
PART IV. THEORY OF FUNCTIONS 

CHAPTER XVI 

INFINITE SERIES 

162. Convergence or divergence of series.* Let a series 

^ u = u0 + uχ + u2 + • • • + un_γ + un + . . . , (1) 
0 

the terms of which are constant but infinite in number, be given. Let the 
sum of the first n terms of the series be written 

n-\ 
S„ = uQ + uχ + u2 + • • • + un_λ = ^ w. (2) 

Then Sv ¾, ¾, .-- ,¾, ¾+1 , . . . ° 

form a definite suite of numbers which røí/i/ approach a definite limit 
lim Sn = S when becomes infinite. In this case the series is said to 
converge to the value S, and S, which is the limit of the sum of the first 
n terms, is called the sum of the series. Or Sn may not approach a limit 
when n becomes infinite, either because the values of Sn become infinite 
or because, though remaining finite, they oscillate about and fail to 
settle down and remain in the vicinity of a definite value. In these 
cases the series is said to diverge. 

The necessary and sufficient condition that a series converge is that a 
value of n may be found so large that the numerical value of Sn+p — Sn 

shall be less than any assigned value for every value of p. (See §21 , 
Theorem 3, and compare p. 356.) A sufficient condition that a series 
diverge is that the terms un do not approach the limit 0 when n becomes 
infinite. For if there are always terms numerically as great as some 
number r no matter how far one goes out in the series, there must 
always be successive values of Sn which differ by as much as r no 
matter how large and hence the values of Sn cannot possibly settle 
down and remain in the vicinity of some definite limiting value S. 

* It will be useful to read over Chap. II, §§ 18-22, and Exercises. It is also advisable 
to compare many of the results for infinite series with the corresponding results for 
infinite integrals (Chap. XIII). 
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A ser ies in w h i c h t h e t e r m s a re a l t e r n a t e l y pos i t ive a n d nega t ive is 
cal led an alternating series. An alternating series in which the terms 
approach 0 as a limit tvhen n becomes infinite, each term being less than 
its predecessor, will converge and the difference between the sum S of the 
series and the sum Sn of the first n terms is less than the next term un. 
T h i s follows (p . 39 , E x . 3) f rom t h e fact t h a t ļ Sn+p - Sn\ < un a n d un = 0. 

For example, consider the alternating series 

1 - x2 + 2 æ4 - 3 x6 + - • - + ( – l)nnx2n + • • •. 

If |æ| = 1, the individual terms in the series do not approach 0 as n becomes infinite 
and the series diverges. If |æ| < 1, the individual terms do approach 0 ; for 

lim nx2n = lim = lim = 0. 
n = ∞ n=∞ X~'2n n=JC—2χ-2nÌ0gX 

And for sufficiently large* values of n the successive terms decrease in magnitude 
since n .. 

ÌÌX2H <(n—l)x'2n~2 gives > x2 or n > — 
n 1 — x1 

Hence the series is seen to converge for any value of x numerically less than unity 
and to diverge for all other values. 

T H E C O M P A R I S O N T E S T . If the terms of a series are all positive (or all 

negative) and each term is numerically less than the corresponding term 

of a series of positive terms which is known to converge, the series con

verges and the difference S — Sn is less than the corresponding difference 

for the series known to converge. (Cf. p . 355.) L e t 

+ "i + H - w„_ι + un¯\ 

a n d + u¡ + u -\ h v'n _! + < 4 

be respec t ive ly t h e g iven ser ies a n d t h e ser ies k n o w n to converge . 

S ince t h e t e r m s of t h e first a r e less t h a n t hose of t h e second, 

S +p $n — yn H" • • • 4- un+p_Ύ < un + • • • + + _ = Sn+p — Sn. 

N o w as t h e second q u a n t i t y S'n+p — S'n c an be m a d e as smal l as des i red , 
so can t h e first q u a n t i t y Sn+p — Sn, wh ich is less ; a n d t h e series m u s t 
converge . T h e r e m a i n d e r s 

Rn = S — Sn = un-j- un+l H = ^ 
11 

= s' — = 4- <+ι H — = 5)u' 
* It should be remarked that the behavior of a series near its beginning is of no con

sequence in regard to its convergence or divergence ; the first terms may be added 
and considered as a finite sum S_y and the series may be written as Sy + N + u^+ļ -\ ; 
it is the properties of u f + uχ+l -ļ which are important, that is, the ultimate behavior 
of the series. 
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clearly satisfy the stated relation Rn < R'n. The series which is most 
frequently used for comparison with a given series is the geometric, 

a + or + ar1 + m* + • • •, Rn = γ^—ļt > 0 < •/• < 1, (3) 

which is known to converge for all values of r less than 1. 

For example, consider the series 

1 + 1 + - -\ f- h • •• + — + ••• 
2 2 - 3 2 . 3 . 4 T .ni 

-, 1 1 . 1 1 
and 1 + - + + + • • • + + • • •. 

2 2-2 2 .2-2 2»-i 
Here, after the first two terms of the first and the first term of the second, each 
term of the second is greater than the corresponding term of the first. Hence the 
first series converges and the remainder after the term \/n ! is less than 

1 1 1 1 1 R-n< 1 + • • • = = 2» 2n+l 2n 1— ļ 2“~1 

A better estimate of the remainder after the term \/n ! may be had by comparing 

1 1 1 1 1 
Rn = h + .. . with • \- + • • • = 

(n + 1)! (n + 2)\ (w + 1)! (n + l)!(n + 1) n\n 
163. As the convergence and divergence of a series are of vital im

portance, it is advisable to have a number of tests for the convergence 
or divergence of a given series. The test 
by comparison with a series known to con
verge requires that at least a few types of 
convergent series be known. For the estab
lishment of such types and for the test 
of many series, the terms of which are 
positive, Cauchy's integral test is useful. 
Suppose that the terms of the series are 

ri 

\ 

Ĩ f fTT 
^ 1 2 3 4 ^Ñ 

decreasing and that a function f(rì) which decreases can be found such 
that un z=f(n). Now if the terms un be plotted at unit intervals along 
the ?2^axis, the value of the terms may be interpreted as the area of 
certain rectangles. The curve y = f(n) lies above the rectangles and 
the area under the curve is 

f(n) dn > u2 + us + • - • + un. (4) 

Hence if the integral converges (which in practice means that if 

f f(n) dn = F(n), then f(n) = F(∞) - F(l) is finite), 
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it follows that the series must converge. For instance, if 

h+h+b + -+h + - (5) 
be given, then un = f(n) = l/np, and from the integral test 

1+ι+-.<Γ- ¯1 Γ — 
2P^3^ Jx n? (2J-l)nř-1}, p-1 

provided p > 1. Hence the series converges if p > 1. This series is 
also very useful for comparison with others ; it diverges if p Ĕ≡ 1 
(see Ex. 8). 

T H E RATIO TEST. If the ratio of two successive terms in a series of posi
tive tenus approaches a limit which is less than 1, the series converges ; 
if the ratio approaches a limit which is greater than one or if the ratio 
becomes infinite, the series diverges. That is 

if t lim -JL±^ = γ < 1, the series converges, 
n=∞ 'M'n 

if lim -2L±1 — γ' > 1, the series diverges. 
n = ∞ ?¿n 

For in the first case, as the ratio approaches a limit less than 1, it must be pos
sible to go so far in the series that the ratio shall be as near to y < 1 as desired, 
and hence shall be less than r if r is an assigned number between y and 1. Then 

Wn+i <rUn, Un + 2<TUn+i <r2Un, •-• 

and un + un+ι + u>n + 2 + . • • < un(l + r + r2 + • • •) = Un- 
1 — r 

The proof of the divergence when un +ι/un becomes infinite or approaches a limit 
greater than 1 consists in noting that the individual terms cannot approach 0. Note 
that if the limit of the ratio is 1, no information relative to the convergence or 
divergence is furnished by this test. 

If the series of numerical or absolute values 

+ \ \ + +-- + +'~ 
of the terms of a series which contains positive and negative terms 
converges, the series converges and is said to converge absolutely. For 
consider the two sums 

$n+p - Sn = un-\ h Un+p-i and \un\ -\ + \un+p_1\. 

The first is surely not numerically greater than the second; as the 
second can be made as small as desired, so can the first. I t follows 
therefore that the given series must converge. The converse proposition 
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that if a series of positive and negative terms converges, then the series 
of absolute values converges, is not true. 

As an example on convergence consider the binomial series 

m(m—ì) _ ra(m—l)(m—2) . m ( m - l ) - - - ( m - n + 1 ) 
1 + mx + — ' 2 + — -æ8 + • • • + — Ί—ί xn + • • •, 

1-2 1 . 2 - 3 1-2. . . 

where ' — — = ! 'ļx , lim ' — — ' = æ|. 
\Un\ + 1 n=∞ \un\ 

It is therefore seen that the limit of the quotient of two successive terms in the 
series of absolute values is \x\. This is less than 1 for values of x numerically less 
than 1, and hence for such values the series converges and converges absolutely. 
(That the series converges for positive values of x less than 1 follows from the fact 
that for values of n greater than m + 1 the series alternates and the terms approach 
0 ; the proof above holds equally for negative values.) For values of x numerically 
greater than 1 the series does not converge absolutely. As a matter of fact when 
\x\ > 1, the series does not converge at all ; for as the ratio of successive terms ap
proaches a limit greater than unity, the individual terms cannot approach 0. For 
the values x — ± 1 the test fails to give information. The conclusions are there
fore that for values of | x | < 1 the binomial series converges absolutely, for values 
of ļ x ļ > l it diverges, and for |¡e| = 1 the question remains doubtful. 

A word about series with complex terms. Let 

uo + uι + % f- un-i + ¾ « ^ — 
= + u{ + u H h ' _ + < H  

-f i (u'¿ Λ- u'í + H h <'_ ! -h < ' -\ ) 

be a series of complex terms. The sum to n terms is Sn = S'n -\- iS¦¡. 
The series is said to converge if Sn approaches a limit when n becomes 
infinite. If the complex number Sn is to approach a limit, both its real 
part S'n and the coefficient S'¿ of its imaginary part must approach limits, 
and hence the series of real parts and the series of imaginary parts 
must converge. I t will then be possible to take n so large that for any 
value of p the simultaneous inequalities 

\S'n+PrSn\<h* a n d
 I ¾ + P - ¾ Ί < * « > 

where e is any assigned number, hold. Therefore 

Hence if the series converges, the same condition holds as for a series 
of real terms. Now conversely the condition 

\Sn+p- Sn\< e impl ies | ¾ + p - ¾ | < e , \$n+p ~ S'¿\< e. 

Hence if the condition holds, the two real series converge and the com
plex series ΛVÌII then converge. 
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164. As Cauchy's integral test is not easy to apply except in simple cases and 
the ratio test fails when the limit of the ratio is 1, other sharper tests for conver
gence or divergence are sometimes needed, as in the case of the binomial series 
when x — ± 1. Let there be given two series of positive terms 

+ + • • • + un + • • • and v0 + vλ + • • • + v„ + • • • 

of which the first is to be tested and the second is known to converge (or diverge). 
If the ratio of two successive terms un + \/un ultimately becomes and remains less {or 
greater) than the ratio vn + ι/υn, the first series is also convergent (or divergent). For if 

Uņ + l Vņ + 1 ‰ + 2 Vņ + 2 ^ _ _ . , ‰ι . Un + l ‰ + 2 . 

U„ Vn ' WM +1 ¾„ + l ' ' Vn Vn + ι Vn + 2 

Hence if un = pvn, then un +1 < pv + 1 , un + 2 < ρvn + 2, • • •, 

and Un + un + ι + Wn + 2 + •••<p(vn + Vn + i + î>n + 2 + ••••)• 

As the υ-series is known to converge, the pv-series serves as a comparison series 
for the u-series which must then converge. If un + \/un > vn + \/vn and the υ-series 
diverges, similar reasoning would show that the w-series diverges. 

This theorem serves to establish the useful test due to Raabe, which is 

if l i m n ( — 1) > 1, Sn converges; if l i m n ( — 1) < 1, Sn diverges. 
n = ∞ \Un + l J n = ∞ V ½ + l 

Again, if the limit is 1, no information is given. This test need never be tried 
except when the ratio test gives a limit 1 and fails. The proof is simple. For 

= is finite 
n (log n)1 + a a (log n)aA 

/
x dn Ί °° 

= log logn is infinite, 
n log n j 

hence \- ••• -\ 1- • • • and h • • • 4 h • • • 
2 (log 2)!+« n(logn)1*" 2 (log 2) n(logn) 

are respectively convergent and divergent by Cauchy's integral test. Let these be 
taken as the i>-series with which to compare the ¾-series. Then 

_Vn_ = n ^ f ļ /log(n + l ) y + g
= L + l \ / l o g ( l - + n ) \ 1 + g 

Vn + i n \ logn \ n / \ logn 

and j ^ = / 1 + i y o g ( l + n) 
vn + 1 \ n/ logn 

in the two respective cases. Next consider Raabe's expression. If first 

\\mn(-^--ì)>l, then ultimately n ( — - Λ > 7 > l and - ^ – > 1 + I 
n=∞ \Un+ J \un + ι J un+ι n 

Now Hm('<¾P + “>Y+ ' i a n d u l t i m a t e ι y f<* f l + “ > Y * ' < H . « , 
n = x \ logn \ logn 
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where e is arbitrarily small. Hence ultimately if y > 1, 

(1 + ĩ)(1Ml±^)y+«<1+ļ±_4i;<1 + ?1 

\ n/ \ log n J n ri- n 

or vn/vn +1 < un/un +1 or un + γ/un <vn + I/Ü„, 

and the w-series converges. In like manner, secondly, if 

lim ni— l ) < 1, then ultimately - ^ – < 1 + - , y < 1 ; 
n = » \M« + l W«+l W 

and i + ? < Λ + l \ ! g g f l + *> or J ^ < _ ^ or î î - - t ĩ > ! » ± l . 
W \ n / l o g n W» + l Vw-f-l ?'« V« 

Hence as the r-series now diverges, the w-series must diverge. 
Suppose this test applied to the binomial series for x = — 1. Then 

Un n + 1 .. I n + 1 .. m + 1 
—— = , Inn n ( —— 1J = hm — — = m + 1. 
un + \ n — m « = ¾ \n — ?n n = » ?/¿ 

n 
It follows that the series will converge if m > 0, but diverge if m < 0. If x = -f 1, 
the binomial series becomes alternating for n > m + 1. If the series of absolute 
values be considered, the ratio of successive terms \un/un + ļ\ is still (n + l) /(n — m) 
and the binomial series converges absolutely if m > 0 ; but when m < 0 the series 
of absolute values diverges and it remains an open question whether the alternat
ing series diverges or converges. Consider therefore the alternating series 

l i m i m ( m " 1 > I ra(m-l)(m-2) m ( m - 1). • • ( m - n + 1) 0 

1-2 1 - 2 . 3 1 .2 • • .n ' 

This will converge if the limit of un is 0, but otherwise it will diverge. Now if 
m = — 1, the successive terms are multiplied by a factor \m — n + 1 | / ≥ 1 and 
they cannot approach 0. When — 1 < m < 0, let 1 + m = θ, a fraction. Then the 
nth term in the series is 

and - log|n,.1 = - log(l - θ)-log(l - 0 log ( l - 0 . 

Each successive factor diminishes the term but diminishes it by so little that it may 
not approach 0. The logarithm of the term is a series. Now apply Cauchy's test. 

ƒ ° ° - log( l - -\ dn = Γ - nìog(l - - \ + θ log(n - Θ)V = oo. 

The series of logarithms therefore diverges and l im | ι t n | = e~∞ = 0. Hence the 
terms approach 0 as a limit. The final results are therefore that when x = — 1 the 
binomial series converges if m > 0 but diverges if m < 0 ; and when x = + 1 it con
verges (absolutely) if m > 0, diverges if m < — 1, and converges (not absolutely) if 
— 1 < m < 0. 
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EXERCISES 
1. State the number of terms which must be taken in these alternating series to 

obtain the sum accurate to three decimals. If the number is not greater than 8, 
compute the value of the series to three decimals, carrying four figures in the work : 

( α ) 3 ~ 2÷32 + 3~3* ¯̄  4÷3* + “ ' ' 2 ~ 2 ^ + ^ 7 ^ ~ 4^24 + “ “ ' 

( 7 ) ι _ î + ĩ _ i + ..., (δ) J L + _J , 
Kï) 2 3 4 ' log2 log 3 log 4 

(c) l _ l + I_i + . . . , (f) e-ι_2e-2 + 3e-3-4e-4 + . . . . 
v ' 32 ' 52 72 ' ' V i / 

2. Find the values of x for which these alternating series converge or diverge: 

V ' 2 3 V ; 2 ! 4 ! 6 ! 
X8 X5 X7

 / < X3 X5 X7 

( 7 ) X - Ī Π + 6 Ī - 7 Ĩ + " - ' W * - 8 + T - T + - " , 

v ' l í 2P 3 P 3 6 7 

, 1 1 1 1 //1 1 2 22 28 

(η) 4- + • • •, (θ) + + • • •. w ' x x + 1 x + 2 x + 3 x x + 1 x + 2 x + 3 

3 . Show that these series converge and estimate the error after n terms : 

From the estimate of error state how many terms are required to compute the 
series accurate to two decimals and make the computation, carrying three figures. 
Test for convergence or divergence : 

(c ) sin 1 + sin - + sin - + • . •, (f) sin2 1 + sin2 - + sin2 - -\ , 
Δ 2 3 

(17) tan~11 + tan~1 - + tan- 1 - , (0) tan 1 -\ tan - -\ tan - , 
2 3 /2 2 V3 3 

! . ! 1 1 1 1 
1 + 1 2 + V2 3 + Vs 22 - 12 2 - 22 42 - 32 

/Λ4 1 2 , 2 .3 2 . 3 4 t 1 V2 / Vi 
( ) + ^ + - ^ + ^ - + ' - W x + ^ + -Ī3- + ^ + - - -

4. Apply Cauchy's integral to determine the convergence or divergence : 

, , log2 log3 log4 , „ 1 1 1 
(a) 1 + — - -f _ Ē _ + _ Ē _ + . . . (/3) 1 + + + + • • -, 

2P SP 4P v r / 2(log2)í» 3(lofir3)i' 4(log4)P 
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oo ι ∞ ļ 

<¿4 n log n log log n ¿4 n log n (log log n)P 

(e) cot-i 1 + cot-1 2 + • • •, ( 0 1 + - — + -ιß— + —^― + * ' * • 
v ' ' v w 22 + l 32 + 2 42 + 3 

5. Apply the ratio test to determine convergence or divergence : 

1 2_ 3 4 22 23 24 

* ' 2 2 ^ 2 * 2 4 " ' ' 2Īō 3Ī0 4Ī0 + ' “ ' 

, 2! 3! 4! 5! / #
 w22 33 44 

(e) Ex. 8(<r), (/3), (7), (S) ; Ex. 4(α) , (f), (f) g + g + ~ + • • -, 

. . „ X2 X4 Xe , „ . . X2 X4 

< . > , _ * + *_* + ..., ( . ) i + * + » Ç + . . . . 
2 3 4 a a2 α8 

6. Where the ratio test fails, discuss the above exercises by any method. 

7. Prove that if a series of decreasing positive terms converges, lim nu = 0. 

8. Formulate the Cauchy integral test for divergence and check the statement 
on page 422. The test has been used in the text and in Ex. 4. Prove the test. 

9. Show that if the ratio test indicates the divergence of the series of absolute 
values, the series diverges no matter what the distribution of signs may be. 

10. Show that if Vu approaches a limit less than 1, the series (of positive 
terms) converges; but if VM„ approaches a limit greater than 1, it diverges. 

11. If the terms of a convergent series utí + u t + u2 + • • • of positive terms be 
multiplied respectively by a set of positive numbers α0, α1? α2, • • • all of which are 
less than some number G, the resulting series a0u0 + + a2u2 + • • • converges. 
State the corresponding theorem for divergent series. What if the given series has 
terms of opposite signs, but converges absolutely ? 

1 f t m Al A Al . sin x sin 2 x sin 3 x sin 4 x 12. Show that the series : 1 1- •. • converges abso-
ļ2 22 32 42 

lutely for any value of α% and that the series 1 + x sin θ -h x2 sin 2 θ + xs sin 3 θ 4- • • • 
converges absolutely for any x numerically less than 1, no matter what θ piay be. 

13. If α0, av α2, • • • are any suite of numbers such that -\/\ā^\ approaches a 
limit less than or equal to 1, show that the series a0 + axx + a2x2 + • • • converges 
absolutely for any value of x numerically less than 1. Apply this to show that the 
following series converge absolutely when |¿ε| < 1 ; 

(a) l + ί a 2 + — xé + 1 ' 8 ' 5 a r β + . - . , (ß) 1 - 2 . r + 3 2 - 4 3 + • • • , V ; 2 2 -4 2 - 4 - 6 V ; 

(7) 1 + x + 2PX2 + 3i>x3 + 4í>æ4 + •••, (δ) 1 - z l o g l + x 2 l o g 4 - x8 log9 + • • • • 
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14. Show that in Ex. 10 it will be sufficient for convergence if /ūñ becomes 
and remains less than y < 1 without approaching a limit, and sufficient for diver
gence if there are an infinity of values for n such that /u > 1. Note a similar 
generalization in Ex. 13 and state it. 

15. If a power series a0 + aλx + a2x2 + a3xs + • • • converges for x = X> 0, it 
converges absolutely for any x such that | x \ < X, and the series 

a0x + ļ aλx2 + ļ a2
χS + • • • a n d « + 2 α2æ 4- 3 a3x

2 4- • • •, 

obtained by integrating and differentiating term by term, also converge absolutely 
for any value of x such that |æ| < X . The same result, by the same proof, holds if 
the terms α0, c^X, α2X2, • • • remain less than a fixed value G. 

16. If the ratio of the successive terms in a series of positive terms be regarded 
as a function of 1/w and may be expanded by Maclaurin's Formula to give 

—— — ¿r_i_ß__i__/_\ µ remaining finite as - = 0, 
un + l n 2 \n/ n 

the series converges if a > 1 or a = 1, ß > 1, but diverges if a < 1 or a = 1, ß Ë≡ 1. 
This test covers most of the series of positive terms which arise in practice. Apply 
it to various instances in the text and previous exercises. Why are there series to 
which this test is inapplicable ? 

17. If Poi P i P21 ' ' ' '1S a decreasing suite of positive numbers approaching a 
limit λ and £0 , S14 S2, • • • is any limited suite of numbers, that is, numbers such 
that |íSn| ̂  G, show that the series 

(Po - Pi) so + (Pi - P2) sι + (P2 - ) s2 + • • • converges absolutely, 
00 ļ 

and ¦ ļ(Pn-pn + i)Sn\≤ G(Po-\). 

18. Apply Ex. 17 to show that, / 0 , ρ14 /o2, • • • being a decreasing suite, if 
uo + uι + u2 + ' “ “ converges, p0u0 + ρλuλ + p2u2 + • • • will converge also. 

N.B. p0u0 + /OļWļ + h pnun = p0S + p (S2 — S ) + • • • + Pn (Sn + ι — Sn) 
= sι (Po - Pi) + ' ' * + $» (Pn-i - Pn) + PnSn + i. 

19. Apply Ex. 18 to prove Ex. 15 after showing that p0u0 + pvuΛ + • • • must 
converge absolutely if p0 + ρx + • • • converges. 

20. If α l ţ α2, α3, • • •, an are n positive numbers less than 1, show that 

(1 + ax) (1 + a2) • • • (1 + On) > 1 + «1 + a2 + • • • + an 

and (1 — a ) (1 — α2) • • • (1 — an) > 1 — aλ — a2 — • • — an 

by induction or any other method. Then since 1 + aχ < l / ( l — a ) show that 

Λ ; : > (1 + αx) (1 + • • • (1 + > 1 + ( + a2 + • • • + α»), 
1 — (α1 + α2 + \- an) 

—― • • > (1 - ax) (1 - a2) •. - (1 - an) > 1 - (ax + a2 + • • • + α»), 
1 + (αχ + α2 + * ' ' + a ) 
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if ax + a2 -f • • • + an < 1. Or if " * be the symbol for a product, 

( “ \~1 n n n \¯¯1 n 

1¯¯Xa) >π( i + íχ)>ι + ^ , (! + X « j > π ( i - « ) > i - ¾ « . 
2 1 . Let 7T (1 + ^i) (1 + 2) • • • (1 +ttn) (1 +wn + ι) • • • be an infinite product and 

let P n be the product of the first n factors. Show that | P n + /> — P n | < e is the neces
sary and sufficient condition that P n approach a limit when n becomes infinite. 
Show that un must approach 0 as a limit if Pn approaches a limit. 

22. In case Pn approaches a limit different from 0, show that if e be assigned, 
a value of n can be found so large that for any value of p 

[ ¾ ^ - l l = Γ π ' ( l + M < ) - l l < e o r *TĪ(l + Ui) = l + V, M < e . \ P I \n + ι I n+ i 

Conversely show that if this relation holds, P n must approach a limit other than 0. 
The infinite product is said to converge when Pn approaches a limit other than 0 ; in 
all other cases it is said to diverge, including the case where lim Pn = 0. 

23 . By combining Exs. 20 and 22 show that the necessary and sufficient con
dition that 

Pn = (1 + aΛ) (1 + ¾ ) . . . (1 + an) and Qn = (1 - ax) (1 - α2) • • • (1 - an) 

converge as n becomes infinite is that the series aχ + α2 + • • • + <½ + • • • shall con
verge. Note that P n is increasing and Qn decreasing. Show that in case a diverges, 
Pn diverges to co and Qn to 0 (provided ultimately α¿ < 1). 

24. Define absolute convergence for infinite products and show that if a product 
converges absolutely it converges in its original form. 

25 . Test these products for convergence, divergence, or absolute convergence : 

w(-3('-3(-3-- <«K)(-έ)(-¿)-. 
(Ύ) f r [ l - ( ^ ļ ) “ ļ , (β) (1 + *)(l + a¦«)(l + a6*)(l+ ««)•••, 

y ' \ l o g 2 / \ ( log4)V\ (log 8)»/ " ' V L \ c + nj J 
1 u2 1 1 ì u2 

26. Given — or - u2 < — log (1 + u) <-u2 or — according as is a posi-
1 + u 2 2 1 +  

tive or negative fraction (see Ex. 29, p. 11). Prove that if u% converges, then 
Un+i + un + 2 + •• • + Un + p — log(l + un + 1)(l + un + 2)- • -(1 +un+p) 

= (Sn+P-Sn) - ( l o g P n + p - logPn) 

can be made as small as desired by taking n large enough regardless of p. Hence 
prove that if u converges, TT (1 4- un) converges if un does, but diverges to  
if un diverges to + , and diverges to 0 if un diverges to — ; whereas if u* 
diverges while un converges, the product diverges to 0. 



430 THEORY OF FUNCTIONS 

27 . Apply Ex. 26 to: (a) (l + í ) ( l ~ g ) ( l + ¾)(l - ¡ ) • • ' , ' 

*(- )('+^ - )-- <*N)KM)K)-
28. Suppose the integrand ƒ (x) of an infinite integral oscillates as x becomes in

finite. What test might be applicable from the construction of an alternating series ? 

165. Series of functions. If the terms of a series 

S(x) = u0(x) + uχ (x)+ • • • + «„(*) + • • • (6) 

are functions of x, the series defines a function S(x) of x for every 
value of x for which it converges. If the individual terms of the series 
are continuous functions of x over some interval a ^ x ≤= b, the sum 
Sn (x) of n terms will of course be a continuous function over that interval. 
Suppose that the series converges for all points of the interval. Will it 
then be true that S(x), the limit of Sn(x), is also a continuous function 
over the interval ? Will it be true that the integral term by term, 

J
r*b r*b r*b 

u0 (x) dx -f- I uχ (x) ώ + “- j converges to j S (x) dx ? 
a *J a xJ a 

Will it be true that the derivative term by term, 
UQ (X) -f- n{ (x) + • • •, converges to Sr (x) ? 

There is no a priori reason why any of these things should be true ; for 
the proofs which were given in the case of finite sums will not apply 
to the case of a limit of a sum of an infinite number of te;rms (cf. § 144). 

These questions may readily be thrown into the form of questions concerning 
the possibility of inverting the order of two limits (see § 44). 

ƒ & n b 

lim Sn(x)dx — lim ļ S (x)dx? 
For differentiation : Is — lim Sn{x) = lim — Sn(x) ? 

dxn=× n = ∞dx 
For continuity : Is lim lim Sn (x) = lim lim Sn (x) ? 

x = x0 n = ∞ = Qo x = xQ 

As derivatives and definite integrals are themselves defined as limits, the existence 
of a double limit is clear. That all three of the questions must be answered in the 
negative unless some restriction is placed on the way in which S (x) converges to 
S(x) is clear from some examples. Let 0 ≤ x: ≤ 1 and 

Sn (x) = xn4- *x, then lim Sn(x) = 0, or S(x) = O. 
n = ∞ 

No matter what the value of x, the limit of Sn(x) is 0. The limiting function is 
therefore continuous in this case ; but from the manner in which Sn(x) converges 
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to S (x) it is apparent that under suitable conditions the limit would not be con
tinuous. The area under the limit S (x) = 0 from 0 to 1 is of course 0 ; but the 
limit of the area under Sn (x) is 

lim I xn?e-™dx = lim e~™(— nx — 1) = 1. 
« = x«/0 n = [_ J O 

The derivative of the limit at the point x —, 0 is 
of course 0 ; but the limit, 

lim — (xri½-™) 
n = ∞\_dx Ja; = o 

= lim nV-**(l — nx) = lim n2 = OD, 
n = oc• ļ_ J a r = O n = ∞ 

\ \Λ s*(χ) 

y \ ι\^¾(α?) 

O\ ½ ½ 1 X 

of the derivative is infinite. Hence in this case two of the questions have negative 
answers and one of them a positive answer. 

If a suite of functions such as Sτ (x), S2 (x), • • •, Sn (x), • • • converge to a 
limit S (x) over an interval a ≤ x ≤ b, the conception of a limit requires 
that when is assigned and xQ is assumed it must be possible to take n 
so large that \Rn(x0)\ = \S(xQ) — Sn(x0)\ < for this and any larger n. 
The suite is said to converge uniformly toward its limit, if this condition 
can be satisfied simultaneously for all values of x in the interval, that is, 
if when is assigned it is possible to take n so large that | Rn (x) \ <  
for every value of x in the interval and for this and any larger n. In 
the above example the convergence was not uniform ; the figure shows 
that no matter how great there are always values of x between 0 and 
1 for which Sn(x) departs by a large amount from its limit 0. 

The uniform convergence of a continuous function Sn (x) to its limit is 
sufficient to insure the continuity of the limit S (oc). To show that S(x) is 
continuous it is merely necessary to show that when is assigned it 
is possible to find a Ax so small that \S(x -\- Ax) — S(x)\ < But 
IS(x + Ax) - S(x)\ = \Sn(x + Ax) - Sn(x) + (x + Ax) - Rn(x)|; and 
as by hypothesis Rn converges uniformly to 0, it is possible to take n 
so large that ļ Rn (x + Ax) \ and | Rn (x) ļ are less than ļ irrespective of x. 
Moreover, as Sn (x) is continuous it is possible to take Ax so small that 
I Sn (x -f Ax) — Sn (x) ļ < ļ e irrespective of x. Hence | S (x + Ax) — S(x)\<e, 
and the theorem is proved. Although the uniform convergence of Sn to S 
is a sufficient condition for the continuity of S, it is not a necessary con
dition, as the above example shows. 

The uniform convergence of Sn(x) to its limit insures that 

J
r»b r*b 

Sn (x) dx = \ S (x) dx. 
a Ja 
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For in the first place S (x) must be continuous and therefore integrable. 
And in the second place when is assigned, n may be taken so large 
that \Rn(x)\< e/(b — a). Hence 

J
f*b r»b I ļ r*b I /»& 

S (x) dx — ƒ Sn (x) dx\ = \ļ Rn (x) dx\<ļ dx = e, 
a */α I \%Ja \ %J a 

and the result is proved. Similarly if S'n(x) is continuous and converges 
uniformly to a limit T(x), then T(x) = S'(x). For by the above result 
on integrals, 

f T(x)dx= \im ( S (x)dx = lim \Sn(x) - Sn(a) \= S(x) - S (a). 
Ja n = ∞ Ja n = oo[_ J 

Hence T(x) = S'(x). I t should be noted that this proves incidentally 
that if S'n(x) is continuous and converges uniformly to a limit, then 
S(x) actually has a derivative, namely T(x). 

In order to apply these results to a series, it is necessary to have a 
test for the uniformity of the convergence of the series ; that is, for the 
uniform convergence of Sn(x) to S(x). One such test is Weierstrass''s 
M-test : The series 

u0(x) + uχ(x) H h un(x) -\ (7) 

will converge uniformly provided a convergent series 

0 + 1 + ... + + ... (8) 
of positive terms may be found such that ultimately \ių(x)\ ≤ M¿. The 
proof is immediate. For 

\Rn(?)\ = K(χ) + un+1(χ) + • • -I ^ + Mn+l + ... 
and as the Λí-series converges, its remainder can be made as small as 
desired by taking n sufficiently large. Hence any series of continuous 
functions defines a continuous function and may be integrated term by 
term to find the integral of that function provided an Λf-test series may 
be found ; and the derivative of that function is the derivative of the 
series term by term if this derivative series admits an /-test. 

To apply the work to an example consider whether the series 

S(χ\ =
 cosx » c o s 2 æ » cosSx - cosna¢ 

\ > 12 + 2 2 3 2 2 [ } 

defines a continuous function and may be integrated and differentiated term by 
term as . Λ . n 

rx„. . sin sin 2 sm3æ smnz ιmttĸ 

Λ d 0 / . sin sin 2 sin3æ sin nx ,„,tf× 

and — S ( ) = . . . . . . . (ψ“\ 
dx w 1 2 3 n 
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As 1COSÍC1≤ 1, the convergent series 1 -\ 1 !- • • • H !-••• may be taken as 
22 32 n2 

an -series for S(x). Hence S(x) is a continuous function of x for all real values 
of , and the integral of S(x) may be taken as the limit of the integral of Sn(x), 
that is, as the integral of the series term by term as written. On the other hand, 
an Jf-series for (7'") cannot be found, for the series 1 + J + J- + • • • is not conver
gent. It therefore appears that S' (x) may not be identical with the term-by-term 
derivative of S (x) ; it does not follow that it will not be, — merely that it may not be. 

166. Of series with variable terms, the power series 

f{z) = % + aλ(z-a) + a2(z - a† + • • • + an(z - a)" + • •. (9) 
is perhaps the most important. Here z, or, and the coefficients a{ may 
be either real or complex numbers. This series may be written more 
simply by setting x = z — a ; then 

f(x + a) φ(χ) = a0 + aχx + a2x'2 -\ h anxn -\ (9') 

is a series which surely converges for x = 0. I t may or may not con
verge for other values of x, but from Ex. 15 or 19 above it is seen 
that if the series converges for X, it converges absolutely for any x 
of smaller absolute value ; that is, if a circle of radius X be drawn 
around the origin in the complex plane for x or about 
the point a in the complex plane for z, the series (9) 
and (9') respectively will converge absolutely for all 
complex numbers which lie within these circles. 

Three cases should be distinguished. First the 
series may converge for any value x no matter how 
great its absolute value. The circle may then have 

\ß 
an indefinitely large radius ; the series converge for all values of x or z 
and the function defined by them is finite (whether real or complex) 
for all values of the argument. Such a function is called an integral 
function of the complex variable z or x. Secondly, the series may con
verge for no other value than x = 0 or z = a and therefore cannot define 
any function. Thirdly, there may be a definite largest value for the 
radius, say R, such that for any point within the respective circles of 
radius R the series converge and define a function, whereas for any point 
outside the circles the series diverge. The circle of radius R is called 
the circle of convergence of the series. 

As the matter of the radius and circle of convergence is important, it will be 
well to go over the whole matter in detail. Consider the suite of numbers 

Let them be imagined to be located as points with coordinates between 0 and 4- oo 
on a line. Three possibilities as to the distribution of the points arise. First they 
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may be unlimited above, that is, it may be possible to pick out from the suite a set 
of numbers which increase without limit. Secondly, the numbers may converge to 
the limit 0. Thirdly, neither of these suppositions is true and the numbers from 0 
to + oo may be divided into two classes such that every number in the first class is 
less than an infinity of numbers of the suite, whereas any number of the second 
class is surpassed by only a finite number of the numbers in the suite. The two 
classes will then have a frontier number which will be represented by \/R 
(see§§l9ff.). 

In the first case no matter what x may be it is possible to pick out members 
from the suite such that the set -y/\α¿|, vfŵ/ì, /¡ōj¡Γ|, • •. •, with < j < • • •, increases 
without limit. Hence the set V|α¿ļ|x\, ^\\ŪJ\ \x\, • • • will increase without limit ; the 
terms α¿x* a,jXJ, • < • of the series (9') do not approach 0 as their limit, and the series 
diverges for all values of x other than 0. In the second case the series converges 
for any value of x. For let e be any number less than 1/\x\. I t is possible to go so 
far in the suite that all subsequent numbers of it shall be less than this assigned e. 
Then 

\θn+pxn+p\<€n+P\x\n+P and «| |№+ €n + iļx¦n + ι + . . . ţ 6 | x | < l , 

serves as a comparison series to insure the absolute convergence of (9'). In the „ 
third case the series converges for any x such that \x\< R but diverges for any 
x such that | x \ > R. For if | x \ < ß , take e < R — ļ x \ so that ļ x \ < R — e. Now proceed 
in the suite so far that all the subsequent numbers shall be less than 1/(fí — c), 
which is greater than \/R. Then 

Ķ ^ x n ^ l < ' | + < l , and V Wn+P 

1 + P (R-€)“+P ¿4(R-€)n+P 

will do as a comparison series. īî\x\>R, it is easy to show the terms of (9') do not 
approach the limit 0. 

L e t a circle of r ad iu s r less t h a n R be d r a w n concent r ic w i t h t h e 

circle of convergence . T h e n within the circle of radius r < R the power 

series (9 ' ) converges uniformly and defines a continuous function ; the 

integral of the function may he had by integrating the series term by 

term, 

X I 1 1 
φ(x)dx = a0x + - aλx2 + - a2x* -\ h - an_Yxn -\ ; 

and the series of derivatives converges uniformly and represents the 
derivative of the function, 

φ*(x) = «.j + 2 a2x + 3 asx2 h nanxn~λ . 

T o p rove t h e s e t h e o r e m s i t is mere ly necessary to set u p an /-series 
for t he series i tself a n d for the series of de r iva t ives . L e t Λ' be a n y 
n u m b e r be tween r a n d R. T h e n 

kl + Kl* + № a + • • • + Kl*" + • • • (io) 
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converges because X < Jì ; and furthermore ļ anxn \ < ļ an \ Xn holds for any 
./- such that \x\ < X, that is, for all points within and on the circle of 
radius r. Moreover as |.τ| < X, 

\naj?-l\ = K l f ř ' § ' ĵ !Λ-» < \a4\X^ 

holds for sufficiently large values of n an*d for any x such that | | = r. 
Hence (10) serves as an il/-series for the given series and the series of 
derivatives ; and the theorems are proved. I t should be noticed that it 
is incorrect to say that the convergence is uniform over the circle of 
radius R, although the statement is true of any circle within that circle 
no matter how small it — r. For an apparently slight but none the 
less important extension to include, in some cases, some points upon 
the circle of convergence see Ex. 5. 

An immediate corollary of the above theorems is that any power 
series (9) in the complex variable which converges for other values than 
z = a, and hence has a finite circle of convergence or converges all over 
the complex plane, defines an analytic function f{z) of z in the sense of 
§ § 73, 126 ; for the series is differentiable within any circle within the 
circle of convergence and thus the function has a definite finite and 
continuous derivative. 

167. I t is now possible to extend Taylor's and Maclaurin's Formulas, 
which developed a function of a real variable x into a polynomial plus 
a remainder, to infinite series known as Taylor's and Maclaurin's Series, 
which express the function as a power series, provided the remainder 
after n terms converges uniformly toward 0 as n becomes infinite. I t 
will be sufficient to treat one case. Let 

fix) = ) +f'(0)x + ķ/“(O)x* + ••• +.-^ļjÿ/(n (())χn-1 + Ä« 

lim Rn(x) = 0 uniformly in some interval — h ≤ x ≤= h, 

n = ∞ 

where the first line is Maclaurin's Formula, the second gives differnet 
forms of the remainder, and the third expresses the condition that the 
remainder converges to 0. Then the series 

f(O)+f'(O)x + ±f“(O)x* 
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converges t o t h e va lue f(x) for a n y x in t h e in te rva l . T h e proof con
sis ts m e r e l y in no t i ng t h a t f(x) — Rn(x) = Sn(x) is t h e sum of t h e first 
n t e r m s of t h e ser ies a n d t h a t \Rn(x)\ <  

In the case of the exponential function ex the nth derivative is e*, and the re
mainder, taken in the first form, becomes 

Rn (x) = — eØ*x», I Rn (x) ļ < — e*A», \z\ h. 

As n becomes infinite, En clearly approaches zero no matter what the value of Ķ ; 
a n d , χ2 xs χn 

2 ! 3 ! n ! 
is the infinite series for the exponential function. The series converges for all 
values of x real or complex and may be taken as the definition of e* for complex 
values. This definition may be shown to coincide with that obtained otherwise (§ 74). 

For the expansion of (1 + x)m the remainder may be taken in the second form. 
„ , m(m — 1).- • (m — n + 1) / 1 — θ\*~1

/Λ 
Bníx) = —± >- ^ -!—^x“( — ) (1 + θx)™~1, 

V ' 1 . 2 . . . ( n - l ) \ l + ŵc/ V ' 

1 v “ I 1 . 2 . - . ( n - 1 ) I 

Hence when < 1 the limit of ( ) is zero and the infinite expansion 

m(m — 1) n m ( m — l ) ( m —2) „ 
(1 + x)m = 1 + mx + — x2 + — — x3 + • • • 

2 ! 3 ! 
is valid for (1 + x)m for all values of x numerically less than unity. 

If in the binomial expansion x be replaced by — x2 and m by — ļ, 
1 ι , ! 3 , 3 4 , 1 3 ' 5 « , 1 - 3 . 5 . 7 . , 

— = = 1 + - x2 + x4 + x6 + x8 -f • • • • 
V l _ í ¢ 2 2 2 - 4 2 . 4 - 6 2 • 4 . 6 • 8 

This series converges for all values of x numerically less than 1, and hence con
verges uniformly whenever \x\ ≤ h < 1. I t may therefore be integrated term by 
t e r m * . , 1 Xs 1 . 3 x5 1 . 3 - 5 x? 1 . 3 • 5 • 7 x* 

sm-*x = x H 1 1 1 h • • • • 
2 3 2 - 4 5 2 . 4 - 6 7 2 . 4 . 6 - 8 9 

This series is valid for all values of x numerically less than unity. The series also 
converges for = ± 1, and hence by Ex. 5 is uniformly convergent when — 1 = x ≤ 1. 

But Taylor's and Maclaurin's series may also be extended directly to 
functions f(z) of a complex variable. If ƒ (z) is single valued and has 
a definite continuous derivative f' (z) at every point of a region and on 
the boundary, the expansion 

Λ«) =Λ«) +ƒ'(«) (*-«) + ••• +/<"-1>(«)(^~ ;' + . 
has been established.(§ 126) with the remainder in the form-

¦P M I I(*-«)" f / ( 0 Ŵ U 1 ^ 
11»< - | -2τr J 0 ( ř _ α ) - ( í - * ) | - 2 ^ P > - r 



I N F I N I T E SERIES 437 

for ail points z within the circle of radius r (Ex. 7, p. 306). As n becomes 
infinite, Rn approaches zero uniformly, and hence the infinite series 

A«) =A«) +/'(«) (*-«) + ••• +ƒ<">(«) ¾ ^ ' + • • • (12) 
is valid at all points within the circle of radius r and upon its circum
ference. The expansion is therefore convergent and valid for any z 
actually within the circle of radius p. 

Even for real expansions (11) the significance of this result is great 
because, except in the simplest cases, it is impossible to compute ƒ (n ) (x) 
and establish the convergence of Taylor's series for real variables. The 
result just found shows that if the values of the function be considered 
for complex values z in addition to real values x, the circle of conver
gence will extend out to the nearest point where the conditions imposed 
on f(z) break down, that is, to the nearest point at which f(z) becomes 
infinite or otherwise ceases to have a definite continuous derivative ƒ'(.v). 
For example, there is nothing in the behavior of the function 

( 1 + æ 2 ) - l = 1 _ æ2 + 4 _ æ 6 + .8 ? 

as far as real values are concerned, which should indicate why the expan
sion holds only when \x\ < 1 ; but in the complex domain the function 
(1 -f £ 2 ) - 1 becomes infinite at z = ± i, and hence the greatest circle 
about z = 0 in which the series could be expected to converge has a unit 
radius. Hence by considering (1 -ļ- z2)~l for complex values, it can be 
predicted without the examination of the nth. derivative that the Mac-
laurin development of (1 -f- oc2)'1 will converge when and only when x 
is a proper fraction. 

EXERCISES 
1. (a) Does + x (1 — x) + x (1 — x)2 + • • • converge uniformly when 0 ≤ x ≤ 1 ? 

î ļ ¾ k) (1 2 k) 
(ß) Does the series (1 + k)k = 1 -f 1 -\ \- ± L± 1 _ļ_ . . . converge un i -

. ! 
formly for small values of ? Can the derivation of the limit e of § 4 thus be made 
rigorous and the value be found by setting — 0 in the series ? 

2. Test these series for uniform convergence ; also the series of derivatives •. 
(a) l + æsinØ + æ2sin20 + æ3sin30 + • •-, \x\ X<l, 
/Λ4 ., . sin sin2x sin3 sin4x . , _ __ 

. . x -1 l /χ - 1 \ 2 i /x - 1 \ 3 l __ _ _ 

V x + 1 3 \x + 1/ 5 \x + 1/ 
(e) Consider complex as well as real values of the variable. 
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3 . Determine the radius of convergence and draw the circle. Note that in prac
tice the test ratio is more convenient than the theoretical method of the text: 

(a) x - ļ x 2 + ļ x 3 - ļ x 4 - f ••• , (ß) x- ÷x3 + ļ x 5 - ì x 7 + - - - , 

1Γ foe b¿x2 bV 1 / í 4 n „ x4 x6 x8 

(7) - h + - + - ^ + - ¿ - + - - - U δ 1 - .2+ + , 
a\_ a a2 as J 2 ! 3 ! 4 ! 

( e ) 1 x - tt + 1)χ2 + (1 + ì + *)*3 - tt + I + 1 + i)*4 + • • •. 
, 32 4- 3 9 34 + 3 36 + 3 A 
V i ; 4 2 ! 4 4 ! 4 - 6 ! 

(η) 1 - x + x4 - x5 + x8 - x9 + x12 - x13 + • • •, 

(0) ( x - l ) i - ļ ( x - l ) 2 + H ^ - l ) 3 - έ ( ^ - l ) 4 + - - - , 
(m - 1) (m + 2) (m - 1) (m - 3) (m + 2) (m + 4) 

^ ' 3 ! 5! 

(ĸ)
 χ2

 ¦
 x* * . . . . 

{K) 22(m + l) 2 4 -2!(m + l)(m-\- 2) 26 • 3 ! (m + 1) (m + 2) (m + 3) 
χ2 x4 /1 l \ χ6 /1 1 l \ x8 /1 1 1 l \ 

(λ) 22 ¯̄  24(2 !)2 \ ī + 2/ + 26(3 !)2 \ ī + 2 + 3/ 28(4!)2 \ ī + 2 + 3 + 4/ + “ ' ' 

( I , ^ a « ( g + l W f l + l ) ^ , g ( « + l ) ( g + 2)/3¾8+ 1)08 + 2 ) ^ 
W + L 7 1 . 2 - 7 ( 7 + 1) 1 - 2 . 3 . 7 ( 7 + l ) (7 + 2 ) 

4. Establish the Maclaurin expansions for the elementary functions: 

(a) log (1 — x), (ß) sinx, (7) cosx, (δ) coshx, 
(e) ax, (f) tan-*x, (77) sinh-!x, (0) tanh-i¾. 

5. ΛbeVs Theorem. If the infinite series α0 + Í½Æ + a2
χ2 + 3 + • • • converges 

for the value X, it converges uniformly in the interval 0 ≤ x ≤ X. Prove this by 
showing that (see Exs. 17-19, p. 428) 

\Rn(x)\ = |α„x» + an+lx»+i + • • • | < C^\‰X» + • • • + an + pX»+P\, 

when p is rightly chosen. Apply this to extending the interval over which the 
series is uniformly convergent to extreme values of the interval of convergence 
wherever possible in Exs. 4 (α), (f), (θ). 

6. Examine sundry of the series of Ex. 3 in regard to their convergence at ex
treme points of the interval of convergence or at various other points of the circum
ference of their circle of convergence. Note the significance in view of Ex. 5. 

_ j_ 
7. Show that ƒ (x) = e χ2, / ( ) = 0, cannot be expanded into an infinite Mac-

_i_ 
laurin series by showing that R = e *2, and hence that Rn does not converge 
uniformly toward 0 (see Ex .9 , p. 66). Show this also from the consideration of 
complex values of x. 

8. From the consideration of complex values determine the interval of con
vergence of the Maclaurin series for 

(α) t anx = 5 ^ Ì (ß) —-—1 (7) tanhx, (δ) log(l + e*). 
cos x & — 1 
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9. Show that if two similar infinite power series represent the same function 
in any interval the coefficients in the series must be equal (cf. § 32). 

1 0 . F r o m 1 + 2 r coso- + r2 = (1 + reix) (1 + re-**) = r2 (l + — ) ( l - f - — “ ) 

r2 r3 \ 
prove log- (1 + 2 r cos x + r2) = 2 ļ r cos x — - cos 2 x -\ cos 3 — • • • ļ , 

r < 1 

J <*x r 2 r 3 \ 

log (1 4- 2 r cos x + r2) dx = 2 ( r sin x sin 2 x -¦ sin 3 x — • • • ) ; 
i) v ' \ 2 2 3 2 ' 

i i /ι . -Λ ON Λ i . n / c o s x cos 2 cos3x \ 
and log (1 -f 2 r cos x -\- r¿) — 2 log r + 2 I 1- . • • ļ 

\ r 2r2 3r 2 J 
r > 1   

' /-. . Λ . ox 7 o i J S I I I Ï sin 2 s in3x \ 
I log (1 + 2 r cos x + r2) <ix = 2 x log r + 2 ( 1 • • • I : 

v ö \ r 22r2 32r2 / ' 
log (1 + sin α cos x) c7x = 2 log cos - + 2 ( tan — sin x — tan2 h • • • 1 • 

' 2 \ 2 2 22  

11. Prove Γ 1 _^_ = . 1 . J_ + ^ 1 _ _ ! - 3 - 5 Γ * _ _ j * _ . 
^ V l + x 4 2 • 5 2 - 4 . 9 2 . 4 • 6 • 13 VΓ+^ř* 

12. Evaluate these integrals by expansion into series (see Ex. 23, p. 452) 

r ∞ e~ <¡x sin rx Ί r 1/r\3 1/r\5 , r 
(α) ƒ đx = ( - ) + _ ( - ) = t a n - i - , 
V ' X q 3 W ^ 5 \q/ q 
io× Γ7Γlog(l +A:cosx) , . /»T x s i n x _ τr2 

(j8) f —— '-dx = îΓsm-!Ä:, (7) — dx =—, 
«/o cos Jo 1 + cos2 4 

( δ ) e - *2*2 cos 2 / = — - e ~ w (e) log (1 + 2 r cos + r2)cfø. 
Jo 2 a Jo 

13. By formal multiplication (§ 168) show that 

1 — a2 

= 1 + 2 a cos + 2 a2 cos 2 H , 
1 - 2 c ř cos + α2 

orsina; . . 
= a: sin + a¿ sin 2 + • • • . 

1 — 2 a cos + α2 

14. Evaluate, by use of Ex. 13, these definite integrals, m an integer : 

, /*71" c o s m x d x iroC"1
 tn× rπ xsmxdx π . 

(α) = , (ß) I = - l o g ( l 4- a), 
v ' 1 - 2 α c o s x + α2 1 - a2 Jo 1 - 2 α c o s x + α2   

sin sin mxdx  
I 7, = -<x™~\ 

Jo 1 - 2 α cos x + a2 2 
rπ siτι2xdx 

^ ' (I - 2 a cosx + a2)(l - 2 ß cos x + ß2)' 
15. In Ex. 14 (7) let a = 1 — ħ/m and = z/m. Obtain by a limiting process, 

and by a similar method exercised upon Ex. 14 (a) : 
∞ z sin zdz π r∞ cos zdz π . 

Jo Λ2 + 22 2 ' Jo h2 + z2 2 
Can the use of these limiting processes be readily justified ? 
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16. Let h and x be less than 1. Assume the expansion 

f(x, h) = 1 = = 1 + ħP¿x) + h*P0(x) + • • • + ħ»Pn(x) + . . . . 
Vl-2xh + ħ2 

Obtain therefrom the following expansions by differentiation : 

\fx = -3 =P¡ + hP¡ + Ä«PÌ + . . . + Ä»-ip; + • • •, 
h (l-2xh + hψ 
*fh = í — ^ - P 1 + 2ΛP2 + 3Λ2P3 + - • - + Ä»-iPn + • • • . 

( l - 2 x ŭ + Λ2)2 

Hence establish the given identities and consequent relations : 

X-^fx = xP{ + h(xF - P i ) + . . . + ¾»-i(xP; - n _ O + . • - = 

fļ= Pλ + h(2P2) + • • • + hn-i(nPn) + • • • , 

^ ļ ^ Λ - / = - i + ^i + Ä(¾--Pi) +--- + Λ"‰ + p;_1-Pn) + ...= 
2zŵ/ = ŵ(2æ) + • • • + Λ»(2xPn- ι) . 

or P« = XP; -P ;_ ! and p;+x + p;_!-p« = 2æp;. 
Hence x P ; = P ; + ! - ( n + l )Pn and (x2 - l ) P ; = n(xPn - P„_ι) . 

Compare the results with Exs. 13 and 17, p. 252, to identify the functions with the 
Legendre polynomials. Write 

1 1 1 

(1 - 2 xh + b?γ (1 - 2 h cos θ + Λ2)^ (1 - he*)½ (1 - her V)i 

= ( l + - Λ e * + — W 0 + . • •) ( l + l / ¿ e - ^ + —Λ2e-2*'ö + . . A, 

and show Pn(cos 0) = 2 —-—“ ' ^ n ~ ' cos nØ + — cos(n — 2) 0 + • • • \ • 

v ' 2 - 4 . . - 2 n \ l . ( 2 n - 1 ) v ' ƒ 

168. Manipulation of series. 7 / <m infinite series 

S = u0 + uλ + u2 H h - + 4. H (13) 
converges, the series obtained by grouping the terms in parentheses with
out altering their order will also converge. Let 

S'= U0+Uì + -.-+Un,_1+Un, + --- (13') 

and Sly S2, - • •, Sn,, • - -

be the new series and the sums of its first n' terms. These sums are 
merely particular ones of the set Sv S2, •• -, £„,-•-, and as n' < n it 
follows that n becomes infinite when n' does if n be so chosen that 
Sn ~ ¾'- As Sn approaches a limit, S'n, must approach the same limit. 
As a corollary it appears that if the series obtained by removing paren
theses in a given series converges, the value of the series is not affected 
by removing the parentheses. 
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If two convergent infinite series be given as 

S = w0 + Ml H , and T = v0 + vt-\ , 

then (λu0 + µv0) + {λuχ + µvj -\ 

will converge to the limit λS -\- µT, and will converge absolutely provided 
both the given series converge absolutely. The proof is left to the reader. 

If a given series converges absolutely, the series formed by rearranging 
the terms in any order tvithout omitting any terms will converge to the 
same value. Let the two arrangements be 

S = u0 + + u2 H h un_λ + un-\ 

and S = uQ, + uv + v#-\ h "w/_ι + nn, -f • • •. 

As S converges absolutely, n may be taken so large that 

KI + K+ iH— < c; 
and as the terms in S' are identical with those in S except for their 
order, n' may be taken so large that S'n, shall contain all the terms in 
Sn. The other terms in S'n, will be found among the terms un, un^.ļ, • • -. 
H e n C β \S'n,-Sn\<\un\ + \un + 1\+ . . . < c . 

As IS — Sn \ < e, it follows that ļ S — S'n, \ < 2 e. Hence S'n, approaches S 
as a limit when n' becomes infinite. I t may easily be shown that S' also 
converges absolutely. 

The theorem is still true if the rearrangement o f S is into a series some 
of whose terms are themselves infinite series of terms selected from S. 
Thus let s , = Uo+Uι+U2+...+ Un/_λ +Unř + ...f 

where Z7¿ may be any aggregate of terms selected from S. If Ui be an 
infinite series of terms selected from S, as 

Ui = ui0 + uŭ + ui¡¿-\ f- uin H , 

the absolute convergence of U{ follows from that of S (cf. Ex. 22 below). 
I t is possible to take n' so large that every term in Sn shall occur in one 
of the terms U0, Uv • • -, Un,_λ. Then if from 

S-Uŭ-Ut £/•„,_, (14) 

there be canceled all the terms of Sn, the terms which remain will be 
found among un, un + 1, •••, and (14) will be less than Hence as n  
becomes infinite, the difference (14) approaches zero as a limit and the 
theorem is proved that 

S= Uo+ + --+ P * - ι + U^ + --- S1. 
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If a series of real terms is convergent, but not absolutely, the number of posi
tive and the number of negative terms is infinite, the series of positive* terms and 
the series of negative terms diverge, and the given series may be so rearranged as 
to comport itself in any desired manner. That the number of terms of each sign 
cannot be finite follows from the fact that if it were, it would be possible to go so 
far in the series that all subsequent terms would have the same sign and the series 
would therefore converge absolutely if at all. Consider next the sum Sn = Pi — Nm, 
I + m = n, of n terms of the.series, where Pj is the sum of the positive terms and 
Nm that of the negative terms. If both Pi and Nm converged, then Pi + Nm would 
also converge and the series would converge absolutely ; if only one of the sums 
Pi or Nm diverged, then S would diverge. Hence both sums must diverge. The 
series may now be rearranged to approach any desired limit, to become positively 
or negatively infinite, or to oscillate as desired. For suppose an arrangement to 
approach L as a limit were desired. First take enough positive terms to make the 
sum exceed X, then enough negative terms to make it less than ¿ , then enough 
positive terms to bring it again in excess of ¿ , and so on. But as the given series 
converges, its terms approach 0 as a limit; and as the new arrangement gives a 
sum which never differs from L by more than the last term in it, the difference 
between the sum and L is approaching 0 and L is the limit of the sum. In a similar 
way it could be shown that an arrangement which would comport itself in any of 
the other ways mentioned would be possible. 

If two absolutely convergent series be multiplied, as 

S = n0 + uλ + -\ \-un-\ , 

T = v0 + vx + v2 -\ h vn H , 

a n d W = u0v0 + uλv0 + u2v0 -\ \- u1}v0 -

+ ?V4 + \ + u¿»i + h unvι H  
+ • • 

+ uoVn + uxvn + u2vn H h unvn H  

+ 
and if the terms in W be arranged in a simple series as 

V o + + ¾ + u0vτ) + (u2v0 + + u2v2 + uλv2 + uQv2) + . . . 

or in any other manner whatsoever, the series is absolutely convergent 
and converges to the value of the product ST. 

I n t h e pa r t i cu l a r a r r a n g e m e n t above, SΎTV S2T2, SnTn is t h e sum of 
t h e first, t h e first two , t h e first n t e r m s of t h e series of pa ren these s . A s 
l im SnTn = ST, t h e ser ies of p a r e n t h e s e s converges to ST. A s S a n d T 
are abso lu te ly conve rgen t t h e same r ea son ing could be app l i ed to the 
series of abso lu te va lues a n d 

klh l + h lh l+Klk l + k lh l + Klhl + • • • 
would be seen to converge . H e n c e t h e convergence of t h e series 

V o + *V\> + " i“ i + ? VΊ + VΛ + VΛ + ' " Λ + ' " Λ - + V a + • • • 
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is absolute and to the value ST when the parentheses are omitted. 
Moreover, any other arrangement, such in particular as 

V o + ( ¥ o + V i ) + ( V o + ¥ i + V 2 ) + •'•> 
would give a series converging absolutely to ST. 

The equivalence of a function and its Taylor or Maclaurin infinite 
series (wherever the series converges) lends importance to the operations 
of multiplication, division, and so on, which may be performed on the 
series. Thus if 

f(x) = a0 + cψ + a2x2 4- «8
 3 + • • •, \x\ < Rv 

g(x) = b0 4- V + ¿<2*
2 + lψ* + • • -, < Aa> 

the multiplication may be performed and the series arranged as 

f(x)g(x) = afa + (afa + afa)x + (afa + afa + ¾¾¾ 2 -f • • • 

according to ascending powers of x whenever x is numerically less than 
the smaller of the two radii of convergence R , Roì because both series 
will then converge absolutely. Moreover, Ex. 5 above shows that this 
form of the product may still be applied at the extremities of its inter
val of convergence for real values of x provided the series converges 
for those values. 

As an example in the multiplication of series let the product sinx cos be found, 

sin x = x xs -\ x5 — • • •, cos x=rl x2 -| x4 x6 + • • •. 
3 ! 6 ! 2 ! 4 ! 6! 

The product will contain only odd powers of x. The first few terms are 

The law of formation of the coefficients gives as the coefficient of χ2t + 1 

(_!)*[_!_+ î + ! + ... + 1 + _L^| = 
V ' L(2 + 1) ! (2 - 1) ! 2 ! (2 - 3) ! 4 ! 3 ! (2 - 2) ! (2 ŵ) ! J 

(-1)* r ι (2fc + l)2¾ (2λ: + l)(2¾)(2A;-l)(2¾-2) , (2fe + l ) ļ 
(2ŵ + l)!L 2! 4! '*'"1" 1! J ' 

But 22* + i = (1 + l)2* + i = 1 + (2fc + 1) + í ^ _ ± i ) ^ ? + . .. + (2k + 1) + 1. 
Hence it is seen that the coefficient of x2k + 1 takes every other term in this symmet
rical sum of an even number of terms and must therefore be equal to half the sum. 
The product may then be written as the series 

1Γ (2x)3 (2x)5 Ί 1 . rt 
sin x cos x = - 2 x — - -'- + — • • • \ — - sin 2 x. 

2[_ 3! 5! J 2 
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169. If a function f(x) be expanded into a power series 

f(x) = % + aλx + a2x2 + asxs + • • •, |æ| < , (15) 

and if x = a is any point within the circle of convergence, it may be 
desired to transform the series into one which proceeds according to powers 
of (x — a) and converges in a circle about the point x = a. Let t = x — a. 
Then x = a -f t and hence 

xì = oř + 2at + t2, x*= a* + 3 c¿H + 3at2 + f, 

f(x) = a0 + aλ (a + †) + «* (a2 + 2 at + t2) + • • •. (15') 

Since ļαļ < R, the relation \a\ 4- |¿ļ < Æ will hold for small values of t, 
and the series (15') will converge for x = ļα-ļ -f- \t|. Since 

¾ + aÁ\a\ + M) + ¾(lαΓ + 2MM + 2) + • • • 
is absolutely convergent for small values of t, the parentheses in (15') 
may be removed and the terms collected as 

f(x) = φ(t) = (a0 + aΎa + a2a2 + <¾3α:3 -\ ) + (aχ •}-2 a¿c + 3 ajx2 -\ )t 

+ (¾ + 3 .8 + .. .)¿2 + (α8 + •. -)¿3 4- . . . , 

or f(x) = φ(x - a) = A0 4- Aλ(x — a) 4- A,(x — a)2 

+ . 4 3 ( * - α ) 3 4 - - - - , (16) 

where AQ, Aχ, A0, • • • are infinite series ; in fact 

=Λ«)» ¿i =/'(«), ^ = I J / “ ( « \ = I Ĩ ƒ"'(«)»•••• 

The series (16) in x — a will surely converge within a circle of radius 
R — \a¦ about x = a ; but it may converge in a larger circle. As a matter 
of fact it will converge within the largest circle whose center is at a and 
within which the function has a definite continuous derivative. Thus 
Maclaurin's expansion for (1 4- ¿r)~1 has a unit radius of convergence ; 
but the expansion about x = ļ into powers of x — ± will have a radius 
of convergence equal to ļ Vö , which is the distance from x = ¾ to either 
of the points x = ± Ĺ If the function had originally been defined by 
its development about x = 0, the definition would have been valid only 
over the unit circle. The new development about x = \ will therefore 
extend the definition to a considerable region outside the original 
domain, and by repeating the process the region of definition may be 
extended further. As the function is at each step defined by a power 
series, it remains analytic. This process of extending the definition of 
a function is called analytic continuation. 
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Consider the expansion of a function of a f unction. Let 

f (oc) = a0 + aχx + a2x'2 -f a¿c* -\ \x\ < Λ\, 

x = φfø) = ¾ + + b¿f + bsf + • • -, \í/\< R„ . 

and let \b0\ < Rχ so that, for sufficiently small values of y, the point x 
will still lie within the circle R . By the theorem on multiplication, the 
series for x may be squared, cubed, • • •, and the series for x2, æ3, . . . may 

be arranged according to powers of y. These results may then be sub

stituted in the series for f{x) and the result may be ordered according 

to powers of y. Hence the expansion for ƒ \_φ{y)¯\ is obtained. That 

the expansion is valid at least for smalle values of may be seen by 

considering 

Kl + tøi¿ + |«2|ř +\a.t\? +..., i<slt 

= 1 1 + № 1 + 1 * + -"> ' |y |small , 

which are series of positive terms. The radius of convergence of the 

series for ƒ [φ(¿/)] may be found by discussing that function. 

For example consider the problem of expanding ecoax to five terms. 

ey = l + y + ļ y a + i Vs + 2 V / + ' • -, = cosφ = 1 - 1 + ^ ;4 + . . . , 

y2 = l-χï + ļχ4 ţ î/3 = l - fx 2 + |-X4 , ž/4 = 1 - 2X2 + 1|X4 , 
» = 1 + (1 - ļx* + -2¾X4 ) + ļ ( l _ χ2 + ļ χ 4 ) + ļ ( 1 _ 3 χ2 + ļχ4 ) 

+ ^ ( l _ 2 x 2 + lfx4 ) + ••• 

= (i + ι + i + i + ŵ + ---)-(¾ + i + i + A + -- -)*2 

e y _ ßCOβx = 2ļļ _ lļχ2 + 22 æ 4 . 

It should be noted that the coefficients in this series for eC0BX are really infinite 
series and the final values here given are only the approximate values found by-
taking the first few terms of each series. This will always be the case when  

— b0 + bχx 4- • • • begins with ò0 ≠ 0 ; it is also true in the expansion about a new 
origin, as in a previous paragraph. In the latter case the difficulty cannot be 
avoided, but in the case of the expansion of a function of a function it is some
times possible to make a preliminary change which materially simplifies the final 
result in that the coefficients become finite series. Thus here 

ecoβa; = e l+ z —ee
z, Z — COS X — 1 = — ļ X2 + ¾¼ X4 — j ì τ X6 + • • • , 

22 = ļ æ 4 - 2 ï æ 6 + • • - . z 3 = - ļ x 6 + •••, z4, z\ z6 = 0 + - . . , 

e« = 1 + (– \x2 + &x* - jļ<>x* + ' ' •) + H έ * 4 - A * 6 + • • • ) + H " i* 6 + •••) + •• -, 

eco8a; - e e
2 = e (1 — ļ x2 + ļ x4 — 7 ¾ x 6 H ). 

The coefficients are now exact and the computation to x6 turns out to be easier 
than to x2 by the previous method ; the advantage introduced by the change would 
be even greater if the expansion were to be carried several terms farther. 
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The quotient of two jwwer series f(x) by ( ) , if g(fy =≠= 0? may he 
obtained by the ordinary algorism of division as 

,/M = ,0 + ^ + ^ + . . . = 
g(x) b^ + b^τ + b¿ř-\ 0 1 2  

For in the first place as g (0) ψ 0, the quotient is analytic in the neigh
borhood of x = 0 and may be developed into a power series. I t there-
fore merely remains to show that the coefficients cQ, cļ? c0, • • • are those 
that would be obtained by division. Multiply 

(«0 4- aχx + a2x2 -\ ) = (eQ + cχx + c2x2 -\ ) (bQ + t\x + b2x2 -\ ) 

and then equate coefficients of equal powers of . Then 

is a set of equations to be solved for c0, ev c2, • • •. The terms in f(x) and 
g(x) beyond xn have no effect upon the values of cQ, cv • • -, cn, and hence 
these would be the same if bn + 19 bn + 2, • • • were replaced by 0, 07 • • -, and 
«»+ι , an + 2, -•, a2n, <t>2n+i,'-- b y such values α'Ä + 1 , V n +a, •••, a'2n, 0, • • • 
as would make the division^ come out even ; the coefficients eQ, , • • •, en 

are therefore precisely those obtained in dividing the series. 
If is developed into a power series in x as 

= ƒ 0*0 = % + 1 + a2χ2 H » rΊ ≠ °> ( 1 7 ) 
then æ may be developed into a power series in / — aQ as 

* = f'\U - «α) = ¾tø - ¾) + ¾Ŵ - %† + '•" (18) 
For since aļ φ 0, the function f(x) has a nonvanishing derivative for 
x = 0 and hence the inverse f u n c t i o n / - 1 (y — a0) is analytic near x = 0  

y = aQ and can be developed (p. 477). The method of undetermined 
coefficients may be used to find bļy b , • • •. This process of finding 
(18) from (17) is called the reversion of (17). For the actual work it is 
simpler to replace (y — 0)/ by t so that 

t = x + a'¿č + « r* 4- f/¿æ4 H , »; = rř,-/¾ 

and x = t + b¡t2 4- ¾¿8 4- ¾¿4 H , ¾ = ¾«ί • 

Let the assumed value of x be substituted in the series for t ; rearrange 
the terms according to powers of t and equate the corresponding coef
ficients. Thus . , , , , , 

t = t 4- (¾ 4- a2) t
2 + (¾ + 2 ¾«¿ 4- ¿¾) ¿8 

4- (¾ + 2 ¾^ + ¾'¾ + 3 ¾«í -f ÚQ ¿4 + • • • 

or ¾ = — ¾ ¾ = 2 «g2 — «g, ¾ = — 5 r/2
3 + 5 r/o^o — a\, • • •. 
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170. For some few purposes, which are tolerably important, a formai 
operational method of treating series is so useful as to be almost indis
pensable. If the series be taken in the form 

1 + aχx + ^x2 + ^x3 + • • • + V + • ••, 1 Δ\ όl n\ 

with the factorials which occur in Maclaurin's development and with 
unity as the initial term, the series may be written as 

ι (t'2 , a 3
 β aìl 

- β∞ = 1 + alx + ^T x2 + ^T x3 + • • • + -7 xH + • • •, I ! ò\ n\ 

provided that a1 be interpreted as the formal equivalent of tu. The 
product of two series would then formally suggest 

eaxebx = e(a + b)x = ĵ. _[_ (,t + ¿,)½ + - _ Qt + ¿)¾2 _ļ ? (19) 

and if the coefficients be transformed by setting albj. = aþĵy then  

+ aļX + |£ ^ + ... \ + χχ + Ķ xř + • - \ 

= 1 + + ¾) * + -̂  gr1 *2 4- • • • • 

This as a matter of fact is the formula for the product of two series 

and hence justifies the suggestion contained in (19). 

For example suppose that the development of 

were desired. As the development begins with 1, the formal method 
may be applied and the result is found to be 

X = eBx, x = e(i>> +1)x - eBx, (20) 
ex — 1 y 

x = a -+"[(B + l ) a - i r ] ^ + [(Ä + l ) 8 - ^ ] f ^ + - - , (21) 

( + l ) 2 - 2 = 0, ( 5 + l ) 3 - Bs = 0, .. •, (B + l)k - Bk = 0, • • •, 

or 2J¾ + l = O, 3 ^ + 3 ^ + 1 = 0, 4 ^ + 6 ¾ + 4 ¾ + l = O , . . . , 

or -¾ = - i > ¾ = J, ¾ = °> ¾ = - ¾ W - - -

The formal method leads to a set of equations from which the suc
cessive B's may quickly be determined. Note that 

x x χď' + 1 x x x , I x\ «ox 
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is an even function of x, and that consequently all the i?'s with odd 
indices except Bχ are zero. This will facilitate the calculation. The 
first eight even B's are respectively 

1 1 l_ J L 5 _6 9_l_ 7 3 6_l 7 Í9R\ 
tf? 3O> 4 2 J 3 0 ? ïï¾^? 2 7 3 0 ? S“> 5IO¯* V w t V 

The numbers B, or their absolute values, are called the Bernoullian 
numbers. An independent justification for the method of formal cal
culation may readily be given. For observe that ďeBx = e(B+1)x of (20) 
is true when is regarded as an independent variable. Hence if this 
identity be arranged according to powers of B, the coefficient of each 
power must vanish. I t will therefore not disturb the identity if any 
numbers whatsoever are substituted for B1, B2, Bs, • • • ; the particular 
set Bv B2, Bs, • • • may therefore be substituted ; the series may be rear
ranged according to powers of x, and the coefficients of like powers of 
x may be equated to 0, — as in (21) to get the desired equations. 

If an infinite series be written without the factorials as 

1 -f- aχx -ļ- (f2x2 -\-asxs + • • • + anxn -J- • • •, 

a possible symbolic expression for the series is 

= 1 + aλx + α¾2 -f <ŵ3 H , (ė = a*. 

1 — ax 

If the substitution y = x/(l-\-x) or x = y/(l — y) be made, 

1 __ 1 _ 1 -
1-ax¯¯ 1 _ a _JJ_ - 1 - (1 + a)y' (24) 

Now if the left-hand and right-hand expressions be expanded and a be 
regarded as an independent variable restricted to values which make 
\ax\ < 1, the series obtained will both converge absolutely and may be 
arranged according to powers of a. Corresponding coefficients will then 
be equal and the identity will therefore not be disturbed if α¿ replaces 
a\ Hence 

1 + ( ψ +a¿» + ... = ÇL- y) [1 + (1 + a)y + (1 + « ) 2 / +•••]» 

provided that both series converge absolutely for a( = a'. Then 

1 + aΛx + aÿ? + « 3 + • • • = 1 + + a (1 + a)y2 + a (1 + uf¦f -\ 

= 1 + aλy + (αα + a¿¡f + («, + 2 «g + %)f +••-, 

or (ψ + <ųiř + u3xs H = aχy + (at + a2)y'2 

+ ("1 + 2 « 2 + < g y 3 + - - - (25) 



I N F I N I T E SERIES 449 

This transformation is known as Eulei*s transformation. I ts great 
advantage for computation lies in the fact that sometimes the second 
series converges much more rapidly than the first. This is especially 
true when the coefficients of the first series are such as to make the 
coefficients in the new series small. Thus from (25) 

log (1 + x) = x — \ x2 + ¿. xs — ļ. 4 + ļ x5 — J 6 H  

= + h f + i f + έ * + i y5 + i y' + . • •. 
To compute log 2 to 'three decimals from the first series would require 
several hundred terms ; eight terms are enough with the second series. 
An additional advantage of the new series is that it may continue to 
converge after the original series has ceased to converge. In this case 
the two series can hardly be said to be equal ; but the second series of 
course remains equal to the (continuation of the) function defined by 
the first. Thus log 3 may be computed to three decimals with about a 
dozen terms of the second series, but cannot be computed from the first. 

EXERCISES 
1. By the multiplication of series prove the following relations: 

(a) (1 + x + x2 + Xs + • • -)2 = (1 + 2x + 3íc2 + 4 χ 3 + * * •) = (1 - x)¯2ι 
(ß) cos2 x + sin2 x = 1, (7) = ex + v, (δ) 2sin2æ = 1 — cos2x. 

2. Find the Maclaurin development to terms in x6 for the functions: 

(a) eæcosx, (ß) e*sinx, (7) (1 + x)log(l + x), (δ) cos sin-1«. 

3. Group the terms of the expansion of cosx in two different ways to show that 
cos 1 > 0 and cos 2 < 0. Why does it then follow that cos £ = 0 where 1 < £ < 2? 

4. Establish the developments (Peirce's Nos. 785-789) of the functions: 

(a) e8inx', (ß) etanar, (7) e*in~lχ, (δ) etΛn~lχ. 

5. Show that if g(x) = bmxm + öm + ιxnι + 1 + • • • and/(0) ≠ 0, then 

f(x)= α 0 +^ 1 X + α2X2 + - - = C - m ļ C-m + l ļ ļ C - l ¦_ g + c χ + . . . 

g(x) bmzm + bm + ιx™ + ι + ..- xm xm~l x ° l 

and the development of the quotient has negative powers of x. 

6. Develop to terms in x6 the following functions : 

(a) sin (k sin x), (ß) log cosx, (7) Vcosx, (δ) (1 — k2 sin¾)~i. 

7. Carry the reversion of these series to terms in the fifth power: 
(a) y = sinx = x — ļ x3 + • • •, (ß) y = tan-1 x = x — ļ x3 + • • •, 
(7) y = (a = l + χ + ļχ2 + ...ì (δ) ?y = 2x + 3x2 + 4x3 + 5x4 + - . . . 
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8. Find the smallest root of these series by the method of reversion: 

1 rx 1 1 1 
(a) -= I e-x¾x -x x3 + x5 — x1 + • • •, V ' 2 3 3 ! 5 3 ! 7 

(ß) - = f cos x2dx, (y) —= f . 
4 Jo 10 Jo V ( 1 - Í C 2 ) ( 1 - ļx 2 ) 

9. By the formal method obtain the general equations for the coefficients in the 
developments of these functions and compute the first five that do not vanish : 

. sin 2tx Xs 

10. Obtain the general expressions for the following developments: 

1 x x3 2x5 ‰ ( 2 x ) 2 n 

(a) coth x = - + + + - ^ — , v ' x 3 45 945 (2 n) ! x 

(ß) cot¾ = l _ Ξ _ ^ _ ! f î _ . . . + (_1).¾-^Ξ)L"_..., 
v ' x 3 45 945 v ' (2n)!x 

x , • i X2 X4 X6 , -,4 ‰ ( 2 X ) 2 » 
(7) log sin x = log x + (― 1)» - ±—- , 
v ' fe b 6 180 2835 v f 2n-(2n)\ 

. , , x2 x4 x6 ‰ ( 2 x ) 2 » 
(ð) logsinhx = l o g x + r- + - ^ ^ — . 

. 6 180 2835 2n-(2n) ! 

11 . The Eulerian numbers E2n are the coefficients in the expansion of sechx. 
Establish the defining equations and compute the first four as — 1, 5, — 61, 1385. 

12. Write the expansions for sec x and log tan (ļ 7r + ļx). 

13. From the identity = derive the expansions: 

PX 1 x r 3 γ2n—1 
( α ) ^TĨ = 2 + B 2 ( 2 2^1 )2l + ¾ ( 2 4 ^ 1 ) ĥ + '-- + ‰ < 2 2 ' ' - 1 ) W + "'' 

1 1 r3 r2» -1 
(0) = - - ¾(2 2 - 1) ¾(2 4 - 1) — ¾n(22» - 1) + • • •, 
v ' e* + 1 2 2V ; 2 ! 4V ; 4 ! v ; 2 n ! 

(7) tanhx = ( 2 2 - 1)22 * + ( 2 4 - 1 ) 2 4 ¾ ^ + • • • + ( 2 2 * - 1 ) 2 2 » ‰ Ç ^ + . . . , 
2 ! 4 ! 2 n ! 

X3 2 X** 1 7 J*̂  γ'2n— 1 
(β) t anx = x + τ + - Γ + — - + . . . + ( _ l ) . - i ( 2 » » _ l ) » « ¾ , í — + ••• ,  

lo dio 2 n ! 

j » 2 /TI«4 «6 » 2 n 

(e) logcosx = _ ( - l )« - i (22»- l )22*Ö2n -― , 
2 12 45 V ' V ; 27 i -2n ! 

( O log t anx = logx + ţ + ^ + . . . + (– l)»-i(2*“-i - 1 ) 2 * » ‰ - ^ + • • •,  
60 n • 2 n ! 

(77) cscx = ĩ ( co t? + t a n ? ) = - + ļ- + • • • + (– 1)»- i2(2 2 »- ι - l ) ¾ , , ~ , 
•¿ \ A / X ! 2 71 ! 

(0) log cosh x, (1) log tanhx, ( ) cschx, (λ) sec2x. 
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Observe that the Bernoullian numbers afford a general development for all the 
trigonometric and hyperbolic functions and their logarithms with the exception of 
the sine and cosine (which have known developments) and the secant (which re
quires the Eulerian numbers). The importance of these numbers is therefore 
apparent. 

14. The coefficients P^y) , P 2 (Ŵ • • • • P«(ž/) ln t n e development 

ţļ X — 1 
7 =V + Pιfø)*'+ l\(v)x2 + ••• + Pn{y)x» + • • • 

βx — 1 

are called Bernoulli's polynomials. Show that (n + 1) ! P (y) = (B + ?/)n+1 — B»*1 

and thus compute the first six polynomials in y. 

15. If y = N is a positive integer, the quotient in Ex. 14 is simple. Hence 

n ! Pn(N) = 1 + 2* + 3" + - • • + (N- l )n 

is easily shown. With the aid of the polynomials found above compute : 

(a) 1 + 24 + 3* + • • • + 104, , (ß) 1 + 25 + 36 + • - + í*\ 

( 7 ) 1 + 22 + 32 + - • - + (N- l )2 , («) 1 4- 23 + 33 + • • • 4- (TV- l)3 . 

16. Interpret = = > x11. 
1— ax 1— x(a — b)\_l— ax a — bx_\ *4 a — b 

J
r»αo ļ 

g_(i-αaOf¢fó — establish formally  
1 — ax 

1 + axx + 2
 2 + asxs 4- • • • = I er*F(xt)dt = - ļ e *F(u)du, Jo x Jo 

where F(u) = 1 4- CUM H α2u2 -\ α3u8 4- • • •. 
\ ! 

Show that the integral will converge when 0 < x < 1 provided ļα¿| ≤ 1. 

18. If in a series the coefficients αt- = ƒ ¿*/(¿)đ¿, show 
«/o 

1 4- aλx 4- * 2 + α3x3 + • • • = f - A i _ đ¿. 
« 1 — xt 

19. Note that Exs. 17 and 18 convert a series into an integral. Show 

1 4 h — + • • • = I — dt by — ^ 2 = 1 e-“¾i»-icZř, 
V ' τ 2* 3* 4i» (p)Λ 1 - xt J UP Jo ς ζ , 

. 1 2 / > 1 s i n l o g ¿ 7 J . 1 /»∞ > . „ , . . 

( γ ) 1 + « + «(« + 1) 2 + «(« + 1)( + 2) 3 + . , . 
x " ^ h ĥ(ft + 1) />(í> + l)(b + 2) 

(b) / - ' f t - i ( l - y - « - i 
Γ ( α ) Γ ( ĥ - α ) Λ 1 - x í 
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20. In case the coefficients in a series are alternately positive and negative show 
that Euler's transformed series may be written 

aλx — eux2 + asxs — oųx4 + • • • = { + A a\ p- + A2a y3 + Δ¼?/4 + • • • 

where Aa\ = a\ — cų, 2αι = a _ — ΔĊ½ = «ι — 2 Ċ¾ 4- 3,• • • are the successive 
first, second, • • • differences of the numerical coefficients. 

2 1 . Compute the values of these series by the method of Ex. 20 with x = 1, y = J. 
Add the first few terms and apply the method of differences to the next few as 
indicated : 

(a) 1 4- \- • • • = 0.69315, add 8 terms and take 7 more, 
v ' 2 3 4 

(ß) 1 1 + - • • = 0.G049, add 5 terms and take 7 more, 
V2 V s V4 

(7) — = 1 — ĩ - ļ - ĩ _ ĩ _ ļ - . . . = 0.78539813, add 10 and take 11 more, w , 4 3 5 7 

W P r o v e ( l + l + l + l + . . . U 2P¯X ( i - l + l - l + . . Λ 
x ' \ 2P SP áP J 2P -1 — 1 \ 2P SP 4P } 

and compute for_p = 1.01 with the aid of five-place tables. 

22. If an infinite series converges absolutely, show that any infinite series the 
terms of which are selected from the terms of the given series must also converge. 
What if the given series converged, but not absolutely ? 

23 . Note that the proof concerning term-by-term integration (p. 432) would not 
hold if the interval were infinite. Discuss this case with especial references to 
justifying if possible the formal evaluations of Exs. 12 (a), (δ), p. 439. 

24. Check the formula'of Ex. 17 by termwise integration. Evaluate 

1 r∞ -– ?)4J4 1 
-J e *J0(bu)du = 1 - ļò¾ 2 + i • î —y = ( 1 + δ¾2)~î 

by the inverse transformation. See Exs. 8 and 15, p. 399. 


