vyr)M (C) 
wherein, since these functions are linearly independent, is less than and the values of 
r that occur are all different. These values of r tha t occur are among the sequence 
1, 2 , . . . , {n— 1) ; let e denote in turn all the n— 1 — other integers in this sequence. Pu t 
C$ for y*. Consider now the set of integral functions 

h •••» Cn-v 

As before we can determine by the solution of a system of linear equations all the 
linearly independent functions of the form 

+ßiu+...+A-ifi»-!)/«, 
wherein ß,ßl9..., ßn-i are constants, which are integral functions ; and, as before, we can 
choose them so that the ('s of highest suffix which occur shall not be the same in any two 
of these integral functions. Then in place of 1, (u . . . , {n^x we obtain a set 1, £ j , . . . , £n-ly 

wherein £r is (r unless there be an integral function of the form 

(P + P1Cl + -+Prtr)/u, (D) 

wherein the f of highest suffix occurring is fr, in which case £ r denotes this function. 

Then we enquire whether there are any integral functions of the form 

( + 1& + — + y * - i f e i - i ) M 
y, . . . , y n - i being constants. If there are, the process is to be continuedf. If there are 
none, let v denote any other linear factor occurring in A (1, y,..., # n - 1 ) to a t least the 
second order. Then, as for the set 1, y, . . . , y4'1, we investigate what linearly independent 
integral functions exist of the form 

(a-fa1^1 + . . .+a r t_ 1^ n_ 1 ) /y , 

and continue the process for v as for : and afterwards for all other repeated factors of 

76. When these processes are completed, we shall obtain a set of integral functions 

such tha t there exists no integral function of the form 

(a + a t !;! + . . . + _117 _1 ( ? - ), 

* In the work below, if be a polynomial of order r, it is necessary to suppose , 3, ..., ak to 
be polynomials of order r—1. 

+ The number of steps is finite, by § 74. 
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wherein a, . . . , an-i are constants, for any value of c. I t is obvious now from the successive 
definitions (C), (D), ... of the sets (1, fc,..., ^ . (1, £ , . . . , $n_t)y..., (1, ̂ , . . . , ^ „ that 
every power of can be represented in the form 

3, i=v+v1 ,h4-. . .+tfn_1 ,7 n_1 , 

wherein v, vu . . . , vn_x are integral polynomials in #. Hence every integral function can 
be written in the form 

^ ^ ^ i + . - . + ^ n - i ^ n - i ) / ^ , 
wherein E, ...,En__ly F are integral polynomials in x without common divisor. If now 

#— be a factor of F and we write 

^ = ( * - )# £ +< , = 0 , 1 , 2 , . . . , ( - 1 ) , 

ai being a constant, the function 

rìFj(x-c)-[G + G1r}l + ... + Gn_1r}n_1] = (a + a1rìl + .„ + an_lVn_1)/(x-c) 

is an integral function, as appears from the form of the left-hand side. By the property 
of the set 1, rjly ...,r}n-1 there is no integral function having the form of the right-hand 
side, unless each of a, a19 . . . , an-l be zero. 

Hence each of Ey..., En_x are divisible by x — By successive steps of this kind it 
can be shewn that every integral function can be written in the form 

T, = H+ITlVl + ... + Hn_lTin_1, (E) 

wherein 1 ,,.,ffn-1 are integral polynomials in x. 

77. But in order tha t the set 1, fa, . . . , g n - i should be such a fundamental set as 
\9\ " - u s e d m Chap. IV., there must be no terms occurring on the right-hand side 
here, which are of higher dimension than 17. We prove now that this requires a further 
reduction in the forms of 1, rjly..., rjn_ly which is of a kind precisely analogous to the 
reductions already described. 

Let a -f 1 be the dimension of rjy pi the order, and therefore also the dimension of the 
polynomial Hi (§ 76) and o^-fl the dimension of ; we suppose < %> <r2 ^> . . . $> <rn-1 ; 
then 

Putting # = l / £ , = }/ , / ^ / * P i = ( l , £)Pi, an integral polynomial in £, 

this equation is 

A=...+(l,0,,iW
+'«"*+.... 

If now in equation (E) a term arises of higher dimension than rj, one of the integers 

p-(<r + l ) , . . . , /3i+o-i-<r,. . . 

is greater than zero. In that case let r + 1 be the greatest of these integers. Then we can 
write 

^ = ( . . . - f ( l , f ) m . A i + . . . ) / ^ , 

wherein the symbols (1, £)1 denote integral polynomials in £ Putt ing 

( l , ö m r = № + « i , (*=0> !> 2 , . . . , Ti-1) , 
wherein a£ is a constant, we have 

^ _(^ + ^ 1 1 + >̂  .^ _1 1) = ( + 1 14....+ _1 _1)/^ 

Herein the left hand is a function which is not infinite when x is infinite. Hence, 
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when the set 1, ^ , . . . , ) _ are such that the condition of dimensions* is not satisfied, 
there exist functions of the form 

(a + a lA1-h...+aw_1An_1)/f, 

i.e. of the form 

4 a + a lJJl//
t+1 + . . .+an-1^-1 / /M-1 + 1] , 

wherein a, . . . , an-X are constants which are not infinite when £ is zero or x is infinite. 

In virtue of their definition the functions hl9..., hn_x are not infinite when x is infinite, 
and are therefore infinite only when x is zero or £ infinite. We may therefore regard them 
as integral functions of £. And since there exists no integral function of the form / , the 
dimensions of hu . . . , kn_1 as functions of £ are o^-f 1 , . . . , o-n_t + l. 

As before determine a set of linearly independent functions of the form 

(a + a1A1 + ...+an_1An_1)/f, 

a, . . . , an_1 being constants, which are not infinite when £ = 0 , choosing them so tha t the h 
of highest suffix which occurs is not the same in any two of the functions. Let the 
function wherein the h of highest suffix is hr be denoted by Jcri so that kr is of the form 

kr = ( +11^ + . . . + / i A ) / £ 

Then 
< = < 1 ( + / *1*1*... +Mr/#O V + 1) 

is a function which is not infinite when x=0, as appears from the form of the right-hand 

side ; it is therefore an integral function of x, and since kr is not infinite when x is infinite 

i t is an integral function of x whose dimension is only oy. Denote i t by 6>. Then rjr can 
be expressed in the form 

and in the right hand no term occurs of higher dimension than that of rjr) while 6> is of 
less dimension than rjr. If then there be m functions such as Jkr, m of the functions 
Viy-iVn-i can be expressed in the form (F) in terms of the remaining n— 1 — m functions 
of r)ly . . . , rjn_t and m functions 6> ; the sum of the dimensions of these m functions Gr is 
less by m than that of the dimensions of the functions rjr which they replace. Denoting 
the functions among qlf . . . ,?;„_! which are not thus replaced by functions G> also by the 
symbol G, for the sake of uniformity, every integral function is expressible in the form 

and the sum of the dimensions of Gl9..., Gn^.1 is less by m than the sum of the dimensions 

Of !h , . . . , !7n- l -

If now in this expression of integral functions by GtJ . . . , Gn_1 any terms can arise 
which are of higher dimension than the functions to be expressed, we can similarly replace 
the set G1, . . . , <-rn_x by another set whose dimensions have a still less sum. 

Since no integral function can have a less dimension than 1, the sum of the dimensions 
of the functions whereby integral functions are expressed, cannot be diminished below n — l. 
"We shall therefore arrive a t length at a set gu . . . , ^ n _ 1 of integral functions, in terms of 
which all integral functions can be expressed so that the condition of dimensions is 
satisfied. 

I t is this system which it was our aim to deduce. 

* Chap. IV. § 39. 
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Ex. For the surface associated with the equation y2 = (x, l)2p + 2
 aU integral functions 

can in fact be represented in the form (x, 1) +(# , 1) , where rj^y+x™. If m>p+l 
the dimension of ^ is m. In order to ascertain whether the condition of dimensions is 
satisfied we enquire whether there exist any functions of the form # [ a + a 1 ( y + # m ) / # M ] , 
wherein a, a t are constants, which are finite for x=ooy namely whether [a + a1(y£m + !)]/£ 
can be an integral function of £. 

Shew that this can only be the case when + = 0. Putt ing £ r = [ - a + a i ( # £ m + ! ) ] / £ 
it is clear that krx

m~1=a1y. Thus all integral functions can be represented in the form 
(x, 1) +(# , 1) . Shew tha t the condition of dimensions is now satisfied. 

78. There is one par t of the process given here which has not been explained. Let 
r)U . . . , »?«_! be integral functions, and let denote a linear function of the form x — c. I t 
is required to find all possible functions of the form 

(a + alT)1 + .„+an_1rin_1)/u, 

wherein a, . . . , an_x are constants, which are not infinite when u = 0. We suppose 
ifU . . . , r)n_1 to be such that the product of every two of them is expressible in the form 
v+ViVi + *» + vn-i*ln-ii V» •••» y »- i being integral polynomials in x; this condition is 
always satisfied in the actual case under consideration. 

The integral function ZT=a+a 1»; 14- . . .+an-i7n- i will satisfy an equation of the form 

( - )... ( - ( ))= + 1 »-1 + ...+ _1 + =0, 

wherein A^ is an integral polynomial in a, . . . , an_1 of the ith order ; Kt is also an integral 
polynomial in x. In order that / be an integral function it is sufficient that Kt be 
divisible by u\ and when / is an integral function these n conditions will always be 
satisfied. And it is easy to see tha t if denote the sum of the i t h powers of the n values 
of which arise for any value of x> these conditions may be replaced by the conditions 
that Si be divisible by . I t is clear that it may not be an easy matter to obtain the 
values of a, . . . , _1? which satisfy the conditions thus expressed. 

But in fact these conditions can be reduced to a set of linear congruences, and event
ually to a set of linear equations for a, . . . , aw_x. We shall not give here the proof of this 
reduction*, but give the resulting equations. For in many practical cases we can obtain 
the results, geometrically or otherwise, in a much shorter way. 

Let 

I 1 , 

denote in order of magnitude all the positive rational numerical fractions not greater than 
unity, whose denominators are not greater than n ; each being in its lowest terms. Let 
ih, •••> Vr denote any linearly independent integral functions. Let 2 denote the sum of the 
n values of a function which arise for any value of x. Determine all the possible sets of 
values of the constants , 1 . . . , ar such that the congruence 

2(a + alT)1 + ...+arr}r)(c + c17il + .„ + crrir)=L0 (mod. ti) 

is satisfied for all values of the quantities c, cu . . . , cr. Substituting in the left hand the 
value of x for which u—O and equating separately to zero the coefficients of c, c19 . . . , cry we 
obtain r + 1 linear equations for the constants , 1 . . . , ar. By these equations we can 

* Which is given by Hensel, Acta Math. 18, pp. 284—292. His use of homogeneous variables 
is explained below Chap. VI. § 85. But it is unessential to the theory of the reduction referred to. 



110 ACTUAL ALGEBRAICAL DETERMINATION OF [78 

express a certain number* of a, al9 . . . , ar in terms of the others ; denoting these others by 
ßu •••> ft the function a+a1?71 + ... + ar?7r takes the form & & + . . .+ /3 f f „ wherein fls . . . , f# 

are definite linear functions of 1, , . . . , rjr with constant coefficients, and the equations in 
question are then satisfied for all constant vahces of ß19..., ßs. We associate f the functions 

&, . . . , & with the first term - of the series of fractions specified above. We proceed thence 

to deduce a set of integral functions associated with the next term of the series, -, . 

But in order to be able to describe the successive processes in as few words as possible, let 
us assume we have obtained a set of integral functions g19 . . . , £m which in the sense 
employed are associated with\ the fraction e of the series, and wish to deduce a set of 
functions associated with the next following fraction of the series, c'. Put down the con
gruence 

2( 1&+---+ ( )( 1£1 + ...+ $ ?-1 = 0 (mod. u™). 

Herein ylt . . . , ym denote constants, denotes in turn all positive integers not greater 
than n which are exact multiples of the denominator of the fraction c, so that iV is an 
integer, | | denotes the least integer which is not less than , and, for any proper value 
of , the congruence is to be satisfied for all values of the quantities e19 . . . , em. I t will be 
found in practice that the left-hand side divides by u]U' ~l for all values of yl9 . . . , ymj 
e\t •••> em- If we carry out the division, then, in the result, substitute the value of x 

which makes u=0, and equate separately to zero the coefficients of the ( . J products of 

eii •••) em which enter on the left, we shall have this number of linear equations for  
•••! m- Solving these, and thereby expressing as many as possible of yly . . . , ym in 

terms of the remaining, which we may denote by y / , . . . , y'mt, y1£1 + . . .+yw lfw will take a 
form yièi+...+y'm'gm'i wherein y / , . . . , y'm ' are arbitrary constants, and £/, . . . , £'m' are 
definite linear functions of £1? . . . , £m . We say that £x', . . . , £'m' are associated with the 
fraction . 

This process is to be continued beginning with the case when e = - and ending with the 

case when e' = l. The functions associated with the last term, 1, of the series of frac
tions, say G19 . . . , Gki are all the functions of the form a-|-a1i;1H-...+an_1i7n_1, wherein 
a, al9 . . . , an_j are constants, which are such that GJu, . . . , Gk/u are finite when u=0. 

For the case w = 3 , of a surface of three sheets, the series is ^, ^, ^, 1. The successive 
congruences may therefore be denoted by 

(£2) = 0 (mod. «), 0$3) = O (mod. u2), (S2) = 0 (mod. w2), (#3) = 0 (mod. u3), 

wherein (St) denotes such an expression as 2 (yi^i + . . . + ) ( e 1 ^ i+ . . .+e w f w ) i ~ 1 . 

In fact 3 is the only integer not greater than 3 such that 3 . J is integral and | 3 . J | = 2. 
And 2 is the only integer not greater than 3 such that 2 . j is integral and | 2 . | | = 2 ; 
finally 3 is the only integer such that 3 . § is integral, and 13.11 = 3. 

For a surface of four sheets the fractions are 

4» 3> 2> 3» ï> 1' 

* At most, and in general, equal to r. 

t In a certain sense the functions flf ..., f, are all divisible by . 

X Divisible by x€, in a sense. 
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We therefore have 

e ' \ such that i€=integral \W\ congruence 

0 \ i \ = 2 1 (£2) = 0(mod. u) 

è * = 4 If | = 2 (>Sf4) = 0(mod. «») 

1 | = 3 | | | = 2 (AJ = 0(mod.«*) 

! Ä ' = 2 l * M №) = °(mod.^2) 
7 3 = 4 |§ |=3 (£4) = 0(mod. w3) 

S I f *=3 j | | | = 3 (£3) = 0(mod. M») 

î 1 =4 Ì |4| = 4 (£4) = 0(mod. 4) 

It must be borne in mind that the results of the solution of each of the seven con
gruences of the sequence in the right-hand column, are here supposed to be substituted in 
the next one : so that, for instance, the fourth congruence here may be quite other than a 
slightly harder case of the first congruence. 

Ex. Prove that for a surface of five sheets the congruences are, in order, 

(I) (S2) = 0 (, «); (2) ( = 0 (, ; (3) («0 = 0 (, «2); (4) (Ä,) = 0 (, *); (5) (£ ) = 0 (, *); 
(6) ( = 0 (, tfl); (7) (S4) = 0 (,*»); (8) (S5)=0 (, *•;; (9) (&,) = ()(, »); (10) (£4) = 0 (, *•); 
(II) (ÄJaO (, *). 

79. Ex. i. Prove for the equation y*=x2(x—l) that (1, y, y2, y3)= — 256 6( — l)3. 

Shew that the equations 

2 (a + + a 2 y 2 + a3y3)* = 0 (mod. (x - 1 )<), 

where a, a1} a2, a3 are constants, and is in turn equal to 1, 2, 3, 4, are only satisfied by 
a = a1 = a2 = ct3 = 0. 

Shew that the equations 

2(/3+/3^+ 2
 2 + 3 ^ = 0 (mod. x% 

where ß, ßl7 ß2i
 a r e constants, and is in turn equal to 1, 2, 3, 4, require / 3 = ^ = 0 and 

leave ß2 and /33 arbitrary. Hence — , — a r e the only integral functions of the form 

(a + a i y + a 2 y 2 + a 3y 3 ) /# . 

Shew that the equations 

2 ( + + « $ + 8 0 = (mod.  

require = 1 = 2 = =0. 

•w2 w 3 

Prove that the dimensions of 1, y, — , — are 0, 1, 1, 2. Prove then that there is no 

function of the form 

which is finite for x infinite. 
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Hence 1, y, — , — are a fundamental system such as 1, gu g2i g3 in Chap. IV. ; and 

the deficiency of the surface is 1 + 1 + 2 — (4 — 1) = 1. 

Ex. ii. In partial illustration of Hensel's method of reduction consider the case of the 
equation 

y*-3xy2 + 3yx(x-l)+x2(x-l)2(9xs + 7x2 + ôx+3)=0i 

for which the sums of the powers of y are given by 

s1 = 3xi s 2=3# 2 + 6#, s3=-27^7 + 3&rG+3#3 + 18 ?2, 

s 4 = ~ 1 0 8 ^ + 1 3 2 ^ + 3 ^ + 3 6 ^ + 1 8 ?2. 

The determinant (1, y, y2) is divisible by x3 and by {x — l)2 , as appears on calculation. 
By forming the equation satisfied by y2/x it appears that y2/x is an integral function. 
Denote it by 17. We consider now what functions exist of the form 

( + 1 + 2 1)1( -1), 

wherein a, ax, a2 are constants, which are integral functions. 

The congruence (S2) = 2 (a + axy + a2rj) (c+c^y+c2r)) = 0 (mod. x — 1) leads, considering 
the coefficients of c, cXi c2 separately, to the congruences 

3a + alS1+a2
Sï = 0( , ^ - 1 ) , 1 + 152 + 2 3/^ = 0 ( , ^ - 1 ) , ^ + + ^ ^ ( , # - 1 ) , 

and therefore to the equations 

+ 1 + 9 2 = 0, + 9 1 + 27 2 = 0 , 9 + 2 7 1 + 81 2 = , 

which give = 0 , = — 2 , and shew that the only function of the kind required is, save 
for a constant multiplier, 

( , - 3 y ) / ( A - l ) . 

The other three congruences reduce then to conditions for this function ; for example, 
the congruence (S3) = 0 ( , x2) becomes 

But in fact, if we write g=(y2 — 3xy)/x(x—l), A=9x3 + 7x2+5x+3f we immediately 
find from the original equation that 

g3 + 6g2-3g(Ax-3) + A2x(x-l) + 9Ax=Q, 

so that g is an integral function. 

Apply the method to shew that y2/x is the only integral function of the form 
(a + aiy + a2y

2)/x. 

Prove tha t the dimensions of the functions 

1>2S ty2-3xy)/x(x-l) 
are respectively 0, 3, 3. 

Putt ing x=l/£, y/x3 = h) examine whether there exists any integral function of £ of 
the form 

[ + . + , (A2-3£%)/ | ( l - £ ) ] / £ 

and deduce the fundamental integral functions. 

The deficiency of the surface is 3 + 3 — (3 — 1 ) = 4. 


