
Chapter 4

Noneffectively hyperbolic
Cauchy problem I

4.1 C∞ well-posedness

Let
P (x, D) = D2

0 +
X

|↵|≤2,↵0<2

a↵(x)D↵ = P2 + P1 + P0

be a second order di↵erential operator, defined in an open neighborhood of the
origin of Rn+1, hyperbolic with respect to the x0 direction and with principal
symbol p(x, ξ) where x = (x0, x1, ..., xn), ξ = (ξ0, ξ1, ..., ξn).

We now state more precisely our assumptions. We shall assume in the fol-
lowing that p vanishes exactly of order 2 on a C∞ submanifold ⌃ on which σ
has constant rank and p is none↵ectively hyperbolic, that is we assume that
⌃ = {(x, ξ) | p(x, ξ) = 0, dp(x, ξ) = 0} is a C∞ manifold and

(4.1.1)

8><
>:

Sp(Fp(ρ)) ⊂ iR, ρ ∈ ⌃,

dim T⇢⌃ = dimKer Fp(ρ), ρ ∈ ⌃,

rank
�
σ|Σ

�
= constant, on ⌃

where Sp(Fp(ρ)) denotes the spectrum of Fp(ρ). According to the spectral
structure of Fp(ρ), two di↵erent possible cases may arise

(4.1.2) Ker F 2
p (ρ) ∩ Im F 2

p (ρ) = {0}

and
Ker F 2

p (ρ) ∩ Im F 2
p (ρ) ∕= {0}

about which we made detailed studies in the previous chapter.
As shown in Proposition 3.2.1 if p verifies (4.1.2) then p admits an elemen-

tary decomposition. In this chapter, assuming (4.1.2), we prove that the Cauchy
problem is C∞ well posed deriving energy estimates via elementary decompo-
sition under the Levi or the strict Ivrii-Petkov-Hörmander condition.
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Definition 4.1.1 We say that P satisfies the Levi condition on ⌃ if

Psub(ρ) = 0, ∀ρ ∈ ⌃.

Definition 4.1.2 We say that P satisfies the Ivrii-Petkov-Hörmander condi-
tion on ⌃ if

Im Psub(ρ) = 0, −Tr+Fp(ρ) ≤ Psub(ρ) ≤ Tr+Fp(ρ), ∀ρ ∈ ⌃

and we say that P satisfies the strict Ivrii-Petkov-Hörmander condition on ⌃ if

Im Psub(ρ) = 0, −Tr+Fp(ρ) < Psub(ρ) < Tr+Fp(ρ), ∀ρ ∈ ⌃.

Note that if Tr+Fp = 0 on ⌃ then the Ivrii-Petkov-Hörmander condition reduces
to the Levi condition.

Theorem 4.1.1 ([24], [18]) Assume (4.1.1), (4.1.2) and the subprincipal sym-
bol Psub verifies the strict Ivrii-Petkov-Hörmander condition on ⌃. Then the
Cauchy problem for P is C∞ well posed.

In the case Ker F 2
p ∩ Im F 2

p = {0} on ⌃, thanks to Lemma 3.1.1 and Proposition
3.2.1, the Hamilton flow Hp never touch ⌃ tangentially.

4.2 Pseudodifferential operators

In this monograph we use several classes of pseudodi↵erential operators. We
first introduce symbol classes of pseudodi↵erential operators.

Definition 4.2.1 Let g = φ(x′, ξ′)−2|dx′|2 + Φ(x′, ξ′)−2|dξ′|2 be a (splitting)
metric on R2n and let m(x′, ξ′) be a positive function on R2n. Then S(m, g) is
defined as the set of all a(x′, ξ′) ∈ C∞(R2n) such that for all multi-indices α,
β ∈ Nn there exists C↵β such that

|∂↵
x′∂

β
⇠′a(x′, ξ′)| ≤ C↵βm(x′, ξ′)φ(x′, ξ′)−|↵|Φ(x′, ξ′)−|β|

holds in R2n.

In particular if g = 〈ξ′〉2δ|dx′|2 + 〈ξ′〉−2⇢|dξ′|2 then S(〈ξ′〉m, g) = Sm
⇢,δ (see [19])

where 〈ξ′〉2 = 1 + |ξ′|2. To a(x′, ξ′) ∈ S(m, g) we associate the Weyl quantized
pseudodi↵erential operator a(x′, D′) by

a(x′, D′)u(x′) = (2π)−n

Z
e−i(x′−y′)⇠′

a(
x′ + y′

2
, ξ′)u(y′)dy′dξ′.

We sometimes write [a(x′, ξ′)]w instead of a(x′, D′) but we often write just a
for denoting both a(x′, ξ′) and a(x′, D′) if there is no confusion. Let ai(x′, ξ′) ∈
S(mi, g). Then under some suitable conditions on mi and g (see Chapter XVIII
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in [19], we do not touch on these conditions in this monograph) we have with
some b(x′, ξ′) ∈ S(m1m2, g)

a1(x′, D′)a2(x′, D′) = b(x′, D′).

We denote b(x′, ξ′) by a1(x′, ξ′)#a2(x′, ξ′).
Here is a brief summary of calculus of pseudodi↵erential operators which we

use in this monograph (as before under suitable conditions on mi and g).

Proposition 4.2.1 Let ai ∈ S(mi, g). Then

a1#a2 − a2#a1 − {a1, a2}/i ∈ S(m1m2(φΦ)−3, g),
a1#a2 + a2#a1 − 2a1a2 ∈ S(m1m2(φΦ)−2, g),
a1#a2#a1 − a2

1a2 ∈ S(m2
1m2(φΦ)−2, g).

Let (·, ·) denote the inner product in L2(Rn) and � · � stands for the L2(Rn)
norm.

Proposition 4.2.2 Let a ∈ S(m, g). Then

Re(au, u) = ((Re a)u, u), Im(au, u) = ((Im a)u, u).

In particular if a(x′, ξ′) is real valued then

(au, u) = (u, au).

Proposition 4.2.3 (L2-boundedness) Let a ∈ S(1, g). Then we have

�au� ≤ C�u�, u ∈ S(Rn)

with some C > 0.

Proposition 4.2.4 (Fe↵erman-Phong inequality) Assume that a(x′, ξ′) is non
negative and a ∈ S((φΦ)2, g). Then we have

(au, u) ≥ −C�u�2, u ∈ S(Rn)

with some C > 0.

4.3 Energy estimates

In this subsection we derive an energy identity for

p = −M⇤ + B⇤ + Q

with
M = D0 − m(x, D′), ⇤ = D0 − λ(x, D′)
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where λ(x, ξ′) ∈ S(〈ξ′〉, g0), m(x, ξ′) ∈ S(〈ξ′〉, g0), B(x, ξ′) ∈ S(〈ξ′〉, g0), Q(x, ξ′) ∈
S(〈ξ′〉2, g0) and

g0 = |dx′|2 + 〈ξ′〉−2|dξ′|2.

Let us put
P✓(x, D) = P (x, D0 − iθ, D′)

with a large positive parameter θ > 0 so that

P (e✓x0u) = e✓x0P✓u.

We also put
M✓ = M − iθ, ⇤✓ = ⇤ − iθ

so that P✓ = −M✓⇤✓ + B⇤✓ + Q. Then we have

Proposition 4.3.1 We have

2Im(P✓u, ⇤✓u) =
d

dx0
(�⇤✓u�2 + Re(Qu, u)) + 2θ�⇤✓u�2

+2((ImB)⇤✓u, ⇤✓u) + 2((Im m)⇤✓u, ⇤✓u) + 2Re(⇤✓u, (Im Q)u)
+2θRe(Qu, u) + Im([D0 − Re λ, Re Q]u, u) + 2Re((Re Q)u, (Im λ)u).

Proof: Since 2Im(B⇤✓u, ⇤✓u) = 2((Im B)⇤✓u, ⇤✓u) is clear we compute

−2Im(M✓⇤✓u, ⇤✓u) + 2Im(Qu, ⇤✓u) = I1 + I2.

Noting
d

dx0
= iM✓ + im − θ it is easy to see

I1 =
d

dx0
�⇤✓u�2 + 2θ�⇤✓u�2 + 2((Im m)⇤✓u, ⇤✓u).

We now consider I2 = 2Im(Qu, ⇤✓u)

I2 = 2Im(Qu, D0u) + 2θRe(Qu, u) + 2Im(Qu,−λu)

where we see

2Im(Qu, D0u) = 2Im
�
− D0(Qu, u) + (QD0u, u) + ([D0, Q]u, u)

 
= 2Re

d

dx0
(Qu, u) + 2Im(D0u, Q∗u) + 2Im([D0, Q]u, u)

= 2
d

dx0
((Re Q)u, u) + 2Im(D0u, Qu) + 2Im(D0u, (Q∗ − Q)u) + 2Im([D0, Q]u, u).

Therefore we get

2Im(Qu, D0u) =
d

dx0
((Re Q)u, u) + Im(D0u, (Q∗ − Q)u) + Im([D0, Q]u, u).
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Noting that

Im([D0, Q]u, u) = Im([D0, Re Q]u, u),
Im(D0u, (Q∗ − Q)u) = 2Re(D0u, (Im Q)u)

because ([
d

dx0
, Im Q]u, u) is real and D0 = ⇤✓ + iθ + λ we get

I2 =
d

dx0
((Re Q)u, u) + Im([D0, Re Q]u) + 2Re(⇤✓u, (Im Q)u)

+2Re(λu, (Im Q)u) + 2θRe(Qu, u) + 2Im(Qu,−λu).

Since

2Re(λu, (Im Q)u) + 2Im(Qu,−λu) = −2Im((Re Q)u, λu),
−2Im((Re Q)u, λu) = −2Im((Re Q)u, (Re λ)u) + 2Re((Re Q)u, (Im λ)u)

= −Im([Re λ, Re Q]u, u) + 2Re((Re Q)u, (Im λ)u)

we have

I2 =
d

dx0
((Re Q)u, u) + Im([D0 − Re λ, Re Q]u)

+2Re(⇤✓u, (Im Q)u) + 2θRe(Qu, u) + 2Re((Re Q)u, (Im λ)u).

and hence the result. □

Note that from

(4.3.1) −2Im(⇤✓u, u) = 2θ�u�2 +
d

dx0
�u�2 + 2Im(λu, u)

one gets

(4.3.2) �⇤✓u�2 ≥ θ2�u�2 + θ
d

dx0
�u�2 + 2θ((Im λ)u, u).

Replacing �⇤✓u�2 in Proposition 4.3.1 by the estimate (4.3.2) we get

Proposition 4.3.2 We have

2Im(P✓u, ⇤✓u) ≥ d

dx0
(�⇤✓u�2 + ((Re Q)u, u) + θ2�u�2) + θ�⇤✓u�2

+2θRe(Qu, u) + 2((Im B)⇤✓u, ⇤✓u) + 2((Im m)⇤✓u, ⇤✓u)

+2Re(⇤✓u, (Im Q)u) + Im([D0 − Reλ, Re Q]u, u)

+2Re((Re Q)u, (Im λ)u) + θ3�u�2 + 2θ2((Im λ)u, u).
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4.4 Levi condition

Note that if Tr+Fp = 0 on ⌃ then Theorem 4.1.1 is empty and the Ivrii-Petkov-
Hörmander condition reduces to the Levi condition. Taking this into account we
study the Cauchy problem under the Levi condition in this section. Recall that
from Proposition 3.2.1 it follows that p admits an elementary decomposition

p(x, ξ) = −(ξ0 + λ)(ξ0 − λ) + Q.

Here we note that

P (x, D) = (p + Psub)w + R, R ∈ S(1, g0)

where P (x, D) is our original di↵erential operator. We also assume that the
Levi condition is satisfied. Let us write

Psub = Ps(x, ξ′) + b(x, ξ′)(ξ0 − λ)

then we have

Lemma 4.4.1 Assume that P satisfies the Levi condition on ⌃. Then we have

|Ps(x, ξ′)| ≤ C
p

Q(x, ξ′), |{ξ0 − λ, Ps}| ≤ C
p

Q(x, ξ′)

with some C > 0.

Proof: Let us recall p = −ξ2
0 +q. It is clear that Ps = 0 on ⌃′ = {q = 0} because

⌃ = {ξ0 = 0, q = 0} and |λ| ≤ C
√

q by Proposition 3.2.1. Let {Vi}, {χi} be as
in Proposition 3.2.1. Let (x, ξ′) ∈ Vi. Since Vi ∩ ⌃′ = {φi↵ = 0} and hence Ps

is a linear combination of {φi↵} in Vi and it is clear that

|Ps(x, ξ′)| ≤ C
X
↵

|φi↵| ≤ C
√

qi ≤ C ′pQ.

We turn to {ξ0 − λ, Ps}. Arguing as before we see

{ξ0 − λ, Ps} =
X

χi{ξ0 − λi, Ps} −
X

λi{χi, Ps}.

Since Ps is a linear combination of {φi↵} on the support of χi and {ξ0−λi, φi↵}
is also a linear combination of {φi↵} in Vi we see easilyX

|χi{ξ0 − λi, Ps}| ≤ C
X

χi|φi↵| ≤ C ′
X

χi
√

qi ≤ C ′′pQ.

Together with the estimate |λi| ≤ C
√

Q this proves the assertion. □
We return to P (x, D). From Proposition 3.2.1 we have

|{ξ0 − λ, Q}| ≤ CQ, |λ| ≤ C
p

Q

with some C > 0. Noting that

pw = −(ξ0 + λ)w(ξ0 − λ)w + Qw − i

2
{ξ0 + λ, ξ0 − λ}w + R

with R ∈ S(1, g0) and recalling |{ξ0 + λ, ξ0 − λ}| ≤ C
√

Q we have
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Proposition 4.4.1 Assume that p satisfies (4.1.1), (4.1.2) and that P verifies
the Levi condition. Then one can write

P = −M⇤ + Q + P̂1 + B0⇤ + P̂0, M = (ξ0 + λ)w, ⇤ = (ξ0 − λ)w

where p = −(ξ0 + λ)(ξ0 − λ) + Q is an elementary decomposition of p and P̂1

verifies
|P̂1| ≤ C

p
Q, |{ξ0 − λ, Re P̂1}| ≤ C

p
Q

with some C > 0 and B0, P̂0 ∈ S(1, g0).

Let P̂0 = 0 and we apply Proposition 4.3.2. Since λ and Q are real we have

2Im(P✓u, ⇤✓u) ≥ d

dx0
(�⇤✓u�2 + ((Q + Re P̂1)u, u)

+θ2�u�2) + θ�⇤✓u�2 + 2((Im B0)⇤✓u, ⇤✓u)(4.4.1)
+2θ((Q + Re P̂1)u, u) + 2Re(⇤✓u, (Im P̂1)u)

+Im([D0 − λ, Q + Re P̂1]u, u) + θ3�u�2.

We first check that

((Q + Re P̂1)u, u) ≥ c(Qu, u) − C�u�2

with some c > 0, C > 0. Indeed we have

2((Re P̂1)u, u) ≤ ��(Re P̂1)u�2 + �−1�u�2.

Note (Re P̂1)∗(Re P̂1)− [(Re P̂1)2]w ∈ S(1, g0) and Q/2− �(Re P̂1)2 ≥ 0 choosing
� > 0 small we get

(Qu, u)/2 − ��(Re P̂1)u�2 ≥ −C�u�2

by the Fe↵erman-Phong inequality.
We next consider Im([D0 − λ, Q]u, u). Note that

Im([D0 − λ, Q]u, u) ≥ −Re({ξ0 − λ, Q}wu, u) − C�u�2.
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4.4 Levi condition

Note that if Tr+Fp = 0 on ⌃ then Theorem 4.1.1 is empty and the Ivrii-Petkov-
Hörmander condition reduces to the Levi condition. Taking this into account we
study the Cauchy problem under the Levi condition in this section. Recall that
from Proposition 3.2.1 it follows that p admits an elementary decomposition

p(x, ξ) = −(ξ0 + λ)(ξ0 − λ) + Q.

Here we note that

P (x, D) = (p + Psub)w + R, R ∈ S(1, g0)

where P (x, D) is our original di↵erential operator. We also assume that the
Levi condition is satisfied. Let us write

Psub = Ps(x, ξ′) + b(x, ξ′)(ξ0 − λ)

then we have

Lemma 4.4.1 Assume that P satisfies the Levi condition on ⌃. Then we have

|Ps(x, ξ′)| ≤ C
p

Q(x, ξ′), |{ξ0 − λ, Ps}| ≤ C
p

Q(x, ξ′)

with some C > 0.

Proof: Let us recall p = −ξ2
0 +q. It is clear that Ps = 0 on ⌃′ = {q = 0} because

⌃ = {ξ0 = 0, q = 0} and |λ| ≤ C
√

q by Proposition 3.2.1. Let {Vi}, {χi} be as
in Proposition 3.2.1. Let (x, ξ′) ∈ Vi. Since Vi ∩ ⌃′ = {φi↵ = 0} and hence Ps

is a linear combination of {φi↵} in Vi and it is clear that

|Ps(x, ξ′)| ≤ C
X
↵

|φi↵| ≤ C
√

qi ≤ C ′pQ.
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{ξ0 − λ, Ps} =
X

χi{ξ0 − λi, Ps} −
X

λi{χi, Ps}.
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X

χi|φi↵| ≤ C ′
X

χi
√

qi ≤ C ′′pQ.
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√
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We return to P (x, D). From Proposition 3.2.1 we have
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p

Q
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2
{ξ0 + λ, ξ0 − λ}w + R

with R ∈ S(1, g0) and recalling |{ξ0 + λ, ξ0 − λ}| ≤ C
√

Q we have
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Proposition 4.4.1 Assume that p satisfies (4.1.1), (4.1.2) and that P verifies
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|P̂1| ≤ C

p
Q, |{ξ0 − λ, Re P̂1}| ≤ C

p
Q
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2Im(P✓u, ⇤✓u) ≥ d

dx0
(�⇤✓u�2 + ((Q + Re P̂1)u, u)

+θ2�u�2) + θ�⇤✓u�2 + 2((Im B0)⇤✓u, ⇤✓u)(4.4.1)
+2θ((Q + Re P̂1)u, u) + 2Re(⇤✓u, (Im P̂1)u)

+Im([D0 − λ, Q + Re P̂1]u, u) + θ3�u�2.
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with some C ′ > 0. Thus we conclude that

(4.4.2) 2C(Qu, u) + Im([D0 − λ, Q + Re P̂1]u, u) ≥ −(2C ′ + 1)�u�2.

We now consider |Re(⇤✓u, (Im P̂1)u)|. Note

2|Re(⇤✓u, (Im P̂1)u)| ≤ �⇤✓u�2 + �(Im P̂1)u�2

and CQ − (Im P̂1)2 ≥ 0 with some C > 0 then we obtain

(4.4.3) 2|Re(⇤✓u, (Im P̂1)u)| ≤ �⇤✓u�2 + C(Qu, u) + C ′�u�2

with some C ′ > 0.
Since the following estimates are clear

(4.4.4) |(B⇤✓u, ⇤✓u)| ≤ C�⇤✓u�2, |(P̂0u, ⇤✓u)| ≤ �⇤✓u�2 + C�u�2

then with
E(u) = �⇤✓u�2 + (Qu, u) + θ2�u�2

we get

θ−1�P✓u�2 ≥ c
d

dx0
E(u) + cθE(u)

with some c > 0 for θ ≥ θ0. Integrating this inequality we get

Lemma 4.4.2 Assume that P satisfies the Levi condition on ⌃. Then we have

�
�⇤✓u(t, ·)�2 + (Qu(t), u(t)) + θ2�u(t, ·)�2

 
+θ

Z t

T

�
�⇤✓u(s, ·)�2 + (Qu, u) + θ2�u(s, ·)�2

 
ds(4.4.5)

≤ Cθ−1

Z t

T

�P✓u(s, ·)�2ds

for any u ∈ C∞
0 (Rn+1) vanishing in x0 ≤ T .

We now estimate higher order derivatives. Consider 〈D′〉`P✓ = P✓〈D′〉` −
[P✓, 〈D′〉`]. With R` = [P✓, 〈D′〉]〈D′〉−` one can write

〈D′〉`P✓ = (P✓ − R`)〈D′〉`.

We denote �u�(s) = �〈D′〉su�.

Lemma 4.4.3 Assume that |M − ⇤| ≤ C
√

Q with some C > 0. Then we have

|(R`u, ⇤✓u)| ≤ C`(�⇤✓u�2 + Re(Qu, u) + �u�2).

Proof: Recall that

P✓ = −M✓⇤✓ + Q + P̂1 + B0⇤✓ + P̂0.
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It is easy to see

[M✓⇤✓, 〈D′〉`]〈D′〉−` = a⇤✓ + bM✓ + R1

= (a + b)⇤✓ + b(M − ⇤) + R2

with some a, b, Ri ∈ S(1, g0). On the other hand we have

[Q, 〈D′〉`]〈D′〉−` − Tw ∈ S(1, g0)

with T = −i{Q, 〈ξ′〉`}〈ξ′〉−`. From the non negativity of Q one has

|T 2| ≤ CQ.

Noting that

�Twu�2 = ((T#T )wu, u), T#T − T 2 ∈ S(1, g0)

the Fe↵erman-Phong inequality shows that

CRe(Qu, u) − �Twu�2 ≥ −C�u�2.

Since |M − ⇤|2 ≤ CQ the Fe↵erman-Phong inequality again shows

CRe(Qu, u) − �(M − ⇤)u�2 ≥ −C�u�2.

Since [P̂1 + P̂0, 〈D′〉`]〈D′〉−` ∈ S(1, g0), [B0⇤✓, 〈D′〉`]〈D′〉−` = c0⇤✓ + c1 with
cj ∈ S(〈ξ′〉j−1, g0) one has

|(R`u, ⇤✓)| ≤ C
�
�⇤✓u�2 + Re(Qu, u) + �u�2

 
which is the desired assertion. □

Thanks to Lemma 4.4.2 and Lemma 4.4.3 we have

Proposition 4.4.2 We have

(�⇤✓u(t, ·)�2
(`) + θ2�u(t, ·)�2

(`))

+θ

Z t

T

(�⇤✓u(s, ·)�2
(`) + θ2�u(s, ·)�2

(`))ds

≤ C`θ
−1

Z t

T

�P✓u(s, ·)�2
(`)ds

for any ℓ ∈ R and for any u ∈ C∞
0 (Rn+1) vanishing in x0 ≤ T .

Assume that Tr+Fp = 0 on ⌃. Then from Theorem 2.3.1 the quadratic form
p⇢ takes the form, in a suitable symplectic coordinates system

p⇢ = −ξ2
0 +

rX
j=1

ξ2
j .
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+θ
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p⇢ = −ξ2
0 +

rX
j=1

ξ2
j .



60CHAPTER 4. NONEFFECTIVELY HYPERBOLIC CAUCHY PROBLEM I

From (3.3.7) it follows that

F 2
p (ρ)v =

rX
k=0

�kσ(v, H⇠k
)
⇣ rX

j=0

�jσ(H⇠k
, H⇠j

)H⇠j

⌘
= 0

and a priori the condition (4.1.2) is verified. We also note that ⌃ is an involutive
manifold in this case since

(T⇢⌃)σ = 〈H⇠0 , H⇠1 , ..., H⇠r 〉 ⊂ 〈H⇠0 , H⇠1 , ..., H⇠r 〉σ = T⇢⌃, ρ ∈ ⌃.

Theorem 4.4.1 ([18]) Assume (4.1.1) and Tr+Fp = 0 on ⌃. Then in order
that the Cauchy problem for P is C∞ well posed it is necessary and sufficient
that P satisfies the Levi condition on ⌃.

Proof: Since P (x, D) = (p + Psub)w + R with R ∈ S(1, g0) and hence

(4.4.6) P ∗(x, D) = (p + P̄sub)w + R, R ∈ S(1, g0)

it follows that P ∗(x, D) verifies the Levi condition. Thus the energy estimates
in Proposition 4.4.2 holds for P ∗, that is we have

Proposition 4.4.3 There exists T > 0 such that we have

(�⇤✓u(t, ·)�2
(`) + θ2�u(t, ·)�2

(`))

+θ

Z T

t

(�⇤✓u(s, ·)�2
(`) + θ2�u(s, ·)�2

(`))ds

≤ C`θ
−1

Z T

t

�P ∗
✓ u(s, ·)�2

(`)ds, −T ≤ t ≤ T

for any ℓ ∈ R and for any u ∈ C∞
0 (Rn+1) vanishing in x0 ≥ T .

Corollary 4.4.1 There exists T > 0 such that for any ℓ ∈ R there is C` > 0
such that Z ⇣

�D0u(t, ·)�2
(`−1) + �u(t, ·)�2

(`)

⌘
dt ≤ C`

Z
�P ∗u(t, ·)�2

(`)dt

holds for any u ∈ C∞
0 ((−T, T ) × Rn).

Here we sketch the proof of the existence of solutions to the Cauchy problem
for P . We recall that

Hs(Rn) = {u ∈ S ′(Rn) | u ∈ L2
loc(Rn), 〈D′〉su ∈ L2(Rn)}.

Let f ∈ L2((−T, T );Hs). If v is in C∞
0 ((−T, T ) × Rn) then Corollary 4.4.1

implies ���
Z

(f, v)dt
��� ≤ C

⇣ Z
�f�2

(s)dt
⌘1/2⇣ Z

�P ∗v�2
(−s)dt

⌘1/2

.
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Using the Hahn-Banach theorem to extend the anti-linear form in P ∗v on the
left-hand side we conclude that there is some u ∈ L2((−T, T );Hs) such that

Z
(f, v)dt =

Z
(u, P ∗v)dt

for any v ∈ C∞
0 ((−T, T ) × Rn). This proves that Pu = f in (−T, T ) × Rn.

From the fact that u ∈ L2((−T, T );Hs) and Pu ∈ S(Rn+1) we can deduce
Dj

0u ∈ L2((−T, T );Hs−j) (see Appendix B in [19]). Once we have established
enough regularity for u then applying Proposition 4.4.2 to e−✓x0u to conclude
that u = 0 in x0 ≤ τ if f = 0 in x0 ≤ τ .

The necessary part follows from Theorem 2.2.2 because Tr+Fp = 0. □

4.5 Strict Ivrii-Petkov-Hörmander condition

In this section we assume that the strict Ivrii-Petkov-Hörmander condition is
satisfied. We first note that

Lemma 4.5.1 Assume that p(x, ξ) admits an elementary decomposition p =
−M⇤ + Q. Then we have

Tr+Fp(ρ) = Tr+Q⇢, ρ ∈ ⌃.

Proof: From the assumption one can write

p(x, ξ) = −(ξ0 + λ)(ξ0 − λ) + Q(x, ξ′)

where |{ξ0 − λ, Q}| ≤ CQ. At ρ one has

p⇢(x, ξ) = −(ξ0 + dλ)(ξ0 − dλ) + Q⇢(x, ξ′).

By a linear symplectic change of coordinates one may assume that

p⇢ = ξ0(ξ0 − ℓ) + Q⇢(x, ξ′).

Since |{ξ0, Q⇢}| ≤ CQ⇢ one concludes that Q⇢ is independent of x0 and hence
Q⇢ = Q⇢(x′, ξ′). By a linear symplectic change of coordinates again we may
assume that ℓ = ξ1 or ℓ = 0 according to ℓ ∕= 0 and ℓ = 0. Now it is easy to see
that

|λ − Fp⇢
| = λ2|λ − FQ⇢

|
which proves that non zero eigenvalues of Fp⇢ coincides with those of FQ⇢ count-
ing the multiplicity. □

Proposition 4.5.1 Assume that p satisfies (4.1.1), (4.1.2) and that P verifies
the strict Ivrii-Petkov-Hörmander condition. Then one can write

P = −M⇤ + Q + P̂1 + B0⇤ + P̂0, M = (ξ0 + λ)w, ⇤ = (ξ0 − λ)w
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that u = 0 in x0 ≤ τ if f = 0 in x0 ≤ τ .

The necessary part follows from Theorem 2.2.2 because Tr+Fp = 0. □

4.5 Strict Ivrii-Petkov-Hörmander condition

In this section we assume that the strict Ivrii-Petkov-Hörmander condition is
satisfied. We first note that

Lemma 4.5.1 Assume that p(x, ξ) admits an elementary decomposition p =
−M⇤ + Q. Then we have

Tr+Fp(ρ) = Tr+Q⇢, ρ ∈ ⌃.

Proof: From the assumption one can write

p(x, ξ) = −(ξ0 + λ)(ξ0 − λ) + Q(x, ξ′)

where |{ξ0 − λ, Q}| ≤ CQ. At ρ one has

p⇢(x, ξ) = −(ξ0 + dλ)(ξ0 − dλ) + Q⇢(x, ξ′).

By a linear symplectic change of coordinates one may assume that

p⇢ = ξ0(ξ0 − ℓ) + Q⇢(x, ξ′).

Since |{ξ0, Q⇢}| ≤ CQ⇢ one concludes that Q⇢ is independent of x0 and hence
Q⇢ = Q⇢(x′, ξ′). By a linear symplectic change of coordinates again we may
assume that ℓ = ξ1 or ℓ = 0 according to ℓ ∕= 0 and ℓ = 0. Now it is easy to see
that

|λ − Fp⇢
| = λ2|λ − FQ⇢

|
which proves that non zero eigenvalues of Fp⇢ coincides with those of FQ⇢ count-
ing the multiplicity. □

Proposition 4.5.1 Assume that p satisfies (4.1.1), (4.1.2) and that P verifies
the strict Ivrii-Petkov-Hörmander condition. Then one can write

P = −M⇤ + Q + P̂1 + B0⇤ + P̂0, M = (ξ0 + λ)w, ⇤ = (ξ0 − λ)w
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where p = −(ξ0 + λ)(ξ0 − λ) + Q is an elementary decomposition of p and P̂1

verifies
|Im P̂1| ≤ C

p
Q, Tr+Q⇢ + Re P̂1(ρ) > 0, ρ ∈ ⌃

with some C > 0 and B0, P̂0 ∈ S(1, g0).

Proof: We know from Proposition 3.2.1 that

|{ξ0 − λ, Q}| ≤ CQ, |λ| ≤ C
p

Q

with some C > 0. Assume that P satisfies the strict Ivrii-Petkov-Hörmander
condition and in particular Im Psub = 0 on ⌃. Here we note that

P (x, D) = (p + Psub)w + R, R ∈ S(1, g0)

and let us write
Psub = Ps(x, ξ′) + b(x, ξ′)(ξ0 − λ).

Repeating the same arguments as in Section 5.3 it is clear that

Im Psub

��
Σ

= Im Ps

��
q=0

so that Im Ps = 0 if q = 0. Let (x, ξ′) ∈ Vi and {φi↵} be as before. Since Im Ps

is a linear combination of {φi↵} in Vi and hence

|Im Ps(x, ξ′)| ≤ C
X
↵

|φi↵| ≤ C
√

qi ≤ C ′pQ.

We return to P (x, D). Recalling that

pw = −(ξ0 + λ)w(ξ0 − λ)w + Qw − i

2
{ξ0 + λ, ξ0 − λ}w + R

with R ∈ S(1, g0) and |{ξ0+λ, ξ0−λ}| ≤ C
√

Q we get the first assertion because

ImP̂1 = Im Ps −
1
2
{ξ0 + λ, ξ0 − λ}.

To check the second assertion note that Re P̂1 = Re Ps. Since Re Ps = Re Psub

on ⌃, then taking a partition {Vi} in Proposition 3.2.1 enough fine the assertion
follows from Lemma 4.5.1. □

Let P̂0 = 0. Since λ and Q are real then the inequality (4.4.1) holds. Note
that choosing � > 0 sufficiently small we have

(1 − �)Tr+Q⇢ + Re P̂1(ρ) > 0, ρ ∈ ⌃

and hence by the Melin’s inequality [35] we see that

(4.5.1) (((1 − �)Q + Re P̂1)u, u) ≥ c�u�(1/2) − C�u�2
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with some c > 0, C > 0. This proves that

2Im(P✓u, ⇤✓u) ≥ d

dx0
(�⇤✓u�2 + ((Q + Re P̂1)u, u)

+θ2�u�2) + θ�⇤✓u�2 + 2((Im B0)⇤✓u, ⇤✓u)
+2�θ(Qu, u) + 2cθ�u�2

(1/2) + 2Re(⇤✓u, (Im P̂1)u)

+Im([D0 − λ, Q + Re P̂1]u, u) + c′θ3�u�2.

On the other hand, repeating the same arguments as in Section 5.3 we get

C(Qu, u) + Im([D0 − λ, Q]u, u) ≥ −C ′�u�2.

We turn to |Im([D0 − λ, Re P̂1]u, u)|. Noting [D0 − λ, Re P̂1] ∈ S(〈ξ′〉, g0) it is
clear that

|Im([D0 − λ, Re P̂1]u, u)| ≤ C�u�2
(1/2)

Thus we conclude that

(4.5.2) C(Qu, u) + C�u�2
(1/2) + Im([D0 − λ, Q + Re P̂1]u, u) ≥ −C ′�u�2.

As for |Re(⇤✓u, (Im P̂1)u)| repeating the same arguments as above we get

(4.5.3) 2|Re(⇤✓u, (Im P̂1)u)| ≤ �⇤✓u�2 + C(Qu, u) + C ′�u�2.

Taking (4.4.4) into account and choosing θ large we get

2Im(P✓u, ⇤✓u) ≥ d

dx0
(�⇤✓u�2 + ((Q + Re P̂1)u, u)

+θ2�u�2) + cθ�⇤✓u�2 + 2cθ(Qu, u)
+2cθ�u�2

(1/2) + cθ3�u�2.

Integrating this inequality we obtain

Lemma 4.5.2 Assume that P satisfies the strict Ivrii-Petkov-Hörmander con-
dition on ⌃. Then we have

�
�⇤✓u(t, ·)�2 + Re(Qu(t), u(t)) + �u(t)�2

(1/2) + θ2�u(t, ·)�2
 

+cθ

Z t

T

�
�⇤✓u(s, ·)�2 + Re(Qu(t), u(t))(4.5.4)

+�u(t, ·)�(1/2) + θ2�u(s, ·)�2
 
ds ≤ Cθ−1

Z t

T

�P✓u(s, ·)�2ds

with some c > 0 and θ ≥ θ0 for any u ∈ C∞
0 (Rn+1) vanishing in x0 ≤ T .

Applying Lemma 4.4.3 we get
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�
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Proposition 4.5.2 We have

(�⇤✓u(t, ·)�2
(`) + �u(t, ·)�2

(`+1/2) + θ2�u(t, ·)�2
(`))

+c`θ

Z t

T

(�⇤✓u(s, ·)�2
(`) + �u(s, ·)�2

(`+1/2) + θ2�u(s, ·)�2
(`))ds

≤ C`θ
−1

Z t

T

�P✓u(s, ·)�2
(`)ds

with some c` > 0 and θ ≥ θ` for any ℓ ∈ R and for any u ∈ C∞
0 (Rn+1) vanishing

in x0 ≤ T .

It is clear from (4.4.6) that P ∗(x, D) satisfies the strict Ivrii-Petkov-Hörmander
condition and hence Proposition 4.5.2 holds for P ∗. Repeating the same argu-
ments that we have used in the end of Section 4.4 we can prove Theorem 4.1.1
from Proposition 4.5.2.

In order to make more precise studies about the sufficiency of the Ivrii-
Petkov-Hörmander condition for the C∞ well-posedness we need to improve the
Melin’s inequality. To do so we first study the lower bound of Q.

We now change notations and study the Weyl quantized pseudodi↵erential
operator A with classical real symbol

A2(x, ξ) + A1(x, ξ) + · · ·

where a(x, ξ) = A2(x, ξ) ≥ 0. Recall that we assume that the doubly character-
istic set ⌃ of a is a smooth manifold verifying

(4.5.5) dimT⇢⌃ = dimKer Fa(ρ), ρ ∈ ⌃

and

(4.5.6) rank
�
σ|Σ

�
= const.

In what follows we denote by Q⇢ the polar form of the Hesse matrix of a at
ρ ∈ ⌃. Recall that all eigenvalues of Fa(ρ), ρ ∈ ⌃ are pure imaginary. Let Vλ

denotes the space of generalized eigenvectors of Fa belonging to the eigenvalue
λ and set

V +
⇢ =

M
µ>0

Viµ.

Let V 0r
⇢ denote the real subspace of V 0

⇢ , the generalized eigenspace associated
to the eigenvalue 0, and N⇢ the kernel of Fa(ρ).

Lemma 4.5.3 If 0 ∕= v ∈ V +
⇢ then Q⇢(v, v̄) > 0.

Proof: In the proof we drop the suffix ρ. Let Fav = iµv. Since Fav̄ = −iµv̄ then

0 ≤ Q(v + v̄, v + v̄) = 2Q(v, v̄).

4.5. STRICT IVRII-PETKOV-HÖRMANDER CONDITION 65

This shows that Q(Re v, Re v) = 0 if Q(v, v̄) = 0 and hence FaRe v = 0. From
FaRe v = −µIm v it follows that Im v = 0 because µ ∕= 0. Repeating the same
argument we get Re v = 0. This is a contradiction. □

From the assumption dimV +
⇢ is constant when ρ ∈ ⌃ so that V +

⇢ is a vector
bundle over ⌃. Then one can choose a basis v1(ρ), ..., vk(ρ) for V +

⇢ which is
smooth in ρ ∈ ⌃ and verifies

Q⇢(vi(ρ), v̄j(ρ)) = 2δij

thanks to Lemma 4.5.3. Note that V 0r
⇢ /N⇢ is a real vector bundle over ⌃. We

remark that Q⇢(v, v) = 0 for real v ∕= 0 implies that v ∈ T⇢⌃. From this one
can choose a basis vk+1(ρ),...,vk+`(ρ) for V 0r

⇢ /N⇢ such that

Q⇢(vi(ρ), vj(ρ)) = δij , k + 1 ≤ i, j ≤ k + ℓ.

Let us set
Lj(ρ; v) = Q⇢(vj(ρ), v), 1 ≤ j ≤ k + ℓ

which is smooth in ρ ∈ ⌃. We examine that for real v

k+X̀
j=1

|Lj(ρ; v)|2 = Q⇢(v, v).

To see this we first note that Q⇢(vi(ρ), vj(ρ)) = 0, 1 ≤ i, j ≤ k and Q⇢(vi(ρ), vj(ρ)) =
0 for 1 ≤ i ≤ k, k + 1 ≤ j ≤ k + ℓ because Q⇢(Vλ, Vµ) = 0 if λ + µ ∕= 0. Writing

v =
kX

j=1

αjvj(ρ) +
kX

j=1

ᾱj v̄j(ρ) +
k+X̀

j=k+1

γjvj(ρ)

we see that
Pk+`

j=1 |Lj(ρ; v)|2 = 2
Pk

j=1 |αj |2 +
Pk+`

j=k+1 γ2
j . On the other hand

we see easily that

Q⇢(v, v) = 2
kX

j=1

|αj |2 +
k+X̀

j=k+1

γ2
j

and hence the assertion. Put

⇤(ρ; v) = (Re L1(ρ; v), Im L1(ρ; v), ...,
Re Lk(ρ; v), Im Lk(ρ; v), Lk+1(ρ; v), ..., Lk+`(ρ; v))

so that we have

Q⇢(v, v) =
2k+`X
j=1

⇤j(ρ; v)2.

Since one can write a(ρ) =
P2k+`

j=1 bj(ρ)2 we have

Q⇢(v) =
2k+`X
j=1

dbj(ρ; v)2 =
2k+`X
j=1

⇤j(ρ; v)2.
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Proposition 4.5.2 We have
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Petkov-Hörmander condition for the C∞ well-posedness we need to improve the
Melin’s inequality. To do so we first study the lower bound of Q.

We now change notations and study the Weyl quantized pseudodi↵erential
operator A with classical real symbol

A2(x, ξ) + A1(x, ξ) + · · ·

where a(x, ξ) = A2(x, ξ) ≥ 0. Recall that we assume that the doubly character-
istic set ⌃ of a is a smooth manifold verifying

(4.5.5) dimT⇢⌃ = dimKer Fa(ρ), ρ ∈ ⌃

and

(4.5.6) rank
�
σ|Σ

�
= const.

In what follows we denote by Q⇢ the polar form of the Hesse matrix of a at
ρ ∈ ⌃. Recall that all eigenvalues of Fa(ρ), ρ ∈ ⌃ are pure imaginary. Let Vλ

denotes the space of generalized eigenvectors of Fa belonging to the eigenvalue
λ and set

V +
⇢ =

M
µ>0

Viµ.

Let V 0r
⇢ denote the real subspace of V 0

⇢ , the generalized eigenspace associated
to the eigenvalue 0, and N⇢ the kernel of Fa(ρ).

Lemma 4.5.3 If 0 ∕= v ∈ V +
⇢ then Q⇢(v, v̄) > 0.

Proof: In the proof we drop the suffix ρ. Let Fav = iµv. Since Fav̄ = −iµv̄ then

0 ≤ Q(v + v̄, v + v̄) = 2Q(v, v̄).

4.5. STRICT IVRII-PETKOV-HÖRMANDER CONDITION 65
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Since dbj(ρ; ·) are linearly independent one can write

⇤j(ρ; ·) =
2k+`X
j=1

Ojk(ρ)dbk(ρ; ·)

where O(ρ) = (Ojk(ρ)) is a non singular matrix which is smooth in ρ ∈ ⌃. Since
R2k+` ∋ v �→ (db1(ρ; v), ..., db2k+`(ρ; v)) is surjective we conclude that O(ρ) is
orthogonal. Let us define

cj(ρ) =
2k+`X
i=1

Oji(ρ)bi(ρ)

and hence dcj(ρ; v) = ⇤j(ρ; v) for ρ ∈ ⌃ and a(ρ) =
P2k+`

j=1 cj(ρ)2. Let
Fa(ρ)vj(ρ) = iµvj(ρ) then

σ(Lj(ρ; ·), L̄j(ρ; ·)) = −µ2σ(v̄j(ρ), vj(ρ)),
2 = Q⇢(vj(ρ), v̄j(ρ)) = iµσ(v̄j(ρ), vj(ρ))

and hence
kX

j=1

σ(Im Lj(ρ; ·), Re Lj(ρ; ·)) =
kX

j=1

{Im Lj(ρ; ·), Re Lj(ρ; ·)} = 2Tr+ Fa(ρ)

for ρ ∈ ⌃. Let us set(
Xj(x, ξ) = c2j−1(x, ξ) + ic2j(x, ξ), j = 1, ..., k,

Xj(x, ξ) = ck+j(x, ξ), j = k + 1, ..., k + ℓ.

Note that

X̄j#Xj = |Xj |2 +
1
2i
{X̄j , Xj} + R1, R1 ∈ S(1, g0)

and A = (a + Asub)w + R2, R2 ∈ S(1, g0). Let us set

B = a + Asub −
k+X̀
j=1

X̄j#Xj = Asub +
kX

j=1

i

2
{X̄j , Xj} + R3

where R3 ∈ S(1, g0). We assume that

(4.5.7) Asub + Tr+Fa(ρ) ≥ 0, ρ ∈ ⌃.

Denoting the principal symbol of B by b1 we see from (4.5.7) that b1(x, ξ) ≥ 0
on ⌃. Let q be an extension of b1 outside ⌃ such that q(x, ξ) ≥ 0. Then one
can write

b1(x, ξ) − q(x, ξ) =
k+X̀
j=1

(r̄jXj + rjX̄j)

=
k+X̀
j=1

(r̄j#Xj + X̄j#rj) + R0, R0 ∈ S(1, g0)
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because b1(x, ξ) − q(x, ξ) is real. Then one has

a(x, ξ) + Asub(x, ξ) = B(x, ξ) +
k+X̀
j=1

X̄j#Xj

= q(x, ξ) +
k+X̀
j=1

(Xj + rj)#(Xj + rj) + R′
0

where R′
0 ∈ S(1, g0). Then we have

(Au, u) ≥ (qwu, u) +
k+X̀
j=1

�(Xj + rj)wu�2 − C�u�2 ≥ −C�u�2.

We summarize what we have proved in

Proposition 4.5.3 ([18]) Let A be a pseudodifferential operator with classical
symbol A2 +A1 + · · · . Assume that a = A2 ≥ 0 and Asub verify the assumptions
(4.5.5), (4.5.6) and (4.5.7) (in particular Asub is assumed to be real). Then we
have

(Au, u) ≥ −C�u�2.

In [50], we find more detailed discussions on this inequality, called the Melin-
Hörmander inequality.

Let us consider
P = −D2

0 + A

where A = A2 + A1 + · · · is a classical pseudodi↵erential operator which is
real and satisfies all conditions in Proposition 4.5.3. From Proposition 4.3.2 it
follows that

2Im(P✓u, ⇤✓u) ≥ d

dx0
(�⇤✓u�2 + (Au, u) + θ2�u�2)

+θ�⇤✓u�2 + 2θ(Au, u) + Im([D0, A]u, u) + θ3�u�2

where ⇤✓ = D0 − iθ. Thus, for example, if

2θ(Au, u) + Im([D0, A]u, u) ≥ −C�u�2

for large θ with some C > 0 we get an energy estimate. But in general the
Ivrii-Petkov-Hörmander condition does not assure the C∞ well-posedness. We
discuss about this question in the next section. On the other hand we find dis-
cussions on the sufficiency of the (non strict) Ivrii-Petkov-Hörmander condition
for C∞ well-posedness in [50].

4.6 An example

In this section we show that the Ivrii-Petkov-Hörmander condition is not suffi-
cient in general for the Cauchy problem to be C∞ well posed for such operators
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2k+`X
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P2k+`

j=1 cj(ρ)2. Let
Fa(ρ)vj(ρ) = iµvj(ρ) then

σ(Lj(ρ; ·), L̄j(ρ; ·)) = −µ2σ(v̄j(ρ), vj(ρ)),
2 = Q⇢(vj(ρ), v̄j(ρ)) = iµσ(v̄j(ρ), vj(ρ))
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kX

j=1

σ(Im Lj(ρ; ·), Re Lj(ρ; ·)) =
kX

j=1

{Im Lj(ρ; ·), Re Lj(ρ; ·)} = 2Tr+ Fa(ρ)
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1
2i
{X̄j , Xj} + R1, R1 ∈ S(1, g0)
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k+X̀
j=1
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kX

j=1

i

2
{X̄j , Xj} + R3
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verifying (4.1.1) and (4.1.2) by giving an example. This example will be ob-
tained by reducing the problem to that which was studied by F.Colombini and
S.Spagnolo [11].

Let P be

(4.6.1) P (x, D) = −D2
0 +

X̀
j=1

µj(x2
jD

2
n + D2

j ) + b(x0)Dn

where ℓ ≤ n− 1 and µj are positive constants and b(x0) is a C∞ function of x0

defined near the origin which we will make to be precise later. We consider the
Cauchy problem for P near the origin in Rn+1

(4.6.2)

(
P (x, D)u(x) = 0,

u(0, x′) = φ0(x′), D0u(0, x′) = φ1(x′).

For this Cauchy problem the Ivrii-Petkov-Hörmander condition asserts

(4.6.3) b(x0) ∈ R, |b(x0)| ≤
kX

j=1

µj near x0 = 0.

The following assertion was proved in [46].

Theorem 4.6.1 ([46]) There exist a C∞ function b(x0) defined near x0 satis-
fying (4.6.3) and φ1(x′) ∈ C∞

0 (Rn) such that the Cauchy problem (4.6.2) with
φ0(x′) = 0 has no solution in C2([0, �]; E ′(Rn)) for any � > 0.

Proof: In [11] they have constructed a C∞ function a(x0) on (−∞, ρ] vanishing
in (−∞, 0], strictly positive on (0, ρ], where ρ is a given positive constant, and
a sequence of solutions vk(x0) to the ordinary di↵erential equations

d2vk

dx2
0

+ h2
ka(x0)vk = 0

such that for every � > 0 and p ∈ N there is C(�, p) with

(4.6.4)

(
|vk(�)|, |D0vk(�)| ≤ C(�, p)h−p

k , k = 1, 2, ...,

|vk(0)|h−p
k → ∞ as k → ∞.

Here hk ∈ N and hk → ∞ as k → ∞. Define b(x0) as

b(x0) =
X̀
j=1

µj − a(x0)

then by virtue of the non-negativity of a(x0) it is clear that b(x0) verifies (4.6.3)
in (−∞, ρ′] with some positive ρ′. Put

P ∗(x, D) = −D2
0 +

X̀
j=1

µj(x2
jD

2
n + D2

j ) − b(x0)Dn,

uN (x) =
NX

k=1

vk(x0)Ek(x′), Ek(x′) = exp (ixnh2
k)

Ỳ
j=1

exp (−x2
jh

2
k/2).
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Then it is clear that P ∗(x, D)uN (x) = 0.
Now we suppose that w(x) would be a solution to (4.6.2) with φ0(x′) = 0

belonging to C2([0, �]; E ′(Rn)) with some 0 < �(≤ ρ′). We observe the integral
Z ✏

0

dx0

Z
Rn

Pw(x0, x
′)uN (x0, x

′)dx′ =
Z ✏

0

〈Pw, uN 〉dx0 = 0.

By integration by parts we see

(4.6.5) 〈φ1, uN (0, ·)〉 = 〈D0w(�, ·), uN (�, ·)〉 − 〈w(�, ·), D0uN (�, ·)〉

because w(0, ·) = φ0 = 0. Since w(�, 0), D0w(�, 0) ∈ E ′(Rn) it follows that

|〈w(�, ·), Ek(·)〉|, |〈D0w(�, ·), Ek(·)〉| ≤ ChM
k

with some integer M . We take p in (4.6.4) with p ≥ M + 2 so that the right-
hand side of (4.6.5) converges as N → ∞ and hence so does 〈φ1, uN (0, ·)〉. We
now choose φ1(x′) = θ(xn)ψ(x′′)

Q`
j=1 φ(xj) with θ, φ ∈ C∞

0 (R) and ψ(x′′) ∈
C∞

0 (Rn−`−1) where x′′ = (x`+1, ..., xn−1) such that

φ(0) = 1,

Z
Rn−`−1

ψ(x′′)dx′′ = 1.

Then 〈φ1, uN (0, ·)〉 turns to be

NX
k=1

vk(0)θ̂(h2
k)

Ỳ
j=1

Z
R

ψ(xj)e−x2
jh2

k/2dxj

where θ̂ is the Fourier transform of θ. Remarking the fact

hk

Z
R

ψ(t)e−t2h2
k/2dt → (2π)1/2

as k → ∞ we would have

(4.6.6) vk(0)θ̂(h2
k)h−`

k → 0 as k → ∞.

Since |vk(0)|h−p
k → ∞ as k → ∞ for any p ∈ N it is clear that we can choose

θ ∈ C∞
0 (R) with arbitrarily small support which does not satisfy (4.6.6). In fact

it is enough to take

θ(t) =
X

k

vk(0)−1eith2
kα(t), α(t) = β(t) ∗ β̄(t)

where β ∈ C∞
0 (R) with small support and we note here that α̂(τ) = |β̂(τ)|2 ≥ 0.

This contradiction proves the assertion. □
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