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Chapter 1

Necessary conditions for
well-posedness

1.1 Lax-Mizohata theorem

Let P (x, D) be a di↵erential operator of order m defined in a neighborhood ⌦
of the origin of Rn+1 with coordinates x = (x0, x1, ..., xn) = (x0, x

′)

(1.1.1) P (x, D) =
X

|↵|≤m

a↵(x)D↵

where D↵ = D↵0
0 · · ·D↵n

n , Dj = −i∂/∂xj and a↵(x) ∈ C∞(⌦). We assume that
hyperplanes x0 = const. are non characteristic for P . Thus we may assume
a(m,0,...,0)(x) = 1.

Definition 1.1.1 We say that the Cauchy problem for P is C∞ well posed near
the origin if there are � > 0 and a neighborhood ω of the origin such that for any
|τ | ≤ � and for any f(x) ∈ C∞

0 (ω) vanishing in x0 < τ there is a unique solution
u(x) ∈ H∞(ω) to Pu = f in ω vanishing in x0 < τ , where H∞(ω) = ∩∞

p=0H
p(ω)

and Hp(ω) denotes the usual Sobolev space of order p.

Assume that u ∈ H∞(ω) vanishes in x0 < τ with |τ | < �. If Pu = 0 in x0 < t
(|t| < �) then we conclude that u = 0 in x0 < t. To see this, take χ ∈ C∞

0 (ω)
and note that the equation Pw = P (χu) has a solution w ∈ H∞(ω) vanishing
in x0 < t. Since w − χu = 0 in x0 < min {τ, t}, and P (w − χu) = 0, by the
uniqueness we get w = χu and hence u = 0 in x0 < t. Since χ ∈ C∞

0 (ω) is
arbitrary we conclude u = 0 in x0 < t.

Lemma 1.1.1 Assume that the Cauchy problem for P is C∞ well posed near
the origin. Then the following classical Cauchy problem has a unique solution
u ∈ H∞(ω)

(1.1.2)

(
Pu = f in ω ∩ {x0 > τ}
Dj

0u(τ, x′) = uj(x′), j = 0, 1, ..., m − 1
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for any given f(x) ∈ C∞
0 (ω) and uj(x′) ∈ C∞

0 (ω ∩ {x0 = τ}).

Proof: Since x0 = τ is non characteristic, we can compute uj(x′) = Dj
0u(τ, x′)

for j = m, m + 1, ... from uj(x′), j = 0, ..., m − 1 and the equation Pu = f . By
a Borel’s lemma, we can take û ∈ C∞

0 (ω) so that Dj
0û(τ, x′) = uj(x′) for all

j ∈ N. Clearly we have Dj
0(Pû−f) = 0 on {x0 = τ} for all j ∈ N. The function

g, defined by g = Pû − f in x0 > τ and zero in x0 < τ is in C∞
0 (ω). By the

assumption there is v ∈ H∞(ω) such that Pv = g in ω and v = 0 in x0 < τ .
This shows that (

P (û − v) = f in ω ∩ {x0 > τ},
Dj

0(û − v) = uj(x′) on ω ∩ {x0 = τ}

so that û − v ∈ H∞(ω) is a desired solution to (1.1.2). □

For the operator (1.1.1) we write

P (x, ξ) =
X

|↵|≤m

a↵(x)ξ↵ = Pm(x, ξ) + Pm−1(x, ξ) + · · ·

where Pj(x, ξ) denotes the homogeneous part of degree j with respect to ξ.
Recall that Pm(x, ξ) is called the principal symbol and we often write p(x, ξ) =
Pm(x, ξ) if the order m is clear from the context.

Definition 1.1.2 Let P be as above. We say that P or p is strongly hyperbolic
near the origin if for any differential operator Q of order less than m defined in
⌦, the Cauchy problem for P + Q is C∞ well posed near the origin.

Remark: In this definition, the open set ω may depend on Q. In conclusion,
at least in the scalar case, ω is independent of Q.

Definition 1.1.3 Let P (ζ) be a (monic) polynomial in ζ of degree m. Then we
say that P (ζ) is a hyperbolic polynomial if and only if the all zeros of P (ζ) are
real.

We note that the coefficients of P (ζ) are real.

Lemma 1.1.2 Let P (ζ) be a hyperbolic polynomial. Then

✓
∂

∂ζ

◆j

P (ζ), 0 ≤ j ≤ m − 1

are also hyperbolic polynomials.

Proof: For a proof, see [1] for example. □

The following result is due to [32] for the case of simple characteristic roots
and to [38] in general and called the Lax-Mizohata theorem.

1.2. IVRII-PETKOV CONDITION 3

Theorem 1.1.1 (Lax-Mizohata) Assume that the Cauchy problem for P is C∞

well posed near the origin. Then there is a neighborhood U of the origin such
that for any x ∈ U , the polynomial p(x, ξ) is hyperbolic polynomial with respect
to ξ0.

Proof: See, for example, Theorem 23.3.1 in [19]. □
Thus if the Cauchy problem is C∞ well posed near the origin then the

characteristic equation
p(x, ξ) = 0

has only real roots with respect to ξ0 for any x ∈ U and any ξ′ = (ξ1, ..., ξn) ∈
Rn \ {0}.
Definition 1.1.4 We say that p (or P ) is strictly hyperbolic with respect to the
direction x0 if p(x, ξ) = 0 has mutually different real roots for any x ∈ ⌦ and
for any ξ′ ∈ Rn \ {0}.
There is a beautiful theory for strictly hyperbolic operators, see for example,
[33], [13]. Here we only refer to the well-posedness of the Cauchy problem.

Theorem 1.1.2 Assume that p is strictly hyperbolic in ⌦ in the direction x0.
Then the Cauchy problem is C∞ well posed for any lower order term. In par-
ticular strictly hyperbolic operator is strongly hyperbolic.

Hence we are mainly interested in what happens if we have a (real) multiple
characteristic root.

1.2 Ivrii-Petkov condition

Before stating the Ivrii-Petkov condition, we study multiple roots of a hyperbolic
polynomial. Let us study

(1.2.1) f(t, s) = tr + f1(s)tr−1 + · · · + fr(s)

where fi(s) ∈ C∞(J) and J is an open interval containing the origin. We assume
that f(t, s) = 0 has only real roots with respect to t for any s ∈ J . We also
assume that

(1.2.2) fi(0) = 0, i = 1, 2, ..., r

that is t = 0 is a r folded zero of f(t, 0).

Lemma 1.2.1 Assume (1.2.2). Then we have

fi(s) = O(si) as s → 0, i = 1, 2, ..., r

and one can write

f(t, s) = f(0,0)(t, s) + O(|t| + |s|)r+1

where f(0,0)(t, s) is of homogeneous of degree r and hyperbolic with respect to t
for all s ∈ R.
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✓
∂

∂ζ

◆j
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Remark: Note that f(0,0)(t, s) is given by

f(µt, µs) = µr{f(0,0)(t, s) + O(µ)}, µ → 0.

Proof: Take σj ∈ N such that fj(s) = O(sσj ) (if fj(s) = O(sk) for any k then

we take σj sufficiently large). Put

min
1≤j≤r

σj

j
= λ =

q

p
> 0

where p, q are relatively prime. We first prove fi(s) = O(si). It is enough to
prove λ ≥ 1. We suppose 0 < λ < 1 and derive a contradiction. Plug t = w|s|λ
into f(t, s) = 0 which yields

0 =
rX

j=0

wj |s|λjfr−j(s), f0(s) = 1.

Multiplying |s|−λr we get

0 =
rX

j=0

wjfr−j(s)|s|−λ(r−j).

Let s → ±0 then we have

(1.2.3) 0 =
rX

j=0

wjf±
r−j , f±

r−j = lim
s→±0

|s|−λ(r−j)fr−j(s).

By the assumption there is at least one 0 ≤ j ≤ r−1 such that f±
r−j ∕= 0. We first

note that the equation (1.2.3) has r real roots. Otherwise since f±
0 = f0(s) = 1,

by Rouché’s theorem, f(t, s) = 0 would have a non real root for small s which
contradicts the assumption. We first treat the case q > 2. If f±

j ∕= 0 then
σjq = pj and hence j = nq with some n ∈ N. Then (1.2.3) with + sign is
reduced to

wr + a1w
r−q + · · · + alw

r−lq = 0.

The equation (1.2.3) with − sign is reduced to a similar equation. One can
express

wr

✓
1 + a1(

1
w

)q + · · · + al(
1
w

)lq

◆
= 0, (al ∕= 0).

With W = (1/w)q this turns out to be

(1.2.4) alW
l + · · · + a1W + 1 = 0.

Noting that (1.2.4) has a non zero root, W , we get a non real root w from
wq = 1/W because q > 2 and hence a contradiction. We turn to the case q = 2
and hence p = 1. From the same arguments (1.2.3) is reduced to

wr + a±
1 wr−2 + · · · + a±

l wr−2l = 0.

1.2. IVRII-PETKOV CONDITION 5

Since f2k(s) = sk(a2k + O(s)), s → 0 we see that a+
k = a−

k if k is even and
a+

k = −a−
k if k is odd. As before we are led to

wr

✓
1 + a±

1 (
1
w

)2 + · · · + a±
l (

1
w

)2l

◆
= 0.

With W = (1/w)2 we have

(1.2.5) a±
l W l + · · · + a±

1 W + 1 = 0.

As observed above, W and −W are the root of (1.2.5) at the same time and
hence from w2 = 1/W we get a non real root and a contradiction. Thus we
have proved that λ ≥ 1 and hence the result.

We turn to the second assertion. Set t = ws and plug this into f(t, s) = 0.
Then we have

s−rf(t, s) = wr + a1w
r−1 + · · · + ar + sg(w, s)
= f(0,0)(w, 1) + sg(w, s).

From this we see that f(0,0)(w, 1) = 0 has only real roots. Since

f(0,0)(t, s) = srf(0,0)(
t

s
, 1)

we get the desired assertion. □

Definition 1.2.1 Let P (ζ) be a polynomial and assume that P (η) = 0. We
define P⌘(ζ) by

P (η + µζ) = µr{P⌘(ζ) + O(µ)}, µ → 0, P⌘(ζ) ∕≡ 0.

We call P⌘(ζ) the localization of P (ζ) at η. This is nothing but

P⌘(ζ) =
X
|↵|=r

1
α!

(
∂

∂ζ
)↵P (η)ζ↵

and hence of homogeneous of degree r.

We study now hyperbolic polynomial with parameter x ∈ Rn. Let U ⊂ Rn be
a neighborhood of the origin of Rn and

P (t, s) = tr + f1(x)tr−1 + · · · + fr(x), fi(0) = 0

which is hyperbolic with respect to t for all x ∈ U .

Lemma 1.2.2 Under the above assumption we have

(
∂

∂x
)↵fj(0) = 0, |α| ≤ j − 1

and the localization P(0,0)(t, x) at (0, 0) is hyperbolic with respect to t for all
x ∈ U .
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Proof: Fix η ∈ Rn, η ∕= 0 and consider

P (t, sη) = f(t, s; η) = tr + f1(sη)tr−1 + · · · + fr(sη).

For |s| < δ, f(t, s; η) is hyperbolic with respect to t. From Lemma 1.2.1 it
follows that

(
d

ds
)kfj(sη)|s=0 = 〈η,

∂

∂x
〉kfj(0) = 0, k ≤ j − 1.

Since η is arbitrary this shows the assertion. On the other hand

P (µt, µx) = f(µt, µ;x) = µr{f(0,0)(t, 1;x) + O(µ)}

where f(0,0)(t, 1;x) is hyperbolic with respect to t by Lemma 1.2.1. This shows
that P(0,0)(t, x) = f(0,0)(t, 1;x) and hence the result. □

We finally study the general case

P (t, x) = tm + a1(x)tm−1 + · · · + am(x)

which is hyperbolic with respect to t for any x ∈ U . Assume that

(1.2.6) (
∂

∂t
)kP (t̂, x̂) = 0, k = 0, 1, ..., r − 1, (

∂

∂t
)rP (t̂, x̂) ∕= 0.

Then we have

Corollary 1.2.1 Assume (1.2.6). Then

(
∂

∂t
)j(

∂

∂x
)↵P (t̂, x̂) = 0, j + |α| ≤ r − 1

and the localization P(t̂,x̂)(t, x) is hyperbolic with respect to t for any x ∈ Rn.

Proof: We first note that there is a neighborhood V of x̂ such that one can write

P (t, x) = Q(t, x)R(t, x), x ∈ V

where Q and R are hyperbolic polynomials in t of degree r and m−r respectively
and

(
∂

∂t
)kQ(t̂, x̂) = 0, k = 0, ..., r − 1, R(t̂, x̂) ∕= 0.

Applying Lemma 1.2.1 to Q(t̂ + t, x̂ + x) to get

Q(t̂ + t, x̂ + x) = Q(t̂,x̂)(t, x) + O(|t| + |x|)r+1.

Since R(t̂, x̂) ∕= 0 we get

P (t̂ + t, x̂ + x) = R(t̂, x̂)Q(t̂,x̂)(t, x) + O(|t| + |x|)r+1.

This proves the assertion. □

1.3. IMPLICATIONS OF WELL POSEDNESS 7

Definition 1.2.2 A point (x̄, ξ̄) is called a characteristic (point) of order r if

∂↵
⇠ ∂β

xp(x̄, ξ̄) = 0, |α + β| < r, ∂↵
⇠ ∂β

xp(x̄, ξ̄) ∕= 0 some |α + β| = r.

Lemma 1.2.3 Assume that p(x, ξ) is a hyperbolic polynomial with respect to ξ0

and ✓
∂
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The next result is due to [22] and called the Ivrii-Petkov (necessary) condi-
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Theorem 1.2.1 (Ivrii-Petkov) Assume that the Cauchy problem for P is C∞

well posed near the origin and (0, ξ̄) is a characteristic of order r. Then we have

∂β
x∂↵

⇠ Pm−j(0, ξ̄) = 0, |α + β| < r − 2j.

We give a proof of this theorem in Section 2.4.

Corollary 1.2.2 Assume that p is strongly hyperbolic near the origin. Then
every multiple characteristic is at most double.

1.3 Implications of well posedness

We start with the next lemma.

Lemma 1.3.1 Assume that the Cauchy problem for P is C∞ well posed near
the origin. Then there are open neighborhood ω and � > 0 such that for any
compact set K ⊂⊂ ω and p ∈ N there are C > 0, q ∈ N such that

�u�Hp(Kt) ≤ C�Pu�Hq(Kt)

for any u ∈ C∞
0 (K−✏) and |t| < � where Kt = {x ∈ K | x0 ≤ t} and similarly

Kt = {x ∈ K | x0 ≥ t}.

Proof: Take an open set V so that K ⊂⊂ V ⊂⊂ ω. Let us define FM , M =
1, 2, ... by

FM = {f ∈ C∞
0 (V−✏) | ∃u ∈ Hp(ω) such that

Pu = f in ω, �u�Hp(!) ≤ M, u = 0 in x0 ≤ −�}.

By the well-posedness assumption, it is clear that
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FM = C∞
0 (V−✏).
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It is also clear that FM is symmetric and convex. Let FM ∋ fj → f in C∞
0 (V−✏).

Then there exist uj such that Puj = fj and �uj�Hp(!) ≤ M , taking a subse-
quence, we may suppose that

uj → u in Hp−1
loc (ω) and uj → u weak in Hp(ω), u ∈ Hp(ω).

It is clear that Pu = f in ω and u = 0 in x0 ≤ −�. This shows that FM

is closed. Since C∞
0 (V−✏) is a complete metric space, then from the Baire’s

category theorem some FM contains a neighborhood of 0 in C∞
0 (V−✏). That is,

there exist q ≥ 0 and δ > 0 such that

f ∈ C∞
0 (V−✏), �f�Hq(V ) ≤ δ =⇒ f ∈ FM .

For any f ∈ C∞
0 (V−✏), taking δf/�f�Hq(V ) which is now in FM , we get

(1.3.1) �u�Hp(!) ≤ Mδ−1�f�Hq(V ).

We summarize that for any f ∈ C∞
0 (V−✏), the solution u to Pu = f in ω

vanishing in x0 ≤ −� satisfies (1.3.1).
Let u ∈ C∞

0 (K−✏). Take χ ∈ C∞
0 (V ) so that χ = 1 on K. Take g ∈ S(Rn+1)

so that Pu = g in x0 < t. Then the solution v, vanishing in x0 ≤ −�, to Pv = χg
coincides with u in x0 < t as we remarked after Definition 1.1.1. Hence

�v�Hp(V t) = �u�Hp(V t) ≤ C0�χg�Hq(V )

≤ C ′
0�g�Hq(V ) ≤ C ′′

0 �g�Hq(Rn+1).

Since this holds for any g ∈ S(Rn+1) provided g = Pu in x0 < t, this shows
that

�u�Hp(V t) ≤ C ′′
0 �Pu�Hq({x0<t}) = C ′′

0 �Pu�Hq(Kt)

and hence the result. □

Corollary 1.3.1 Assume that the Cauchy problem for P is C∞ well posed near
the origin. Then there are a neighborhood ω of the origin and � > 0 such that
for any compact set K ⊂⊂ ω one can find C > 0 and p ∈ N such that

|u|C0(Kt) ≤ C|Pu|Cp(Kt)

for any u ∈ C∞
0 (K−✏), |t| < � where |u|Cp(K) = supx∈K,|↵|≤p |∂↵

x u(x)|.

Proof: By Sobolev embedding theorem. □
Let P (x, ξ) be the full symbol of P (x, D). Let us set

Pλ(x, ξ) = P (y(λ) + λ−σx, λη(λ) + λσξ)

where σ = (σ0, ..., σn), λ−σx = (λ−σ0x0, ..., λ
−σnxn) and y(λ), η(λ) are Rn+1

valued continuous functions defined near λ = ∞.

1.4. PROOF OF IVRII-PETKOV CONDITION 9

Lemma 1.3.2 Assume that 0 ∈ ⌦ and y(∞) = 0 and the Cauchy problem for
P is C∞ well posed near the origin. Then for every compact set W ⊂ Rn+1 and
every positive T > 0 there are C > 0, λ̄ > 0 and p ∈ N such that

|u|C0(W t) ≤ Cλ(+σ̄)p|Pλu|Cp(W t)

for any u ∈ C∞
0 (W ), λ ≥ λ̄, |t| < T where σ̄ = maxj σj.

Proof: Let u ∈ C∞
0 (K) and put v(x) = eiλ〈⌘(λ),x〉u(x) ∈ C∞

0 (K). Then from
Corollary 1.3.1 we get

|v|C0(Kt) = |u|C0(Kt) ≤ C|Pv|Cp(Kt)

= C|eiλ〈⌘(λ),x〉P̃ u|Cp(Kt) ≤ C ′λp|P̃ u|Cp(Kt)(1.3.2)

where P̃ (x, D) = e−iλ〈⌘(λ),x〉P (x, D)eiλ〈⌘(λ),x〉 = P (x, λη(λ) + D). Take
a compact set K so that K contains the origin and inf {x0 | x ∈ K} > −�.
Let W ⊂ Rn+1 be a given compact set. Then there is λ1 such that for any
u ∈ C∞

0 (W ) we have

u(λσ(x − y(λ))) ∈ C∞
0 (K) if λ ≥ λ1

remarking y(∞) = 0. Set v(x) = u(λσ(x − y(λ))) and t(λ) = λ−σ0s + y0(λ).
Take λ2 so that λ ≥ λ2 and |s| < T implies |t(λ)| < �. Then from (1.3.2) it
follows that

|v|C0(Kt(λ)) ≤ Cλp|P̃ v|Cp(Kt(λ)).

This shows that, by the change of coordinates z = λσ(x − y(λ)),

|u|C0(W s) ≤ C ′λp+σ̄p|Pλu|Cp(W s)

and hence the result. □

1.4 Proof of Ivrii-Petkov condition

We give a proof of Theorem 1.2.1 following [22] but some techniques of the proof
are little bit refined which are taken from [8]. Recall that we are interested in a
di↵erential operator of order m

P (x, D) = Pm(x, D) + Pm−1(x, D) + · · · .

Assume that (x̄, ξ̄) is a characteristic of order r. Taking a new system of local
coordinates, we may assume, without restrictions, that (x̄, ξ̄) = (0, en) where
en = (0, ..., 0, 1).

Let us denote z = (0, en) and put

Pm−j(z + µ(x, ξ)) = µsj{Pm−j,z(x, ξ) + O(µ)}
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where Pm−j,z(x, ξ) is the localization of Pm−j at z (Definition 1.1.1). Assume
that Theorem 1.2.1 does not hold, that is there is j ≥ 1 such that sj < r − 2j.
Let us define

θ0 = min
j,sj<r−2j

n j

r − sj

o

then θ0 < 1/2 by assumption. Put

P̂ (x, ξ) =
X

m−r✓0=m−j−sj✓0,j≥0

Pm−j,z(x, ξ).

Lemma 1.4.1 There is (x̄, ξ̄′) near (0, 0) such that P̂ (x̄, ξ0, ξ̄
′) = 0 has a non

real root.

Proof: Let us write

q(x, ξ) =
X

m−r✓0=m−j−sj✓0,j≥1

Pm−j,z(x, ξ).

We first assume q(0, ξ0, 0) ∕≡ 0. Then one can write

P̂ (0, ξ0, 0) = ξr
0 +

X
r✓0=j+sj✓0

ajξ
sj

0 .

Put θ0 = p/q where p and q are relatively prime. Since θ0 < 1/2 we get q ≥ 3.
Then (r−sj)θ0 = j implies r−sj = nq with some n ∈ N. Hence we can express

P̂ (0, ξ0, 0) = ξr
0

✓
1 +

X
ãl(

1
ξ0

)lq

◆
.

Now to prove that P̂ (0, ξ0, 0) = 0 has a non real root it is enough to repeat the
same arguments as in the proof of Lemma 1.2.1.

We now assume that q(0, ξ0, 0) ≡ 0. It is clear that there is (x̄, ξ̄′) such that
q(sx̄, ξ0, sξ̄

′) is not identically zero in (ξ0, s) by the assumption. Consider

f(ξ0, s) = P̂ (sx̄, ξ0, sξ̄
′) = ξr

0 +
X
j≥1

fj(s)ξ
r−j
0

which verifies f(ξ0, 0) = ξr
0 . From Lemma 1.2.1 it follows that fj(s) = O(sj)

if f(ξ0, s) = 0 has only real roots for small s. But this is not the case by the
assumption again. This ends the proof. □
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Put σ0 = 1 − 2θ0 and study

P (λ−✓0x, λen + λ✓0D) =
mX

j=0

Pm−j(λ−✓0x, λen + λ✓0D)

=
mX

j=0

λm−jPm−j(λ−✓0x, en + λ−✓0−σ0D)

=
mX

j=0

X
k≥0,m−j−sj✓0−k✓0>−M

λm−j−sj✓0−k✓0

×
X

|↵+β|=sj+k

1
α!β!

P
(↵)
(β) (0, en)xβ(λ−σ0D)↵ + O(λ−M )

where M is a sufficiently large integer and by O(λ−M ) we denote a di↵erential
operator whose coefficients are bounded by λ−M on any preassigned open set
U in Rn+1 and P

(↵)
(β) (x, ξ) = ∂β

x∂↵
⇠ P (x, ξ). Let us set

G(0)(x, ξ;λ) =
mX

j=0

X
m−j−sj✓0−k✓0>−M

λ−j+(r−sj)✓0−k✓0

×
X

|↵+β|=sj+k

1
α!β!

P
(↵)
(β) (0, en)xβξ↵

so that
Pλ(x, D) = λm−r✓0G(0)(x, λ−σ0D;λ) + O(λ−M ).

It is useful to rewrite G(0)(x, ξ;λ) in the following way

G(0)(x, ξ;λ) =
X
j≥0

λδj(G
(0))G

(0)
j (x, ξ)

where 0 = δ0(G(0)) < δ1(G(0)) · · · . It is clear that

(1.4.1) G
(0)
0 (x, ξ) =

X
j−(r−sj)✓0=0

Pm−j,z(x, ξ).

Definition 1.4.1 We say that a differential operator P (x, D;λ) with a param-
eter λ is in R(U) if there are κ ∈ Q+ and differential operators Pj(x, D) with
coefficients in C∞(U) such that

P (x, D;λ) =
X
j=0

λ−jPj(x, D)

where it is understood that the sum is finite.

Lemma 1.4.2 Let G(x, D) be a differential operator with coefficients in C∞(U)
and let σ, θ ∈ Q+ be such that σ ≥ θ > 0 and let φ ∈ C∞(U). Then
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ãl(

1
ξ0

)lq

◆
.

Now to prove that P̂ (0, ξ0, 0) = 0 has a non real root it is enough to repeat the
same arguments as in the proof of Lemma 1.2.1.

We now assume that q(0, ξ0, 0) ≡ 0. It is clear that there is (x̄, ξ̄′) such that
q(sx̄, ξ0, sξ̄

′) is not identically zero in (ξ0, s) by the assumption. Consider

f(ξ0, s) = P̂ (sx̄, ξ0, sξ̄
′) = ξr

0 +
X
j≥1

fj(s)ξ
r−j
0

which verifies f(ξ0, 0) = ξr
0 . From Lemma 1.2.1 it follows that fj(s) = O(sj)

if f(ξ0, s) = 0 has only real roots for small s. But this is not the case by the
assumption again. This ends the proof. □

1.4. PROOF OF IVRII-PETKOV CONDITION 11
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mX

j=0

Pm−j(λ−✓0x, λen + λ✓0D)

=
mX

j=0

λm−jPm−j(λ−✓0x, en + λ−✓0−σ0D)

=
mX

j=0

X
k≥0,m−j−sj✓0−k✓0>−M
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×
X

|↵+β|=sj+k

1
α!β!

P
(↵)
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X
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1
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P
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X
j≥0
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(0)
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X
j=0
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Lemma 1.4.2 Let G(x, D) be a differential operator with coefficients in C∞(U)
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(i) we have

e−iλ✓φG(x, λ−σD)eiλ✓φ = G(x, λ−(σ−✓)(φx + λ−✓D)) + λ−✓r(x, λ−✓D;λ)

with r(x, ξ;λ) ∈ R(U).

(ii) If G(x, ξ) = O(|ξ|q) as ξ → 0 uniformly with respect to x ∈ U , then

e−iλ✓φG(x, λ−σD)eiλ✓φ = G(x, λ−(σ−✓)(φx + λ−✓D))
+λ−(σ−✓)q−✓r(x, λ−✓D;λ)

with r(x, ξ;λ) ∈ R(U).

Remark: It is important to remark that in the notation above the quantity
G(x, λ−(σ−✓)(φx + λ−✓D)) does not contain any term in which the derivatives
land on φx(x), as will be clear from the proof, these terms are pushed into
the ”error” terms r and thus G(x, λ−(σ−✓)(φx + λ−✓D)) is to be thought as a
commutative expression.

Proof: Denote by ψ(x, y) = φ(x)−φ(y)−〈y − x, φx(x)〉. Then if u(x) is smooth
we have

e−iλ✓φ(x)G(x, λ−σD)eiλ✓φ(x)u(x)

=
X
↵≥0

1
α!

G(↵)(x, λ−(σ+✓)φx(x))(λ−σDy)↵
⇥
eλ✓ (x,y)u(y)

⇤
y=x

=
X
↵≥0

1
α!

G(↵)(x, λ−(σ+✓)φx(x))(λ−σDx)↵u(x)

+
X
↵≥0

1
α!

G(↵)(x, λ−(σ+✓)φx(x))

×
X

2≤|β|≤|↵|

✓
α

β

◆⇥
(λ−σDy)βeiλ✓ (x,y)(λ−σDy)↵−βu(y)

⇤
y=x

.

The first term is what has been called G(x, λ−(σ−✓)(φx(x) + λ−σD)). Let us
take a closer look at the second term. Due to the vanishing of ψ(x, y)|y=x and
∇ψ(x, y)|y=x the quantity Dβeiλ✓ (x,y)|y=x is a polynomial in the variable λ✓

of degree less than or equal to [|β|/2], the integral part of |β|/2. Factoring out
λ✓|β|/2 we obtain a polynomial of the same degree in the variable λ✓. Thus the
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second sum above can be written as
X
↵≥0

1
α!

G(↵)(x, λ−(σ−✓)φx(x))λ−(σ−✓)|↵|

×
X

2≤|β|≤|↵|
λ−✓|↵|+✓|β|/2P↵,β,φ(x; λ−✓)D↵−βu(x)

=
X
↵≥0

1
α!

G(↵)(x, λ−(σ−✓)φx(x))λ−(σ−✓)|↵|

×
[|↵|/2]X
⌫=1

λ−✓⌫
X

|β|=2⌫

P↵,β,φ(x; λ−✓)(λ−✓D)↵−βu(x).

With

bk⌫(x, D;λ) = λ−(σ−✓)k
X
|↵|=k

1
α!

G(↵)(x, λ−(σ−✓)φx(x))

×
X

|β|=2⌫

P↵,β,φ(x; λ−✓)(λ−✓D)↵−β

this can be rewritten as

λ−✓r(x, λ−✓D;λ), r(x, D;λ) =
X
k=0

[k/2]X
⌫=1

bk⌫(x, D;λ).

It is clear that r(x, ξ;λ) ∈ R(U).
We turn to the second assertion. It is obvious that nothing is changed in the

first term, so that all we have to do is just look at the second term. If k ≥ q
then

λ−(σ−✓)k ≤ λ−(σ−✓)q.

If k < q then our assumption implies that

G(↵)(x, ξ) = O(|ξ|q−k)

and hence G(↵)(x, λ−(σ−✓)φx) = O(λ−(σ−✓)(q−k)). This proves the assertion. □
From the assumption we may start o↵ assuming that there is an analytic

function τ0(x, ξ′) with Im τ0 ∕= 0 such that

det G
(0)
0 (x, ξ) = (ξ0 − τ0(x, ξ′))q0∆0(x, ξ), ∆0(x, τ0(x, ξ′), ξ′) ∕= 0

in some open set U × V in Rn+1 × Rn. In the sequel, U and V stands for an
open set in Rn+1 and Rn respectively which may di↵er from line to line but
”the subsequent one is contained in the preceding one”. Denote by φ(0)(x) a real
analytic function in U such that

∂x0φ
(0)(x) = τ0(x, ∂x′φ(0)(x)).
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Then we have

e−iλσ0φ(0)(x)G(0)(x, λ−σ0D;λ)eiλσ0φ(0)(x)

= G(0)(x, φ(0)
x (x) + λ−σ0D;λ) + λ−σ0R(0)(x, λ−σ0D;λ)

with R(0)(x, ξ;λ) ∈ R(U) by Lemma 1.4.2.
We prepare the following lemma for our induction.

Lemma 1.4.3 Consider a differential operator

(1.4.2) G(p)(x, φ(p)
x (x) + λ−σpD;λ) + λ−σpR(p)(x, λ−σpD;λ)

where σp = σp−1 − θp, θp ∈ Q+ with σ−1 = 1 − θ0, R(p)(x, ξ;λ) ∈ R(U), which
is verifying

(i)p G(p)(x, ξ;λ) =
X
j=0

λ−δj(G
(p))G

(p)
j (x, ξ), 0 = δ0(G(p)) < δ1(G(p)) < · · ·

the sum being finite and G
(p)
j (x, D) denoting a differential operator with real

analytic coefficients and φ(p)(x) is a real analytic function in U such that φ
(p)
x (x)

is a root of G(p)(x, ξ) = 0 with uniform multiplicity qp, that is

(ii)p

8><
>:

∂x0φ
(p)(x) = τp(x, ∂x′φ(p)(x)) in U,

G
(p)
0 (x, ξ) = (ξ0 − τp(x, ξ′))qp∆p(x, ξ),

∆p(x, τp(x, ξ′), ξ′) ∕= 0 in U × V

where τp(x, ξ′) is a real analytic in U × V and there is k(p) ∈ N such that

(iii)p σp, θp, δj(G(p)) (j ≥ 1) ∈ N/k(p).

Then we can find θp+1 ∈ Q+ and a real analytic φ(p+1)(x) in U such that with
σp+1 = σp − θp+1 that

e−iλσp+1φ(p+1)(x)
⇥
G(p)(x, φ(p)

x (x) + λ−σpD;λ)

+λ−σpR(p)(x, λ−σpD;λ)
⇤
eiλσp+1φ(p+1)(x)(1.4.3)

= λ−✓p+1qp
⇥
G(p+1)(x, φ(p+1)

x (x) + λ−σp+1D;λ)

+λ−σp+1R(p+1)(x, λ−σp+1D;λ)
⇤

where

(i)p+1

(
G(p+1)(x, ξ;λ) =

P
j=0 λ−δj(G

(p+1))G
(p+1)
j (x, ξ),

0 = δ0(G(p+1)) < δ1(G(p+1)) < · · ·

the sum being finite and G
(p+1)
j (x, D) denoting a differential operator with an-

alytic coefficients and φ(p+1)(x) is a real analytic function such that φ
(p+1)
x is a
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root of G
(p+1)
0 (x, ξ) = 0 with uniform multiplicity qp+1 that is

(ii)p+1

8><
>:

∂x0φ
(p+1)(x) = τp+1(x, ∂x′φ(p+1)(x)) in U,

G
(p+1)
0 (x, ξ) = (ξ0 − τp+1(x, ξ′))qp+1∆p+1(x, ξ),

∆p+1(x, τp+1(x, ξ′), ξ′) ∕= 0 in U × V

where τp+1(x, ξ′) is real analytic in U × V and there is k(p + 1) ∈ N such that

(iii)p+1 σp+1, θp+1, δj(G(p+1)) (j ≥ 1) ∈ N/k(p + 1).

Proof: Set

G̃(p)(x, ξ;λ) = G(p)(x, φ(p)
x (x) + ξ;λ) + λ−σpR(p)(x, ξ;λ)

then G̃(p)(x, ξ;λ) can be written as

G̃(p)(x, ξ;λ) =
X
j=0

λ−δj(G̃
(p))G̃

(p)
j (x, ξ)

where δ0(G̃(p)) = δ0(G(p)) = 0 and

G̃
(p)
0 (x, ξ) = G

(p)
0 (x, φ(p)

x (x) + ξ)

and hence G̃
(p)
0 (x, 0) = 0. Thus one can write

(1.4.4) G̃
(p)
j (x, λ−✓ξ) = λ−✓sp

j
⇥
Ĝ

(p)
j (x, ξ) + O(λ−✓)

⇤
for any θ > 0. From (ii)p it is clear that sp

0 = qp and

G̃
(p)
0 (x, λ−✓ξ) = Ĝ

(p)
0 (x, φ(p)

x (x) + λ−✓ξ)

= λ−✓qp

h X
|↵|≤qp

1
α!

(G(p)
0 )(↵)(x, φ(p)

x (x))ξ↵ + O(λ−✓)
i

hence

(1.4.5) Ĝ
(p)
0 (x, ξ) =

X
|↵|=qp

1
α!

(G(p)
0 )(↵)(x, φ(p)

x (x))ξ↵.

We now define

θp+1 = min
j≥1,sp

j≤sp
0

(
δj(G̃(p))
sp
0 − sp

j

, θp

)

so that, in particular, θp+1 ≤ θp. Let

σp+1 = σp − θp+1.

For our present purpose we shall assume that σp+1 > 0. If σp+1 ≤ 0 we make a
di↵erent argument in the following.
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Let now φ(p+1)(x) be a real analytic function in U , which we shall precise in
the following. Applying Lemma 1.4.2 we compute

e−iλσp+1φ(p+1)(x)G̃(p)(x, λ−σpD;λ)eiλσp+1φ(p+1)

=
X
j≥0

λ−δj(G̃
(p))G̃

(p)
j (x, λ−✓p+1(φ(p+1)

x (x) + λ−σp+1D))(1.4.6)

+
X
j≥0

λ−δj(G̃
(p))−✓p+1sp

j−σp+1R̃
(p+1)
j (x, λ−σp+1D;λ)

where R̃
(p+1)
j (x, ξ;λ) ∈ R(U). Define G(p+1)(x, ξ;λ) and R(p+1)(x, ξ;λ) by

G̃(p)(x, λ−✓p+1ξ;λ) = λ−✓p+1sp
0G(p+1)(x, ξ;λ)

= λ−✓p+1sp
0
X
j≥0

λ−δj(G
(p+1))G

(p+1)
j (x, ξ)

and X
j≥0

λ−δj(G̃
(p))−✓p+1sp

j R̃
(p+1)
j (x, ξ;λ)

= λ−✓p+1sp
0R(p+1)(x, ξ;λ).

(Note that δj(G̃(p)) + θp+1s
p
j ≥ θp+1s

p
0). Then this proves (1.4.4). From (1.4.4)

we obtain

(1.4.7) G
(p+1)
0 (x, ξ) =

X
✓p+1sp

0=✓p+1sp
j +δj(G̃(p))

Ĝ
(p)
j (x, ξ)

where Ĝ
(p)
j (x, ξ) being homogeneous of degree sp

j with respect to ξ. Then it is

clear that Ĝ
(p+1)
0 (x, ξ) is a polynomial in ξ of degree q0 = sp

0 and the coefficient
of ξq0

0 is di↵erent from zero. Then one can find some open sets U and V and
real analytic τp+1(x, ξ′) defined in U ×V , and real analytic φ(p+1)(x) in U such
that (ii)p+1 holds. This proves the lemma. □

Lemma 1.4.4 Assume that there exists a p̄ ∈ N such that

qp̄ = qp̄+1 = · · · = q.

Then there exists a k = k(p̄) ∈ N such that for all p ≥ p̄

σp, θp, δj(G(p)), j ≥ 1 belong to N/k.

Proof: The fact that qp = qp+1 implies that there is no roots of G
(p+1)
0 (x, ξ) = 0

with respect to ξ0 with uniform multiplicity less than qp. Two cases may occur;
either the sum in (1.4.7) has Ĝ

(p)
0 as the only summand or there are also other

summands. In the former case we have

θp+1s
p
0 < θp+1s

p
j + δj(G̃(p)) for every j ≥ 0
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which implies that

θp+1 <
δj(G̃(p))
sp
0 − sp

j

that is, θp+1 = θp. Assume now that there are terms other than Ĝ
(p)
0 , corre-

sponding to j > 0. Then the condition defining the sum implies that there is
j ≥ 1 such that

δj(G̃(p)) = θp+1

because of the following lemma.

Lemma 1.4.5 Let

f(τ) =
sX

j=0

ajτ
qj

where 0 = q0 < q1 < · · · < qs and aj ∕= 0. Then the roots of f(τ) = 0 have
multiplicity at most s.

In both cases we conclude that either θp+1 = θp or θp+1 = δj(G̃(p)) holds. In
particular this implies θp+1 ∈ N/k(p) and hence k(p+1) = k(p) since δj(G(p+1))
are obtained summing and multiplying rational numbers whose denominator is
k(p). □

From Lemma 1.4.4 the above iteration procedure occurs only a finite number
of times before reaching a point where

σp+1 = σ0 −
p̄X

i=1

θi ≤ 0

for a suitable integer p̄. We may assume for a certain t > 0 that

σt > 0, σt+1 = σt − θt+1 ≤ 0

that is

θt+1 = min
nδj(G̃(t))

st
0 − st

j

, θt

o
≥ σt.

Our purpose is to construct an asymptotic null solution to the operator

G̃(t)(x, λ−σtD;λ) = G(t)(x, φ(t)
x (x) + λ−σtD;λ) + λ−σtR(t)(x, λ−σtD;λ)

where R(t)(x, ξ;λ) ∈ R(U). With

G̃(t)(x, ξ;λ) =
X
j≥0

λ−δj(G̃
(t))G̃

(t)
j (x, ξ)

repeating the same arguments as in the proof of Lemma 1.4.3 one can write

G̃(t)(x, λ−σtD;λ) =
X
j≥0

λ−δj(G̃
(t))−st

jσt
⇥
Ĝ

(t)
j (x, D) + O(λ−σt)

⇤

= λ−σts
t
0

h X
σtst

0=σtst
j+δj(G̃(t))

Ĝ
(t)
j (x, D) +

X
j≥1

λ−δ̄j Kj(x, D)
i
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because δj(G̃(p)) + σts
t
j ≥ σts

t
0 where 0 < δ1 < δ2 < · · · . Since Ĝ

(t)
0 (x, D) is

a di↵erential operator of order st
0 which is non characteristic with respect to

x0 =const, disposing of the power λ in front of the operator in square brackets,
we are left with the operator

(1.4.8) P (x, D) +
X
j≥1

λ−j/kPj(x, D)

where P (x, D) has the principal part Ĝ(t)(x, D) and Pj(x, D) are di↵erential
operators. One can then seek an asymptotic null solution to (1.4.8) in the form

X
j≥0

λ−j/kuj(x).

By the Cauchy-Kowalevski theorem we solve uj(x) successively with u0(x) ∕= 0.
Note that we may assume that

Im τ0(x, ξ′) ≤ −c in U × V

with some c > 0 where (x̂, ξ̂′) ∈ U × V . We solve φ(0)(x) under the condition

φ(0)(x̂0, x
′) = i|x′ − x̂′|2 + 〈x′, ξ̂′〉.

Then it is easy to see that φ(0)(x) verifies

Im φ(0)(x) ≥ c{x̂0 − x0 + |x′ − x̂′|2}, x0 ≤ x̂0

near x̄ with some c > 0. The rest of the proof is a repetition of standard
arguments (e.g. Theorem 23.3.1 in [19]). □

Chapter 2

Hyperbolic double
characteristics

2.1 Hamilton map

Let us denote by T ∗⌦ the cotangent bundle over ⌦ with a system of local
coordinates x = (x0, x1, ..., xn). Let (x, ξ) be a system of canonical coordinates
on T ∗⌦, then the canonical 2-form σ on T ∗⌦ is given by

σ =
nX

j=0

dξj ∧ dxj

in these coordinates. This 2-form gives a symplectic structure on T ∗⌦.
Let f ∈ C∞(T ∗⌦). Then the Hamilton vector field Hf of f is defined by

(2.1.1) df(·) = σ(·, Hf ).

In the canonical coordinates (x, ξ), denoting X = α∂/∂x+β∂/∂ξ, Hf = a∂/∂x+
b∂/∂ξ we have

df(X) = α
∂f

∂x
+ β

∂f

∂ξ
= dξ ∧ dx(α

∂

∂x
+ β

∂

∂ξ
, Hf ) = 〈β, a〉 − 〈α, b〉.

That is b = −∂f/∂x, a = ∂f/∂ξ and hence

Hf =
∂f

∂ξ

∂

∂x
− ∂f

∂x

∂

∂ξ
.

It is clear that
σ((x, ξ), (y, η)) = 〈ξ, y〉 − 〈x, η〉

in a system of canonical coordinates.
Let P (x, D) be a di↵erential operator of order m on ⌦ and let

P (x, D) = Pm(x, D) + Pm−1(x, D) + · · · .
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