Chapter 10
Appendix

In this chapter we gather some basic facts on symplectic basis and symplectic
coordinates, see for example [36], [19].

10.1 Symplectic vector space

Definition 10.1.1 Let S be a finite dimensional vector space over R (C) and
let o be a non degenerate anti-symmetric bilinear form on S. Then we call S a
(finite dimensional ) real (complex ) symplectic vector space. Let S; (i = 1,2)
be two symplectic vector spaces with symplectic forms o;. If a linear bijection

T: Sl — SQ
verifies T*o9 = o1 then T is called a symplectic isomorphism.
REMARK: o is said to be non degenerate if

o(7,7) =0,V e€S=~y=0.

T*R™ = {(z,§) | ,& € R"} is a symplectic vector space with

o((z,8), (y.m) = (& y) — (z,m).

Proposition 10.1.1 Let S be a finite dimensional real symplectic vector space.
Then the dimension of S is even and there is a symplectic isomorphism

T:S—TR"
with some n.

Proof: Let e;, f; be the unit vector along x;, &; axis in T*R" respectively. It is
clear that

(10.1.1) olej ex) =0o(fj, fx) =0, o(fj ex) =0k

157



158 CHAPTER 10. APPENDIX

where J;;, is the Kronecker’s delta. To prove this proposition it is enough to
show that there exists a basis of S verifying (10.1.1). Take f; € S, f1 # 0. Since
o is non degenerate one can take e; € S so that o(f;,e;) = 1. Note that f; and
ey are linearly independent. Let Sy = span{fi,e;} and

S1=155 ={veS|o(y,5) =0}
Then we have S = 51 @ Sy for if v € 51N Sy then writing v = af1 + be; one gets

o(v,f1)=-b=0, o(y,e1) =a=0

and hence v = 0. We now show that S; is a symplectic vector space with the
symplectic form o. It is enough to check that ¢ is non degenerate on .S;. Suppose
o(v,51) =0, v € S1. By definition we see o(v, Sp) = 0 hence o(v,S) = 0 which
gives v = 0. The rest of the proof is carried out by induction. (]

Definition 10.1.2 Let S be a symplectic vector space of dimension 2n with the
symplectic form o. A basis {fj,e;}7_; verifying (10.1.1) is called a symplectic
basis.

Proposition 10.1.2 Let S be a symplectic vector space of dimension 2n with
the symplectic form o. Let A, B be subsets of J = {1,2,...,n}. Assume that
{e;}iea, {fetren are linearly independent and verify (10.1.1). Then one can

choose {e;}jcna, {frlrenn so that {e;}jcs and {fr}res become a full sym-
plectic basis.

Proof: Assume B\ A # (). Take [ € B\ A. Then there exists g € S such that
o(g, fi) = —1. With V = span{e;, fr | j € A,k € B} we have g ¢ V because
a(V, fi) = 0 by assumption. Choosing o, (;, i € AN B suitably one can assume

that
€L =g — Z ;€ — Z Bifi
i€ANB i€ANB
verifies

U(el,ej) =0,j€A, a(el,fk) = —0i, k € B.

Repeating this argument we may assume that B C A. Applying the same
arguments to A\ B we may assume A = B. If A = B # J then with

So =span{e;, f | j € A,k € B}

we consider S; = S§. Since S is a symplectic vector space, then by Proposition
10.1.1 there is a symplectic basis for S; and hence it is enough to add this basis

to {ej, fj}jca=n. O
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10.2 Darboux theorem

Let us start with

Definition 10.2.1 Let S be a C* manifold with a C'*° closed non degenerate
2 form. We call such a manifold as a symplectic manifold. Let S; be two
symplectic manifolds with symplectic forms o;. Let x be a diffeomorphism

X:SI_>S2

such that x*oo = o1. Then x is called symplectomorphism or canonical trans-
formation.

Note that the tangent space TS becomes a symplectic vector space by the
symplectic form and hence even dimensional. Let f € C¥(S) (k > 1). Then df
is a linear form on 7, (S) and then

<t7 df> = U(t7Hf)

defines Hy(y) € T,(5). It is clear that H; is a C*~! vector field on S. Let f,
g € C*(S). Then we define the Poisson bracket {f, g} by the formula

{df (7)., dg(v)} = o(Hy, Hg) = Hy - g = {f, g}

Here we recall the Jacobi’s identity

(10.2.1) {fAg. 13} + {9, {h 3} +{h{f.9}} =0, f.g,h e C*(S).

Then we have
Hiygy = [Hyp, Hy)=HyHy — HyHy.

Note that x is a canonical transformation if and only if

(10.2.2) XHfgy ={xX"f.x"g}. f.g€C3(S).

Therefore to define a local canonical transformation x : S — T*(R") it is enough
to choose local coordinates (z,¢) verifying

(10-2'3) {xﬁxk} =0, {gj?gk} =0, {§j>$k} = —{xk,fj} = 6jk"
The next theorem is called Darboux theorem (not homogeneous).

Theorem 10.2.1 Let S be a symplectic manifold of dimension 2n and let A,
B be two subsets of {1,2,...,n}. Let U be a neighborhood of 7o and assume that
fas gg € C®(U), a € A, B € B verify the followings

dfa(70),dgs(v0) (€ A, 5 € B) are linearly independent,
{fonfa'} = {gﬁmgﬁ’} = 0’ {faagﬁ} = 5045
in some neighborhood of vo (a, o’ € A, 3,3 € B).

Then there exists C* functions fo, a € A, gg, B € B defined near vy, such that
{fa}, {gs} satisfy (10.2.3).
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To prove this we first show a theorem of Frobenius.

Theorem 10.2.2 Let vy,...,v,. be C™ vector fields defined near the origin of R™
which verify

v1(0), ...,vr(O) are linearly independent,

(10.2.4) [vi, V5] Z%kvk (near the origin).

Let S be a C*° manifold with 0 € S such that ToS + span{v1(0), ...,v,(0)} = R"
and let f1,...,fr € C* near the origin. Then the system of equations

{vju =f;, j=1,..,m

u=uy ons

has a C'*° solution near the origin if and only if

.
(10.2.5) vifj —vifi=> Cirfr 4,5=1,..,r

k=1
The solution u is unique.

Proof: Since v;u = f; gives

T T

Vv — v = vif; — vifi = > Cijrvrti = Y Cijifi

k=1 k=1

and hence the necessity of (10.2.5) is clear. Denoting the equation as vu = f
it is clear that for a non singular matrix A = (a;;) the equation vu = f has a
solution u if and only if the equation Avu = Af has a solution u. We note that
Vi= Z;zl a;jvj, i = 1,...,r satisfy (10.2.4) because

Vi, Vj] = g azkvkag ajv| = E ik 01 [V, V1)
+ E a;k(Vpa ) v — § a;i(viaik)vg

and v; = ) a;;Vj. Thus far the statement is invariant under such transforma-
tions and change of coordinates since the condition (10.2.4) is coordinates free.
We show that our problem is reduced to

E bijvj, 1=1,..,r

j=1

8yz

where (b;;) is a non singular matrix.

We now proceed by induction on n. We may assume that v; = 9/0z; taking
a suitable coordinates. Subtracting a smooth function times v; we may assume
that v;, i = 2,...,r contains no 9/0x
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. . . . r . .
Renumbering the coordinates xa, ..., z,, and considering » =2 Qijv; with a suit-
able non singular matrix (a;;)2<i j<r» We may assume that

0 - 0
P = b =2, ...,
v m—l-'z ( r

1] 8$J Y

leaving v; unchanged. Since

n r
o — Obij 0 _ .
V1V; — V01 = = C1ikVk

8aq axj 1

j=r+1 k=

it is clear that c1;, = 0 and hence 0b;;/0x1 = 0. Then b;; are independent of z;
and hence from the hypothesis of the induction we may assume that v; = 9/0x;,
1= 2,...,7. Hence the result. We now study

0

—u=1f;, j=1,..,m
3x]u fj7 j 9 7T

With ' = (21, ..., 2,), " = (241, ..., Tn) We see that S is given by 2’ = h(z").
Now the solution is given by

u(z) = /h o D oy ) ).
x// ]:1

Since .
(Y fida;) =0
j=1
then the integral is well defined. U

Proof of Theorem 10.2.1: Let j € A\ B. We look for g; which verifies

(10.2.6) {far 95} = Hy 95 = 0ja, €A,
(10.2.7) {95,9;} = Hy,9;, =0, B € B.

By assumption Hy, (o € A) and Hy, (8 € B) are linearly independent and in
view of
[Hy, Hg] = Hyg,gy

then {Hy, | o € A} and {Hy, | 3 € B} verify the assumption (10.2.4) in
Theorem 10.2.2. Then giving g, on a manifold C' 5 7 of dimension 2n—|A|—|B)|
such that

T,,C + span{Hy, (), Hg,(0) |« € A, € B} =R*" =T, S

we obtain g; satisfying (10.2.7) which is determined uniquely by Theorem 10.2.2.
We examine that {dgs}scpui;} and {dfa}aca are linearly independent. In fact
if we have

bdg;(10) + Y _ badgs(v0) + Y _ aadfa(yo) =0
BeB acA
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then applying Hy,; we have b(7yp) = 0 and hence bs = 0 and a, = 0 which proves
the assertion. Therefore we can repeat the same arguments until we arrive at
A C B. For j € B\ A, the same argument gives f; and finally we may assume
that A = B. Assume that A = B # {1,2,...,n}. Take j € {1,...,n} \ B.
We want to construct g; satisfying (10.2.7). Take the manifold C' of dimension
2n — 2|B| given by

C={fa=93=0,VYae A V3e B}
Note that Hy, , Hy, do not belong to T,,C and this shows that
T.,,C +span{Hy, ,H,, |« € A, 3 € B} = R*".

Then by the Frobenius theorem one can construct g; verifying (10.2.7) giving
g; on C. If we choose g; on C so that

d(gjlc)(r0) # 0

then it is clear that {dgs}gecpui;} and {dfs}aca are linearly independent. The
rest of the proof is clear. O

10.3 Homogeneous Darboux theorem

Let us consider 7% X where X is a smooth manifold. With M(z,&) = (x,t&)
we define the radial vector field as

d 0
= —M] f|i= = —.
pf dt t f‘t—l? p ZSJ 85]
We can define p in a coordinates free way
o(p,t) =w(t), teT(T"X)

where w = &dx is the canonical 1-form. Note that

Zf.i — 7"2
j@gj N or
where 1% = 25]2 Indeed with &; = w;r we have

o9 ord dwr, 0 9 109

98, ~ 08 or T2~ 0, owor  Yor T row,
_ . . o _
Here )~ w? = 1 implies ija—wj =0.
Theorem 10.3.1 Let X be a smooth N dimensional manifold and let

Ac{l,..N-1}, Bc{l,..,N}
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be two subsets. Let fo, o € A and gg, B € B be C* functions defined in a conic
neighborhood of o € T*X \ 0 satisfying

(10.3.1)  fa, gs are homogeneous of degree 0 and 1 respectively,

(10.3.2)  fa(v0) =gs(0) =0, Vae A, VBe€ B\{N}, gn(y) #0,
(10.3.3)  dfa(v0), dgs(y0), &dx are linearly independent at o

and the commutation relations

{favfa’}:{gﬁvgﬁ'}zoa {fougﬁ}:éaﬁ’ a,o/GA, 575/63'

Then we can find fo, o & A with fo(v0) = 0 and gz, B ¢ B with gg(y) =0
if B# N and gn(v0) # 0 so that {f,} and {gg} will be a full homogeneous

canonical coordinates.

Proof: We first make some comments on the necessity. Assume that we have a
full homogeneous coordinates {f,,g3}. Then one can express

p= ZraHfa +285Hgﬁ.
o B

Since pfo = 0 because of the homogeneity and we conclude that p = > roHy,
and then

ra(70) = Pga(70) = gal(70)-
This implies g (70) # 0 with some 1 < a < N. If go(y0) =0, a=1,...,. N — 1
and { fa, gs} is a full homogeneous coordinates then necessarily p, { Hy, }acq1,.... N}
and {Hy, }aeq1,..,N—1} are linearly independent.

Let j € A\ B (1 <j <N —1). We construct g; which is homogeneous of

degree 1 and verifies

Hy,9j = 0ja, Hgag; = 0.

Recall that Hy, , Hy, and p are linearly independent. Take a submanifold C' of
dimension 2N — |A| — |B| such that

(10.3.4) T,,C3p
and
(10.3.5) T,,C +span{Hy, , Hy, | a € A, € B} = R*",

By the Frobenius theorem g; is uniquely determined. We now examine that
pg; = gj. Since

pHy,9; =0 = Hy, pg; + [p, Hy l9; = Hy, pg; — Hy. 9;

it follows that
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Similarly from

pHgﬁgj =0= Hgﬁ (ng> + [,0, Hgﬁ]gj - Hgﬁ (ng)

we have Hy,(pg;) = 0. On the other hand since pg;|c = p(gjlc) = gjlc the
uniqueness part of the Frobenius theorem gives that pg; = g;. It is easy to
see that {Hy, } sepuy;) and {Hy, }aca are linearly independent. In fact assume

that
p= raHs + Y spHy,.
acA BeBU{j}

Applying this to f; we get pf; = —s;(7) = fj(70) = 0. Thus the assertion
follows from the assumption. We continue this arguments to arrive at the case
AC(B\{N}).
Let j € B\ A. We want to construct f; which is homogeneous of degree 0
and satisfies
Hfaszo, Hgﬁfj:—(Sjg, a€ A, pBeB.

Take a submanifold C' of dimension 2N —|A|—|B| such that (10.3.4) and (10.3.5)
are verified. We apply the Frobenius theorem imposing f;|c = 0. Then it is
easy to check that

Hfa (pfj> =0, Hgﬁ (pfj) =0

and from the uniqueness one has pf; = 0, that is f; is homogeneous of de-
gree 0. It is clear that {Hy, }ocaugy) and {Hg,}sep are linearly independent.
Repeating these arguments we may assume that

A=B or B=AU{N}.

Assume A = B # {1,...,N — 1}. Then taking j ¢ B we construct g; and f;.
Let C be defined by

C={fa=0,95=0, ac€A, (ecB}
It is clear that p € T',,C because f, and gg are homogeneous. We see that
T, (T*X\0)=T,,C +span{Hy, ,Hy, | € A 3 € B}.
From the Frobenius theorem one can solve g;
Hf g; =0, Hy,9; =0, a€ A, B€B

with g;(70) = 0 where g; is chosen so that d(g;|c)(70) is not proportional to p,
this is clearly possible because dimT,,C' > 2. Thus we may assume that

A={1,.,.N-1}, B={1,..N—-1} or B={1,..,N}.
Assume B = {1,..., N — 1} and solve gy

Hygn =0, Hygn=0, a=1,..N-1, 8=1,..,N -1
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with gn(70) # 0. By the Frobenius theorem one can construct gn. Suppose
that

N-1 N
p= Z roHyg, + Z sgHgy,.
a=1 p=1

Then we would have p = sy Hy, at 7 and hence pgny = gn (7o) = 0. This is a
contradiction. Thus p, {Hy,} and {H,,} are linearly independent. Finally we
construct fy. Solve fy as a solution to

kafN :Oy Hgkf]\/' :0, k: 1,...,N— 17
HngN:_la pr:0~

Since [Hy,,p| = Hy,, [Hy,,p] = 0 then the hypothesis of Theorem 10.2.2 is
verified and hence fy with fx(v9) = 0 exists. O



