Chapter 1

Necessary conditions for
well-posedness

1.1 Lax-Mizohata theorem

Let P(x, D) be a differential operator of order m defined in a neighborhood €2
of the origin of R™"*! with coordinates # = (x9, 71, ..., n) = (20, 2')

(1.1.1) P(x,D)= Y aa(z)D"

loe|<m
where D = Dg° --- Do, D; = —i0/0z; and aq(z) € C°(£2). We assume that
hyperplanes xg = const. are non characteristic for P. Thus we may assume
A(m,0,..., 0)($) =1
Definition 1.1.1 We say that the Cauchy problem for P is C* well posed near
the origin if there are € > 0 and a neighborhood w of the origin such that for any
|7| < € and for any f(x) € C5°(w) vanishing in xo < T there is a unique solution
u(r) € H*®(w) to Pu = f inw vanishing in o < 7, where H*(w) = N5 o HP (w)
and HP(w) denotes the usual Sobolev space of order p.

Assume that v € H*(w) vanishes in zp < 7 with |7| < e. If Pu=0inzo <t
(t] < €) then we conclude that u = 0 in zg < t. To see this, take x € C§°(w)
and note that the equation Pw = P(xu) has a solution w € H*(w) vanishing
in zp < t. Since w — xu = 0 in xyp < min{7,t}, and P(w — xu) = 0, by the
uniqueness we get w = xu and hence v = 0 in zy < t. Since x € C§°(w) is
arbitrary we conclude v =0 in zg < t.

Lemma 1.1.1 Assume that the Cauchy problem for P is C* well posed near
the origin. Then the following classical Cauchy problem has a unique solution
u € H®(w)

(1.12) { Pu=f in wn{xyg>rT}

Dgu(T, ') =ui(2"), j=0,1,..,m—1
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2 CHAPTER 1. NECESSARY CONDITIONS FOR WELL-POSEDNESS

for any gwen f(x) € C§°(w) and u;(z') € C(wN{zg=7}).

Proof: Since zo = 7 is non characteristic, we can compute u;(z') = Dju(r,z")
for j =m,m+1,... from u;(2'), j =0,...,m — 1 and the equation Pu = f. By
a Borel’s lemma, we can take 4 € C§°(w) so that D)u(r,z’) = u;(a’) for all
j € N. Clearly we have Dg(Pﬁ —f)=0on {zg =7} for all j € N. The function
g, defined by ¢ = Pu — f in zp > 7 and zero in zp < 7 is in C§°(w). By the
assumption there is v € H*(w) such that Pv = g in w and v = 0 in g < 7.
This shows that

{P(ﬁ—v):f in wnN{zy >},
D)(t—v) =u;(z') on wn{ze=r7}

so that u —v € H*(w) is a desired solution to (1.1.2). O

For the operator (1.1.1) we write

P(z,§) = Z ao ()% = Py (2,8) + Pr—1(2,8) + - -

laf<m

where Pj(z,£) denotes the homogeneous part of degree j with respect to &.
Recall that P, (z,&) is called the principal symbol and we often write p(x,§) =
P (z,€) if the order m is clear from the context.

Definition 1.1.2 Let P be as above. We say that P or p is strongly hyperbolic
near the origin if for any differential operator Q) of order less than m defined in
Q, the Cauchy problem for P+ Q is C* well posed near the origin.

REMARK: In this definition, the open set w may depend on @. In conclusion,
at least in the scalar case, w is independent of Q).

Definition 1.1.3 Let P({) be a (monic) polynomial in ¢ of degree m. Then we
say that P(C) is a hyperbolic polynomial if and only if the all zeros of P(C) are
real.

We note that the coefficients of P({) are real.

Lemma 1.1.2 Let P(C) be a hyperbolic polynomial. Then

o J
(8_C) P(C), 0<5<m—-1

are also hyperbolic polynomials.

Proof: For a proof, see [1] for example. O

The following result is due to [32] for the case of simple characteristic roots
and to [38] in general and called the Lax-Mizohata theorem.
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Theorem 1.1.1 (Lax-Mizohata) Assume that the Cauchy problem for P is C*
well posed near the origin. Then there is a neighborhood U of the origin such
that for any x € U, the polynomial p(x,§) is hyperbolic polynomial with respect

to 50.
Proof: See, for example, Theorem 23.3.1 in [19]. O

Thus if the Cauchy problem is C'*° well posed near the origin then the
characteristic equation

p(z,§) =0
has only real roots with respect to & for any z € U and any &' = (&1, ...,&,) €
R™\ {0}.
Definition 1.1.4 We say that p (or P) is strictly hyperbolic with respect to the
direction g if p(x,&) = 0 has mutually different real roots for any x € Q and

for any & € R™\ {0}.

There is a beautiful theory for strictly hyperbolic operators, see for example,
[33], [13]. Here we only refer to the well-posedness of the Cauchy problem.

Theorem 1.1.2 Assume that p is strictly hyperbolic in € in the direction xq.
Then the Cauchy problem is C'* well posed for any lower order term. In par-
ticular strictly hyperbolic operator is strongly hyperbolic.

Hence we are mainly interested in what happens if we have a (real) multiple
characteristic root.

1.2 Ivrii-Petkov condition

Before stating the Ivrii-Petkov condition, we study multiple roots of a hyperbolic
polynomial. Let us study

(1.2.1) flt,s)=t"+ fi(s)t" L+ fi(s)

where f;(s) € C*°(J) and J is an open interval containing the origin. We assume
that f(t,s) = 0 has only real roots with respect to ¢ for any s € J. We also
assume that

(1.2.2) £i(0)=0, i=1,2,..,7
that is t = 0 is a r folded zero of f(¢,0).
Lemma 1.2.1 Assume (1.2.2). Then we have
fi(s)=0(s") as s =0, i=1,2,....r
and one can write
F(t.5) = fo,0)(t ) + O([t] + |s])*

where f(o,0)(t,s) is of homogeneous of degree r and hyperbolic with respect to t
for all s € R.
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REMARK: Note that f(o)(t, s) is given by

flut, ps) = p"{fo,0)(t,5) + O(w)},  p— 0.
Proof: Take o; € N such that f;(s) = O(s%) (if f;(s) = O(s*) for any k then
we take o; sufficiently large). Put

min U—,j =1 >0

1<j<r p
where p, q are relatively prime. We first prove f;(s) = O(s?). It is enough to
prove A > 1. We suppose 0 < A < 1 and derive a contradiction. Plug ¢ = w|s|*
into f(t,s) = 0 which yields

0= ij\str,j(s), fo(s) =1.
§=0

|7)\7’

Multiplying |s we get

0= ijfr,j(s)|s|_)‘(”_j).
=0
Let s — 40 then we have

; =A(r—j) .
i [s]20D (s).

_ j o + _

(123) O_Zw]fr—ja fr—j -
j=0

By the assumption there is at least one 0 < j < r—1 such that fri_ ; # 0. We first

note that the equation (1.2.3) has r real roots. Otherwise since f& = fo(s) = 1,
by Rouché’s theorem, f(¢,s) = 0 would have a non real root for small s which
contradicts the assumption. We first treat the case ¢ > 2. If fji # 0 then
ojq = pj and hence j = ng with some n € N. Then (1.2.3) with + sign is
reduced to

W+ aw T+ g = 0.

The equation (1.2.3) with — sign is reduced to a similar equation. One can
express

1 1
T 1 —\4 . — lq = 0 0 .
ur (14 ar(g) e al)) =0, (@ £0)
With W = (1/w)? this turns out to be
(1.2.4) aW'+ - +a,W+1=0.

Noting that (1.2.4) has a non zero root, W, we get a non real root w from
w? = 1/W because ¢ > 2 and hence a contradiction. We turn to the case ¢ = 2
and hence p = 1. From the same arguments (1.2.3) is reduced to

w" +afw T4 aliwr_zl = 0.
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Since for(s) = s¥(azr + O(s)), s — 0 we see that aj = a, if k is even and

a; = —a, if k is odd. As before we are led to

1 1
{1 N2 . /2 = 0.
w ( +a1(w) +ta (w)
With W = (1/w)? we have

(1.2.5) aFWh o afW +1 =0,

As observed above, W and —W are the root of (1.2.5) at the same time and
hence from w? = 1/W we get a non real root and a contradiction. Thus we
have proved that A > 1 and hence the result.

We turn to the second assertion. Set ¢ = ws and plug this into f(¢,s) = 0.
Then we have

sTf(t,s) =w" +aw T+ +a, + sg(w,s)
= f(0,0) (wa 1) + Sg(w7 S)'

From this we see that f ¢)(w,1) = 0 has only real roots. Since

t
fo,0(ts) = Srf(o,o)(ga 1)

we get the desired assertion. (]

Definition 1.2.1 Let P(¢) be a polynomial and assume that P(n) = 0. We
define P, (¢) by

P(n+ pc) = p{Py(Q) + O(u)}, n— 0, By(¢) # 0.
We call P,(C) the localization of P(¢) at n. This is nothing but

and hence of homogeneous of degree .

We study now hyperbolic polynomial with parameter x € R™. Let U C R™ be
a neighborhood of the origin of R"” and

P(t,s)=t"+ fi(x)t" '+ + fr(x), fi(0)=0
which is hyperbolic with respect to ¢ for all x € U.

Lemma 1.2.2 Under the above assumption we have

()00 =0, Jo] < 1

and the localization P o)(t,z) at (0,0) is hyperbolic with respect to t for all
zeU.
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Proof: Fix n € R, n # 0 and consider

P(t,sn) = f(t,s;n) =t + fi(sp)t” '+ -+ fr(sn).

For |s| < §, f(t,s;n) is hyperbolic with respect to t. From Lemma 1.2.1 it
follows that

(Y smlamo = (1, 2V () =0, K <j—1.

Since 7 is arbitrary this shows the assertion. On the other hand

P(ut, pz) = f(ut, psz) = p"{ fo0,0)(t; L;2) + O(p)}

where f(9,0)(t,1; x) is hyperbolic with respect to ¢ by Lemma 1.2.1. This shows
that Po,0)(t,2) = f(0,0)(t,1;2) and hence the result. O

We finally study the general case
P(t,z) =t™ + a1 (2)t™ 1 + -+ ap(z)
which is hyperbolic with respect to t for any x € U. Assume that

) o .
(5 2y P(i, ) #0.

(1.2.6) (5

e P(t,2) =0, k=0,1,...,r — 1,
Then we have

Corollary 1.2.1 Assume (1.2.6). Then

0.., 0

V(N Pt 7)) = ; <p_
(VS P(Ea) =0, j+la]<r—1

and the localization P(m)(t, x) is hyperbolic with respect to t for any x € R™.
Proof: We first note that there is a neighborhood V of & such that one can write
P(t,z) = Q(t,x)R(t,x), xz€V

where () and R are hyperbolic polynomials in ¢ of degree r and m—r respectively
and

(gt) Qt,2)=0,k=0,...,r—1, R(t,%)#0.

Applying Lemma 1.2.1 to Q(f +t,# + z) to get
QU +1t,3+2) = Qi z)(t,x) + O(Jt] + |z
Since R(t,#) # 0 we get
P(i+t,& +x) = R(t, £)Q 1 4 (t, ) + O([t| + |=])" 1.

This proves the assertion. O
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Definition 1.2.2 A point (z,&) is called a characteristic (point) of order r if
agafp(a—:,g‘) =0, la+ ] < Ggafp(a_c,g) # 0 some |a+ (| =r.

Lemma 1.2.3 Assume that p(z,&) is a hyperbolic polynomial with respect to &
and

J r
(8%) p(E.8) =0, 0<j<r 1, (i) p(E.6) 0.

Then (z,€) is a characteristic of order r.

Proof: By Corollary 1.2.1. O

The next result is due to [22] and called the Ivrii-Petkov (necessary) condi-
tion.

Theorem 1.2.1 (Ivrii-Petkov) Assume that the Cauchy problem for P is C*
well posed near the origin and (0,&) is a characteristic of order r. Then we have

08 Py (0,§) =0, |a+ 8| <r—2j
We give a proof of this theorem in Section 2.4.

Corollary 1.2.2 Assume that p is strongly hyperbolic near the origin. Then
every multiple characteristic is at most double.

1.3 Implications of well posedness

We start with the next lemma.

Lemma 1.3.1 Assume that the Cauchy problem for P is C* well posed near
the origin. Then there are open neighborhood w and € > 0 such that for any
compact set K CC w and p € N there are C > 0, ¢ € N such that

[ull ety < CllPull o)

for any u € C(K_.) and |t| < € where Kt = {z € K | zg < t} and similarly
Ki={zx e K |xzy>t}.

Proof: Take an open set V so that K CC V CC w. Let us define Fy;, M =
1,2,... by

Fy ={f € C°(V_.) | Ju € H?(w) such that
Pu=finw,||ullgre) < M,u=0inzg < —¢}.

By the well-posedness assumption, it is clear that

G Fur = O (V).

M=1
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It is also clear that Fs is symmetric and convex. Let Fiyy > f; — fin C§°(V_,).
Then there exist u; such that Pu; = f; and |Juj||gr() < M, taking a subse-
quence, we may suppose that
uj — uin HP'(w) and u; — u weak in HP (w), u € HP(w).

It is clear that Pu :_fin wand v = 0 in g < —e. This shows that F),
is closed. Since C§°(V_.) is a complete metric space, then from the Baire’s
category theorem some F); contains a neighborhood of 0 in C§°(V_.). That is,
there exist ¢ > 0 and § > 0 such that

feC(Vee), fllgaqvy <6= f € Fu.

For any f € C§°(V_.), taking 0 /|| f| ra(v) which is now in Fis, we get

(1.3.1) | oy < MY fll raqvy-

We summarize that for any f € C3°(V_.), the solution v to Pu = f in w
vanishing in zy < —e satisfies (1.3.1).

Let u € C°(K_.). Take y € C$°(V) so that x = 1 on K. Take g € S(R"1)
so that Pu = g in ¢y < t. Then the solution v, vanishing in g < —e, to Pv = xg
coincides with u in xg < ¢t as we remarked after Definition 1.1.1. Hence

oll oy =l vey < Collxgllmaey)
< Collgllraevy < Collgllraensry-

Since this holds for any g € S(R™*!) provided g = Pu in zg < t, this shows
that

lull e (vey < Co |1 Pull mra(ao <ty = Co |1 Pull gracxr)

and hence the result. O

Corollary 1.3.1 Assume that the Cauchy problem for P is C*° well posed near
the origin. Then there are a neighborhood w of the origin and € > 0 such that
for any compact set K CC w one can find C > 0 and p € N such that

|U|CO(Kt) < C|Pu‘0p(Kt)
for any u € C§°(K ), |t| < e where [u|or(x) = SUDyek |a|<p |07 w(T)].

Proof: By Sobolev embedding theorem. O
Let P(x,&) be the full symbol of P(z, D). Let us set

Pr(x,8) = P(y(A) + A7z, A"n(A) + A7€)

where o = (0¢,...,00), A% = (A"%°x0, ..., \"%"x,,) and y()\), n()\) are R*+!
valued continuous functions defined near A = oco.
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Lemma 1.3.2 Assume that 0 € Q and y(oo) = 0 and the Cauchy problem for
P is C°° well posed near the origin. Then for every compact set W C R and
every positive T > 0 there are C > 0, A > 0 and p € N such that

”U,‘CO(Wt) < C)\(K+6)p|P)\u‘Cp(Wt)
for any u € C°(W), A > A, |t| < T where & = max; 0.
Proof: Let u € C§°(K) and put v(x) = e 1)@y (2) € C°(K). Then from

Corollary 1.3.1 we get

[v]co(kty = |ulcorty < C|Pv|er k)
(1.3.2) = Ce™" N2 Py ey gery < C'NP| Pu|on ()

where P(z,D) = e~ A" (N)2) p(g D)eA"(1N).2) = P(x X\on()\) + D). Take
a compact set K so that K contains the origin and inf{z( |z € K} > —e.
Let W C R"™! be a given compact set. Then there is A\; such that for any
u € C5° (W) we have

uN7(z —y(N\)) e C(K)  if A> )\

remarking y(oco) = 0. Set v(x) = uw(\(z — y(A))) and t(A) = A7%%s + yo(A).
Take Ay so that A > A9 and |s| < T implies [t(A)| < e. Then from (1.3.2) it
follows that

|U|CO(Kt(A)) S C)\HP|PU‘Cp(Kt(A)).

This shows that, by the change of coordinates z = A7 (z — y(X)),
’u‘co(ws) < C,)\K/p+6p’PAu’Cp(Ws)

and hence the result. O

1.4 Proof of Ivrii-Petkov condition

We give a proof of Theorem 1.2.1 following [22] but some techniques of the proof
are little bit refined which are taken from [8]. Recall that we are interested in a
differential operator of order m

P(z,D) = P, (z,D)+ Pp_1(z,D) +--- .

Assume that (z,¢) is a characteristic of order r. Taking a new system of local

coordinates, we may assume, without restrictions, that (z,&) = (0,e,) where
en = (0,...,0,1).

Let us denote z = (0, e,) and put

Pm_j(Z + H($,f)) = Msj {Pm—j,z(xag) + O(:u)}
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where P,,_; .(x,&) is the localization of P,,_; at z (Definition 1.1.1). Assume
that Theorem 1.2.1 does not hold, that is there is j > 1 such that s; < r — 2j.
Let us define

b= min {1
o = min

Jysj<r—25 \r — Sj
then 6y < 1/2 by assumption. Put

P(z, &) = > P (z,6).

m—rfo=m—j—s;00,5>0

Lemma 1.4.1 There is (z,€') near (0,0) such that P(z,&y,€') = 0 has a non
real root.

Proof: Let us write

a(w. &) = 3 Py (,9).

m—rfp=m—j—s;00,5>1

We first assume ¢(0,&p,0) # 0. Then one can write

P0,6,0) =&+ > aé

T00:j+5j00

Put 0y = p/q where p and ¢ are relatively prime. Since 6y < 1/2 we get ¢ > 3.
Then (r —s;)0y = j implies 7 — s; = ng with some n € N. Hence we can express

P(0,&,0) = & (1 + Zal(giﬂ)lq> _

Now to prove that 15(0, €0,0) = 0 has a non real root it is enough to repeat the
same arguments as in the proof of Lemma 1.2.1.

We now assume that ¢(0,&p,0) = 0. It is clear that there is (Z, €') such that
q(sz, &o, s€') is not identically zero in (§p, s) by the assumption. Consider

f(€o,5) = P(s7,&,58) =&+ fi(s)60 7

Jj=1

which verifies f(£p,0) = &. From Lemma 1.2.1 it follows that f;(s) = O(s?)
if f(&o,s) = 0 has only real roots for small s. But this is not the case by the
assumption again. This ends the proof. O
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Put 0g =1 — 26y and study

P(A%x, xep + A°D) =" Pp_j(A"%x, Xe, + A7 D)
7=0

=> A" TPy (A %z, + A% 70 D)

7=0

m
— E E )\mfjfsjeofkeo

]:O k‘>0 m—j—Sj(go—k90>—M

1 [ —0 « —
x> == PE0,e,)2 (A0 D) + O(A M)

alB!
la+B|=s;+k B

where M is a sufficiently large integer and by O(A~M) we denote a differential
operator whose coefficients are bounded by A~ on any preassigned open set

U in R**! and P((g))( ) = GfﬁgP(x,f). Let us set

G(o) (2, N) i Z \—d+(r—s;)80—kbo

Jj=0m—j—s;00—kbo>—M
(a) B¢
x atglp(ﬁ) (0, en)a"¢
la+B|=s;+k

so that
Py(z, D) =A™ GO (2 A7 D; \) + O(A™M).

It is useful to rewrite G(©)(z, &; \) in the following way

GO (z,60) = Y A ENGO (¢

=0
where 0 = §o(G() < §;(G(®)) .. Tt is clear that

(1.4.1) Gz = Y Puj.lz€).

j*(T*Sj)eo—O

Definition 1.4.1 We say that a differential operator P(z, D;\) with a param-
eter X is in R(U) if there are k € Q1 and differential operators Pj(x,D) with
coefficients in C>°(U) such that

P(xz,D; \) ZA %I P;(x, D)

where it is understood that the sum is finite.

Lemma 1.4.2 Let G(x, D) be a differential operator with coefficients in C°(U)
and let o, 0 € Q4 be such that c > 60 > 0 and let ¢ € C*°(U). Then



12 CHAPTER 1. NECESSARY CONDITIONS FOR WELL-POSEDNESS

(i) we have
e_i’\e‘z’G(az, )\_"D)ei’\gqS = Gz, D (¢, + A7D)) + X (2, A7 D; \)

with r(z,§;X) € R(U).
(i) If G(x,&) = O(|£]9) as & — 0 uniformly with respect to x € U, then

e~ NG (2, A D) = G2, A\~ (¢, + A7 D))
AN @=09=00( A7ID; N)

with r(x, & X)) € R(U).

REMARK: It is important to remark that in the notation above the quantity
G(z, A== (¢, + A79D)) does not contain any term in which the derivatives
land on ¢, (z), as will be clear from the proof, these terms are pushed into
the "error” terms r and thus G(z,A\"(“=9 (¢, + A7YD)) is to be thought as a
commutative expression.

Proof: Denote by ¥ (z,y) = ¢(x) — ¢(y) — (y — x, ¢ (x)). Then if u(x) is smooth
we have
e_M%(“’)G(a:, )\_”D)eiAs‘z’(z)u(x)
= 3 G A0, () (A7 D) [N D u(y)]

a>0

y=x

= Y G A6, () (A7 D) ()

a>0
+ 3 GO @A, ()
a0 & '
x> (Z) (A7 D,)PeX P (A= Dy ) = Fu(y)] _ .

2<|BI< ]

The first term is what has been called G (2, A== (¢,(z) + A=7D)). Let us
take a closer look at the second term. Due to the vanishing of ¢(z,y)|,=, and
Vi(z,y)|y== the quantity Dﬁe“‘gw(z’y)]y:m is a polynomial in the variable \?
of degree less than or equal to [|3]/2], the integral part of |3|/2. Factoring out
M181/2 we obtain a polynomial of the same degree in the variable A?. Thus the
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second sum above can be written as

1 —(o— —(o—0)|a
EJG(Q)(‘T’A ( 9)%@)))\ (c—0)|al

a>0
X Z A~ONlFO1BI2p o (2 A9 DO Pu(x)

2<|BI<]al

1 (e —(0— —(o— «
:Zag( Nz, A" g, (z)) A~ (0=l
a>0
(lal/2]

X Z AT N Papolzi A (AD)* Pu(x).

|Bl=2v
With

1
by (2, Dy \) = A~(0=0k Z —,G(a)(fﬂa)\_(a_e)(f’m(@)

|| =k
X Z Paﬁ@(lt;)\ie)()\ieD)aiﬁ
|B|=2v
this can be rewritten as
[k/2]
A (2, ATOD5N), r(@, D A) =) 0> bk (, D A).
k=0 v=1

It is clear that r(z,&;\) € R(U).
We turn to the second assertion. It is obvious that nothing is changed in the
first term, so that all we have to do is just look at the second term. If k > ¢

then
)\—(U—@)k < A—(o‘—@)q.

If k£ < ¢ then our assumption implies that

G (x,€) = 0(I¢]"")
and hence G (2, A== ¢ ) = O(A~(@=N(@=k))  This proves the assertion. [J

From the assumption we may start off assuming that there is an analytic
function 7o (z,£’) with Im 7 # 0 such that

det G (2, €) = (€0 — 702, )% Ao(x, ), Aoz, T0(,),€") #0

in some open set U x V in R**! x R™. In the sequel, U and V stands for an
open set in R"*! and R"™ respectively which may differ from line to line but
"the subsequent one is contained in the preceding one’. Denote by gb(o)(x) a real
analytic function in U such that

Dy 0 () = To(x, 00 O ().
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Then we have
=N @) GO) (3 A=90 D 1) (@)
= GO (2,6 (2) + A= D; \) + A= RO (2, A" D; \)

with R(O)(z,&; ) € R(U) by Lemma 1.4.2.
We prepare the following lemma for our induction.

Lemma 1.4.3 Consider a differential operator
(1.4.2) GP (z,pP) (x) + A\~ D; \) + A\™7? RP) (2, \"9» D; \)
where o, = a1 — 0, 0, € Qp with c_1 =1 — 0y, RP) (x,&\) € R(U), which

s verifying

()  GP(2,6) = S ABENG (1 6) 0= 6,(GP) < ,(GP) < -
j=0

the sum being finite and Ggp) (z,D) denoting a differential operator with real

analytic coefficients and ¢P)(x) is a real analytic function in U such that gzs;p) (z)
is a root of GWP)(x, &) = 0 with uniform multiplicity qp, that is

020" (2) = (2,00 0@ (2)) in U,
(id)p G (.6) = (60 — (€))% By, §),
Ap(z,mp(2,£),8)#0in U XV
where T,(z, ") is a real analytic in U x V' and there is k(p) € N such that
(i) ops Ops 6;(G7) (j = 1) € N/k(p).

Then we can find 0,1 € Q1 and a real analytic ¢ PtV (z) in U such that with
Opt1 = 0p — Opp1 that
o~ AL (2) [G(p) (z, ¢§Cp) () + A7 D; \)
(1.4.3) AT R (2, A7 D; \)| AT @)
= \"Or+t19p [G<p+1)(x, d)gtp—l—l)(x) + AP Dy )
FATTr RPTD (g \=70+1 D; A)]

where

_85.((p+1)
o { GO (2,6 0) = 3, A% EGE Y (2 ¢),
p

0= 50(G(P+1)) < 51(G(1’+1)) < ...

the sum being finite and G§p+1)(x, D) denoting a differential operator with an-

alytic coefficients and ¢(p+1)(1:) s a real analytic function such that qb;(va) is a
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root of Gépﬂ)(x,f) = 0 with uniform multiplicity qp+1 that is

0z, 0PV (2) = T (2,00 6PHV(2)) in U,

(#)p+1 G(()p+1)($,f) = (&0 — Tpt1(2, &)1 Apya (2, 6),
Ap+1(:c,7p+1(a;,§'),§') 7é 0imUxV

where Tp41(x, &) is real analytic in U x V' and there is k(p + 1) € N such that
(#4)p41 pi1s Op1s §;(GPTY) (j = 1) € N/k(p+1).
Proof: Set
GP (@, &A) =GP (@, o) (@) + & A) + A~ R (2,6 )
then G®)(x,£; \) can be written as

G (.6 0) = Y A EET (@,¢)

j=0
where 50(@(;9)) = 50(G(p)) =0 and
G (2,€) = G (2,0 (2) + )
and hence G'P(z,0) = 0. Thus one can write
(1.4.4) G (@, A0 = AT [GP) (,€) + O(A )]
for any 6 > 0. From (i7), it is clear that sh = ¢, and
G (2,378 = G (2,6 () + A7)
=2 YD (G a0l )" + O]

la|<ap

hence

(145) G @6 = 3 (G 6P (@)

la|=gp

. 5. (G®)
0p+1 = min {M,QP}

521,52 <sh

We now define

so that, in particular, 0,11 < 0,. Let

Op+1 = Op — Up+1-

For our present purpose we shall assume that o1 > 0. If 0,11 < 0 we make a
different argument in the following.
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Let now ¢+ (z) be a real analytic function in U, which we shall precise in
the following. Applying Lemma 1.4.2 we compute

—i)\? ) = _ i\ (
e i P+l¢(?+1 (x)G(p) (.’L‘, A UPD; )\)€Z>\ p+l¢ p+1)

(1.4.6) _ Z)\—éj(é(pwé;p) (% )\—Bp+1(¢(zp+1)(x) + )\—UerlD))
j=0
+ Z )\—51 (é(?))—9p+15§—0'p+1 R§p+l) (.I7 )\—o-p+1 D’ )\)
j=0

where R (2,6 1) € R(U). Define G®*1(z,& ) and R®+Y (2, X) by

G (@ A6 0) = A QD (2,60
_ 18P _5.(gPtl) 1
=\ Op+ OZ)\ 5;(G )G§p+ )(Lt,f)
j>0
and
5. (GPH_ P 7
N ATHET bS] RO (g g \)
j=0
— >\—9p+188R(p+1)(1;7£;)\)_

(Note that 6;(G®)) + 0,417 > 6,115). Then this proves (1.4.4). From (1.4.4)
we obtain

(1.4.7) G (g, 6) = > G (z,€)

Opt150=0p+155+0; (G@)

where G’gp ) (z,&) being homogeneous of degree s? with respect to €. Then it is

clear that G’E)p +1)(:v, €) is a polynomial in £ of degree gy = sh and the coefficient
of (I is different from zero. Then one can find some open sets U and V and
real analytic 7,41 (z,¢’) defined in U x V, and real analytic ¢(?*1) () in U such
that (4i)p+1 holds. This proves the lemma. O

Lemma 1.4.4 Assume that there exists a p € N such that
dp = 4p+1 = - = (.
Then there exists a k = k(p) € N such that for allp > p
Opy Oy, 0;(GP), § > 1 belong to NJ/E.

Proof: The fact that g, = ¢,+1 implies that there is no roots of G(()p+1)(3:, £ =0
with respect to {n with uniform multiplicity less than g,. Two cases may occur;

either the sum in (1.4.7) has G’ép ) as the only summand or there are also other
summands. In the former case we have

Opt+150 < Opr15; + 6;(G®)) for every j >0
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which implies that

3;(G™)
Opt < sh— s?

that is, 0,41 = 0,. Assume now that there are terms other than G'(()p ), corre-
sponding to j > 0. Then the condition defining the sum implies that there is
7 > 1 such that

6;(G) = Opia

because of the following lemma.

Lemma 1.4.5 Let .
fr) =) a;r%
§=0

where 0 = g9 < q1 < -+ < ¢s and a; # 0. Then the roots of f(r) = 0 have
multiplicity at most s.

In both cases we conclude that either 6,1 = 0, or 6,41 = §;(G®) holds. In
particular this implies 6,11 € N/k(p) and hence k(p+1) = k(p) since &;(GP*Y)
are obtained summing and multiplying rational numbers whose denominator is

k(p). O

From Lemma 1.4.4 the above iteration procedure occurs only a finite number
of times before reaching a point where

D
Op+1 :UO_ZGi <0
i=1
for a suitable integer p. We may assume for a certain ¢t > 0 that

0y >0, 0p41 =04 =011 <0

that is )
. (0;(GW)

pr— > .

01 mln{ o~ 33. ,Ht} > oy

Our purpose is to construct an asymptotic null solution to the operator
GO, A7 D5 A) = GO (z, 6 (2) + A7 D3 A) + A7 RO (2,077 D5 A)
where R (z,&;\) € R(U). With
~ 5. "(t) ~
GO (,60) =3 A NG (@,¢)
j>0
repeating the same arguments as in the proof of Lemma 1.4.3 one can write
A —0t ). — —0j &) —St-Ut a —0t
GO (@, A D;A) = Y A% @59 (G (¢ DY + O(A)]
j=0

_ )\—0',556 [ Z th) (ZE, D) + Z )\_Sj Kj(il,‘, D)j|

atsézatsg.—i-éj(é(t)) j=>1
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because 5j(@(p)) + atsz- > oysfy where 0 < §; < dy < ---. Since Gét)(x,D) is
a differential operator of order s} which is non characteristic with respect to
o =const, disposing of the power A in front of the operator in square brackets,
we are left with the operator

(1.4.8) P(z,D)+ Y _A7/*Pi(x,D)

Jj=1

where P(x, D) has the principal part G® (z,D) and Pj(z, D) are differential
operators. One can then seek an asymptotic null solution to (1.4.8) in the form

Z)\_j/kuj(x).

320

By the Cauchy-Kowalevski theorem we solve u;(x) successively with ug(z) # 0.
Note that we may assume that

Imm(z, &)< —c in UxV
with some ¢ > 0 where (2,&') € U x V. We solve ¢ (z) under the condition
¢\ (#0,2') = ila’ — &> + (', ).
Then it is easy to see that ¢(9)(z) verifies
Im ¢ (z) > c{dog — xo + |2 — )%}, z0 < o

near £ with some ¢ > 0. The rest of the proof is a repetition of standard
arguments (e.g. Theorem 23.3.1 in [19]). O



