
CHAPTER 5

Introduction to inverse scattering

Suppose we are given two asymptotically hyperbolic metrics which differ only
on a compact set. If the associated scattering operators coincide, one can show that
these two metrics coincide up to a diffeomorphism. This result can be extended to
manifolds with asymptotically hyperbolic ends when two metrics coincide on one
end having a regular infinity. The aim of this chapter is to explain the idea of the
proof of these theorems.

1. Local problem on Hn

Recall that in the geodesic polar coordinates centered at (0, 1), the metric on
Hn takes the form

ds2 = (dr)2 + sinh2 r (dθ)2,
where (dθ)2 is the standard metric on Sn−1 (see formula (1.4) in Chap. 1). Letting
y = 2e−r and x = θ, one can rewrite the above metric as

ds2 =
(

dy

y

)2

+
(

1
y
− y

4

)2

(dx)2, y ∈ (0, 2].

Suppose this metric is perturbed so that

ds2 =
(dy)2 + (dx)2 + A(x, y, dx, dy)

y2
,

with A(x, y, dx, dy) satisfying the assumption (A-4) of Chap. 3, §3. The theorem
we are going to prove is as follows.

Theorem 1.1. Suppose we are given two Riemannian metrics G(p), p = 1, 2,
on Hn satisfying the above assumption. Suppose their scattering operators coincide.
Suppose furthermore G(1) and G(2) coincide except for a compact set. Then G(1)

and G(2) are isometric.

The proof is done by the following steps. Let Ba ⊂ Hn be a ball of radius a
with respect to the unperturbed metric centered at (0, 1) such that G(1) = G(2)

outside Ba. We first take a geodesic sphere Sa = ∂Ba, and consider the boundary
value problem for the Laplace-Beltrami operators in the interior domain Ba. Then
the associated Dirichlet-to-Neumann map (or Neumann-to-Dirichlet map) coincide.
We use the boundary control method of Belishev-Kurylev to show that G(1) and
G(2) are isometric in Ba (see [10] and [77]).

2. Scattering operator and N-D map

2.1. Restriction of the generalized eigenfunctions to a surface. Let
us start with preparing local regularity estimates for the resolvent R(k2 ± i0) con-
structed in Chap. 2. We first introduce some notation in Rn. Letting f̂(ξ) be the
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162 5. INTRODUCTION TO INVERSE SCATTERING

Fourier transform of a tempered distribution f ∈ S �(Rn), we introduce the Besov
norm ‖f‖

bBs
by

(2.1) ‖f‖
bBs

=
∞∑

j=0

2j/2‖〈ξ〉sf̂(ξ)‖L2(Ωj),

where s ∈ R is a real parameter, 〈ξ〉 = (1 + |ξ|2)1/2, Ω0 = {ξ ∈ Rn ; |ξ| < 1},
Ωj = {ξ ∈ Rn ; 2j−1 < |ξ| < 2j}, (j ≥ 1). Another Besov norm ‖u‖

bB∗
−s

is defined
by

(2.2) ‖u‖
bB∗
−s

=

(
sup
R>1

1
R

∫

|ξ|<R

〈ξ〉−2s|û(ξ)|2dξ

)1/2

,

which is the norm of the dual space of B̂s. The following lemma is proven in
Theorems 14.1.1, 14.1.4 of [55], Vol 2.

Lemma 2.1. (1) Let S be an n − 1-dimensional compact surface in Rn, and
τS the restriction map τS : u → u

∣∣
S

on S. Then τS ∈ B(B̂0; L2(S)).
(2) Let Hs be the Sobolev space on Rn, and suppose that a linear operator T satisfies
T ∈ B(Hs; Hs) for all s ∈ R. Then T ∈ B(B̂s; B̂s) for all s ∈ R.

By using the partition of unity, one can extend the definition of spaces B̂s, B̂∗
−s

on non-compact manifolds, which we shall denote by B̂s,loc and B̂∗
−s,loc. We also

denote by B̂s,comp and B̂∗
−s,comp the set of the compactly supported distributions

in B̂s,loc and B̂∗
−s,loc, respectively.

Now for k > 0, let F (+)(k) be the generalized Fourier transformation defined
by Chap. 2 (7.1). For a compact hypersurface S in Hn, we define

〈f, g〉S =
∫

S

f(x, y)g(x, y)dSx,y,

where dSx,y is the measure induced on S.

Lemma 2.2. Let Ω be a bounded domain in Hn with smooth boundary S = ∂Ω.
Suppose k2 �= 0 is not a Neumann eigenvalue for H in Ω. If f ∈ L2(S) satisfies

〈f, ∂νF (+)(k)∗φ〉S = 0, ∀φ ∈ L2(Rn−1),

then f = 0, where ∂ν =
∂

∂ν
is the normal derivative on S.

Proof. We first study the local regularity of the resolvent. Take χ ∈ C∞
0 (Hn).

Then by the well-known elliptic regularity theorem, χR(k2 ± i0)χ ∈ B(Hs; Hs+2),
∀s ≥ 0. By taking the adjoint, we have χR(k2 ± i0)χ ∈ B(H−t−2; H−t), ∀t ≥ 0.
By interpolation, we then have

χR(k2 ± i0)χ ∈ B(Hm; Hm+2), ∀m ∈ R.

This implies, by Lemma 2.1,

(2.3) χR(k2 ± i0)χ ∈ B(B̂m, B̂m+2), ∀m ∈ R.

For f ∈ L2(S), we define

(δ�Sf, g) = 〈f, ∂νg〉S , ∀g ∈ C∞
0 (Hn).
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2. SCATTERING OPERATOR AND N-D MAP 163

Then supp δ�Sf ⊂ S and, by Lemma 2.1 (1), we have δ�Sf ∈ B̂∗
−1,comp. Note that

B̂∗
−1,comp ⊂ H−3/2−� for any � > 0. For g ∈ B, due to Theorem 2.1.3 and Lemma

2.1 (2), ∂νR(k2 + i0)g restricted on S is in H1/2(S). Then, for f ∈ L2(S), the
mapping

B � g −→ 〈∂νR(k2 − i0)g, f〉S
is a bounded linear functional. Using the definition of δ�Sf , we have

〈f, ∂νR(k2 − i0)g〉S = (u, g), ∀g ∈ B,

where u = R(k2 + i0)δ�Sf ∈ B̂∗
1,loc ∩ B∗ ⊂ H

1/2−�
loc ∩ B, ∀� > 0. Using the resolvent

equation, we see that

(2.4) u = R0(k2 + i0)δ�Sf − R(k2 + i0)V R0(k2 + i0)δ�Sf,

where V = H −H0. Note that R0(k2 + i0)δ�Sf can be written as an integral over S

R0(k2 + i0)δ�Sf =
∫

S

(
∂ν′R0(k2 + i0)(x, y, x�, y�)

)
f(x, y�)dSx′,y′ .

This is an analogue of the classical double layer potential (see e.g. [27]).
To understand the properties of this potential, let Sδ, where |δ| is sufficiently

small, be an equi-distant surface which lies inside Ω for positive δ and inside Ωc for
negative δ. This defines two types of operators Kδ and Tδ, where

Kδf = R0(k2 + i0)δ�Sf
∣∣
Sδ

,

Tδf = ∂νR0(k2 + i0)δ�Sf
∣∣
Sδ

.

For δ �= 0, they are bounded operators on L2(S), where we use the fact that Sδ is
diffeomorphic to S. Moreover, Kδ tends to K± in the strong operator topology on
L2(S), when δ → ±0, and K+ − K− = Id. This is proven in R3 for the classes of
Hölder continuous functions in Theorem 2.15 and Corollary 2.14 of [27]. However, if
we take into account that in the Riemannian normal coordinates, x = (x1, · · · , xn),
d2(x, 0) = |x|2 + O(|x|4), the method of [27] can be extended to the space L2(S)
and general Riemannian manifold M.

Regarding Tδ, it is proven in Theorem 2.23, [27], that Tδ tends to T± in the
strong operator topology of bounded operators from C1,α(S) to Cα(S), and T+ −
T− = 0. Using duality arguments and the fact that (Tδ)∗ has the same structure as
Tδ, we see that Tδ tends to T± in the weak operator topology of boundend operators
from L2(S) to H−s(S), where s > (n + 1)/2, and T+ − T− = 0.

Extending formula (7.1) in Chap. 2, we define F (+)(k) onto B̂∗
−1,comp. Then

by Lemma 2.7.3, since G(+)(k) = F (+)(k), the behavior of u at infinity is given by

(2.5) R(k2 + i0)δ�Sf � C(k)χ(y)y
n−1

2 −ikF (+)(k)δ�Sf.

However, by the assumption of the lemma

(δ�Sf,F (+)(k)∗φ) = (F (+)(k)δ�Sf, φ)L2(Rn−1) = 0, ∀φ ∈ L2(Sn−1).

This, together with (2.5), implies

lim
R→∞

1
log R

∫ 1

1/R

‖u(y)‖2
L2(Rn−1)

dy

yn
= 0.
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164 5. INTRODUCTION TO INVERSE SCATTERING

Let us note that for any ϕ ∈ C∞
0 (Hn)

((H − k2)u, ϕ) = (u, (H − k2)ϕ)

= 〈f,R(k2 − i0)(H − k2)ϕ〉S
= 〈f, ϕ〉S ,

where we have used the fact that ϕ = R(k2 − i0)(H − k2)ϕ, since ϕ is compactly
supported, hence satisfies the radiation condition. We then have (H − k2)u = 0
outside and inside S. Arguing in the same way as in the proof of Theorem 2.2.10
given in Subsection 2.3.2, we have u = 0 in Ωc := Hn \ Ω. Thus T−f = 0.

Consider uΩ = u
∣∣
Ω
. Then (H − k2)uΩ = 0 and ∂νuΩ

∣∣
Γ

= T+f = 0. Since k2

is not a Neumann eigenvalue, uΩ = 0 in Ω. Therefore u = 0 globally in Hn, which
implies f = 0. �

By the same arguments, one can prove the following lemma.

Lemma 2.3. Let Ω be a bounded domain. Suppose k2 �= 0 is not a Dirichlet
eigenvalue for H in Ω. If f ∈ L2(∂Ω) satisfies

〈f,F (+)(k)∗φ〉∂Ω = 0, ∀φ ∈ L2(Rn−1),

then f = 0.

2.2. Neumann-to-Dirichlet map. Let Ω be a bounded domain in Hn with
smooth boundary S = ∂Ω, and consider the boundary value problem{

(H − k2)u = 0 in Ω,

∂νu = f ∈ H1/2(S) on S.

We denote the corresponding operator in L2(Ω) with Neumann boundary condition
by HN , keeping the notation H for the operator in Hn. If k2 is not an eigenvalue
of HN , this problem has a unique solution u. The operator

Λ(k) : f → u
∣∣
S

is called the Neumann-to-Dirichlet map, or simply, N-D map. We consider two
operators HN

1 and HN
2 associated with two metrics G(1) and G(2). Let Ŝj(k) be

the S-matrix for Hj .

Theorem 2.4. Suppose k2 �= 0 is not an eigenvalue for both of HN
1 and HN

2 .
Let Λj(k) be the N-D map for HN

j , j = 1, 2. Suppose G(1) = G(2) outside Ω. Then
Ŝ1(k) = Ŝ2(k) if and only if Λ1(k) = Λ2(k).

Proof. Suppose Λ1(k) = Λ2(k). Let uj = F (+)
j (k)∗φ for φ ∈ L2(Rn−1). Let

uin be the solution to the Neumann problem{
(H2 − k2)uin = 0 in Ω,

∂νuin = ∂νu1 on S.

We define a functon u3 on Hn by u3 = uin on Ω and u3 = u1 on Ωc = Hn \ Ω.
The trace of u3 computed from outside of S is u3

∣∣
S

= u1

∣∣
S

= Λ1(k)∂νu1, since u1

satisfies (H1 − k2)u1 = 0 in Hn, hence in Ω.
On the other hand, the trace computed from inside of S is

uin

∣∣
S

= Λ2(k)∂νuin = Λ2(k)∂νu1 = Λ1(k)∂νu1.
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3. BOUNDARY SPECTRAL PROJECTION 165

Therefore by our assumption, u3 and ∂νu3 are continuous across S. Hence u3 ∈ H2
loc

and satisfies (H2 − k2)u3 = 0 on Hn.
Let u0 = F0(k)∗φ. Then u3 − u0 satisifies the incoming radiation condition,

since so does u1−u0. Therefore v = u3−u2 = (u3−u0)−(u2−u0) is the solution to
the equation (H2 − k2)v = 0 satisfying the radiation condition. By Lemma 2.2.12,
v = 0. Observing the behavior of u1 = u2 near infinity and using Theorem 2.7.9,
we have Ŝ1(k) = Ŝ2(k).

Suppose Ŝ1(k) = Ŝ2(k). Let uj be as above, and put w = u1 − u2. Then
(H1 − k2)w = 0 in Ωc. Since Ŝ1(k) = Ŝ2(k), w � 0 by virtue of Lemma 2.7.2.
Consequently, w = 0 by Theorem 2.2.10. Then u1 = u2 and ∂νu1 = ∂νu2 on S, i.e.

Λ1(k)∂νF (+)
1 (k)∗φ = Λ2(k)∂νF (+)

2 (k)∗φ = Λ2(k)∂νF (+)
1 (k)∗φ.

By Lemma 2.1, {∂νF (+)
1 (k)∗φ ; φ ∈ L2(Rn−1)} is dense in L2(S), which proves the

theorem. �

3. Boundary spectral projection

Our inverse problem is now reduced to determining the metric from the N-D
map for a bounded domain. Since the following arguments do not rely on individual
nature of the metric, we consider in a general situation. Let Ω be a compact
Riemannian manifold with boundary equipped with the metric ds2 = gij(x)dxidxj .
Let ∆g be the associated Laplace-Beltrami operator, and λ1 < λ2 < · · · be the
Neumann eigenvalues of −∆g. We emphasize that we do not count the multiplicities
of eigenvalues here. The N-D map is defined as Λ(λ) : f → u

∣∣
∂Ω

, where

(3.1)

{
(−∆g − λ)u = 0 in Ω,

∂νu = f ∈ H1/2(∂Ω) on ∂Ω.

Here we are writing Λ(λ) instead of Λ(
√

λ). Note that Λ(λ) is analytic with respect
to λ ∈ C \ σ(−∆g). Let ϕi,1(x), · · · , ϕi,m(i)(x) be a complete orthonormal system
of eigenvectors associated with λi. We first note that the N-D map Λ(λ) has the
following formal integral kernel

(3.2) Λ(λ; x, y) =
∞∑

i=1

m(i)∑
j=1

ϕi,j(x)ϕi,j(y)
λi − λ

, x, y ∈ ∂Ω.

In fact, let f̃ ∈ H2(Ω) be such that ∂ν f̃ = f on ∂Ω. Then v = u − f̃ solves
{

(−∆g − λ)v = (∆g + λ)f̃ =: F in Ω,

∂νv = 0 ∈ H1/2(∂Ω) on ∂Ω.

Therefore, letting ( , ) be the inner product of L2(Ω)

(3.3) v =
∞∑

i=1

1
λi − λ

m(i)∑
j=1

(F,ϕi,j)ϕi,j(x).

Letting 〈 , 〉 be the inner product on L2(∂Ω), we have by integration by parts

(F,ϕi,j) = 〈f, ϕi,j〉 + (λ − λi)(f̃ , ϕi,j),

which proves (3.2).
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166 5. INTRODUCTION TO INVERSE SCATTERING

Definition 3.1. The set {λi, ϕi,j(x)
∣∣
∂Ω

; j = 1, · · · , m(i), i = 1, 2, · · · } is called
the boundary spectral data (BSD) of the Neumann problem.

Lemma 3.2. Let ϕi,1(x), · · · , ϕi,m(i)(x) be a complete orthnormal system of
eigenvectors associated with λi for the Neumann problem. Then ϕi,j(x), 1 ≤ j ≤
m(i), are linearly independent in L2(∂Ω). For another complete orthnormal system
ψi,1(x), · · · , ψi,m(i)(x), there is a unitary matrix U such that

(
ϕi,1(x), · · · , ϕi,m(i)(x)

)
=

(
ψi,1(x), · · · , ψi,m(i)(x)

)
U.

Proof. Suppose
∑m(i)

j=1 cjϕi,j(x) = 0 on ∂Ω. Then u =
∑m(i)

j=1 cjϕi,j(x) satisfies
(−∆g − λi)u = 0 in Ω, and u = ∂νu = 0 on ∂Ω. By the uniqueness theorem
for the Cauchy problem (see e.g. [101], p. 373), u = 0 in Ω, which implies
c1 = · · · = cm(i) = 0. The 2nd assertion is easy to prove, since {ϕi,j} and {ψi,j}
are the orthonomal bases of an m(i)-dimensional space. �

Let us give an operator theoretical meaning to (3.2). We need the notion of
spectral representation. Let Ĥ = ⊕∞

i=1C
m(i). We define the (discrete) Fourier

transformation F : L2(Ω) → Ĥ by F = (F1,F2, · · · ) where

(3.4) Fi : L2(Ω) � u →
(
(u, ϕi,1), · · · , (u, ϕi,m(i))

)
∈ Cm(i).

F is unitary, and diagonalizes the Neumann Laplacian −∆g on Ω : Fi(−∆gu) =
λiFiu. Let Pi be the eigenprojection associated with the eigenvalue λi. Then, for
z �∈ σ(−∆g), the resolvent can be written as

(3.5) RΩ(z) =
∞∑

i=1

Pi

λi − z
=

∞∑
i=1

F∗
i Fi

λi − z
,

which converges in the sense of strong limit in L2(Ω).
Let Γ = ∂Ω, and rΓ ∈ B(H1(Ω);H1/2(Γ)) be the trace operator to Γ. Define

δΓ ∈ B(H−1/2(Γ);H1(Ω)∗) as its adjoint:

(δΓf, w)L2(Ω) = (f, rΓw)L2(Γ), f ∈ H−1/2(Γ), w ∈ H1(Ω).

Accordingly, we write as
rΓ = δ∗Γ.

Then we have

(3.6) δΓ ∈ B(H−1/2(Γ); H1(Ω)∗), δ∗Γ ∈ B(H1(Ω);H1/2(Γ)).

Then,

(3.7) Λ(z) = δ∗ΓRΩ(z)δΓ.

Let us prove this formula. We first show that the right-hand side is well-
defined. Since RΩ(z) ∈ B(L2(Ω);H2(Ω)), we have RΩ(z) ∈ B(H2(Ω)∗; L2(Ω)). By
an interpolation, we then have RΩ(z) ∈ B(H1(Ω)∗;H1(Ω)). Using (3.6), we see
that δ∗ΓRΩ(z)δΓ ∈ B(H−1/2(Ω);H1/2(Ω)).

For f ∈ H1/2(Γ), take f̃ ∈ H3/2(Ω) such that ∂ν f̃ = f on Γ. Let v =
RΩ(z)(∆g + z)f̃ , and put u = v + f̃ . Then (−∆g − z)u = 0 in Ω, and ∂νu = f on
Γ. Take h ∈ L2(Ω). Then, by integration by parts,

(Pi(∆g + z)f̃ , h)L2(Ω) = (z − λi)(f̃ , Pih)L2(Ω) + (f, rΓPih)L2(Γ)

= −(λi − z)(Pif̃ , h)L2(Ω) + (PiδΓf, h)L2(Ω).
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4. INVERSE PROBLEMS FOR HYPERBOLIC ENDS 167

This yields

Piu = Pif̃ + RΩ(z)Pi(∆g + z)f̃ =
PiδΓf

λi − z
.

By (3.5), this implies u = RΩ(z)δΓf . By taking the trace to Γ, we get (3.7).
By Lemma 3.2, the operator δ∗ΓPiδΓ, whose integral kernel is

∑m(i)
j=1 ϕi,j(x)ϕi,j(y)

restricted to Γ, is independent of the choice of the eigenvectors. Let us call the set

(3.8)
{(

λi,

m(i)∑
j=1

ϕi,j(x)ϕi,j(y)
∣∣∣
x∈Γ,y∈Γ

)}∞

i=1
,

boundary spectral projection (BSP). This is what we actually use in the BC method.
BSP is the set of pairs of poles and residues of the N-D map. We then have the
following lemma.

Lemma 3.3. Suppose we are given two metrics on Ω. Then their BSP’s coin-
cide if and only if their N-D maps coincide for all λ outside the spectrum.

In the next chapter, we shall explain how to reconstruct the metric from BSP.

4. Inverse problems for hyperbolic ends

4.1. Exterior boundary value problem. Before entering into the inverse
scattering for manifolds with hyperbolic ends, we need to discuss the spectral theory
for the exterior boundary value problem. Let Ω be a bounded domain in Hn with
smooth boundary and Ωc := Hn \ Ω. Let HN,c be H defined in Ωc with Neumann
boundary condition. Namely D(HN,c) = {u ∈ H2(Ωc); ∂νu

∣∣
∂Ωc = 0} and HN,cu =

Hu for u ∈ D(HN,c). Then HN,c is self-adjoint. Let Rc(z) = (HN,c − z)−1. The
theory developed for H in Chap. 2 can be extended to HN,c without any essential
change. In fact, let u(z) = Rc(z)f , f ∈ L2(Ωc), for z ∈ C\R, and take χ ∈ C∞(Hn)
such that χ = 1 near infinity, and χ = 0 on a bounded open set containing Ω. Then
v(z) = χRc(z)f satisfies

(H − z)v = [H,χ]Rc(z)f + χf, in Hn,

where we use that ω := supp[H,χ] ⊂⊂ Ωc. Let us show that

(4.1) ‖u(z)‖B∗ ≤ C(‖u‖L2(Ω1) + ‖f‖B).

where Ω1 is a compact set such that ω ⊂ Ω1 ⊂ Ωc. In fact, by elliptic regularity,

‖u‖H1(ω) ≤ C(‖u‖L2(Ω1) + ‖f‖L2(Ω1)).

The inequality (4.1) then follows from this and (2.6) in Chap. 2.
Having inequality (4.1) in our disposal, we can prove, using the same arguments

as for the whole Hn, Lemma 2.2.13 for Rc(z).

Theorem 4.1. (1) σe(HN,c) = [0,∞), σp(HN,c) ∩ (0 ,∞) = 0.
(2) For any λ > 0, lim�→0R

c(λ± i�) =: Rc(λ± i0) exists in B∗ in the weak ∗-sense.
(3) For any compact interval I ⊂ (0,∞), there exists a constant C > 0 such that

‖Rc(λ ± i0)f‖B∗ ≤ C‖f‖B, ∀λ ∈ I.

(4) For any f, g ∈ B, (0,∞) � λ → (Rc(λ ± i0)f, g) is continuous.
(5) For λ > 0, Rc(λ ± i0)f is a unique solution to the equation{

(H − λ)u = f ∈ B in Ωc,

∂νu = 0 on ∂Ω
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168 5. INTRODUCTION TO INVERSE SCATTERING

satisfying the outgoting (for +) or incoming (for −) radiation condition.

The following lemma can now be proved easily by using Theorem 4.1.

Lemma 4.2. Let λ > 0 and f ∈ H1/2(∂Ω). Then there exists a unique solution
u± ∈ B∗ to the exterior boundary value problem{

(H − λ)u = 0 in Ωc,

∂νu = f on ∂Ω

satisfying the outgoing or incoming radiation condition.

Using the solutions u± as above, we define the N-D map by Λ(±)(λ)f = u±
∣∣
∂Ω

in addition to Λ(z) for z ∈ C \ σ(HN,c). Note that Λ(±)(λ) is the boundary value
of Λ(z) as z → λ ± i0. Therefore, Λ(±)(λ) defined for λ > 0 has a unique analytic
continuation to C \ σ(HN,c).

4.2. Inverse scattering at regular ends. Let M be a manifold satisfying
the assumptions (A.1) ∼ (A.4) in Chap. 3, §3 with ends of number N ≥ 2. We
assume that at least one of the ends has a regular infinity. Let M1 be such an
end. Namely, in the notation of Chap. 3, §2, M1 is diffeomorphic to M1 × (0, 1),
in other words, M1 is asymptotically equal to a funnel. Let Γ ⊂ M be a compact
submanifold of codimension 1 such that M splits into 3 parts Ω, Ωc, ∂Ω = ∂Ωc = Γ
in the following way :

M = Ω ∪ Γ ∪ Ωc, Ω ∩ Γ = Ωc ∩ Γ = ∅,

where Ω and Ωc are assumed to be submanifolds of M with boundary Γ inheriting
the Riemannian metric of M. Assume also that Ω is non-compact and has infinity
common to M1, and has no other infinity, i.e. Ω = M1 × (0, a), 0 < a < 1. Note
that when N ≥ 2, Ωc is also non-compact having a finite number of ends which are
either regular or cusps. (The case when N = 1, which is equivalent to Ωc being
compact, brings about the inverse boundary spectral problem discussed in §3.)

Let HN be −∆g − (n − 1)2/4 in Ω with Neumann boundary condition, and
HN,c be the one on Ωc. Then Theorem 4.1 and Lemma 4.2 also hold for HN

and HN,c. Note that if all the ends except for M1 have cusps, there may be
embedded eigenvalues in the essential spectrum of HN,c. However, they are discrete
with possible accumulation points only at 0 and infinity with rapidly decreasing
eigenvectors.

We generalize Lemma 2.1 to the present case. Let F (±)(k) = (F (±)
1 (k), · · · ,F (±)

N (k))
be the generalized Fourier transformation in M constructed in Chap. 3, §2, and
h∞ be defined by (3.47) in Chap. 3.

Lemma 4.3. Suppose 0 �= k2 �∈ σp(HN,c). If f ∈ L2(Γ) satisfies

〈f, ∂νF (+)(k)∗φ〉Γ = 0, ∀φ = (φ1, 0, · · · , 0) ∈ h∞,

then f = 0.

Proof. Since (2.5) holds in M1, arguing in the same way as in Lemma 2.1,
we have u = 0 in Ω. Consider uc = u

∣∣
Ωc . Then we have (H − k2)uc = 0 in Ωc,

and similarly to the proof of Lemma 2.1 ∂νuc = 0 on Γ. Since uc also satisfies the
radiation condition, and k2 �∈ σp(HN,c), we have uc = 0 in Ωc. This proves the
lemma. �
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Recall that HN,c has two parts of spectral representations: the generalized
Fourier transform, which we denote by F (+)

c here, corresponding to the absolutely
continuous spectrum for HN,c, and the discrete Fourier transform, denoted by Fc

p ,
corresponding to the point specrum for HN,c defined in the same way as in §3.

Lemma 4.4. The N-D map Λc(z) corresponding to HN,c, which is determined
for z ∈ C \ R, is of the form

(4.2) Λc(z) =
∫ ∞

0

δ∗ΓF
(+)
c (k)∗F (+)

c (k)δΓ

k2 − z
dk +

∑
i

δ∗ΓP c
i δΓ

λi − z
,

where the sum over i may be finite or infinite.

Proof. We proceed as in the proof of (3.7). Take f ∈ C∞(Γ) and f̃ ∈ C∞
0 (Ωc)

such that ∂ν f̃ = f on Γ. Let v solve the boundary value problem
{

(H − z)v = (−H + z)f̃ =: F in Ωc,

∂νv = 0 on Γ.

Then v is represented by eigenvectors ϕi,j and the generalized Fourier transform
F (+)

c (k):

v =
∫ ∞

0

F (+)
c (k)∗F (+)

c (k)F
k2 − z

dk +
∑

i

∑
j(F,ϕi,j)ϕi,j

λi − z
.

Take φ ∈ hc
∞ (see Chap. 3, (3.47), where j varies from 2 to N). Then we have by

integration by parts

(F (+)
c (k)F, φ)hc

∞
= ((−H + z)f̃ ,F (+)

c (k)∗φ)L2(Ωc)

= (f,F (+)
c (k)∗φ)L2(Γ) + (z − k2)(f̃ ,F (+)

c (k2)∗φ)L2(Ωc)

= (F (+)
c (k)δΓf, φ)hc

∞
+ (z − k2)(F (+)

c (k2)f̃ , φ)hc
∞

.

This implies
F (+)

c (k)F = F (+)
c (k)δΓf + (z − k2)F (+)

c (k)f̃ .

The term from the point spectrum is dealt with similarly, and the lemma follows
from a direct computation. �

Let us call the set

(4.3)
{

δ∗ΓF (+)
c (k)∗F (+)

c (k)δΓ; k > 0
}
∪

{(
λi, δ

∗
ΓP c

i δΓ

)
; i

}

the boundary spectral projection (BSP) for HN,c. By (4.2), we have

(4.4) Λc(z) = δ∗Γ(HN,c − z)−1δΓ.

Lemma 4.5. Knowing the N-D map Λ(+)
c (k2) for all k such that k2 �∈ σp(HN,c)

is equivalent to knowing BSP for HN,c.

Proof. Λ(+)
c (k2) has a unique analytic continuation Λc(z) for z ∈ C \R, which

determines Λ(−)
c (k2) for real k2 �∈ σp(HN,c). By (4.4) and Lemma 3.3.11, we have

Λ(+)
c (k2) − Λ(−)

c (k2) =
πi

k
δ∗ΓF (+)

c (k)∗F (+)
c (k)δΓ.
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Therefore we recover F (+)
c (k)∗F (+)

c (k) for k2 �∈ σp(HN,c) from Λ(+)
c (k2). By (4.2),

we also recover λi ∈ σp(HN,c) and δ∗ΓP c
i δΓ from the poles and residues of Λc(z).

The converse direction is seen by (4.2). �

Since M has N -ends, the S-matrix for M is an N × N -matrix:

Ŝ(k) =
(
Ŝij(k)

)
1≤i,j≤N

.

Let M(j), (j = 1, 2), be manifolds satisfying the assumptions (A.1) ∼ (A.4)
in Chap. 3, §3. Assume that M(1)

1 and M(2)
1 are isometric, therefore, M(1)

1 =
M(2)

1 = M1 × (0, 1), M1 being a compact manifold of dimension n − 1. Letting
Ω = M1 × (0, a), we construct Ωc

j and HN,c
j as above.

Theorem 4.6. Suppose 0 �= k2 �∈ σp(H
N,c
1 ) ∪ σp(H

N,c
2 ). Let Λ(+)

j (k2) be the

N-D map for HN,c
j . Then Ŝ

(1)
11 (k) = Ŝ

(2)
11 (k) if and only if Λ(+)

1 (k2) = Λ(+)
2 (k2).

The proof is the same as Theorem 2.3.

We now pass to the boundary control method (BC-method) to show that BSP
determines the manifold uniquely. The BC-method works for general Riemannian
manifold with boundary, if we know the N-D map for all k for the associated Laplace
operator. The BC-method was first applied to compact manifolds ([14]), and was
extended to non-compact manifolds (see e.g. [78], [67]).

Let us formulate the inverse problem on non-compact Riemannian manifolds.
Let N1 and N2 be Riemannian manifolds (not necessarily compact) with boundary
with metric inherited form the Riemannian metric induced from Nj . We say that
N1 and N2 have common parts Γ1 ⊂ ∂N1 and Γ2 ⊂ ∂N2 if there exists an isometry
Φ : Γ1 → Γ2. Let Λj(z) be the N-D map for the Laplace operator on Nj . Then we
define

(4.5) Λ1(z)
∣∣∣
Γ1

= Λ2(z)
∣∣∣
Γ2

⇐⇒ Φ∗ ◦ Λ1(z)
∣∣∣
Γ1

= Λ2(z)
∣∣∣
Γ2

◦ Φ∗.

Here Λj(z)
∣∣
Γj

is defined by

Λj(z)
∣∣
Γj

f = Λj(z)f
∣∣
Γj

, f ∈ L2(Γj).

One can then show that (with some additional assumptions) if N1 and N2 have
common parts Γ1 and Γ2, and (4.5) holds for all z �∈ R, then N1 and N2 are
isometric. In Chapter 6, we shall give the proof of this theorem (Theorem 8.5)
for asymptotically hyperbolic manifolds Ωc

1,Ω
c
2 under consideration. Modulus this

theorem, we have thus proven the following result.

Theorem 4.7. Let M be a manifold satisfying the assumptions (A.1) ∼ (A.4)
in Chap. 3, §3. We assume that one of the ends has a regular infinity, and denote
it by M1. Suppose we are given two metrics G(j), j = 1, 2, on M satisfying (A-3)
in Chapt. 3, §3. Assume that G(1) = G(2) on M1. If Ŝ11(k) = Ŝ11(k) for all k > 0,
then G(1) and G(2) are isometric on M.

We can actually prove a stronger version of Theorem 4.7, which is valid for
two manifolds whose structure, in particular the number of ends, are not known
a-priori.
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Theorem 4.8. Let M(j), j = 1, 2, be manifolds satisfying the assumptions
(A.1) ∼ (A.4) in Chap. 3, §3 endowed with metric G(j), j = 1, 2. We assume that
for both of M(1)and M(2) one of the ends has a regular infinity, and denote them
by M(j)

1 , j = 1, 2. Assume that M(1)
1 and M(2)

1 are isometric, and Ŝ11(k) = Ŝ11(k)
for all k > 0. Then M(1) and M(2) are isometric.

4.3. References of inverse scattering on asymptotically hyperbolic
manifolds. Melrose’s theory of scattering metric studies the spectral properties
of the Laplace-Beltrami operator on manifolds whose ends have the metric of the
following type

ds2 =
h(x, y, dx, dy)

y2
.

Each end is assumed to be isomorphic to X × (0, 1) and g0(x, y, dx, dy) admits an
asymptotic expansion of the form

h(x, y, dx, dy) = (dy)2 + h0(x, dx) + y h1(x, dx, dy) + y2h2(x, dx, dy) + · · · ,

h0(x, dx) being a Riemannian metric on the boundary at infinity, X. Mazzeo and
Melrose [96] developed a pseudo-differential calculus to deal with these manifolds,
and proved the existence of analytic continuation of resolvent of the associated
Laplace-Beltrami operator into the region C\{ 1

2 (n−N0)}, N0 = N∪{0}. Borthwick
[20] studied the case of variable curvature at the boundary at infinity. Guillarmou
[40] showed that the resolvent had in general essential singularities at { 1

2 (n−N0)}.
Joshi and Sá Barreto [73] proved that the scattering matrix determined the asymp-
totic expansion of the metric h(x, y, dx, dy) at infinity. Sá Barreto [120] proved that
the scattering matrix for all energies determined the whole manifold. Let us re-
mark here that, in this setting, two asymptotically hyperbolic manifolds are shown
to be isometric, without assuming that the corresponding ends are isometric, if
their scattering matrices coincide for all energies. The crucial fact is that the sup-
port theorem holds for the Radon transform (see Theorem 7.1 of [120], also [93]).
This support theorem is still open in our assumptions imposed in Chap. 2. Let us
also note that the support theorem does not hold for the Radon transform in the
Euclidean space (see [52] p. 14). See also [121].

For the spectral theory of symmetric spaces of higher rank, there is a work [97].
Resonance is also an important subject in the inverse scattering theory, and

many works are devoted to it. They are summarized in [45] or in the book of
Borthwick [21].

Inverse scattering problem or inverse boundary value problem from a fixed
energy is not yet solved completely for the case of the metric. However, in 2-
dimensions the inverse boundary value problem is completely solved by Nachman
[109], Lassas-Uhlmann [91], Astala-Paivarinta [8] and Astala-Lassas-Paivarinta [7].
For higher dimensions, there is a developed theory for isotropic metrics, see the
review article of [127]. Morever a method was developed to study anisotropic
metrics from a known conformal class. See e.g. [30].

There is a link between the hyperbolic manifolds and the inverse boundary
value problems in the Euclidean space. See [62], [63], [64], [65], [66]. In [57] an
application to the numerical computation is given.

In recent years, there appeared a number of interesting papers devoted to scat-
tering and inverse scattering for asymptotically hyperbolic manifolds. See e.g. [22],
[41], [42], [43], [129].
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