PART IV. THEORY OF FUNCTIONS

CHAPTER XVI
INFINITE SERIES

162. Convergence or divergence of series.* Tet a series

2?6=’1L0+'Z(l-l—’llvg—l—--~—|—’Il"_1+7ln+--‘, @)

[
the terms of which are constant but infinite in number, be given. Let the
sum of the first n terms of the series be written

n—1

S,=u 4w+ g+, = 2 . @)
o .
Then Sl’ SQ, S37 ) Sn) Sn+17 e

form a definite suite of numbers which may approach a definite limit
lim S, = S when » becomes infinite. In this case the series is said to
converge to the value S, and S, which is the limit of the sum of the first
n terms, is called the sum of the series. Or S, may not approach a limit
when » becomes infinite, either because the values of S, become infinite
or because, though remaining finite, they oscillate about and fail to
settle down and remain in the vicinity of a definite value. In these
cases the series is said to diverge.

The necessary and sufficient condition that a series converge is that a
value of n may be found so large that the numerical value of S, ., — S,
shall be less than any assigned value for every wvalue of p. (See § 21,
Theorem 3, and compare p.356.) A sufficient condition that a series
diverge is that the terms u, do not approach the limit 0 when » becomes
infinite. For if there are always terms numerically as great as some
number » no matter how far one goes out in the series, there must
always be successive values of S, which differ by as much as = no
matter how large =, and hence the values of S, cannot possibly settle
down and remain in the vicinity of some definite limiting value S.

*1t will be useful to read over Chap. II, §§ 18-22, and Exercises. It is also advisable
to compare many of the results for infinite series with the corresponding results for

infinite integrals (Chap. XIII).
419



420 THEORY OF FUNCTIONS

A series in which the terms are alternately positive and negative is
called an alternating series. An alternating series in which the terms
approach 0 as a limit when n becomes infinite, eacl term being less than
its predecessor, will converge and the difference between the sum S of the
series and the sum S, of the first n terms is less than the next term u,.
This follows (p. 39, Ex. 3) from the fact that|s, , , — S,| < «,and », = 0.

For example, consider the alternating series
1—22 4224 —8a6 4 ... 4 (— Dmna2n 4 ...,

If |z| = 1, the individual terms in the series do not approach 0 as n becomes infinite
and the series diverges. If |x| <1, the individual terms do approach 0; for

. . n . 1
lim nx27 = lim = lim —— =0,
n=w® n=o LN 71:1—21“2"10gw :

And for sufficiently large* values of n the successive terms decrease in magnitude
since

nx?n < (n—1)x2n—2 gives >a2 or n>1

—

Hence the series is seen to converge for any value of  numerically less than unity
and to diverge for all other values.

Tue ComparisoN TEsT. If the terms of a series are all positive (or all
negative) and eacl term is numerically less than the corresponding term
of a series of positive terms which is known to converge, the series con-
verges and the difference S — S, is less than the corresponding difference
Jor the series known to converge. (Cf.p.355.) Let

Uyt oy g+, w4
and T R T e T LI e T S /M S

be respectively the given series and the series known to converge.
Since the terms of the first are less than those of the second,

v ’ ’, ’ ’
Sﬂ+p =S, =u,+---+ Up +p—1 <u,+---+ Upyp1 = Sn+p — S,

v

Now as the second quantity S, , — S, can be made as small as desired,
so can the first quantity S,,, — S,, which is less; and the series must
converge. The remainders

©

R,,=S—Sﬂ=un+7/n+1+o--=z1t,

n

£
R;:S’—S;=u;+u;+1+~-=2u’

n

* 1t should be remarked that the behavior of a series near its beginning is of no con-
sequence in regard to its convergence or divergence; the first N terms may be added
and considered as a finite sum Sy and the series may be writtenas Sy + uy + ux1 + -+ -3

it is the properties of uy + ux 1 + - - - which are important, that is, the ultimate behavior
of the series.
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clearly satisfy the stated relation R, < R,. The series which is most
frequently used for comparison with a given series is the geometric,
ar'

a4 ar+ a4+ ar - R, = , 0<r<l, 3)

Tl —

which is known to converge for all values of » less than 1.

For example, consider the series

1 1 1 1
1414 -4+~ 4+ = 4o ...
+ +2+2'3+2'3-4+ +,nl+
1 1 1
d 14 = S T N T
o +2+2.2+2.2.2+ +2n—1+

Here, after the first two terms of the first and the first term of the second, each
term of the second is greater than the corresponding term of the first. Hence the
first series converges and the remainder after the term 1/n! is less than

s 1 1 11 1
I\"<§;+2n+1+”'_§1_,%_2,4—1’
A better estimate of the remainder after the term 1/n! may be had by comparing
f,,:;+_.l—+... with ! + 1 +...:L.
n+1)! (n+4+2)! nm+1)! m+1)!n+1) nin

163. As the convergence and divergence of a series are of vital im-
portance, it is advisable to have a number of tests for the convergence
or divergence of a given series. The test
by comparison with a series known to con-
verge requires that at least a few types of
convergent series be known. For the estab-
lishment of such types and for the test
of many series, the terms of which are
positive, Cauchy’s integral test is useful. —
Suppose that the terms of the series are
decreasing and that a function f(n) which decreases can be found such
that «, = f(n). Now if the terms u, be plotted at unit intervals along
the n-axis, the value of the terms may be interpreted as the area of
certain rectangles. The curve y = f(n) lies above the rectangles and
the area under the curve is

Y|

f S(nydn > w, + u; + - + u, “
1

Hence if the integral converges (Which in practice means that if

ff(n) dn = F(n), the;l ‘/lmf(n) =F(o)—F(Q)is ﬁni‘ce),
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it follows that the series must converge. For instance, if

1 1 1
.ot 1, 1, (5)

1» ~ 2» 3 n?

be given, then u, = f(n) = 1/n*, and from the integral test

1 1 *dn’ —1 ® 1
2_"+§>—"+”' <£ _71,—"_(1)——1)7#’_1]1—];—1
provided p > 1. Hence the series converges if p > 1. This series is
also very useful for comparison with others; it diverges if p =1

(see Ex. 8).
TuaEe Rar10 TEST. If the ratio of two successive terms in a series of posi-

tive terms approaches « limit which is less than 1, the series converges;
if the ratio approaches a limit which is greater than one or if the ratio
becomes infinite, the series diverges. That is

. .u .

if lim 2#! = y < 1, the series converges,
' n=w 1,

. .Uy . -

if lim % = ¢' > 1, the series diverges.

n=w U,

For in the first case, as the ratio approaches a limit less than 1, it must be pos-
sible to go so far in the series that the ratio shall be as near to y < 1 as desired,
and hence shall be less than r if r is an assigned number between y and 1. Then

Un +1 < TUn, Un 42 < Ty 41 < 72Uy, -
1

and Un +Unt FUn gzt SUn(lH T ) S Uy

The proof of the divergence when u, +1/u, becomes infinite or approaches a limit
greater than 1 consists in noting that the individual terms cannot approach 0. Note
that if the limit of the ratio is 1, no information relative to the convergence or
divergence is furnished by this test. )

If the series of numerical or absolute values
AR CARATA RSP TA R

of the terms of a series which contains positive and negative terms
converges, the series converges and is said to converge absolutely. For
consider the two sums

Sn+p_Sn=un+“'+un+p—l and lu"|+”'+|uﬂ+ﬁ—ll'

The first is surely not numerically greater than the second; as the
second can be made as small as desired, so can the first. It follows
therefore that the given series must converge. The converse proposition

.
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.
that if a series of positive and negative terms converges, then the series
of absolute values converges, is not true.

As an example on convergence consider the binomial series

m(m — 1)z2+m(m— 1)(m—72‘)_x8+”_+m(m—1)--~(m—n+ l)w"+-~~

14+ mx
+ + 1.2 . 1.2.3 1.2...n
[Un| n+1 n=c [Un|

It is therefore seen that the limit of the quotient of two successive terms in the
series of absolute values is|z|. This is less than 1 for values of ¢ numerically less
than 1, and hence for such values the series converges and converges absolutely.
(That the series converges for positive values of x less than 1 follows from the fact
that for values of n greater than m + 1 the series alternates and the terms approach
0; the proof above holds equally for negative values.) For values of £ numerically
greater than 1 the series does not converge absolutely. As a matter of fact when
|x] > 1, the series does not converge at all ; for as the ratio of successive terms ap-
proaches a limit greater than unity, the individual terms cannot approach 0. For
the values ¢ = 4+ 1 the test fails to give information. The conclusions are there-
fore that for values of |2|<1 the binomial series converges absolutely, for values
of [z|>1 it diverges, and for || = 1 the question remains doubtful.

A word about series with complex terms. Let

g+, +u,+ U, u, e
=qgtui+ug - Fu,_ Fu, -
+i(uy ol vy 4w w4 )
be a series of complex terms. The sum to » terms is S, = S, + ¢S,
The series is said to converge if S, approaches a limit when »n becomes
infinite. If the complex number $, is to approach a limit, both its real
part S, and the coeflicient S of its imaginary part must approach limits,
and hence the series of real parts and the series of imaginary parts
must converge. It will then be possible to take n so large that for any

value of p the simultaneous inequalities
IS;+p._ S| <te and [S7,, — S| <}e

. where ¢ is any assigned number, hold. Therefore

<e

Sn+p - Snl =

Sr’t+p - S;l] + liS”

N
n+p 7"57:

Hence if the series converges, the same condition holds as for a series
of real terms. Now conversely the condition

ISn+p - Snl < e implies |S;-+n - S;ll <&

v s
Snip — S,,l <e

Hence if the condition holds, the two real series converge and the com-
plex series will then converge.



424 THEORY OF FUNCTIONS

164. As Cauchy’s integral test is not easy to apply except in simple cases and
the ratio test fails when the limit of the ratio is 1, other sharper tests for conver-
gence or divergence are sometimes needed, as in the case of the binomial series
when x = + 1. Let there be given two series of positive terms

U+ uy+ U+ oeoand v+ vr e+ v+

of which the first is to be tested and the second is known to converge (or diverge).
If the ratio of two successive terms u, ;1/u, ultimately becomes and remains less (or
greater) than the ratio v, 41/v,, the first series is also convergent (or divergent). For if

u v U, v, Up + 9
n+!< n+lY n+2< n+2, ., then 2ﬁ>u/n-\‘-l> n+2>“"
Uy Un Un +1 Un+1 Un Vpt1 Unt2
Hence if  u, = pov,, then  uy41 < pvpt1, Uy +2 < PV 424 Tty
and un+un+l+un+2+"'<P(vn+vn+1+vn+2+.“')-

As the v-series is known to converge, the pv-series serves as a comparison series
for the u-series which must then converge. If w,1/u,; > v,+1/v, and the v-series
diverges, similar reasoning would show that the u-series diverges.

This theorem serves to establish the useful test due to Raabe, which is

if limn (u:;" — l) > 1, S, converges; if 1imn< U _ 1) <1, S, diverges.
+1

n=cwo n=w0 n+1

Again, if the limit is 1, no information s given. This test need never be tried
except when the ratio test gives a limit 1 and fails. The proof is simple. For

fw dn 1 1 ]“’. .
— —— | is finite
n(log n)l+a « (log n)*

and fx dn = log logn] is infinite,
nlogn
1 1 1 1
hence

2 (log2)l+« + +n(log n)l+a + an 2 (log 2) toet n (log n) +

are respectively convergent and divergent by Cauchy’s integral test. Let these be
taken as the v-series with which to compare the u-series. Then

oo _mtl <19g ) (1 + 1) (1°g<1-+ n))““

Vpy1 1 logn n logn
i EAN RS
Vp 41 n, logn

in the two respective cases. Next consider Raabe’s expression. If first

limn( Un —1)>1, then ultimately n(ﬂ—1)>y>1 and % >147.
n=w \Up41 Un +1 Un +1 n

1+ 1+
Now lim (M> ‘= 1 and ultimately (M) “ <1+
n=20 logn logn
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where ¢ is arbitrarily small. Hence ultimately if y > 1,

1\ /log (1 1+
(1+7>(0n(_+n)> «<1+1+f+%<1+'_y’
n logn n n* n

or vn/vn+l < un/un+l or un+l/un < vn+l/vm

and the u-series converges. In like manner, secondly, if

lim n (i — 1>< 1, then ultimately 147, y<1;

n==x Up +1 Up +1 n
1\ log(1+ n u v u v,
and 1+7< <1 + _) el n or —t < m gp onEly el
n n logn Up g1 Uyt Uy, Up
Hence as the v-series now diverges, the u-series must diverge.
Suppose this test applied to the binomial series for £ = — 1. Then
u n+1 . n+1 .om+1
M Mt , lim n( + —l>: lim + =m+1.
Up +1 n—m n=x n—m n=20 1 m

n

It follows that the series will converge if m > 0, but diverge if m < 0. If x = + 1,
the binomial series becomes alternating for n >m + 1. If the series of absolute
values be considered, the ratio of successive terms |un/uy +1] is still (n + 1)/(n — m)
and the binomial series converges absolutely if m > 0; but when m < 0 the series
of absolute values diverges and it remains an open question whether the alternat-
ing series diverges or converges. Consider therefore the alternating series

m(m—l)+m(m—1)(m—2)+‘“+m(m—1)~--(m—n+1)+.

1
tmt 1.2.3 1.2

<, m<O.

This will converge if the limit of u, is 0, but otherwise it will diverge. Now if
m = — 1, the successive terms are multiplied by a factor |m —n + 1|/n =1 and
they cannot approach 0. When — 1<m <0, let 1 + m = 6, a fraction. Then the

nth term in the series is
[ua] = (1 —0)(1— ?)..,(1_ Q)
2 n

and — log|u,| =—log (1 — 6) — log(l — ‘.9.>_ = 10g(1_ Q)
2 n

‘Each successive factor diminishes the term but diminishes it by so little that it may
not approach 0. The logarithm of the term is a series. Now apply Cauchy’s test.

fw— log(l-—-g) dn = [—nlog(l—— g) + 6log(n — 0)]w= .

The series of logarithms therefore diverges and lim|u,|=e-* = 0. Hence the
terms approach 0 as a limit. The final results are therefore that when ¢ = — 1 the
binomial series converges if m > 0 but divergesif m < 0; and whenz = + 1 it con-
verges (absolutely) if m > 0, diverges if m < — 1, and converges (not absolutely) if
—1<m<O0.
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EXERCISES

1. State the number of terms which must be taken in these alternating series to
obtain the sum accurate to three decimals. If the number is not greater than &,
compute the value of the series to three decimals, carrying four figures in the work:

@l Lol gl
3 2.3 3.3 4.3 ’ 2 2.22 3.23 4.2 ’
1 1 1 1 1
1__ -z P - _,
o +3 4 @) log 2 10g3+ log 4
l_l.l.l_l..*. ) el —2e2483e3—4e¢e44...
O l-mte = ' :

2. Find the values of x for which these alternating series converge or diverge:

(@ 1—2 4 at—ad 4o, @1-2+2 T,
2 3 4! 6!
P R P S
r_To.. Nr_L T T,
o) == 3v+5z it R
¢ g8 9378 955 9Tgl
()1_—+£_P ?;4-"'7 ({)21:—-?-{- 5 —74’""
1 1 1 1 1 2 22 28
e ST R ST g) 1 _ 2 __“
(")z x+1+x+2 x+3+ ’ ()x z4+1 z+2 z+3+

3. Show that these series converge and estimate the error after n terms:

101 1 1 1.2 1.2.3
14— 4 — 94— ... S e
(@) tatmtat o (;9)3+3.5_+3_5.7 s
11 1 1 1\ /1-2\2 [1.2.3\2
T N Y S WSS T 5) (= i
Witemtsmtoat o ()<3)+<3-5>+<3-5.7>+

From the estimate of error state how many terms are required to compute the
series accurate to two decimals and make the computation, carrying three figures.
Test for convergence or divergence :

(€) sinl+sin%+sin%+..., (¢) sin21 +sin2%+sin2:_1—}+...,

(n) tan—11 +tan—1%+tan—l§1’+-.., ®) tanl+%tan%+—\;—§tan;—;+-u,
(+) 1:-1+2+1\/§+3+1\/§+"' (x) 22l12+32122+42132+...,
(x)i+%+%§’ 2’;’;'4+---, (n)i+\:—f+¥ %‘I

4. Apply Cauchy’s integral to determine the convergence or divergence :

log2 log3 log4 1 1 1
g oge g +e, ® 1+ + + + -

1
@1+ 3p 4r 2(log2)» ~ 3(log3)»  4(log4)r
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1 ) 5) 1 e,
™) +2 nlognloglogn )1+ gnlogn(loglogn)p
3 4

(e) cot—™11 4 cot=12 + ..., 1+ + KR

22+1 324+2 4243

5. Apply the ratio test to determine convergence or divergence :

1,2 3 4 22
@otatatat o ® ittt
2! 8! 41 5! 22 3 4t

. 3
M Gtgtetest O ottt
) ) 210 310 410
(¢) Ex.8(a), (), (1, (0); Ex.4(a), ) ) {ptimtmt
x2 ozt xb 2 ot
R TR TR TR O 1+, +5,+
3 xt 1 bx b2
Wa—S+g—g+ 0 () 4o+ gt

6. Where the ratio test fails, discuss the above exercises by any method.
7. Prove that if a series of decreasing positive terms converges, lim nu, = 0.

8. Formulate the Cauchy integral test for divergence and check the statement
on page 422. The test has been used in the text and in Ex. 4. Prove the test.

9. Show that if the ratio test indicates the divergence of the series of absolute
values, the series diverges no matter what the distribution of signs may be.

10. Show that if V'u, approaches a limit less than 1, the series (of positive
terms) converges; but if Vit approaches a limit greater than 1, it diverges.

11. If the terms of a convergent series ug + U, + uy + - - - of positive terms be
multiplied respectively by a set of positive numbers a,, a,, a,,- - - all of which are
less than some number @, the resulting series agu, + a,u; + a,u, + - - - converges.
State the corresponding theorem for divergent series. What if the given series has
terms of opposite signs, but converges absolutely ?

. in4 .

12. Show that the series §l;1—$ — s1r;22a: + sn;’fx — s1r;2 it + ... converges abso-
lutely for any value of x, and that the series 1 + x sinf 4-22sin26 + *3sin364 + - - -
converges absolutely for any « numerically less than 1, no matter what § may be.

13. If a,, a;, a,,- - - are any suite of numbers such that ~/|a,| approaches a
limit less than or equal to 1, show that the series a, + a,x + a,a2 + - - - converges
absolutely for any value of  numerically less than 1. Apply this to show that the
following series converge absolutely when |@| < 1;

1. 8 1.3.5
1 ﬂ ——t
(@) + + +2~4-6

(V1442722 + 3r23 + 42t + ..., () 1—xlogl+ x2log4—adlog9 + ---.

»4.., B)1—20+302—40%4--.,



428 ‘ THEORY OF FUNCTIONS

14. Show that in Ex. 10 it will be sufficient for convergence if ~/u, becomes
and remains less than v < 1 without approaching a limit, and sufficient for diver-
gence if there are an infinity of values for n such that Vi, >1. Note a similar
generalization in Ex. 13 and state it.

15. If a power series a, + a,= + a,2% + az@3 + - - - converges for x = X >0, it
converges absolutely for any x such that |z| < X, and the series

agt + 3,22 + taxd + ... and a; + 2a,0 4+ 3ax2 4 -,

obtained by integrating and differentiating term by term, also converge absolutely
for any value of x such that [z] < X. The same result, by the same proof, holds if
the terms a,, a,X, a,X2, - remain less than a fixed value G.

16. If the ratio of the successive terms in a series of positive terms be regarded
as a function of 1/n and may be expanded by Maclaurin’s Formula to give
1 1\2 1
M ag g-+Y (—) ,  wremaining finite as - = 0,
Un +1 n o 2\n n

the series convergesif a >lora =1, 8> 1, but divergesif a<lora=1,8=1.
This test covers most of the series of positive terms which arise in practice. Apply
it to various instances in the text and previous exercises. Why are there series to
which this test is inapplicable ?

17. If p,y, pys po,- -+ is a decreasing suite of positive numbers approaching a
limit X and 8, S, S,,--- is any limited suite of numbers, that is, numbers such
that | 8,| = G, show that the series

(Po — P1) Sy + (py — P2) Sy + (py — p3g) Sy + - - - converges absolutely,

and = G(py— N).

Zw: '(Pn = Put1)Sn
0

18. Apply Ex. 17 to show that, p,, p;, p,,- - - being a decreasing suite, if
uy + u; + u, + - -+ converges, Potty + PrUy + poity + - -+ Will converge also.

N.B. pgug + prity + -+ + Pattn = poS; + py (S — Sp) + -+ + pn(Sut1— S)
= Sl (p()_ P]) +- 4 Sn(pn—l - Pn) + PnSn+l-

19. Apply Ex.18 to prove Ex. 15 after showing that pyu, + p,u, + - -+ must
converge absolutely if p, + p, + - - - converges.

20. If a,, a,, a,,- - -, a, are n positive numbers less than 1, show that
A4a)l+a) - (Q+a)y>l+a, +a,+-+a
and I=—a)(l—ay) - A—a)>l—a,—ay— - —a,
by induction or any other method. Then since 1 + a, < 1/(1 — a,) show that
1
1—(a+ag+ .-+ )
1
14+ (a;+ay+--- +an)

SA4a)(l+a) - (1+a)>1+(a+a,+---+ an),

S (=) (1= ) (1= t) > 1= (ay + g + - + ),
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ifa, +a,+--- 4+ a, <1. Orif TT be the symbol for a product,

n n

<1~$a>—1>fl’(bl+a)>l+$a, <1+2a>—1>f‘-(l_a)>1—2“'

21, Let TT(1 + u) (1 + ) -+ (1 +u) (1 +un41)- - - be an infinite product and
1
let P, be the product of the first n factors. Show that | P, 1, — P,| <eis the neces-
sary and sufficient condition that P, approach a limit when n becomes infinite.
Show that u,, must approach 0 as a limit if P, approaches a limit.

22. In case P, approaches a limit different from 0, show that if e be assigned,
a value of n can be found so large that for any value of p

P"_*‘E_])z
P,

n

n+p n+p
T A+w)—1<e or T Q+u)=1+4m [7<e
n+1 n+1

Conversely show that if this relation holds, P, must approach a limit other than 0.
The infinite product is said to converge when P, approaches a limit other than 0 ; in
all other cases it is said to diverge, including the case where lim P, = 0.

23. By combining Exs. 20 and 22 show that the necessary and sufficient con-
dition that

Po=(1+a)(l+ay)--(1+ay) and @Qp=(1—a)(l—ay) - (1—a,)

converge as n becomes infinite is that the series a; + a, + - -+ +a, + - - - shall con-
verge. Note that P, is increasing and @, decreasing. Show that in case Za diverges,
P, diverges to 0 and @, to 0 (provided ultimately a; < 1).

24. Define absolute convergence for infinite products and show that if a product
converges absolutely it converges in its original form.

25. Test these products for convergence, divergence, or absolute convergence :

@ (-D0-DD 0 (el

() fr[l - (n”_fl)] () (1+ )1+ 22)(1 + 25(1 + a¥) - - -.
(e) (1_ fii;@)(l_(lo;zi)'«’)(l_ (1og18)3>'”' © U[(l_c:n>e€1

2

12
z according as u is a posi-
u

1
26. Given -2 or 1u2 <u—log(l+u)< Lz or 2
14+u 2 1+

2
tive or negative fraction (see Ex. 29, p. 11). Prove that if Zu? converges, then

Un +1 + Un +2 +--+ Un'+p — IOg (1 + un+l) (1 + un+2)' . (1 +un+p)

= (Sn+p—Sn) — (10g Py p — log Py)

can be made as small as desired by taking n large enough regardless of p. Hence
prove that if Zu? converges, TT (1 + u,) converges if Zu, does, but diverges to «
if Su, diverges to + «, and diverges to 0 if Zu, diverges to — o ; whereas if Zu}
diverges while Zu, converges, the product diverges to 0.
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: . N1 NG
27. Apply Ex.26t0: (@) (1+2)<1 3)<1+4><1 5) :

®) (1—%)<1+\/i§)(1—:/1,—1)~--, () (1+11”’)<1—’§)<1+%3)<1_§).“

28. Suppose the integrand f (z) of an infinite integral oscillates as x becomes in-
finite. What test might be applicable from the construction of an alternating series ?

165. Series of functions. If the terms of a series

8 () = uy(x) +u, (X)+ - 4w, (@) + - (6)
are functions of x, the series defines a function S(x) of « for every
value of x for which it converges. If the individual terms of the series
are continuous functions of x over some interval ¢ = x = b, the sum
S, () of n terms will of course be a continuous function over that interval.
Suppose that the series converges for all points of the interval. Will it
then be true that S (z), the limit of S, (), is also a continuous function
over the interval ? Will it be true that the integral term by term,

b b b
f w, (%) da +f u, (x)dx + ---, converges to f S (x)dx?

Will it be true that the derivative term by term,
ug () + uj(x) 4+ ---, converges to S'(x)?

There is no a priori reason why any of these things should be true ; for
the proofs which were given in the case of finite sums will not apply
to the case of a limit of a sum of an infinite number of terms (cf. § 144).

These questions may readily be thrown into the form of questions concerning
the possibility of inverting the order of two limits (see § 44).

b b
For integration : Is lim S, (z)dx = lim f 8, (x)de ?
a

a n=x n=2x

d d
For differentiation : Is — lim S, (x) = lim — S, (z) ?
o () Jim o 2 (2)

n==x

For continuity : Is lim lim 8, (z) = lim lim S,(x)?
T=xy n=cw0 n=owo r=1x,
As derivatives and definite integrals are themselves defined as limits, the existence
of a double limit is clear. That all three of the questions must be answered in the
negative unless some restriction is placed on the way in which S, (x) converges to
8 (x) is clear from some examples. Let 0 =r = 1 and
8, (x) = zn2e—nr, then lim 8,(r) =0, or S(z)=0.
n=awK

No matter what the value of x, the limit of S, (x) is 0. The limiting function is
therefore continuous in this case ; but from the manner'in which S, (z) converges
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to S (x) it is apparent that under suitable conditions the limit would not be con-
tinuous. The area under the limit S(x) = 0 from 0 to 1 is of course 0; but the
limit of the area under S, (x) is

. ! . Nk Y| Si()
lim f xnle—mrdy = lim [e— e (— no — 1)] =1
0

n=xJ0 n=x

The derivative of the limit at the point x = 0 is

i
!
]
of course 0; but the limit, i . Sy (2)
d X

lim [— (xn'le—”z)] ; N 8\(e)

n=ow |Ldr =0 ! :L"'/ 1
sl AN

= lim [n“’e—"z(l — m:)] = lim n? = w, [9 M % 1 X
n=ax x=10 n=mx

of the derivative is infinite. Hence in this case two of the questions have negative
answers and one of them a positive answer.

If a suite of functions such as S, (z), S,(x),--, S, (x), - converge to a
limit S (x) over an interval o = « = 0, the conception of a limit requires
that when ¢ is assigned and x, is assumed it must be possible to take n
so large that |R,(x,)|=|S(x,) — S,(x,)| < € for this and any larger a.
The suite is said to converge uniformly toward its limit, if this condition
can be satisfied simultaneously for all values of « in the interval, that is,
if when e is assigned it is possible to take n so large that |R,(x)| < e
for every value of 2 in the interval and for this and any larger n. In
the above example the convergence was not uniform ; the figure shows
that no matter how great », there are always values of x between 0 and
1 for which 8, (x) departs by a large amount from its limit 0.

The uniform convergence of a continuous function S,(x) to its limit is
sufficient to insure the continuity of the limit S(x). To show that S(x) is
continuous it is merely necessary to show that when e is assigned it
is possible to find a Az so small that |S(xz + Ar) — S(x)| < e But
|8 (x4 Ax) — S(x)|=]|S,(x + Ax) — S, () + R, (r + Ax) — R, (x)]; and
as by hypothesis R, converges uniformly to 0, it is possible to take n
so large that | R, (x 4+ Ax)|and |R, ()| are less than } e irrespective of z.
Moreover, as S, (x) is continuous it is possible to take Ax so small that
[S,(x+Ax)— S, (r)| < Jeirrespective of x. Hence|S (x+Ax) —S(2)|<e¢
and the theorem is proved. Although the uniform convergence of S, to §
is a sufficient condition for the continuity of S, it is not a necessary con-
dition, as the above example shows.

The uniform convergence of S, (x) to its limit insures that

b b
lim S, (@) dox = f S (x) da.

n=x
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For in the first place S(x) must be continuous and therefore integrable.
And in the second place when e is assigned, n may be taken so large

that | R, (z)|< /(b — @). Hence

b b b b,

f S (x) dx —f_Sn(x)dx fRn(x)dac <f b—adw:e’
and the result is proved. Similarly if' S, (x) is continuous and converges
uniformly to a limit T (x), then T (x) = S§'(z). For by the above result
on integrals,

fxT(oc)d.fc = 7}1=nu: fzs;(w)dx = ,}izlg[s,, (x) — 8, (a)]: S(x) — S(a).

Hence T'(x) = $'(x). It should be noted that this proves incidentally
that if S, (x) is continuous and converges uniformly to a limit, then
S (x) actually has a derivative, namely 7T (x).

In order to apply these results to a series, it is necessary to have a
test for the uniformity of the convergence of the series ; that is, for the
uniform convergence of §,(x) to S(x). One such test is Weierstrass’s
M-test : The series

uo(x)+u1(m)+...+un(x) + ... (M
will converge uniformly provided a convergent series
11[0-}-}\[1+...+]l[n+... (8)

of positive terms may be found such that ultimately |u;(x)| = M;. The
proof is immediate. For '

IR,,(I’)I =|un(x) + un+l(x) + - 1 =M, + Mn+l + -

and as the M-series converges, its remainder can be made as small as
desired by taking n sufficiently large. Hence any series of continuous
functions defines a continuous function and may be integrated term by
term to find the integral of that function provided an M-test series may
be found ; and the derivative of that function is the derivative of the
series term by term if this derivative series admits an M-test.

To apply the work to an example consider whether the series

cosac+cos2a:+cos3m+“_+cosnx+“' ™

S(@) = 12 92 32 n2

defines a continuous function and may be integrated and differentiated term by
term as

z sine sin2x sin3x sin nx

S (x) = SIeT L. 77
e e e ™
d sinz gin?m sin3zx sin nx

d — 8 = — —
an o ()

. o
1 2 3 n @
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As|cosz|=1, the convergent series 1 + % + % + 4 ;13 + ... may be taken as
an M-series for S(x). Hence S () is a continuous function of x for all real values
of z, and the integral of S(z) may be taken as the limit of the integral of 8, (z),
that is, as the integral of the series term by term as written. On the other hand,
an M-series for (7’) cannot be found, for the series 1 + 1 + } + - - - is not conver-
gent. It therefore appears that S’ (x) may not be identical with the term-by-term
derivative of S (z) ; it does not follow that it will not be, — merely that it may not be.

166. Of series with variable terms, the power series
f(z) =ao+a1(z—a)+a2(z_a)2+"'+a’n(z_a)n+"' (9)
is perhaps the most important. Here 2, @, and the coeflicients a; may

be either real or complex numbers. This series may be written more
simply by setting x = 2z — a; then
fe+ta)y=9¢@)=a,+ax+ a2+ - +a,x*+ - (9"
is a series which surely converges for x = 0. It may or may not con-
verge for other values of x, but from Ex. 15 or 19 above it is seen
that if the series converges for X, it converges absolutely for any x
of smaller absolute value; that is, if a circle of radius X be drawn
around the origin in the complex plane for = or about
the point @ in the complex plane for z, the series (9)
and (9') respectively will converge absolutely for all
. complex numbers which lie within these circles.

Three cases should be distinguished. First the
series may converge for any value & no matter how
great its absolute value. The circle may then have
an indefinitely large radius; the series converge for all values of z or z
and the function defined by them is finite (whether real or complex)
for all values of the argument. Such a function is called an integral
JSunction of the complex variable z or . Secondly, the series may con-
verge for no other value than = 0 or z = « and therefore cannot define
any function. Thirdly, there may be a definite largest value for the
radius, say R, such that for any point within the respective circles of
radius R the series converge and define a function, whereas for any point
outside the circles the series diverge. The circle of radius R is called
the circle of convergence of the series.

As the matter of the radius and circle of convergence is important, it will be
well to go over the whole matter in detail. Consider the suite of numbers

lallv .{/la2|7 3v|(1,3|, Tty ’Haﬂlv

Let them be imagined to be located as points with coordinates between 0 and + o
on a line. Three possibilities as to the distribution of the points arise. First they
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may be unlimited above, that is, it may be possible to pick out from the suite a set
of numbers which increase without limit. Secondly, the numbers may converge to
the limit 0. Thirdly, neither of these suppositions is true and the numbers from 0
to 4+ o may be divided into two classes such that every number in the first class is
less than an infinity of numbers of the suite, whereas any number of the second
class is surpassed by only a finite number of the numbers in the suite. The two
classes will then have a frontier number which will be represented by 1/R
(see §§ 19 1f.).

In the first case no matter what x may be it is possnble to pick out members
from the suite such that the set \_/]_a,] \/M_L[_ \/—_ [ye o+, withi <j<k-..,increases
without limit. Hence the set \/l ail|z|, ] a;] |a:], wxll increase without limit; the
terms ax* a;x/,- - - of the series (9) do not approach 0 as their limit, and the series
diverges for all values of z other than 0. In the second case the series converges
for any value of . For let ¢ be any number less than 1/|x|. It is possible to go so
far in the suite that all subsequent numbers of it shall be less than this assigned e.
Then

|t 4+ p2n tP| < e tplzjrtr and erzfrt ertlzptl 4., |z <1,

serves as a comparison series to insure the absolute convergence of (9). In the .
third case the series converges for any z such that |z| < R but diverges for any
« such that || > R. Forif || < R, take e < R — |x|so that|z| < R — e. Now proceed

- in the suite so far that all the subsequent numbers shall be less than 1/(R — ),
which is greater than 1/R. Then

|;E|n+p lz,n+P
n+p —— <1, and
|@n + p l<(R—e)"+P an Z(R—e)""’l'

will do as a comparison series. If [z|> R, it is easy to show the terms of (9") do not
approach the limit 0.

Let a circle of radius » less than R be drawn concentric with the
circle of convergence. Then within the circle of radius r < R the power
series (9') converges uniformly and defines a continuous function ; the
integral of the function may be had by integrating the series term by
term,

“ 1,1 1
20 = [ $@)dn = g+ Jagt b gag 4o e
0
and the series of derivatives comverges uniformly and represents the
derivative of the function,
¢'(@)y=a,+ 2ax + 3«8:::'2 4+ naEt T 4

To prove these theorems it is merely necessary to set up an M-series
for the series itself and for the series of derivatives. Let X be any
~number between » and R. Then

Ia’o|+ |“1|X + l“leg +-+ [uan" + (10)
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converges because X < R; and furthermore |a,2"| <|a,| X" holds for any
x such that |z| < X, that is, for all points within and on the circle of
radius ». Moreover as |»| < X,

Jym—1
|naxn | = |rr,,§% <u> A<, | X"

X

holds for sufficiently large values of n and for any x such that |z| = .
Hence (10) serves as an M-series for the given series and the series of
derivatives; and the theorems are proved. It should be noticed that it
is incorrect to say that the convergence is uniform over the circle of
" radius R, although the statement is true of any circle within that circle
no matter how small 2 —». For an apparently slight but none the
less important extension to include, in some cases, some points upon
the circle of convergence see Ex. 5.

An immediate corollary of the above theorems is that any power
series (9) in the complex variable which converges for other values than
z = a, and hence has a finite circle of convergence or converges all over
the complex plane, defines an analytic function f(z) of z in the sense of
§§ 73, 126; for the series is differentiable within any circle within the
circle of convergence and thus the function has a definite finite and
continuous derivative.

167. Itisnow possible to extend Taylor’s and Maclaurin’s Formulas,
which developed a function of a real variable a into a polynomial plus
a remainder, to infinite series known as Taylor’s and Maclaurin’s Series,
which express the function as a power series, provided the remainder
after »n terms converges uniformly toward 0 as » becomes infinite. It
will be sufficient to treat one case. Let

F@ =1+ 7O + GO+ + g fOP O + Ry

T _M (n) ___1.__ In—l ") (e
I.’,,-n!f( (6x) = n—1)! ya (0x)—(n_1)! i o™ (2 — t)de,
lim R,(z) = 0 uniformly in some interval — 4 = « = 4,

where the first line is Maclaurin’s Formula, the second gives differnet
forms of the remainder, and the third expresses the condition that the
remainder converges to 0. Then the series

FO+F Oz + 5 f"(0)2

1

1
(,,“:’ﬁf‘"‘”(O)r"—‘ + OO (1)
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converges to the value f(x) for any x in the interval. The proof con-
sists merely in noting that f(z) — R, (x) = S,(=) is the sum of the first
n terms of the series and that | R, (x)| < e

In the case of the exponential function e* the nth derivative is ex, and the re-
mainder, taken in the first form, becomes

Ru(e) = —eoxzn ‘ |R,,(x)|<;1-'e"h", |z =P

As n becomes infinite, R, clearly approaches zero no matter what the value of 4

and
a2 a8 zn

e“—1+93+2—!+3—!+"'+1—l‘!+"‘

is the infinite series for the exponential function. The series converges for all
values of z real or complex and may be taken as the definition of ex for complex
values. This definition may be shown to coincide with that obtained otherwise (§ 74).

For the expansion of (1 + z)™ the remainder may be taken in the second form.

_mm—=1)...m—n+1) 1—6\—1 m—

Bu @) = 2 (o1 " (1+09:> (1 + by =3,
mm—1)...(m—n+1) . -

| R, ()| < 2T Bn(l4 Bym-1, R <1

Hence when 2 <1 the limit of R, (x) is zero and the infinite expansion
m(m — 1) (m — 2)
3!

is valid for (1 + z)= for all values of ¢ numerically less than unity.
If in the binomial expansion z be replaced by — x2 and m by — },

1 1.3, 1.8.5, 1.8.5.7
L S e JIE AL Jo o5 S
i te m+2 St e" ta et t

Qo =14+me+ 20Dy s

This series converges for all values of  numerically less than 1, and hence con-
verges uniformly whenever |z| = A < 1. It may therefore be integrated term by
term. 128 1.8 1.3.527 1.3.5.7aP

in—lx =x 4+ - = — —
o testeaste a7 24680

This series is valid for all values of x numerically less than unity. The series also
converges forz = 4 1, and hence by Ex. 5is uniformly convergent when — 1=z =1.

But Taylor’s and Maclaurin’s series may also be extended directly to
functions f(#) of a complex variable. If f(z) is single valued and has
a definite continuous derivative f'(#) at every point of a region and on

the boundary, the expansion
a)n 1

1) =F@) + 7@ 6 =)+ oo+ s @ EH
has been established (§ 126) with the remainder in the form-
2 —a t)dt 1 » ML
=] )f@fO =L

—ay(t—2)| Plp—r
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for all points z within the circle of radius » (Ex. 7, p. 306). Asn becomes
infinite, R, approaches zero uniformly, and hence the infinite series

F&) =@ +F @ -+ ro@E=2 g

n!

is valid at all points within the circle of radius » and upon its circum-
ference. The expansion is therefore convergent and valid for any z
actually within the circle of radius p.

Even for real expansions (11) the significance of this result is great
because, except in the simplest cases, it is impossible to compute f™ (x)
and establish the convergence of Taylor’s series for real variables. The
result just found shows that if the values of the function be considered
for complex values z in addition to real values «, the circle of conver-
gence will extend out to the nearest point where the conditions imposed
on f(z) break down, that is, to the nearest point at which f(z) becomes
infinite or otherwise ceases to have a definite continuous derivative f'(z).
For example, there is nothing in the behavior of the function

A4+ '=1—-a*+2* —a+2°— ..,
as far as real values are concerned, which should indicate why the expan-
sion holds only when |x| < 1; but in the complex domain the function
(1 4 #*~! becomes infinite at = = + ¢, and hence the greatest circle
about z = 0 in which the series could be expected to converge has a unit
radius. Hence by considering (1 + #%)~! for complex values, it can be
predicted without the examination of the nth derivative that the Mac-
laurin development of (1 + «?)~! will converge when and only when
is a proper fraction.
EXERCISES
1. (a) Doesz + x (1 — x) + (1 — z)% + - - - converge uniformly when0 =z =1?

1
(8) Does the series (1 + k)t =1+ 1 4 }2_—’k + u—_%(l'—_ik) +

formly for small values of £ ? Can the derivation of the limit e of § 4 thus be made
rigorous and the value be found by setting k£ = 0 in the series ?

... converge uni-

2. Test these series for uniform convergence ; also the series of derivatives:
(@) 14 xsinf + 22sin26 + x3sin36 + .. -, lr)|= X <1,

sinz " sin2x  sindz " sintx +
123 223 3% 424 ’

z—1 1/z—1\2 1/x—1\3 1 =
il Bl st Z =r=3X<
= +2(m)+3(x>+ < ,

z—1 1/x—1\3 1/x—1\°
8) 4= - ces, I<y=r=Y<ow.
()w+l+3<z+l>+5(£+l>+ K

(¢) Consider complex as well as real values of the variable.

B 1+

2| = X<,
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3. Determine the radius of convergence and draw the circle. Note that in prac-
tice the test ratio is more convenient than the theoretical method of the text:

() z— x>+ a3 —tat 4. B r—ied4+ b —La"4+ .-,
1 ber bz b3xd ,  xt ab  af
(v) &[1+;+ai+a—8+"']» @) 1—u +2*!'§—! non

() 1e—G+ DT +E+I+DP - +i+i+ D+,

() ]_32+31’:2 3 +3 343
4.2 4.4! 4.6!

(M l-—z4+zt—a5ab—a®fal2—gld ...,

@) - —3@E—1P+ 51— -1+,

() z_(m—l;('m+2)m3+(m—1)(m—3)(m+2)(m+4)$5_.“

5!

x84+,

x2 Tt a8
_22(m+1)+24.2z(m+1)(m+2)_26.3z(m+1)(m+2)(m+3)+""

x? xt 1 1 a8 1 1 1 a8 1 1 1 1
(")25_W<i+§)+m<i+é+§>—28(4z)2(1+§+§+1>+""
ap @@+ DBE+D , @@+ D@+ DBELDE+D) ,
1.9 1.2.y(v+1) 1.2.3-vy(y+1)(v+2)

4. Establish the Maclaurin expansions for the elementary functions:

(k) 1

() 1+

(a) log (1 — x), (B) sinz, (v) cosz, (8) coshz,
(¢) az, (¢) tan—lgz, (n) sinh-1x, (@) tanh—1z.

5. Abel's Theorem. If the infinite series a, + a,& 4+ a,x* 4+ az® + - - - converges
for the value X, it converges uniformly in the interval 0 = x = X. Prove this by
showing that (see Exs. 17-19, p. 428)

x\" .
|R”(I)| - |a”zn + Gy xntl 4. | < (?> |aan +.0 4 0n+p1"+”],
when p is rightly chosen. Apply this to extending the interval over which the
series is uniformly convergent to extreme values of the interval of convergence
wherever possible in Exs. 4 («), ({), (4).

6. Examine sundry of the series of Ex.3 in regard to their convergence at ex-
treme points of the interval of convergence or at various other points of the circum-
ference of their circle of convergence. Note the significance in view of Ex. 5.

1
7. Show that f(x) = e *, f(0) =0, cannot be expanded into an infinite Mac-
1

laurin series by showing that R, =e 2%, and hence that R, does not converge
uniformly toward 0 (see Ex. 9, p.66). Show this also from the consideration of
complex values of .

8. From the consideration of complex values determine the interval of con-
vergence of the Maclaurin series for

sin
() tanz = ,
cos

®) ec_“‘_i, (v) tanhz,  (8) log (1 + e).
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9. Show that if two similar infinite power series represent the same function
in any interval the coefficients in the series must be equal (cf. § 32).

10. From1 4+ 2rcosxr +12= (1 + rer) (1 4+ re=— i) = 2 <1 + f) <1 + Sl)
r r

2 33
prove log(142rcosc +1%) =2 (r cos L — (Q cos2x + %COS3L — ) s
. 2 )3 r<l1
f log(l+2rcosx+rﬁ)d.c:2<rsin:c——~sin2m+—sin3x—--- ;
0 22 32
and  log (14 2rcosz + %) = 2logr + 2<cosx — cos2z C_O.sif_ cee),
N r 292 372 .
f 100(1+2rcoqx+r-)df 2‘610074_2(3{2—_?&2‘(1} sin3z : "
0 B r 2292 3292 ’
a asin2x
log (1 4+ sin @ cosx)dr = 2x log cos — + 2 tan $sinz — tan2 & B
f 1+ ) 2+ ( 2 2 22 )
1 L€ .
11. Prove ——i‘t—zl— 1r+ 13 1 _f
0 V14 gt 2.5 2.4.9 2.4. 6 13 1 \/1+l4
12. Evaluate these integrals by expansion into series (see Ex. 23, p. 452)
® g—qx g 3 5
@ [ wdz:z_l(i) +1<Z>_...:mn-1i,
0 g 3\ b\ q
log (1 + k cos z) . T zsinz 2
dzr = wsin—1k ——dr=—,
() f CcoS T ? o) 0o 1+ cos?z 4
_( ) n
(3) f e—¢2x200s2,3:td:c———e a (¢) f log (14 2rcosz + %) dx.
0 0
13. By formal multiplication (§ 168) show that
1-a —14+2acose+2a%cos2z +---,
1—2acosz + a? ) ’
asin

—_—  _—asinx 4+ a?sin2x 4 --..
1—2acosx + a2

14. Evaluate, by use of Ex. 13, these definite integrals, m an integer :

cos mxdzx wram T sin xdx
= y 10 1 )
(@) 0 1—2acosr+a? 1—a? ®) f 2acosa:+a‘~’ g1 +a)

T sina sin mede T

o) — = am7]
1—2acosx+ a2 2
m sin? xdx
) .

@) fo (1—2acosz+ a?)(1—2Bcosz+ £2)

15. In Ex. 14 () let @ =1 — A/m and ¢ = z/m. Obtain by a limiting process,
and by a similar method exercised upon Ex. 14 (a):

wzsinzdz_re_h fﬁcoszdz_we_h
o h2422 2 7 o h2422 2

Can the use of these limiting processes be readily justified ?
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16. Let 4 and z be less than 1. Assume the expansion

1
f@,h)=———= =14 P (@) + B2Py(x) + -+ - + A2Pp(x) + - - -
V1—2zh + k2
Obtain therefrom the following expansions by differentiation :
K7 (1= 2zh + h2)d
Y z—h

T P, +2hP, + 8P, 4+ k1P e
(1—2zh + 12)}

Hence establish the given identities and consequent relations:

z;"’f;: eP] + h(@Py— P) 4+ W0-1(2P, — P, )  +.--=
fi= P, +1h(2P,) + - 4 nml(nPy) + -y
(ltzhz)fa:—f=~1+P’1+h(P:z—P1) oot (Po g+ Py = Po) 4=
2 ahf = h(2z) + .- 4+ A2(22P, 7).
Or nP, =2P, — P, _, and P,,, +P,_,— P,=2zP,.

Hence «P,=P, ;—(n+1)P, and (22 —1)P, =n(@P,— P,_,).

Compare the results with Exs. 13 and 17, p. 252, to identify the functions with the
Legendre polynomials. Write

1 _ 1 _ 1
(1—2zh+h)F (1—2hcosd + )t (1— hei)d (1 - e—w)*}

(1 + = heid .|.. 3h2e2t0 +. ) <1 + —he—10 + h2e— 210 4 . )
and show P,(cos §) = 2}_;’4(—7;;_) {cosnO + T;;;L—_-T)cos(n— 2)0+...}.

168. Manipulation of series. If an infinite series
S=’1¢0+u1+u2+...+un_l+un+... (13)

converges, the series obtained by grouping the terms in parentheses with-
out altering their order will also converge. Let

=U+ U+ 4+ Up_ + U+ (18"
and Siy S;,“',S;,,“'

be the new series and the sums of its first »' terms. These sums are
merely particular ones of the set S, S,,---, S,,---,and as n' < n it
follows that n becomes infinite when »' does if n be so chosen that
S, =S8,. As S, approaches a limit, S;, must approach the same limit.
As a corollary it appears that if the series obtained by removing paren-

theses in a given series converges, the value of the series is not affected
by removing the parentheses.
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If two convergent infinite series be given as
S=u°+“,+"', and T=vi+v,+---,
then Ay + pvy) + (M, + po) + - -
will converge to the limit NS + uT, and will converge absolutely provided
both the given series converge absolutely. The proof is left to the reader.
If a given series converges absolutely, the series formed by rearranging

the terms in any order without omitting any terms will converge to the
sawme value. Let the two arrangements be

S=wu,+u, +u,+ -+, +u,+--
and S=aty, +u, + Uy F AUy Uy A
As S converges absolutely, » may be taken so large that
[ta] + [ttn 2] + -+ < €5

and as the terms in S' are identical with those in S except for their
order, n' may be taken so large that S;, shall contain all the terms in
S,. The other terms in §;, will be found among the terms wu,, wu, ,,,---.

Hence [ — S| <t + ttyin| + - < e

As|S — S,| < ¢ it follows that|S — S;,| < 2e. Hence S,, approaches S
as a limit when »' becomes infinite. It may easily be shown that S'also
converges absolutely.

The theorem is still true if the rearrangement of S is into a series some
of whose terms are themselves infinite series of terms selected from S.

Thus let S'=U0+U1+Uf_,+"'+Un’-1+U"’+"',

where U; may be any aggregate of terms selected from S. If U; be an
infinite series of terms selected from .S, as

Ui=up+uyg+up+ -+ 2w+ -,

the absolute convergence of U; follows from that of S (cf. Ex. 22 below).
It is possible to take n' so large that every term in S, shall occur in one
of the terms U, U,,---, U, _,. Then if from

O R (19)

there be canceled all the terms of S,, the terms which remain will be
found among w,, u,,,, ---, and (14) will be less than . Hence as »'
becomes infinite, the difference (14) approaches zero as a limit and the
theorem is proved that

S=U,4+U~+ -+ U,_1+ U, +.--=48"
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If a series of real terms is convergent, but not absolutely, the number of posi-
tive and the number of negative terms is infinite, the series of positive terms and
the series of negative terms diverge, and the given series may be so rearranged as
to comport itself in any desired manner. That the number of terms of each sign
cannot be finite follows from the fact that if it were, it would be possible to go so
far in the series that all subsequent terms would have the same sign and the series
would therefore converge absolutely if at all. Consider next the sam S,, = P; — N,,,
| 4+ m = n, of n terms of the.series, where I’; is the sum of the positive terms and
N, that of the negative terms. If both P; and N, converged, then P; + N,, would
also converge and the series would converge absolutely ; if only one of the sums
P; or N, diverged, then S would diverge. Hence both sums must diverge. The
series may now be rearranged to approach any desired limit, to become positively
or negatively infinite, or to oscillate as desired. For suppose an arrangement to
approach L as a limit were desired. First take enough positive terms to make the
sum exceed L, then enough negative terms to make it less than L, then enough
positive terms to bring it again in excess of L, and so on. But as the given series
converges, its terms approach 0 as a limit; and as the new arrangement-gives a
sum which never differs from L by more than the last term in it, the difference
between the sum and L is approaching 0 and L is the limit of the sum. In a similar
way it could be shown that an arrangement which would comport itself in any of
the other ways mentioned would be possible.

If two absolutely convergent series be multiplied, as

S=wug+u, +ug+---+u, +--,
T=v,+v,+v,+--+v,+---,

and W = ugvy + w0y + Uty + -+ + w00 + -+
+ wgty + wyvy Fugvy + - Fuvy -
+ . . . . . . . .
+ vy, + v, + uv, + -+ wv, -

and if the terms in W be arranged in a simple series as

wv, + (up, + v, + ww) + (uw, + wp, + ww, + 0w, + uw) + -
or in any other manner whatsoever, the series is absolutely convergent
and converges to the value of the product ST.

In the particular arrangement above, 8,7, S,T,, S,T, is the sum of
the first, the first two, the first n terms of the series of parentheses. As
lim S,7T, = ST, the series of parentheses converges to S7. As Sand T
are absolutely convergent the same reasoning could be applied to the
series of absolute values and

|“0H7’o| + |“1”7’0| +'“1H”1| + Iuo”'lﬁl + l"’z””ol +-
would be seen to converge. Hence the convergence of the series

wv, + v, + wer w4 e, + we A ouye, e, + U0, 4+ .-
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is absolute and to the value 57 when the parentheses are omitted.
Moreover, any other arrangement, such in particular as

wgvy + (v, + wge) + (uw, + v, + ww) + -,

would give a series converging absolutely to S7.

The equivalence of a function and its Taylor or Maclaurin infinite
series (wWherever the series converges) lends importance to the operations
of multiplication, division, and so on, which may be performed on the
series. Thus if

f@)=ay+ ap + ag® + agx® 4 -, ] < £,
g@)="0b,+bx+bx* + ba® + -, |x] < R,,
the multiplication may be performed and the series arranged as
S@g@)=ap, + (ap, + ad)x + (e, + ad + ap)a® + -

according to ascending powers of x whenever x is numerically less than
the smaller of the two radii of convergence R, I,, because both series
will then converge absolutely. Moreover, Ex. 5 above shows that this
form of the product may still be applied at the extremities of its inter-
val of convergence for real values of x provided the series converges
for those values.

Asan example in the multiplication of series let the product sinz cosx be found.

1 1 1 1 1
ing —x — — a8+ — x5 — ... —1— 24 gt g6 ...
sinez = S!z +5!z y cosx =1 2!9: +4‘a: 6!$ + .
The product will contain ohly odd powers of x. The first few terms are
1 1\ , 1 1 1\ , 1 1 1 1\ .
M—(ﬁ"’ﬂ)I +<5_!+3!2!+4_!>x _<ﬂ+5!2!+3!4!+@ T

The law of formation of the coefficients gives as the coefficient of #2¥+1

‘ 1 1 1 1 7.

(—I)L[(2k+1)z+(2k—1)!2!+(2k—3)v.41+"'+31(2k—2)1+(2k)v.]'

(= 1y @E+1)2k  @E+1)@R@k-1)@k=2) ., @k+D]

(2k+l)![1 YR 4! toet ]
@k+1)2k

But 22641 = (1412600 =14 @k 1) 45 e @E 1) 41

Hence it is seen that the coefficient of x2%+1 takes every other term in this symmet-
rical sum of an even number of terms and must therefore be equal to half the sum.
The product may then be written as the series

2r)3 (2x)° 1.
sin:ccosa::l[zz—g- {)7+( “) —-~-~]_—.§sm2.zz.

2 3! 5!
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169. If a function f(x) be expanded into a power series
S@)=a,+ax +ax’+ax®+ -, lz| < R, (15)

and if x = @ is any point within the circle of convergence, it may be
desired to transform the series into one whicl proceeds according to powers
of (x — @) and converges in a circle about the point x = a. Lett =x — a.
Then x = @ + ¢ and hence

*=a*+ 2at + 8 = a® 4 3a% + 3at? + £, cee
J@=a,+a(a+t)+ (@ +2at+ )+ . 15"

Since || < R, the relation |a| 4 |¢| < R will hold for small values of ¢,
and the series (15) will converge for # = |a|+ |t|. Since

ay + ay(Ja] + [2]) + ay(|af* + 2[al[t] + 1) + -

is absolutely convergent for small values of ¢, the parentheses in (15")
may be removed and the terms collected as

J@)=¢{)=(a,+aa+aa+aa®+ )+ (¢, + 2 a0+ Saa®+ )t
+(a,+3aa+ N+ (a4 )+,

or  fl@y=¢x—a)y=4,+ 4 (x—a)+ 4,(x—a)
+ A (x—a)’+ -, (16)

1,, 4,,--- are infinite series; in fact

where A, .

1 1
Ao =f(a): A1 =f'(w)> Az = é"' f”((’t)’. Aa = ; f”'(a)7 T

The series (16) in « — a will surely converge within a circle of radius
R — |a|about = a; but it may converge in a larger circle. As a matter
of fact it will converge within the largest circle whose center is at « and
within which the function has a definite continuous derivative. Thus
Maclaurin’s expansion for (1 + #*)~! has a unit radius of convergence;
but the expansion about x = } into powers of & — } will have a radius
of convergence equal to } V5, which is the distance from z = } to either
of the points = 4 {. If the function had originally been defined by
its development about x = 0, the definition would have been valid only
over the unit circle. The new development about = } will therefore
extend the definition to a considerable region outside the original
domain, and by repeating the process the region of definition may be
extended further. As the function is at each step defined by a power
series, it remains analytic. This process of extending the definition of
a function is called analytic continuation.
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Consider the expansion of a function of a function. Let
JS(@)=a,+ax + ap® + ax® 4 - |x| < R,
w=¢<3/)=bo+b1y+bg?/2+baf/3+'7 [!/|<‘Rz7
and let [§)| < R, so that, for sufficiently small values of ¥, the point x
will still lie within the circle 2. By the theorem on multiplication, the
series for 2 may be squared, cubed, - - -, and the series for #?% a?% ... may
be arranged according to powers of 4. These results may then be sub-
stituted in the series for f(x) and the result may be ordered according
to powers of y. Hence the expansion for f[¢(y)] is obtained. That
the expansion is valid at least for small values of y may be seen by
considering
@] +an[ € + [0, € + [ | € 4o, £ <R,
E= P+ ]l + Bl 4y g small

which are series of positive terms. The radius of convergence of the
series for ¢ (y)] may be found by discussing that function.

For example consider the problem of expanding ecos= to five terms.
ev=1+y+ 32 +33+ v+, y=cosg=1—3a?+ Jat4...,
Yr=l—a24at—..., yP=1-—§a24 jat—..., y=1-2224132%—...,
=1+ (1—fat4oy@t— )+ fI—22 et — )+ J(1— fa2 ot — )

+ 2,1?(]_212_*.]%14_..‘)4-...

=41+t dt it )Gt b it dt )2

+GE+Ei+SE i+t

oY = EeOST — 2%}_1%m2 + %%1;4_ v
It should be noted that the coefficients in this series for ecosz are really infinite
series and the final values here given are only the approximate values found by
taking the first few terms of each series. This will always be the case when
¥y =by+ bx + .- begins with b,  0; it is also true in the expansion about a new
origin, as in a previous paragraph. In the latter case the difficulty cannot be
avoided, but in the case of the expansion of a function of a function it is some-
times possible to make a preliminary change which materially simplifies the final
result in that the coefficients become finite series. Thus here

ecosz — elt+z —eez, z=cost—1=—3a2+ Jpat — ;4528 4.+,

R=lat— b4 ..., B=—3ub4..., 24, 25,28 =04 ..., )
er =14 (= 3af 4+ Jput — dout b ) F PR = 0 ) FH = )

eCosT — pez — 6(1-—- %@2 + -‘}.’L‘*— 732%@6 + ).

The coefficients are now exact and the computation to 6 turns out to be easier

than to 22 by the previous method ; the advantage introduced by the change would
be even greater if the expansion were to be carried several terms farther.
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The quotient of two power series f(x) by g(x), if g(0) # 0, may be
obtained by the ordinary algorism of division s
J(@) g+ ar + T S
g@) b+ bx+bpt -
For in the first place as g (0) # 0, the quotient is analytic in the neigh-
borhood of # = 0 and may be developed into a power series. It there-
fore merely remains to show that the coeflicients ¢, ¢, ¢,, -- - are those
that would be obtained by division. Multiply
(g +ax+ax®+--y=(,+ex+ex®+ )b, +bx+bx*+ )
=be,+ (e, +be)x+ (be,+be, +0e)r*+ -,

and then equate coeflicients of equal powers of x. Then

=c¢ +ex e+, b, #+ 0.

a, = 1)000, a, = [)100 + bocv @, = 7;21,‘0 + I)lcl + 001'2, .

is a set of equations to be solved for ¢, ¢,, ¢, ---. The terms in f(x) and
g () beyond x* have no effect upon the values of ¢, ¢ ,---, ¢,, and hence
these would be the same if ,,,,0,,,, - were replaced by 0, 0, ---, and
Unt1y nyas "y Qony Ggpyyy -+ DY such values a', yy @'y oy ooy @y, 0,00
as would make the division come out even ; the coefficients ¢, ¢, -+, ¢,
are therefore precisely those obtained in dividing the series.

If y is developed into a power series in x as

y=fr)=a +ax+ax*+--, a, # 0, an
then 2 may be developed into a power series in y — «, as
x=fy—a)=0b(y—a)+b(y — )+ - (18)

For since «, # 0, the function f(x) has a nonvanishing derivative for
x = 0 and hence the inverse function f~*(y — «,) is analytic near z = 0
or y = a, and can be developed (p. 477). The method of undetermined
coefficients may be used to find &, b,, ---. This process of finding
(18) from (17) is called the reversion of (17). For the actual work it is
simpler to replace (y — a)/a, by ¢ so that

=x+ it apdt +apt4., al= a;fa,,
and r=t+ 040+ Ut -, V; = b,
Let the assumed value of z be substituted in the series for #; rearrange

the terms according to powers of ¢ and equate the corresponding coef-

ficients. Thus
cients U (0 + @) + (b + 2 byuy + ag)

+ (U + 2 b305 + 0ay + 3 biag + ap) et + - -

or b,=—oa,, by =2} — a;, Vy=—5uF+5abuy — s, -
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170. For some few purposes, which are tolerably important, ¢ formal
operational method of treating series is so useful as to be almost indis-
pensable. If the series be taken in the form

s
2!

. , «
1tap+ FZ2+ 208+ a4
3! n!
with the factorials which occur in Maclaurin’s development and with
unity as the initial term, the series may be written as

"

« a?
e‘“=1+¢clx+—.l""+§a;3+~~+ Rl SR

2! ! n

provided that « be interpreted as the formal equivalent of «;,. The
product of two series would then formally suggest

et = T =1 4 (0 + D) + % (e + 0%+ -, 19)
and if the coeflicients be transformed by setting a'd’ = ab;, then
2 Rl b' <)
<1+¢¢1J;+;—‘!w‘+-~-><1+blw+2—2!x2+~-~)

ay+ 2 a0, + l»2w2+
2!
This as a matter of fact is the formula for the product of two series
and hence justifies the suggestion contained in (19).
For example suppose that the development of

=14+ (!ll + [11).’1’ -+

x B, , B,
61_1=1+le+2—2!x‘+—?;x3+---

were desired. As the development begins with 1, the formal method
may be applied and the result is found to be
x
e —1

. .2 8
r=a A [(B+1P =B+ B+ =25+ (2D

= P2, @ = eBtDe _ pBr (20)

B+1?—-B=0, (B+1?-B=0,..., (B+1)}¥-B'=0,-.-,
or 2B, +1=0, 3B,+3B,+1=0, 4B +6B,+4B+1=0,--,
or B=—1%  B,=3} B,=0, Bi=—J5 .

The formal method leads to a set of equations from which the suc-
cessive B’s may quickly be determined. Note that

il =Z——6+1—£coth"'

- x
-1 2 2¢ -1 2

= _g coth <— 5) (22)

Wi
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is an even function of x, and that consequently all the B’s with odd
indices except B, are zero. This will facilitate the calculation. The
first eight even B’s are respectively

1 . ! . 5 — 691 1 3617 2
[ 300 422 30> 86?2 7307 6 510 ° ("‘3)

The numbers B, or their absolute values, are called the Bernoullian
numbers. An independent justification for the method of formal cal-
culation may readily be given. For observe that e®e®* = ¢®+1= of (20)
is true when B is regarded as an independent variable. Hence if this
identity be arranged according to powers of B, the coefficient of each
power must vanish. It will therefore not disturb the identity if any
numbers whatsoever are substituted for B!, B% B® ...; the particular
set B, B,, B,, --- may therefore be substituted ; the series may be rear-
ranged according to powers of x, and the coefficients of like powers of
x may be equated to 0, —as in (21) to get the desired equations.
If an infinite series be written without the factorials as

" 2 8 ,
1+a1,1, + w2 fagxd - @t 4
a possible symbolic expression for the series is

1
1— ax

=1+ aw + a4+ ®2® 4 - - -, @ = a,.

If the substitution y = /(1 +x) or z = /(1 — ») be made,
1 1 1—y

l—w™ [y 14y (24)

1—y

Now if the left-hand and right-hand expressions be expanded and « be
regarded as an independent variable restricted to values which make
|ax| < 1, the series obtained will both converge absolutely and may be
arranged according to powers of «. Corresponding coefficients will then
be equal and the identity will therefore not be disturbed if «; replaces
a’. Hence

l+aztap*+-- - =A—[1+A+a)y+ A+ )% +--],

provided that both series converge absolutely for «; = «’. Then

1+ap+ap+ap®+ . =14ay+a@+a)y+ad+a)?yP+...
=1+4+ay+ (e, +a)y* + (o, + 20,4 )y’ + -,
or apx 4+ apxt + ¢(,8x3 +o=ay+ (0, +a)y?
+ 20+ )y + - (25)
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This transformation is known as Euler’s transformation. Its great
advantage for computation lies in the fact that sometimes the second
series converges much more rapidly than the first. This is especially
true when the coeflicients of the first series are such as to make the
coefficients in the new series small. Thus from (25)

logl+ax)y=2—Lx+ 3o’ —Ja*+Lad—tas+ ...

SRt TRk 3 /MR ok S /AR ok A ok B/ L
To compute log 2 to three decimals from the first series would require
several hundred terms; eight terms are enough with the second series.
An additional advantage of the new series is that it may continue to
converge after the original series has ceased to converge. In this case
the two series can hardly be said to be equal; but the second series of
course remains equal to the (continuation of the) function defined by

the first. Thus log 3 may be computed to three decimals with about a
dozen terms of the second series, but cannot be computed from the first.

EXERCISES
1. By the multiplication of series prove the follovs‘ring relations:
@ (142 +a+adt-)2=(1+20+322+ 428 +..)=(1—2)-2
(B) cos?x + sinZx =1, () e®e¥ = ex+v, (%) 2sin2x =1— cos2x.
2. Find the Maclaurin development to terms in x6 for the functions:
(a) excosw, (B) exsinw, (v) 1+ x)log(1+ x), (8) coswsin—lx.

3. Group the terms of the expansion of cosz in two different ways to show that
cos1>0and cos2 < 0. Why does it then follow that cos¢ = 0 where 1 < § <2?

4. Establish the developments (Peirce’s Nos. 785-789) of the functions:
(a) esin.r, (B) etanac’ (7) esin_lx’ (5) etan_lx.
5. Show that if g (z) = bypa™ + by y12m+1 + ... and f(0) # 0, then

f@ _ agtartarit . com  Comtt
g@)  bu@m 4 byprgmtl 4. gm o gm-l

+...+c_;_1+co+(;11)+...
and the development of the quotient has negative powers of .
6. Develop to terms in x6 the following functions:
() sin(ksinr), (B) logcosw, y) Veosz, (8) (1— k2 sinZx)™ i,
7. Carry the reversion of these series to terms in the fifth power:
(o) y=sine =~ }ad 4 ..., B) y=tan-lz=x—}a3+ ..,

VNy=e=1+z+3224+-.., ) y=2x+3x2+423+5xt 4 ...
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8. Find the smallest root of these series by the method of reversion:

(a) %:f 6—xzda;—x_§x3+_1_ 5____1_~1;7+...q

315 317
. R ‘ dr
(8) i j(: cos x?%dx, (’Y) 0 f \/_ﬁm

9. By the formal method obtain the general equations for the coefficients in the
developments of these functions and compute the first five that do not vanish:
sinx 3

(@) e—1 @ et+1 ) 1—2ze“+e“‘

10. Obtain the general expressions for the following developments:

(a)cothx:%+§—g+§4_xg_...+§%§"%2_n_...’
(ﬁ)cotm:i—%-%_%_...+(_1)n%'_:§%§'_...,

&7) logsin:czlog:c—%z—%_%_... +(— 1)71?2"((2;11;‘ .
(6)logs1nhx—loga;+g_%+%;5_... %

11. The Eulerian numbers E,, are the coefficients in the expansion of sech z.
Establish the defining equations and compute the first four as — 1, 5, — 61, 1385.

12. Write the expansions for sec & and log tan (7 + } x).

. . 1 2 . .
13. From the identity I derive the expansions:
e —1 e¢r—1 e 41

“ _lip@e-1nZiB@Ei-1n" Byo(22n — 1yt
(a)er+1—§+ 2(Z =1+ B =) b 4 Bra@r =) 5t
1 ) . a8 ) x2n—1
) grg=y— B =D - B -nE - BT
3 2n -1
(v) tanhz = (22 — 1)22B2% + (2t — 1)24B4§-' 4 (22— 1)22”32nz2n )
x8 29:5 1727 x2n—1
d) tanx = 4 — — 4. — 1)»—-1(22n — 1) 22n B,
x? xt b x2n
logecose = — — - ... — 1)y —-1(92n _ 1)9227B, . .
(e) log 2 12 45 (=1 VB B T
4 ;
(¢) log ta,n.c—-l(w:t:+ + Te o (= ypmT(22eml — 1) 220 B, L2 +o,
60 n-2n!
1 x X 1 £ Izu
m) cscx = — ( cot — ta,n_)z_ — — 1)n-12(22n-1 — 1) B,
() 2( 2+ 2 13+(;'+ +( ( )Zn Int

(6) log coshz, (1) log tanhz, (x) eschz, (A) sec?x.
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Observe that the Bernoullian numbers afford a general development for all the
trigonometric and hyperboiic functions and their logarithms with the exception of
the sine and cosine (which have known developments) and the secant (which re-
quires the Eulerian numbers). The importance of these numbers is therefore
apparent.

14. The coeflicients P, (), P,(y), - - -. I.(y) in the development

cyr —

1
w1 YT P+ Py) et 4 Pa(y) et +

are called Bernoulli’s polynomials. Show that (n 4+ 1) ! P,(y) = (B + y)»+1 — Br+1
and thus compute the first six polynomials in y.

15. If y = N is a positive integer, the quotient in Ex. 14 is simple. Hence
n!Py(N)y=1422 4324 ... 4 (N—=1)
is easily shown. With the aid of the polynomials found above compute :
(@) 1424434 + ... 4 104, , B 142543+ 4 9
(V) 1422482+ -+ (N=1)2, (3) 1+28+3%4 ...+ (N—1)3."

1 1 1 1 1 artl — pntl
16. Int t = [ — ]: n,
fterpre l—arl—bx z(@—b)ll—ax a—bx 2 a—1> v

17. From f T -angy = ! establish formally
0 1—ax-
. w 1 w _U¥
2 34 ... = —tF = - x
1+ ax + ayx? + azr® + ‘/; € (xt)dt z j(; e = F(u)du,
1 1 :
where Fu)=1+ au+ T au? + g_asus R

Show that the integral will conyerge when 0 < & <1 provided |a;| =1.

L. 1
18. If in a series the coefficients a; =f tif () dt, show
0

1
1+alm+a2x2+a3m3+.-.=‘j; 1']10”

19. Note that Exs. 17 and 18 convert a series into an integral. Show

xr  xz  xd 1 1(—logtyr -1 T (p) ®
R T O 9" by DB [ e nggr-1g
@ ettt " Trph 1w M- j; Tk,
1 z 1&111100't 1 w’
e =— by —— = —nf gj d.
(8) 1+12+1+22+1+3; f Toa® Y e fo e sin &g,

a(a+1) , a+1)(a+2)8+
b +1) bO+1)(+2)

(1 1+ e+

T (b) lta—l(l_t)b—a—l
I‘(a)l‘(b a) 1— .t

dt.
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20. In case the coefficients in a series are alternately positive and necra.tlve show
that Euler’s transformed series may be written
A, — apr? + agad — ag@t + - = ay + Aay? + Ay 4 Adayyt 4 - -
where Aaq; = a; — a2, A2a; = Aay — Aaz = a; — 2 as + as,--- are the successive
first, second, - - - differences of the numerical coefficients.

21. Compute the values of these series by the method of Ex. 20 withz =1,y = }.
Add the first few terms and apply the method of differences to the next few as
indicated :

(a) 1— % + % — :11+ ... = 0.69315, add 8 terms and take 7 more,
1 1 1
B 1——+-—=——+-..=0.6049, add 5 terms and take 7 more,
2 V3 Vi
1 1 1
(-y) =173 + - + ... =0.78539813, add 10 and take 11 more,
7

1 1 1 2r—1 1 1 1
(%) Prove<1+2—P+§+E+"')—m<1—2—p+3—p—4—p+'“>

and compute for p = 1.01 with the aid of five-place tables.

22. If an infinite series converges absolutely, show that any infinite series the
terms of which are selected from the terms of the given series must also converge.
What if the given series converged, but not absolutely ?

23. Note that the proof concerning term-by-term integration (p. 432) would not
hold if the interval were infinite. Discuss this case with especial references to
justifying if possible the formal evaluations of Exs. 12 («), (8), p. 439.

24. Check the formula of Ex. 17 by termwise integration. Evaluate

1 e _U —_
a-cfo ¢ Ty du = 1= YR 4 ) 37— = (1 1) 3

by the inverse transformation. See Exs. 8 and 15, p. 399.



