Chapter 3

Noneffectively hyperbolic
characteristics

3.1 Elementary decomposition

In what follows we assume that the doubly characteristic set

¥ ={(z,8) | p(z,§) = dp(z,§) = 0}

of p is a smooth conic manifold. In this section we study p of the form

p= _53 + al(l’vf,)fo + a2(1")€/)

which is hyperbolic with respect to &y.

Definition 3.1.1 We say that p(x,§) admits an elementary decomposition if
there exist real valued symbols A(x, &), u(x, &), Q(x, &) defined near x =0, de-
pending smoothly on xo, homogeneous of degree 1, 1, 2 respectively and Q(z,§’) >
0 such that

p(x,§) = —A(z, M (z,8) + Q(x, ),

A(x,€) = & — M, &), M(x,8) =& — pl(x, ),

(3.1.1) {A(z,6),Qz,¢N} < CQ(,¢)),
(3.1.2) {A(x,8), M(x, )} < C(VQ(x,¢) + [A(z, &) = M(x,¢)])

with some constant C. If we can find such symbols defined in a conic neigh-
borhood of p then we say that p(x,&) admits an elementary decomposition at

p.

Lemma 3.1.1 ([26]) Assume that p admits an elementary decomposition. Then
there is mo null bicharacteristic which has a limit point in X.

27
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Proof: Note that ¥ = {(z,§) | A(z,&) = M(z,§) = Q(z,&) = 0} because
afop = —(A(z,§) + M(x,§)) = 0 and p(z, &) = 0 implies A(z, 5)2 +Q(z, 5,) =
Let 7(s) be a null bicharacteristic of p which lies outside X. Since p(y(s)) =0
we may assume that dzo(s)/ds = —A(y(s)) — M(7(s)) < 0 so that we can take
To as a parameter:
d d ds ds
S AG @) = MG = (AN (E) T

Since MA = @ > 0 we have A(v(s)) > 0 and M(y(s)) > 0. Noting p =
—MA + @ we see on (s)

{p, A} < C(Q+ AVQ + AJA — M)
= CA(M + VAM + |A — M]).

dl’o '

Since
M+ VAN + A - M| _
A+ M
one has
d
(5.13) A (20)| < CA( o).
o

Suppose that v(zg) € ¥ for xg # 0 and lim,, 0 v(zo) € X so that A(y(0)) = 0.
From (3.1.3) it follows that A(y(z¢)) = 0 and hence Q(vy(xp)) = 0 for p(v(xo)) =
0. Since @ is non-negative it follows that {Q, M }((zo)) = 0. This proves

d

—— M (v(0))

- < CM(y(a0)

and hence M (y(zo)) = 0 so that vy(z¢) € ¥ which is a contradiction. O

3.2 Case ImF;NKer F; = {0}

Here we work with
p(e,§) = =& +a(z.€), qz,&) =0
We assume that the doubly characteristic set
% =A{(x,8) | p(z,§) = dp(x,§) = 0}
is a smooth manifold near p such that
(3.2.1) dim7,Y = dimKer Fj,(p), peX

that is, the codimension of ¥ is equal to the rank of the Hessian of p at every
point on ¥ and

(3.2.2) rank(o|y) = constant on X
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where 0 = ) | d¢; Adx; and finally we assume that p is noneffectively hyperbolic
at every p € ¥ and

(3.2.3) Ker F}(p) NIm F (p) = {0}, Vpe X.

From the hypothesis (3.2.1), near every p € ¥, one can write

(3.2.4) plx,€) = —€3 + Zdy z,¢)?

Jj=1

where d¢; are linearly independent at p and X is given by

Y= {($7£) | (Z)](.T,f) =0,7=0, ...,7’}

near p where we have set ¢o(x,&) = &§. Let Q(u,v) be the polar form of pj.
Since

£ Qu,) = —ddo(u)ddo(v +Zd¢a wdo; (v

where d¢;(u) = d¢;(p; u) then it follows that

T

5Qus0) = 0 o) (v, Ha) + 3 o Hy o (v, Hy,)

Jj=1

= U(U, —o(v, H¢0>H¢o + ZU(U7 H¢j)H¢j> = o(u, Fp(ﬁ)v)

Thus we have
(325)  F(p)v=—olv, He)He, + 3 o(v, Hy, (7)) Hy, (p).
7j=1
In particular we see
(3.2.6) T Fy () = (oo (7), Hon (B), s Hos, ()
It is also clear that
Ker F,(p) = {v € R* "™V | g(v,Hy,) = 0,5 = 0,1,...,7}
(3.2.7) = <H¢O,H¢1, ces H¢T>U = (Ime(ﬁ))U = TﬁE.
Here we remark

Lemma 3.2.1 The condition (3.2.2) is equivalent to

rank({¢;, ¢;})(p) = const, p e .
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Proof: Note that
(Tp%)7 = (Hpy (p), s Hp, (p))

and o(Hg, (p), Hy,(p)) = {¢i, ¢;}(p). From this it is enough to show that (3.2.2)
is equivalent to
rank (U|(TP2)0) = const.

Let us consider the map

LTZBUHZ (P)fi(p) € T,X

where 7,3 = (fi(p), ..., fs(p)). The assumption (3.2.2) implies that the rank of
the matrix (o(f;(p), f;(p))) is constant and hence

dimKer L = dim (7, N (7,X)?) = const.
This proves the desired assertion because the kernel of
LT3 500 Y o, Hy, (0) Hy, (p) € (T,5)°
§=0
is just Ker L. O

Assume (3.2.3) then from Corollary 2.3.1 the quadratic form p, takes the
form, in a suitable symplectic coordinates

k k+£
(3.2.8) po=—E+Y W@+ + Y &
j=1 Jj=k+1

where we have
Lemma 3.2.2 The number k in (3.2.8) is independent of p € X.

Proof: With {4;} = {0,2;,¢,1 < j < k,&,k+1 < j < k+ ¢} it follows
from Lemma 3.2.1 that the rank of ({¢;,4;}) is constant. This shows that k is
independent of p € X. O

Lemma 3.2.3 There exist a conic neighborhood V' of p and a smooth vector
h(p) defined in V N'Y such that

(3.2.9) h(p) € Ker F/(p), py(h(p)) <0, o(Hayy, Fy(p)h(p)) = 1
onpeVN.

Proof: Let p, take the form (3.2.8). Then from (3.2.5)

pIv = Z'U’J o(v, He; ) Ha; — J(U’Hﬂ?j)Hﬁj)
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so that
KeerQ(p) ={v| a(vaEj) = 070-(U’H1’j) =0,j=1,....k}

and hence dim Ker Fp2(p) = 2n + 2 — 2k which is independent of p € 3 by
Lemma 3.2.2. Let p; take the form (3.2.8). Since we have that F}(p)H,, = 0,
pp(Hy,) = —1 and o(Hy,, F,(p)Hy,) = —1 then there is a conic neighborhood
V of p such that one can choose smooth h(p) defined in V' N 3 such that

(3.2.10) h(p) € Ker F(p), po(h(p)) <0, o(Hay, Fp(p)h(p)) = —1

for p € VN 3. We can assume that h(p) is homogeneous of degree 0 in &, for if
not we can just restrict to the sphere || = 1 and extend the restriction so that
it becomes homogeneous of degree 0. O

Lemma 3.2.4 Assume that h(p) satisfies (3.2.10). Then we have
o (v, Fp(p)h(p)) = 0 = py(v) > 0.

Proof: Let us fix p € VN X. We can assume that p, has the form (3.2.8). Set
w = F,(p)h(p) and hence w € Ker Fj,(p). From (3.2.10) one can put h(p) =

(Y05 ooy Yny — 1,1, ooy M) Where yg = -+ =y, =0, 1 = - -+ = n = 0 then we see
k40 k4t
1> )" 0, w=Hg,— > nHe
j=k+1 Jj=k+1

because p,(h(p)) < 0 and o(H,,,w) = —1. Let v = (o, ..., Zpn,&0, ..., &n) and
o(v,w) = 0 hence & — Z?Z,ﬁﬂ n;&; = 0 so that we conclude

k+4

&< > &

j=k+1
and hence the assertion otherwise we would have

k+£ k4L k+2

G=0> &P <> MY, & <og
j=k+1 j=k+1 j=k41
with some 6 < 1 which is a contradiction. O

Proposition 3.2.1 Assume that Ker F2 NIm F? = {0} on X. Then p admits
an elementary decomposition

p=—-MA+Q

such that |M — A| < Cv/Q with some C > 0.
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Proof: We first work in a neighborhood V' of any p € ¥. Let h(p) be in Lemma
3.2.3 and put w(p) = Fp(p)h(p). Since Im F,,(p) = (He,, Hy,, ..., Hp,) then one
can write

w(p) = yoHe, — Z%H¢J

where v;(p) are smooth in VNY. From J(on,w(p)) = —1 we have 790 = 1. As
remarked above we can assume that v; are homogeneous of degree 0 in {. Let
us put

A=Y 7i(@,8)p;(x,¢)
j=1
so that w(p) = Hg,—x on VN Y. Let us write

—(& + N —A) +4d, Z¢>f2m )2 =q— A2

We now check that

T

ZVJZ < 1.

j=1
From Lemma 3.2.4 it follows that
o0(v,Hey—x) = 0= o(v, Fp(p)v) = o(v, Fg(p)v) > 0.
This implies that
o(v,Hgy—n) =0 = ZU(U,H¢j)2 - (Z vio(v,Hg,))? > 0.
j=1 =
Note that the map

(Hey-2)"/TyS 5 v (0(v, Hy,))jm1

is surjective. Indeed if o(v,He,—x) = 0, o(v,Hy,) = 0 for j = 1,...,r then it
follows that

RS <H§O,)\,H¢1, ...,H(z,r)g = <H§O,H¢1, ...,H¢T>J = Keer(p) = TpE.

From this it follows that (v,t)? < [¢|* for any ¢ € R" and hence we conclude

Z 75(p 1/2

We extend v;(p) (p € VNE) toV such a way that |y| < 1in V. This proves
that

i>c) ¢i(x,¢)
j=1



3.2. CASEIM F2NKER F2 = {0} 33

with some ¢ > 0 and hence we have
Al < 6q

with some 6 < 1. Recall that H¢ _» € Ker F,, in V N X and this shows that
{& — X\, ¢;} =0in V NYE and hence

{&6—=AA}=0 in VN

Thus we can find a family of conic open sets {V;} and smooth {\;} defined
on V;, homogeneous of degree 0 such that one can write in V;

r (1)
p=—&+q=-&+> ¢,

a=1
= —(bo+ i) (& — N) +ai, g =q— N,
N <V6eyq in Vi,
{€o — Xiyia} =0 on V,NE, a=1,..r().

Take a partition of unity {x;} subordinate to {V;} such that 0 < y; < 1,
Xi € C5°(V;), homogeneous of degree 0 and > x; = 1. Define

A= xih
p=—(+NE-N+Q, Q=qg-I.
Here we note that
A<D Tl <V o xi = Veya,
Q=q-N>q—8q=(1-6)g>0.

We now show that this gives an elementary decomposition. Note that

{&o—A Q= zxi{ﬁo -\, QF + Z(ﬁo = A){x:, QY
= xi{o— 2 Q=D Xifxi, Q)

because Y {x;, @} = 0. Recall that {{y — A\i, pin} = 0 on V; N Y and hence
{& — \i, bia} is a linear combination of {¢;,} there. Since ¢ > ¢2, > Q >

c2 Y ¢2, in V; with some ¢; > 0 and hence Q = Y Qupdiadis then on the
support of x; we have

{& =N, QY <CY o7, <Clgi < C'q < C"Q.

On the other hand we have [{x;, @} < C\/Q because @ > 0 and

Nl <6ya<CVQ



34CHAPTER 3. NONEFFECTIVELY HYPERBOLIC CHARACTERISTICS

then we get

(3.2.11) {&o — A Q} < CQ.
We now study [{&o — A, &o + A} = 2[{& — A\, A\}|. Note that

{Co= M2 =D xido— M Ad+ D Niféo — Axat

and
Xi{éo — A A} =X ZXk;{&J = A Ait = Xi ZM{Xk, A}
Since we have {&y — Ak, A;} = 0 on Vi, N'V; N'YE the same arguments as above
give
{& — M, M < Oy < Cyg < C'V/Q.

We check other terms

Ml M < Cyar <Cyg < C'/Q on Vi,

Ni{éo — A i} <CVG < Cyg<C'\/Q on Vi

Hence we have
& — AN <CVQ

which shows [{&y — A\, & + A} < C/Q. This together with (3.2.11) proves the
assertion. 0

3.3 Case Im F; NKer F; # {0}

We next discuss the same problem studied in Section 4.2 for the case Im Fg N
Keng # {0}. In particular we give a necessary and sufficient condition in order
that p admits an elementary decomposition for general case in terms of some
vector field defined near the doubly characteristic manifold.

Recall that we are working with

ple,&) = =& +a(2,€), q(z,€) >0

where p(z, &) is noneffectively hyperbolic and verifies the conditions (3.2.1),
(3.2.2) and

(3.3.1) Ker F(p) NIm F(p) # {0}, Vpe€ X.

This means that the Hamilton map F,(p) has a Jordan block of size four at
every p € . Recall that from the hypothesis (3.2.1) one can write

p(x,8) = =&+ 6z, ¢)?
j=1
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near every p € X where d¢; are linearly independent at p and X is given by

Y= {(j)](x,f) =0,7=0, ...,7’}

where ¢g(z,£) = & as before. Assume (3.3.1) then by Theorem 2.3.1 the
quadratic form @ = p, takes the form, in a suitable symplectic coordinates

k k+¢
(3.3.2) Q= (- +2%& +2)/V2+ D w2+ + > &
j=2 j=k+1

Lemma 3.3.1 The number k in (3.3.2) is independent of p € X.

Proof: With {¢;} = {&o, &1, 21,25,&5,2 < j <k, &,k +1 < j < k+{} it follows
from Lemma 3.2.1 that the rank of ({t;,;}) is constant. This shows that k is
independent of p € X. (]

Examining the standard canonical model (3.3.2) it is easy to see that
dimIm F (p) =2+ 2(k — 1), dimImF}(p) =1+2(k — 1)
which are independent of p as we observed above. Since
(3.3.3)  dim (Ker F,(p) NIm Fg’(p)) =1, dim (Ker Fg(p) NIm Fﬁ(p)) =2

which is easily verified examining the standard model (3.3.2) then one can choose
smooth vectors z1(p), h;(p), 7 = 1,2 defined near a reference point p € ¥ so
that

Ker F,(p) NIm F) (p) = (21(p)), pEX,
Ker F(p) NIm F (p) = (h1(p), ha(p)), p€EX.

Lemma 3.3.2 There are smooth z1(p) and z2(p) defined near the reference
point such that

Ker F (p) N Im F7(p) = (z1(p), 22(p)),
Fp(p)z1(p) =0, Fp(p)z2(p) # 0.

Proof: Let Ker F(p) N\Im F72 (p) = (h1(p), ha(p)). Since Fy(p)h;(p), j = 1,2 are
in Ker F,(p) NIm F2(p) there exist smooth a(p), 5(p) such that

a(p)Fyp(p)hi(p) + B(p) Fp(p)ha(p) = 0.

Then it is enough to choose

z1(p) = ap)ha(p) + B(p)h2(p),
z2(p) = B(p)h1(p) — a(p)h2(p).-
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Note that, in the canonical model (3.3.2) it is easy to see that

(3.3.4) Ker F(p) NIm F(p) = (He,, H,)
and
(3.3.5) z2(p) = aHey, + bHy,, b#0.

Lemma 3.3.3 There exists a smooth S(x,&) defined near the reference point
vanishing on X such that

Hs(p) = 22(p), peX.

Proof: Note that from (3.2.5) it follows that

r

(336)  Fp(ov =3 oo, Hy, (0))Ho,(p). co=—1,¢;=1, j=1
=0

and hence

(3.3.7) Fﬁ(p)v =Y e0(v,Hg,(p)) Z ¢jo(Hg, (p), Hg, (p))Hg, (p)
This shows that
m Fy(p) = (D €0 (Ho, (p) Hy, (0)) Hy, (p); k = 0, ..., 7)
j=0

and with A(p) = (ak;(p)) = ({6, &5 }()) we have Tm F2(p) = (f1(p), - /(o))
where f(p) = A(p)Hy(p), Hy = "(—Hgp,, ..., Hp,). Since the rank of A(p) is

constant there exists [;x(p) such that with

k=0
we have

Im F2(p) = {(91(p), .-, 9s ())-

Since z3(p) € Im F2(p) one can write

with smooth ay(p). Then

22(p) =Y awl(p) D Bri(p) fi(p) = i (p)Brj (p)aje(p)Hy, (p)-
k=1 j=0 j
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Let us define

S = Z Z Z &k Brjajedr

k=1 j=0 ¢=0

where ay, Bi; and aj, are smooth extensions outside ¥ of ay,, Bi; and aj,. This
is a desired one. O

Lemma 3.3.4 There exists a smooth A(x,§) defined near the reference point
vanishing on X such that

Ha(p) = z1(p), p€EX.

Proof: Repeat the same arguments as in the proof of Lemma 3.3.3. (]

Lemma 3.3.5 In a neighborhood of the reference point we have
Vw € (21(p))” = o(w, Fy(p)w) = 0.

Proof: Choose a symplectic coordinates on which p, takes the form (3.3.2). Then
it is easy to see that

(21(p)) = (He)
and hence if w € (z1(p))? then

k k+e
o(w, Fy(p)w) = Q(w) = 22/VE+ Y i@+ )+ 3. &0
j=2 G=k+1
which is the assertion. O

We summarize what we have proved in

Proposition 3.3.1 Assume that p satisfies (3.2.1), (3.2.2) and (3.3.1). Then
there exist smooth vectors z1(p), z2(p), p € ¥ defined near the reference point
such that

(3.3.8) z1(p) € Ker F(p) NIm F(p), p€ X,
(3.3.9) z9(p) € Ker Fl?(p) N Im Fi(p), pE,
(3.3.10) w e (z1(p))° = o(w, Fy(p)w) > 0.

Since F,(p)z2(p) is proportional to z1(p), p € ¥ we may assume, without
restrictions, that

(3.3.11) Fy(p)z2(p) = —21(p), p€X.

We have
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Proposition 3.3.2 One can write p, near every p € 3, as

= -8+ 6(x,¢)?

j=1
—(o+ d1(z,€)) (& — d1 (&) + > ¢i(x,£)?
j=2
where ¥ is given by {{&o = 0,91 = -+ = ¢, = 0} and
(3312) {£0 - ¢17¢j} = 07 j = 17 w1 {¢17¢2} 7é 0 on X.

Proof: Let A(z,€&) be a smooth function vanishing on ¥ such that Hx(p) is
proportional to z1(p) of which existence is assured by Lemma 3.3.4. Since
o(z1,Hy,) # 0 by (3.3.10), without restrictions, we may assume that

A=&=X A=) 780,
=1
where ¢; are those in (3.2.4). Writing
—(E =N+ N+ 0] — (3 _195)°
j=1 j=1

one obtains

Because of (3.3.10) we have

T

(3.3.13) > o(v,Hy,) Z’y] (v, Hy,))? >0
j=1

if v € (Hx(p))?. As observed in Section 4.2, the mapping

(3.3.14) (HA(0)7 /1,5 3 0 (o0, Hy, )

-----

is surjective and hence (3.3.13) shows that

Z'Y] = |2<1

We now show that

(3.3.15) lv(p) =1, pei.



3.3. CASEIM F2NKERF? # {0} 39

We first note that o(z2, Fpz2) = 0(21,22) = o(Fpw,z) = —o(w,Fpz3) = 0
because z; = F)w with some w and z, € Ker F?. Smce o(ze,21) = ( JHp) =
0 we have

T

OZU(ZQ,FPZQ) :Z 22,H¢J Z’yj 22,H¢j))2.

Jj=1

If 0(20,Hy,) = 0 for j =1,...,r then 20 € (Hp,Hg,, ..., Hy )? = Ker I, which
contradicts to Fjza = —z1. This proves that o(22(p), Hg,(p))1<j<r is different
from zero and hence one get (3.3.15) because

T

'
Z o(z2,Hy,)? Z’Yy o(22,Hy,)) 2§\7|220(«Z2,H¢j)2

j=1 j=1

We still denote by ~y(z,£’) an extension of v(p) outside ¥ such that |y(z, )| =
Thus we can write

p(@,&) = —(&o + (1. 0)) (& — (v, ) + |6 = (1, 9)

where {{o — (v, ¢),¢;} =0, j =1,...,7 on X since He,y(y,4) € ImF),. Let us set
U1(z, &) = 22:1 v (x,&)¢;(x, &) and taking a smooth orthonormal basis
Y(@, &), ea(x, &), oen(x,€), e = (ej1, .., €5r)
and define B}
Vi@, 8) = ejn(@, & )dn(w, &)
h=1

so that Y77 ;(x,&)* = 3°7_ ¢j(x,&)?. Switching the notation to {¢;} we

can thus write

p(@,€) = —(& + d1(2,€)) (& — 61(2,6) + D ¢;(z,€)?

Jj=2

where {{o — ¢1,0;} =0on X for j =1,...,r. We finally check that {¢1,¢r} # 0
for some k. Indeed if otherwise we would have {&y,¢;} =0, j = 1,...,r and this
would contradict (3.3.1). In fact if this would happen then we have

Pp=—E+> 0, {&. 6} =0, j=1,...r
j=1

Since Z;zl 65 is a non negative definite quadratic form, in a suitable symplectic
basis, p, takes the form (1) of Theorem 2.3.1. Renumbering the coordinates so
that k = 2 we have the assertion. U

REMARK: From Proposition 3.3.2 one can write {y— ¢1,¢;} = > r_; ¢jrPr but
if ¢j1 # 0 then {&o — ¢1, ¢;} could not controlled by 377 _, 3.
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3.4 Vector field Hg

Let S(x,€&) be a smooth real function defined on T*(2, homogeneous of degree
0, such that

and we have on X
(3.4.2) Hs(p) € Ker F2(p) N Tm F2(p), Fy(p)Hs (p) # 0.

We first remark that it is possible to choose S independent of &y. In fact from
Lemma 3.3.4 one can take A(z, &) so that

A(p) =0, Hp(p) =2(p), p€X.

Since o(Hy,, Fp(p)Hy,) = —1 it follows that o(Hy,, Hx(p)) # 0, p € £ due to
(3.3.10). This proves that one can write, without restrictions,

Az, &) = & — Az, €).
Let us write S(z,&) = a&y + f(z,£’) and put
S(SC, 6/) = S(l‘, 5) - OZA($, 5)
Then it is clear that S(z, &) verifies (3.4.1) and (3.4.2) for Hy(p) € Ker F,(p) N

Im F2(p).
Recall that p(z, &) takes the form
(3.4.3) p(@,€) = —& +a(x,€), q(z,€) >0

Lemma 3.4.1 Assume that p admits an elementary decomposition such that
p=—MA+ Q. Then Hp(p) is proportional to z1(p), p € X.

Proof: Let A = & — A. It is obvious that ¢ = @ + A2 > 0 and hence )\ and
Q) vanishes on ¥ at least of order 1 and 2 respectively. Then it is clear that
Hy(p) € Im F,(p). Recall

F,Hp = —o(Hp,Hpy)Hp + FoHjy.

It is clear that o(Hp,Hy) = {A, M} = 0 and from (3.1.1) we have FoHp =
Hig,ay = 0 on X. This shows that Fj,Hy = 0 and hence Hy is in Im F), NKer F),
on X.

Let S be a smooth function verifying (3.4.1) and (3.4.2). Since Hg € Im F),
then o(Hp,Hs) = {A, S} =0 on X. Thus one has

FpHS = —(I/Q)U(Hs,HM)HA + FQHS

which gives o(Hg, FHg) = o(Hg,FgHgs) = 0 because F,Hg € Ker F), and
Hgs € Im F),. This proves

(3.4.4) FoHs=0 on X
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because o(Hg, FoHgs) = Q,(Hgs) and @, is non negative definite. Thus we have
1
FyHs = —Zo(Hs, Ha)Hy.

By definition of S we have F,,Hg # 0 and this proves the assertion. O

Lemma 3.4.2 Assume that p admits a decomposition

P, 8) = —(&o + M) (& —A) + Q(z,§') = -MA+Q

with Q(z,&') > 0. If FoHA = 0 on ¥ and F,, has no non zero real eigenvalues
then (3.1.2) holds.

Proof: We first note that
Y={A=0,M=0,Q =0}.

Since FpHA = —(1/2)0’(HA,HM)HA by FQHA =0. If U(HA, HM) 7é 0 then Fp
would have a non zero real eigenvalue which contradicts the assumption. Hence

o(Hpa,Hy) ={A,M}=0 on X.
Then one can write
(3.4.5) (A} =3 0
j=1
where
(=Q+N =) v
j=1
because {M, A} is independent of §y. The assertion follows from (3.4.5). O
We now show

Proposition 3.4.1 ([6]) Let S1, S2 be two smooth functions verifying (3.4.1)
and (3.4.2). Then there exists C' # 0 such that

Hgl p‘Z = Cngp’Z'
We first show
Lemma 3.4.3 Assume that p admits a decomposition p = —MA + @Q with
A=¢& -\, M =&+ X\, Q>0 such that Hp is proportional to z1(p) for p € 3.
Let S be a smooth function verifying (3.4.1) and (3.4.2). Then we have

H(Q=0 on X.
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Proof: Let ¢; be as in (3.2.4). It is clear that ¥ = {{, = 0,A = 0,Q = 0} and
hence one can write

T

Azgo_Z’de)ja Q: |¢|2_<77¢>2
J

1

It is also clear that |y(z,£’)| < 1 near ¥ because Q > 0 by assumption. Repeat-
ing the same arguments in the proof of Proposition 3.3.2 we conclude that

Pl =1 peX
and 7(p) is proportional to o(Hgs(p), Hs(p))

(3.4.6) Hso(p) = o(Hs(p), He(p)) = alp)v(p), pE€X

where we have denoted o(Hg, Hy) = (0(Hs, ¢1),...,0(Hg, Hg,)). As shown in
the proof of Lemma 3.4.1 we have

0 = U(Hs,FpHs) = U(HS,FQHs)

and hence FogHg = 0 on ¥ because @ > 0. We now study Hz(|¢]* — (v, ¢)?).
It is clear that H3(¢,¢) = 6(HZ¢, Hs$) on ¥ and hence

(3.4.7) H(¢,¢) = 6a(H3h,7) on X.
On the other hand one obtains

Hi(y,¢)* = A((Hsv, ¢) + (v, Hs®))
x(2(Hgvy, Hs$) + (v, H3$))
+2(y, Hs¢)((H%v, ¢) + 2(Hsv, Hsp) + (7, H59)).

On X this becomes

(3.4.8) 6a(y, H3¢) + 12a*(Hs, 7).

Since 1 — |y|? > 0 near ¥ and 1 — |y|?> = 0 on X it follows that
Hs(1—|y[*) = —Hs(y,7) = —2(Hs7,7) =0 on X.

Thus (3.4.8) is equal to 6y, H2¢) and hence the assertion. O

Proof of Proposition 3.4.1: Let S7, S2 be two functions verifying our assump-
tions. From Proposition 3.3.2 we can write

where Hj is proportional to z1(p) and {A, @} vanishes of second order on .
By (3.4.2) one can write F[,Hg, = c;Hy with ¢; #0, j =1,2. Now

Hp={S;,{S;,{S;, —AM + Q}}}
= —3{S;, M}{S;,{S;, A}}
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on ¥ because {S;,A} =0 and ngQ = 0 on ¥ by Lemma 3.4.3. Since one can
write
HSJ' = 9]'22(,0) + Hfj (p), peX, j=1,2

with Hy, € Ker F;, N Im Fg’ where f; vanishes on X then we obtain that

Hs, (p) = Z—Hs (0) + Hy(p)

where Hf(p) € Ker F}, and f vanishes on ¥. Let us set
—B{Sj,M}:Oéj, ]:1,2
which is different from zero. Indeed if {S;,M} = 0 then we would have

{Sj7§O} = O'(Hsj,HgO) = 0 and hence FpHSj = ZO—(HSijd)k)Hd)k which is
not proportional to Hp. Then we have

0 = ar{S1, {81 AN} = arf g8+ 1. {35+ £.A1
= 1[G 52 (82, AY} + (S5, 1A}
F S AN + (L7 AR,
Since {S;,A} =0, {f,A} = 0 on ¥ and hence

{f,{S2,A}} =0, {f,{f,A}} =0, on X.

This shows that the third and fourth terms in the above formula vanish on X.
Taking into account the Jacobi identity

{S2,{f, A}} = ={f, {7, S2}} —{A, {52, f}}

we see that the second term also vanishes on X because Hy € Im F), N Ker F,.

Hence one has 0
a1 U1y9..3
H? = —(=)’H .
Slp‘E a2(02) Sgp’E

This is the desired assertion. O

3.5 Elementary decomposition revisited

Recall that we are assuming (3.2.1) and (3.2.2) throughout this chapter. The
next result was proved in [44] under some restrictions on the double character-
istic manifold and in [6] in full generality removing the previous restrictions.

Theorem 3.5.1 ([6], [44]) Let S be a smooth function verifying (3.4.1) and
(3.4.2). Then the following assertions are equivalent.
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(1) Hgp(p)=0,p€X,

(ii) p admits an elementary decomposition at every p € 3.

Proof: We start by proving that (ii)==-(i). From Lemma 3.4.1 we see that Hy
is proportional to z1(p). Then due to Lemma 3.4.3 one has H3Q = 0 on ¥ and
hence

(3.5.1) Hep|y, = —3{S, M}{S.{S, A}}|,.
From (3.5.1) it suffices to show
o(Hs, Higay) =0

on ¥. Thanks to (3.1.1) we have Ker Fi; C Ker Fi, oy. This together with
(3.4.4) shows that

His a1 = —Fagpls =0
on Y. Recall the Jacobi identity

(3.5.2) {Q. S, A+ {S{A, Q}} +{A{Q, 5} =0.
Considering the Hamilton vector field of (3.5.2) we obtain
(3.5.3) FoHsay + Hiagos); =0 on .
Let us study the second term in (3.5.3)

Hinqq.s1 = [Ha Higs)-

Since H{g sy|s = FoHs|s = 0 and Hy € T,X = Ker F},, p € ¥ it follows that
[Ha, Hig s3] = 0. This gives

(3.5.4) FoHsay = 0.

Then we have F, H{x gy = —(1/2)0(Hya sy, Har)Ha because o(Ha sy, Hpy) =0
which follows from {S,A} =0 on X. From Lemma 3.4.1, Hy is proportional to
z1 and then Fj,Hg is so

(3.5.5) Hy = o(p)F,Hg.

This gives that

1
Hins) + 5a(p)o(Ha sy, Hu)Hs € Ker Fy(p)

which proves clearly
o(Hs,Hiasy) =0

and thus we have proved (ii)=-(i).
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The implication (i)== (ii) follows immediately from the following result
which will be key observations in this chapter. To make the statement of the
following proposition to be clear, using ¢; instead of ¢;, assume that p is written
as

.
p=—8+> 4
j=1
near p.

Proposition 3.5.1 Assume (3.3.1). Let S be a smooth function verifying (3.4.1)
and (3.4.2) and assume that
Hip=0

near p on . Then near p we can rewrite p as
p=—(S+N(&-N+Q
with
A= 01+ L( )01 + 1632,
@= Z:qﬁ? + ()A€ 7% + b(@) L) > e(|d'2 + 641¢ )
p

with some ¢ > 0 where ¢; are linear combinations of qgj, j=1,..,r and ¢ =

(¢17¢27 "‘7¢T)7 (b, = (¢27 "'7(257“)' Here §0 — A and ¢j satisfy

(3.5.6) {0 = A QY < C(1¢']* + ¢11€'72),
(3.5.7) {Co—A ¢} =0(¢), j=1,...m
(3.5.8) {o1,9;} =0O(¢]), j =3,

(3.5.9) {¢1,¢2} >0

near p. Here L(¢') = O(|¢/||€'|~") and ~y is a real constant.

Proof: Denote 45]- by ¢;. Let p be as in (3.4.3). From Proposition 3.3.2 we can
write

(3510) p($>§) = _(50 + ¢1($7§/))(£0 - ¢1($76/)) + |¢/($a€/)|2
where
(3.5.11) {0 — 1,05} =0, G=1,...,7, {d1,02}(p) #0.

Recall that He,_4, is proportional to z;(p) on ¥ near p.
Let us consider

é]’ = ZOjk¢k, j = 2, ey T
k=2
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where O = (Ojy,) is an orthogonal matrix which is smooth near p. Choosing O
suitably and switching the notation {¢;} to {¢;} again we can assume that

{¢17¢2}(P) 7& 07 {(bl)gbj} =0 near p on 27 ] = 37 w1

We may assume {¢1, ¢2} > 0 without restrictions. Thus the assertion (3.5.9)
are proved.

We now determine L(¢') = (§', ¢’) where ' = (02, ..., 8,) and 3 are smooth
functions of (z,¢’), homogeneous of degree —1 in &', following the arguments in
[6]. We rewrite (3.5.10) as

p(x,&) = —(& + ¢1 + L(¢)p1 + 1431 2)
x (& — ¢1 — L(¢")p1 — 18318’ 72) + |¢']> — L(¢')?¢2
—281¢| 1 — 202 L(¢') — 2yt €| 72 — 2yL (¢ )gh[¢!| 2
(3.5.12) = —(%o + ¢é1 + L(¢)¢1 + 7031¢'|2)
x (& — é1 — L(¢") g1 — 1431€'|72)
+H¢'[2 = 2v(1+ L(¢) + v31¢'|72/2) 6 1¢'| 72
—2L(¢") (14 L(¢)/2) 61 = —(S+ N6 — ) +Q

where

A= 61+ L(¢)br +7611¢' |77,
Q=1¢'" = 29(1+ L(¢) + 1071/ 72/2)¢11¢'| % = 2L(¢) (1 + L(¢')/2) 1.

Now the assertion (3.5.7) follows from (3.5.11) immediately. Taking + negative
large enough it is clear that

(3.5.13) Q> c(|¢'|* + ¢1l€'7?)

with some ¢ > 0. We prove that we can choose ' so that (3.5.6) holds. Note
that

{60 =X, Qt = {& — o1, |¢'|* — 2L(¢") (1 + L(¢')/2) 61}
(3.5.14) —{L(¢")¢1,1¢'1*} + O(Q)

where one can write

(3515) {50 - ¢17¢j} = Zajk¢k7 ] = 17 we T
k=1
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with smooth ;5. Using (3.5.15) and (3.5.13), (3.5.14) reads as
{Co—XQY=2> ¢ aunos
=2 k=1

(3.5.16) —2¢fZﬁeZa6k¢k(1 + L(¢")/2)

=2 k=1

201 ) e Y Br{dr: b} + O(Q).

=2 k=2
Distinguishing the role of ¢; from that of ¢/, we can write
(60— \QY=2) andupr — 261 > b0 > Be{dw, de}
=2 (=2 k=2

(3.5.17) —2¢7 Y~ Bro + O(Q).
=2

Put o, = (as1, ..., 1) then (3.5.17) becomes

{60 — A QY =2((a1, &) + ({¢', ¢'} 5", &) 1
(3.5.18) —2¢7(a}, B) + O(Q).
We show that we can choose 8 = (fz, ..., 3,) such that
(3.5.19) {¢,¢'}3 +a) =0, (a),3)=0
on ¥ so that the right-hand side of (3.5.18) is O(Q).

Lemma 3.5.1 We have
(af,v) =0
for any v satisfying {¢', ¢'}v = 0.

Proof: We first make a closer look at our assumption H3 p = 0. Since S vanishes
on Y and one can assume that S is independent of £, then we can write

(3.5.20) S(x, &) = ¢j(x,&)¢;(x,8).

Since H¢,_4, is proportional to z1(p) on X then F,Hg is also proportional to
He 4, on ¥. Thanks to Proposition 3.4.1, multiplying S by a non zero function
if necessary, we may assume that

(3.5.21) F,Hs = —Hg, 4, on 3.
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We study the identity (3.5.21). Plugging (3.5.20) into (3.5.21) to get

1 T
FpHs(p) = =5 {8 €0 + 61} Heo—g, + ) _{S.6;}Hy,

j=2
1 T T T
=-3 D end{dnbo+ 1 Heg—o, + > D> cn{dn, &5} Hs,
h=1 j=2 h=1
= —He g,
on X because {S,&) — ¢1} = 0. Hence we have on ¥
1 I
3 > en{on o+ o} =1,
h=1
(3.5.22) c{pr b} + > en{dn, ¢} =0, j=2,..r
h=2
and, taking {¢n, &0 + O1} = {dn, &0 — é1} + 2{dn, #1} into account, we have
(3523) CQ{¢2,¢1} =1

because {¢;,¢1} = 0 for j > 3. We multiply (3.5.22) by ¢; and sum up over
j =2, ..., which yields

—c1 + Z Z cjch{qﬁh, gf)j} =0.
h=2 j—2

The second term in the left-hand side vanishes because ({¢x, ¢r}) is anti sym-
metric and thus we get ¢; = 0 and (3.5.22) gives

(3.5.24) {S.¢;} =0, j=2,...,r, S=) cnon
h=2

near p on ¥ where co = {¢, 1} # 0.
By Lemma 3.4.3 one obtains

Hip=—-3{S,& + ¢1}{S. {5, & — ¢1}} = {5, {5, & — ¢1}}

with some ¢ # 0 which is examined in the proof of Lemma 3.4.3. Take (3.5.23)
and (3.5.24) into account we see that H2 p = 0 on X implies that

(3.5.25) {S,60 — 91} = O(|¢'] + 7).
Since {S,¢1} = 1 then from (3.5.24) it follows that a;; = {S, {0 — ¢1,¢;}}.
Thanks to the Jacobi identity we get for j > 2
aj1 = —{& — 91, {9;, S}t —{¢;, {5, & — 1 }}
= —{¢], {57 50 - ¢1}}
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on ¥ because of (3.5.24). Thus from (3.5.25) we can write

aji =Y wi{d;, ¢}
k=2

with some wy. Then one has

ZUjOéjl = Zwk: Z{ija Pr}vj =0
j=2 k=2  j=2

which is the desired assertion. O

Thanks to Lemma 3.5.1 it follows that the equation
{¢/a ¢/}/8/ = _a/l

has a smooth solution . Finally we note that (o, 3’) = 0 holds since {¢’, ¢’}
is anti-symmetric. Thus we have proved the assertion (3.5.6). O



