Chapter 3

Noneffectively hyperbolic characteristics

3.1 Elementary decomposition

In what follows we assume that the doubly characteristic set

$$\Sigma = \{(x,\xi) \mid p(x,\xi) = dp(x,\xi) = 0\}$$

of p is a smooth conic manifold. In this section we study p of the form

$$p = -\xi_0^2 + a_1(x, \xi')\xi_0 + a_2(x, \xi')$$

which is hyperbolic with respect to ξ_0 .

Definition 3.1.1 We say that $p(x,\xi)$ admits an elementary decomposition if there exist real valued symbols $\lambda(x,\xi')$, $\mu(x,\xi')$, $Q(x,\xi')$ defined near x=0, depending smoothly on x_0 , homogeneous of degree 1, 1, 2 respectively and $Q(x,\xi') \geq 0$ such that

$$p(x,\xi) = -\Lambda(x,\xi)M(x,\xi) + Q(x,\xi'),$$

$$\Lambda(x,\xi) = \xi_0 - \lambda(x,\xi'), \ M(x,\xi) = \xi_0 - \mu(x,\xi'),$$

$$|\{\Lambda(x,\xi), Q(x,\xi')\}| \le CQ(x,\xi'),$$

$$(3.1.2) \ |\{\Lambda(x,\xi), M(x,\xi)\}| \le C(\sqrt{Q(x,\xi')} + |\Lambda(x,\xi') - M(x,\xi')|)$$

with some constant C. If we can find such symbols defined in a conic neighborhood of ρ then we say that $p(x,\xi)$ admits an elementary decomposition at ρ .

Lemma 3.1.1 ([26]) Assume that p admits an elementary decomposition. Then there is no null bicharacteristic which has a limit point in Σ .

Proof: Note that $\Sigma = \{(x,\xi) \mid \Lambda(x,\xi) = M(x,\xi) = Q(x,\xi') = 0\}$ because $\partial_{\xi_0} p = -(\Lambda(x,\xi) + M(x,\xi)) = 0$ and $p(x,\xi) = 0$ implies $\Lambda(x,\xi)^2 + Q(x,\xi') = 0$. Let $\gamma(s)$ be a null bicharacteristic of p which lies outside Σ . Since $p(\gamma(s)) = 0$ we may assume that $dx_0(s)/ds = -\Lambda(\gamma(s)) - M(\gamma(s)) < 0$ so that we can take x_0 as a parameter:

$$\frac{d}{dx_0}\Lambda(\gamma(x_0)) = \frac{d}{ds}\Lambda(\gamma(s))\frac{ds}{dx_0} = \{p,\Lambda\}(\gamma(s))\frac{ds}{dx_0}.$$

Since $M\Lambda = Q \ge 0$ we have $\Lambda(\gamma(s)) \ge 0$ and $M(\gamma(s)) \ge 0$. Noting $p = -M\Lambda + Q$ we see on $\gamma(s)$

$$\begin{aligned} |\{p,\Lambda\}| &\leq C(Q + \Lambda\sqrt{Q} + \Lambda|\Lambda - M|) \\ &= C\Lambda(M + \sqrt{\Lambda M} + |\Lambda - M|). \end{aligned}$$

Since

$$\frac{M + \sqrt{\Lambda M} + |\Lambda - M|}{\Lambda + M} \le 3$$

one has

(3.1.3)
$$\left| \frac{d}{dx_0} \Lambda(\gamma(x_0)) \right| \le C \Lambda(\gamma(x_0)).$$

Suppose that $\gamma(x_0) \notin \Sigma$ for $x_0 \neq 0$ and $\lim_{x_0 \to 0} \gamma(x_0) \in \Sigma$ so that $\Lambda(\gamma(0)) = 0$. From (3.1.3) it follows that $\Lambda(\gamma(x_0)) = 0$ and hence $Q(\gamma(x_0)) = 0$ for $p(\gamma(x_0)) = 0$. Since Q is non-negative it follows that $\{Q, M\}(\gamma(x_0)) = 0$. This proves

$$\left| \frac{d}{dx_0} M(\gamma(x_0)) \right| \le CM(\gamma(x_0))$$

and hence $M(\gamma(x_0)) = 0$ so that $\gamma(x_0) \in \Sigma$ which is a contradiction.

3.2 Case Im $F_p^2 \cap \text{Ker } F_p^2 = \{0\}$

Here we work with

$$p(x,\xi) = -\xi_0^2 + q(x,\xi'), \quad q(x,\xi') \ge 0.$$

We assume that the doubly characteristic set

$$\Sigma = \{ (x, \xi) \mid p(x, \xi) = dp(x, \xi) = 0 \}$$

is a smooth manifold near $\bar{\rho}$ such that

(3.2.1)
$$\dim T_{\rho}\Sigma = \dim \operatorname{Ker} F_{\rho}(\rho), \quad \rho \in \Sigma$$

that is, the codimension of Σ is equal to the rank of the Hessian of p at every point on Σ and

(3.2.2)
$$\operatorname{rank}(\sigma|_{\Sigma}) = \operatorname{constant} \quad \text{on } \Sigma$$

where $\sigma = \sum d\xi_j \wedge dx_j$ and finally we assume that p is noneffectively hyperbolic at every $\rho \in \Sigma$ and

(3.2.3)
$$\operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho) = \{0\}, \ \forall \rho \in \Sigma.$$

From the hypothesis (3.2.1), near every $\bar{\rho} \in \Sigma$, one can write

(3.2.4)
$$p(x,\xi) = -\xi_0^2 + \sum_{j=1}^r \phi_j(x,\xi')^2$$

where $d\phi_j$ are linearly independent at $\bar{\rho}$ and Σ is given by

$$\Sigma = \{(x,\xi) \mid \phi_j(x,\xi) = 0, j = 0, ..., r\}$$

near $\bar{\rho}$ where we have set $\phi_0(x,\xi) = \xi_0$. Let Q(u,v) be the polar form of $p_{\bar{\rho}}$. Since

$$\frac{1}{2}Q(u,v) = -d\phi_0(u)d\phi_0(v) + \sum_{j=1}^r d\phi_j(u)d\phi_j(v)$$

where $d\phi_j(u) = d\phi_j(\bar{\rho}; u)$ then it follows that

$$\frac{1}{2}Q(u,v) = -\sigma(u, H_{\phi_0})\sigma(v, H_{\phi_0}) + \sum_{j=1}^r \sigma(u, H_{\phi_j})\sigma(v, H_{\phi_j})
= \sigma\left(u, -\sigma(v, H_{\phi_0})H_{\phi_0} + \sum_{j=1}^r \sigma(v, H_{\phi_j})H_{\phi_j}\right) = \sigma(u, F_p(\bar{\rho})v).$$

Thus we have

(3.2.5)
$$F_p(\bar{\rho})v = -\sigma(v, H_{\xi_0})H_{\xi_0} + \sum_{j=1}^r \sigma(v, H_{\phi_j}(\bar{\rho}))H_{\phi_j}(\bar{\rho}).$$

In particular we see

(3.2.6)
$$\operatorname{Im} F_{p}(\bar{\rho}) = \langle H_{\phi_{0}}(\bar{\rho}), H_{\phi_{1}}(\bar{\rho}), ..., H_{\phi_{r}}(\bar{\rho}) \rangle.$$

It is also clear that

$$\operatorname{Ker} F_{p}(\bar{\rho}) = \{ v \in \mathbb{R}^{2(n+1)} \mid \sigma(v, H_{\phi_{j}}) = 0, j = 0, 1, ..., r \}$$

$$= \langle H_{\phi_{0}}, H_{\phi_{1}}, ..., H_{\phi_{r}} \rangle^{\sigma} = (\operatorname{Im} F_{p}(\bar{\rho}))^{\sigma} = T_{\bar{\rho}} \Sigma.$$

Here we remark

Lemma 3.2.1 The condition (3.2.2) is equivalent to

$$\operatorname{rank}(\{\phi_i, \phi_j\})(\rho) = \operatorname{const}, \quad \rho \in \Sigma.$$

Proof: Note that

$$(T_{\rho}\Sigma)^{\sigma} = \langle H_{\phi_0}(\rho), ..., H_{\phi_r}(\rho) \rangle$$

and $\sigma(H_{\phi_i}(\rho), H_{\phi_j}(\rho)) = {\phi_i, \phi_j}(\rho)$. From this it is enough to show that (3.2.2) is equivalent to

$$\operatorname{rank}\left(\sigma|_{(T_{\rho}\Sigma)^{\sigma}}\right) = \operatorname{const.}$$

Let us consider the map

$$L: T_{\rho}\Sigma \ni v \mapsto \sum_{j=1}^{s} \sigma(v, f_{j}(\rho)) f_{j}(\rho) \in T_{\rho}\Sigma$$

where $T_{\rho}\Sigma = \langle f_1(\rho), ..., f_s(\rho) \rangle$. The assumption (3.2.2) implies that the rank of the matrix $(\sigma(f_i(\rho), f_j(\rho)))$ is constant and hence

$$\dim \operatorname{Ker} L = \dim (T_{\rho}\Sigma \cap (T_{\rho}\Sigma)^{\sigma}) = \operatorname{const.}$$

This proves the desired assertion because the kernel of

$$\tilde{L}: (T_{\rho}\Sigma)^{\sigma} \ni v \mapsto \sum_{j=0}^{r} \sigma(v, H_{\phi_{j}}(\rho)) H_{\phi_{j}}(\rho) \in (T_{\rho}\Sigma)^{\sigma}$$

is just $\operatorname{Ker} L$.

Assume (3.2.3) then from Corollary 2.3.1 the quadratic form p_{ρ} takes the form, in a suitable symplectic coordinates

(3.2.8)
$$p_{\rho} = -\xi_0^2 + \sum_{j=1}^k \mu_j^2 (x_j^2 + \xi_j^2) + \sum_{j=k+1}^{k+\ell} \xi_j^2$$

where we have

Lemma 3.2.2 The number k in (3.2.8) is independent of $\rho \in \Sigma$.

Proof: With $\{\psi_j\} = \{\xi_0, x_j, \xi_j, 1 \leq j \leq k, \xi_j, k+1 \leq j \leq k+\ell\}$ it follows from Lemma 3.2.1 that the rank of $(\{\psi_i, \psi_j\})$ is constant. This shows that k is independent of $\rho \in \Sigma$.

Lemma 3.2.3 There exist a conic neighborhood V of $\bar{\rho}$ and a smooth vector $h(\rho)$ defined in $V \cap \Sigma$ such that

(3.2.9)
$$h(\rho) \in \operatorname{Ker} F_p^2(\rho), \ p_{\rho}(h(\rho)) < 0, \ \sigma(H_{x_0}, F_p(\rho)h(\rho)) = -1$$
 on $\rho \in V \cap \Sigma$.

Proof: Let p_{ρ} take the form (3.2.8). Then from (3.2.5)

$$F_p^2(\rho)v = \sum_{j=1}^k \mu_j^2 (\sigma(v, H_{\xi_j}) H_{x_j} - \sigma(v, H_{x_j}) H_{\xi_j})$$

so that

$$\operatorname{Ker} F_p^2(\rho) = \{ v \mid \sigma(v, H_{\xi_j}) = 0, \sigma(v, H_{x_j}) = 0, j = 1, ..., k \}$$

and hence dim Ker $F_p^2(\rho) = 2n + 2 - 2k$ which is independent of $\rho \in \Sigma$ by Lemma 3.2.2. Let $p_{\bar{\rho}}$ take the form (3.2.8). Since we have that $F_p^2(\bar{\rho})H_{x_0} = 0$, $p_{\bar{\rho}}(H_{x_0}) = -1$ and $\sigma(H_{x_0}, F_p(\bar{\rho})H_{x_0}) = -1$ then there is a conic neighborhood V of $\bar{\rho}$ such that one can choose smooth $h(\rho)$ defined in $V \cap \Sigma$ such that

(3.2.10)
$$h(\rho) \in \operatorname{Ker} F_p^2(\rho), \ p_\rho(h(\rho)) < 0, \ \sigma(H_{x_0}, F_p(\rho)h(\rho)) = -1$$

for $\rho \in V \cap \Sigma$. We can assume that $h(\rho)$ is homogeneous of degree 0 in ξ , for if not we can just restrict to the sphere $|\xi| = 1$ and extend the restriction so that it becomes homogeneous of degree 0.

Lemma 3.2.4 Assume that $h(\rho)$ satisfies (3.2.10). Then we have

$$\sigma(v, F_p(\rho)h(\rho)) = 0 \Longrightarrow p_\rho(v) > 0.$$

Proof: Let us fix $\rho \in V \cap \Sigma$. We can assume that p_{ρ} has the form (3.2.8). Set $w = F_p(\rho)h(\rho)$ and hence $w \in \operatorname{Ker} F_p(\rho)$. From (3.2.10) one can put $h(\rho) = (y_0, ..., y_n, -1, \eta_1, ..., \eta_n)$ where $y_1 = \cdots = y_k = 0$, $\eta_1 = \cdots = \eta_k = 0$ then we see

$$1 > \sum_{j=k+1}^{k+\ell} \eta_j^2, \quad w = H_{\xi_0} - \sum_{j=k+1}^{k+\ell} \eta_j H_{\xi_j}$$

because $p_{\rho}(h(\rho)) < 0$ and $\sigma(H_{x_0}, w) = -1$. Let $v = (x_0, ..., x_n, \xi_0, ..., \xi_n)$ and $\sigma(v, w) = 0$ hence $\xi_0 - \sum_{j=k+1}^{k+\ell} \eta_j \xi_j = 0$ so that we conclude

$$\xi_0^2 < \sum_{j=k+1}^{k+\ell} \xi_j^2$$

and hence the assertion otherwise we would have

$$\xi_0^2 = (\sum_{j=k+1}^{k+\ell} \eta_j \xi_j)^2 \le (\sum_{j=k+1}^{k+\ell} \eta_j^2) (\sum_{j=k+1}^{k+\ell} \xi_j^2) \le \delta \xi_0^2$$

with some $\delta < 1$ which is a contradiction.

Proposition 3.2.1 Assume that $\operatorname{Ker} F_p^2 \cap \operatorname{Im} F_p^2 = \{0\}$ on Σ . Then p admits an elementary decomposition

$$p = -M\Lambda + Q$$

such that $|M - \Lambda| \le C\sqrt{Q}$ with some C > 0.

Proof: We first work in a neighborhood V of any $\bar{\rho} \in \Sigma$. Let $h(\rho)$ be in Lemma 3.2.3 and put $w(\rho) = F_p(\rho)h(\rho)$. Since $\operatorname{Im} F_p(\rho) = \langle H_{\xi_0}, H_{\phi_1}, ..., H_{\phi_r} \rangle$ then one can write

$$w(\rho) = \gamma_0 H_{\xi_0} - \sum_{j=1}^r \gamma_j H_{\phi_j}$$

where $\gamma_j(\rho)$ are smooth in $V \cap \Sigma$. From $\sigma(H_{x_0}, w(\rho)) = -1$ we have $\gamma_0 = 1$. As remarked above we can assume that γ_j are homogeneous of degree 0 in ξ . Let us put

$$\lambda = \sum_{j=1}^{r} \gamma_j(x, \xi') \phi_j(x, \xi')$$

so that $w(\rho) = H_{\xi_0 - \lambda}$ on $V \cap \Sigma$. Let us write

$$p = -(\xi_0 + \lambda)(\xi_0 - \lambda) + \hat{q}, \quad \hat{q} = \sum_{j=1}^r \phi_j^2 - (\sum_{j=1}^r \gamma_j \phi_j)^2 = q - \lambda^2.$$

We now check that

$$\sum_{j=1}^{r} \gamma_j^2 < 1.$$

From Lemma 3.2.4 it follows that

$$\sigma(v, H_{\xi_0 - \lambda}) = 0 \Longrightarrow \sigma(v, F_p(\rho)v) = \sigma(v, F_{\hat{q}}(\rho)v) > 0.$$

This implies that

$$\sigma(v, H_{\xi_0 - \lambda}) = 0 \Longrightarrow \sum_{j=1}^r \sigma(v, H_{\phi_j})^2 - (\sum_{j=1}^r \gamma_j \sigma(v, H_{\phi_j}))^2 > 0.$$

Note that the map

$$\langle H_{\xi_0 - \lambda} \rangle^{\sigma} / T_{\rho} \Sigma \ni v \mapsto (\sigma(v, H_{\phi_i}))_{j=1,\dots,r} \in \mathbb{R}^r$$

is surjective. Indeed if $\sigma(v, H_{\xi_0 - \lambda}) = 0$, $\sigma(v, H_{\phi_j}) = 0$ for j = 1, ..., r then it follows that

$$v \in \langle H_{\xi_0 - \lambda}, H_{\phi_1}, ..., H_{\phi_r} \rangle^{\sigma} = \langle H_{\xi_0}, H_{\phi_1}, ..., H_{\phi_r} \rangle^{\sigma} = \operatorname{Ker} F_p(\rho) = T_\rho \Sigma.$$

From this it follows that $\langle \gamma, t \rangle^2 < |t|^2$ for any $t \in \mathbb{R}^r$ and hence we conclude

$$|\gamma(\rho)| = (\sum_{j=1}^{r} \gamma_j(\rho)^2)^{1/2} < 1.$$

We extend $\gamma_j(\rho)$ $(\rho \in V \cap \Sigma)$ to V such a way that $|\gamma| < 1$ in V. This proves that

$$\hat{q} \ge c \sum_{j=1}^{r} \phi_j(x, \xi')^2$$

with some c > 0 and hence we have

$$|\lambda|^2 \le \delta q$$

with some $\delta < 1$. Recall that $H_{\xi_0 - \lambda} \in \operatorname{Ker} F_p$ in $V \cap \Sigma$ and this shows that $\{\xi_0 - \lambda, \phi_i\} = 0$ in $V \cap \Sigma$ and hence

$$\{\xi_0 - \lambda, \lambda\} = 0$$
 in $V \cap \Sigma$.

Thus we can find a family of conic open sets $\{V_i\}$ and smooth $\{\lambda_i\}$ defined on V_i , homogeneous of degree 0 such that one can write in V_i

$$p = -\xi_0^2 + q = -\xi_0^2 + \sum_{\alpha=1}^{r(i)} \phi_{i\alpha}^2$$

$$= -(\xi_0 + \lambda_i)(\xi_0 - \lambda_i) + q_i, \quad q_i = q - \lambda_i^2,$$

$$|\lambda_i| \le \sqrt{\delta} \sqrt{q} \quad \text{in} \quad V_i,$$

$$\{\xi_0 - \lambda_i, \phi_{i\alpha}\} = 0 \quad \text{on} \quad V_i \cap \Sigma, \quad \alpha = 1, ..., r(i).$$

Take a partition of unity $\{\chi_i\}$ subordinate to $\{V_i\}$ such that $0 \leq \chi_i \leq 1$, $\chi_i \in C_0^{\infty}(V_i)$, homogeneous of degree 0 and $\sum \chi_i = 1$. Define

$$\lambda = \sum_{i} \chi_i \lambda_i,$$

$$p = -(\xi_0 + \lambda)(\xi_0 - \lambda) + Q, \quad Q = q - \lambda^2.$$

Here we note that

$$|\lambda| \le \sum \chi_i |\lambda_i| \le \sqrt{\delta} \sqrt{q} \sum \chi_i = \sqrt{\delta} \sqrt{q},$$

$$Q = q - \lambda^2 \ge q - \delta^2 q = (1 - \delta^2) q \ge 0.$$

We now show that this gives an elementary decomposition. Note that

$$\{\xi_0 - \lambda, Q\} = \sum \chi_i \{\xi_0 - \lambda_i, Q\} + \sum (\xi_0 - \lambda_i) \{\chi_i, Q\}$$
$$= \sum \chi_i \{\xi_0 - \lambda_i, Q\} - \sum \lambda_i \{\chi_i, Q\}$$

because $\sum \{\chi_i, Q\} = 0$. Recall that $\{\xi_0 - \lambda_i, \phi_{i\alpha}\} = 0$ on $V_i \cap \Sigma$ and hence $\{\xi_0 - \lambda_i, \phi_{i\alpha}\}$ is a linear combination of $\{\phi_{i\alpha}\}$ there. Since $c_1 \sum \phi_{i\alpha}^2 \geq Q \geq c_2 \sum \phi_{i\alpha}^2$ in V_i with some $c_i > 0$ and hence $Q = \sum Q_{\alpha\beta}\phi_{i\alpha}\phi_{i\beta}$ then on the support of χ_i we have

$$|\{\xi_0 - \lambda_i, Q\}| \le C \sum_{\alpha} \phi_{i\alpha}^2 \le C' q_i \le C' q \le C'' Q.$$

On the other hand we have $|\{\chi_i, Q\}| \leq C\sqrt{Q}$ because $Q \geq 0$ and

$$|\lambda_i| \le \delta \sqrt{q} \le C \sqrt{Q}$$

then we get

$$(3.2.11) |\{\xi_0 - \lambda, Q\}| \le CQ.$$

We now study $|\{\xi_0 - \lambda, \xi_0 + \lambda\}| = 2|\{\xi_0 - \lambda, \lambda\}|$. Note that

$$\{\xi_0 - \lambda, \lambda\} = \sum \chi_i \{\xi_0 - \lambda, \lambda_i\} + \sum \lambda_i \{\xi_0 - \lambda, \chi_i\}$$

and

$$\chi_i\{\xi_0 - \lambda, \lambda_i\} = \chi_i \sum \chi_k\{\xi_0 - \lambda_k, \lambda_i\} - \chi_i \sum \lambda_k\{\chi_k, \lambda_i\}.$$

Since we have $\{\xi_0 - \lambda_k, \lambda_i\} = 0$ on $V_k \cap V_i \cap \Sigma$ the same arguments as above give

$$|\{\xi_0 - \lambda_k, \lambda_i\}| \le C\sqrt{q_i} \le C\sqrt{q} \le C'\sqrt{Q}.$$

We check other terms

$$|\lambda_k \{\chi_k, \lambda_i\}| \le C\sqrt{q_k} \le C\sqrt{q} \le C'\sqrt{Q} \quad \text{on} \quad V_k,$$

$$|\lambda_i \{\xi_0 - \lambda, \chi_i\}| \le C\sqrt{q_i} \le C\sqrt{q} \le C'\sqrt{Q} \quad \text{on} \quad V_i.$$

Hence we have

$$|\{\xi_0 - \lambda, \lambda\}| \le C\sqrt{Q}$$

which shows $|\{\xi_0 - \lambda, \xi_0 + \lambda\}| \le C\sqrt{Q}$. This together with (3.2.11) proves the assertion.

3.3 Case Im $F_p^2 \cap \text{Ker } F_p^2 \neq \{0\}$

We next discuss the same problem studied in Section 4.2 for the case Im $F_p^2 \cap \text{Ker}F_p^2 \neq \{0\}$. In particular we give a necessary and sufficient condition in order that p admits an elementary decomposition for general case in terms of some vector field defined near the doubly characteristic manifold.

Recall that we are working with

$$p(x,\xi) = -\xi_0^2 + q(x,\xi'), \quad q(x,\xi') \ge 0$$

where $p(x,\xi)$ is noneffectively hyperbolic and verifies the conditions (3.2.1), (3.2.2) and

(3.3.1)
$$\operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho) \neq \{0\}, \ \forall \rho \in \Sigma.$$

This means that the Hamilton map $F_p(\rho)$ has a Jordan block of size four at every $\rho \in \Sigma$. Recall that from the hypothesis (3.2.1) one can write

$$p(x,\xi) = -\xi_0^2 + \sum_{j=1}^r \phi_j(x,\xi')^2$$

near every $\rho \in \Sigma$ where $d\phi_j$ are linearly independent at ρ and Σ is given by

$$\Sigma = \{\phi_j(x,\xi) = 0, j = 0, ..., r\}$$

where $\phi_0(x,\xi)=\xi_0$ as before. Assume (3.3.1) then by Theorem 2.3.1 the quadratic form $Q=p_\rho$ takes the form, in a suitable symplectic coordinates

(3.3.2)
$$Q = (-\xi_0^2 + 2\xi_0\xi_1 + x_1^2)/\sqrt{2} + \sum_{j=2}^k \mu_j(x_j^2 + \xi_j^2) + \sum_{j=k+1}^{k+\ell} \xi_j^2.$$

Lemma 3.3.1 The number k in (3.3.2) is independent of $\rho \in \Sigma$.

Proof: With $\{\psi_j\} = \{\xi_0, \xi_1, x_1, x_j, \xi_j, 2 \leq j \leq k, \xi_j, k+1 \leq j \leq k+\ell\}$ it follows from Lemma 3.2.1 that the rank of $\{\psi_i, \psi_j\}$ is constant. This shows that k is independent of $\rho \in \Sigma$.

Examining the standard canonical model (3.3.2) it is easy to see that

$$\dim \operatorname{Im} F_p^2(\rho) = 2 + 2(k-1), \quad \dim \operatorname{Im} F_p^3(\rho) = 1 + 2(k-1)$$

which are independent of ρ as we observed above. Since

$$(3.3.3) \quad \dim\left(\operatorname{Ker} F_p(\rho)\cap\operatorname{Im} F_p^3(\rho)\right)=1, \quad \dim\left(\operatorname{Ker} F_p^2(\rho)\cap\operatorname{Im} F_p^2(\rho)\right)=2$$

which is easily verified examining the standard model (3.3.2) then one can choose smooth vectors $z_1(\rho)$, $h_j(\rho)$, j=1,2 defined near a reference point $\bar{\rho} \in \Sigma$ so that

$$\operatorname{Ker} F_p(\rho) \cap \operatorname{Im} F_p^3(\rho) = \langle z_1(\rho) \rangle, \quad \rho \in \Sigma,$$
$$\operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho) = \langle h_1(\rho), h_2(\rho) \rangle, \quad \rho \in \Sigma.$$

Lemma 3.3.2 There are smooth $z_1(\rho)$ and $z_2(\rho)$ defined near the reference point such that

$$\operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho) = \langle z_1(\rho), z_2(\rho) \rangle,$$

$$F_p(\rho)z_1(\rho) = 0, \quad F_p(\rho)z_2(\rho) \neq 0.$$

Proof: Let $\operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho) = \langle h_1(\rho), h_2(\rho) \rangle$. Since $F_p(\rho)h_j(\rho)$, j = 1, 2 are in $\operatorname{Ker} F_p(\rho) \cap \operatorname{Im} F_p^3(\rho)$ there exist smooth $\alpha(\rho)$, $\beta(\rho)$ such that

$$\alpha(\rho)F_p(\rho)h_1(\rho) + \beta(\rho)F_p(\rho)h_2(\rho) = 0.$$

Then it is enough to choose

$$z_1(\rho) = \alpha(\rho)h_1(\rho) + \beta(\rho)h_2(\rho),$$

$$z_2(\rho) = \beta(\rho)h_1(\rho) - \alpha(\rho)h_2(\rho).$$

Note that, in the canonical model (3.3.2) it is easy to see that

(3.3.4)
$$\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho) = \langle H_{\xi_{0}}, H_{x_{1}} \rangle$$

and

$$(3.3.5) z_2(\rho) = aH_{\xi_0} + bH_{x_1}, \quad b \neq 0.$$

Lemma 3.3.3 There exists a smooth $S(x,\xi)$ defined near the reference point vanishing on Σ such that

$$H_S(\rho) = z_2(\rho), \quad \rho \in \Sigma.$$

Proof: Note that from (3.2.5) it follows that

(3.3.6)
$$F_p(\rho)v = \sum_{j=0}^r \epsilon_j \sigma(v, H_{\phi_j}(\rho)) H_{\phi_j}(\rho), \quad \epsilon_0 = -1, \ \epsilon_j = 1, \ j \ge 1$$

and hence

$$(3.3.7) F_p^2(\rho)v = \sum_{k=0}^r \epsilon_k \sigma(v, H_{\phi_k}(\rho)) \left[\sum_{j=0}^r \epsilon_j \sigma(H_{\phi_k}(\rho), H_{\phi_j}(\rho)) H_{\phi_j}(\rho) \right].$$

This shows that

$$\operatorname{Im} F_p^2(\rho) = \langle \sum_{j=0}^r \epsilon_j \sigma(H_{\phi_k}(\rho), H_{\phi_j}(\rho)) H_{\phi_j}(\rho); k = 0, ..., r \rangle$$

and with $A(\rho) = (a_{kj}(\rho)) = (\{\phi_k, \phi_j\}(\rho))$ we have $\operatorname{Im} F_p^2(\rho) = \langle f_1(\rho), ..., f_r(\rho) \rangle$ where $f(\rho) = A(\rho)H_{\phi}(\rho)$, $H_{\phi} = {}^t(-H_{\phi_0}, ..., H_{\phi_r})$. Since the rank of $A(\rho)$ is constant there exists $\beta_{ik}(\rho)$ such that with

$$g_i(\rho) = \sum_{k=0}^{r} \beta_{ik}(\rho) f_k(\rho), \quad i = 1, ..., s$$

we have

$$\operatorname{Im} F_p^2(\rho) = \langle g_1(\rho), ..., g_s(\rho) \rangle.$$

Since $z_2(\rho) \in \operatorname{Im} F_p^2(\rho)$ one can write

$$z_2(\rho) = \sum_{k=1}^{s} \alpha_k(\rho) g_k(\rho)$$

with smooth $\alpha_k(\rho)$. Then

$$z_2(\rho) = \sum_{k=1}^{s} \alpha_k(\rho) \sum_{j=0}^{r} \beta_{kj}(\rho) f_j(\rho) = \sum_{k=1}^{s} \sum_{j=0}^{r} \sum_{\ell=0}^{r} \alpha_k(\rho) \beta_{kj}(\rho) a_{j\ell}(\rho) H_{\phi_{\ell}(\rho)}.$$

Let us define

$$S = \sum_{k=1}^{s} \sum_{j=0}^{r} \sum_{\ell=0}^{r} \tilde{\alpha}_{k} \tilde{\beta}_{kj} \tilde{a}_{j\ell} \phi_{\ell}$$

where $\tilde{\alpha}_k$, $\tilde{\beta}_{kj}$ and $\tilde{a}_{j\ell}$ are smooth extensions outside Σ of α_k , β_{kj} and $a_{j\ell}$. This is a desired one.

Lemma 3.3.4 There exists a smooth $\Lambda(x,\xi)$ defined near the reference point vanishing on Σ such that

$$H_{\Lambda}(\rho) = z_1(\rho), \quad \rho \in \Sigma.$$

Proof: Repeat the same arguments as in the proof of Lemma 3.3.3.

Lemma 3.3.5 In a neighborhood of the reference point we have

$$\forall w \in \langle z_1(\rho) \rangle^{\sigma} \Longrightarrow \sigma(w, F_p(\rho)w) \ge 0.$$

Proof: Choose a symplectic coordinates on which p_{ρ} takes the form (3.3.2). Then it is easy to see that

$$\langle z_1(\rho)\rangle = \langle H_{\xi_0}\rangle$$

and hence if $w \in \langle z_1(\rho) \rangle^{\sigma}$ then

$$\sigma(w, F_p(\rho)w) = Q(w) = x_1^2/\sqrt{2} + \sum_{j=2}^k \mu_j(x_j^2 + \xi_j^2) + \sum_{j=k+1}^{k+\ell} \xi_j^2 \ge 0$$

which is the assertion.

We summarize what we have proved in

Proposition 3.3.1 Assume that p satisfies (3.2.1), (3.2.2) and (3.3.1). Then there exist smooth vectors $z_1(\rho)$, $z_2(\rho)$, $\rho \in \Sigma$ defined near the reference point such that

(3.3.8)
$$z_1(\rho) \in \operatorname{Ker} F_p(\rho) \cap \operatorname{Im} F_p^3(\rho), \quad \rho \in \Sigma,$$

(3.3.9)
$$z_2(\rho) \in \operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho), \quad \rho \in \Sigma,$$

$$(3.3.10) w \in \langle z_1(\rho) \rangle^{\sigma} \Longrightarrow \sigma(w, F_p(\rho)w) \ge 0.$$

Since $F_p(\rho)z_2(\rho)$ is proportional to $z_1(\rho)$, $\rho \in \Sigma$ we may assume, without restrictions, that

(3.3.11)
$$F_p(\rho)z_2(\rho) = -z_1(\rho), \quad \rho \in \Sigma.$$

We have

Proposition 3.3.2 One can write p, near every $\rho \in \Sigma$, as

$$p = -\xi_0^2 + \sum_{j=1}^r \phi_j(x, \xi')^2$$
$$= -(\xi_0 + \phi_1(x, \xi'))(\xi_0 - \phi_1(x, \xi')) + \sum_{j=2}^r \phi_j(x, \xi')^2$$

where Σ is given by $\{\xi_0 = 0, \phi_1 = \dots = \phi_r = 0\}$ and

$$\{\xi_0 - \phi_1, \phi_i\} = 0, \quad j = 1, ..., r, \quad \{\phi_1, \phi_2\} \neq 0 \quad on \quad \Sigma$$

Proof: Let $\Lambda(x,\xi)$ be a smooth function vanishing on Σ such that $H_{\Lambda}(\rho)$ is proportional to $z_1(\rho)$ of which existence is assured by Lemma 3.3.4. Since $\sigma(z_1, H_{x_0}) \neq 0$ by (3.3.10), without restrictions, we may assume that

$$\Lambda = \xi_0 - \lambda, \quad \lambda = \sum_{j=1}^r \gamma_j(x, \xi') \phi_j$$

where ϕ_i are those in (3.2.4). Writing

$$p = -(\xi_0 - \lambda)(\xi_0 + \lambda) + \sum_{j=1}^r \phi_j^2 - (\sum_{j=1}^r \gamma_j \phi_j)^2$$

one obtains

$$\sigma(v, F_p v) = -2\sigma(v, H_\Lambda)\sigma(v, H_{\xi_0 + \lambda})$$
$$+ \sum_{j=1}^r \sigma(v, H_{\phi_j})^2 - (\sum_{j=1}^r \gamma_j(\rho)\sigma(v, H_{\phi_j}))^2.$$

Because of (3.3.10) we have

(3.3.13)
$$\sum_{j=1}^{r} \sigma(v, H_{\phi_j})^2 - (\sum_{j=1}^{r} \gamma_j(\rho)\sigma(v, H_{\phi_j}))^2 \ge 0$$

if $v \in \langle H_{\Lambda}(\rho) \rangle^{\sigma}$. As observed in Section 4.2, the mapping

$$(3.3.14) \langle H_{\Lambda}(\rho) \rangle^{\sigma} / T_{\rho} \Sigma \ni v \mapsto (\sigma(v, H_{\phi_i}))_{i=1,\dots,r} \in \mathbb{R}^r$$

is surjective and hence (3.3.13) shows that

$$\sum_{j=1}^{r} \gamma_{j}(\rho)^{2} = |\gamma(\rho)|^{2} \le 1.$$

We now show that

$$(3.3.15) |\gamma(\rho)| = 1, \quad \rho \in \Sigma.$$

We first note that $\sigma(z_2, F_p z_2) = \sigma(z_1, z_2) = \sigma(F_p^3 w, z_2) = -\sigma(w, F_p^3 z_2) = 0$ because $z_1 = F_p^3 w$ with some w and $z_2 \in \operatorname{Ker} F_p^2$. Since $\sigma(z_2, z_1) = \sigma(z_2, H_{\Lambda}) = 0$ we have

$$0 = \sigma(z_2, F_p z_2) = \sum_{j=1}^r \sigma(z_2, H_{\phi_j})^2 - (\sum_{j=1}^r \gamma_j(\rho)\sigma(z_2, H_{\phi_j}))^2.$$

If $\sigma(z_2, H_{\phi_j}) = 0$ for j = 1, ..., r then $z_2 \in \langle H_{\Lambda}, H_{\phi_1}, ..., H_{\phi_r} \rangle^{\sigma} = \text{Ker } F_p$ which contradicts to $F_p z_2 = -z_1$. This proves that $\sigma(z_2(\rho), H_{\phi_j}(\rho))_{1 \leq j \leq r}$ is different from zero and hence one get (3.3.15) because

$$\sum_{j=1}^{r} \sigma(z_2, H_{\phi_j})^2 = (\sum_{j=1}^{r} \gamma_j \sigma(z_2, H_{\phi_j}))^2 \le |\gamma|^2 \sum_{j=1}^{r} \sigma(z_2, H_{\phi_j})^2.$$

We still denote by $\gamma(x,\xi')$ an extension of $\gamma(\rho)$ outside Σ such that $|\gamma(x,\xi')|=1$. Thus we can write

$$p(x,\xi) = -(\xi_0 + \langle \gamma, \phi \rangle)(\xi_0 - \langle \gamma, \phi \rangle) + |\phi|^2 - \langle \gamma, \phi \rangle^2$$

where $\{\xi_0 - \langle \gamma, \phi \rangle, \phi_j\} = 0$, j = 1, ..., r on Σ since $H_{\xi_0 + \langle \gamma, \phi \rangle} \in \text{Im } F_p$. Let us set $\psi_1(x, \xi') = \sum_{j=1}^r \gamma_j(x, \xi') \phi_j(x, \xi')$ and taking a smooth orthonormal basis

$$\gamma(x,\xi'), e_2(x,\xi'), ..., e_r(x,\xi'), e_j = (e_{j1}, ..., e_{jr})$$

and define

$$\psi_j(x,\xi') = \sum_{h=1}^r e_{jh}(x,\xi')\phi_h(x,\xi')$$

so that $\sum_{j=1}^r \psi_j(x,\xi')^2 = \sum_{j=1}^r \phi_j(x,\xi')^2$. Switching the notation to $\{\phi_j\}$ we can thus write

$$p(x,\xi) = -(\xi_0 + \phi_1(x,\xi'))(\xi_0 - \phi_1(x,\xi')) + \sum_{j=2}^r \phi_j(x,\xi')^2$$

where $\{\xi_0 - \phi_1, \phi_j\} = 0$ on Σ for j = 1, ..., r. We finally check that $\{\phi_1, \phi_k\} \neq 0$ for some k. Indeed if otherwise we would have $\{\xi_0, \phi_j\} = 0, j = 1, ..., r$ and this would contradict (3.3.1). In fact if this would happen then we have

$$p_{\rho} = -\xi_0^2 + \sum_{j=1}^r \ell_j^2, \quad \{\xi_0, \ell_j\} = 0, \quad j = 1, ..., r.$$

Since $\sum_{j=1}^r \ell_j^2$ is a non negative definite quadratic form, in a suitable symplectic basis, p_ρ takes the form (1) of Theorem 2.3.1. Renumbering the coordinates so that k=2 we have the assertion.

REMARK: From Proposition 3.3.2 one can write $\{\xi_0 - \phi_1, \phi_j\} = \sum_{k=1}^r c_{jk} \phi_k$ but if $c_{j1} \neq 0$ then $\{\xi_0 - \phi_1, \phi_j\}$ could not controlled by $\sum_{j=2}^r \phi_j^2$.

3.4 Vector field H_S

Let $S(x,\xi)$ be a smooth real function defined on $T^*\Omega$, homogeneous of degree 0, such that

$$(3.4.1) S(x,\xi) = 0, \quad (x,\xi) \in \Sigma$$

and we have on Σ

$$(3.4.2) H_S(\rho) \in \operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho), \ F_p(\rho)H_S(\rho) \neq 0.$$

We first remark that it is possible to choose S independent of ξ_0 . In fact from Lemma 3.3.4 one can take $\Lambda(x,\xi)$ so that

$$\Lambda(\rho) = 0, \ H_{\Lambda}(\rho) = z_1(\rho), \ \rho \in \Sigma.$$

Since $\sigma(H_{x_0}, F_p(\rho)H_{x_0}) = -1$ it follows that $\sigma(H_{x_0}, H_{\Lambda}(\rho)) \neq 0$, $\rho \in \Sigma$ due to (3.3.10). This proves that one can write, without restrictions,

$$\Lambda(x,\xi) = \xi_0 - \lambda(x,\xi').$$

Let us write $S(x,\xi) = \alpha \xi_0 + f(x,\xi')$ and put

$$\tilde{S}(x,\xi') = S(x,\xi) - \alpha \Lambda(x,\xi).$$

Then it is clear that $\tilde{S}(x,\xi')$ verifies (3.4.1) and (3.4.2) for $H_{\Lambda}(\rho) \in \operatorname{Ker} F_p(\rho) \cap \operatorname{Im} F_p^3(\rho)$.

Recall that $p(x,\xi)$ takes the form

$$(3.4.3) p(x,\xi) = -\xi_0^2 + q(x,\xi'), q(x,\xi') \ge 0.$$

Lemma 3.4.1 Assume that p admits an elementary decomposition such that $p = -M\Lambda + Q$. Then $H_{\Lambda}(\rho)$ is proportional to $z_1(\rho)$, $\rho \in \Sigma$.

Proof: Let $\Lambda = \xi_0 - \lambda$. It is obvious that $q = Q + \lambda^2 \geq 0$ and hence λ and Q vanishes on Σ at least of order 1 and 2 respectively. Then it is clear that $H_{\Lambda}(\rho) \in \text{Im } F_p(\rho)$. Recall

$$F_p H_{\Lambda} = -\sigma(H_{\Lambda}, H_M) H_{\Lambda} + F_Q H_{\Lambda}.$$

It is clear that $\sigma(H_{\Lambda}, H_M) = \{\Lambda, M\} = 0$ and from (3.1.1) we have $F_Q H_{\Lambda} = H_{\{Q,\Lambda\}} = 0$ on Σ . This shows that $F_p H_{\Lambda} = 0$ and hence H_{Λ} is in $\operatorname{Im} F_p \cap \operatorname{Ker} F_p$ on Σ .

Let S be a smooth function verifying (3.4.1) and (3.4.2). Since $H_S \in \text{Im } F_p$ then $\sigma(H_{\Lambda}, H_S) = {\Lambda, S} = 0$ on Σ . Thus one has

$$F_p H_S = -(1/2)\sigma(H_S, H_M)H_\Lambda + F_Q H_S$$

which gives $\sigma(H_S, F_p H_S) = \sigma(H_S, F_Q H_S) = 0$ because $F_p H_S \in \text{Ker } F_p$ and $H_S \in \text{Im } F_p$. This proves

$$(3.4.4) F_Q H_S = 0 on \Sigma$$

because $\sigma(H_S,F_QH_S)=Q_{\rho}(H_S)$ and Q_{ρ} is non negative definite. Thus we have

$$F_p H_S = -\frac{1}{2}\sigma(H_S, H_M)H_{\Lambda}.$$

By definition of S we have $F_pH_S \neq 0$ and this proves the assertion.

Lemma 3.4.2 Assume that p admits a decomposition

$$p(x,\xi) = -(\xi_0 + \lambda)(\xi_0 - \lambda) + Q(x,\xi') = -M\Lambda + Q$$

with $Q(x,\xi') \geq 0$. If $F_Q H_{\Lambda} = 0$ on Σ and F_p has no non zero real eigenvalues then (3.1.2) holds.

Proof: We first note that

$$\Sigma = \{\Lambda = 0, M = 0, Q = 0\}.$$

Since $F_pH_{\Lambda}=-(1/2)\sigma(H_{\Lambda},H_M)H_{\Lambda}$ by $F_QH_{\Lambda}=0$. If $\sigma(H_{\Lambda},H_M)\neq 0$ then F_p would have a non zero real eigenvalue which contradicts the assumption. Hence

$$\sigma(H_{\Lambda}, H_M) = {\Lambda, M} = 0$$
 on Σ .

Then one can write

$$\{M,\Lambda\} = \sum_{j=1}^{r} c_j \psi_j$$

where

$$q = Q + \lambda^2 = \sum_{j=1}^r \psi_j^2$$

because $\{M,\Lambda\}$ is independent of ξ_0 . The assertion follows from (3.4.5).

We now show

Proposition 3.4.1 ([6]) Let S_1 , S_2 be two smooth functions verifying (3.4.1) and (3.4.2). Then there exists $C \neq 0$ such that

$$H_{S_1}^3 p\big|_{\Sigma} = C H_{S_2}^3 p\big|_{\Sigma}.$$

We first show

Lemma 3.4.3 Assume that p admits a decomposition $p = -M\Lambda + Q$ with $\Lambda = \xi_0 - \lambda$, $M = \xi_0 + \lambda$, $Q \ge 0$ such that H_{Λ} is proportional to $z_1(\rho)$ for $\rho \in \Sigma$. Let S be a smooth function verifying (3.4.1) and (3.4.2). Then we have

$$H_S^3Q = 0$$
 on Σ .

Proof: Let ϕ_j be as in (3.2.4). It is clear that $\Sigma = \{\xi_0 = 0, \lambda = 0, Q = 0\}$ and hence one can write

$$\Lambda = \xi_0 - \sum_{i=1}^r \gamma_j \phi_j, \quad Q = |\phi|^2 - \langle \gamma, \phi \rangle^2.$$

It is also clear that $|\gamma(x,\xi')| \leq 1$ near Σ because $Q \geq 0$ by assumption. Repeating the same arguments in the proof of Proposition 3.3.2 we conclude that

$$|\gamma(\rho)| = 1 \quad \rho \in \Sigma$$

and $\gamma(\rho)$ is proportional to $\sigma(H_S(\rho), H_{\phi}(\rho))$

(3.4.6)
$$H_S\phi(\rho) = \sigma(H_S(\rho), H_\phi(\rho)) = \alpha(\rho)\gamma(\rho), \quad \rho \in \Sigma$$

where we have denoted $\sigma(H_S, H_{\phi}) = (\sigma(H_S, \phi_1), ..., \sigma(H_S, H_{\phi_r}))$. As shown in the proof of Lemma 3.4.1 we have

$$0 = \sigma(H_S, F_p H_S) = \sigma(H_S, F_Q H_S)$$

and hence $F_Q H_S = 0$ on Σ because $Q \geq 0$. We now study $H_S^3(|\phi|^2 - \langle \gamma, \phi \rangle^2)$. It is clear that $H_S^3(\phi, \phi) = 6\langle H_S^2\phi, H_S\phi \rangle$ on Σ and hence

(3.4.7)
$$H_S^3\langle\phi,\phi\rangle = 6\alpha\langle H_S^2\phi,\gamma\rangle \quad \text{on} \quad \Sigma.$$

On the other hand one obtains

$$H_S^3 \langle \gamma, \phi \rangle^2 = 4(\langle H_S \gamma, \phi \rangle + \langle \gamma, H_S \phi \rangle) \times (2\langle H_S \gamma, H_S \phi \rangle + \langle \gamma, H_S^2 \phi \rangle) + 2\langle \gamma, H_S \phi \rangle (\langle H_S^2 \gamma, \phi \rangle + 2\langle H_S \gamma, H_S \phi \rangle + \langle \gamma, H_S^2 \phi \rangle).$$

On Σ this becomes

$$(3.4.8) 6\alpha \langle \gamma, H_S^2 \phi \rangle + 12\alpha^2 \langle H_S \gamma, \gamma \rangle.$$

Since $1 - |\gamma|^2 \ge 0$ near Σ and $1 - |\gamma|^2 = 0$ on Σ it follows that

$$H_S(1-|\gamma|^2) = -H_S\langle \gamma, \gamma \rangle = -2\langle H_S\gamma, \gamma \rangle = 0$$
 on Σ .

Thus (3.4.8) is equal to $6\alpha \langle \gamma, H_S^2 \phi \rangle$ and hence the assertion.

Proof of Proposition 3.4.1: Let S_1 , S_2 be two functions verifying our assumptions. From Proposition 3.3.2 we can write

$$p = -M\Lambda + Q, \quad Q \ge 0$$

where H_{Λ} is proportional to $z_1(\rho)$ and $\{\Lambda, Q\}$ vanishes of second order on Σ . By (3.4.2) one can write $F_pH_{S_j}=c_jH_{\Lambda}$ with $c_j\neq 0,\ j=1,2$. Now

$$H_{S_j}^3 p = \{S_j, \{S_j, \{S_j, -\Lambda M + Q\}\}\}\$$

= -3\{S_j, M\}\{S_j, \{S_j, \Lambda\}\}

on Σ because $\{S_j, \Lambda\} = 0$ and $H^3_{S_j}Q = 0$ on Σ by Lemma 3.4.3. Since one can write

$$H_{S_i} = \theta_i z_2(\rho) + H_{f_i}(\rho), \quad \rho \in \Sigma, \ j = 1, 2$$

with $H_{f_j} \in \operatorname{Ker} F_p \cap \operatorname{Im} F_p^3$ where f_j vanishes on Σ then we obtain that

$$H_{S_1}(\rho) = \frac{\theta_1}{\theta_2} H_{S_2}(\rho) + H_f(\rho)$$

where $H_f(\rho) \in \operatorname{Ker} F_p$ and f vanishes on Σ . Let us set

$$-3{S_i, M} = \alpha_i, \quad j = 1, 2$$

which is different from zero. Indeed if $\{S_j, M\} = 0$ then we would have $\{S_j, \xi_0\} = \sigma(H_{S_j}, H_{\xi_0}) = 0$ and hence $F_p H_{S_j} = \sum \sigma(H_{S_j}, H_{\phi_k}) H_{\phi_k}$ which is not proportional to H_{Λ} . Then we have

$$H_{S_1}^3 p = \alpha_1 \{ S_1, \{ S_1, \Lambda \} \} = \alpha_1 \{ \frac{\theta_1}{\theta_2} S_2 + f, \{ \frac{\theta_1}{\theta_2} S_2 + f, \Lambda \} \}$$
$$= \alpha_1 \left[(\frac{\theta_1}{\theta_2})^2 \{ S_2, \{ S_2, \Lambda \} \} + \frac{\theta_1}{\theta_2} \{ S_2, \{ f, \Lambda \} \} \right]$$
$$+ \frac{\theta_1}{\theta_2} \{ f, \{ S_2, \Lambda \} \} + \{ f, \{ f, \Lambda \} \} \right].$$

Since $\{S_j, \Lambda\} = 0$, $\{f, \Lambda\} = 0$ on Σ and hence

$$\{f, \{S_2, \Lambda\}\} = 0, \quad \{f, \{f, \Lambda\}\} = 0, \text{ on } \Sigma.$$

This shows that the third and fourth terms in the above formula vanish on Σ . Taking into account the Jacobi identity

$${S_2, {f, \Lambda}} = -{f, {\Lambda, S_2}} - {\Lambda, {S_2, f}}$$

we see that the second term also vanishes on Σ because $H_f \in \operatorname{Im} F_p \cap \operatorname{Ker} F_p$. Hence one has

$$H_{S_1}^3 p \big|_{\Sigma} = \frac{\alpha_1}{\alpha_2} (\frac{\theta_1}{\theta_2})^2 H_{S_2}^3 p \big|_{\Sigma}.$$

This is the desired assertion.

3.5 Elementary decomposition revisited

Recall that we are assuming (3.2.1) and (3.2.2) throughout this chapter. The next result was proved in [44] under some restrictions on the double characteristic manifold and in [6] in full generality removing the previous restrictions.

Theorem 3.5.1 ([6], [44]) Let S be a smooth function verifying (3.4.1) and (3.4.2). Then the following assertions are equivalent.

- (i) $H_S^3 p(\rho) = 0, \ \rho \in \Sigma$,
- (ii) p admits an elementary decomposition at every $\rho \in \Sigma$.

Proof: We start by proving that (ii) \Longrightarrow (i). From Lemma 3.4.1 we see that H_{Λ} is proportional to $z_1(\rho)$. Then due to Lemma 3.4.3 one has $H_S^3Q = 0$ on Σ and hence

(3.5.1)
$$H_S^3 p|_{\Sigma} = -3\{S, M\}\{S, \{S, \Lambda\}\}|_{\Sigma}.$$

From (3.5.1) it suffices to show

$$\sigma(H_S, H_{\{S,\Lambda\}}) = 0$$

on Σ . Thanks to (3.1.1) we have $\operatorname{Ker} F_Q \subset \operatorname{Ker} F_{\{\Lambda,Q\}}$. This together with (3.4.4) shows that

$$H_{\{S,\{\Lambda,Q\}\}} = -F_{\{\Lambda,Q\}}H_S = 0$$

on Σ . Recall the Jacobi identity

$$\{Q, \{S, \Lambda\}\} + \{S, \{\Lambda, Q\}\} + \{\Lambda, \{Q, S\}\} = 0.$$

Considering the Hamilton vector field of (3.5.2) we obtain

(3.5.3)
$$F_Q H_{\{S,\Lambda\}} + H_{\{\Lambda,\{Q,S\}\}} = 0 \text{ on } \Sigma.$$

Let us study the second term in (3.5.3)

$$H_{\{\Lambda, \{Q,S\}\}} = [H_{\Lambda}, H_{\{Q,S\}}].$$

Since $H_{\{Q,S\}}|_{\Sigma} = F_Q H_S|_{\Sigma} = 0$ and $H_{\Lambda} \in T_{\rho}\Sigma = \operatorname{Ker} F_p$, $\rho \in \Sigma$ it follows that $[H_{\Lambda}, H_{\{Q,S\}}] = 0$. This gives

$$(3.5.4) F_Q H_{\{S,\Lambda\}} = 0.$$

Then we have $F_pH_{\{\Lambda,S\}} = -(1/2)\sigma(H_{\{\Lambda,S\}}, H_M)H_{\Lambda}$ because $\sigma(H_{\{\Lambda,S\}}, H_{\Lambda}) = 0$ which follows from $\{S,\Lambda\} = 0$ on Σ . From Lemma 3.4.1, H_{Λ} is proportional to z_1 and then F_pH_S is so

$$(3.5.5) H_{\Lambda} = \alpha(\rho) F_p H_S.$$

This gives that

$$H_{\{\Lambda,S\}} + \frac{1}{2}\alpha(\rho)\sigma(H_{\{\Lambda,S\}}, H_M)H_S \in \operatorname{Ker} F_p(\rho)$$

which proves clearly

$$\sigma(H_S, H_{\{\Lambda, S\}}) = 0$$

and thus we have proved $(ii) \Longrightarrow (i)$.

The implication (i) \Longrightarrow (ii) follows immediately from the following result which will be key observations in this chapter. To make the statement of the following proposition to be clear, using $\tilde{\phi}_j$ instead of ϕ_j , assume that p is written as

$$p = -\xi_0^2 + \sum_{j=1}^r \tilde{\phi}_j^2$$

near ρ .

Proposition 3.5.1 Assume (3.3.1). Let S be a smooth function verifying (3.4.1) and (3.4.2) and assume that

$$H_S^3 p = 0$$

near ρ on Σ . Then near ρ we can rewrite ρ as

$$p = -(\xi_0 + \lambda)(\xi_0 - \lambda) + Q$$

with

$$\lambda = \phi_1 + L(\phi')\phi_1 + \gamma\phi_1^3|\xi'|^{-2},$$

$$Q = \sum_{j=2}^r \phi_j^2 + a(\phi)\phi_1^4|\xi'|^{-2} + b(\phi')L(\phi')\phi_1^2 \ge c(|\phi'|^2 + \phi_1^4|\xi'|^{-2})$$

with some c > 0 where ϕ_j are linear combinations of $\tilde{\phi}_j$, j = 1, ..., r and $\phi = (\phi_1, \phi_2, ..., \phi_r)$, $\phi' = (\phi_2, ..., \phi_r)$. Here $\xi_0 - \lambda$ and ϕ_j satisfy

$$(3.5.6) |\{\xi_0 - \lambda, Q\}| \le C(|\phi'|^2 + \phi_1^4 |\xi'|^{-2}),$$

(3.5.7)
$$\{\xi_0 - \lambda, \phi_j\} = O(|\phi|), \quad j = 1, ..., r,$$

$$\{\phi_1, \phi_j\} = O(|\phi|), \quad j \ge 3,$$

$$(3.5.9) {\phi_1, \phi_2} > 0$$

near ρ . Here $L(\phi') = O(|\phi'||\xi'|^{-1})$ and γ is a real constant.

Proof: Denote $\tilde{\phi}_j$ by ϕ_j . Let p be as in (3.4.3). From Proposition 3.3.2 we can write

$$(3.5.10) p(x,\xi) = -(\xi_0 + \phi_1(x,\xi'))(\xi_0 - \phi_1(x,\xi')) + |\phi'(x,\xi')|^2$$

where

$$(3.5.11) \{\xi_0 - \phi_1, \phi_j\}|_{\Sigma} = 0, \quad j = 1, ..., r, \quad \{\phi_1, \phi_2\}(\rho) \neq 0.$$

Recall that $H_{\xi_0-\phi_1}$ is proportional to $z_1(\rho)$ on Σ near ρ .

Let us consider

$$\tilde{\phi}_j = \sum_{k=2}^r O_{jk} \phi_k, \quad j = 2, ..., r.$$

where $O = (O_{jk})$ is an orthogonal matrix which is smooth near ρ . Choosing O suitably and switching the notation $\{\tilde{\phi}_j\}$ to $\{\phi_j\}$ again we can assume that

$$\{\phi_1, \phi_2\}(\rho) \neq 0, \ \{\phi_1, \phi_j\} = 0 \text{ near } \rho \text{ on } \Sigma, \ j = 3, ..., r.$$

We may assume $\{\phi_1, \phi_2\} > 0$ without restrictions. Thus the assertion (3.5.9) are proved.

We now determine $L(\phi') = \langle \beta', \phi' \rangle$ where $\beta' = (\beta_2, ..., \beta_r)$ and β_j are smooth functions of (x, ξ') , homogeneous of degree -1 in ξ' , following the arguments in [6]. We rewrite (3.5.10) as

$$p(x,\xi) = -(\xi_0 + \phi_1 + L(\phi')\phi_1 + \gamma \hat{\phi}_1^3 |\xi'|^{-2})$$

$$\times (\xi_0 - \phi_1 - L(\phi')\phi_1 - \gamma \phi_1^3 |\xi'|^{-2}) + |\phi'|^2 - L(\phi')^2 \phi_1^2$$

$$-\gamma^2 \phi_1^6 |\xi'|^{-4} - 2\phi_1^2 L(\phi') - 2\gamma \phi_1^4 |\xi'|^{-2} - 2\gamma L(\phi')\phi_1^4 |\xi'|^{-2}$$

$$= -(\xi_0 + \phi_1 + L(\phi')\phi_1 + \gamma \phi_1^3 |\xi'|^{-2})$$

$$\times (\xi_0 - \phi_1 - L(\phi')\phi_1 - \gamma \phi_1^3 |\xi'|^{-2})$$

$$+|\phi'|^2 - 2\gamma (1 + L(\phi') + \gamma \phi_1^2 |\xi'|^{-2}/2)\phi_1^4 |\xi'|^{-2}$$

$$-2L(\phi')(1 + L(\phi')/2)\phi_1^2 = -(\xi_0 + \lambda)(\xi_0 - \lambda) + Q$$

where

$$\lambda = \phi_1 + L(\phi')\phi_1 + \gamma\phi_1^3|\xi'|^{-2},$$

$$Q = |\phi'|^2 - 2\gamma(1 + L(\phi') + \gamma\phi_1^2|\xi'|^{-2}/2)\phi_1^4|\xi'|^{-2} - 2L(\phi')(1 + L(\phi')/2)\phi_1^2.$$

Now the assertion (3.5.7) follows from (3.5.11) immediately. Taking γ negative large enough it is clear that

(3.5.13)
$$Q \ge c(|\phi'|^2 + \phi_1^4 |\xi'|^{-2})$$

with some c > 0. We prove that we can choose β' so that (3.5.6) holds. Note that

$$\{\xi_0 - \lambda, Q\} = \{\xi_0 - \phi_1, |\phi'|^2 - 2L(\phi')(1 + L(\phi')/2)\phi_1^2\}$$

$$-\{L(\phi')\phi_1, |\phi'|^2\} + O(Q)$$

where one can write

(3.5.15)
$$\{\xi_0 - \phi_1, \phi_j\} = \sum_{k=1}^r \alpha_{jk} \phi_k, \quad j = 1, ..., r$$

with smooth α_{ik} . Using (3.5.15) and (3.5.13), (3.5.14) reads as

$$\{\xi_{0} - \lambda, Q\} = 2 \sum_{\ell=2}^{r} \phi_{\ell} \sum_{k=1}^{r} \alpha_{\ell k} \phi_{k}$$

$$(3.5.16) \qquad -2\phi_{1}^{2} \sum_{\ell=2}^{r} \beta_{\ell} \sum_{k=1}^{r} \alpha_{\ell k} \phi_{k} (1 + L(\phi')/2)$$

$$-2\phi_{1} \sum_{\ell=2}^{r} \phi_{\ell} \sum_{k=2}^{r} \beta_{k} \{\phi_{k}, \phi_{\ell}\} + O(Q).$$

Distinguishing the role of ϕ_1 from that of ϕ' , we can write

$$\{\xi_0 - \lambda, Q\} = 2\sum_{\ell=2}^r \alpha_{\ell 1} \phi_{\ell} \phi_1 - 2\phi_1 \sum_{\ell=2}^r \phi_{\ell} \sum_{k=2}^r \beta_k \{\phi_k, \phi_{\ell}\}$$

$$-2\phi_1^3 \sum_{\ell=2}^r \beta_{\ell} \alpha_{\ell 1} + O(Q).$$

Put $\alpha'_1 = (\alpha_{21}, ..., \alpha_{r1})$ then (3.5.17) becomes

$$\{\xi_0 - \lambda, Q\} = 2(\langle \alpha'_1, \phi' \rangle + \langle \{\phi', \phi'\} \beta', \phi' \rangle)\phi_1$$

$$(3.5.18) \qquad -2\phi_1^3 \langle \alpha'_1, \beta' \rangle + O(Q).$$

We show that we can choose $\beta' = (\beta_2, ..., \beta_r)$ such that

(3.5.19)
$$\{\phi', \phi'\}\beta' + \alpha_1' = 0, \quad \langle \alpha_1', \beta' \rangle = 0$$

on Σ so that the right-hand side of (3.5.18) is O(Q).

Lemma 3.5.1 We have

$$\langle \alpha_1', v \rangle = 0$$

for any v satisfying $\{\phi', \phi'\}v = 0$.

Proof: We first make a closer look at our assumption $H_S^3 p = 0$. Since S vanishes on Σ and one can assume that S is independent of ξ_0 then we can write

(3.5.20)
$$S(x,\xi') = \sum_{j=1}^{r} c_j(x,\xi')\phi_j(x,\xi').$$

Since $H_{\xi_0-\phi_1}$ is proportional to $z_1(\rho)$ on Σ then F_pH_S is also proportional to $H_{\xi_0-\phi_1}$ on Σ . Thanks to Proposition 3.4.1, multiplying S by a non zero function if necessary, we may assume that

(3.5.21)
$$F_p H_S = -H_{\xi_0 - \phi_1}$$
 on Σ .

We study the identity (3.5.21). Plugging (3.5.20) into (3.5.21) to get

$$F_p H_S(\rho) = -\frac{1}{2} \{ S, \xi_0 + \phi_1 \} H_{\xi_0 - \phi_1} + \sum_{j=2}^r \{ S, \phi_j \} H_{\phi_j}$$

$$= -\frac{1}{2} \sum_{h=1}^r c_h \{ \phi_h, \xi_0 + \phi_1 \} H_{\xi_0 - \phi_1} + \sum_{j=2}^r \sum_{h=1}^r c_h \{ \phi_h, \phi_j \} H_{\phi_j}$$

$$= -H_{\xi_0 - \phi_1}$$

on Σ because $\{S, \xi_0 - \phi_1\} = 0$. Hence we have on Σ

$$\frac{1}{2} \sum_{h=1}^{r} c_h \{\phi_h, \xi_0 + \phi_1\} = 1,$$

$$c_1 \{\phi_1, \phi_j\} + \sum_{h=2}^{r} c_h \{\phi_h, \phi_j\} = 0, \quad j = 2, ..., r$$

and, taking $\{\phi_h, \xi_0 + \phi_1\} = \{\phi_h, \xi_0 - \phi_1\} + 2\{\phi_h, \phi_1\}$ into account, we have

$$(3.5.23) c_2\{\phi_2,\phi_1\} = 1$$

because $\{\phi_j, \phi_1\} = 0$ for $j \geq 3$. We multiply (3.5.22) by c_j and sum up over j = 2, ..., r which yields

$$-c_1 + \sum_{h=2}^{r} \sum_{j=2}^{r} c_j c_h \{\phi_h, \phi_j\} = 0.$$

The second term in the left-hand side vanishes because $(\{\phi_k, \phi_h\})$ is anti symmetric and thus we get $c_1 = 0$ and (3.5.22) gives

(3.5.24)
$$\{S, \phi_j\} = 0, \quad j = 2, ..., r, \quad S = \sum_{h=2}^{r} c_h \phi_h$$

near ρ on Σ where $c_2 = {\phi_2, \phi_1}^{-1} \neq 0$.

By Lemma 3.4.3 one obtains

$$H_S^3 p = -3\{S, \xi_0 + \phi_1\}\{S, \{S, \xi_0 - \phi_1\}\} = c\{S, \{S, \xi_0 - \phi_1\}\}\$$

with some $c \neq 0$ which is examined in the proof of Lemma 3.4.3. Take (3.5.23) and (3.5.24) into account we see that $H_S^3 p = 0$ on Σ implies that

$$\{S, \xi_0 - \phi_1\} = O(|\phi'| + \phi_1^2).$$

Since $\{S, \phi_1\} = 1$ then from (3.5.24) it follows that $\alpha_{j1} = \{S, \{\xi_0 - \phi_1, \phi_j\}\}\$. Thanks to the Jacobi identity we get for $j \geq 2$

$$\alpha_{j1} = -\{\xi_0 - \phi_1, \{\phi_j, S\}\} - \{\phi_j, \{S, \xi_0 - \phi_1\}\}\$$
$$= -\{\phi_j, \{S, \xi_0 - \phi_1\}\}\$$

on Σ because of (3.5.24). Thus from (3.5.25) we can write

$$\alpha_{j1} = \sum_{k=2}^{r} w_k \{ \phi_j, \phi_k \}$$

with some w_k . Then one has

$$\sum_{j=2}^{r} v_j \alpha_{j1} = \sum_{k=2}^{r} w_k \sum_{j=2}^{r} \{\phi_j, \phi_k\} v_j = 0$$

which is the desired assertion.

Thanks to Lemma 3.5.1 it follows that the equation

$$\{\phi', \phi'\}\beta' = -\alpha_1'$$

has a smooth solution β' . Finally we note that $\langle \alpha'_1, \beta' \rangle = 0$ holds since $\{\phi', \phi'\}$ is anti-symmetric. Thus we have proved the assertion (3.5.6).