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I. THE RESULTANT

1. The Resultant is defined in the first instance with respect to »
homogeneous polynomials F, Fy, ..., F, in n variables, of degrees 4, /,,
...y by, each polynomial being complete in all its terms with literal co-
efficients, all different. The resultant of any » given homogeneous
polynomials in n variables is the value which the resultant in the
general case assumes for the given case. The resultant of # given non-
homogeneous polynomials in #—1 variables ‘is the resultant of the
corresponding homogeneous polynomials of the same degrees obtained
by introducing a variable @, of homogeneity.

Definitions. An elementary member of the module (£}, F,, ..., F})
is any member of the type oF; (=1, 2, ..., n), where o is any power
product of @, @, ..., #,. What is and what is not an elementary
member depends on the basis chosen for the module.

The total number of elementary members of an assigned degree is
evidently finite.

The diagram below represents the array of the coefficients of all
elementary members of (F}, Fy, ..., F,) of degree ¢, arranged under

. / ] t+n—1
the power products w,®, w0, ..., 0, of degree ¢ ’\/4 ==

¢ ln=1)"
0 w0......... 0,
Mla, by.ooo..... ky
Nl ag byonennns ks
ANl bpeeennnnn. kp
Each row of the array, in association with o, ) ..., 9, repre-

sents an elementary member of degree ¢; and the rows of the array
corresponding to #; all consist of the same elements (the coefficients of
F; and zeros) but in different columns.

Any member F=X, F\ + X, F,+ ...+ X, F, of degree ¢ is evi-
dently a linear combination Mw, /) + Ao Iy + ... + Ay i+ ..+ N
of elementary members of degree ¢, and is represented by the above
array when bordered by A, A;, ..., A, on the left, where A, A,, ..., A,
~ are the coefficients of X;, X, ..., X, some of which may be zeros.

This bordered array also shows in a convenient way the whole co-
efficients of the terms of ) viz. SAa, ZAb, ..., S\L.

1—2
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These remarks and definitions are equally applicable to any module
(Fy, F,, ..., Fy) of homogenéous or non-homogeneous polynomials ;
but the following definition applies only to the particular module
(Fy, F, ..., Fy).

The resultant R of Fy, F,, ..., I, is the H.0.F. of the determinants
of the above array for degree ¢=7/+1, where [=b+ L+ ... +1,—n It
will be shown (§ 7) that R is homogeneous and of degree 4,4,...7,/l; in
the coefficients of F; (=1, 2, ..., n).

2. Resultant of two homogeneous polynomials in two-
variables.

Let Fo=ax’ + by Y, + o+ b,
Fo=lha + .. +a2wzl“,
l=0L+1—-2.

The array of the coefficients of all elementary members of (E, )
of degree I+ 1, viz. &, ' Fy, 2" 2, Fy, ... 2.7 F,, 22 F,.., 2.7 R,
has /, rows corresponding to /% and /, rows corresponding to Fg, and
the same number /; + /, of rows in all as columns. The resultant R is
therefore the determinant of this array. The array is

e+1)° €+1) +1) (l+1)

W Wy iiieeen.. wl,+1 ............... 04,

) l—l
Aoy Oreveviiienannn, k . . . ; F
Al ay Dreeeeeenennnnn. ks . . 2 ,z'2}7'1

-1
>\.12 . . ay bl ................... kl :,Z'Ql Fl
-1
A'lg'l'l k2 ........................ s . . . =$1; 2F’2
Foereeieieiieaaiiann, Qs . =2 e B,
: -1
)\l+2 . . IL‘2 ........................ Ay | =Xy I’L

On the right are written the elementary members which the rows
represent. Thus, neglecting the left hand border; we may regard
the diagram as a set of [+ 2 identical equations for

I+1 i+1 I+1
G R

Solving them we have

Rol™V=A, F+ A, F, (i=1,2,...,1+2),
where A;;, A;, are polynomials whose coefficients are whole functions
of the coefficients of F,, F,. Hence

RtV = 0 mod (F,, Fy),
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where o*Y is any power product of ;, @, of degree 7+ 1. This

expresses the first important property of R.

3. Irreducibility of R. The general expression for the
resultant R is irreducible in the sense that it cannot be resolved
into two factors each of which is a whole function of the coefficients
of F\, F,. When this has been proved it follows that any whole
function of the coefficients of #,, F, which vanishes as a consequence
of R vanishing must be divisible by £.

R has a term @, @ obtained from the diagonal of the deter-
minant, and this is the only term of R containing @,”. Also, when
=0, R has a term (—1)2%,5,"¢," ", and this is the only term
of R containing a"~' when @,=0. Hence, when R is expanded
in powers of a, to two terms, we have

R=alal +bat '+ ...,
where b = (=1)" kb mod a,.
Hence if R can be written as a product of two factors, we have
R=(aa+..)(a," a,® + ...),
. where p,+ ¢, =1, and p,+ ¢,=1;, and either p, or ¢, is zero ; for other-
wise the coefficient & of a,"~* would be zero or divisible by a,, which
is not the case. Hence one of the factors of & is independent of the
coefficients of £, since both factors must be homogeneous in the
coefficients of #). Similarly one of the factors must be independent
of the coefficients of F%, i.e.
R=(a"+..)(@"+..)=0a

. . 1, * . 1A . 5 .« .
since the whole coefficient of @,” in R is a,", and of @, is @,. This is
not true ; hence R is irreducible.

l

‘1
’

4. The necessary and sufficient condition that the equations
Fi=F,=0 may have a proper solution (i.e. a solution other than
@y=wx,=0) is the vanishing of R.

This is the fundamental property of the resultant. If the
equations #\ = F,=0 have a solution other than #, =, =0 it follows
from

Ray*' =0mod (F, F,), Rat™=0mod(Fy, F,),
that B =0, by giving to @, @, the values (not both zero) which
satisfy the equations /)= Fy=0.

Conversely if B=0 we can choose Ay, Mg, ...,Ny, so that the
sum of their products with the elements in each column of the
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determinant £ vanishes. Multiplying each sum by the power product
corresponding to its column, and adding by rows, we have

I-1 7,-2 I,-1
M@+ M T Nyt ) B

+ M@ N 2" T By =0,
where A, A, ... Aiyp do not all vanish. Hence, since A, 2, 1+ ... is
of less degree than Fz, F, must have a factor in common with #5,
and the equations /)= F,=0 have a proper solution.

In the following altlcle another proof is given which can be

extended more easily to any number of variables.

5. When R=+0 there are [+ 2 linearly independent members of
(F,, F;) of degree I+1, and 7 of degree /. When R=0 there are
only /+1 linearly independent members of degree [+ 1 and still
l of degree /, ie. in each case 1 less than the number of terms in
a polynomial of degree /+1 and [ respectively. Hence there will
be one and only one identical linear relation between the coefficients
of the general member of (), #,) whether of degree /+1 or /
Let this identical relation for degree /+1 be

Cry1,0 21410+ €11 25,1+ -ov + Co 141 20,141 =0,

where z;; denotes the coefficient of #’z/ in the general member
of (F\, F,) of degree ¢+j, and the c¢;; are constants. Then, if
F is the general member

Zuo &t + 2 BT et L+ 2 )
of (F,,F2) of degree 4, # I7 is a member of degree /+1 whose
coefficients must satisfy the relation above. Hence

Ci1,0 1,0+ 01 21,1+ -+ F €102, = 0.
Similarly Ci1 %0+ Ciog0 B, 1+ - F Coza1 %0, =0,
since 2,/ is a member of (F, F,) of degree /+1. These two
relations must be equivalent to one only, since only one identical
relation exists for degree /. Hence we have

(Etl’,o = __._cl’l = = cl ! = .(_l_l (Say)
= =... = ,
Ci,1 Ci—1,2 Cn 41 %
1.€. Cri,05 Ci1y -o+ Co,141 8T€ Proportional to e+l alas, ..., af*’.  Hence

the original identical relation may be written

Z1+1,0 a1+ 211 ofag + ... + Z,1+1 a1 =0,
showing that the general member Zro @t + .. of (B, F,) of
degree /+1 vanishes when #,=a,, 2,=a,, and that the equations
F,=F,=0 have the proper solution (a;, a;). The theorem being
thus proved true in general is assumed to be true in particular.
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6. Resultant of 7 homogeneous polynomials in n
variables.

The general theory of the resultant to be now given is exactly
parallel to that already given for two variables, although it involves
points of much greater difficulty as might be expected. Another
method of exposition depending on a different definition of the
resultant is given in (K, p. 260 ff.).

Let By, F,, ..., F, be n homogeneous polynomials of degrees
b, by, ..., I, of which all the coefficients are different letters. In
particular, let @y, a,, ..., @, be the coefficients of ", 2 @™ in
F, F,, ..., F, respectively, and ¢, ¢, ..., c, the constant terms. of
F, F,, ..., F, when z, is put equal to 1, so that ¢,=a,. Let
l=bh+b+...+ly—mn, L=0L1,...1, L =L, L=LJ, ... L,=Ll,.

The resultant B of F, F,, ..., I/, has already been defined (§1)
as the H.c.F. of the determinants of the array of the coefficients
of all elementary members of (£}, F,, ..., F,) of degree I+ 1.

We shall first consider a particular determinant D of the array,
viz. that representing (§ 1) the polynomial

XOF + XOF,+ ...+ XtV F, of degree ! + 1,
where X® denotes a polynomial in which all terms divisible by

o™ or 2 ... or /" are absent, which may be expressed by saying
that X is reduced in @, @,, ..., #;.  The polynomial

XOR + XOF,+...+ XD R,
is represented by the bordered array

............ N
- - |
Ay by e k=0, F
Az 22 b2 ............... kg = Wy E
Ml @ byeeeiininnnnnn. ky |=o, F,
where 0,4, w0+ ... 0,0 are all the power products of 2, 2, ..., 2, of

degree I+ 1,and A, Ay, ..., A, are the coefficients of X0, X ... X¢-1),
That this array has the same number g of rows as columns is seen
from the fact that one and only one of the elements a, a,, ..., a,* (the
coefficients of xll‘, xgl?, ...,xnl" in B\, Fy, ..., F,) occurs in each row
and each column. This is evident as regards the rows. To prove

* These are.not the same as the ay, ag,..., @, in the first column of the array. ’
The latter should be represented by some other symbols.
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that the same is true of the columns, we notice firstly that there
is no power product o'V of degree /+ 1 reduced in all the variables,
for the highest power product of this kind is 2 'z ... 2"
which is of degree [ </+1; and secondly, if we put every coefficient
of R, Fy, ..., F,, except only a,,a,...,a,, equal to zero, the
diagram will represent the polynomial
XOg 28+ XOayz,+...+ X Vg, x,,l",

in which each power product «®¥ occurs once and once only, so
that one and only one element @, a,, ..., @, occurs in each column
of D.

Thus D when expanded has a term +a a** ... @,", where p; is
the number of terms in X¢-Y and by saying that the coefficient
of this term in D is to be + 1 we remove any ambiguity as to the

sign of D. Also it is to be noted that D wvanishes when ¢y, ¢y, ..., €y
all vanish, for the column of D corresponding to #,/*' contains no
elements other than ¢y, ¢,, ..., ¢, and zeros.

Regarding the diagram as giving p identical equations for
‘ 0,4, w0, L, 04,
and solving, we have
DoV =0 mod (F, F, ..., Fy),

where o*V) is any power product of @y, s, ..., x, of degree /+1.
It can be proved that the factors of D other than R can be divided
out of this congruence equation, so that

Ro®™=0mod (F, F, ..., F},) ;
but this will not be assumed in what follows*.

7. The number of rows in D corresponding to £7, is the number
of terms in X' ™Y, But X® is of degree [ +1 -1, or
=D+~ + ... +(lpy—1
and its terms consist of all the power products in
A4zt +2 ) (Lt @yg+ o+ a1 h
each multiplied by a power of z,; hence the number of the terms is
Lily...l,y=L, Thus D is homogeneous and of degree L, in the

* No proof of this has been published so far as I know. It can be proved that

if 4 is any whole function of the coefficients of ¥y, Fy, ..., F, not divisible by R,
and AF = Omod (Fy, F,, ..., F,), then F = Omod (F,, Fy, ..., F,). Hence from
Do) = Omod (Fy, F,, ..., F,) we have Rwltl) = 0mod (Fy, F,, ..., F,). The

condition that A is not divisible by R is not needed if F is of degree < 1.
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coefficients of #,, and homogeneous and of degree >.Z; in the
coefficients of F}(i=1,2,...,m—1). It follows that R, which is a
factor of D, is at most of degree L, in the coefficients of F,. We
shall prove that R is of this degree, and consequently of degree L; in
the coefficients of 7).

Let D' be any other non-vanishing determinant of the array, viz.

o) @, w, Y
o | a by e k
Qg a2/ bz’ ............... kgl
’ ’ ’
o, | @, by o, k.

This represents the polynomial 4, #, + A, Fy+ ... + 4, F,, in which
a1, 85, ..., a, are the (arbitrarily chosen) coefficients of 4,, 4., ..., 4,
which are not zeros. Choose Ay, Ay, ..., A, in the previous diagram
80 that we have identically

XOF, + X0 Fyt ..+ XOVF,= A, Fi+ A, Fy+ ..+ A, F,.
This gives, by equating coefficients of power products on both sides,
SAa=3ad’, ZANb=3abl,..., ZAk=3ak

as equations for Ay, Ay, ..., A,; and they have a unique solution,
since D does not vanish.

A . T .
Let <a> denote the determinant of the substitution corresponding

to the solution of the above equations for Ay, A, ...,A, as linear
functions of aj,a,,...,a,. Then if we put

Sha=Sad =N/, SAb=Sab =)/, ..., SAk=Sak =2,/
we have

()= ()= ()~ 1o 2()-21

by the rule of successive substitutions, or the rule for multiplying
determinants. Hence

_ ")

D~ (a. '

Now we can find the solution for Aj, Ay, ..., A, or the solution of
XOF + XOF, +...+ XDV =A, F\+ A Fo+ ...+ 4, F,,
in the following way. First solve the equation
YOR+YOFR+.. .+ YR, _ + X0-0=4,
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for the unknowns YO, Y@, ..., Y2 X1 This equation has a
unique solution, since the more particular equation

YOghae YO by 4 Yo w’"-'l + Xo-n= 4
-

has a unique solution (for any given polynomial A4, can be expressed
in one and only one way in the form on the left) and shows that the
number of the coefficients of YO, ¥ ... Y®=2) X1 ig equal to the
number of equations they have to satisfy.

Substituting the value thus found for X" in the equation

XOR+ XOF, +.. . + X YF, =A, Fi+ A, Fy+ ...+ A, F,,
it becomes

XOF + XOF+ ...+ X2,
=4+ YOF)F + ...+ (4, + YOI FNE,_,,
where YO, YO ... Y@ have been found. Next solve the equation
ZOF+ZOFy+ ...+ Z0AF, 4+ X020 = 4, 4+ Y03 I,

which has a unique solution for Z©, Z® ..., Z®=3 X®-23  We can
proceed in this way till X©O, X0 ... X@-1 je A, N, ..., A, have all
been found.

In this method of solving the unknowns on the left are associated

with £y, F,, ..., F,_, only and not with #,. Hence <2> is a rational

function of the coefficients of F, #, ..., F, whose denominator is
independent of the coefficients of ), and the same is therefore true
of % = (2) Hence every determinant D’ of the array has a factor
in common with D which is of degree L, in the coefficients of F,.
The resultant &, which is the m.c.F. of all the determinants D', is
therefore of degree L; in the coefficients of #;(i=1,2, ..., n).

If we put D=AR, A is called the extranecous factor of D. We
have proved that A4 is independent of the coefficients of #), ; and it
is proved at the end of §8 that A depends only on the coefficients of
(E’ E) (AR Ev—l)xn=0-

8. Properties of the Resultant. Since D has a term
a" .. a™ (§ 6) R has a term aPa” ... a,"*. This is called the
leading term of R.

Since D wvanishes when ¢y, Co, .-, €y all vanish (§ 6) the same is true
of B; for D=AR and 4 is independent of ¢, ¢s, ..., Cy.

The extraneous factor A of D is a minor of D, viz. the minor
obtained by omitting all the columns of D corresponding to power
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products reduced in n—1 of the variables and the rows which contain
the elements ay, @y, ..., &y 0 the omitted columns (M, p. 14). Thus
D/ A, where A is this minor of D, is an explicit expression for R.

Each coefficient o of ., F,, ..., F), is said to have a certain
numerical weight, equal to the index of the power of one particular
variable (say ,) in the term of which a is the coefficient. In the case
of non-homogeneous polynomials the variable chosen is generally the
variable #, of homogeneity. Also the weight of a? is defined as p
times the weight of @, and the weight of a?6%" ... as the sum of the
weights of a?, % ¢", .... A whole function of the coefficients is said to
be isobaric when all its terms are of the same weight.

The resultant is isobaric and of weight L. Assign to @, @y, ..., @y
the weights 0, 0,...,0, 1. Then the coefficients of £}, F,,..., F,
have the same weights as the power products of which they are the
coefficients. The 4th row of the determinant D represents the poly-
nomial ;)= a0 + b0 4 L+ ko). Thus the weights
of a;, by, ..., k; are less than the weights of /™" o, 4™ . o ¢+
respectively by the same amount, viz. the weight of »;, Hence, on
expanding D, the weight of any term is less than the sum of the
weights of "™, 0,"" . 0% by the sum of the weights
of o, wy, ..., w,; 1e. D is isobaric. Again, if in D each letter a is
changed to au?, where ¢ is the weight of @, D becomes Du®, where w
is the weight of D ; and consequently if D be expressed as a product
of whole factors each factor must be isobaric. Thus R is isobaric and
R anl’”, whichis, L, = L.
The weight of D is the weight of "' @, ... a,”", which is also Z,
since p, = L,.

The whole coefficient of aal .. af’i‘l‘ in R is a,*. For the
coefficient must be a whole function of the coefficients of ), only of
degree L, and weight /,L,, and a, is the only coefficient of Z, of
weight /,.

A more general result (§9) is that the whole coefficient of a,™™ in R is
R where R, is the resultant of (Fy, Fsy ..., Fu_))g,=0. ~ Hence
also the whole coefficient of arr afﬁ‘ e @ Tds Rt nhore R, s
the resultant of (Fy, Fy, ..oy Fro))pp=...=z5=0-

Since the weights of D and R are the same the weight of the
extraneous factor A of D is zero. 'This, taken in conjunction with the
fact that A is independent of the coefficients of F),, shows that 4 is @
whole function of the coefficients of (Fy, Fyy ..., Fyoy)ay=o only.

its weight is that of its leading term a,™ a
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9. The resultant of I\, F, ..., F, is irreducible and invariant.
It has been proved that the resultant is irreducible when » =2 (§3);
and the proof can be extended to the general case by induction.

Let R, =the resultant of (¥}, Fy, ..., F\_1)z,=0;

F,=the resultant of the homogeneous polynomials F}©,

FO, ..., F in @, a, ..., &, obtained from 7,
F, ..., F,_, by changing @, _;, @, t0 Zn_12, T ;
F=(Fae..cany=0 = by @™ |+ ...+ ay 2,
R’ = the resultant of /', Y, ..., Fy_,, FY/;
R, = the resultant of F, Fn , two polynomials in @, @ ;
L'l=LlL=...=L,  li=bL1l..l,_=L,.

Finally let @y, @s, .-, @y, 1, Co, -+, €4y denote the same coefficients
of B\, F,, ..., F,as in § 6. We assume £, irreducible and have to
prove that R is irreducible.

F, is of weight L, in the coefficients of /), /5,0, ..., F © *and
each coefficient is a homogeneous polynomial in 2,-,, 2, of degree
equal to its weight in reference to #,. Hence

Fy= AwL" + BxL" lx,,+
where A4, B,...are whole functions of the coefﬁclents of I\, F,, ..., F,_,
of the same dimensions as £,. When xn 0, F, becomes the resultant

of (K9, F,O, ..., ‘°’1)@ =0 viz. R, w *; hence A=PR,. Also the

. I -1
whole coefficient of a,™ a,™ v, " in B s at wll where a’,_; is

the coefficient of #,»— in 7% (§ 8), viz.

Lo In-1
W1 = Uy & T+ 0T Byt e F G @l

i‘ " aﬁ " ~1p, and cannot be divisible
by R,, since R, does not involve b. Hence we find that

o= anffl + B.zﬁ”_‘;lwn +
where B is neither zero nor divisible by R,.

Now if B’ vanishes one of the solutions of F, =0 for -, : @, will
be the same as in one of the solutions of Fi=...=F,;=0 (§10), and
will therefore be a solution of #,=0; i.e. R'=0 requires £,=0, and
R, is divisible by each irreducible factor of £'. But (§ 3)

R,=R)/"a," + B'a,” '+ ..., where B' = (- 1)k, B™ mod R,,
so that B’ is neither zero nor divisible by £,. Hence, asin § 3, R,
has an irreducible factor of the form R,™a,” + ..., and has no other

Hence B has a term Ly a,™ ... @
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factor involving the coefficients of F, F, ..., F,_,. This must
therefore be a factor of R

Again R’ is what R becomes when all the coefficients of F), other
than those of F, are put equal to zero. Hence R has an irreducible
factor of the form R,a,?+ ..., where ¢ > p. The remaining factor of
R is independent of the coefficients of /%, F, ..., F,_;, and therefore
also of the coefficients of F', when »>2. Hence R is irreducible.

It easily follows that R is invariant for a homogeneous linear

substitution whose determinant ( ) does not vanish. Suppose that

£=0 and that this is the only relation existing between the
coefficients of F}, F,, ..., F,. Then not more than one relation
can exist between the coefficients of FY, FY, ..., F,, the poly-
nomials into which #, F,, ..., F, transform. Since R=0 there
are less than w linearly independent members of (#y, F, ..., F})
of degree /+1 and therefore less than p linearly independent
members of (FY, Ky, ..., F,’) of degree [+1, and the only single
relation between the coefficients of #Y, £, ..., F;/ which will admit
this is B =0.  Hence R =0 requires R =0, and R’ is divisible by
R. The remaining factor of R’ is independent of the coefficients of

L
F, Fy ..., F,, and can be shown to be CZ,) . A proof that B is
invariant without assuming it irreducible is given in (B, p. 17).

10. The necessary and sufficient condition that the equations
Fi=F,=..=F,=0 may have a proper solution is the vanishing
of R.

In the general case, when the coefficients are letters,

AR2,"'=0 mod (F, F,, ..., F,).
Put #,=1 and change* ¢;to¢;— F; (=1, 2, ..., n) ; then 4 does not
change, being independent of ¢, ¢, ..., ¢, (§8); but B changes to

R—AF, — A F,— ... — A, F,, and this must vanish ; hence
R =0mod (F, Fyy ..., Fo)ep=1.
Hence R vanishes if the equations Fi=F,=...=F,=0 have a

solution in which #,=1, i.e. if they have a proper solution.

To prove that R=0 is a sufficient condition, we shall assume that =0
is the only relation existing between the coefficients of #,, Fy, ..., FF,.
There are then less than u linearly independent members of
I, By, ..., F,) of degree I+ 1. Hence the coefficients 2 .. .., p, Of

* Called the Kronecker substitution.
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the general member of degree [+ 1 must satisfy an identical linear
relation
S 02, s D000 Doy s pn =0y D1+ Dat . F P, =1+ 1.

The coefficients of the general member of degree 7 also satisfy one
and only one identical linear relation, whether B vanishes or not. To
prove this it has to be shown that the number XV of linearly independent
members of (F}, F,, ..., F,) of degree I is 1 less than the number p
of power products of degree /. If no relation exists between the
coefficients of I, F,, ..., F, the equation

XOF + XOF,+ ...+ X0V, = A, F, + A,F, + ... + A,F,
«can always be solved by the method of § 7, where 4,, 4,, ..., 4, are
arbitrary given polynomials. Hence &V is not greater than the number
of coefficients in X©@, X, ... X®-1 orin
XOgh+ XOght .+ XODgl
viz. p—1, since, when this expression is of degree /, every power

In—1
n

l‘—la&lﬂ_l...x

product except occurs once and only once in it.
Hence N <p-1.

Any particulavity in £, F}, ..., F, can only affect the value of IV by
. diminishing it. Hence for the remainder of the proof it will be sufficient

to show that N'=p — 1 in a particular example in which Z=0. Let

F=(2,~) 27 Fy= (@2~ as) 227 L, F= (0, — @) 2L
Then R =0 since the equations /= F,=... = F, =0 have the proper
solution #=a,=... =2, =1. Let 2" 2"™...2,"" be any power product of

-1

degree L. If p, >4 change "2 to 2,27 2,2 where Ptpe=b—1+¢q,;

this is equivalent to changing «,”'#."* ... 2, to .22, ... 2,7 + A.F,.

.. . 1— .
Againif ¢, >/, change 2," 2" to 2," 2% and if ¢2 <1, proceed to the
. le—1 . .
first p, >, and change 2, 2! to " "2 . If we continue this

process, going round the cycle @i, #,, ..., #, as many times as is

necessary, the power product 2”2, ... 2,” will eventually become

-1 I,—1 lo—1
Zot oyt .

changed to 2, Hence these two power products are

congruent mod (#,, £, ..., F,), while neither of them is a member
of (Fy, Fy, ..., F,), since they do not vanish when #,=...=2,=1.
Hence N=p—1.

Let F'=32g, q,...q0 0" @" ... 2, be the general member of
(B, Fy,y ..., F,) of degree I; then «;F is a member of degree /+1

in which the coefficient of @, . ... 2.7 is 2p,, py, ... pi=1,...,pu- Hence

Ecﬁ’l,pzy--upnzppm,’pi—l,-u,pn =0 (Z= 1’ 23 (AR} n))
or 26‘11, Gasees Gt Ly s 0 Q1 @2, ey G0 = 0 (l =12, ..., n)‘
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These n equations in Zg,g.,,...,qn &€ therefore equivalent to one only;
and the continued ratio Cq+i,q2,...,qn’ Caitge+ It tqn ver 1CGivq2seesgnel 1S
the same for al sets of values of #i, "> we><x whose sum is /.

to ara/?...a" (pp+p.+..+p,=1+1). Hence it folows that
(ay &, ..., &) isasolution of the equations F; = F,~ ... =F, =0.

11. The Product Theorem. J/ i® «& ™ product of tivo
polynomials F', F,", theresultant B of F, F,, ..., F, is the product
of theresultants B', B" of F, F», ..., F, and Fy,Fs,..., F.".

For in the general case B and B" are irreducible, and if either
vanishes B vanishes. Hence B is divisible by B'B". Also it can be
easily verified that the leading terms of B and BB" are identical.
Hence B = B'B".

This result can easily be extended to the case in which any or all
of Fy Fy ..., F, resolve into two or more factors.

If F, Fp, .—-,F, are all membersof the module (Fi, Fy, ...,i"")
the resultant B of Fig Fp..., F, is divisible by the resultant B' of
Fi, F)\ ...,F*. For if B =0 then B =0.

12. Solution of Equations by means of the Resultant.
The method of the resultant for solving equations can only be applied
in what is cdled the principal case, that is, the case in which the
number r of the equations is not greater than the number n of the
unknowns, and the resultant F, of the equations with respect to-x, Xy
..., Xy (after alinear substitution of the unknowns) does not vanish
identically. When F, vanishes identically the method of the resultant
fails, but the equations can be solved by the method of the resolvent,
due to -Kronecker, as explained later. The method of the resolvent is

also applicable to any number of equations whether greater or less than
the number of unknowns.

Homogeneous Equations. Let the equations beF; = F, =... =F,=0
of degrees g I3, ..., ;i wherer ~ n.  We assume that their resultant
Fo with respect to X; X, ..., X_x does not vanish. We regard Xy Xy
..., %8s the unknowns, the solutions being functions of X1, ..., X
But instead of solving for one of the unknowns x, X, ..., X% we solve
for a linear combination of them, viz. for x—u;X; + UXot+ ...+ UX*
where ug Uy ..., U are undetermined quantities. Let F, stand for
a-UpXq-UpXo- .« U X;. Thenweregard Fy=F,=...=F, = F=0

* Called the Liouville substitution.



