Chapter 5

Noneffectively hyperbolic
Cauchy problem 11

5.1 (C* well-posedness

We continue to assume that ¥ = {(z,§) | p(z,&) = 0,dp(z,§) = 0} is a C°
manifold and (4.1.1) is verified. In this chapter we study the case

(5.1.1) KerF?(p) NImF (p) # {0}.

As we have seen in Theorem 3.5.1 the following two assertions are equivalent
(i) Hip(p)=0,p€X,
(ii) p admits an elementary decomposition at every p € ¥

where S is any smooth function verifying (3.4.1) and (3.4.2). As we shall prove
in Chapter 7, the condition (ii) is still equivalent to

(5.1.2) there is no null bicharacteristic of p having a limit point in X.

In this chapter we discuss the C*° well-posedness of the Cauchy problem as-
suming (5.1.2) (equivalently assuming (i) in Theorem 3.5.1) under the strict
Ivrii-Petkov-Hormander condition.

Theorem 5.1.1 Assume (4.1.1), (5.1.1), (5.1.2) and the subprincipal symbol
P,y verifies the strict Tvrii- Petkov- Hormander condition on X. Then the Cauchy
problem for P is C'°° well posed.

Let fix any p € 3. Thanks to Proposition 3.5.1 near p we have an elementary
decomposition of p = —¢£2 + 25:1 qﬁ? such that

p=—(Go+A) (& —N+Q
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where A = ¢; + O(Z;Zl gzb?) The main difference from the case that we have

studied in the previous chapter is that we have no control of ¢? by Q, that is
the best we can expect is the inequality

CQ=> ¢ +¢tleI72
j=2

Another serious difficulty is that it seems to be hard to get a local (not
microlocal) elementary decomposition. To overcome this difficulty we follow
[31], [24] in the next section.

5.2 Parametrix with finite propagation speed of
wave front sets

Recall that we are working with operators of the form

(5.2.1) P(z,D) = —D2 + Ay (x, D")Dy + Ay(z,D’)

where A;(z,&') € S((¢')7,g0). Let I = (—7,7) be an open interval containing
the origin and we denote by C*(I, HP) the set of all k-times continuously differ-
entiable functions from I to H? = HP(R") and denote by C*(I, HP)" the set of
all f € C*(I, HP) vanishing in g < 0. We put H® = Ny H* and H=>° = U, H".

Definition 5.2.1 Let T be a linear operator from C°(I, H=>)* to C*(I, H>®)*.
We say that T € R if there is a positive constant 6(T') such that

t
DTSR, < e [ 1N dr, e < 8(T)
for k=0,1 and for any p,q € R and f € C°(I, HP)*.

Definition 5.2.2 ([31]) Let (0,2,€') = (0,p'). We say that G is a parametriz
of P at (0,p") with finite propagation speed of wave front sets with loss of 3
derivatives if G satisfies the following conditions

(i) for any h = h(z',D") € S(1, go) supported near p' we have PGh — h € R,

(ii) we have

t
ID3GIE Ry < e [ 1S yeprs 5 =0.1

for any p € R and for any f € CO(I, HPT1+PA)+

(iii) for any hi(2',D’) € S(1,g0) which is supported near p' and for any
ha(x', D) € S(1, go) with supp ho CC R?*™ \ (supp h1), one has

DlhoGhi € R, j=0,1.
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Let P be another operator of the form (5.2.1) then we say
P=P near (0,p)
if one can write

2
P—P=) BjxD)D;”’
j=0

with B; € S((¢')7, go) which are in S7°° = N;S((¢')*, go) near p’ uniformly in
xo when |xg| is small.

In what follows, to simplify notations, we abbreviate a parametrix with finite
propagation speed of wave front sets as just ”parametrix”. The next lemma is
clear from the definition.

Lemma 5.2.1 Let P = P near (0,p") and let G be a parametriz of P at (0, p')
with loss of B derivatives. Then G is a parametriz of P at (0, p’) with loss of (8
deriatives.

Let T'(z,D’) € S(1,g0) be elliptic near (0, p’) uniformly in z¢ with small |zg].
Then

Proposition 5.2.1 Let P, P be operators of the form (5.2.1). Assume that
PT =TP near (0,p"). If P has a parametriz at (0, p') with loss of B derivatives
then so does P.

Let x be a local homogeneous canonical transformation from a neighborhood
of (90,9, M0,1’) to a neighborhood of (Zg, &', &y, ") such that yo = x¢. Since x
preserves yg coordinate, the generating function of this canonical transformation
has the form

zono + H(x,n').

We work with a Fourier integral operator F' associated with x which is repre-
sented as

Fu(x) = /e_iy/”’“H(m’”/)a(:c,n’)u(zo,y’)dy’dn’

(in a convenient 3’ coordinates) and elliptic near (z, £, 9, 1), where xg is regarded
as a parameter. We assume that F' is bounded from H k(RZ/) to HX(R™,) for
any k € R uniformly in z¢ with small |z¢| (see [10], [17], Theorem 25.3.11 in

[19]).

Proposition 5.2.2 Let x, F be as above and P(x, D), P(y,D) be operators of
the form (5.2.1). Assume that

PF=FP mnear (0,9,7).

If P has a parametriz at (0,9',7") with loss of B derivatives then so does P at
(0,2',&") with loss of B derivatives.
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Proposition 5.2.3 ([31]) Let P be an operator of the form (5.2.1). Assume
that P has a parametriz at (0,0,&") with loss of B(&') derivatives for every &
with [§'| = 1. Then the Cauchy problem for P is locally solvable near (0,0)
in C*°. More precisely there is an open neighborhood J x w of (0,0) such that
for every f € CO(I, HP*)* (p+v > 0) there exists u € Nj—oC7 (J, HP~7)*
satisfying

Pu=f in Jxw

where v = sup|e—1 B(£').

In the following sections, assuming that P satisfies the strict Ivrii-Petkov-
Hoérmander condition on ¥, we prove the existence of parametrix of P at every
(0,0,¢’) with [¢'| = 1, hence we can conclude the C*° well-posedness.

5.3 Preliminaries

Let fix p € ¥ and we work near p. Thanks to Proposition 3.5.1 p admits
an elementary decomposition verifying the conditions stated there. We extend
these ¢; (given in Proposition 3.5.1) outside a neighborhood of p so that they
belong to S((¢’), go) and zero outside another neighborhood of p. Using such
extended ¢; we define A by the same formula in Proposition 3.5.1

A= 1+ L(@)¢1 + 797 ()7

where the coefficients of L are extended outside a neighborhood of p. Choosing
a neighborhood enough small we may assume that

(5.3.1) A= woy
where ¢1 < w(x,&') < o, w € S(1, go) with some ¢; > 0. Let us write

p=—(o+N(&—N+Q.

Recall
Q=Y &7 +a(¢)ol(¢) > +b(¢)L(¢)eT > c(|¢']” + 1(¢) %)
j=2

with some ¢ > 0 where ¢’ = (¢a, ..., ;). Take 0 < x;(2/,£’) < 1, homogeneous of
degree 0in ¢’ (|¢’'| > 1), which are 1 in conic neighborhoods of p’, p = (0, p’) and
supported in another small conic neighborhoods of p’ such that xo = 1 on the
support of x1. We can assume that Proposition 3.5.1 holds in a neighborhood
of the support of xo. We now define f(z,¢’) solving

(532) {&) = A f} =0, f(07 .%'/,5/) = (1 - X1($/7§/))<§/>'

Note that f(x,&) = (£') outside some neighborhood of p’ because A = 0 and
x1 = 0 outside some neighborhood of p'.
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Lemma 5.3.1 Let f(x,£') be as above. Taking M > 0 large and T > 0 small
we have a decomposition

p=—+MNE—-N+Q
in |zo| < 1 with Q = Q + M2 f(x,£)? such that

{6 - N QY <CO. {0+ M — A} < C(/O+ A

Proof: By a compactness argument there are ¢ > 0 and 7 > 0 such that we have

[, &) = |

outside the support of x5 if |zg| < 7. Let us consider

{€o — A\ Q}

which is bounded by C'@Q on the support of ys by Proposition 3.5.1 and by
CM? f? outside the support of y2, thus bounded by CQ. Noting that {0+, {o—
A} = 2{\, & — A} and {¢;,& — A} is a linear combination of ¢;, j = 1,...,r
and A\ = ¢1 + L(¢' )1 + v93(¢')72 on the support of Y2 repeating the same
arguments we conclude that

{6+ A& — A < (/O + 1)
which is the second assertion. O

Let f1 be defined as (5.3.2) with y; of which support is smaller than that of
x1 and consider

P:pw+P1+lel($7£/)+P07 p:_(£0+)\)(§0_)\)+Q

which coincides with the original P near p. In what follows to simplify notations
we denote this operator by P, Q) by Q and P, + M f; by P, again:

Pby P, Qby Q, P +Mf by P.
We sometimes denote
bri1(2,8') = M f(x,£).

Here we make a general remark. Let a(z,£) € S({¢’), go) be an extended
symbol of some symbol which vanishes near p on 3. Then repeating the same
arguments as in the proof of Lemma 5.3.1 one can write a as

r+1

a(z,§') = Z cjdi(x,&)
j=1

with some ¢; € S(1, go).
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5.4 Microlocal energy estimates

We study P = (p+ Psup)¥ + R with R € S(1, go) where p is the symbol defined
in the previous section. Recall that P coincides with the original P near p. We
assume that the original P satisfies the strict Ivrii-Petkov-Hormander condition.
In this section we follow the arguments in [24] (also see [6]). We start with

Proposition 5.4.1 There exists a € S(1,go) such that we can write
P=—-MA+Q+ P, +BA+ B

where A = (§g—A—a)”, M = (§o+ A+ a)® and B, Py € S(1, go) moreover we
have

r+1
ImP; = Ecj¢j> c; € S(1,90),
=2

Tr*Q, +RePi(p) > ¢(¢'), pe®, PreS((E),90)
with some ¢ > 0.
Proof: As before let us write Py, = Ps +b(§op — A). Then since A vanishes on ¥
we have
Pously = Ps\{mzo,...,m:oy

Since the strict Ivrii-Petkov-Hormander condition is verified then we conclude
that
ImP;, =0

on X near p. We note that
7
pY ==&+ A€ —N"+Q" - 5{50 +A& - AL+ R
= —MA+Q" = {&+ NG~ A} + R ReS(10)

with A = (§o — N)*, M = (& + A\)™. Since {& + A, §o — A} and Im Ps are linear
combinations of ¢;, 7 = 1,...,7 near p then, as we remarked as before, we can
write

r+1
. 1
(5.4.1) ImPy=1m P, = 2 {6 + A6 = A} =i

j=1

with some real ¢; € S(1, go). Recalling

((Co+A)— (& —N)

N —

wo =
one can write

—MA + (iclqbl)w = _(50 + A + Z'U)_lcl/Q)w(fo — A= iw_lcl/Q)w +7r
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with some r € S(1,g0). Since it is clear BA = B(§ — A — iw ™'y /2)" + 1/,
r" € S(1, go) we get the assertion on Im P;.
Lemma 4.5.1 and the strict Ivrii-Petkov-Hormander condition shows that

TrtQ, + Re Ps(p) > 0

on ¥ near the reference point, say in V. Outside V we have fi(x,&') > (')
with some ¢ > 0 and hence the second assertion. O

From Proposition 5.4.1 we can write
P=—-MA+BA+Q

where
M=&+A+a=§—m,
A=¢-r—a=¢& -\
Q=Q+P +h.

Recall that Proposition 4.3.2 gives

_ d - -
2lm(Ppu, Agu) > d—wO(IIAeUII2 + ((ReQ)u, u) + 6%[Jul?)

(5.4.2) +0||Agul|® + 20Re(Qu, u) + 2((Im B)Agu, Agu)
+2((Imm)Agu, Agu) 4+ 2Re(Agu, (Im Q)u)

+Im([Dy — Re X\, Re QJu, u) + 2Re((Re Q)u, (Im \)u)

+6%||ul|? + 262 ((Im X)u, u).

Since Im7n, Im A € S(1, go) then it is clear that

(5.4.3) |(Im ) Agu, Agu)| < C||Agu®, [((Im Nu, w)| < Cllul?.

It is also clear

(5.4.4) ((Im B)Agu, Agu) > —C/||Agul|?

with some C' > 0 because Im B € S(1, gg). To simplify notations let us denote
D = (B, ..., Dy, @py1, Prya) = (P2, O, [, 97(E) )

where we recall ®; € S((£'), 90)-

Lemma 5.4.1 There exist C; > 0 such that we have

r+2
D I®jull® < Ci(Quyw) + Collul®.

Jj=2
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Proof: Take Cy > 0 so that C1Q — Z;:g q)? > 0. Then from the Fefferman-
Phong inequality it follows that

r+2
Cu(Qu,uw) > (D ®3)“u, u) — Co|lull*.
j=2
Noting that
r+2 r+2
D ®F =) ®#d;+ R, ReES(g)
j=2 j=2
the proof is immediate. O

We now study
ReQ =Q+ReP, +RePy, ReP, e S, g0).
From Proposition 5.4.1 taking sufficiently small ¢y > 0 we have
(1—e)Tr"Q, +RePi(p) > e(¢), pel
with some ¢ > 0 and then from the Melin’s inequality [35] it follows that
(5.4.5) Re((Q + Re Pr)u,u) > eoRe(Qu,u) + ¢ |ul|f, o) — Cllul?
with some ¢ > 0. Thus we conclude
(5.46) Re(Gu,) > eo(Qu,w) + cllullty o) — Clul?

with some ¢ > 0. B ~ 3
We now examine the term Re((Re@)u,(ImA)u). Since ImA € S(1,g0) we
have Re(Im A#Q) = ImA Q@ + R with R € S(1, go) and hence

Re(Qu, (Im M) < (Im X Qu, u) + C”||ul?.

Take C' > 0 so that C' — Im X > 0 then C(Qu,u) — (ImAQu,u) > —Ci|[ul|® by
the Fefferman-Phong inequality because 0 < (C' — ImA\)Q € S({(¢')?, go). Thus
we have

C(Qu,u) > Re(Qu, (Im Nu) — Cy|ul|®.

Noting |((Re P)u, (Im Mu)| < C’||u|]%1/2) for Re P, € S((£'), go) it follows from
(5.4.6) that
(5.4.7) CsRe(Qu, u) 4 2Re((Re Q)u, (Im N)u) > —C/lul|?

with some C3 > 0.
Recall that
Im@ = |m]51 +Imf’0
and note
r+1
|m151:ch#<I>j+r, Cj, r e S(1,90)
=2
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by (5.4.1). Thus it is easy to see

r+1
|(Agu, (Im Pr)u)| < Cl[Agul* +C Y [|@ul* + Cllul?

j=2

< CllAgu? + C'(Qu,u) + C||ul|?
by Lemma 5.4.1. Thus we get
(5.4.8) |(Agu, (Im Q)u)| < C|Agul® + C(Qu, u) + C|lul>.
We consider Im([Dy — Re X\, Re QJu, u). Recall that
fo—Red=& —A+R, ReS(1,g0).

Since

Dy = 0,Q] &~ A Q)" € S(Lg0)

and [{& — A\, @} < CQ by Lemma 5.3.1 it follows from the Fefferman-Phong
inequality that
[([Do = A, Qlu, w)| < C(Qu,u) + Cllul®.

Since [Dy — A\, Re P, + Re Py] € S((¢), go) we get

(Do — M (ReQ)lu,u)| < C(Qu.u) + Cllully .
Summarizing we get
(5.4.9) Im([Do — Re X\, Re QJu, u) < C(Qu,u) + C||u||%1/2).

Taking
1Agull® < CllAgull® + Cllull?

into account from (5.4.6), (5.4.7), (5.4.4), (5.4.8) and (5.4.9) we have

Proposition 5.4.2 For 6 > 0y we have
c(lAgu@®)1 + lu)lIfj2) + 0*u®)]?)
e / " (Mouao. ) P + Re(Qu, )
+Hlu(@o, 1 2y + 0% ulzo, )|*) dg

t t
+C/ HAgu(ﬂfo,-)H2d$0 S C/ ||P9u(x0,-)||2dx0

with some ¢ >0, C > 0 for any u € C?([Ty, T1]; C5°(R™)) vanishing in xq < 7.

We now derive estimates for higher order derivatives of wu.
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Lemma 5.4.2 We can write
(D')*P = (—WIA + BA + Q + Py + By)(D')*

where A= (&-r-a)w, M= (So+A+a)" with a pure imaginary a € S(1, go) and
B, Py € S(1,90). Moreover Py wverifies the same conditions as in Proposition
5.4.1.

Proof: Recall that we have

P=-A"+BA+Q

A=&—-A—R
B=-2\+R,
Q:

Q+P +R

where

with R € S(1, go). Noting
(A, (D")*] € S({£)",90), [A,[A,(D)?]] € S((€)*, 90)
it is easy to check that
[A%,(D)*] = RiA(D')" + Ro(D")°

with some R; € S(1, go)-
We turn to consider [BA, (D’)®]. Let us write [BA, (D’)*] = BIA, (D')*] +
[B, (D")*]A and note

B[A, (D) (D')~* = (1A + T2)"(D")*
where T; € S(1, g9) and T1 = —2i{\, ({')*}(£')~° is pure imaginary. Note that

one can write
r+1

Tl)\ =1 Z (I]‘QSJ'
j=1
with a; € S(1,g0). It is clear that we can write
[B, (D")°]A = RiA(D")° + Ry(D’)*
with R; € S(1,go). We finally check the term [Q, (D’)*]. Since
(@, (D')*){D")™* = [Q.{D")*|(D")~* € S(1, g0)
it suffices to consider [@, (D")*](D’)~%. Note that
1
(@ (D)D) = Q. (€)"HEN ™ € S(L. 90)

and it is clear that we can write

r+1

{Q. ()N = chﬁbj
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with real ¢; € S(1, go) and hence

r+1

[Q,(D")*] = = (i} ej¢,)" +7)(D')*

j=1
with some r € S(1,g0). Repeating the same arguments as in the proof of
Proposition 5.4.1 we move i(a; + ¢1)$1 to A to get the desired assertion. O

Repeating the same arguments as deriving Proposition 5.4.2 for
Im ((D')* Pu, A(D")*u)

we obtain energy estimates of (D’)*u. To formulate thus obtained estimate let
us set

Ny(u) = [[Aull?y) + Re(Qu, w) sy + lullfsi1 /)
where (u,v)s) = ({(D')%u, (D")*v) and A = Dy — A" again. Here we remark that

(€Y #Q#E) ™ — Q- (€1, QHEN ™ € 5(1,50)

so that
Re((D")*Qu, (D")*u) — (Q(D")*u, (D")*u)| < C|lullt,).

We also note that A(D’)* = (D')*A + r(D')* with r € S(1,g) so that
1Aul?,) < CIAD ) ull? + Cllul,.

Since e?%0 Pye=0%0 = P, 70 Aye=970 = A, choosing and fixing 6 enough large
we have

Proposition 5.4.3 We have
t t
Ns(u(t))—i—/ Ny (u(xo))dzg SO(S,Ti)/ Im((D')* Pu, A(D")*u)dzx

for any s € R and any u € C*([Ty, T1]; H*(R™)) vanishing in xo < 7.

Corollary 5.4.1 We have

N (u(t)) + / N, (u(o))dio < C(5,T:) / | Pull2, do

for any s € R and any u € C%([Ty, T1]; H*(R™)) vanishing in xo < 7.

Let us put P_(x, D) = P(—xg,x’,—Dg, D’) then it is clear that P_ verifies
the same conditions as P. Note that P*(x, D) satisfies the strict Ivrii-Petkov-
Hormander condition by (4.4.6). Repeating the same arguments as proving
Proposition 5.4.2 and Corollary 5.4.1 we conclude that Corollary 5.4.1 holds for
P*. Since

P*(x, D) = P*(—xo,2',—Dgy, D")

we get
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Proposition 5.4.4 We have
Ns(u(t))+/ Ny (u(zg))dzg SC(S,Ti)/ ||P*u”%s)dx0
t t

for any s € R and any u € C%([Ty, T1]; H*®(R™)) vanishing in xo > 7.

5.5 Finite propagation speed of W F

Thanks to Proposition 5.4.4 repeating the same arguments on functional anal-
ysis in Section 4.4 we conclude that for any given f € C°([Tz,T1]; H*(R"))
vanishing in zo < 0 there is a unique u € C?([T,T1]; H>°(R™)) vanishing in
xo < 0 such that Pu = f. Let us denote

u=Gf

then it is clear that G verifies (i) and (ii) in Definition 5.2.2 with f = —1/2.
Therefore in order to show that G is a parametrix of P with finite propagation
speed of W F' it remains to prove (iii). To prove that G verifies (iii) we introduce
symbols of spatial type following [24].

Definition 5.5.1 Let f(z,§) € S(1,g0). We say that f is of spatial type if f
satisfies

{50—>‘7f}25>0, {§0+>\af}{€0—)\af}25>07

{£,QF <dc({& — M\ 12 +2{\ fH& — A fHQ
=dcféo + A, fHE — A f1Q

with some 6 >0 and 0 < ¢ < 1 for |zo| < 7 with small T > 0.
Let x(z') € C5°(R™) be equal to 1 near ' = 0 and vanish in |2/| > 1. Set
de(a',€':p') = {x(a —y)|2' — /P + 1) =" ()P + 22
with o' = (y/,n’). Set
f@,€50') = wo =7+ vde(2', &5 )

for small v > 0, € > 0. Then it is easy to examine that f is a symbol of spatial
type for 0 < v < g if 14 is small. Indeed since 0 < Q € S({¢')2, go) it follows
that

(5.5.1) {Q,vd.}?* < Cv*Q

with C' > 0 independent of ¢ > 0. On the other hand since it is clear that
{&o+ N\, fHé — A\ f} = 14 O(v) then we get the assertion taking vy small.
Note that vy is independent of p’ and € > 0.
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Recall that one can write
P=—-A>4+BA+Q
where A =&y — A\, B= -2\ + R with R € S(1, go) and
Q=Q+Pi+h, PeS{(E) )

Let f(x,&") be of spatial type. We define ® by

exp (1/f(x,¢')) if f<0

0 otherwise

(I>(1'7£/) = {

and also set
oy = fHA, f}/20,

Note that ®, ®; € S(1, go) and

(5.5.2) O — (F{A [} #21 € S((E) 7 90).
Consider
(5.5.3) Im(Pdu, A@u)(s) = Im([P, ®]u, A@u)(s) + Im(® Pu, A(I)u)(s).

To estimate the term Im([P, ®]u, A®u) ) we follow the arguments in [24].

Definition 5.5.2 Let T'(u), S(u) be two real functionals of u. Then we say
T(u) ~ S(u) and T'(u) = S(u) if

T (u) = S(u)| < C(N(Pu) + No—1/4(u)),
T(u) < C(S(u) + Ns(Pu) + Ny—1/4(u))
respectively with some C' > 0.

We first consider
_([Aza Pu, Aq)u)(s) = —(A[A, Dlu, A(I)u)(s) — ([A, @]Au, Aq)u)(s) .
Note

(A[A, ®Ju, Au)y) = —idi([A, B, DAu) sy + ([A, Bu, ABAW) o)
Zo

for A is real. Since it is clear that ([A, ®]u, [A, ®]Au)) ~ 0 we have

—Im(A[A, BJu, DAw)(q) ~ diRe([A, Olu, BAu) (5 — Im([A, Blu, BPA%u) ).
Zo

We next examine that

—Im([A, ®]Au, Adu) gy ~ [ ADyullZ,).
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Indeed since {A, ®} — i{A, f}f72® € S((¢')~1, go) and hence
—Im([A, <I>]Au, A@u)(s) ~ —Re(({A, f}f_z@)wAu, A@u)(s).

Since ® = ({A, f} V2 1)#®, + T, T € S((¢)~', go) which follows from (5.5.2)
and

(A, FYY2HFENV 2 H A, F12®) = ()2 401 + SN, g0)

one conclude easily the assertion. Therefore we have

d
(5.5.4) —Im([A?, ®)u, Adu)(5) ~ %Re([A, Dlu, PAu) (s
0
—Im([A, ®]u, <I>A2u)(s) — |]A<I>1u||%5).
We turn to consider
([BA, @Ju, A®u) () = (B[A, lu, ADu) ) + ([B, ®]Au, ADu) ).
Write

(BIA, ®Ju, Au) ) = 2i((ImB,){(D')*[A, ®Ju, (D')* Adu)
+(B:(D')*[A, @]u, (D')*Adu)
= 2i((ImB.)(D')*[A, ®lu, (D')*Adu) + ([A, Blu, BADuU),,)

with B, = <D/>SB<D/>—5 and note ImB;, = ImB + r, ImB € 5(1,90), r e
S(<§/>_1,go). Then we see

|(ImB;)(D")*[A, @]u, (D)*Adu)]
< CllADullf;) + Cllullfy) ~ 0.

Thus we have
Im(B[A, ®]u, ADu) s ~ Im([A, lu, PBAu) ).
On the other hand recalling B = —2\ + R with R € S(1,go) we see
[B,®] =i{2A\ — R, ®}“ + T, T € S{¢)72 g0)

and hence Im([B, ®]Au, A®u) ) ~ Re(({2A — R, ®})" Au, A®u) (). Since {2\ —
R,®} = —{2\— R, f}f72® and {R, f} € S({¢’)~1, go) then repeating the same
arguments as before we get

Im([B, ®]Au, ADu) ) = —2(({A, AU, PP AP, A<I>1u)

S

and hence
(555) Im([BA, @]u, A@u)(s) = Im([A, @]u, (I)BAU)(S)
—2Re(({A,f}_l{A,f})“’AtI)lu, A@lu)( |
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We finally consider ([Q, ®]u, Adu),). Noting that Py € S((€'), go) and hence
|([Pr, ®lu, ADu) )| < Cllullfy + ClADu[F, ~ 0.

Since [Q, ®] = (—i{Q,®})* + R with R € S((¢')71, go) it follows from the same
arguments that

Im([Q + Pi, ®Ju, Adu)(5) ~ Re(({Q, FHA, f}71)"®1u, A1) .
Thus we obtain

(5.5.6) Im([Q, ®Ju, ADu) s = Re(({Q, fFHA, f} 1" 1u, ARu) .

Note that the sum of the second and the first term on the right-hand side of
(5.5.4) and (5.5.5) yields

Im([A, @u, ®(—A* + BA)u) ().
Taking into account —A? + BA = P — Q let us study
—Im([A, @]u, @Qu)(s).
Write Q =@ +Re 131 + ilm ]51 because ]50 is irrelevant. Note that
Re([A, @]u, @ Im Plu)(s) ~ —Im ({A, ®}“u, ®Im Plu)(s) ~ 0.
Hence one has

—Im([A, ®]u, PQu)(s) ~ —Im([A, ®]u, ®(Q + Re Py)u) 4
= —Im(®(D")**[A, ®]u, (Q + Re Py)u).

Here we note that ®(D')25[A,®] = (i®1(¢)?°®1)* + Ty + Tp where Ty €
S((£)2571, go) is real and Ty € S({€')?*72, go). Since

—Im((T} + T)u, (Q + Re Py)u) ~ —Im(T1u, Qu) ~ 0
it follows that

—Im([A, ®]u, @Qu)(s) ~ —Re(®1u, P1(Q + Re Pl)u)(s).
Note

(®1u, ®1(Q + Re P)u) (s = (®1u, (Q + Re P)®1u) 4
+(P1u, [P1,Q + Re pl]u)(s)
~ (P1u, (Q + Re P1)®1u)(5) + (P1u, [B1, Qu)(s)

where we have Re(®qu, [®1, Q]u) ) ~ 0 since

[@1, Q) + (i{®1, Q1" € S((E) 7", 90)-
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Thus we have

Im([A, @]u, ®(—A* + BA)u)(s) = Im([A, @Ju, ®Pu) s
(5.5.7) —Im([A, ®Ju, Qu) (s < Im([A, DJu, DPu) 4
—Re((®1u, (Q + Re P)®1u)y).

From (5.5.4), (5.5.5), (5.5.6) and (5.5.7) we conclude that

Im([P, ®Ju, Adu) () < diRe([A, B, DAu) )
Zo

—[[A®1u||?,) — Re((Q + Re Py)®yu, ®1u) ()
~2Re(({A )~ {0, F1) A 0, AD )
+Re(({A, f37HQ, 1) ®1u, ADyu)

+Im([A, @Ju, PPu) ).
We remark that setting
a=(1+2{A S} MY2 b=aH{A S )
we see that
[A®ul|?,) + 2Re(({A, f}7HA FHY AR u, ADyu) )
~ la® A yul?,),
laA®yul|?,) + Re((Q + Re Py)®yu, ®yu) )
—Re(({A, f}HQ, f})"®1u, A®u) 4
~|[(a®A — b;)@lunﬁs) + Re((Q + Re Py — %(bz)“’)@lu, 1) o)
because

a#a - CL2 € S(<£,>_1790)1 b#b - b2 € 8(1790)7
a#b —ab e S(1,go).

From the assumption we have
A 1 1
=0 — b2 =Z{A f1 2472

x(4QUA F12 4+ 2(A FHA Y = Q. /1) = 0.

but we note that the positive trace Tr™ Qp can be smaller than Tr Q, in
general.
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To avoid this inconvenience we choose f carefully. We first recall that

rank ({¢i, #;})o<i,j<r = rank ({¢s, ¢;})1<i j<r = 2k

is constant on X by assumption. Let p € ¥ and take a new homogeneous
symplectic coordinates system (X, =) around p such that Eg = & — ¢1 and
Xo = zo (see Appendix). Since {Zg,¢;} = 0 on X, j = ,7 then X is
cylindrical in the X direction and defined near p by Zy = 0, qﬁj( 0,X",2")=0,
j = 1,...,7. From Theorem 21.2.4 in [19] there are homogeneous symplectic
coordinates y’, n" such that ¥’ = {¢;(0,X’,E") =0,j =1, ...,r} is defined by

where 7 = 2k + 0. Let {Yrt1, -, Yn, Mhtt+1,---»Mn} be given by (2, ¢),...,
Ys(2', &), s = 2n — (2k + ) in the original coordinates. We denote by the same
Y;(a’,€") their extended symbols and define

do.c(x,8'+7) = { Q&) +Z Uy &) = by (7)) + )

with 1/;j =1;(¢)~!. Here we note that

(5.5.8) T Q,=T" (Q - i{Q,dQ,e}z)p

on ¥ which is examined without difficulties because in the coordinates y’, n’
above we see that {Q,dQ76}§ is a quadratic form in (941, ...,Mk+e) which is
symplectically independent from {y1, ..., Yk, 71, ..., Mk }. It is easy to see that

Cldo(2',&5p) < dgo(z,&5p') < Cdo(2, &5 0')

with some C' > 0 for (2/,¢&’) near p’ and z( close to 0. Here we define ® using

fq

(559) fQ(x7§/;:5,) = To _T+VdQ,€(x7£/;ﬁ,)'
From (5.5.8) it follows that there is vy > 0 such that for 0 < v < 1
(5.5.10) Tr™ Q, + Re Pi(p) > ¢(¢')

with some ¢ > 0. Then the Melin’s inequality gives
A 1 w
Re((Q + Re Py — Z(bz) )@1, @1u)(s) > €| Prullf ) — Cllull?y

with some ¢ > 0. We summarize what we have proved in

Lemma 5.5.1 Let ® be defined by fqo. Then there exists vy > 0 such that for
any 0 < v < vy we have

d

+Im([A, ®lu, @ Pu)(y).

Re([A, <I)]u, @Au)(s)
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We turn to Im(P®u, Adu),). Let A = A+ a with a € S(1,go) where a is
pure imaginary. Since a is pure imaginary, repeating similar arguments as above
we see

Im((D')* [P, ®]u, a(D')* du) ~ 0

and hence

Im((D")* P®u, a(D")*®u) ~ Im({D")*® Pu, a(D")*du)
> =C||®Pullt,) - Cl1Dull,

so that
Im((D')* P&u, A(D')*®u) = Im((D")* POu, A(D')*du) — OH(I>Pu||?S).
Noting [A, (D')*]+ (i{A, (£)*})* € S((¢')*72, go) the same reasoning shows that
Im((D")*[P, ®|u, [A, (D")*]®u) ~ 0
and then we conclude that
Im(Pou, Abu)() = Im((D')* Pu, A(D")*du) — C||®PulZ,,.
From (5.5.3) and Lemma 5.5.1 it follows that

cll@rull, 1) + clA@rulf,) + Im((D')* POu, A(D')*Pu)
d

2
< o Re(A, Blu, @Au)q) + Cll@Pul,.

Integrating in g and applying Proposition 5.4.3 we get

Proposition 5.5.1 Let ® be as in Lemma 5.5.1. Then we have
t
Ng(Pu(t)) +/ Ny (Pu)dzxg

t
< €T (Nomaja(w®) + [ (18Pulfy + Nooyja(w) doo)
for any s € R and any u € C*([Tz, T1]; H*®(R™)) vanishing in zo < T.

REMARK: It is clear that Proposition 5.5.1 holds for any ® defined by spatial
type f satisfying (5.5.10).

Let T'; (i = 0,1,2) be open conic sets in R*" \ {0} with relatively compact
basis such that I'g CC I'1 CC I's. Here I'; CC I';41 means that the base of
T'; is relatively compact in that of T';;1. Let us take h;(2’,¢") € S(1,go) with
supphy C I'g and supp ho C I's \ I';. We consider the solution u € C*(I; H*)
to Pu = hyf with f € C%(I; H*®) where u = f = 0 in g < 7, with 7 € I.
Arguing exactly as in [31] (Lemma 5.2.1 and Proposition 5.2.3) we have
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Proposition 5.5.2 Notations being as above. Then there is 0 = §(T';) > 0 such
that

t
ID§hau()]12,) < Cr / 1 o)2, dag

forj =01 and 7 <t <749 and any p, ¢ € R. In particular, there is a
parametriz of the Cauchy problem for P with finite propagation speed of WEF.

REMARK: Repeating the same arguments as in [31] one can estimate the wave
front set applying Proposition 5.5.1. If we have more spatial type symbols
verifying (5.5.10) then the estimate of wave front set becomes more precise. See
[45].

Proof of Theorem 5.1.1: Thanks to Proposition 6.4.5 then P has a parametrix
with finite propagation speed of WF at every (0,0,¢') with |¢/| = 1. Then
the C'*° well-posedness of the Cauchy problem follows from Proposition 5.2.3
immediately. (]

Repeating similar arguments (with necessary modifications) proving Theo-
rem 5.1.1 we can prove

Theorem 5.5.1 Assume (4.1.1), (5.1.1), (5.1.2) and Tx" F, = 0 on X. Then
in order that the Cauchy problem for P is C'° well posed it is necessary and
sufficient that P satisfies the Levi condition on X.

Note that 3 is neither involutive nor symplectic in this case. To prove energy
estimates in Proposition 5.4.3 under the assumption Tr*F, = 0 we use the
following

Lemma 5.5.2 Let a € S(1,go). Then we have
|(agru, u)| < O(||@2ull* + [| 81w +[|rr2ul?) + C|Jul?
with some C, C' > 0.
Lemma 5.5.3 We have
(DY Pull® < C(|@aul)? + [[Drsall* + |92 + [[u]?)

with some C > 0.



