I. THE RESULTANT

1. The Resultant is defined in the first instance with respect to n homogeneous polynomials $F_{1}, F_{2}, \ldots, F_{n}$ in n variables, of degrees l_{1}, l_{2}, \ldots, l_{n}, each polynomial being complete in all its terms with literal coefficients, all different. The resultant of any n given homogeneous polynomials in n variables is the value which the resultant in the general case assumes for the given case. The resultant of n given nonhomogeneous polynomials in $n-1$ variables is the resultant of the corresponding homogeneous polynomials of the same degrees obtained by introducing a variable x_{0} of homogeneity.

Definitions. An elementary member of the module ($F_{1}, F_{2}, \ldots, F_{n}$) is any member of the type $\omega F_{i}(i=1,2, \ldots, n)$, where ω is any power product of $x_{1}, x_{2}, \ldots, x_{n}$. What is and what is not an elementary member depends on the basis chosen for the module.

The total number of elementary members of an assigned degree is evidently finite.

The diagram below represents the array of the coefficients of all elementary members of ($F_{1}, F_{2}, \ldots, F_{n}$) of degree t, arranged under the power products $\omega_{1}^{(t)}, \omega_{2}^{(t)}, \ldots, \omega_{\mu}^{(t)}$ of degree $t\left(\mu=\frac{\mid t+n-1}{\mid \underline{t \mid n-1}}\right)$:

Each row of the array, in association with $\omega_{1}^{(t)}, \omega_{2}^{(t)}, \ldots, \omega_{\mu}^{(t)}$, represents an elementary member of degree t; and the rows of the array corresponding to F_{i} all consist of the same elements (the coefficients of F_{i} and zeros) but in different columns.

Any member $F=X_{1} F_{1}+X_{2} F_{2}+\ldots+X_{n} F_{n}$ of degree t is evidently a linear combination $\lambda_{1} \omega_{1} F_{1}+\lambda_{2} \omega_{2} F_{1}+\ldots+\lambda_{p} \omega_{p} F_{i}+\ldots+\lambda_{\rho} \omega_{\rho} F_{n}$ of elementary members of degree t, and is represented by the above array when bordered by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\rho}$ on the left, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\rho}$ are the coefficients of $X_{1}, X_{2}, \ldots, X_{n}$, some of which may be zeros.

This bordered array also shows in a convenient way the whole coefficients of the terms of F, viz. $\Sigma \lambda a, \Sigma \lambda b, \ldots, \Sigma \lambda k$.

These remarks and definitions are equally applicable to any module ($F_{1}, F_{2}, \ldots, F_{k}$) of homogeneous or non-homogeneous polynomials; but the following definition applies only to the particular module ($F_{1}, F_{2}, \ldots, F_{n}$).

The resultant R of $F_{1}, F_{2}, \ldots, F_{n}$ is the н.c.f. of the determinants of the above array for degree $t=l+1$, where $l=l_{1}+l_{2}+\ldots+l_{n}-n$. It will be shown (§7) that R is homogeneous and of degree $l_{1} l_{2} \ldots l_{n} / l_{i}$ in the coefficients of $F_{i}(i=1,2, \ldots, n)$.

2. Resultant; of two homogeneous polynomials in two variables.

Let

$$
\begin{aligned}
F_{1} & =a_{1} x_{1}^{l_{1}}+b_{1} x_{1}^{l_{1}-1} x_{2}+\ldots+k_{1} x_{2}^{l_{1}}, \\
F_{2} & =k_{2} x_{1}^{l_{2}}+\ldots+a_{2} x_{2}^{l_{2}}, \\
l & =l_{1}+l_{2}-2 .
\end{aligned}
$$

The array of the coefficients of all elementary members of (F_{1}, F_{2}) of degree $l+1$, viz. $x_{1}^{l_{2}-1} F_{1}, x_{1}^{l_{2}-2} x_{2} F_{1}, \ldots x_{2}^{l_{2}-1} F_{1}, x_{1}^{l_{1}-1} F_{2}, \ldots, x_{2}^{l_{1}-1} F_{2}$, has l_{2} rows corresponding to F_{1} and l_{1} rows corresponding to F_{2}, and the same number $l_{1}+l_{2}$ of rows in all as columns. The resultant R is therefore the determinant of this array. The array is

On the right are written the elementary members which the rows represent. Thus, neglecting the left hand border, we may regard the diagram as a set of $l+2$ identical equations for

$$
\omega_{1}^{(l+1)}, \quad \omega_{2}^{(l+1)}, \ldots, \omega_{l+2}^{(l+1)} .
$$

Solving them we have

$$
R \omega_{i}^{(l+1)}=A_{i 1} F_{1}+A_{i 2} F_{2} \quad(i=1,2, \ldots, l+2),
$$

where $A_{i_{1}}, A_{i_{2}}$ are polynomials whose coefficients are whole functions of the coefficients of F_{1}, F_{2}. Hence

$$
R \omega^{(l+1)} \equiv 0 \bmod \left(F_{1}, F_{2}\right),
$$

where $\omega^{(l+1)}$ is any power product of x_{1}, x_{2} of degree $l+1$. This expresses the first important property of R.
3. Irreducibility of R. The general expression for the resultant R is irreducible in the sense that it cannot be resolved into two factors each of which is a whole function of the coefficients of F_{1}, F_{2}. When this has been proved it follows that any whole function of the coefficients of F_{1}, F_{2} which vanishes as a consequence of R vanishing must be divisible by R.
R has a term $a_{1}^{l_{2}} \alpha_{2}^{l_{1}}$ obtained from the diagonal of the determinant, and this is the only term of R containing $\alpha_{2}{ }^{l_{1}}$. Also, when $a_{1}=0, R$ has a term $(-1)^{l_{2}} k_{2} b_{1}^{l_{2}} a_{2}^{l_{1}-1}$, and this is the only term of R containing $a_{2}^{l_{1}-1}$ when $a_{1}=0$. Hence, when R is expanded in powers of a_{2} to two terms, we have
where

$$
R=a_{1}^{l_{2}} a_{2}^{l_{1}}+b a_{2}^{l_{1}-1}+\ldots
$$

Hence if R can be written as a product of two factors, we have

$$
R=\left(a_{1}^{p_{1}} a_{2}^{p_{2}}+\ldots\right)\left(a_{1}^{q_{1}} a_{2}^{q_{2}}+\ldots\right)
$$

where $p_{1}+q_{1}=l_{2}$ and $p_{2}+q_{2}=l_{1}$, and either p_{1} or q_{1} is zero ; for otherwise the coefficient b of $a_{2}^{l_{1}-1}$ would be zero or divisible by a_{1}, which is not the case. Hence one of the factors of R is independent of the coefficients of F_{1}, since both factors must be homogeneous in the coefficients of F_{1}. Similarly one of the factors must be independent of the coefficients of F_{2}, i.e.

$$
R=\left(a_{1}^{l_{2}}+\ldots\right)\left(a_{2}^{l_{1}}+\ldots\right)=a_{1}^{l_{2}} a_{2}^{l_{1}}
$$

since the whole coefficient of $a_{1}^{l_{2}}$ in R is $a_{2}^{l_{1}}$, and of $a_{2}^{l_{1}}$ is $a_{1}^{l_{2}}$. This is not true ; hence R is irreducible.
4. The necessary and sufficient condition that the equations $F_{1}=F_{2}=0$ may have a proper solution (i.e. a solution other than $x_{1}=x_{2}=0$) is the vanishing of R.

This is the fundamental property of the resultant. If the equations $F_{1}=F_{2}=0$ have a solution other than $x_{1}=x_{2}=0$ it follows from

$$
R x_{1}^{l+1} \equiv 0 \bmod \left(F_{1}, F_{2}\right), \quad R x_{2}^{l+1} \equiv 0 \bmod \left(F_{1}, F_{2}\right),
$$

that $R=0$, by giving to x_{1}, x_{2} the values (not both zero) which satisfy the equations $F_{1}=F_{2}=0$.

Conversely if $R=0$ we can choose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l+2}$ so that the sum of their products with the elements in each column of the
determinant R vanishes. Multiplying each sum by the power product corresponding to its column, and adding by rows, we have

$$
\begin{aligned}
\left(\lambda_{1} x_{1}^{l_{2}-1}+\lambda_{2} x_{1}^{l_{2}-2} x_{2}+\ldots+\right. & \left.\lambda_{l_{2}} x_{2}^{l_{2}-1}\right) F_{1} \\
& +\left(\lambda_{l_{2}+1} x_{1}^{l_{1}-1}+\ldots+\lambda_{l+2} x_{2}^{l_{1}-1}\right) F_{2}=0
\end{aligned}
$$

where $\lambda_{1}, \lambda_{2}, \ldots \lambda_{l+2}$ do not all vanish. Hence, since $\lambda_{1} x_{1}^{l_{2}-1}+\ldots$ is of less degree than $\boldsymbol{F}_{2}, \boldsymbol{F}_{1}$ must have a factor in common with \boldsymbol{F}_{2}, and the equations $F_{1}=F_{2}=0$ have a proper solution.

In the following article another proof is given which can be extended more easily to any number of variables.
5. When $R \neq 0$ there are $l+2$ linearly independent members of (F_{1}, F_{2}) of degree $l+1$, and l of degree l. When $R=0$ there are only $l+1$ linearly independent members of degree $l+1$ and still l of degree l, i.e. in each case 1 less than the number of terms in a polynomial of degree $l+1$ and l respectively. Hence there will be one and only one identical linear relation between the coefficients of the general member of (F_{1}, F_{2}) whether of degree $l+1$ or l. Let this identical relation for degree $l+1$ be

$$
c_{l+1,0} z_{l+1,0}+c_{l, 1} z_{l, 1}+\ldots+c_{0, l+1} z_{0, l+1}=0
$$

where $z_{i, j}$ denotes the coefficient of $x_{1}{ }^{i} x_{2}^{j}$ in the general member of ($\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$) of degree $i+j$, and the $c_{i, j}$ are constants. Then, if F is the general member

$$
z_{l, 0} x_{1}^{l}+z_{l-1,1} x_{1}^{l-1} x_{2}+\ldots+z_{0, l} x_{2}^{l}
$$

of (F_{1}, F_{2}) of degree $l, x_{1} F$ is a member of degree $l+1$ whose coefficients must satisfy the relation above. Hence

$$
c_{l+1,0} z_{l, 0}+c_{l, 1} z_{l-1,1}+\ldots+c_{1, l} z_{0, l}=0
$$

Similarly $\quad c_{l, 1} z_{l, 0}+c_{l-1,2} z_{l-1,1}+\ldots+c_{0, l+1} z_{0, l}=0$,
since $x_{2} F$ is a member of (F_{1}, F_{2}) of degree $l+1$. These two relations must be equivalent to one only, since only one identical relation exists for degree l. Hence we have

$$
\frac{c_{l+1,0}}{c_{l, 1}}=\frac{c_{l, 1}}{c_{l-1,2}}=\ldots=\frac{c_{1, l}}{c_{0, l+1}}=\frac{a_{1}}{a_{2}} \text { (say), }
$$

i.e. $c_{l+1,0}, c_{l, 1}, \ldots, c_{0, l+1}$ are proportional to $a_{1}^{l+1}, a_{1}^{l} a_{2}, \ldots, a_{2}^{l+1}$. Hence the original identical relation may be written

$$
z_{l+1,0} a_{1}^{l+1}+z_{l, 1} a_{1}^{l} a_{2}+\ldots+z_{0, l+1} a_{2}^{l+1}=0
$$

showing that the general member $z_{l+1,0} x_{1}^{l+1}+\ldots$ of ($\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$) of degree $l+1$ vanishes when $x_{1}=a_{1}, x_{2}=a_{2}$, and that the equations $F_{1}=F_{2}=0$ have the proper solution $\left(a_{1}, a_{2}\right)$. The theorem being thus proved true in general is assumed to be true in particular.

6. Resultant of n homogeneous polynomials in n variables.

The general theory of the resultant to be now given is exactly parallel to that already given for two variables, although it involves points of much greater difficulty as might be expected. Another method of exposition depending on a different definition of the resultant is given in ($\mathrm{K}, \mathrm{p} .260 \mathrm{ff}$).

Let $F_{1}, F_{2}, \ldots, F_{n}$ be n homogeneous polynomials of degrees $l_{1}, l_{2}, \ldots, l_{n}$ of which all the coefficients are different letters. In particular, let $a_{1}, a_{2}, \ldots, a_{n}$ be the coefficients of $x_{1}^{l_{1}}, x_{2}^{l_{2}}, \ldots, x_{n}{ }^{l_{n}}$ in $F_{1}, F_{2}, \ldots, F_{n}$ respectively, and $c_{1}, c_{2}, \ldots, c_{n}$ the constant terms of $F_{1}, F_{2}, \ldots, F_{n}$ when x_{n} is put equal to 1 , so that $c_{n}=a_{n}$. Let

$$
l=l_{1}+l_{2}+\ldots+l_{n}-n, \quad L=l_{1} l_{2} \ldots l_{n}, \quad L_{1}=L / l_{1}, \quad L_{2}=L / l_{2}, \ldots L_{n}=L / l_{n} .
$$

The resultant R of $F_{1}, F_{2}, \ldots, F_{n}$ has already been defined (§1) as the н.c.f. of the determinants of the array of the coefficients of all elementary members of ($F_{1}, F_{2}, \ldots, F_{n}$) of degree $l+1$.

We shall first consider a particular determinant D of the array, viz. that representing (§ 1) the polynomial

$$
X^{(0)} F_{1}+X^{(1)} F_{2}+\ldots+X^{(n-1)} F_{n} \text { of degree } l+1,
$$

where $X^{(i)}$ denotes a polynomial in which all terms divisible by $x_{1}^{l_{1}}$ or $x_{2}^{l_{2}} \ldots$ or $x_{i}^{l_{i}}$ are absent, which may be expressed by saying that $X^{(i)}$ is reduced in $x_{1}, x_{2}, \ldots, x_{i}$. The polynomial

$$
X^{(0)} F_{1}+X^{(1)} F_{2}+\ldots+X^{(n-1)} F_{n}
$$

is represented by the bordered array
where $\omega_{1}{ }^{(l+1)}, \omega_{2}^{(l+1)}, \ldots, \omega_{\mu}{ }^{(l+1)}$ are all the power products of $x_{1}, x_{2}, \ldots, x_{n}$ of degree $l+1$, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mu}$ are the coefficients of $X^{(0)}, X^{(1)}, \ldots, X^{(n-1)}$. That this array has the same number μ of rows as columns is seen from the fact that one and only one of the elements $a_{1}, a_{2}, \ldots, a_{n}{ }^{*}$ (the coefficients of $x_{1}^{l_{1}}, x_{2}^{l_{2}}, \ldots, x_{n}{ }^{l_{n}}$ in $F_{1}, F_{2}, \ldots, F_{n}$) occurs in each row and each column. This is evident as regards the rows. To prove

[^0]that the same is true of the columns, we notice firstly that there is no power product $\omega^{(l+1)}$ of degree $l+1$ reduced in all the variables, for the highest power product of this kind is $x_{1}^{l_{1}-1} x_{2}^{l_{2}-1} \ldots x_{n}^{l_{n}-1}$ which is of degree $l<l+1$; and secondly, if we put every coefficient of $F_{1}, F_{2}, \ldots, F_{n}$, except only $a_{1}, a_{2}, \ldots, a_{n}$, equal to zero, the diagram will represent the polynomial
$$
X^{(0)} x_{1} x_{1}^{l_{1}}+X^{(1)} a_{2} x_{2}^{l_{2}}+\ldots+X^{(n-1)} a_{n} x_{n}^{l_{n}},
$$
in which each power product $\omega^{(l+1)}$ occurs once and once only, so that one and only one element $a_{1}, a_{2}, \ldots, a_{n}$ occurs in each column of D.

Thus D when expanded has a term $\pm \alpha_{1}^{\mu_{1}} a_{2}^{\mu_{2}} \ldots a_{n}^{\mu_{n}}$, where μ_{i} is the number of terms in $X^{(i-1)}$, and by saying that the coefficient of this term in D is to be +1 we remove any ambiguity as to the sign of D. Also it is to be noted that D vanishes when $c_{1}, c_{2}, \ldots, c_{n}$ all vanish, for the column of D corresponding to $x_{n}{ }^{l+1}$ contains no elements other than $c_{1}, c_{2}, \ldots, c_{n}$ and zeros.

Regarding the diagram as giving μ identical equations for
and solving, we have

$$
D \omega^{(l+1)} \equiv 0 \bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right),
$$

where $\omega^{(l+1)}$ is any power product of $x_{1}, x_{2}, \ldots, x_{n}$ of degree $l+1$. It can be proved that the factors of D other than R can be divided out of this congruence equation, so that

$$
R \omega^{(l+1)} \equiv 0 \bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right) ;
$$

but this will not be assumed in what follows*.
7. The number of rows in D corresponding to F_{n} is the number of terms in $X^{(n-1)}$. But $X^{(n-1)}$ is of degree $l+1-l_{n}$ or

$$
\left(l_{1}-1\right)+\left(l_{2}-1\right)+\ldots+\left(l_{n-1}-1\right),
$$

and its terms consist of all the power products in

$$
\left(1+x_{1}+\ldots+x_{1}^{l_{1}-1}\right) \ldots\left(1+x_{n-1}+\ldots+x_{n-1}^{l_{n-1}-1}\right)
$$

each multiplied by a power of x_{n}; hence the number of the terms is $l_{1} l_{2} \ldots l_{n-1}=L_{n}$. Thus D is homogeneous and of degree L_{n} in the

[^1]coefficients of F_{n}, and homogeneous and of degree $>L_{i}$ in the coefficients of $F_{i}(i=1,2, \ldots, n-1)$. It follows that R, which is a factor of D, is at most of degree L_{n} in the coefficients of \boldsymbol{F}_{n}. We shall prove that R is of this degree, and consequently of degree L_{i} in the coefficients of F_{i}.

Let D^{\prime} be any other non-vanishing determinant of the array, viz.

This represents the polynomial $A_{1} F_{1}+A_{2} F_{2}+\ldots+A_{n} F_{n}$, in which $a_{1}, a_{2}, \ldots, \alpha_{n}$ are the (arbitrarily chosen) coefficients of $A_{1}, A_{2}, \ldots, A_{n}$ which are not zeros. Choose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mu}$ in the previous diagram so that we have identically

$$
X^{(0)} F_{1}+X^{(1)} F_{2}+\ldots+X^{(n-1)} F_{n}=A_{1} F_{1}+A_{2} F_{2}+\ldots+A_{n} F_{n} .
$$

This gives, by equating coefficients of power products on both sides,

$$
\Sigma \lambda \alpha=\Sigma \Sigma a a^{\prime}, \quad \Sigma \lambda b=\Sigma \Sigma a b^{\prime}, \ldots, \quad \Sigma \lambda k=\Sigma \alpha k^{\prime}
$$

as equations for $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mu}$; and they have a unique solution, since D does not vanish.

Let $\binom{\lambda}{\alpha}$ denote the determinant of the substitution corresponding to the solution of the above equations for $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mu}$ as linear functions of $a_{1}, a_{2}, \ldots, a_{\mu}$. Then if we put

$$
\Sigma \lambda a=\Sigma \alpha a^{\prime}=\lambda_{1}^{\prime}, \Sigma \lambda b=\Sigma \alpha b^{\prime}=\lambda_{2}^{\prime}, \ldots, \Sigma \lambda k=\Sigma \alpha k^{\prime}=\lambda_{\mu}^{\prime}
$$

we have

$$
\binom{\lambda^{\prime}}{\lambda}=D,\binom{\lambda^{\prime}}{a}=D^{\prime}, \quad \text { and }\binom{\lambda^{\prime}}{\lambda}\binom{\lambda}{a}=\binom{\lambda^{\prime}}{a} \text {, i.e. } D\binom{\lambda}{a}=D^{\prime},
$$

by the rule of successive substitutions, or the rule for multiplying determinants. Hence

$$
\frac{D^{\prime}}{D}=\binom{\lambda}{a}
$$

Now we can find the solution for $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mu}$, or the solution of

$$
X^{(0)} F_{1}+X^{(1)} F_{2}+\ldots+X^{(n-1)} F_{n}=A_{1} F_{1}+A_{2} F_{2}+\ldots+A_{n} F_{n},
$$

in the following way. First solve the equation

$$
Y^{(0)} F_{1}+Y^{(1)} F_{2}+\ldots+Y^{(n-2)} F_{n-1}+X^{(n-1)}=A_{n}
$$

for the unknowns $Y^{(0)}, Y^{(1)}, \ldots, Y^{(n-2)}, X^{(n-1)}$. This equation has a unique solution, since the more particular equation

$$
Y^{(0)} x_{1}^{l_{1}}+Y^{(1)} x_{2}^{l_{2}}+\ldots+Y^{(n-2)} x_{n-1}^{l_{n-1}}+X^{(n-1)}=A_{n}
$$

has a unique solution (for any given polynomial A_{n} can be expressed in one and only one way in the form on the left) and shows that the number of the coefficients of $Y^{(0)}, Y^{(1)}, \ldots, Y^{(n-2)}, X^{(n-1)}$ is equal to the number of equations they have to satisfy.

Substituting the value thus found for $X^{(n-1)}$ in the equation

$$
X^{(0)} F_{1}+X^{(1)} F_{2}+\ldots+X^{(n-1)} F_{n}=A_{1} F_{1}+A_{2} F_{2}+\ldots+A_{n} F_{n},
$$

it becomes

$$
\begin{aligned}
& X^{(0)} F_{1}+X^{(1)} F_{2}+\ldots+X^{(n-2)} F_{n-1} \\
& \quad=\left(A_{1}+Y^{(0)} F_{n}\right) F_{1}+\ldots+\left(A_{n-1}+Y^{(n-2)} F_{n}\right) F_{n-1},
\end{aligned}
$$

where $Y^{(0)}, Y^{(1)}, \ldots, Y^{(n-2)}$ have been found. Next solve the equation

$$
Z^{(0)} F_{1}+Z^{(1)} F_{2}+\ldots+Z^{(n-3)} F_{n-2}+X^{(n-2)}=A_{n-1}+Y^{(n-2)} F_{n},
$$

which has a unique solution for $\boldsymbol{Z}^{(0)}, \boldsymbol{Z}^{(1)}, \ldots, \boldsymbol{Z}^{(n-3)}, X^{(n-2)}$. We can proceed in this way till $X^{(0)}, X^{(1)}, \ldots, X^{(n-1)}$, i.e. $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mu}$, have all been found.

In this method of solving the unknowns on the left are associated with $F_{1}, F_{2}, \ldots, F_{n-1}$ only and not with F_{n}. Hence $\binom{\lambda}{a}$ is a rational function of the coefficients of $F_{1}, F_{2}, \ldots, F_{n}$ whose denominator is independent of the coefficients of F_{n}, and the same is therefore true of $\frac{D^{\prime}}{D}=\binom{\lambda}{a}$. Hence every determinant D^{\prime} of the array has a factor in common with D which is of degree L_{n} in the coefficients of F_{n}. The resultant R, which is the H.c.f. of all the determinants D^{\prime}, is therefore of degree L_{i} in the coefficients of $F_{i}(i=1,2, \ldots, n)$.

If we put $D=A R, A$ is called the extraneous factor of D. We have proved that A is independent of the coefficients of F_{n}; and it is proved at the end of $\S 8$ that A depends only on the coefficients of ($\left.F_{1}, F_{2}, \ldots, F_{n-1}\right) x_{n}=0$.
8. Properties of the Resultant. Since D has a term $a_{1}^{\mu_{1}} \ldots a_{n}^{\mu_{n}}(\S) R$ has a term $a_{1}^{L_{1}} a_{2}^{L_{2}} \ldots a_{n}{ }^{L_{n}}$. This is called the leading term of R.

Since D vanishes when $c_{1}, c_{2}, \ldots, c_{n}$ all vanish (§ 6) the same is true of R; for $D=A R$ and A is independent of $c_{1}, c_{2}, \ldots, c_{n}$.

The extraneous factor A of D is a minor of D, viz. the minor obtained by omitting all the columns of D corresponding to power
products reduced in $n-1$ of the variables and the rows which contain the elements $a_{1}, a_{2}, \ldots, a_{n}$ in the omitted columns ($M_{2}, p .14$). Thus D / A, where A is this minor of D, is an explicit expression for R.

Each coefficient a of $F_{1}, F_{2}, \ldots, F_{n}$ is said to have a certain numerical weight, equal to the index of the power of one particular variable (say x_{n}) in the term of which α is the coefficient. In the case of non-homogeneous polynomials the variable chosen is generally the variable x_{0} of homogeneity. Also the weight of a^{p} is defined as p times the weight of a, and the weight of $a^{p} b^{q} c^{r} \ldots$ as the sum of the weights of $a^{p}, b^{q}, c^{r}, \ldots$ A whole function of the coefficients is said to be isobaric when all its terms are of the same weight.

The resultant is isobaric and of weight L. Assign to $x_{1}, x_{2}, \ldots, x_{n}$ the weights $0,0, \ldots, 0,1$. Then the coefficients of $F_{1}, F_{2}, \ldots, F_{n}$ have the same weights as the power products of which they are the coefficients. The i th row of the determinant D represents the polynomial $\omega_{i} \boldsymbol{F}_{j}=a_{i} \omega_{1}{ }^{(l+1)}+b_{i} \omega_{2}^{(l+1)}+\ldots+k_{i} \omega_{\mu}{ }^{(l+1)}$. Thus the weights of $a_{i}, b_{i}, \ldots, k_{i}$ are less than the weights of $\omega_{1}{ }^{(l+1)}, \omega_{2}{ }^{(l+1)}, \ldots, \omega_{\mu}{ }^{(l+1)}$ respectively by the same amount, viz. the weight of ω_{i}. Hence, on expanding D, the weight of any term is less than the sum of the weights of $\omega_{1}{ }^{(l+1)}, \omega_{2}{ }^{(l+1)}, \ldots, \omega_{\mu}{ }^{(l+1)}$ by the sum of the weights of $\omega_{1}, \omega_{2}, \ldots, \omega_{\mu}$; i.e. D is isobaric. Again, if in D each letter a is changed to $a u^{q}$, where q is the weight of a, D becomes $D u^{w}$, where w is the weight of D; and consequently if D be expressed as a product of whole factors each factor must be isobaric. Thus R is isobaric and its weight is that of its leading term ${a_{1}}^{L_{1}}{a_{2}}^{L_{2}} \ldots a_{n}{ }^{L_{n}}$, which is $l_{n} L_{n}=L$. The weight of D is the weight of $a_{1}^{\mu_{1}} a_{2}^{\mu_{2}} \ldots a_{n}^{\mu_{n}}$, which is also L, since $\mu_{n}=L_{n}$.

The whole coefficient of $a_{1}^{L_{1}} a_{2}^{L_{2}} \ldots a_{n-1}^{L_{n-1}}$ in R is $a_{n}^{L_{n}}$. For the coefficient must be a whole function of the coefficients of F_{n} only of degree L_{n} and weight $l_{n} L_{n}$, and a_{n} is the only coefficient of F_{n} of weight l_{n}.

A more general result (§9) is that the whole coefficient of ${a_{n}}^{L_{n}}$ in R is $R_{n}^{l_{n}}$ where R_{n} is the resultant of $\left(F_{1}, F_{2}, \ldots, F_{n_{-1}}\right)_{x_{n}=0}$. Hence also the whole coefficient of $a_{r}{ }^{L_{r}} a_{r+1}^{L_{r+1}} \ldots a_{n}{ }^{L_{n}}$ is $R_{r}{ }^{l_{r} l_{r+1} \ldots l_{n}}$ where R_{r} is the resultant of $\left(F_{1}, F_{2}, \ldots, F_{r-1}\right)_{x_{r}=\ldots=x_{n}=0}$.

Since the weights of D and R are the same the weight of the extraneous factor A of D is zero. This, taken in conjunction with the fact that A is independent of the coefficients of F_{n}, shows that A is a whole function of the coefficients of $\left(F_{1}, F_{2}, \ldots, F_{n-1}\right)_{x_{n}=0}$ only.
9. The resultant of $F_{1}, F_{2}, \ldots, F_{n}$ is irreducible and invariant. It has been proved that the resultant is irreducible when $n=2(\S 3)$; and the proof can be extended to the general case by induction.

Let $R_{n}=$ the resultant of $\left(F_{1}, F_{2}, \ldots, F_{n-1}\right)_{x_{n}=0}$;
$\boldsymbol{F}_{0}=$ the resultant of the homogeneous polynomials $\boldsymbol{F}_{1}^{(0)}$, $F_{2}^{(0)}, \ldots, F_{n-1}^{(0)}$ in $x_{1}, x_{2}, \ldots, x_{n-2}, x_{0}$ obtained from F_{1}, F_{2}, \ldots, F_{n-1} by changing x_{n-1}, x_{n} to $x_{n-1} x_{0}, x_{n} x_{0}$;
$F_{n}{ }^{\prime}=\left(F_{n}\right)_{x_{1}=\ldots=x_{n-2}=0}=k_{n} x_{n-1}^{l_{n}}+\ldots+a_{n} x_{n}^{l_{n}}$;
$R^{\prime}=$ the resultant of $F_{1}, F_{2}, \ldots, F_{n-1}, F_{n}{ }^{\prime}$;
$R_{0}=$ the resultant of $F_{0}, F_{n}{ }^{\prime}$, two polynomials in x_{n-1}, x_{n};

$$
L_{1}^{\prime} l_{1}=L_{2}^{\prime} l_{2}=\ldots=L_{n-1}^{\prime} l_{n-1}=l_{1} l_{2} \ldots l_{n-1}=L_{n}
$$

Finally let $a_{1}, a_{2}, \ldots, a_{n}, c_{1}, c_{2}, \ldots, c_{n-1}$ denote the same coefficients of $F_{1}, F_{2}, \ldots, F_{n}$ as in $\S 6$. We assume R_{n} irreducible and have to prove that R is irreducible.
F_{0} is of weight L_{n} in the coefficients of $F_{1}^{(0)}, F_{2}^{(0)}, \ldots, F_{n-1}^{(0)}$ "and each coefficient is a homogeneous polynomial in x_{n-1}, x_{n} of degree equal to its weight in reference to x_{0}. Hence

$$
F_{0}=A x_{n-1}^{L_{n}}+B x_{n-1}^{L_{n-1}} x_{n}+\ldots
$$

where A, B, \ldots are whole functions of the coefficients of $F_{1}, F_{2}^{\prime}, \ldots, F_{n-1}$ of the same dimensions as R_{n}. When $x_{n}=0, F_{0}$ becomes the resultant of $\left(F_{1}^{(0)}, F_{2}^{(0)}, \ldots, F_{n-1}^{(0)}\right)_{x_{n}=0}$, viz. $R_{n} x_{n-1}^{L_{n}}$; hence $A=R_{n}$. Also the whole coefficient of $a_{1}^{L_{1}^{\prime}} a_{2}^{L_{2}^{\prime}} \ldots a_{n-2}^{L_{n-2}^{\prime}}$ in F_{0} is $a_{n-1}^{L^{\prime}{ }_{n-1}}$, where a_{n-1}^{\prime} is the coefficient of $x_{0}^{l_{n-1}}$ in $F_{n-1}^{(0)}(\S 8)$, viz.

$$
a_{n-1}^{\prime}=a_{n-1} x_{n-1}^{l_{n-1}}+b x_{n-1}^{l_{n-1}-1} x_{n}+\ldots+c_{n-1} x_{n}^{l_{n-1}}
$$

Hence B has a term $L_{n-1}^{\prime} a_{1}^{L_{1}^{\prime}} \ldots a_{n-2}^{L^{\prime} n_{-2}} a_{n-1}^{L^{\prime} n_{-1}-1} b$, and cannot be divisible by R_{n}, since R_{n} does not involve b. Hence we find that

$$
F_{0}=R_{n} x_{n-1}^{L_{n}}+B x_{n-1}^{L_{n}-1} x_{n}+\ldots
$$

where B is neither zero nor divisible by \boldsymbol{R}_{n}.
Now if R^{\prime} vanishes one of the solutions of $\boldsymbol{F}_{n}{ }^{\prime}=0$ for $x_{n-1}: x_{n}$ will be the same as in one of the solutions of $F_{1}=\ldots=F_{n-1}=0(\$ 10)$, and will therefore be a solution of $F_{0}=0$; i.e. $R^{\prime}=0$ requires $R_{0}=0$, and \boldsymbol{R}_{0} is divisible by each irreducible factor of \boldsymbol{R}^{\prime}. But (§ 3)

$$
R_{0}=R_{n}^{l_{n}} \alpha_{n}{ }^{L_{n}}+B^{\prime} a_{n}^{L_{n}-1}+\ldots, \text { where } B^{\prime} \equiv(-1)^{l_{n}} k_{n} B^{l_{n}} \bmod R_{n},
$$

so that B^{\prime} is neither zero nor divisible by \boldsymbol{R}_{n}. Hence, as in $\S 3, \boldsymbol{R}_{0}$ has an irreducible factor of the form $R_{n}{ }^{l_{n}} a_{n}{ }^{p}+\ldots$, and has no other
factor involving the coefficients of $F_{1}, F_{2}, \ldots, F_{n-1}$. This must therefore be a factor of R^{\prime}.

Again R^{\prime} is what R becomes when all the coefficients of F_{n} other than those of $F_{n}{ }^{\prime}$ are put equal to zero. Hence R has an irreducible factor of the form $R_{n}{ }^{l_{h}} a_{n}{ }^{q}+\ldots$, where $q \geqslant p$. The remaining factor of R is independent of the coefficients of $F_{1}, F_{2}, \ldots, F_{n-1}$, and therefore also of the coefficients of F_{n} when $n>2$. Hence R is irreducible.

It easily follows that R is invariant for a homogeneous linear substitution whose determinant $\binom{x}{x^{\prime}}$ does not vanish. Suppose that $R=0$ and that this is the only relation existing between the coefficients of $F_{1}, F_{2}, \ldots, F_{n}$. Then not more than one relation can exist between the coefficients of $F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{n}^{\prime}$, the polynomials into which $F_{1}, F_{2}, \ldots, F_{n}$ transform. Since $R=0$ there are less than μ linearly independent members of ($F_{1}, F_{2}, \ldots, F_{n}$) of degree $l+1$ and therefore less than μ linearly independent members of ($F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{n}^{\prime}$) of degree $l+1$, and the only single relation between the coefficients of $F_{1}^{\prime}, \boldsymbol{F}_{2}^{\prime}, \ldots, F_{n}^{\prime}$ which will admit this is $R^{\prime}=0$. Hence $R=0$ requires $R^{\prime}=0$, and R^{\prime} is divisible by R. The remaining factor of R^{\prime} is independent of the coefficients of $F_{1}, F_{2}, \ldots, F_{n}$, and can be shown to be $\binom{x}{x^{\prime}}^{L}$. A proof that R is invariant without assuming it irreducible is given in ($\mathrm{E}, \mathrm{p} .17$).
10. The necessary and sufficient condition that the equations $F_{1}=F_{2}=\ldots=F_{n}=0$ may have a proper solution is the vanishing of R.

In the general case, when the coefficients are letters,

$$
A R x_{n}{ }^{l+1} \equiv 0 \bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right) .
$$

Put $x_{n}=1$ and change* c_{i} to $c_{i}-F_{i}(i=1,2, \ldots, n)$; then A does not change, being independent of $c_{1}, c_{2}, \ldots, c_{n}$ (§8); but R changes to $R-A_{1} F_{1}-A_{2} F_{2}-\ldots-A_{n} F_{n}$, and this must vanish; hence

$$
R \equiv 0 \bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right)_{x_{n}=1} .
$$

Hence R vanishes if the equations $F_{1}=F_{2}=\ldots=F_{n}=0$ have a solution in which $x_{n}=1$, i.e. if they have a proper solution.

To prove that $R=0$ is a sufficient condition, we shall assume that $R=0$ is the only relation existing between the coefficients of $F_{1}, F_{2}, \ldots, F_{n}$. There are then less than μ linearly independent members of $\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ of degree $l+1$. Hence the coefficients $z_{p_{1}, p_{2}, \ldots, p_{n}}$ of

[^2]the general member of degree $l+1$ must satisfy an identical linear relation
$$
\Sigma c_{p_{1}, p_{2}, \ldots, p_{n}} z_{p_{1}, p_{2}, \ldots, p_{n}}=0, \quad p_{1}+p_{2}+\ldots+p_{n}=l+1 .
$$

The coefficients of the general member of degree l also satisfy one and only one identical linear relation, whether R vanishes or not. To prove this it has to be shown that the number N of linearly independent members of $\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ of degree l is 1 less than the number ρ of power products of degree l. If no relation exists between the coefficients of $F_{1}, F_{2}, \ldots, F_{n}$ the equation

$$
X^{(0)} \dot{F}_{1}+X^{(1)} F_{2}+\ldots+X^{(n-1)} F_{n}=A_{1} F_{1}+A_{2} F_{2}+\ldots+A_{n} F_{n}
$$

can always be solved by the method of $\S 7$, where $A_{1}, A_{2}, \ldots, A_{n}$ are arbitrary given polynomials. Hence N is not greater than the number of coefficients in $X^{(0)}, X^{(1)}, \ldots, X^{(n-1)}$, or in

$$
X^{(0)} x_{1}^{l_{1}}+X^{(1)} x_{2}^{l_{2}}+\ldots+X^{(n-1)} x_{n}^{l_{n}}
$$

viz. $\rho-1$, since, when this expression is of degree l, every power product except $x_{1}^{l_{1}-1} x_{2}^{l_{2}-1} \ldots x_{n}^{l_{n}-1}$ occurs once and only once in it. Hence $N \leqslant \rho-1$.

Any particularity in $F_{1}, F_{2}, \ldots, F_{n}$ can only affect the value of N by diminishing it. Hence for the remainder of the proof it will be sufficient to show that $N=\rho-1$ in a particular example in which $R=0$. Let

$$
F_{1}=\left(x_{1}-x_{2}\right) x_{1}^{l_{1}-1}, \quad F_{2}=\left(x_{2}-x_{3}\right) x_{2}^{l_{2}-1}, \ldots, \quad F_{n}=\left(x_{n}-x_{1}\right) x_{n}^{l_{n}-1} .
$$

Then $R=0$ since the equations $F_{1}=F_{2}=\ldots=F_{n}=0$ have the proper solution $x_{1}=x_{2}=\ldots=x_{n}=1$. Let $x_{1}{ }^{p_{1}} x_{2}{ }^{p_{2}} \ldots x_{n}{ }^{p_{n}}$ be any power product of degree l. If $p_{1} \geqslant l_{1}$ change $x_{1}^{p_{1}} x_{2}^{p_{2}}$ to $x_{1}^{l_{1}-1} x_{2}^{q_{2}}$ where $p_{1}+p_{2}=l_{1}-1+q_{2}$; this is equivalent to changing $x_{1}{ }^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}{ }^{p_{n}}$ to $x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}^{p_{n}}+A_{1} F_{1}$. Again if $q_{2} \geqslant l_{2}$ change $x_{2}^{q_{2}} x_{3}^{p_{3}}$ to $x_{2}^{l_{2}-1} x_{3}^{q_{3}}$; and if $q_{2}<l_{2}$ proceed to the first $p_{r} \geqslant l_{r}$ and change $x_{r}^{p_{r}} x_{r+1}^{\eta_{r+1}}$ to $x_{r}^{l_{r}-1} x_{r+1}^{q_{r+1}}$. If we continue this process, going round the cycle $x_{1}, x_{2}, \ldots, x_{n}$ as many times as is necessary, the power product $x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}{ }^{p_{n}}$ will eventually become changed to $x_{1}^{l_{1}-1} x_{2}^{l_{2}-1} \ldots x_{n}^{l_{n}-1}$. Hence these two power products are congruent $\bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right)$, while neither of them is a member of $\left(F_{1}, F_{2}, \ldots, F_{n}\right)$, since they do not vanish when $x_{1}=\ldots=x_{n}=1$. Hence $N=\rho-1$.
 ($F_{1}, F_{2}, \ldots, F_{n}$) of degree l; then $x_{i} F$ is a member of degree $l+1$ in which the coefficient of $x_{1}^{p_{1}} x_{2}{ }^{p_{2}} \ldots x_{n}{ }^{p_{n}}$ is $z_{p_{1}, p_{2}, \ldots, p_{i}-1, \ldots, p_{n}}$. Hence
or

$$
\begin{array}{ll}
\Sigma c_{p_{1}, p_{2}, \ldots, p_{n}} z_{p_{1}}, \ldots, p_{i}-1, \ldots, p_{n}=0 & (i=1,2, \ldots, n) \\
\Sigma c_{q_{1}}, q_{2}, \ldots, q_{i}+1, \ldots, q_{n} & z_{q_{1}, q_{2}}, \ldots, q_{n}=0
\end{array} \quad(i=1,2, \ldots, n) .
$$

These n equations in $z_{q_{1}, q_{2}, \ldots, q_{n}}$ are therefore equivalent to one only; and the continued ratio $c_{q_{1}+1, q_{2}, \ldots, q_{n}}: c_{q_{1}, q_{2}+1, \ldots, q_{n}}: \ldots: c_{q_{1}, q_{2}, \ldots, q_{n}+1}$ is the same for all sets of values of $q_{1}, q_{2}, \ldots, q_{n}$ whose sum is l. Equating to $\alpha_{1}: \alpha_{2}: \ldots: \alpha_{n}$, it follows that $c_{p_{1}, p_{2}, \ldots, p_{n}}$ is proportional
 $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a solution of the equations $F_{1}=F_{2}=\ldots=F_{n}=0$.
11. The Product Theorem. If F_{n} is the product of two polynomials $F_{n}^{\prime}, F_{n}^{\prime \prime}$, the resultant R of $F_{1}, F_{2}, \ldots, F_{n}$ is the product of the resultants $R^{\prime}, R^{\prime \prime}$ of $F_{1}, F_{2}, \ldots, F_{n}{ }^{\prime}$ and $F_{1}, F_{2}, \ldots, F_{n}^{\prime \prime}$.

For in the general case R^{\prime} and $R^{\prime \prime}$ are irreducible, and if either vanishes R vanishes. Hence R is divisible by $R^{\prime} R^{\prime \prime}$. Also it can be easily verified that the leading terms of R and $R^{\prime} R^{\prime \prime}$ are identical. Hence $R=R^{\prime} R^{\prime \prime}$.

This result can easily be extended to the case in which any or all of $F_{1}, F_{2}, \ldots, F_{n}$ resolve into two or more factors.

If $F_{1}, F_{2}, \ldots, F_{n}$ are all members of the module ($F_{1}{ }^{\prime}, F_{2}^{\prime}, \ldots, F_{n}{ }^{\prime}$) the resultant R of $F_{1}, F_{2}, \ldots, F_{n}$ is divisible by the resultant R^{\prime} of $F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{n}^{\prime}$. For if $R^{\prime}=0$ then $R=0$.

12. Solution of Equations by means of the Resultant.

 The method of the resultant for solving equations can only be applied in what is called the principal case, that is, the case in which the number r of the equations is not greater than the number n of the unknowns, and the resultant F_{0} of the equations with respect to x_{1}, x_{2}, \ldots, x_{r-1} (after a linear substitution of the unknowns) does not vanish identically. When F_{0} vanishes identically the method of the resultant fails, but the equations can be solved by the method of the resolvent, due to-Kronecker, as explained later. The method of the resolvent is also applicable to any number of equations whether greater or less than the number of unknowns.Homogeneous Equations. Let the equations be $F_{1}=F_{2}=\ldots=F_{r}=0$ of degrees $l_{1}, l_{2}, \ldots, l_{r}$, where $r \leqslant n$. We assume that their resultant F_{0} with respect to $x_{1}, x_{2}, \ldots, x_{r-1}$ does not vanish. We regard x_{1}, x_{2}, \ldots, x_{r} as the unknowns, the solutions being functions of x_{r+1}, \ldots, x_{n}. But instead of solving for one of the unknowns $x_{1}, x_{2}, \ldots, x_{r}$ we solve for a linear combination of them, viz. for $x=u_{1} x_{1}+u_{2} x_{2}+\ldots+u_{r} x_{r}$, ${ }^{*}$ where $u_{1}, u_{2}, \ldots, u_{r}$ are undetermined quantities. Let F_{u} stand for $x-u_{1} x_{1}-u_{2} x_{2}-\ldots-u_{r} x_{r}$. Then we regard $F_{1}=F_{2}=\ldots=F_{r}=F_{u}=0$

[^3]as the given system of equations with x_{1}, \ldots, x_{r}, x as unknowns, and their resultant $F_{0}^{(w)}$ with respect to $x_{1}, x_{2}, \ldots, x_{r}$ gives the equation $\boldsymbol{F}_{0}^{(u)}=0$ for x.

Definition. $\quad F_{0}^{(u)}$ is called the u-resultant of ($F_{1}, F_{2}, \ldots, F_{r}$).
Applying the reasoning of $\S 9$ it is seen that F_{0} is the resultant (with respect to. $x_{1}, \ldots, x_{r-1}, x_{0}$) of $F_{1}, F_{2}, \ldots, F_{r}$ when $x_{r}, x_{r+1}, \ldots, x_{n}$ are changed to $x_{r} x_{0}, x_{r+1} x_{0}, \ldots, x_{n} x_{0}$, and is a homogeneous polynomial in $x_{r}, x_{r+1}, \ldots, x_{n}$ of degree $L=l_{1} l_{2} \ldots l_{r}$, viz.

$$
F_{0}=R_{r+1} x_{r}^{L}+\ldots,
$$

where R_{r+1} is the resultant of $\left(F_{1}, F_{2}, \ldots, F_{r}\right)_{x_{r+1}=\ldots=x_{n}=0}$, and does not vanish; for a homogeneous substitution beforehand between $x_{r}, x_{r+1}, \ldots, x_{n}$ only would be carried through to F_{0}.

Similarly $\boldsymbol{F}_{0}{ }^{(k)}$ is the resultant (with respect to $x_{1}, \ldots, x_{r}, x_{0}$) of $F_{1}, F_{2}, \ldots, F_{r}, F_{u}$ when $x, x_{r+1}, \ldots, x_{n}$ are changed to $x x_{0}, x_{r+1} x_{0}, \ldots$, $x_{n} x_{0}$, and is a homogeneous polynomial $R_{r+1}^{\prime} x^{L}+\ldots$ in $x, x_{r+1}, \ldots, x_{n}$ where R_{r+1}^{\prime} is the resultant of $\left(F_{1}, F_{2}, \ldots, F_{r}, F_{u}\right)_{x_{r+1}}=\ldots=x_{n}=0$. It is easily seen* that $R_{r+1}^{\prime}=R_{r+1}$. Hence

$$
F_{0}^{(u)}=R_{r+1} x^{L}+\ldots \text {, where } R_{r+1} \neq 0 .
$$

To each solution $x_{r}=x_{r i}$ of $F_{0}=0$ corresponds a solution ($x_{1 i}, x_{2 i}$, $\ldots, x_{r i}$) of the equations $F_{1}=F_{2}=\ldots=F_{r}=0$ for $x_{1}, x_{2}, \ldots, x_{r}(\$ 10)$. There are therefore L solutions altogether, and they are all finite, since $R_{r+1} \neq 0$.

Similarly to each of the L solutions $x=x_{i}$ of $F_{0}^{(u)}=0$ there corresponds a solution ($x_{1 i}, x_{2 i}, \ldots, x_{r i}, x_{i}$) of $F_{1}=\ldots=F_{r}=F_{u}=0$; and as regards ($x_{1 i}, x_{2 i}, \ldots, x_{r i}$) the L solutions must be the same as those obtained by solving $F_{0}=0$. Hence it follows that

$$
x_{i}=u_{1} x_{1 i}+u_{2} x_{2 i}+\ldots+u_{r} x_{r i},
$$

where $x_{1 i}, x_{2 i}, \ldots, x_{r i}$ are independent of $u_{1}, u_{2}, \ldots, u_{r}$. Hence

$$
F_{0}^{(u)}=R_{r+1} \Pi\left(x-u_{1} x_{1 i}-\ldots-u_{r} x_{r i}\right) \quad(i=1,2, \ldots, L) .
$$

Thus $F_{0}{ }^{(k)}$ is a product of L factors which are linear in x, u_{1}, u_{2}, \ldots, u_{r}, and the coefficients of $u_{1}, u_{2}, \ldots, u_{r}$ in each factor supply a solution of the equations $F_{1}=F_{2}=\ldots=F_{r}=0$.

Also the number of solutions is either $L=l_{1} l_{2} \ldots l_{r}$ or infinite, the latter being the case when F_{0} vanishes identically.

[^4]If D_{u} is the determinant for ($F_{1}, F_{2}, \ldots, F_{r}, F_{u}$), regarding x_{1}, x_{2}, \ldots, x_{r}, x_{0} as the variables, like the D of $\S 6$, we have $D_{u}=A F_{0}^{(u)}$. The extraneous factor A depends only on the coefficients of $\left(F_{1}, F_{2}, \ldots, F_{r}\right)_{x_{0}=0}$, that is, of $\left(F_{1}, F_{2}, \ldots, F_{r}\right)_{x_{r+1}=\ldots=x_{n}=0}$. Hence A is a pure constant, independent of x_{r+1}, \ldots, x_{n} and of $u_{1}, u_{2}, \ldots, u_{r}$, and we may take $D_{u}=0$ as the equation for x.

Definition. The number of times a linear factor $x-u_{1} x_{1 i}-\ldots-u_{r} x_{r i}$ is repeated in $F_{0}^{(u)}$ or D_{u} is called the multiplicity of the solution . $\left(x_{1 i}, x_{2 i}, \ldots, x_{r i}\right)$. This term has a definite geometrical interpretation; it is the number of solutions or points, in the general case distinct, which come into coincidence with a particular solution or point in the particular example considered.

In the case of n homogeneous equations in n unknowns such that $R \neq 0$, the complete solution consists of the non-proper solution $(0,0, \ldots, 0)$ with multiplicity $L=l_{1} l_{2} \ldots l_{n}$.

Non-homogeneous Equations. In the case of non-homogeneous equations a linear substitution beforehand affects only $x_{1}, x_{2}, \ldots, x_{n}$ and not the variable x_{0} of homogeneity. Hence it is possible for R_{r+1} to vanish identically, while F_{0} and $F_{0}^{(u)}$ do not, no matter what the original substitution may be. In this case there is a diminution in the number of finite solutions for x, but not in the number of linear factors of $F_{0}^{(x)}$. To a factor $u_{1} x_{1 i}+u_{2} x_{2 i}+\ldots+u_{r} x_{r i}$ of $F_{0}^{(u)}$ not involving x corresponds what is called an infinite solution of $F_{1}=F_{2}=\ldots=F_{r}=0$ in the ratio $x_{1 i}: x_{2 i}: \ldots: x_{r i}$. Infinite solutions are however nonexistent in the theory of modular systems ($\$ 42$). An extreme case is that in which $F_{0}^{(u)}$ does not vanish identically, but is independent of x, when all the L solutions are at infinity.

It may happen that a system of non-homogeneous equations has only a finite number of finite solutions while the resultant F_{0} vanishes identically. In such a case the method of the resultant fails to give the solutions.

Example. The equations $x_{1}^{2}=x_{2}+x_{1} x_{3}=x_{3}+x_{1} x_{2}=0$ have the finite solution $x_{1}=x_{2}=x_{3}=0$; but the resultant vanishes identically because the corresponding homogeneous equations

$$
x_{1}^{2}=x_{0} x_{2}+x_{1} x_{3}=x_{0} x_{3}+x_{1} x_{2}=0
$$

are satisfied by $x_{0}=x_{1}=0$, a system of two independent equations only.

[^0]: * These are not the same as the $a_{1}, a_{2}, \ldots, a_{n}$ in the first column of the array. The latter should be represented by some other symbols.

[^1]: * No proof of this has been published so far as I know. It can be proved that if A is any whole function of the coefficients of $F_{1}, F_{2}, \ldots, F_{n}$ not divisible by R, and $A F \equiv 0 \bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right)$, then $F \equiv 0 \bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right)$. Hence from $D \omega^{(l+1)} \equiv 0 \bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right)$ we have $R \omega^{(l+1)} \equiv 0 \bmod \left(F_{1}, F_{2}, \ldots, F_{n}\right)$. The condition that A is not divisible by R is not needed if F is of degree $\leqslant l$.

[^2]: * Called the Kronecker substitution.

[^3]: * Called the Liouville substitution.

[^4]: * By introducing a as coefficient of x in F_{u} it is seen that R_{r+1}^{\prime} is divisible by a^{L} by considering weight with respect to x. Also the whole coefficient of a^{L} in R_{r+1}^{\prime} is $R_{r+1}(\S 8)$. Hence $R_{r+1}^{\prime}=a^{L} R_{r+1}=R_{r+1}$.

