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Abstract. In this paper we study projective (or spin) irreducible representations

and their characters of generalized symmetric groups G(m, 1, n), and spin charac-

ters of their inductive limit groups G(m, 1,∞) = limn→∞G(m, 1, n). The groups
G(m, 1, n) form a subcategory of complex re�ection groups G(m, p, n), p|m, and

the present study has a fundamental importance for such studies for general

G(m, p, n)'s. Schur multipliers Z = H2
(
G(m, 1, n),C×)

are isomorphic to

Z 3
2 =

∏
1≤i≤3〈zi〉, z 2

i = e, for n ≥ 4 and m ≥ 2 even, and similarly for n = ∞.

Here, according to the semidirect product structure G(m, 1, n) = Dn oSn with

Dn = Z n
m, z1 corresponds to the double covering group S̃n of Sn, and z2 to the

double covering D̃n of Dn, and z3 to the twisted action of S̃n on D̃n. In this case,

any such representations and such characters have their own central characters

χ ∈ Ẑ with (β1, β2, β3), βi = χ(zi) = ±1, called (spin) type. Our study here is

for two types (−1,−1,−1) and (−1,−1, 1), and gives (1) classi�cation and con-

struction of all spin irreducible representations of G(m, 1, n), (2) calculation of

their characters, (3) calculation of limits of normalized irreducible characters as

n → ∞, and (4) explicit determination of all the spin characters of G(m, 1,∞)
of these types.7

0 Introduction

1. We have nowadays many works on projective (or spin) representations of
�nite groups (see e.g. [Kar]), in particular for symmetric and alternating groups,
after Schur's trilogy [Sch1]�[Sch3], restarting from Morris [Mor] and resulting to
a book [HoHu2] by Ho�mann-Humphreys and the one [Kle] by Kleshchev, and so
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on. Also, for the spin theory of the in�nite symmetric group S∞ = limn→∞ Sn,
we have a concise and beautiful paper [Naz] by Nazarov.

For the spin theory of the generalized symmetric groups (introduced by Osima
[Osi]), we have also several works such as Read [Rea2], Ho�mann-Humphreys
[HoHu1], Stembridge [Stem], and Morris and Jones [MoJo].

Starting from [HHH2], we are studying spin representations and spin charac-
ters of complex re�ection groups G(m, p, n) and of their inductive limits

G(m, p,∞) := lim
n→∞

G(m, p, n), p|m.

Our methods are quite di�erent from theirs, and elementary and apply fully the
semidirect product structure of certain central extensions of G(m, p, n), 4 ≤ n ≤
∞, such as G̃ I

n and G̃ II
n , 4 ≤ n ≤ ∞, in (0.1)�(0.2) below. Our methods are

explained later in �3 in detail.
As is explained in our previous paper [HHH3], which we quote as [I] in the fol-

lowing, the case of generalized symmetric groups G(m, 1, n) and G(m, 1,∞) (case
of p = 1) is decisive, and we call them mother groups among G(m, p, n), n ≤ ∞.
We treat here these groups in case m is even. (The case of m odd is much sim-
pler, modulo the theory of spin representations for Sn and An. Cf. Theorem 2.2
below or [I, Theorem 3.2].)

2. Schur multiplier Z = H2
(
G(m, 1, n),C×)

has been given by Davies-Morris
[DaMo]. For 4 ≤ n < ∞, it is isomorphic to Z2 = 〈z1〉, z 2

1 = e, if m ≥ 1 odd,
and to Z 3

2 =
∏

1≤i≤3〈zi〉, z 2
i = e, if m ≥ 2 even, and we see that it is also similar

for n = ∞.
In the case of G(m, 1, n), m even, any spin irreducible (or factor) repre-

sentations and their characters have their own central characters χ ∈ Ẑ with
(β1, β2, β3), βi = χ(zi) = ±1, called (spin) type. Our study here is for a pair of
sister cases: CASE I, Type (−1,−1,−1), and CASE II, Type (−1,−1, 1), and
accomplishes
(1) to classify and construct all spin irreducible representations of G(m, 1, n),
(2) to calculate their characters and give general spin character formulas,
(3) to calculate limits of normalized such characters as n →∞, and
(4) to determine explicitly all the spin characters of G(m, 1,∞), of these types.

The simultaneous treatment of CASEs I and II in this paper is very good for com-
paring the di�erence and the coincidence between two cases and thus clarifying
the situations of spin representations in more details.

3. The representation group R
(
G(m, 1, n)

)
is a special central extension

of G(m, 1, n) by the Schur multiplier Z = 〈z1, z2, z3〉. Here, according to the
semidirect product structure G(m, 1, n) = Dn oSn with Dn = Z n

m, the central
element z1 gives the double covering group S̃n of Sn, and z2 gives the double
covering D̃n of Dn, and z3 gives a twisted action of S̃n on D̃n (cf. Theorem 2.3).
As in the previous paper, we choose from two representation groups Tn and T′n
of Sn in [Sch3], the group T′n and denote it by S̃n.

Every spin representation of G(m, 1, n) can be linearized if it is lifted up to
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R
(
G(m, 1, n)

)
. By this, as in the previous paper [I], we divide spin IRs and

spin characters of generalized symmetric groups G(m, 1, n) and G(m, 1,∞) into
8 cases according to the central character χ ∈ Ẑ or Type (β1, β2, β3). Here CASE
VIII, Type (1, 1, 1), is the non-spin case of G(m, 1, n) and G(m, 1,∞), which
has been studied in detail in [HH1]. With these results in non-spin cases as a
background, we have studied in Part II of [I] the spin CASE VII, Type (1, 1,−1),
a sister case of CASE VIII.

In the present paper, for the sister CASEs I and II, we introduce the quotient
groups of the representation group R

(
G(m, 1, n)

)
, 4 ≤ n ≤ ∞, as

G̃ I
n := R

(
G(m, 1, n)

)/〈z2z
−1

3 〉 in CASE I ;

G̃ II
n := R

(
G(m, 1, n)

)/〈z3〉 in CASE II .
(0.1)

Then they can be expressed as semidirect products as

G̃Y
n = D̃n

Y
o S̃n (Y=I, II),(0.2)

where D̃n denotes the double cover of the canonical normal subgroup Dn, and
Y
o

means that the action of S̃n on D̃n is considered in CASE Y. Then, in each CASE
Y (Y=I, II), our study on R

(
G(m, 1, n)

)
is moved principally to that on G̃Y

n . We
utilize fully the above semidirect structure of the groups, in particular, we use
the classical induced representation method (Theorem 4.1 in [E]) (a classic of
Mackey type method) to construct all the spin IRs and calculate their characters
(spin characters).

4. For the case of inductive limit groups G̃Y
∞ = limn→∞ G̃Y

n , we calculate
pointwise limits of normalized spin irreducible characters of G̃Y

n as n → ∞ for
each of Y= I, II. Then we obtain character formula by this limiting process as
follows. Denote by FY the set of all such limit functions on G̃Y

∞ obtained here,
then it consists of normalized central spin positive de�nite functions. Actually
they give exactly the set of normalized characters of G̃Y

∞ in CASE Y (see �14 in
[I] for general aspects of limiting process and Vershik-Kerov's ergodic method).

We note that Dudko and Nessonov calculated spin characters of R
(
G(m, 1,∞)

)
in [DuNe] by a completely di�erent method (cf. �25).

In CASE I, as is proved in Part I in [I] and is quoted in Table 4.2 below, the
criterion (EF) holds for G̃ I

∞ (cf. �3) which says
� a normalized central positive de�nite function f on G̃ I

∞ is extremal
(i.e., is a character) if and only if it is factorizable.�

Using this criterion, we can prove the completeness of the set F I, that is, F I is ex-
actly equal to the set EI

(
G̃ I
∞

)
of all spin characters of G̃ I

∞ of Type (−1,−1,−1).
Thus we obtain a general formula and a parametrization of spin characters of
G̃ I
∞, similarly as in [HH1], for the non-spin case of G(m, 1,∞).
In CASE II, we see, with the explicit form of these limit functions, f ∈ F II

is not factorizable in general, and so the criterion (EF) does not hold. For the



group G̃ II
∞, we prove the completeness of F II or F II = EII

(
G̃ II
∞

)
, by using that

of F I, and give explicitly a surjective (in general 2-1) map from EI
(
G̃ I
∞

)
onto

EII
(
G̃ II
∞

)
. This is similar to the situation studied in Part II of [I], where the

completeness for CASE VII, Type (1, 1,−1), is deduced from that for CASE
VIII, the non-spin case of G(m, 1,∞).

The relations of our results on spin characters of G(m, 1,∞) with those in the
work [DuNe] is given in �25 after reviewing it brie�y, and the parametrization of
spin characters in CASEs I, II and VII is recaptured.

Part I

Preparatory results

1 Generality for projective representations

1.1. Projective representations. Schur [Sch1, 1904] introduced the no-
tion of projective representation of a group under the name �Darstellung durch
gebrochene lineare Substitutionen�. After him, we de�ne a projective represen-
tation ρ of a group G , as a map G 3 g 7→ ρ(g), from G to the set of invertible
linear operators on a vector space V satisfying

ρ(g)ρ(h) = rg,h ρ(gh) (g, h ∈ G),(1.1)

rg,h ∈ C× := {z ∈ C; z 6= 0}.

The function rg,h on G×G is called the factor set of ρ.
Replace ρ(g) by ρ′(g) := λg ρ(g) (λg ∈ C×), then the factor set changes as

(rg,h)g,h∈G 7→ (r′g,h)g,h∈G, λ′g,h =
λgλh

λgh

· λg,h.(1.2)

De�ning that rg,h and r′g,h are mutually equivalent, we have the cohomology group
H2(G, C×) of factor sets modulo equivalence. For �nite groups G, he proved the
following.

(1) Any projective representation ρ can be lifted up to a linear representation
of a representation group of G.

(2) For any �nite group G, there exists a �nite number of non-isomorphic
representation groups, which are certain central extensions of G.

(3) A representation group of a �nite group G is characterized as follows:

Theorem 1.1 (cf. [Sch2, Introduction]). A group G∗ is a representation
group of a �nite group G if and only if there exists a central subgroup Z of G∗

such that

126
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(i) Z ⊂ [G∗, G∗] ∩ Z(G∗), Z(G∗) := the center of G∗,

(ii) 1 −→ Z −→ G∗ −→ G −→ 1 (exact).

(iii) |Z| = |H2(G, C×)| .

(4) The central subgroup Z is unique: Z = H2(G, C×), which is called
Schur multiplier of G.

(5) The theory of projective representations is mutually equivalent for any
representation group of G.

So we take one of representation groups and denote it by R(G), and even
though it is not unique, we can call it as a universal covering group of G. In
the following we call projective representations also spin representations (cf. 1.3
below).

1.2. Representation groups Tn,T′n of Sn . For symmetric groups S2

and S3, their Schur multipliers are trivial, and so their representation groups are
themselves. For n-th symmetric groups Sn with n ≥ 4, Schur [Sch3, 1911] gave
two representation groups Tn and T′n of n-th symmetric group Sn for n ≥ 4,
which are mutually isomorphic only when n = 6. The �rst one Tn is used
for the study of projective representations in [Sch3], [Mor] and so on, and also
T∞ := limn→∞ Tn is used in [Naz3]. However we prefer to use the second one T′n
and denote it by R(Sn) or S̃n hereafter. This is given as follows:

Theorem 1.2 ([Sch3]). For n ≥ 4, de�ne groups T′n (=: S̃n) by giving

• generators :
{
z1, r1, r2, . . . , rn−1

}
;

• fundamental relations :




z 2
1 = e , z1ri = riz1, 1 ≤ i ≤ n− 1 ;

r 2
i = e, 1 ≤ i ≤ n− 1 ;

(riri+1)
3 = e, 1 ≤ i ≤ n− 2 ;

rirj = z1rjri, 1 ≤ i, j ≤ n−1, |i−j| ≥ 2 ;

1 −→ Z = 〈z1〉 −→ T′n
ΦS−→ Sn −→ 1 (exact),

where e denotes the identity element, and the canonical homomorphism is given
by ΦS : T′n 3 ri 7→ si = (i i+1) ∈ Sn . Then, T′n is a representation group of
Sn .

Here the generator of the central subgroup Z = H2(Sn,C
×) ∼= Z2 is denoted

by z1 in accordance with the notation in Theorems 2.2 and 2.3 below.
Schur [Sch3] constructed so called �Hauptdarstellung� ∆n of Tn, and used it

as the fundamental ingredient to construct all the spin irreducible representations
(=IRs) of Tn. It plays a similar role as the trivial IR 1Sn of Sn in Frobenius'
construction of all IRs of Sn in [Frob1, 1900].
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Remark 1.1. (1) Another representation group Tn is given by the set of
generators {z1, r

′
1, . . . , r

′
n−1} and the set of fundamental relations z 2

1 = e , z1r
′
i =

r′iz1 (i ∈ In−1); r′i
2 = z1 (i ∈ In−1), (r′ir

′
i+1)

3 = z1 (i ∈ In−2); r′ir
′
j =

z1r
′
jr
′
i (i, j ∈ In−1, |i− j| ≥ 2); with In = {1, 2, . . . , n} (cf. Theorem 1.1 in

[E]).
(2) The reason of our preference of T′n than Tn is principally because
(a) T′n is generated by elements of order 2, whereas by elements of order 4

for Tn, and (b) the braid relation (riri+1)
3 = e appears directly, whereas it

appears in Tn in its `spin form', and further (c) the Schur multiplier of S3 is
trivial and so its representation group is S3 itself, and for any 1 ≤ i ≤ n− 1, the
subgroup S(i) = 〈ri, ri+1〉 generated by ri, ri+1 is nothing but the representation
group R

(
S(i)

)
= S(i) ∼= S3 itself.

These facts for T′n facilitate manipulation of fundamental relations in calcu-
lations, and give more symmetry or cyclic property in many formulas obtained
(for the property of ri's see Lemmas 1.3∼ 1.7 below, and cf. also �8 and �15).

(3) Let T be a representation of T′n such that T (z1) = −I, where I denotes
the identity operator. Put T ′(r′j) :=

√−1 T (rj) (j ∈ In−1). Then this gives a
representation of Tn satisfying T ′(z1) = −I, because it satis�es the fundamental
relations for Tn. The correspondence T to T ′ is bijective.

1.3. Conjugacy relations in S̃n . The following facts will be necessary
in the calculation of characters. First we give a de�nition as in [I] :

De�nition 1.1. Put ri,i+1 := ri, and for i + 1 < j in In = {1, 2, . . . , n},

rij := riri+1 · · · rj−2rj−1rj−2 · · · ri+1ri, rji := r −1
ij = rij.(1.3)

Then r 2
ij = e and sij = ΦS(rij) is a transposition (i j) ∈ Sn. We put

rii = e for convenience. For σ′ ∈ S̃n, put L(σ′) := L(σ), σ = ΦS(σ′), the length
of σ with respect to simple re�ections sj (j ∈ In−1). Then L(rij) = L(sij) =
2|j − i| − 1.

Lemma 1.3. (i) Suppose supp(rk) := {k, k + 1} is disjoint with {i, j}.
Then

rkrijr
−1

k = z1 rij

(ii) For i + 1 < j,

{
ri−1rijr

−1
i−1 = ri−1,j, ririjr

−1
i = ri+1,j,

rj−1rijr
−1

j−1 = ri,j−1, rjrijr
−1

j = ri,j+1.

Proof. These are proved by calculations (cf. Proof for [I, Lemma 7.1 (i)]).
(i) If i + 1 < j − 1,

ri+1rijr
−1

i+1 = ri+1(riri+1 · · · rj−1 · · · ri+1ri)ri+1

= (ri+1riri+1) · · · rj−1 · · · (ri+1riri+1)
= (riri+1ri) · · · rj−1 · · · (riri+1ri) = · · · = z1 rij .
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(ii) Using the following identities, the calculations are similar as (i) above :

rj−1rj−2rj−1rj−2rj−1 = rj−2, rjrj−1rj = rj−1rjrj−1. 2

Lemma 1.4. (i) Let i, j, k, ` ∈ In be di�erent. Then rijrk` = z1rk`rij .
(ii) Let j, k, ` ∈ In be mutually di�erent. Then

rjkrk`r
−1

jk = z k−j−1
1 rj` = z

(L(rjk)−1)/2
1 rj` .

Proof. (i) Suppose i < j, k < `. In case i < k < j < `, by Lemma 1.3,
r −1
k` rijrk` =

= (rkrk+1 · · · r`−2r`−1r`−2 · · · rk+1rk) · rij · (rkrk+1 · · · r`−2r`−1r`−2 · · · rk+1rk)

= (rkrk+1 · · · r`−2r`−1r`−2 · · · rjrj−1)·z j−1−k
1 rij·(rj−1rj · · · r`−2r`−1r`−2 · · · rk+1rk)

= (rkrk+1 · · · r`−2r`−1r`−2 · · · rj) · z j−1−k
1 ri,j−1 · (rj · · · r`−2r`−1r`−2 · · · rk+1rk)

= (rkrk+1 · · · rj−2rj−1) · z j−1−k
1 z1ri,j−1 · (rj−1rj−2 · · · rk+1rk)

= (rkrk+1 · · · rj−2) · z j−1−k
1 z1rij · (rj−2 · · · rk+1rk)

= z j−1−k
1 z1z

j−1−k
1 rij = z1rij.

For other cases, the calculations are similar and omitted here.

(ii) Suppose j < k < `. Then
rjkrk`r

−1
jk =

= (rjrj+1 · · · rk−2rk−1rk−2 · · · rj+1rj) · rk` · (rjrj+1 · · · rk−2rk−1rk−2 · · · rj+1rj)

= (rjrj+1 · · · rk−2rk−1) · z k−1−j
1 rk` · (rk−1rk−2 · · · rj+1rj)

= (rjrj+1 · · · rk−2) · z k−1−j
1 rk−1,` · (rk−2 · · · rj+1rj) = · · · · · ·

= z k−1−j
1 rj`

The other cases can be reduced to the above case. 2

Let σ ∈ Sn be a cycle (k1 k2 . . . k`) and let `(σ) := ` be the length of
the cycle. Then L(σ) ≡ `(σ) (mod 2). We have two preimages σ′ ∈ S̃n of σ as
σ = ΦS(σ′), one of which is

σ′ := rk1, k2 rk2, k3 · · · rk`−1, k`
.(1.4)

To �x a choice of the preimage if necessary, we may assume that k1 is the
smallest among {k1, . . . , k`}. In fact, even though σ can be expressed also
as (k2 k3 . . . k` k1) on the level of the base group Sn, its two preimages
σ′′ := rk2, k3 · · · rk`−1, k`

rk`, k1 and σ′ = rk1, k2 rk2, k3 · · · rk`−1, k`
in the covering

group S̃n are not usually equal to each other, as is shown in the next lemma.

Lemma 1.5. rk2, k3 · · · rk`−1, k`
rk`, k1 = z X

1 rk1, k2 rk2, k3 · · · rk`−1, k`
,

with X = 1
2

∑
2≤p≤`−1

(
L(rkp, kp+1)− 1

)
.

Proof. σ′′−1σ′ = (rk`, k1rk`−1, k`
· · · rk2, k3)(rk1, k2rk2, k3 · · · rk`−1, k`

)

= rk`, k1(rk`−1, k`
· · · rk3,k4) z

(L(rk2, k3
)−1)/2

1 rk1, k3 (rk3,k4 · · · rk`−1, k`
)

= · · · = rk`, k1 z X
1 rk1, k`

= z X
1 ,
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with X = 1
2

(
(L(rk2, k3)− 1) + · · ·+ (L(rk`−1, k`

)− 1)
)
. 2

For σ ∈ Sn, put supp(σ) := {p ∈ In ; σ(p) 6= p} and supp(σ′) := supp(σ) for
any preimage σ′ of σ. Then, for the cycle σ above, supp(σ) = {k1, k2, · · · , k`}.

Put τ ′` = r1r2 · · · r`−1 ∈ S̃n, then ΦS(τ ′`) = (1 2 3 . . . `) ∈ Sn. An arbitrary
cycle σ′ = rk1, k2 rk2, k3 · · · rk`−1, k`

in (1.4) of length ` is conjugate to τ ′` under S̃n

modulo a multiple of powers of z1, that is, τ ′σ′τ ′ −1 = z Y
1 for some τ ′ ∈ S̃n. We

show in the next lemma that the exponent Y is computable in two steps.

Lemma 1.6. (i) Let I`\supp(σ′) = {u1, . . . , up}, supp(σ′)\I` = {v1, . . . , vp}.
Put τ ′ = ru1, v1 · · · rup, vp. Then τ ′σ′τ ′−1 is z Y

1 -multiple of the element obtained
from σ′ by replacing vi by ui for 1 ≤ i ≤ p, with Y = p(`−2)+

∑
1≤i≤p(vi−ui−1),

and supp(τ ′σ′τ ′−1) = I`.
(ii) Suppose supp(σ′) = I`. Put τ ′ = rk1, k2 (resp. τ ′ = rk`−1, k`

). Then

τ ′σ′τ ′−1 is z Y
1 -times the element obtained from the expression (1.4) of σ′ by

exchanging k1 and k2 (resp. k`−1 and k`), where

Y ≡ k2 − k1 + ` (resp. Y ≡ kp − kp−1 + `) (mod 2).

Put τ ′ = rki, ki+1
(2 ≤ i ≤ ` − 2). Then τ ′σ′τ ′−1 is z `

1 -times the element
obtained from the expression (1.4) of σ′ by exchanging ki and ki+1.

(iii) For σ′ in (1.4), take a τ ′ ∈ S̃n such that τστ−1 = s1s2 · · · s`−1 =
(1 2 . . . `) for σ = ΦS(σ′), τ = ΦS(τ ′). Then τ ′σ′τ ′−1 = z Y

1 r1r2 · · · r`−1 ,
and there exists a process to determine the exponent Y by means of (i) and (ii)
above.

Proof. (i) rup, vpσ
′rup, vp gives z1-factor with exponent (`− 2) + (vp− up− 1)

by Lemma 1.4, and so on.
(ii) For i = 1 or i = ` − 1, rki, ki+1

σ′rki, ki+1
gives z1-factor with exponent

(ki+1 − ki − 1) + (`− 3) ≡ ki+1 − ki + `.
For 2 ≤ i ≤ `−2, rki, ki+1

σ′rki, ki+1
gives z1-factor with exponent 2(ki+1−ki−

1) + (`− 4) ≡ `. 2

Lemma 1.7. For τ ′` = r1r2 · · · r`−1 ∈ S̃n,

(τ ′`)
` = z Y

1 with Y =
[`/2]

(
[`/2]− 1

)

2
.(1.5)

If ` ≡ 0, 1, 2, 3 (mod 8), then (τ ′`)
` = e and τ ′` is of order `.

If ` ≡ 4, 5, 6, 7 (mod 8), then (τ ′`)
` = z1 and τ ′` is of order 2`.

Proof. By calculation, we have

(τ ′`)
2 = (r2 · · · r`−1)(r1r2r3 · · · r`−2)(

∵ (r1 · · · r`−1)ri = z `−3
1 ri+1(r1 · · · r`−1), i ≤ `− 2

)
;

(τ ′`)
3 = z `−3

1 (r2 · · · r`−1)
2(r1r2r3 · · · r`−3) ;
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(τ ′`)
4 = z

(`−3)+(`−4)·2
1 (r2 · · · r`−1)

3(r1r2r3 · · · r`−4) ;

· · · · · · · · ·
(τ ′`)

`−1 = z
(`−3)·1+(`−4)·2+···+1·(`−3)

1 (r2 · · · r`−1)
`−2r1 ;

(τ ′`)
` = z

(`−3)·1+(`−4)·2+···+1·(`−3)
1 (r2 · · · r`−1)

`−1.

Continuing this process, we obtain (1.5). The details are omitted. 2

1.4. Terminology. Here we �x our terminology in the following. We call
projective representations of a group G also spin representations of G similarly
as Morris did for the symmetric groups Sn, and as one did for the rotation group
SO(3) etc. classically.

A projective representation of G is a linear representations of a certain cov-
ering group G̃ of G. The relation between the levels of G and G̃ can be visually
expressed as in the following diagram, vertically written.

Diagram 1.1. covering group level G̃ seeing from upper level ↓
↓

base (ground) level G seeing from lower level ↑

We call characters of spin representations as spin characters of G although it
is a function on G̃. Our understanding for terminology hereafter is as follows.

The general adjective �projective� for representations is used when we see
them from the base level G upwards towards the covering group level G̃. In this
sense, the use of the adjective �projective� is unilateral.

However, in some cases, we would like to convert the direction of our eyes and
see from the level of G̃ downwards to the base level of G (which should be well
settled). In those cases, it is convenient to call a linear representation π of G̃ a
�spin� representation of G̃ when it can not be reduced to a linear representation
of G. This mode of using adjective �spin� is bilateral.

Moreover the adjective use of the word `spin' goes well for functions on the
groups: for instance, if a central positive de�nite function on G̃ (e.g. a character)
cannot be reduced to G, we call f a `spin' function on G̃ (and also a `spin' function
on G). We prefer the word `spin' character better than `projective' character.

This kind of terminology is similar, in a sense, to that of Schur in Note 1.1 (1)
below for S̃n (and Sn). See also �6, in particular De�nition 6.1, and Theorems
13.6 and 13.7.

Note 1.1. (1) Schur called a character χ of S̃n �Charakter erster Art (of
the �rst kind)� or �zweiter Art (of the second kind)� depending on χ(z1σ

′) =

χ(σ′) or χ(z1σ
′) = −χ(σ′) (σ′ ∈ S̃n) [Sch3, �13]. He also called a representation

ρ of S̃n �Darstellung erster Art � or �zweiter Art � depending on ρ(z1σ
′) = ρ(σ′)

or ρ(z1σ
′) = −ρ(σ′) for σ′ ∈ S̃n [Sch3, �27].
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(2) Projective representations can also be called as double-valued rep-
resentations for G = Sn , SO(n) and SO0(3, 1)

(
with G̃ = S̃n, Spin(n) and

SL(2,C)
)
, and in general as multiple-valued representations of G.

(3) In the book [HoHu2], Ho�man and Humphreys introduced the termi-
nology positive and negative for representations (and also for modules and
characters) of groups in a certain category which contains covering groups of Sn .

2 G(m, p, n) and their representation groups

2.1 De�nition of complex re�ection groups G(m, p, n)

2.1.1. Constructive de�nition. First we give a constructive de�nition
of complex re�ection groups G(m, p, n). For a set I, denote by SI the group
of �nite permutations on I. For I = In = {1, 2, . . . , n} or I = I∞ := N , the
su�ces I are usually replaced by n or ∞ respectively: SIn = Sn, SN = S∞.
Take a �nite abelian group T and de�ne the wreath product groups SI(T ) as
follows:

SI(T ) := DI(T )oSI , DI(T ) :=
∏′

j∈I

Tj, Tj := T (j ∈ I),(2.1)

where
∏′ denotes the restricted direct product if I is in�nite, and SI acts on

DI(T ) naturally by permuting the components. For a subgroup S of T , we have
a canonical normal subgroup of SI(T ) given as

SI(T )S := DI(T )S oSI , DI(T )S := {d ∈ DI(T ) ; P (d) ∈ S},(2.2)

where P (d) :=
∏

j∈I ti for d = (tj)j∈I ∈ DI(T ). Later on, the index I is replaced
by n or ∞ according to I = In or I = I∞ = N .

Now let T = Zm, understood as a multiplicative group. Then the groups
Sn(Zm) = Dn(Zm) oSn were introduced in [Osi] and called generalized sym-
metric groups, and we put G(m, 1, n) := Sn(Zm). Any subgroup of T = Zm is
given as

S(p) := {tp ; t ∈ T} ∼= Zm/p for a divisor p of m,(2.3)

and we put G(m, p, n) := Sn(Zm)S(p) for n �nite and also for n = ∞. Then,

G(m, p,∞) := lim
n→∞

G(m, p, n) for p|m.(2.4)

In [HH1], we have studied the characters of S∞(T ) and of S∞(T )S for any
�nite abelian group T and its subgroup S. This serves as a basic ingredient in
our present study.

2.1.2. Generators and fundamental relations. Let us give a presen-
tation of generalized symmetric groups G(m, 1, n), called in [I] mother groups
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among G(m, p, n), by giving a set of generators and a set of fundamental rela-
tions. This presentation is convenient to treat their representation groups.

Proposition 2.1. (i) The generalized symmetric group G(m, 1, n) = Sn(Zm),
n ≥ 3, is presented by

• set of generators : {s1, s2, . . . , sn−1, y1, y2, . . . , yn} ,
where yj corresponds to a generator y of T = Zm

∼= Tj ;

• set of fundamental relations:
{

s 2
i = e (1 ≤ i ≤ n− 1), (sisi+1)

3 = e (1 ≤ i ≤ n− 2),

sisj = sjsi (|i− j| ≥ 2).
(2.5)





y m
j = e (1 ≤ j ≤ n),

yjyk = ykyj (j 6= k),

siyis
−1
i = yi+1, siyi+1s

−1
i = yi (1 ≤ i ≤ n− 1),

siyjs
−1
i = yj (j 6= i, i + 1).

(2.6)

(ii) The inductive limit G(m, 1,∞) is presented by giving the set of gen-
erators

{
si, yj (i, j ∈ I∞)

}
and the set of fundamental relations above but

without the restrictive conditions containing n on the su�ces i and j.

2.2 Representation groups of generalized symmetric groups

For a generalized symmetric group G = G(m, 1, n) = Sn(Zm), Davies and Morris
[DaMo] gave its Schur multiplier H2(G,C×) and also one of its representation
groups. Thus we have the following depending on the parity of m (cf. Theorems
3.2 and 3.3 in [I]).

Theorem 2.2 (Case m odd). (i) Suppose n ≥ 4 and m is odd. For
G(m, 1, n) = Sn(Zm), a representation group R

(
G(m, 1, n)

)
is given as

{e} −→ Z −→ R
(
G(m, 1, n)

) Φ−→ G(m, 1, n) −→ {e} (exact),

• set of generators :
{
z1, ri (1 ≤ i ≤ n− 1), ηj (1 ≤ j ≤ n)

}
;

Φ(ri) = si (1 ≤ i ≤ n− 1), Φ(ηj) = yj (1 ≤ j ≤ n) ;

• set of fundamental relations :

(i) z 2
1 = e , z1 central element ;

(ii)

{
r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i < n− 1),
rirj = z1rjri (|i− j| ≥ 2),

(iii) η m
j = e (1 ≤ j ≤ n),

(iv) ηjηk = ηkηj (j 6= k),

(v)

{
riηir

−1
i = ηi+1, riηi+1r

−1
i = ηi (1 ≤ i ≤ n− 1),

riηjr
−1

i = ηj (j 6= i, i + 1) ;
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Z = H2
(
G(m, 1, n),C×)

= 〈z1〉 ∼= Z2.

(ii) For n = ∞, a representation group R
(
G(m, 1,∞)

)
is de�ned as the in-

ductive limit limn→∞ R
(
G(m, 1, n)

)
. Then it is presented by a set of generators{

ri, ηj (i, j ∈ I∞)
}

and a set of fundamental relations above but without the
restrictive conditions containing n on the su�ces i and j.

Theorem 2.3 (Case m even). (i) Suppose n ≥ 4 and m is even. Then,
for G(m, 1, n) = Sn(Zm), a representation group R

(
G(m, 1, n)

)
is given as

{e} −→ Z −→ R
(
G(m, 1, n)

) Φ−→ G(m, 1, n) −→ {e} (exact),

• set of generators :
{
z1, z2, z3, ri (1 ≤ i ≤ n− 1), ηj (1 ≤ j ≤ n)

}
;

Φ(ri) = si (1 ≤ i ≤ n− 1), Φ(ηj) = yj (1 ≤ j ≤ n) ;

• set of fundamental relations :

(i) z 2
i = e (1 ≤ i ≤ 3), zi central element ;

(ii)

{
r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i < n− 1),
rirj = z1rjri (|i− j| ≥ 2),

(iii) η m
j = e (1 ≤ j ≤ n),

(iv) ηjηk = z2ηkηj (j 6= k),

(v)

{
riηir

−1
i = ηi+1, riηi+1r

−1
i = ηi (1 ≤ i ≤ n− 1),

riηjr
−1

i = z3ηj (j 6= i, i + 1) ;

Z = H2
(
G(m, 1, n),C×)

= 〈z1, z2, z3〉 ∼= Z 3
2 .

(ii) For n = ∞, a representation group R
(
G(m, 1,∞)

)
is de�ned as the in-

ductive limit limn→∞ R
(
G(m, 1, n)

)
. Then it is presented by a set of generators{

ri, ηj (i, j ∈ I∞)
}

and a set of fundamental relations above but without the
restrictive conditions containing n on the su�ces i and j.

This structure theorem is the starting point of our whole study. We can
recon�rm it admitting only th fact that |H2

(
G(m, 1, n)

)| = 23. In fact, denote
by G∗ the group given in Theorem 2.3, then we see by Proposition 2.1 that
G∗/Z ∼= G, G = G(m, 1, n), with Z = 〈z1, z2, z3〉. Moreover the commutators
are given as [r1, r2] = z1, [η1, η2] = z2, [η1, r2] = z3, and so Z ⊂ [G∗, G∗]∩Z(G∗).
Then, by Theorem 1.1, we see that G∗ is a representation group of G.

Remark 2.1. In [I], the groups G(m, p, n), p|m, p > 1, are called child
groups of the mother group G(m, 1, n), and their representation groups are given
in [I, �3] after [Rea1]. Our present studies on mother groups are decisive for their
children (loc.cit.).

Notation 2.1. For a g = (d, σ) ∈ G(m, 1, n) = Dn(Zm) o Sn, put
supp(g) := supp(d) ∪ supp(σ) ⊂ In, supp(d) := {p ∈ In ; tp 6= eT} for d =
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(tp)p∈In , tp ∈ Tp = T , and supp(σ) := {i ∈ In ; σ(i) 6= i}, where eT denotes
the identity element of T . For any covering group G̃(m, 1, n) of G(m, 1, n)

with the canonical homomorphism Φ : G̃(m, 1, n) → G(m, 1, n), we put for
g′ ∈ G̃(m, 1, n), supp(g′) := supp(g) with g := Φ(g′) ∈ G(m, 1, n).

2.3 CASE I, Type (−1,−1,−1); CASE II, Type (−1,−1, 1)

Let m be even. In this paper, projective representation of generalized symmetric
groups G(m, 1, n) for 4 ≤ n ≤ ∞, or linear representations of R

(
G(m, 1, n)

)
,

and their characters are studied. In particular, we study spin irreducible rep-
resentations (= IRs) and their characters, called also spin, for n < ∞, and
spin characters for n = ∞ which correspond to factor representations of �nite
type. A representation π of such kind has its own (spin) type χ ∈ Ẑ de�ned
as π(z) = χ(z)I (z ∈ Z), where I denotes the identity operator. Since m
is assumed to be even, we have Z = 〈z1, z2, z3〉, and the type χ is given by
β = (β1, β2, β3), βi = χ(zi) = ±1.

In the previous work [I], we have classi�ed the cases depending on the type β
(cf. Tables 8.1 and 9.1 in [I]), and studied fully CASE VII, Type (1, 1,−1), in
comparison with the non-spin case, CASE VIII, Type (1, 1, 1). In this paper,
we study another pair of sister cases, CASE I, Type (−1,−1,−1), and CASE
II, Type (−1,−1, 1), in parallel.

Since m is even, we see from Theorem 1.3 that representation group R
(
G(m, 1,

n)
)
, 4 ≤ n ≤ ∞, is a covering group of G(m, 1, n) of 23 (= 8)-fold. To go into

detailed study, it is convenient for us to reduce R
(
G(m, 1, n)

)
to 4-fold covering

groups as

G̃ I(m, 1, n) := R
(
G(m, 1, n)

)/〈z2z
−1

3 〉 in CASE I ;(2.7)

G̃ II(m, 1, n) := R
(
G(m, 1, n)

)/〈z3〉 in CASE II .(2.8)

The groups G̃ I(m, 1, n) and G̃ II(m, 1, n) are presented just as in Theorem 1.3
but replacing z3 by z2, and replacing z3 by e, respectively.

Diagram 2.1.
Covering groups

R
(
G(m, 1, n)

)

ΦY ↓ double covering

G̃Y(m, 1, n) (Y=I, II)

ΦY ↓ 4-fold covering, Ker = Z̃ := 〈z1, z2〉
G(m, 1, n)

We put inside R
(
G(m, 1, n)

)
, 4 ≤ n ≤ ∞,

D̃(m,n) :=
〈
ηj (j ∈ In)

〉
, S̃n :=

〈
ri (i ∈ In−1)

〉
,(2.9)

where we understand In−1 = I∞ for n = ∞. Then they are both canonically
imbedded into G̃Y(m, 1, n) (Y= I, II) respectively, and S̃n acts on D̃(m,n) in



136 T. Hirai, A. Hora and E. Hirai

the following two di�erent ways

(I-v)

{
riηir

−1
i = ηi+1, riηi+1r

−1
i = ηi (1 ≤ i ≤ n− 1),

riηjr
−1

i = z2ηj (j 6= i, i + 1) ;
(in CASE I) ;

(II-v)

{
riηir

−1
i = ηi+1, riηi+1r

−1
i = ηi (1 ≤ i ≤ n− 1),

riηjr
−1

i = ηj (j 6= i, i + 1) ;
(in CASE II) .

Proposition 2.4. There holds the following semidirect product expression :

G̃ I(m, 1, n) = D̃(m,n)
I
o S̃n in CASE I ;(2.10)

G̃ II(m, 1, n) = D̃(m,n)
II
o S̃n in CASE II ,(2.11)

where the numbers I and II over the symbol `o' means that the action is un-
derstood according to (I-v) and (II-v) respectively, keeping other fundamental
relations (i) (without z3) and (ii) � (iv) in Theorem 1.3 in common.

Remark 2.2. In �10 in [I], we de�ned G̃Y(m, 1,∞) :=R
(
G(m, 1,∞)

)
/Ker(χY).

This de�nition di�ers slightly from the above one. In this paper we prefer the
above one because it is more convenient to treat the above sister cases parallel
as far as possible.

In CASE I, for the convenience of later calculations, we introduce new gen-
erators for D̃(m,n) = 〈η1, . . . , ηn〉 as

η′j := z j−1
2 ηj (j ∈ In),(2.12)

Then the above relation (I-v) takes the following form:

(I-v′)
{

riη
′
ir
−1

i = z2η
′
i+1, riη

′
i+1r

−1
i = z2η

′
i (1 ≤ i ≤ n− 1),

riη
′
jr

−1
i = z2η

′
j (j 6= i, i + 1) ;

(in CASE I).

Theorem 2.5. Suppose n ≥ 4 and m is even. The covering group
G̃ I(m, 1, n) of CASE I, Type (−1,−1,−1), is given, with respect to the new

generators η′j's and the central subgroup Z̃ = 〈z1, z2〉 as

{e} −→ Z̃ −→ G̃ I(m, 1, n)
ΦI−→ G(m, 1, n) −→ {e} (exact),

• set of generators :
{
z1, z2, ri (1 ≤ i ≤ n− 1), η′j (1 ≤ j ≤ n)

}
;

ΦI(ri) = si (1 ≤ i ≤ n− 1), ΦI(η
′
j) = yj (1 ≤ j ≤ n) ;

• set of fundamental relations :

(i) (without z3), (ii), and
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(iii′) η′j
m = e (1 ≤ j ≤ n),

(iv′) η′jη
′
k = z2η

′
kη
′
j (j 6= k),

(I-v′) as above.

Lemma 2.6. (i) In the group G̃ I(m, 1, n) = D̃(m,n)
I
o S̃n of CASE I,

ri

(
η′1η

′
2 · · · η′n

)
r −1
i = z n

2

(
η′1 · · · η′i−1η

′
i+1η

′
iη
′
i+2 · · · η′n) =

= z n+1
2

(
η′1η

′
2 · · · η′n) =

{
z2

(
η′1η

′
2 · · · η′n) for n = 2n′ even ,

η′1η
′
2 · · · η′n for n = 2n′ + 1 odd .

(ii) In the group G̃ II(m, 1, n) = D̃(m,n)
II
o S̃n of CASE II,

ri

(
η1η2 · · · ηn

)
r −1
i = η1 · · · ηi−1ηi+1ηiηi+2 · · · ηn = z2

(
η1η2 · · · ηn).

Note 2.1. For the sake of simplicity, we may denote ΦY simply by Φ if there
is no danger of misunderstanding.

2.4 Representation group R(An) of the alternating group

For the alternating group An, its Schur multiplier is given in [Sch3, �4] as

H2(An, C
×) =

{
Z2 for n ≥ 4, n 6= 6, 7 ,
Z6 for n = 6, 7.

Its representation group Bn := R(An) is unique and, in the regular cases of
n 6= 6, 7, is realized in R(Sn) as the commutator group Bn =

[
R(Sn), R(Sn)

]
with presentation given as follows.

Theorem 2.7 (cf. [Sch3, �5]). Let n ≥ 4, and put v′i := z1ri+1r1 (1 ≤ i ≤
n − 2). Then they generate a double covering group Ãn := Φ −1

S

(
An

)
of An,

inside R(Sn) = S̃n. Moreover it is de�ned as an abstract group as follows:

generators :
{
v′i ; 1 ≤ i ≤ n− 2

}
,

fundamental

relations :





v′1
3 = z1, (v′1v

′
2)

3 = z1,

(v′1v
′
i)

2 = z1 (3 ≤ i ≤ n− 2),

v′i
2 = z1 (2 ≤ i ≤ n− 2),

(v′iv
′
i+1)

3 = z1 (2 ≤ i ≤ n− 3),

v′iv
′
j = z1v

′
jv
′
i (2 ≤ i, j ≤ n− 2, |i− j| ≥ 2).

Here there follows automatically the fact that the element z1 is central and
z 2
1 = e.

In case n ≥ 4, 6= 6, 7, the group Ãn gives a representation group R(An)
(denoted in [loc. cit.] by Bn).
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3 Method of our study in this paper

Our study in this paper go along the following line.

• The �rst step, STEP 1, is for constructing spin IRs of generalized symmetric
groups G(m, 1, n), mother groups of all complex re�ection groups G(m, p, n), of
Types (−1,−1,−1) and (−1,−1, 1), and calculating their characters.

• The second step, STEP 2, is for limiting process of irreducible characters
as n →∞ and for studying characters of in�nite G(m, 1,∞) of the above (spin)
types.

For construction of spin IRs, referring Theorems 3.1 and 4.1 in [E], we explain
brie�y a generality. Let G be a �nite group and a semidirect product of a normal
subgroup U and a subgroup S as G = U o S. Take an IR ρ of U and consider
its equivalence class [ρ] in the dual Û of U . Take a stationary subgroup S([ρ]) in
S of [ρ], and put H := U o S([ρ]). For each s ∈ S([ρ]) we determine explicitly
an intertwining operator Jρ(s) such that

ρ
(
s(u)

)
= Jρ(s) ρ(u) Jρ(s)

−1 (u ∈ U),(3.1)

where s(u) denotes the action of s on u. Then Jρ(s) is determined up to a scalar
multiple, and the map S([ρ]) 3 s 7→ Jρ(s) gives a projective representation of
S([ρ]). Let αs,t be its factor set given as

Jρ(s)Jρ(t) = αs,t Jρ(st)
(
s, t ∈ S([ρ])

)
.

For s 7→ λ(s)Jρ(s), λ(s) ∈ C×, its factor set is α′s,t = αs,t · λ(s)λ(t)/λ(st).
Taking an appropriate {Jρ(s) ; s ∈ S([ρ])} among them, we have a certain

covering group (a central extension) S([ρ])∼ of S([ρ]) such that Jρ can be lifted
up to a linear representation J̃ρ of S([ρ])∼. Put, for H̃ := U o S([ρ])∼ with
s′(u) := s(u), s′ ∈ S([ρ])∼, s = ΦS(s′),

π0
(
(u, s′)

)
:= ρ(u) · J̃ρ(s

′)
(
u ∈ U, s′ ∈ S([ρ])∼

)
,(3.2)

then π0 is an IR of H̃ which we denote by ρ · J̃ρ. Here ΦS : S([ρ])∼ → S([ρ])
is the canonical homomorphism. Take an IR π1 of S([ρ])∼ and consider it as
a representation of H̃ through the homomorphism H̃ → S([ρ])∼ ∼= H̃/U , and
consider the inner tensor product π := π0 ¡ π1 as an IR of H̃. Let the factor set
of π1, viewed as a spin representation of the base group S([ρ]), be βs,t , then that
of π is βs,t αs,t. If Jρ is replaced by λ(·)Jρ(·), then its e�ect may be resolved by
replacing π1 by χ · π1 with a character χ of S([ρ])∼.

Suppose for simplicity that there exists a covering group S̃ of S such that
S([ρ])∼ is embedded into S̃ canonically so that H̃ is embedded into the covering
group G̃ := U o S̃ of G with S̃-action on U through S̃ → S. Then, for any IR
π1 of S([ρ])∼, we obtain an IR Π of G̃ by inducing it up as Π := IndG̃

H̃
π.
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If βs,t = α −1
s,t = the inverse of αs,t, then π can be viewed as a representation

of H = U o S([ρ]), and accordingly Π is a linear representation of G = U o S,
which we denote by Π(π0, π1).

STEP1 (Case of n �nite). Let 4 ≤ n < ∞. We construct all IRs of

G̃Y(m, 1, n) = D̃(m,n)
Y
o S̃n(3.3)

for Y= I, II, using their semidirect product structures. So, our task is as follows.
(f-1) Construct all the spin IRs of the normal subgroup D̃(m,n).
(f-2) Determine all the orbit in the spin dual (the set of all equivalence

classes of spin IRs) of D̃(m,n) under the action of Sn
∼= S̃n/〈z1〉, and determine

an appropriate complete set {ρ} of representatives of these orbits.
(f-3) Calculate the stationary subgroup Sn([ρ]) in Sn of the equivalence

class [ρ].
(f-4) Determine intertwining operators Jρ(σ) for σ ∈ Sn([ρ]) explicitly, and

examine (possibly spin) representation σ 7→ Jρ(σ) of Sn([ρ]).
(f-5) If the representation Jρ is spin (or double-valued), then it comes from

a linear representation J̃ρ of a double covering group Sn([ρ])∼, which may be
contained in S̃n (this should be checked). If so, we have an IR π0 := ρ · J̃ρ of

H̃Y := D̃(m,n)
Y
o Sn([ρ])∼ for Y=I, II respectively.

(f-6) In case Jρ is spin, we should take a non-spin IR π1 of Sn([ρ]) and
consider it as an IR of H̃Y through the quotient map Sn([ρ])∼ → Sn([ρ]), and
take the tensor product π := π0 ¡ π1 as an IR of H̃Y. Induce it up to G̃Y

n :=

G̃Y(m, 1, n), Y=I, II, then we get a spin IR of G̃Y
n as

Π(π0, π1) = Ind
G̃Y

n

H̃Y

(
π0 ¡ π1

)
.(3.4)

(f-5′)+ (f-6′) If Jρ is non-spin, then put π0 := ρ · Jρ as an IR of HY :=

D(m, n)
Y
o Sn([ρ]). In this case, we should take a spin IR π1 of Sn([ρ]) which is

a linear IR of Sn([ρ])∼, not reduced onto Sn([ρ]). Then π := π0 ¡π1 is again an
IR of H̃Y, and we get by (3.4) a spin IR Π(π0, π1) of G̃Y

n .

By these processes, we get all the spin IRs of G̃Y
n for each of Y=I and II,

modulo equivalence.
To calculate the characters of IRs Π thus constructed, a di�cult task is the

next one, since Jρ(σ) can be given for only some generating subset {σ} of Sn([ρ]).

(f-7) Calculate the character χπ0 of π0 = ρ · J̃ρ of H̃Y if Jρ is spin, and that
of π0 = ρ · Jρ of HY if Jρ is non-spin.

(f-8) Calculate the character of χπ1 of π1 too, then the character χπ is the
product χπ0 · χπ1 .

(f-9) At last, we calculate the induced character χΠ from χπ by the usual
method.
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This process gives us all the spin irreducible characters of G̃Y(m, 1, n) for
CASE Y=I, Type (−1,−1,−1), and CASE Y=II, Type (−1,−1, 1).

STEP2 (Case of n = ∞).
Di�erent from the previous paper [I], we proceed as follows.

(inf-1) For each Y=I, II, examine the limiting process of spin irreducible
characters of G̃Y

n as n →∞, and collect all the ` good ' limits.
(inf-2) Let f be a ` good ' limit. It is necessarily an central, positive de�nite

function on G̃Y
∞ = G̃Y(m, 1,∞) of the same spin type, and we should check if it

is extremal or not in K1

(
G̃Y
∞

)
.

Here K1(G) for a topological group G is the set of continuous central (or
invariant) positive de�nite functions f normalized as f(e) = 1 at the identity
element e ∈ G. By de�nition, a character of G is an extremal element of K1(G)
(cf. �6 in [I]), and denote by E(G) the set of all characters of G.

De�nition 3.1. A function f on G = G̃Y
∞ is called factorizable if

g′, g′′ ∈ G, supp(g′) ∩ supp(g′′) = ∅ =⇒ f(g′g′′) = f(g′)f(g′′).(3.5)

In CASE I, we have the criterion that

(EF) an f ∈ K1

(
G̃ I
∞

)
is extremal if and only if it is factorizable.

But, in CASE II, this criterion does not hold (cf. �11 and Table 13.1 in [I],
and Table 4.2 in this paper). However we know from Theorem 3.2 in [HoHH]
that any spin character of G̃ II(m, 1,∞) is obtained as this kind of pointwise limit
as n →∞ (cf. Theorem 21.2 below), and so our �nal task will be the following.

(inf-3) Prove that the set of ` good ' limits of spin irreducible characters of G̃Y
n

as n →∞, obtained in (inf-1) covers all characters of G̃ I
∞ of Type (−1,−1,−1)

in CASE I, and also of G̃ II
∞ of Type (−1,−1, 1) in CASE II.

At the same time, thus we will have a uni�ed explicit character formula for
such spin characters in each case.

4 Spin characters of G(m, 1, n) and G(m, 1,∞)

We quote from [I, Part I] some necessary informations on spin characters of
G(m, 1, n) and G(m, 1,∞), in CASE I, Type (−1,−1,−1), and in CASE II,
Type (−1,−1, 1).

Let Y= I or II. Take a g′ ∈ G̃Y(m, 1, n), then it is expressed as g′ = d′ ·σ′ with
d′ = z b

2

∏
p∈In

η
ap

p ∈ D̃(m,n), σ′ ∈ S̃n , where b = 0, 1 ; 0 ≤ ap < m (p ∈ In).
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Put g = ΦY(g′) = (d, σ) ∈ G(m, 1, n) and let its standard decomposition be





g = (d, σ) = ξq1ξq2 · · · ξqr g1g2 · · · gs, d = ΦY(d′), σ = ΦY(σ′),

ξq = (tq, (q)), tq = ΦY

(
η

aq
q

)
= y

aq
q ∈ Tq

∼= Zm (0 ≤ aq ≤ m− 1),

gj = (dj, σj), supp(dj) ⊂ supp(σj) =: Kj,

dj = ΦY

( ∏
p∈Kj

η
ap

p

)
=

∏
p∈Kj

y
ap

p .

(4.1)

Note that the groups D̃(m,n) and S̃n are both contained canonically in
G̃Y

n := G̃Y(m, 1, n), Y=I, II, and ΦY(d′) = ΦD(d′)
(
d′ ∈ D̃(m,n)

)
and ΦY(σ′) =

ΦS(σ′) (σ′ ∈ S̃n) both for Y= I and II, where ΦD : D̃(m,n) → D(m,n) is the
canonical homomorphism (cf. Lemma 5.1).

We quote, as Tables 4.1 and 4.2 below, from Tables 9.1 and 13.1 in [I, Part
I] respectively, their parts corresponding to CASEs I and II, together with the
parts of CASE VII worked out in [I, Part II], for references.

4.1. Case of �nite G̃Y(m, 1, n), 4 ≤ n < ∞, Y= I, II.

In Table 4.1 below, the support of a character f(g′), g′ ∈ G̃Y(m, 1, n), Y=I,
II (resp. g′ ∈ R

(
G(m, 1, n)

)
in CASE VII) of type (β1, β2, β3) ( χ(zi) = βi, 1 ≤

i ≤ 3 ) is evaluated modulo Z̃ (resp. modulo Z) by using data of g = ΦY(g′) ∈
G(m, 1, n) as follows :

Table 4.1. For �nite group G̃Y(m, 1, n), Y= I, II (and VII),
4 ≤ n < ∞, m = 2m′ :

1 −→ Z̃ = 〈z1, z2〉 −→ G̃Y(m, 1, n)
ΦY−→ G(m, 1, n) −→ 1 (exact):

(β1, β2, β3) f(g′) 6= 0 =⇒ Condition for g = ΦY(g′) = (d, σ)
(spin) type = ξq1 · · · ξqrg1 · · · gs, ξqi = (tqi , (qi)), gj = (dj , σj)

CASE of projec. ord(d) + L(σ) ≡ 0 (mod 2) ord(d) + L(σ) ≡ 1 (mod 2)
Y represen- ord(d) ≡ 0 ord(d) ≡ 1 ord(d) ≡ 0 ord(d) ≡ 1

tation L(σ) ≡ 0 L(σ) ≡ 1 L(σ) ≡ 1 L(σ) ≡ 0
(−1,−1,−1) |supp(g′)| = n

I seed repre. ord(ξqi) ≡ 0 (1 6 i 6 r) ord(ξqi) ≡ 1 (1 6 i 6 r)
in [IhYo], ord(dj) + L(σj) ≡ 0 (1 6 j 6 s) ord(dj) ≡ 1 (1 6 j 6 s)
in [DaMo]

|supp(g′)| = n |supp(g′)| = n
(−1,−1, 1) L(σ) ≡ 0 r + s odd r + s odd

II ord(ξqi) ≡ 0 (∀i) ord(ξqi) ≡ 1 (∀i) ∅ ord(ξqi) ≡ 1 (∀i)
seed repre. ord(dj) + L(σj) ord(dj) ≡ 1 (∀j) ord(dj) ≡ 1 (∀j)
in [DaMo] ≡ 0 (∀j) L(σ) ≡ 1 L(σj) ≡ 0 (∀j)
(1, 1,−1) ⊂ An(T )S(2) n even, |supp(g′)| = n |supp(g′)|>n−1

VII r = 0, s odd,
seed repre. No other ord(dj) ≡ ord(d) (∀j) L(σj) ≡ 0 (∀j)
in [IhYo] conditions L(σj) ≡ 1 (∀j), g = g1g2 · · · gs
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Notation : L(σj) ≡ `(σj)− 1, L(σ) ≡ ∑
1≤j≤sL(σj) (mod 2),

ord(d) :=
∑

p∈In
ap , S(2) = {t2; t ∈ T} ∼= Zm/2, T = Zm,

An(T )S(2) := {(d, σ) ∈ Sn(T ) ; σ ∈ An, P (d) ∈ S(2)}.
New comments: In CASE I, the condition in the 3rd column and the one

in the 4th column correspond respectively to (Conditions I-00) and to (Condition
I-11) in ��16 and 19. In CASE II, the conditions in the 3rd column, in the 4th
column and in the 6th column correspond respectively to (Conditions II-00),
(Condition II-11) in ��17 and 20, and (Condition 0-11s) in �20.3.3.

4.2. Case of in�nite G̃Y(m, 1,∞), Y= I, II.

In Table 4.2 below, we give for a character f(g′), g′ ∈ G̃Y(m, 1,∞), Y=I, II(
resp. g′ ∈ R

(
G(m, 1,∞)

)
in CASE VII

)
the following :

• in the second column, (spin) type of factor representation or of spin charac-
ters, and the information on the basic representations given in [IhYo] or [DaMo]
which are called here as seed representation ;

• in the 3rd column, information on �nite-dimensional representations of
G̃Y(m, 1,∞) ;

• in the 4th column, information on the validity of the criterion (EF) ;
• in the 5th column, (Condition Y) to de�ne O(Y) for which supp(f) ⊂

O(Y).

Table 4.2. For in�nite group G̃Y(m, 1,∞), Y= I, II (and VII) :

G̃Y(m, 1,∞) 3 g′
ΦY−→ g ∈ G(m, 1,∞) = S∞(Zm) = D(m,∞)oS∞

CASE
Y

(β1, β2, β3)
Type of factor
representation

Existence of spin
�nite-dimensional
irred. represen. π

extremal
⇔

factori-
zable

supp(f) : f(g′) 6= 0 =⇒
Condition Y : g = ΦY(g′) =
(d, σ) = ξq1 · · · ξqrg1 · · · gs,

gj = (dj , σj)
(−1,−1,−1) ord(ξqi) ≡ 0 (mod 2) (∀i)

I seed represen. ¬∃ (not exist) π YES i.e., ξqi = (tqi , (qi)), tqi ∈ S(2),
[IhYo], [DaMo] ord(dj) + L(σj) ≡ 0 (∀j)

II
(−1,−1, 1)
seed represen.
in [DaMo]

¬∃ π NO(∗)
⊂ A∞(T )S(2), i.e.,
ord(d) ≡ L(σ) ≡ 0, and
ord(ξqi) ≡ 0 (∀i),
ord(dj) + L(σj) ≡ 0 (∀j)

VII
(1, 1,−1)
seed represen.
in [IhYo]

∃ 2-dimensional
irred. represen.

π2,ζk

(0 6 k < m/2)

NO
⊂ A∞(T )S(2), i.e.,
ord(d) ≡ 0,
L(σ) ≡ 0

(∗) This will be proved in Part V, Corollary 23.8, of the present paper
(cf. Lemma 17.3 and Note 17.1 for n < ∞)

In this paper we will apply the following notation for simplicity.



Notation 4.1. For σ′ ∈ S̃n and d′ ∈ D̃(m,n), we put, with σ = Φ(σ′), d =
Φ(d′) ∈ D(m,n), as





sgn(σ′) := sgn(σ), L(σ′) := L(σ), σ′(k) := σ(k) (k ∈ In) ;

ord(d′) := ord(d), supp(σ′) := supp(σ) ;

σ′γ := σγ = (γσ−1(1), γσ−1(2), . . . , γσ−1(n)) for γ = (γ1, . . . , γn), γj ∈ Im .

Part II

Spin irreducible representations

of R
(
G(m, 1, n)

)
, n<∞, of Types

(−1,−1,−1) and (−1,−1, 1)

5 Covering group D̃(m,n) and Cli�ord algebra

5.1 Non-spin and spin IRs of D̃(m,n)

Let 4 ≤ n < ∞. Put D(m,n) := Dn(Zm) =
〈
yj (j ∈ In)

〉
inside G(m, 1, n).

Then we have the following.

Lemma 5.1. The non-abelian group D̃(m,n) is a central extension of the
abelian group D(m,n) as

{e} −→ Z2 := 〈z2〉 −→ D̃(m,n)
ΦD−→ D(m,n) −→ {e} (exact),(5.1)

where ΦD(z2) = e, ΦD(ηj) = yj (j ∈ In).

We call an IR ρ of D̃(m,n) spin or non-spin according as ρ(z2) = −I or
ρ(z2) = I. The commutator group of D̃(m,n) is nothing but the central subgroup
Z2 := 〈z2〉 ∼= Z2, and the quotient group D̃(m,n)/Z2 is isomorphic to D(m,n).
Hence the set of non-spin IRs of D̃(m,n) consists of one-dimensional characters
of D(m,n).

To look for spin IRs, we take a bigger central normal subgroup

D̃0(m,n) :=
〈
η 2

j (j ∈ In)
〉 ⊂ D̃(m,n) =

〈
z2, ηj (j ∈ In)

〉
,(5.2)

and consider the quotient group D̃(m,n)
/
D̃0(m,n).

On the other hand, consider a Cli�ord algebra Cn = 〈f1, f2, . . . , fn〉C over C
associated with a quadratic form Q(x) = x 2

1 + x 2
2 + · · ·+ x 2

n , i.e.,{
x = x1f1 + x2f2 + · · ·+ xnfn, x = (x1, x2, . . . , xn),

x · x = Q(x)f0 ,
(5.3)

143
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where f0 is the identity element, and take a �nite group F ′
n = 〈f1, f2, . . . , fn〉

contained in Cn .

Lemma 5.2. The order |F ′
n| of the group F ′

n is 2n+1, and it is presented as
an abstract group Fn as follows:

set of generators: {z2, f1, f2, . . . , fn} ;

set of fundamental
relations:





z 2
2 = f0, z2 central element,

f 2
j = f0 (j ∈ In),

fjfk = z2fkfj (j 6= k) .

Lemma 5.3. The quotient group D̃(m,n)
/
D̃0(m,n) is canonically iso-

morphic to Fn . The group D̃(m,n) is a central extension of Fn as

{e} −→ D̃0(m,n) −→ D̃(m, n)
Ψ−→ Fn −→ {e} (exact),(5.4)

where the canonical homomorphism Ψ is given as Ψ(ηj) = fj (j ∈ In).

5.2 Regular representations L and R of Fn

Let us consider the left (resp. right) regular representation L (resp. R) of Fn,
acting on the space `2(Fn). Moreover we consider `double' regular representation
L · R given as

(L · R)(g0, g1)ϕ(g) := ϕ(g −1
0 gg1)

(
g, g0, g1 ∈ Fn, ϕ ∈ `2(Fn)

)
.(5.5)

A representation ρ of Fn is called `spin' if ρ(z2g) = −ρ(g) (g ∈ Fn). Let
V± ⊂ `2(Fn) be the subspaces of functions ϕ on Fn such that ϕ(z2g) = ±ϕ(g).
Then V− carries spin representations of Fn and

`2(Fn) = V+ ⊕ V− , dim V+ = dim V− = 2n .(5.6)

We calculate the trace of the restriction π := (L·R)|V− of L·R onto V−. The
subsets of Fn consisting of elements of the form z κ

2 f a1
1 f a2

2 · · · f an
n , for κ = 0, 1,

are denoted respectively by Fκ
n . Then Fn = F0

n t F1
n. An orthogonal basis of

V− is given by the set { δ′h ; h ∈ F0
n} of equal length

√
2 with

δ′h(g) =





1 for g = h ,
−1 for g = z2h ,
0 for any other g ∈ Fn ,

(5.7)

and π is written with respect to it as

π(g0, g1)δ
′
h =

{
δ′h′ if h′ := g0hg −1

1 ∈ F0
n ,

−δ′h′ if h′ := z2g0hg −1
1 ∈ F0

n .
(5.8)
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A basis element δ′h which contributes to tr
(
π(g0, g1)

)
should satisfy g0hg −1

1 =
z κ
2 h, and the contribution from it is ±1 corresponding to κ = 0, 1.
Note that, for a general element h = fj1fj2 · · · fjp , j1 < j2 < . . . < jp, we

have h−1 = fjp · · · fj2fj1 , and so obtain hg1h
−1 = z κ

2 g1. Hence we see that

tr
(
π(g0, g1)

)
= 0 if g0 6= z κ

2 g1 for any κ = 0, 1.(5.9)

So, let us calculate tr
(
π(g0, g1)

)
in case g0 = g1.

Lemma 5.4. Let g0 = g1 = f1f2 · · · fn. Then

tr
(
π(g0, g1)

)
=

{
0 if n is even,
2n if n is odd.

Proof. Let h = f a1
1 f a2

2 · · · f an
n . Then

g0hg −1
1 = z

(a1+a2+···+an)(n−1)
2 g0g

−1
1 h = z

(a1+a2+···+an)(n−1)
2 h

= z ch
2 h with ch =

{
a1 + a2 + · · ·+ an, if n is even,

0 if n is odd.

∴ tr
(
π(g0, g1)

)
=

∑

h∈F0
n

(−1)ch =
∑

ai=0,1
(i∈In)

(−1)ch =

{
0 if n is even,
2n if n is odd.

2

Now let g0 = g1 = f1f2 · · · fN with 1 ≤ N < n, and put k = n−N . For

h = f a1
1 f a2

2 · · · f aN
N

(
f b1

N+1 · · · f bk
n

)
, ai = 0, 1 ; bj = 0, 1,

g0hg −1
1 = z

(a1+a2+···+aN )(N−1)
2 z

(b1+···+bk)N
2 g0g

−1
1 h

= z
(a1+a2+···+aN )(N−1)
2 z

(b1+···+bk)N
2 h = z ch

2 h

with ch =

{
a1 + a2 + · · ·+ aN , if N is even,
b1 + · · ·+ bk , if N is odd.

∴ tr
(
π(g0, g1)

)
=

∑

h∈F0
n

(−1)ch =
∑

ai=0,1 ; bj=0,1
(i∈IN , j∈Ik)

(−1)ch = 0.

Lemma 5.5. The character of π = (L · R)
∣∣
V−

is given as follows:

χπ(g0, g1) = tr
(
π(g0, g1)

)
=

=





(−1)κ 2n if g0 = z κ
2 g1 and g0 = z δ

2 f0,
(−1)κ 2n if g0 = z κ

2 g1 and g0 = z δ
2 f1f2 · · · fn, n odd,

0 otherwise,

where �otherwise� means either g0 6= z κ
2 g1, or
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g0 = z κ
2 g1 and ord(g0) 6=

{
0 if n is even,

0, n if n is odd,

with ord(g) := α1 + · · ·+ αn for g = z δ
2 f α1

1 · · · f αn
n , αj = 0, 1, δ = 0, 1.

Theorem 5.6. Let π = (L · R)
∣∣
V−

be the restriction of of L · R onto

V− ⊂ `2(Fn).
(i) If n is even, then Fn has only one equivalence class of spin IR ρn, and

π is irreducible and

π ∼= ρn ⊗ ρn

(ii) If n is odd, then Fn has two equivalence classes of spin IRs ρn,±, and
π is decomposed as

π ∼=
(
ρn,+ ⊗ ρn,+

) ⊕ (
ρn,− ⊗ ρn,−

)
.

Proof. Using the above explicit form of the character χπ, we obtain

1

|Fn ×Fn|
∑

g∈Fn×Fn

|χπ(g)|2 =
1

22n+2

∑
g∈Fn×Fn

|χπ(g)|2 =

{
1 if n is even,
2 if n is odd.

2

Lemma 5.7. The irreducible decomposition of the spin part L
∣∣
V−

of the left

regular representation L is given as

L
∣∣
V−
∼=

{ [
2[n/2]

] · ρn if n is even,[
2[n/2]

] · (ρn,+

⊕
ρn,−

)
if n is odd ;

and the spin part F̂n

spin
of the dual F̂n of Fn is given as

F̂n

spin
=

{ {
[ρn]

}
, dim ρn = 2n/2, if n is even,{

[ρn,+], [ρn,−]
}
, dim ρn,± = 2(n−1)/2, if n is odd ,

(5.10)

where
[
2[n/2]

]· denotes the multiplicity of IRs, and [ρn] the equivalence class of
ρn .

Proof. If n is even, dim ρn =
√

dim V− = 2n/2.
If n is odd, let d be dim ρn,+ = dim ρn,+, then,

d2 + d2 = dim V− = 2n ∴ d =
√

2n−1 = 2(n−1)/2. 2

The following result is more or less known in the theory of Cli�ord algebras.

Theorem 5.8. Let Fn = 〈z2, f1, f2, . . . , fn〉 be the �nite group in Lemma
5.2, isomorphic to F ′

n in the Cli�ord algebra Cn. An IR ρ of Fn is called `spin'
IR if ρ(z2g) = −ρ(g) (g ∈ Fn).

In the case where n is even, spin IRs have unique equivalence class [ρn], and
their dimensions are equal to 2n/2.

In the case where n is odd, spin IRs have two equivalence classes [ρn,+], [ρn,−],
and their dimensions are 2(n−1)/2.
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5.3 Construction of spin IRs of Fn , and their characters

The result in this subsection is essentially contained in [Sch3] (cf. also [Fruc],
[IhYo] and [DaMo]). Take a triplet of hermitian matrices of trace zero as

a :=

(
0 1
1 0

)
, b :=

(
0 −i
i 0

)
, c :=

(
1 0
0 −1

)
,(5.11)

which are called Pauli matrices (cf. �1.2.2 in [E]). Then we have




a2 = b2 = c2 = ε (identity matrix), abc = iε ;

ab = −ba = ic, bc = −cb = ia, ca = −ac = ib ;

[a, b] = 2ic, [b, c] = 2ia, [c, a] = 2ib.

(5.12)

Note that, putting A1 = ia, A2 = −ib, A3 = ic (i =
√−1), as in [E, (1.7)], we

have a canonical basis of the Lie algebra su(2) with the commutation relations
[Ai, Aj] = 2Ak for cyclically permuted (i j k) of (1 2 3).

Let n = 2n′ even, or n = 2n′ + 1 odd. Put in GL(2n′ ,C) = GL(2[n/2], C),

Y1 = a⊗ ε⊗ ε⊗ · · · ⊗ ε⊗ ε⊗ ε = a⊗ ε⊗(n′−1)

((n′ − 1)-times tensor product of ε),
Y2 = b⊗ ε⊗ ε⊗ · · · ⊗ ε⊗ ε⊗ ε = b⊗ ε⊗(n′−1),

Y3 = c⊗ a⊗ ε⊗ ε⊗ · · · ⊗ ε⊗ ε = c⊗ a⊗ ε⊗(n′−2),

Y4 = c⊗ b⊗ ε⊗ ε⊗ · · · ⊗ ε⊗ ε = c⊗ b⊗ ε⊗(n′−2),

· · · · · · · · ·
Y2i−1 = c⊗ c⊗ · · · ⊗ c⊗ a⊗ ε⊗ · · · ⊗ ε = c⊗(i−1) ⊗ a⊗ ε⊗(n′−i)

(a, i-th component),
Y2i = c⊗ c⊗ · · · ⊗ c⊗ b⊗ ε⊗ · · · ⊗ ε = c⊗(i−1) ⊗ b⊗ ε⊗(n′−i)

(b, i-th component),
· · · · · · · · ·

Y2n′−1 = c⊗ c⊗ · · · ⊗ c⊗ c⊗ a = c⊗(n′−1) ⊗ a,

Y2n′ = c⊗ c⊗ · · · ⊗ c⊗ c⊗ b = c⊗(n′−1) ⊗ b,

Y2n′+1 = c⊗ c⊗ · · · ⊗ c⊗ c⊗ c︸ ︷︷ ︸
n′-times

= c⊗(n′−1) ⊗ c ,

(5.13)

where ε⊗i denotes i-times tensor product of ε and so on. Then the set
{
Y1, Y2, . . . ,

Y2n′
}
, 2n′ = 2[n/2], generates the algebra M(2n′ ,C) over C and the group

GL(2n′ ,C), and gives them special �ne structures.

Lemma 5.9. (i) The set of generators
{
Y1, Y2, . . . , Y2n′

}
of M(2n′ ,C)

satis�es the following set of fundamental relations: with the identity matrix
E = E2n′ ,

{
Y 2

j = E (j ∈ I2n′),

YjYk = −YkYj (j 6= k).
(5.14)
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Conversely, as an abstract algebra over C, take the set of symbols
{
Y1, Y2, . . . ,

Y2n′
}
as generators, and fundamental relations (5.14) above, where E is replaced

by the neutral element e, then they give an algebra isomorphic to M(2n′ ,C).
(ii) If we take the redundant set

{
Y1, Y2, . . . , Y2n′ , Y2n′+1

}
as the set of gen-

erators, then the set of fundamental relations turns out to be




Y 2
j = E (j ∈ I2n′+1),

YjYk = −YkYj (j 6= k),

Y1Y2 · · ·Y2n′+1 = in
′
E,

(5.15)

Conversely, as an abstract algebra over C, they give, similarly as above, an
algebra isomorphic to M(2n′ ,C).

Note that the set of fundamental relations (5.14) is symmetric under permu-
tations of Yj (j ∈ I2n′) under S2n′ , and that the one (5.15) is `skew-symmetric'
under S2n′+1. These facts will induce spin representations of S2n′ and S2n′+1

naturally as is seen in [Sch3] (cf. also �6 in [E]).

Lemma 5.10. (i) The set of the monomial products Y a1
1 Y a2

2 · · ·Y a2n′
2n′ , aj =

0, 1 (1 ≤ j ≤ 2n′) gives a linear basis of the algebra M(2n′ ,C), where, in case
aj = 0 for all j, the product means the identity matrix E = E2n′ .

(ii) Any non-trivial monomial product Yj1Yj2 · · ·Yjp , j1 < j2 < . . . < jp ≤
2n′, has trace 0. A monomial product Yj1Yj2 · · ·YjpY2n′+1, j1 < j2 < . . . < jp ≤
2n′, containing Y2n′+1, has non-zero trace only when it is Y1Y2 · · ·Y2n′Y2n′+1. In
other words,

tr
(
Yj1Yj2 · · ·YjpY2n′+1

)
= 0 for j1 < j2 < . . . < jp ≤ 2n′,(5.16)

whenever one of Yj, j ≤ 2n′ is absent.

Now we give explicit realizations of ρn, ρn,± in Theorems 5.6 and 5.8 as follows.
Pre-assuming this, we may use the same notation.

De�nition 5.1. Put, in case n = 2n′ even,

ρn(fj) := Yj (1 ≤ j ≤ 2n′ = n),(5.17)

and in case n = 2n′ + 1 odd,
{

ρn,κ(fj) := Yj (1 ≤ j ≤ 2n′ = n− 1),

ρn,κ(f2n′+1) := κY2n′+1, κ = ± .
(5.18)

We see from the next theorem that the above de�nition actually gives a
realization of IRs ρn, ρn,±.

Theorem 5.11. (i) Case n = 2n′ even: The set of operators
{
ρn(fj), j ∈

In

}
gives a spin IR ρn of Fn. Every spin IR of Fn is equivalent to ρn.
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The character of ρn is given by

χρn(g) = tr
(
ρn(g)

)
=

{
(−1)b 2n/2 g = z b

2 , b = 0, 1,

0 otherwise.
(5.19)

(ii) Case n = 2n′ + 1 odd: For each choice of κ = ±, the set of operators{
ρn,κ(fj), j ∈ In

}
gives a spin IR ρn,κ of Fn respectively. Every spin IR of Fn

is equivalent to one of ρn,+ and ρn,−.
The character of ρn,κ, κ = ±, is given by

χρn,κ(g) = tr
(
ρn,κ(g)

)
=





(−1)b 2[n/2] g = z b
2 , b = 0, 1,

κ i[n/2] · (−1)b 2[n/2] g = z b
2 f1f2 · · · fn ,

0 otherwise.

(5.20)

Proof. Case n even: At �rst ρn is irreducible. Moreover dim ρn = 2[n/2]

and so (dim ρn)2 = 2n = |Fn|/2. This proves that any spin IR is equivalent to
ρn.

Another proof for the irreducibility is given by explicit form of characters as

∑
g∈Fn

∣∣χρn(g)
∣∣2 = 2 · 2n = |Fn| ∴

∥∥χρn

∥∥2
= 1 in `2(Fn).

Case n odd: At �rst ρn,± are irreducible. Since ρn,±
∣∣
Fn−1

is already irre-
ducible, there exists no intertwining operator between ρn,+ and ρn,−. Moreover
dim ρn,± = 2[n/2] and so (dim ρn,+)2 + (dim ρn,−)2 = 2n = |Fn|/2. This proves
that any spin IR is equivalent to one of ρn,±.

Another proof for the irreducibility is given by explicit form of characters as

∑
g∈Fn

∣∣χρn,±(g)
∣∣2 = 4 · 22[n/2] = 2 · 2n = |Fn|. 2

5.4 Actions of Sn on spin IRs of Fn

From the abstract de�nition in Lemma 5.2 of the group Fn by using the sets of
generators and of fundamental relations, we see that Fn admits actions of Sn in
two di�erent ways as follows: for σ ∈ Sn,

σ(fj) := fσ(j) ,

[σ](fj) := sgn(σ)fσ(j) ,
(1 ≤ j ≤ n).(5.21)

Accordingly Sn acts on representations ρ of Fn by

(σρ)(g) := ρ
(
σ−1(g)

)
,

([σ]ρ)(g) := ρ
(
[σ−1](g)

)
,

for g ∈ Fn.(5.22)
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Theorem 5.12.
{

σρn
∼= ρn for Fn, n even ;

σρn,κ
∼= ρn,sgn(σ)κ for Fn, n odd, κ = ± ;

(5.23)

[σ]ρn
∼= ρn (n even); [σ]ρn,κ

∼= ρn,κ (n odd);(5.24)

where the sign sgn(σ)κ in (5.23) is de�ned by sgn(σ) · (κ1) =
(
sgn(σ)κ

)
1.

Proof. This fact can be seen from the explicit form of characters of ρn and
ρn,± given in the preceding subsection, since they are invariant under Sn for n
even, and covariant with sgn(σ) for n odd. 2

6 Spin IRs of D̃n := D̃(m,n)

6.1 Induced representations from a central subgroup

Assume m = 2m′ be even. We have the central extension

{e} −→ Z2 := 〈z2〉 −→ D̃(m,n)
ΦD−→ D(m,n) −→ {e} (exact),(6.1)

where the canonical generators ηj (j ∈ In) of D̃(m,n) are mapped to yj =

ΦD(ηj) ∈ D(m,n). Here ΦD maps each cyclic subgroup T ′
j = 〈ηj〉 of D̃(m,n)

isomorphically onto Tj = 〈yj〉 of D(m, n). Let T = Zm = 〈y〉 and T ′ = Zm = 〈η〉
be the protocols of Tj and T ′

j respectively. A character of T is given as ζ(c)(y) :=

ωc with an integer c considered mod m, and ω = e2πi/m, and the corresponding
character of T ′ is denoted by χ(c) : χ(c)(η) = ωc. Note that ζ(c+m′)(y) = ωc+m′

=

−ζ(c)(y), with m′ = m/2, and similarly for χ(c). Denote by ζj,γj
∈ T̂j the copy of

ζ(γj), i.e., ζj,γj
(y a

j ) := ωγja , and similarly for χj,γj
∈ T̂ ′

j : χj,γj
(η a

j ) := ωγja.
For γ = (γ1, . . . , γn), put ζγ := (ζj)j∈In , ζj = ζj,γj

, then it covers all one-
dimensional characters of D(m, n) =

∏
j∈In

Tj.

However, for non-commutative extension D̃(m,n), the situation is not so
simple.

De�nition 6.1. For γ = (γ1, . . . , γn), de�ne spin functions χγ and sgnD̃ on
D̃(m, n) as follows: for d′ = z b

2 η a1
1 · · · ηan

n ,

χγ(d
′) := (−1)b ωγ1a1 · · ·ωγnan , sgnD̃(d′) := (−1)b,(6.2)

where b = 0, 1; 0 ≤ aj < m = 2m′ (j ∈ In). De�ne also a (non-spin) character
of D̃(m,n) by ζγ ◦ ΦD and denote it again by the same symbol ζγ.

The character ζγ behaves reasonably under the action of S̃n, but neither
χγ = sgnD̃ · ζγ nor sgnD̃. However the latters describe well rather complicated
behaviors of spin IRs of D̃(m,n) under S̃n as will be seen below. (In particular,
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χγ describes globally the character of spin IR Pγ of D̃(m, n). Cf. Theorem 6.3

below.) Note that, for d′ and d′′ = z b′
2 η

a′1
1 η

a′2
2 · · · η a′n

n ,
sgnD̃(d′d′′) = (−1)c sgnD̃(d′) sgnD̃(d′′) with c =

∑
j>k aja

′
k.

The restriction of χγ onto D̃1(m,n) :=
〈
z2, D̃

0(m,n)
〉 ⊃ D̃0(m,n) is a char-

acter, and so is χγ

∣∣
T ′j

= χj,γj
for each j, which corresponds to ζj,γj

on Tj
∼= T ′

j .

Actually the above exact sequence (6.1) does not work well to construct
spin IRs ρ. We apply another structure of central extension with D̃0(m,n) =
〈η 2

1 , η 2
2 , . . . , η 2

n 〉

{e} −→ D̃0(m,n) −→ D̃(m,n)
Ψ−→ Fn −→ {e} (exact),(6.3)

that is, D̃(m,n)/D̃0(m,n) ∼= Fn under Ψ : ηj 7→ fj ∈ Fn (j ∈ In). Any
character of D̃0(m,n) is given as

χ0
γ := χγ

∣∣∣
D̃0(m,n)

, D̃0(m,n) =
∏
j∈In

T 0
j , T 0

j := 〈η 2
j 〉.(6.4)

For another γ′ = (γ′1, . . . , γ
′
n), χ0

γ = χ0
γ′ if and only if γj ≡ γ′j (mod m′) for all

j ∈ In.

De�nition 6.2. Let Γn be the set of parameters γ = (γ1, . . . , γn) satisfying
0 ≤ γj < m = 2m′ (j ∈ In), and de�ne its subset Γ0

n as

Γ0
n :=

{
γ = (γ1, γ2, . . . , γn) ; 0 ≤ γj < m′ = m/2 (j ∈ In)

} ⊂ Γn .(6.5)

A character χ0
γ of D̃0(m,n) is extended to χ1

γ := χγ

∣∣
D̃1(m,n)

of D̃1(m,n) by

putting χ1
γ(z2) = −1. Now induce it up to D̃(m,n) as Πγ := Ind

D̃(m,n)

D̃1(m,n)
χ1

γ , and

decompose it into irreducibles. At �rst we have the following.

Theorem 6.1. The trace character χΠγ of the induced representation Πγ

of D̃(m,n) is given as follows: for d′ = z b
2 η a1

1 η a2
2 · · · η an

n ∈ D̃(m, n),

χΠγ (d
′) =





(−1)b χγ

(
η a1

1 η a2
2 · · · η an

n

) · 2n = (−1)b 2n · ωγ1a1+···+γnan ,

if η a1
1 η a2

2 · · · η an
n ∈ D̃0(m,n) or aj ≡ 0 (mod 2) (j ∈ In),

0 , otherwise.

In the above, χγ

(
η a1

1 η a2
2 · · · η an

n

)
= ζγ

(
η a1

1 η a2
2 · · · η an

n

)
, since it is on D̃0(m,n).

6.2 Explicit form of spin IRs of D̃n and their characters

We prepare a series of matrix IRs of D̃n := D̃(m, n). Abbreviate the notation
as D̃k

n := D̃k(m,n) for k = 0, 1, and let Y1, Y2, . . . , Y2n′ , Y2n′+1 be 2n′ × 2n′ type
matrices in (5.13). Let n = 2n′ or n = 2n′ + 1.
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De�nition 6.3 (IRs of D̃n). Put, for γ = (γ1, . . . , γn) ∈ Γn,

Pγ(ηj) := χγ(ηj)Yj (j ∈ In), χγ(ηj) = ζγ(ηj) = ωγj .(6.6)

Lemma 6.2. The system Pγ(ηj) (j ∈ In) gives an IR of D̃n with Pγ(z2) =
−E, and for d′ = z b

2 η b1
p1

η b2
p2
· · · η bk

pk
with any p1, p2, . . . , pk ∈ In and b = 0, 1,

Pγ(d
′) = (−1)bζγ(d

′) · Y b1
p1

Y b2
p2
· · ·Y bk

pk
.(6.7)

When d′ is transcribed as d′ = z b′
2 η

a′1
1 η

a′2
2 · · · η a′n

n by exchanging ηj's, then

Pγ(d
′) = χγ(d

′) · Y a′1
1 Y

a′2
2 · · ·Y a′n

n .(6.8)

Proof. We can check the fundamental relations (iii)�(iv) in Theorem 2.3 as

{
Pγ(ηj)

2 = ζγ(η
2

j ) E = ω2γj E ∴ Pγ(ηj)
m = E (j ∈ In),

Pγ(ηj)Pγ(ηk) = −Pγ(ηk)Pγ(ηj) (j 6= k).

This proves that Pγ is a representation of D̃n. The irreducibility can be seen
easily from Lemma 5.9. 2

Remark 6.1. The formula (6.7) for spin IR Pγ suggests in appearance that
the responsibility of non-commutativity among ηj's is shifted through Pγ unilat-
erally to the side of the product of Yj's. It is partially true but not completely
because of the sign factor. The spin function χγ (not a one-dimensional charac-
ter) in the formula (6.8) represents spin property of Pγ and helps to keep in mind
the non-commutativity of D̃n, and in particular it describe the character χPγ of
Pγ globally as seen in Theorem 6.3 below. Confer also ��16 � 17, in particular
Remark 17.1, Propositions 17.8 and 17.6, and also Theorem 20.13 etc.

The non-spin character ζγ is �rst de�ned on D(m,n) and then on D̃(m,n)

through ΦD. The spin function χγ on D̃(m,n) coincides with ζγ on D̃0(m,n)
and also on each T ′

j . A point of danger of confusion exists in

ζγ(d
′) =

∏
1≤i≤kχγ(η

bi
pi

) = ±(−1)bχγ(d
′),

where, to get the sign ± exactly, rearrange d′ = z b
2 η b1

p1
η b2

p2
· · · η bk

pk
as d′ =

z b+b′
2 η a1

1 η a2
2 · · · η an

n , then χγ(d
′) = (−1)b+b′ωγ1a1+···+γnan = (−1)b′ · (−1)bζγ(d

′).

Theorem 6.3. The trace character χPγ of IR Pγ of D̃n is given as follows.
(i) Assume n = 2n′. Then,

χPγ (d
′) =

{
2n′ · χγ(d

′) , for d′ ∈ D̃1
n,

0 , otherwise.
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(ii) Assume n = 2n′ + 1. Then,

χPγ (d
′) =





2n′ · χγ(d
′) , for d′ ∈ D̃1

n,

(2i)n′ · χγ(d
′) , for d′ ∈ (η1η2 · · · ηn)D̃1

n,

0 , otherwise.

Proof. We prove only the assertion (ii). We apply Lemma 5.10. The relation
abc = iε gives us

Y1Y2 · · ·Y2n′+1 = (abc)⊗ · · · ⊗ (abc) = (abc)⊗n′ = (iε)⊗n′ ,

∴ tr
(
Y1Y2 · · ·Y2n′+1

)
= (2i)n′ . 2

6.3 Equivalence relations among Pγ's

De�nition 6.4. On the space Γn, we de�ne an action τk for each k ∈ In as

τkγ = (γ′1, . . . , γ
′
n) with

{
γ′k = γk + m′ (mod m),

γ′j = γj (j 6= k).
(6.9)

Lemma 6.4. (i) Assume n = 2n′. Then, for γ′ = (γ′1, . . . , γ
′
n),

Pγ′
∼= Pγ ⇐⇒ γ′ ≈n γ(6.10)

under the congruence ≈n generated by
{
τk ; k ∈ In

}
.

As parameters for a complete set of representatives of the spin dual of D̃(m,n),
we have γ ∈ Γ0

n, or

γ = (γ1, . . . , γn), 0 ≤ γj < m′ (j ∈ In).(6.11)

(ii) Assume n = 2n′ + 1. Then, for γ′ = (γ′1, . . . , γ
′
n),

Pγ′
∼= Pγ ⇐⇒ γ′ ≈n γ(6.12)

under the congruence ≈n generated by
{
τkτ` ; k, ` ∈ In

}
.

As parameters for a complete set of representatives of the spin dual of D̃(m,n),
we have γ, τnγ (γ ∈ Γ0

n), or

γ = (γ1, . . . , γn−1, γn),

{
0 ≤ γj < m′ (1 ≤ j ≤ n−1 = 2n′),

0 ≤ γn < m = 2m′ (j = n = 2n′+1).
(6.13)

Proof. Using the character formulas in Theorem 6.3, we see that the set of
IRs Pγ with parameters in (6.11) or (6.13) respectively are mutually inequivalent.

The completeness of the set of these IRs is proved by dimension calculus such
as

∑

γ: (6.11)

(
dim Pγ)

2 = (m′)n × (
2n′)2

= mn =
∣∣D̃(m,n)

∣∣/2, if n = 2n′ even,
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∑

γ: (6.13)

(
dim Pγ)

2 = (m′)2n′ ·m× (
2n′)2

= m2n′+1 = mn =
∣∣D̃(m,n)

∣∣/2,

if n = 2n′ + 1 odd. 2

Theorem 6.5. (i) In the case where n = 2n′ even, a complete set of

representatives of spin IRs of D̃(m,n) is given by

Rep(D̃n) :=
{
Pγ ; γ ∈ Γ0

n

}
.(6.14)

(ii) In the case where n = 2n′ + 1 odd, a complete set of representatives of
spin IRs is given by

{
Pγ ; γ satis�es (6.13)

}
, and is divided into two subsets

as

Rep(D̃n) = Rep+(D̃n)
⊔

Rep−(D̃n) ,(6.15)
{

Rep+(D̃n) :=
{
P+

γ := Pγ ; γ ∈ Γ0
n

}
,

Rep−(D̃n) :=
{
P−

γ := Pτnγ ; γ ∈ Γ0
n

}
.

(6.16)

The reason for dividing into two subsets Rep+(D̃n) and Rep−(D̃n) is seen from
the following. Let γ = (γ1, . . . , γn) ∈ Γ0

n. Then τnγ = (γ1, . . . , γn−1, γn+m′), n =

2n′ + 1, and for d′ = z b
2 η a1

1 η a2
2 · · · η an

n ∈ D̃n, we have Ψ(d′) = f a1
1 · · · f an

n ∈ Fn ,
and

P+
γ (d′) = χγ(d

′)Y a1
1 · · ·Y an

n = χγ(d
′) ρn,+

(
f a1

1 · · · f an
n

)
.(6.17)

P−
γ (d′) = Pτnγ(d

′) = χτnγ(d
′)Y a1

1 · · ·Y an
n(6.18)

= χγ(d
′)Y a1

1 · · ·Y an−1

n−1 (−Yn)an = χγ(d
′) ρn,−

(
f a1

1 · · · f an
n

)
.

The induced representation Πγ is decomposed into the sum of IRs above as
shown below.

Proposition 6.6. The induced representation Πγ = IndD̃n

D̃1
n

χ1
γ is decomposed

as

Πγ
∼=

[
2n′] · Pγ , in case n = 2n′ ;

Πγ
∼=

[
2n′] · (Pγ ⊕ Pτnγ

)
, in case n = 2n′ + 1,

where
[
2n′

]
denotes the multiplicity, and τnγ = (γ1, . . . , γn−1, γn+m′) (mod m).

In case n = 2n′ + 1 odd, Πγ
∼=

[
2n′

] · (P+
γ ⊕ P−

γ

)
if γ ∈ Γ0

n .

Proof. By character formulas in Theorem 6.3, we see that, in case n = 2n′,
χΠγ = 2n′ · χPγ , which gives the desired result. In case n = 2n′ + 1, we apply

(
χPγ + χPτnγ

)
(d′) =

{
2 χPγ (d

′), if d′ ∈ D̃1
n,

0 , otherwise,

and an explicit formula for the character Πγ. 2
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6.4 Fundamental IRs P0 for n even, and P+, P− for n odd

Put γ(0) := (0, 0, . . . , 0) and γ(−) := τnγ
(0) = (0, 0, . . . , 0,m′), and

{
P0 := Pγ(0) if n = 2n′ even;

P+ := Pγ(0) , P− := Pγ(−) if n = 2n′ + 1 odd.
(6.19)

Then, P0(d
′) = sgnD̃(d′) Y a1

1 Y a2
2 · · ·Y an

n for d′ = z b
2 η a1

1 η a2
2 · · · η an

n . Through
Ψ : D̃n → Fn, P0 is essentially equal to ρn, and P± to ρn,±.

Theorem 6.7. The IRs of D̃n are expressed as tensor products of non-spin
one-dimensional characters and fundamental spin IRs as follows:

Pγ
∼= ζγ ⊗ P0 (γ ∈ Γn) in case n even,

{
P+

γ
∼= ζγ ⊗ P+ (γ ∈ Γ0

n)

P−
γ
∼= ζγ ⊗ P− (γ ∈ Γ0

n)
in case n odd.

7 Actions of S̃n on D̃n and stationary subgroups

for equivalence classes of IRs

7.1 Actions of S̃n on the group D̃n, in CASEs I and II

Inside of the base group G(m, 1, n) = Dn o Sn , Dn := D(m,n), an element
σ ∈ Sn acts on Dn as

σ(yj) = yσ(j) (j ∈ I),(7.1)

where yj is the generator of Tj
∼= T corresponding to y ∈ T . However, in the

covering groups G̃Y
n := G̃Y(m, 1, n) = D̃n

Y
o S̃n, D̃n := D̃(m,n), of CASE Y= I

and II, the covering group S̃n acts on D̃n in di�erent ways for Y= I and II. We
discuss them independently.

Since the central element z1 acts trivially, S̃n acts through ΦS : S̃n → Sn.
But we prefer to keep the original ri ∈ S̃n (instead of si ∈ Sn), and denote the
action of ri on d′ ∈ D̃(m,n) as rI

i(d
′)

(
instead of sI

i(d
′)
)
in CASE I, and as rII

i (d′)
in CASE II, to distinguish them each other.

For conveniences, in CASE I, we use the new generators

η′j = z j−1
2 ηj (j ∈ In)(7.2)

of D̃n = D̃(m,n) (cf. �2.3). Then, since χγ(z2) = −1 and Pγ(z2) = −E, we have

Pγ(η
′
j) = χγ(η

′
j)Yj = χγ(ηj)Y

′
j (j ∈ In) in CASE I ,(7.3)

where Y ′
j := (−1)j−1Yj (j ∈ In). In fact, Pγ(η

′
j) = Pγ(z

j−1
2 ηj) = (−1)j−1χγ(ηj)Yj =

χγ(η
′
j)Yj = χγ(ηj)Y

′
j .
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From �2.3, we have for 1 ≤ i ≤ n− 1,

rI
i(η

′
j) = z2η

′
si(j)

(j ∈ In), in CASE I ;(7.4)

rII
i (ηj) = ηsi(j) (j ∈ In), in CASE II .(7.5)

7.2 Action of S̃n on IRs and stationary subgroups (CASE I)

Theorem 7.1. Let ri ∈ S̃n and ΦS(ri) = si = (i i+1) ∈ Sn, 1 6 i 6 n−1,
a simple transposition. In CASE I, Type (−1,−1,−1), the action on IR Pγ of

D̃n = D̃(m,n) is as follows: for γ ∈ Γ0
n in (6.5),

{
rI
iPγ

∼= Psiγ (1 ≤ i ≤ n− 1),

σ′ IPγ
∼= Pσγ

(
σ′ ∈ S̃n, σ = ΦS(σ′) ∈ Sn

)
,

where σ′γ = σγ := (γσ−1(1), γσ−1(2), . . . , γσ−1(n)).

Proof. To prove this, we study characters. Let n = 2n′. If aj ≡ 0 (mod 2) (j ∈
In), then d′ = z b

2 η′1
a1 · · · η′nan = z b

2 η a1
1 · · · η an

n , and so rI
i(d

′) = z b
2 si

(
η a1

1 · · · η an
n

)
.

From Theorem 6.3 (i), we see that

χPγ

(
rI
i(d

′)
)

= χPsiγ (d
′) (d′ ∈ D̃n).

Let n = 2n′ + 1. If aj ≡ 0 (mod 2) (j ∈ In), then χ(rI
iPγ)(d

′) = χPsiγ (d
′).

If aj ≡ 1 (mod 2) (j ∈ In), then

d′ = z b
2 η′1

a1 · · · η′nan = z b
2 z

n(n−1)/2
2 η a1

1 · · · η an
n = z b

2 z n′
2 η a1

1 · · · η an
n ,

rI
i(d

′) = z b
2 · z n

2 η′si(1)
a1 · · · η′si(n)

an = z b
2 z n

2 · z2 η′1
asi(1) · · · η′nasi(n) =

= z b
2 z n′

2 η
asi(1)

1 · · · η asi(n)
n ,

and from Theorem 6.3 (ii), we see that for χPγ

(
rI
i(d

′)
)

= χPsiγ (d
′) (d′ ∈ D̃n),

whence χ(rI
iPγ) = χPsiγ . 2

Denote by [Pγ] the equivalence class of IR Pγ, and by S(Pγ) the station-
ary subgroup of [Pγ] in S̃n, and put S(Pγ) := ΦS

(S(Pγ)
) ⊂ Sn. Note that

ΦS
(S(Pγ)

)
= ΦI

(S(Pγ)
)
with ΦI : G̃ I

n → G(m, 1, n), when S(Pγ) is understood

as a subgroup of G̃ I
n.

Theorem 7.2. In CASE I, Type (−1,−1,−1), let γ ∈ Γ0
n in (6.5).

(i) The stationary subgroup of [Pγ] in S̃n, n ≥ 4, is given as

S(Pγ) =
{
σ′ ∈ S̃n ; σγ = γ, σ = Φ(σ′)

}
.

(ii) Let n be odd. The stationary subgroups of [P+
γ ] and [P−

γ ] in S̃n are
given as

S(P±
γ ) =

{
σ′ ∈ S̃n ; σγ = γ, σ = Φ(σ′)

}
.
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7.3 Action of S̃n on IRs and stationary subgroups (CASE II)

In CASE II, Type β = (−1,−1, 1), in the covering group G̃ II
n , the group S̃n acts

on D̃n through Sn
∼= S̃n/〈z1〉 as in (7.5). Then, for σ′ ∈ S̃n, let σ = Φ(σ′) ∈ Sn,

σ′II(ηj) = σII(ηj) := ησ(j) (j ∈ In).(7.6)

Hence it acts on a representation π of D̃n as

(σ′IIπ)(d′) = (σIIπ)(d′) = π
(
(σ−1)II(d′)

)
(d′ ∈ D̃n).(7.7)

Theorem 7.3. Let si = (i i+1) ∈ Sn, 1 ≤ i ≤ n − 1, be simple trans-

positions. In CASE II, Type (−1,−1, 1), the action on IRs of D̃n is given as
follows.

(i) Let n = 2n′ be even. Then for γ ∈ Γ0
n,

s II
i Pγ

∼= Psiγ, σIIPγ
∼= Pσγ (σ ∈ Sn),

σγ = (γσ−1(1), γσ−1(2), . . . , γσ−1(n)).

(ii) Let n = 2n′+1 be odd. Then, for γ ∈ Γn, s II
i Pγ

∼= Pτnsiγ (1 ≤ i ≤ n−1),
whence for γ ∈ Γ0

n ,

{
σIIP+

γ
∼= P+

σγ, σIIP−
γ
∼= P−

σγ

(
σ ∈ Sn, sgn(σ) = 1

)
,

σIIP+
γ
∼= P−

σγ, σIIP−
γ
∼= P+

σγ

(
σ ∈ Sn, sgn(σ) = −1

)
.

Proof. We apply explicit character formulas for Pγ, P+
γ = Pγ and P−

γ = Pτnγ

in Theorem 6.3. Since the proof for the assertion (i) is similar as that for Theorem
7.1, we treat (ii) here.

For d′ = z b
2 η a1

1 · · · η an
n , we have χPγ (d

′) 6= 0 if and only if aj ≡ 0 (∀j) or
aj ≡ 1 (∀j).

In case aj ≡ 0 (∀j), the components η ak
k commute with each other, and

so the transformation d′ 7→ rII
i (d′) is realized by the exchange ai ↔ ai+1 in

(a1, a2, . . . , an), whence

χPγ

(
rII
i (d′)

)
= χPsiγ (d

′) = χPτnsiγ (d
′).(7.8)

In case aj ≡ 1 (∀j), we have η ai

si(i)
η

ai+1

si(i+1) = z2 η
ai+1

i η ai
i+1 , and

χτnγ(d
′) = (−1)b ωa1γ1+···+an−1γn−1+an(γn+m′)

= −(−1)b ωa1γ1+···+an−1γn−1+anγn = −χγ(d
′),

since an ≡ 1 (mod 2). Their e�ects cancel each other, and so (7.8) above holds
in this case too. Altogether χPγ

(
rII
i (d′)

)
= χPτnsiγ (d

′) for d′ ∈ D̃n in general.
This proves the assertion (ii), with the help of (6.12). 2
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In CASE II, the stationary subgroup of the equivalence class [Pγ] in Sn (resp.
in S̃n) is denoted by S(Pγ)

(
resp. by S(Pγ)

)
.

Theorem 7.4. In CASE II, Type (−1,−1, 1), the stationary subgroups

S(P ) ⊂ S̃n and S(P ) ⊂ Sn for P = Pγ, P
+
γ and P−

γ are given as follows:

S(P ) = Φ −1
S

(
S(P )

)
for P = Pγ, P±

γ , with
{

S(Pγ) =
{
σ ∈ Sn ; σγ = γ

} ⊂ Sn in case n = 2n′ even ;

S(P±
γ ) =

{
σ ∈ An ; σγ = γ

} ⊂ An in case n = 2n′ + 1 odd.

8 Intertwining operators for IRs of D̃n, related

spin representations of Sn and An

8.1 Operators which intertwine IRs Pγ and Pγ′ of D̃n

Assume 4 ≤ n < ∞, and let Y1, Y2, . . . , Y2n′ , Y2n′+1 be as in (5.13), and put

Y ′
j = (−1)j−1Yj (j ∈ In).(8.1)

De�ne ∇n as

∇n(rj) :=
(−1)j−1

√
2

(Yj + Yj+1) =
1√
2

(Y ′
j − Y ′

j+1) (j ∈ In−1).(8.2)

Moreover, when n = 2n′ + 1, we put ∇−
n as

∇−
n (rj) := −Y2n′+1∇n(rj) Y −1

2n′+1 (j ∈ In−1).(8.3)

Then we have



∇−

n (rj) = ∇n(rj) (j ∈ In−2),

∇−
n (rn−1) =

(−1)n−2

√
2

(Yn−1 − Yn) =
1√
2

(Y ′
2n′ + Y ′

2n′+1) ;
(8.4)

and also for n = 2n′, 2n′ + 1, and 1 ≤ j ≤ n− 1,

∇′
n(rj) :=

1√
2

(Yj − Yj+1) ;

∇′′
n(rj) := −Y2n′+1∇′

n(rj) Y −1
2n′+1 = −Y2n′+1∇′

n(rj) Y2n′+1 .
(8.5)

Then, for n = 2n′, ∇′′
n(rj) = ∇′

n(rj) (j ∈ In−1), and

for n = 2n′ + 1,




∇′′

n(rj) = ∇′
n(rj) (j ∈ In−2),

∇′′
n(rn−1) =

1√
2

(Yn−1 + Yn).
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When n = 2n′ even, we put for 1 ≤ j ≤ n− 1 = 2n′ − 1,

∇II
n (rj) := (iY2n′+1) · ∇′

n(rj) = ∇′
n(rj) · (−iY2n′+1),(8.6)

and when n = 2n′ + 1, for 1 ≤ j ≤ n− 1 = 2n′,

∇II+
n (rj) := (iY2n′+1) · ∇′

n(rj),

∇II−
n (rj) := ∇′

n(rj) · (−iY2n′+1).
(8.7)

Then




∇II±

n (rj) = ∇II
n (rj) (j ∈ I2n′−1),

∇II±
n (r2n′) = (iY2n′+1) · 1√

2
(Y2n′ ∓ Y2n′+1).

Lemma 8.1. The following relations hold :





∇n(ri)
2 = E (i ∈ In−1),(∇n(ri)∇n(ri+1)

)3
= E (i ∈ In−2),

∇n(ri)∇n(rk) = −∇n(rk)∇n(ri) (|i− k| ≥ 2) ;

(8.8)





∇−
n (ri)

2 = E (i ∈ In−1),(∇−
n (ri)∇−

n (ri+1)
)3

= E (i ∈ In−2),

∇−
n (ri)∇−

n (rk) = −∇−
n (rk)∇−

n (ri) (|i− k| ≥ 2) ;

(8.9)





∇′
n(ri)

2 = E (i ∈ In−1),(∇′
n(ri)∇′

n(ri+1)
)3

= E (i ∈ In−2),

∇′
n(ri)∇′

n(rk) = −∇′
n(rk)∇′

n(ri) (|i− k| ≥ 2) ;

(8.10)

and similarly for ∇′′
n as ∇′

n .
For n = 2n′ even,





∇II
n (ri)

2 = E (i ∈ In−1),(∇II
n (ri)∇II

n (ri+1)
)3

= E (i ∈ In−2),

∇II
n (ri)∇II

n (rk) = −∇II
n (rk)∇II

n (ri) (|i− k| ≥ 2) ;

(8.11)

Proof. ∇n(ri)∇n(ri+1) +∇n(ri+1)∇n(ri) + E =

=
−1
2

{
(Yi + Yi+1)(Yi+1 + Yi+2) + (Yi+1 + Yi+2)(Yi + Yi+1)

}
+ E = −E + E = O.

∴
(∇n(ri)∇n(ri+1)

)3 = E.

∇−n (rn−2)∇−n (rn−1) +∇−n (rn−1)∇−n (rn−2) + E =

=
−1
2

{
(Yn−2 +Yn−1)(Yn−1−Yn)+ (Yn−1−Yn)(Yn−2 +Yn−1)

}
+E = −E +E = O.

∴
(∇−n (rn−2)∇−n (rn−1)

)3 = E.
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Similarly, other relations can be veri�ed by calculations. 2

Lemma 8.2. For ∇II+
n and ∇II−

n , there hold the following relations :

{
∇II−(ri) = ∇II+

n (ri)
−1 (i ∈ In−1) ,

∇II−(ri) = ∇II+
n (ri) (i ∈ In−2) ;

(8.12)





∇II+
n (ri)

2 = E (i ∈ I2n′−1),(∇II+
n (ri)∇II+

n (ri+1)
)3

= E (i ∈ I2n′−2),

∇II+
n (ri)∇II+

n (rk) = −∇II+
n (rk)∇II+

n (ri) (i, k ∈ I2n′−1, |i−k|≥2);

(8.13)

and similarly for ∇II−
n . Especially for n = 2n′ + 1 odd,

{
∇II+

n (r2n′)
4 = −E,

(∇II+
n (r2n′−1)∇II+

n (r2n′)
)3

= E,

∇II+
n (ri)∇II+

n (r2n′) 6= −∇II
n (r2n′)∇II

n (ri) (i ∈ I2n′−2).
(8.14)

Moreover, for n = 2n′ + 1,{
∇II+

n (ri)
−1 = ∇II+

n (ri) (i ∈ I2n′−1) ;

∇II+
n (r2n′)

−1 = ∇II−
n (r2n′) 6= ∇II+

n (r2n′) (i = 2n′).

Proof. ∇II+
n (r2n′)

2 = −Y2n′Y2n′+1 = ε⊗(n′−1) ⊗ (−bc) = ε⊗(n′−1) ⊗ (−ia),

∴ ∇II+
n (r2n′)

4 = −E.

∇II+
n (r2n′−1)∇II+(r2n′) = 1

2
(Y2n′−1 − Y2n′)(Y2n′ − Y2n′+1) = ε⊗(n′−1) ⊗ A,

A = 1
2
(a− b)(b− c) = 1

2
(−ε + ia + ib + ic), A2 = 1

2
(−ε− ia− ib− ic), A3 = ε,

∴
(∇II+

n (r2n′−1)∇II+(r2n′)
)3

= E.

Similarly, other relations can be veri�ed by calculations. 2

8.2 Spin representations of Sn by intertwining operators

Through the action of S̃n on D̃n, we have an action of S̃n on IRs of D̃n. In the
preceding subsection, we have prepared operators which will serve to describe
intertwining operators between IRs of D̃n for the action of S̃n. Before going into
this subject, we give here a spin representations of Sn using these operators.
The following is a consequence of Lemmas 8.1 � 8.2.

Theorem 8.3. Let n ≥ 4.
(i) The map ri 7→ ∇n(ri)

(
resp. ∇−

n (ri)
)
, i ∈ In−1, gives a spin represen-

tation of the representation group S̃n = R
(
Sn

)
= 〈z1, r1, r2, . . . , rn−1〉.

(ii) Similar assertion holds also for the maps ri 7→ ∇′
n(ri) and ri 7→

∇′′
n(ri) (i ∈ In−1), and for σ′ ∈ S̃n ,

∇′′
n(σ′) = sgn(σ′) · Y2n′+1∇′

n(σ′) Y −1
2n′+1,
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that is, ∇′′
n(σ′) = Y2n′+1∇′

n(σ′) Y2n′+1 and ∇′′
n(σ′) = −Y2n′+1∇′

n(σ′) Y2n′+1 ac-
cording as sgn(σ′) = 1 or −1.

(iii) For n = 2n′, the map ri 7→ ∇II
n (ri), i ∈ In−1 = I2n′−1, gives a spin

representation of the representation group S̃n.
(iv) For n = 2n′ + 1, the map ri 7→ ∇II+

n (ri) = ∇II−
n (ri), i ∈ In−2, gives a

spin representation of S̃n−1 = R
(
Sn−1

)
, which is equal to ∇II

n−1 . But the map
ri 7→ ∇II+

n (ri)
(
resp. ∇II−

n (ri)
)
, i ∈ In−1, gives no representation of the whole

group S̃n .

Proof. (i) � (iii) follow from Theorem 1.2 on the presentation of the represen-
tation group S̃n = T′n. (iv) follows from (8.14), in particular, ∇II±

n (rn−1)
4 =

−E. 2

Note that the spin representation ∇II
2n′ of S̃2n′ is equal to the restriction of

any of matrix-valued functions ∇II+
2n′+1 and ∇II−

2n′+1 of S̃2n′+1 de�ned in the next
subsection.

After the notion of`zweiseitige (=two-sided)' in [Sch3, �14], we introduce a
de�nition as follows.

De�nition 8.1. For a spin character χ of Sn, 4 ≤ n ≤ ∞, the character
sgn · χ is called associate character of χ, and χ is called self-associate or non-
self-associate according as sgn · χ = χ or sgn · χ 6= χ. Correspondingly, a spin
representation π of S∞ is called self-associate or non-self-associate according as

π ∼= sgn ·π or not. Here sgn is the sign character on S̃n given as S̃n
ΦS−→ Sn

sgn−→
{±1}.

This notion will play important rolls later. See [HHo] and also cf. [Sch3] and
the book [HoHu2]. We will see later that Schur's `Hauptdarstellung' ∆′

n is self-
associate or non-self-associate according as n is odd or even (cf. Theorems 15.2
and 15.3). The present spin representation ∇n is self-associate, and irreducible if
n is odd. When n is even, it is equivalent to the direct sum of non-self-associate
spin IRs as predicted below. Actually ∇n

∼= ∆′
n ⊕ (sgn · ∆′

n) for n = 2n′

(cf. Theorem 15.5).

• Irreducible decomposition of ∇2n′ . When n = 2n′ is even, ∇n splits
into a direct sum of two inequivalent irreducible components as will be seen in
Theorem 15.5 by means of characters. At this stage we can show the following.
By calculation, for 4 ≤ n < ∞,

{
∇n(rj)Y

′
j = −Y ′

j+1∇n(rj), ∇n(rj)Y
′
j+1 = −Y ′

j∇n(rj),

∇n(rj)Y
′
k = −Y ′

k∇n(rj) (k 6= j, j + 1),
(8.15)

∴ ∇n(ri)Θ
′
n = −Θ′

n∇n(ri) (i ∈ In−1) , with

Θ′
n :=

1√
n

(Y ′
1 + Y ′

2 + · · ·+ Y ′
n), Θ′

n
2

= E.
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Let n = 2n′ be even. Then ∇2n′(ri)Y
′
2n′+1 = −Y ′

2n′+1∇2n′(ri) (i ∈ I2n′−1).
Put

Θn = Θ2n′ := Θ′
2n′ · (iY2n′+1), i =

√−1,(8.16)

then it commutes with ∇2n′(σ
′), σ′ ∈ S̃2n′ , and Θ 2

n = E. Therefore

Q± :=
1

2
(E ±Θ2n′), Q+Q− = Q−Q+ = O, Q+ + Q− = E,

gives a decomposition of the space V = C2n′
of ∇2n′ into a direct sum of two

invariant subspaces V± := Q±V . However detailed structure of them are not
clear at this stage.

8.3 Extensions ∇II+
2n′+1 and ∇II−

2n′+1 for ∇II
2n′ of S̃2n′

Let n = 2n′ + 1 odd. The situations for ∇II+
n (ri)'s and ∇II−

n (ri)'s are rather
complicated. First note that each of the matrices ∇II±

n (ri) (1 ≤ i ≤ n− 1 = 2n′)
are determined as an intertwining operator for the corresponding equivalence
relation in (10.1) in Lemma 10.1 (iii) below, or in another notation,

∇II+
n (ri)P

+
γ (d′)∇II+

n (ri)
−1 = P−

siγ

(
sII

i (d′)
)

∇II−
n (ri)P

−
γ (d′)∇II−

n (ri)
−1 = P+

siγ

(
sII

i (d′)
) (γ ∈ Γ0

n , d′ ∈ D̃n).(8.17)

Then each of ∇II±
n (ri) is uniquely determined up to a multiplicative constant as

a solution of the corresponding equation above.
As is proved, ∇II+

n (ri) = ∇II−
n (ri) = ∇II

n−1(ri) (1 ≤ i ≤ n− 2 = 2n′− 1) give a
spin representation ∇II

n−1 of S̃n−1. However, if we add ∇II+
n (rn−1) or ∇II−

n (rn−1)

together with them, we can have no representation of S̃n, n = 2n′ + 1, at all.
In spite of this, we would like to extend∇II+

n (ri)'s and∇II−
n (ri)'s to reasonable

matrix-valued functions on the whole S̃2n′+1 which are two di�erent continua-
tions of IR ∇II

n−1 of S̃n−1. This is to clarify the complicated situation at present
and also to use later to express intertwining relations among P±

γ (γ ∈ Γ0
n) (see

�10).
To give an extension ∇II+

n of ∇II
n−1 on S̃n−1, note the following. If σ′ ∈ S̃n

does not belong to S̃n−1, then σ′ can be expressed as σ′ = σ′2rn−1σ
′
1 with σ′k ∈

S̃n−1 (k = 1, 2), sgn(σ′1) = 1. Putting ∇II±
n (σ′′) = ∇II

n (σ′′) for σ′′ ∈ S̃n−1 ⊂ S̃n,
we de�ne

∇II+
n (σ′) := ∇II+

n (σ′2)∇II+
n (rn−1)∇II+

n (σ′1).(8.18)

Then, since ∇II+
n (σ′1) = ∇′

n(σ′1), ∇II+
n (rn−1) = (iY2n′+1)∇′

n(rn−1), we have
{
∇II+

n (σ′) = ∇′
n(σ′) if sgn(σ′) = 1 or σ′ ∈ Ãn ,

∇II+
n (σ′) = (iY2n′+1)∇′

n(σ′) if sgn(σ′) = −1 or σ′ 6∈ Ãn .
(8.19)
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For another extension ∇II−
n , we take the same expression σ′ = σ′2r2n′σ

′
1 as

above for σ′ ∈ S̃n \ S̃n−1, and put

∇II−
n (σ′) := ∇II−

n (σ′2)∇II−
n (rn−1)∇II−

n (σ′1).(8.20)

Then, since ∇II−
n (σ′1) = ∇′

n(σ′1), ∇II−
n (rn−1) = ∇′

n(rn−1) (−iY2n′+1), we have

{ ∇II−
n (σ′) = Y2n′+1∇′

n(σ′) Y2n′+1 = ∇′′
n(σ′) if sgn(σ′) = 1 ,

∇II−
n (σ′) = ∇′

n(σ′) (−iY2n′+1) if sgn(σ′) = −1 .
(8.21)

8.4 Spin representations of An by intertwining operators

Let n = 2n′ + 1 odd. From the spin representations ∇′
n and ∇′′

n of S̃n, we get
those of the double covering group Ãn by restrictions. Note that, as remarked in
�2.4, the representation group Bn = R

(
An

)
of An is special for n = 6, 7, since it

is 6-fold covering whereas it is double covering for n ≥ 4, 6= 6, 7. In this paper,
we treat only this double covering Ãn, generated by v′i = z1ri+1r1 ∈ S̃n (1 ≤ i ≤
n− 2) (cf. Theorem 2.7). We put for v′ ∈ Ãn

0+
n (v′) := ∇′

n(v′),

0−
n (v′) := ∇′′

n(v′),
(8.22)

and in particular 0±
n (z1) = −E. Then, 0+

n (v′) = 0−
n (v′) for v′ ∈ Ãn−1, and we

get from the results in the preceding subsection the following: for v′ ∈ Ãn ,

0+
n (v′) = ∇II+

n (v′),

0−
n (v′) = ∇II−

n (v′) = Y2n′+10
+
n (v′) Y2n′+1.

(8.23)

Theorem 8.4. Let n ≥ 4. The maps v′i 7→ 0+
n (v′i) and v′i 7→ 0−

n (v′i), 1 ≤
i ≤ n − 2, give respectively spin representations of the double covering group
Ãn, which is the representation group Bn = R

(
An

)
if n 6= 6, 7.

Note 8.1. It will be seen in Theorem 15.5 (ii) that 0+
n
∼= 0−

n is a direct sum
of two inequivalent spin IRs of Ãn.

8.5 Conjugations by Y2n′+1,∇n(ri),∇−
n (ri),∇′

n(ri) and ∇II±
n (ri)

Denote by ι(A) the conjugation B 7→ ABA−1 on GL(2n′ ,C).

Lemma 8.5. (i) The conjugation ι(Y2n′+1) yields the transformation

Yj 7→ −Yj (1 ≤ j ≤ 2n′), Y2n′+1 7→ Y2n′+1.

(ii) For 1 ≤ i ≤ n− 1, the conjugation ι
(∇n(ri)

)
yields the transformation:

Y ′
j 7→ −Y ′

si(j)
(j ∈ In) with Y ′

j = (−1)j−1Yj (j ∈ In)
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(iii) In case n = 2n′ + 1 odd, the conjugation ι
(∇−

n (rn−1)
)
yields the trans-

formation:

Y ′
j 7→ −Y ′

j (j ∈ In−2), Y ′
n−1 7→ Y ′

n, Y ′
n 7→ Y ′

n−1.

(iv) For 1 ≤ i ≤ n−1, the conjugation ι
(∇′

n(ri)
)
yields the transformation:

Yj 7→ −Ysi(j) (j ∈ In).

(v) For 1 ≤ i ≤ 2n′ − 1, the conjugation ι
(∇II+

n (ri)
)
yields the transforma-

tion:

Yj 7→ Ysi(j) (j ∈ I2n′), Y2n′+1 7→ −Y2n′+1 .

(vi) The conjugation ι
(∇II+

n (r2n′)
) (

resp. ι
(∇II−

n (r2n′)
) )

yields the transfor-
mation:





Yj 7→ Yj (j ≤ 2n′ − 1),

Y2n′ 7→ −Y2n′+1,

Y2n′+1 7→ Y2n′ .

resp.





Yj 7→ Yj (j ≤ 2n′ − 1),

Y2n′ 7→ Y2n′+1,

Y2n′+1 7→ −Y2n′ .

Proof. These are proved by calculations. 2

The conjugation ι(Y2n′+1) yields the transformation of IRs Pγ of D̃n, through
Lemma 8.5 (i), as follows. We will discuss later for other types of conjugations.

Lemma 8.6. The conjugation ι(Y2n′+1) yields the transformation

ι(Y2n′+1)Pγ(d
′) = P(τ1τ2···τ2n′ )γ(d

′) (d′ ∈ D̃n),

or ι(Y2n′+1)Pγ = P(τ1τ2···τ2n′ )γ . Moreover (τ1 · · · τ2n′)γ ≈n γ.

Proof. For 1 ≤ j ≤ 2n′ and j = 2n′ + 1 respectively,

Y2n′+1Pγ(ηj)Y
−1

2n′+1 = Y2n′+1ω
γjYjY

−1
2n′+1 = −ωγj Yj = ωγj+m′

Yj,

Y2n′+1Pγ(η2n′+1)Y
−1

2n′+1 = Y2n′+1ω
γ2n′+1Y2n′+1Y

−1
2n′+1 = ωγ2n′+1 Y2n′+1. 2

9 Intertwining relations among Pγ's under S̃n

in CASE I

Lemma 9.1. In CASE I, Type (−1,−1,−1), the following intertwining
relations hold.

(i) For 1 ≤ i ≤ n− 1, the conjugation ι
(∇n(ri)

)
yields for γ ∈ Γn ,

ι
(∇n(ri)

)
Pγ(d

′) = Psiγ

(
rI
i(d

′)
)

(d′ ∈ D̃n).
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(ii) For n = 2n′ + 1 odd, γ ∈ Γ0
n in (6.5), and for 1 ≤ i ≤ n− 1,

ι
(∇−

n (ri)
)
P−

γ (d′) = P−
siγ

(
rI
i(d

′)
)

(d′ ∈ D̃n).

(iii) For 1 ≤ i ≤ n− 1, the conjugation ι
(∇′

n(ri)
)
yields

ι
(∇′

n(ri)
)
Pγ(d

′) = P(τiτi+1)siγ

(
rI
i(d

′)
)

(d′ ∈ D̃n),

and (τiτi+1)siγ = si(τiτi+1)γ ≈n siγ.

(iv) For 1 ≤ i ≤ 2n′ − 1, the conjugation ι
(∇II+

n (ri)
)
yields

ι
(∇II+

n (ri)
)
Pγ(d

′) = Psiγ′
(
rI
i(d

′)
)

(d′ ∈ D̃n),

where γ′ =
( ∏

j 6=i,i+1,2n′+1 τj

)
γ, and γ′ ≈n γ.

(v) In case n = 2n′ + 1 odd, the conjugation ι
(∇II+

n (r2n′)
)
yields

ι
(∇II+

n (r2n′)
)
Pγ(d

′) = Ps2n′ (τ1τ2···τ2n′ )γ
(
r I
2n′(d

′)
)

(d′ ∈ D̃n),

and (τ1τ2 · · · τ2n′)γ ≈n γ .

Proof. (i) For i ∈ In−1 ,

ι
(∇n(ri)

)
Pγ(η

′
i) = ι

(∇n(ri)
)(

ωγi+(i−1)m′
Yi

)
= ωγi+(i−1)m′

Yi+1

= ωγi+(i−1)m′
Yi+1 = Psiγ

(
rI
i(η

′
i)
)
,

ι
(∇n(ri)

)
Pγ(η

′
i+1) = ι

(∇n(ri)
)(

ωγi+1+im′
Yi+1

)
= ωγi+1+im′

Yi = Psiγ

(
rI
i(η

′
i+1)

)
;

and for j 6= i, i + 1,

ι
(∇n(ri)

)
Pγ(η

′
j) = ι

(∇n(ri)
)(

ωγj+(j−1)m′
Yj

)
= −ωγj+(j−1)m′

Yj

= ωγj+jm′
Yj = Psiγ

(
rI
i(η

′
j)

)
.

(ii) For n = 2n′ + 1 odd,

ι
(∇−

n (rn−1)
)
P−

γ (η′n−1) = ι
(∇−

n (rn−1)
)(

χτnγ(η
′
n−1)Yn−1

)
= (−1)n−2 ωγn−1 (−Yn)

= (−1)n−1 ωγn−1Yn = P−
sn−1γ

(
r I
n−1(η

′
n−1)

)
,

ι
(∇−

n (rn−1)
)
P−

γ (η′n) = ι
(∇−

n (rn−1)
)(

χτnγ(η
′
n)Yn

)
= (−1)n−1 ωγn+m′

(−Yn−1)

= (−1)n−1 ωγnYn−1 = P−
sn−1γ

(
r I
n−1(η

′
n)

)
.

(iii) For i ∈ In−1, let j 6= i, i + 1,

ι
(∇′

n(ri)
)
Pγ(η

′
i) = ι

(∇′
n(ri)

)(
ωγi+(i−1)m′

Yi

)
= −ωγi+(i−1)m′

Yi+1

= ωγi+im′
Yi+1 = P(τiτi+1)siγ

(
rI
i(η

′
i)
)
,

ι
(∇′

n(ri)
)
Pγ(η

′
i+1) = ι

(∇′
n(ri)

)(
ωγi+1+im′

Yi+1

)
= −ωγi+1+im′

Yi

= ωγi+1+(i+1)m′
Yi = P(τiτi+1)siγ

(
rI
i(η

′
i+1)

)
;

ι
(∇′

n(ri)
)
Pγ(η

′
j) = ι

(∇′
n(ri)

)(
ωγj+(j−1)m′

Yj

)
= −ωγj+(j−1)m′

Yj
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= ωγj+jm′
Yj = P(τiτi+1)siγ

(
rI
i(η

′
j)

)
.

(iv) For i ∈ I2n′−1, let γ′ =
( ∏

j 6=i,i+1,2n′+1 τj

)
γ,

ι
(∇II+

n (ri)
)
Pγ(η

′
i) = ι

(∇II+
n (ri)

)(
ωγi+(i−1)m′

Yi

)
= ωγi+(i−1)m′

Yi+1 = Psiγ′
(
rI
i(η

′
i)
)
,

ι
(∇II+

n (ri)
)
Pγ(η

′
i+1) = ι

(∇II+
n (ri)

)(
ωγi+1+im′

Yi+1

)
= ωγi+1+im′

Yi = Psiγ′
(
rI
i(η

′
i+1)

)
;

and for j ∈ I2n′ , 6= i, i + 1,

ι
(∇II+

n (ri)
)
Pγ(η

′
j) = ι

(∇II+
n (ri)

)(
ωγj+(j−1)m′

Yj

)
= ωγj+(j−1)m′

Yj = Psiγ′
(
rI
i(η

′
j)

)
;

ι
(∇II+

n (ri)
)
Pγ(η

′
2n′+1) = ι

(∇II+
n (ri)

)(
ωγ2n′+1+2n′m′

Y2n′+1

)

= −ωγ2n′+1+2n′m′
Y2n′+1 = Psiγ′

(
rI
i(η

′
2n′+1)

)
.

(v) For i = 2n′ (n = 2n′ + 1), and j 6= 2n′, 2n′ + 1,

ι
(∇II+

n (r2n′)
)
Pγ(η

′
j) = ι

(∇II+
n (r2n′)

)(
ωγj+(j−1)m′

Yj

)
= ωγj+(j−1)m′

Yj

= Ps2n′γ′′
(
r I
2n′(η

′
j)

)
;

and for j = 2n′, 2n′ + 1,

ι
(∇II+

n (r2n′)
)
Pγ(η

′
2n′) = ι

(∇II+
n (r2n′)

)(
ωγ2n′+(2n′−1)m′

Y2n′
)

=

= −ωγ2n′+(2n′−1)m′
Y2n′+1 = Ps2n′γ′′

(
r I
2n′(η

′
2n′)

)
;

ι
(∇II+

n (r2n′)
)
Pγ(η

′
2n′+1) = ι

(∇II+
n (r2n′)

)(
ωγ2n′+1+2n′m′

Y2n′+1

)

= ωγ2n′+1+2n′m′
Y2n′ = Ps2n′γ′′

(
r I
2n′(η

′
2n′+1)

)
. 2

From the assertions (i) and (ii), we get the following intertwining relations.

Theorem 9.2. Suppose we are in CASE I, Type (−1,−1,−1).

(i) For σ′ ∈ S̃n , let σ = Φ(σ′), then for γ ∈ Γn ,

ι
(∇n(σ′)

)
Pγ(d

′) = Pσγ

(
σ′ I(d′)

)
= Pσγ

(
σI(d′)

)
(d′ ∈ D̃n),

or in another notation, σ′ IPγ = ι
(∇n(σ′)

)−1(
Pσγ

)
.

(ii) In the case where n = 2n′ + 1 odd, there holds for γ ∈ Γ0
n ,

ι
(∇−

n (σ′)
)
P−

γ (d′) = P−
σγ

(
σ′ I(d′)

)
= P−

σγ

(
σI(d′)

)
(d′ ∈ D̃n),

or in another notation, σ′ IP−
γ = ι

(∇−
n (σ′)

)−1(
P−

σγ

)
.

10 Intertwining relations among Pγ's under S̃n

in CASE II

Recall that rII
i (d′) = sII

i (d′) and σ′ II(d′) = σII(d′) with σ = Φ(σ′) ∈ Sn for
σ′ ∈ S̃n, from (7.6). This action of S̃n in CASE II on D̃(m,n) is the non-
twisted natural one through S̃n → Sn, compared with the twisted one in CASE
I.
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Lemma 10.1. In CASE II, Type (−1,−1, 1), the following intertwining
relations hold.

(i) For i ∈ In−1, the conjugation ι
(∇′

n(ri)
)
yields, for d′ ∈ D̃n ,

ι
(∇′

n(ri)
)
Pγ(d

′) = P(τ1τ2···τn)siγ

(
rII
i (d′)

)
= P(τ1τ2···τn)siγ

(
sII

i (d′)
)
,

and (τ1τ2 · · · τn)siγ = si(τ1τ2 · · · τn)γ. For γ′ := (τ1τ2 · · · τn)γ, we have γ′ ≈n γ
in case n = 2n′, and γ′ ≈n τnγ in case n = 2n′ + 1.

(ii) In case n = 2n′ even, the conjugation ι
(∇II

n (ri)
)
yields, for i ∈ In−1

and γ ∈ Γn ,

ι
(∇II

n (ri)
)
Pγ(d

′) = Psiγ

(
sII

i (d′)
)

(d′ ∈ D̃n).

(iii) Let n = 2n′ + 1 be odd. For i ∈ In−1, γ ∈ Γn and d′ ∈ D̃n ,

ι
(∇II+

n (ri)
)
Pγ(d

′) = Pτnsiγ

(
sII

i (d′)
)
,

ι
(∇II−

n (ri)
)
Pγ(d

′) = Psiτnγ

(
sII

i (d′)
)
.

In other notations, for γ ∈ Γ0
n , d′ ∈ D̃n , and 1 ≤ i ≤ 2n′ = n− 1,

ι
(∇II+

n (ri)
)
P+

γ (d′) = P−
siγ

(
sII

i (d′)
)
,

ι
(∇II−

n (ri)
)
P−

γ (d′) = P+
siγ

(
sII

i (d′)
)
.

(10.1)

Proof. (i) For i ∈ In−1 let j 6= i, i + 1. Then, with γ′ = (τ1τ2 · · · τn)γ,

ι
(∇′

n(ri)
)
Pγ(ηi) = ι

(∇′
n(ri)

)(
ωγiYi

)
= −ωγiYi+1 = ωγi+m′

Yi+1 = Psiγ′
(
sII

i (ηi)
)
,

ι
(∇′

n(ri)
)
Pγ(ηi+1) = ι

(∇′
n(ri)

)(
ωγi+1Yi+1

)
= −ωγi+1Yi = ωγi+1+m′

Yi

= Psiγ′
(
sII

i (ηi+1)
)
,

ι
(∇′

n(ri)
)
Pγ(ηj) = ι

(∇′
n(ri)

)(
ωγjYj

)
= −ωγjYj = ωγj+m′

Yj = Psiγ′
(
sII

i (ηj)
)
.

(ii) For i ∈ I2n′−1 ,

ι
(∇II

n (ri)
)
Pγ(ηi) = ι

(∇II
n (ri)

)(
ωγiYi

)
= ωγiYi+1 = Psiγ

(
sII

i (ηi)
)
,

ι
(∇II

n (ri)
)
Pγ(ηi+1) = ι

(∇II
n (ri)

)(
ωγi+1Yi+1

)
= ωγi+1Yi = Psiγ

(
sII

i (ηi+1)
)
,

ι
(∇II

n (ri)
)
Pγ(ηj) = ι

(∇II
n (ri)

)(
ωγjYj

)
= ωγjYj = Psiγ

(
sII

i (ηj)
)
.

(iii) Note that ι
(∇II+

n (ri)
)

= ι
(
iY2n′+1

)
ι
(∇′

n(ri)
)
, then by (i) above and Lemma

8.6,

ι
(∇II+

n (ri)
)
Pγ(d

′) = ι
(
iY2n′+1

)
ι
(∇′

n(ri)
)
Pγ(d

′) = ι
(
iY2n′+1

)
P(τ1τ2···τn)siγ

(
sII

i (d′)
)

= P(τ1···τ2n′ )(τ1τ2···τn)siγ

(
sII

i (d′)
)

= Pτnsiγ

(
sII

i (d′)
)
.

Similarly for ∇II−
n (ri). 2

From Lemma 10.1, we have the following.
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Theorem 10.2. In CASE II, Type (−1,−1, 1) :

(i) For σ′ ∈ S̃n, put σ = Φ(σ′), and let γ ∈ Γn and d′ ∈ D̃n.
If sgn(σ) = 1, then ∇′

n(σ′) = 0+
n (σ′) and

ι
(∇′

n(σ′)
)
Pγ(d

′) = ι
(
0+

n (σ′)
)
Pγ(d

′) = Pσγ

(
σII(d′)

)
.

If sgn(σ) = −1, then

ι
(∇′

n(σ′)
)
Pγ(d

′) = P(τ1τ2···τn)σγ

(
σII(d′)

)
.

In another notation, these are expressed respectively as

σIIPγ = ι
(∇′

n(σ′)
)−1(

Pσγ

)
= ι

(
0+

n (σ′)
)−1(

Pσγ

)
if sgn(σ) = 1 ;

σIIPγ = ι
(∇′

n(σ′)
)−1(

P(τ1τ2···τn)σγ

)
if sgn(σ) = −1.

(ii) Let n = 2n′ be even, then for γ ∈ Γn and d′ ∈ D̃n ,

ι
(∇II

n (σ′)
)
Pγ(d

′) = Pσγ

(
σII(d′)

)
,

or σIIPγ = ι
(∇II

n (σ′)
)−1(

Pσγ

)
.

(iii) Let n = 2n′+1 be odd. The two extensions of ∇II
n−1 on S̃n−1 as matrix-

valued functions ∇II+
n and ∇II−

n are given respectively in (8.19) and (8.21).

Suppose sgn(σ′) = sgn(σ) = 1 for σ′ ∈ S̃n, σ = Φ(σ′). Then

∇II+
n (σ′) = ∇′

n(σ′) = 0+
n (σ′),

∇II−
n (σ′) = ∇′′

n(σ′) = 0−
n (σ′) ;

(10.2)

and, for γ ∈ Γ0
n and d′ ∈ D̃n ,

ι
(
0+

n (σ′)
)
P+

γ (d′) = P+
σγ

(
σII(d′)

)
,

ι
(
0−

n (σ′)
)
P−

γ (d′) = P−
σγ

(
σII(d′)

)
,

(10.3)

which are expressed in another notation as

σIIP+
γ = ι

(
0+

n (σ′)
)−1(

P+
σγ

)
,

σIIP−
γ = ι

(
0−

n (σ′)
)−1(

P−
σγ

)
.

(10.4)

(iv) Let n = 2n′ + 1 be odd. Suppose sgn(σ′) = sgn(σ) = −1 for σ′ ∈ S̃n.
Then

∇II+
n (σ′) = (iY2n′+1) · ∇′(σ′),

∇II−
n (σ′) = ∇′(σ′) · (−iY2n′+1) = (−iY2n′+1) · ∇′′(σ′) ;

(10.5)

and, for γ ∈ Γ0
n and d′ ∈ D̃n ,

ι
(∇II+

n (σ′)
)
P+

γ (d′) = P−
σγ

(
σII(d′)

)
,

ι
(∇II−

n (σ′)
)
P−

γ (d′) = P+
σγ

(
σII(d′)

)
,

(10.6)

which are expressed in another notation as

σIIP+
γ = ι

(∇II+
n (σ′)

)−1(
P−

σγ

)
,

σIIP−
γ = ι

(∇II−
n (σ′)

)−1(
P+

σγ

)
.

(10.7)
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11 Classi�cation of spin IRs of G(m, 1, n), CASE I,

Type (−1,−1,−1)

We have already several classi�cations of spin IRs of generalized symmetric
groups G(m, 1, n) such as [Rea2] and [HoHu4]. Here we give a classi�cation
by means of (say) a constructive method, which serves directly to explicit calcu-
lations of their characters.

11.1 Irreducible spin representations ΠI
c,Λ and ΠI±

c,Λ of G̃ I
n

Let m be even. Take a spin representation Π of

G̃ I
n = G̃ I(m, 1, n) = R

(
G(m, 1, n)

)
/〈z2z

−1
3 〉 = D̃n

I
o S̃n(11.1)

such that Π(z1) = Π(z2) = −I or of Type (−1,−1,−1), where D̃n = D̃(m,n).

Theorem 11.1. Suppose n ≥ 4 and m is even. Let Π be a representation
of the covering group G̃ I

n = R
(
G(m, 1, n)

)
/〈z2z

−1
3 〉 such that

(i) Π(z1) = −I, Π(z2) = −I.

Then it is actually a spin representation of G(m, 1, n), of CASE I, Type (−1,−1,−1).
The operators Π(ri)'s and Π(η′j)'s satisfy the following:

(ii)

{
Π(ri)

2 = I (i ∈ In−1),
(
Π(ri)Π(ri+1)

)3
= I (i ∈ In−2),

Π(ri)Π(rj) = −Π(rj)Π(ri) (|i− j| ≥ 2),

(iii) Π(η′j)
m = I (j ∈ In),

(iv) Π(η′j)Π(η′k) = −Π(η′k)Π(η′j) (j 6= k),

(v) Π(ri)Π(η′j)Π(r −1
i ) = −Π

(
η′si(j)

)
(j ∈ In).

Now consider spin representations ∇n and ∇−
n of S̃n in Theorem 8.3 and the

IR Pγ of D̃n in (6.6) :

∇n(ri) =
(−1)j−1

√
2

(Yj + Yj+1) (i ∈ In−1) of S̃n ;(11.2)





∇−
n (ri) = ∇n(ri) (i ∈ In−2)

∇−
n (rn−1) =

(−1)n−2

√
2

(Yn−1 − Yn) (i = n− 1)
of S̃n ;(11.3)

Pγ(η
′
j) = (−1)j−1ωγjρ(ηj) = χγ(η

′
j) Yj = ζγ(η

′
j) Y ′

j (j ∈ In) of D̃n .(11.4)
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11.2 Stationary subgroups of [Pγ] and [P±
γ ]

Take the complete sets of representatives of the set of equivalence classes ̂̃
Dn

spin

of spin IRs of D̃n in Theorem 6.5 as

Case n = 2n′ even: Rep(D̃n) =
{
[Pγ] ; γ ∈ Γ0

n

}
;(11.5)

Case n = 2n′+1 odd: Rep(D̃n) = Rep+(D̃n)
⊔

Rep−(D̃n),(11.6)

with

{
Rep+(D̃n) =

{
[P+

γ ] = [Pγ] ; γ ∈ Γ0
n

}
,

Rep−(D̃n) =
{
[P−

γ ] = [Pτnγ] ; γ ∈ Γ0
n

}
.

Here the subset Γ0
n of Γn is de�ned by the condition

γ = (γ1, . . . , γn), 0 ≤ γj < m′ (j ∈ In).(11.7)

Lemma 11.2. For representatives Pγ (resp. P+
γ = Pγ and P−

γ = Pτnγ if n

is odd) with γ ∈ Γ0
n, of equivalence classes of spin IRs of D̃n, there holds

σI
(
Pγ

) ∼= Pσγ , σI
(
P±

γ

) ∼= P±
σγ (σ ∈ Sn),(11.8)

and the stationary subgroups in S̃n of their equivalence classes are given as

S(Pγ) := S([Pγ]) =
{
σ′ ∈ S̃n ; σ′γ = γ

}
;

S(P±
γ ) := S([P±

γ ]) =
{
σ′ ∈ S̃n ; σ′γ = γ

}
in case n is odd.

(11.9)

Proof. The �rst relation (11.8) follows from Theorem 9.2.
For the second relations, we know from Theorem 6.4 that Pγ′

∼= Pγ if and
only if γ′ ≈n γ, since γ is taken from Γ0

n. Then (11.9) for P+
γ = Pγ follows from

Theorem 9.2. For P−
γ = Pτnγ, letting σ−1(k) = n for σ′ ∈ S̃n, σ = Φ(σ′), we

have

σI
(
P−

γ

)
= Pσ(τnγ) = Pτk(σγ)

∼= Pτn(σγ) = P−
(σγ),

∵ σ(τnγ) =
(
γσ−1(1), . . . , γσ−1(k) + m′, γσ−1(k+1), . . . , γσ−1(n)

)

= τk(σγ) ≈n τn(σγ). 2

In CASE I (contrary to CASE II), it is not so much necessary to use the
notation P+

γ in case n = 2n′+1. However we prefer hereafter to use it principally
in place of Pγ in accordance with CASE II, and we denote ∇n also by ∇+

n . We

put for the subgroups D̃n

I
o S(Pγ) and D̃n

I
o S(P±

γ ) of G̃ I
n as

πI
γ(d

′, σ′) := Pγ(d
′) · ∇n(σ′)

(
(d′, σ′) ∈ D̃n

I
o S(Pγ)

)
,(11.10)

πI±
γ (d′, σ′) := P±

γ (d′) · ∇±
n (σ′)

(
(d′, σ′) ∈ D̃n

I
o S(P±

γ )
)
.(11.11)
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Then they are spin IRs of D̃n

I
o S(Pγ) and of D̃n

I
o S(P±

γ ) by Theorem 9.2,
which are also denoted as Pγ · ∇n and P±

γ · ∇±
n respectively.

On the other hand, we see from Theorem 9.2 that, under S̃n, Pγ (resp. P±
γ

if n is odd) is conjugate to Pσγ (resp. to P±
σγ) for any σ ∈ Sn. Therefore, as a

representative of their conjugacy classes under S̃n, we can choose Pγ (resp. P±
γ

if n is odd) with a parameter γ ∈ Γ0
n of the following normal form.

De�nition 11.1. A parameter γ ∈ Γn is said to be normalized, if there
exist a series of integers

c = (c1, . . . , cK), 0 ≤ c1 < c2 < · · · < cK < m′,(11.12)

and a partition of In = {1, 2, . . . , n} into subsets as

In =
⊔

k∈K
Ik , K := {1, 2, . . . , K},(11.13)

such that γj = ck (j ∈ Ik) for k ∈ K. In a visual form, when Ik's are consecutive
intervals,

γ = ( c1, . . . , c1︸ ︷︷ ︸
j∈I1

, c2, . . . , c2︸ ︷︷ ︸
j∈I2

, c3, . . . . . . , cK−1, cK , . . . , cK︸ ︷︷ ︸
j∈IK

).(11.14)

Lemma 11.3. Let γ be as in (11.12) � (11.14). Then stationary subgroups

S(Pγ) in S̃n are of the following form :

S(Pγ) := S([Pγ]) = Φ −1
S

( ∏

k∈K
SIk

) ∼= Φ −1
S

( ∏

k∈K
Snk

)
,(11.15)

where nk := |Ik|, n1 + · · · + nK = n, and ΦS is the canonical homomorphism

S̃n → Sn .
Similarly for S(P±

γ ) in case n is odd.

11.3 IRs of stationary subgroups S(Pγ), S(P±
γ ) (CASE I)

Thus S(Pγ) (and S(P±
γ ) if n is odd) is a double covering group, with the central

subgroup 〈z1〉 ∼= Z2, of the direct product
∏

k∈K SIk
of smaller symmetric groups.

Its IRs are of two kinds:
(1) spin IRs πS with πS(z1) = −I, and
(2) non-spin IRs πS with πS(z1) = I.

Our basic representation ∇n (resp. ∇±
n if n is odd) is spin one and πI

γ (resp.
πI±

γ if n is odd) is already of (spin) Type (−1,−1,−1). Therefore, to get spin
representations of Type (−1,−1,−1) of G(m, 1, n) itself by the inducing-up pro-
cess, we are forced to pick up, at this stage, non-spin linear IRs of

∏
k∈K SIk

as

πS = πΛ :=
⊗

k∈K
π

(k)
Λk

, Λ := (Λ1, . . . , ΛK),(11.16)
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where π
(k)
Λk

denotes an IR of SIk
∼= Snk

corresponding to a (Frobenius-)Young
diagram Λk of size nk. For nk = 1, we put Λk = ∅.

Consider πS as an IR of D̃n

I
o S(Pγ)

(
resp. of D̃n

I
o S(P±

γ ) if n is odd
)

through the quotient map, and take an inner tensor product with πI
γ = Pγ · ∇n

in (11.10)
(
resp. πI±

γ = P±
γ · ∇±

n in (11.11)
)
as

πI
γ ¡ πS = πI

γ ¡ πΛ

(
resp. πI±

γ ¡ πS = πI±
γ ¡ πΛ if n is odd

)
.(11.17)

As a natural parameter for this IR of D̃n

I
o S(Pγ) (resp. D̃n

I
o S(P±

γ ) if n is odd),
we take (c, Λ) and denote it as πI

c,Λ (resp. πI±
c,Λ if n is odd), where c = (c1, . . . , cK).

11.4 IRs of G̃ I(m, 1, n) in CASE I, Type (−1,−1,−1)

By inducing it up to G̃ I
n we obtain spin IRs of CASE I, Type (−1,−1,−1), as

ΠI
c,Λ := Ind

G̃ I
n

D̃n
I
oS(Pγ)

πI
c,Λ in case n is even,

ΠI±
c,Λ := Ind

G̃ I
n

D̃n
I
oS(P±γ )

πI±
c,Λ in case n is odd.

(11.18)

Then we obtain the following result as a consequence of the standard inducing-
up method for semidirect product groups.

Theorem 11.4. Let m be even and n ≥ 4. A complete set spinIRI
(
G(m, 1, n)

)
of representatives of equivalence classes of spin IRs of CASE I, (spin) Type
(−1,−1,−1), of G(m, 1, n) is given by the set of the following IRs :

Case n = 2n′ even : ΠI
c,Λ ;

Case n = 2n′ + 1 odd : ΠI+
c,Λ and ΠI−

c,Λ ;

where, for parameter (c, Λ), c = (c1, . . . , cK) is related to γ through (11.12) �
(11.14), and Λ = (Λ1, . . . , ΛK) runs over K-tuples of Young diagrams of size
n1, n2, . . . , nK in (11.16).

Example 11.1. Most simple spin IRs of G̃ I
n are given in special cases where

S(Pγ) = S̃n or S(P±
γ ) = S̃n . For 0 ≤ k < m′ = m/2, put γ(k) := (k, k, . . . , k),

then it is Sn-invariant and so S(Pγ(k)) = S̃n and D̃n

I
o S(Pγ(k)) = G̃ I

n . Similarly
also for P±

γ(k) in case n = 2n′ + 1.

Take Λ(0) = (n) a Young diagram with one row of length n, then πΛ(0) is the
trivial representation 1S̃n

of S̃n . Then the parameters (c, Λ) of the corresponding

spin IRs of G̃ I
n in these cases are given by c = (k) with K = 1 and Λ = Λ(0) :

ΠI
k,Λ(0) = πI

k,Λ(0) = Pγ(k) · ∇n in case n is even ;

ΠI±
k,Λ(0) = πI±

k,Λ(0) = P±
γ(k) · ∇±

n in case n is odd.
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Especially, take k = 0, then Pγ(0) , P+
γ(0) and P−

γ(0) are denoted in (6.19) respectively
by P0, P+ and P− (cf. Theorem 6.7). The special spin IRs

ΠI
0 := P0 · ∇n, ΠI

+ := P+ · ∇+
n , ΠI

− := P− · ∇−
n .(11.19)

will play very important roles in the theory of spin irreducible characters of G̃ I
n,

and also in that of spin characters of G̃ I
∞ under taking limits as n →∞.

On the other hand, take Λ(1) = (1, 1, . . . , 1), then πΛ(1) = sgn, and

ΠI
k,Λ(1) = πI

k,Λ(1) = Pγ(k) · (∇n sgn).

11.5 Another parametrization of IRs of G̃ I(m, 1, n)

Parametrization by (c, Λ), using normalized γ, is good for describing equivalence
classes of IRs of G̃ I(m, 1, n), similarly as in �17 in [I]. However, for giving char-
acters of IRs G̃ I(m, 1, n) explicitly in later sections and also for studying their
limits in the next part, another parameterization is better.

Denote by Y the set of all Young diagrams Λ, in which the empty set ∅ with
zero box is contained by de�nition. For T = Zm, put as in [HoHH, �1]

Yn(T ) := {Λ = (λζ)ζ∈T̂ ; λζ ∈ Y ,
∑

ζ∈T̂

|λζ | = n},(11.20)

where the size of λ ∈ Y is denoted by |λ|. Moreover we de�ne a representative
space of a quotient of Yn(T ) under certain equivalence relation as

Yn(T )0 := {Λ = (λζ)ζ∈T̂ 0 ; λζ ∈ Y ,
∑

ζ∈T̂ 0

|λζ | = n},(11.21)

where T̂ 0 is the half of T̂ given by

T̂ 0 :=
{
ζ ∈ T̂ ; ζ(η) = ωa, 0 ≤ a < m′ = m/2

}
.(11.22)

Then a parameter (c, Λ) in Theorem 11.4 above corresponds bijectively to an
element in Yn(T )0, as is explained below.

We give in �6.1 two abelian subgroups of D̃(m,n) as D̃0(m,n) ⊂ D̃1(m,n) =〈
z2, D̃

0(m,n)
〉
. A spin character of D̃1(m,n) is given by restricting a spin function

χγ in (6.2), whereas a character ζγ of the base group D(m,n) and a non-spin
character ζγ◦ΦD of D̃(m,n) are de�ned as ζγ = (ζ1, . . . , ζn) with ζj = ζj,γj

= ζγ

∣∣
Tj

for j-th copy Tj = 〈yj〉 of the protocol T = 〈y〉. We identify ζj with ζ(γj) ∈ T̂
through Tj

∼= T .
The decomposition of In in De�nition 11.1 is a special case of the following

one.
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De�nition 11.2. For γ ∈ Γn, we de�ne a partition of In by ζγ = (ζj)j∈In

as

In =
⊔

ζ∈T̂
In,ζ , In,ζ :=

{
j ∈ In ; ζj = ζ

}
.

If γ ∈ Γ0
n corresponds to c = (c1, . . . , cK) and In =

⊔
k∈K Ik, then the set of

Young diagrams Λn = (λn,ζ)ζ∈T̂ 0 with |λn,ζ | = |In,ζ | given by (c, Λ) just belongs
to Yn(T )0. Then Theorem 11.4 can be restated with this new parameter as fol-
lows.

Theorem 11.5. Let m be even and n ≥ 4. A complete set spinIRI
(
G(m, 1, n)

)
of representatives of equivalence classes of spin IRs of CASE I, Type (−1,−1,−1),
of G(m, 1, n) is given by the set of the following IRs :

Case n = 2n′ even : ΠI
Λn , Λn ∈ Yn(T )0 ;

Case n = 2n′ + 1 odd : ΠI+
Λn , ΠI−

Λn , Λn ∈ Yn(T )0.

12 Classi�cation of spin IRs of G(m, 1, n), CASE II,

Type (−1,−1, 1)

12.1 Irreducible spin representations of G̃ II
n := G̃ II(m, 1, n)

Let Π be a spin representation of

G̃ II
n := G̃ II(m, 1, n) = R

(
G(m, 1, n)

)
/〈z3〉 = D̃n

II
o S̃n , D̃n = D̃(m, n),

such that Π(z1) = Π(z2) = −I or of (spin) Type (−1,−1, 1).

Theorem 12.1. Suppose n ≥ 4 and m is even. Let Π be a representation
of the covering group G̃ II(m, 1, n) = R

(
G(m, 1, n)

)
/〈z3〉 such that

(i) Π(z1) = −I, Π(z2) = −I.

Then the operators Π(ri)'s and Π(ηj)'s satisfy the following:

(ii)

{
Π(ri)

2 = I (i ∈ In−1),
(
Π(ri)Π(ri+1)

)3
= I (i ∈ In−2),

Π(ri)Π(rj) = −Π(rj)Π(ri) (|i− j| ≥ 2),

(iii) Π(ηj)
m = I (j ∈ In),

(iv) Π(ηj)Π(ηk) = −Π(ηk)Π(ηj) (j 6= k),

(v) Π(ri)Π(ηj)Π(r −1
i ) = Π

(
ηsi(j)

)
(j ∈ In).

Now we prepare several spin representations as follows. For S̃n with n =
2n′, 2n′ + 1, two representations ∇′

n and ∇′′
n in Theorem 8.3 as

{
∇′

n(rj) =
1√
2

(Yj − Yj+1)

∇′′
n(rj) = −Y2n′+1∇′

n(rj) Y −1
2n′+1

(j ∈ In−1);(12.1)
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and one more spin representation ∇II
n , in case n = 2n′ even, for S̃2n′ as

∇II
2n′(rj) = (iY2n′+1) · ∇′

2n′(rj) = ∇′
2n′(rj) · (−iY2n′+1) (j ∈ In−1);(12.2)

and, in case n = 2n′ + 1, two spin representations 0+
n and 0−

n of Ãn in (8.22) as
{

0+
n (v′) = ∇′

n(v′)

0−
n (v′) = ∇′′

n(v′) = Y2n′+1∇′
n(v′) Y −1

2n′+1

(v′ ∈ Ãn).(12.3)

As spin IRs of D̃n, we have in (6.6) and in (6.16) respectively

Pγ(ηj) = ωγj ρ(ηj) = χγ(ηj) Yj (j ∈ In, γ ∈ Γn) ;

P+
γ = Pγ, P−

γ = Pτnγ (γ ∈ Γ0
n) if n is odd,

(12.4)

and so P+
γ (ηj) = χγ(ηj) Yj (j ∈ In−1), P−

γ (ηn) = −χγ(ηn) Yn .

12.2 Stationary subgroups of [Pγ] and [P±
γ ]

Take the complete sets of representatives of equivalence classes of spin IRs ̂̃
Dn

spin

in Theorem 6.5 quoted above in (11.5) � (11.6).

Lemma 12.2. For representatives Pγ in case n even (resp. P+
γ and P−

γ

in case n odd), with γ ∈ Γ0
n, of equivalence classes of spin IRs of D̃n , the

stationary subgroups in S̃n of their equivalence classes, and their Sn-orbits are
given as follows.

(i) Let n = 2n′ even. For representatives Pγ of
̂̃
Dn

spin

,

S(Pγ) := S([Pγ]) =
{
σ′ ∈ S̃n ; σγ = γ

} (
σ = Φ(σ′)

)
,(12.5)

and σIIPγ
∼= Pσγ for σ ∈ Sn.

(ii) Let n = 2n′ + 1 odd. For representatives P+
γ and P−

γ of
̂̃
Dn

spin

,

{
S(P+

γ ) := S([P+
γ ]) =

{
σ′ ∈ Ãn ; σγ = γ

}
,

S(P−
γ ) := S([P−

γ ]) =
{
σ′ ∈ Ãn ; σγ = γ

}
.

(12.6)

According as sgn(σ) = 1 or sgn(σ) = −1 for σ ∈ Sn, there holds respec-
tively

σIIP±
γ
∼= P±

σγ i.e., σIIP+
γ
∼= P−

σγ , σIIP−
γ
∼= P+

σγ .

Proof. Recall that Pγ′
∼= Pγ if and only if γ′ ≈n γ. Then (i) follows from

Theorem 10.2 (ii). Similarly (ii) follows from Theorem 10.2 (iii) and (iv). 2

We put for the subgroup D̃n

II
o S(Pγ)

(
resp. D̃n

II
o S(P±

γ )
)
of G̃ II(m, 1, n) as

follows.
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• In case n = 2n′ even, for (d′, σ′) ∈ D̃n

II
o S(Pγ),

πII
γ (d′, σ′) := Pγ(d

′) · ∇II
n (σ′) .(12.7)

• In case n = 2n′+1 odd, we put, for (d′, σ′) ∈ D̃n

II
o S(P+

γ ) = D̃n

II
o S(P−

γ ),

π0+
γ (d′, σ′) := P+

γ (d′) · 0+
n (σ′) ;

π0−
γ (d′, σ′) := P−

γ (d′) · 0−
n (σ′) .

(12.8)

Then they are spin IRs of the corresponding subgroups by Theorem 10.2.

As a complete set of representative of their conjugacy classes in ̂̃
Dn

spin

under
the action of S̃n, we can choose from the following

• in case n = 2n′ even,
{
Pγ ; γ ∈ Γ0

n

}
, under the action of S̃n ;

• in case n = 2n′ + 1 odd,
{
P+

γ ; γ ∈ Γ0
n

}
, under the action of Ãn .

In fact, in case n is odd, we have, by Theorem 10.2(iv), σIIP−
γ = ι

(∇II−
n (σ′)

)−1(
P+

σγ

)
,

σ = Φ(σ′), for σ′ ∈ S̃n, sgn(σ′) = −1. We can choose those γ's normalized in
the sense of De�nition 11.1 (slightly modi�ed in case n is odd), and arrive to a
parametrization, by (c, Λ)'s, of equivalence classes of IRs of G̃ II

n . However, here
we prefer to follow another parametrization as in �11.5.

For γ ∈ Γ0
n, we have a non-spin character ζγ = (ζ1, . . . , ζn), ζj = ζj,γj

∈ T̂ 0,

of D̃n and a partition In =
⊔

ζ∈T̂ 0 In,ζ in De�nition 11.2.

Lemma 12.3. Let γ ∈ Γ0
n. Then stationary subgroup S(Pγ) and S(P+

γ ) in

S̃n are respectively of the following form.
(i) In the case where n = 2n′ even,

S(Pγ) = Φ −1
S

( ∏

ζ∈T̂ 0

SIn,ζ

)
, SIn,ζ

∼= S|In,ζ |.(12.9)

(ii) In the case where n = 2n′ + 1 odd,

S(P+
γ ) = Φ −1

S

( ∏

ζ∈T̂ 0

SIn,ζ

⋂
An

)
,(12.10)

and the index
[ ∏

ζ∈T̂ 0 SIn,ζ
:

∏
ζ∈T̂ 0 SIn,ζ

⋂
An

]
= 2, except the cases where

|In,ζ | = 1 (ζ ∈ T̂ 0) (∴ n ≤ m′=m/2),
∏

ζ∈T̂ 0

SIn,ζ
= {e}.(12.11)

Notation 12.1. A subgroup of Sn of the form
∏

ζ∈T̂ 0 SIn,ζ

⋂
An is denoted

as

A
( ∏

ζ∈T̂ 0 SIn,ζ

)
:=

∏
ζ∈T̂ 0 SIn,ζ

⋂
An
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in [I] of this series of papers. In accordance with this notation, the subgroup of
S̃n in the right hand side of (12.10) will be denoted as

Ã
(∏

ζ∈T̂ 0
SIn,ζ

)
:= Φ −1

S

(∏
ζ∈T̂ 0

SIn,ζ

⋂
An

)
.(12.12)

Example 12.1. In case J = {1, 2, 3}, {2, 3}, {3}, we have respectively
Φ −1
S

(
SJ

)
= 〈z1, r1, r2〉, 〈z1, r2〉, 〈z1〉.

12.3 IRs of stationary subgroups S(Pγ), S(P+
γ ) (CASE II)

• Case n = 2n′ even :
The subgroup S(Pγ) is a double covering group (with the central subgroup

〈z1〉 ∼= Z2) of the direct product
∏

ζ∈T̂ 0 SIn,ζ
. Its IRs are of two kinds: (1) spin

IRs πS with πS(z1) = −I, and (2) non-spin IRs πS with πS(z1) = I.
Since the representation∇II

n is spin one and πII
γ is of Type (−1,−1, 1) already,

to get spin representations of Type (−1,−1, 1) of G(m, 1, n), we are forced to
pick up non-spin, linear IRs of

∏
ζ∈T̂ 0 SIn,ζ

as

πS = πΛn :=
⊗

ζ∈T̂ 0

π
(ζ)

λn,ζ , Λn := (λn,ζ)ζ∈T̂ 0 ,(12.13)

where π
(ζ)

λn,ζ denotes an IR of SIn,ζ
∼= S|In,ζ | corresponding to a Young diagram

λn,ζ of size |In,ζ |.
• Case n = 2n′ + 1 odd :
The subgroup S(P+

γ ) is a double covering group (with the central subgroup
〈z1〉) of A

( ∏
ζ∈T̂ 0 SIn,ζ

)
. Its IRs are of two kinds: (1) spin IRs πS with πS(z1) =

−I, and (2) non-spin IRs πS with πS(z1) = I.
Since the representations 0+

n of Ãn are spin one, and π0+
γ are already of Type

(−1,−1, 1), to get a spin representation of Type (−1,−1, 1) of G(m, 1, n),
we are forced to pick up a non-spin, linear IR of Ã

( ∏
ζ∈T̂ 0 SIn,ζ

)
, or an IR of

A
( ∏

ζ∈T̂ 0 SIn,ζ

)
.

To describe them, put for a moment G =
∏

ζ∈T̂ 0 SIn,ζ
and H = A

( ∏
ζ∈T̂ 0 SIn,ζ

)
,

then H is normal and of index two in G. As an IR of G, Take πΛn above, and
put ρΛn = πΛn

∣∣
H
. Then we know the following (cf. Lemmas 17.5 and 17.6 in [I]).

Lemma 12.4. Let s ∈ G\H, and assume that the partition In =
⊔

ζ∈T̂ 0 In,ζ

is not in the exceptional cases in (12.11).
(Case TΛ-1). Assume tΛn 6= Λn, where tΛn := (tλn,ζ)ζ∈T̂ 0. Then π tΛn ∼=

sgn · πΛ, and 



ρ tΛn ∼= ρΛn irreducible,
(
ρΛn

)s ∼= ρΛn ,
(
ρΛn

)s
(h) := ρΛn(shs−1) (h ∈ H),

IndG
H ρΛn ∼= πΛn ⊕ π tΛn .
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(Case TΛ-2). Assume tΛn = Λn. Then πΛn ∼= sgn · πΛn, and




ρΛn ∼= ρ
(0)
Λn ⊕ ρ

(1)
Λn , ρ

(0)
Λn 6∼= ρ

(1)
Λn irreducible,

(
ρ

(0)
Λn

)s ∼= ρ
(1)
Λn ,

IndG
H ρ

(α)
Λn

∼= πΛn (α = 0, 1).

A complete set of representatives of equivalence classes of spin IRs for
A

( ∏
ζ∈T̂ 0 SIn,ζ

)
is given by the set of





ρn
Λ = πΛn

∣∣
A

(∏
ζ∈T̂0 SIn,ζ

), in case tΛn 6= Λn, where ρtΛn ∼= ρΛn ;

ρ
(0)
Λn , ρ

(1)
Λn , in case tΛn = Λn,

where πΛn

∣∣
A

(∏
ζ∈T̂0 SIn,ζ

) = ρ
(0)
Λn ⊕ ρ

(1)
Λn .

Remark 12.1. For the di�erence between irreducible components ρ
(0)
Λn and

ρ
(1)
Λn of πΛn

∣∣
A

(∏
ζ∈T̂0 SIn,ζ

), see [I, �17.5].

On the basis of this lemma, we prepare a parameter space Y A
n (T )0, T = Zm,

for equivalence classes of IRs of A
( ∏

ζ∈T̂ 0 SIn,ζ

)
as follows: put

Y A
n (T )0,1 :=

{{Λn, tΛn} ; Λn = (λn,ζ)ζ∈T̂ 0 ∈ Yn(T )0, tΛn 6= Λn
}
,

Y A
n (T )0,2 :=

{
(Λn, κ) ; Λn ∈ Yn(T )0, tΛn = Λn,

|λn,ζ | ≥ 2 (∃ζ), κ = 0, 1
}
,

Y A
n (T )0,3 :=

{
Λn = (λn,ζ)ζ∈T̂ 0 ; |λn,ζ | ≤ 1 (∀ζ)

}
.

(12.14)

Then Y A
n (T )0,3 6= ∅ if and only if n ≤ m′ = m/2, and Y A

n (T )0,3 corresponds to
the exceptional case in (12.11). Put

Y A
n (T )0 := Y A

n (T )0,1 t Y A
n (T )0,2 t Y A

n (T )0,3,(12.15)

Then, in case n > m′ = m/2, Y A
n (T )0 = Y A

n (T )0,1 t Y A
n (T )0,2.

12.4 IRs of G̃ II(m, 1, n) in CASE II, Type (−1,−1, 1)

Let G̃ II
n = G̃ II(m, 1, n) = R

(
G(m, 1, n)

)
/〈z3〉 be as before. Take a non-spin

IR πS of S(Pγ)
(
resp. of S(P+

γ )
)
, and consider it as an IR of D̃n

II
o S(Pγ)

(resp. D̃n

II
o S(P+

γ )) through the quotient map, and take an inner tensor product
as follows.

Case n = 2n′ even :

πII
γ ¡ πS = πII

γ ¡ πΛn .(12.16)

As a natural parameter for this IR of D̃n

II
o S(Pγ), we take Λn = (λn,ζ)ζ∈T̂ 0 ∈

Yn(T )0 and denote it as πII
Λn .
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Case n = 2n′ + 1 odd :

π0+
γ ¡ πS =





π0+
γ ¡ ρΛn for {Λn, tΛn} ∈ Y A

n (T )0,1 ,

π0+
γ ¡ ρ

(κ)
Λn , κ = 0, 1 for (Λn, κ) ∈ Y A

n (T )0,2 ,

π0+
γ ¡ ρΛn for Λn ∈ Y A

n (T )0,3 .

(12.17)

Here the 3rd row on the left hand side is the exceptional case (12.11), and Λn =

(λn,ζ)ζ∈T̂ 0 , λn,ζ = ∅ or 2 (one box) for ζ ∈ T̂ 0, and πS = ρΛn = 1 the trivial
representation (cf. Example 12.3 below). We denote these representations as
π0+

Λn and π0+
Λn,κ respectively.

We have picked up only P+
γ 's, discarding P−

γ 's. Here we remark a simple
conjugacy between π0+

γ and π0−
γ as follows.

Lemma 12.5. Let s′0 ∈ Φ −1
S

( ∏
ζ∈T̂ 0 SIn,ζ

) \ S(P±
γ ). Then sgn(s′0) =

sgn(s0) = −1 and s0γ = γ with s0 = Φ(s′0). Then, for g′ ∈ D̃n

II
o S(P+

γ ),

π0−
γ (s′0g

′s′0
−1

) =
(
(iYn)∇′

n(s′0)
) · π0+

γ (g′) · ((iYn)∇′
n(s′0)

)−1
.

Proof. First, by Theorem 10.2 (i), ι
(∇′

n(σ′)
)
Pγ(d

′) = P(τ1τ2···τn)σγ

(
σ′II(d′)

)

for σ′ ∈ S̃n if sgn(σ′) = −1, where σ = Φ(σ′). Take σ′ = s′0
−1, then s −1

0 γ = γ,
and so we have

∇′
n(s′0)

−1Pγ

(
s′0

II
(d′)

)∇′
n(s′0) = P(τ1τ2···τn)γ(d

′) (d′ ∈ D̃n).

Note that s′0g
′s′0

−1 =
(
s′0

II(d′), s′0σ
′s′0

−1
)
for g′ = (d′, σ′), then

π0−
γ (s′0g

′s′0
−1

) = P−
γ

(
s′0

II
(d′)

) · 0−
n

(
s′0σ

′s′0
−1)

= Pτnγ

(
s′0

II
(d′)

) · (iYn)∇′
n

(
s′0σ

′s′0
−1)

(iYn)−1

= (iYn) · P(τ1···τn)γ

(
s′0

II
(d′)

)∇′
n

(
s′0σ

′s′0
−1) · (iYn)−1

= (iYn)∇′
n(s′0) ·

(
Pγ(d

′)∇′
n(σ′)

) · ∇′
n(s′0)

−1(iYn)−1

= (iYn)∇′
n(s′0) · π0+

γ (g′) · ∇′
n(s′0)

−1(iYn)−1. 2

Finally, by inducing up to G̃ II
n , we obtain IRs of CASE II, Type (−1,−1, 1).

Case n = 2n′ even :

ΠII
Λn := Ind

G̃ II
n

D̃n
II
oS(Pγ)

πII
Λn ;(12.18)

Case n = 2n′ + 1 odd :

Π0+
Λn := Ind

G̃ II
n

D̃n
II
oS(P+

γ )
π0+

Λn , Π0+
Λn,κ := Ind

G̃ II
n

D̃n
II
oS(P+

γ )
π0+

Λn,κ (κ = 0, 1).(12.19)

Then we obtain the following result in CASE II.



180 T. Hirai, A. Hora and E. Hirai

Theorem 12.6. Let m be even and n ≥ 4. A complete set spinIRII
(
G(m, 1, n)

)
of representatives of equivalence classes of spin IRs of CASE II, (spin) Type
(−1,−1, 1), of G(m, 1, n) is given as follows.

(i) Case n = 2n′ even :
spinIRII

(
G(m, 1, n)

)
consists of ΠII

Λn , Λn ∈ Yn(T )0.

(ii) Case n = 2n′ + 1 odd, and n > m′ = m/2 :
spinIRII

(
G(m, 1, n)

)
consists of IRs

{
Π0+

Λn , {Λn, tΛn} ∈ Y A
n (T )0,1,

Π0+
Λn,κ , (Λn, κ) ∈ Y A

n (T )0,2, κ = 0, 1.
(12.20)

(iii) Case n = 2n′ + 1 odd, and n ≤ m′ = m/2 :
spinIRII

(
G(m, 1, n)

)
consists of IRs :

{
Π0+

Λn , Π0+
Λn,κ (κ = 0, 1), in (12.20),

Π0+
Λn , Λn ∈ Y A

n (T )0,3.
(12.21)

Example 12.2. Simple spin IRs of G̃ II
n are given in the cases where S(Pγ) =

S̃n for n even, and S(P+
γ ) = Ãn for n odd. For 0 ≤ k < m′, put γ = γ(k) :=

(k, k, . . . , k) ∈ Γ0
n.

In case n is even, S(Pγ(k)) = S̃n, and D̃n

II
o S(Pγ(k)) = D̃n

II
o S̃n = G̃ II

n .
Take Λn = (λn,ζ)ζ∈T̂ 0 . Then ΠII

Λn =
(
Pγ(k) · ∇II

n

)
¡ πΛn . As its special case for

k = 0 and Λn = (n), we have a simple spin IR of G̃ II
n

ΠII
0 := P0 · ∇II

n , P0 = Pγ(0) .(12.22)

In case n is odd, S(P+
γ(k)) = Ãn, and D̃n

II
o S(P+

γ(k)) = D̃n

II
o Ãn =: H̃ II

n , which

is a normal subgroup of G̃ II
n of index 2. Take Λn = (λn,ζ)ζ∈T̂ 0 such that tΛn 6= Λn

and put ρΛn = πΛn

∣∣
Ãn
. Then

Π0+
Λn = Ind

G̃ II
n

H̃II
n

π0+
Λn = Ind

G̃ II
n

H̃II
n

(
P+

γ(k) · 0+
n

)
¡ ρΛn .

As its special case for k = 0 and Λn = (n), we have simple spin IRs as

ΠII
+ := Ind

G̃ II
n

H̃II
n

ΠII,H̃
+ of G̃ II

n ,

ΠII,H̃
+ := P+ · 0+

n with P+ = P+
γ(0) of H̃ II

n = D̃n

II
o Ãn.

(12.23)

Spin IRs in (12.22)�(12.23) will play important roles in studying spin irreducible
characters.

Example 12.3. Let n be odd. For Λn ∈ Y A
n (T )0,3, we start with γ =

(γ1, . . . , γn) such that γj's are all di�erent (∴ n ≤ m′ = m/2), and so S =



S(P+
γ ) = Z1 = 〈z1〉. Then 0+

n is the spin character χ1(z1) = −1 of Z1, and ρΛn

is the trivial representation 1, and
(
P+

γ · 0+
n

)(
(d′, z a

1 )
)

= P+
γ (d′) · (−1)a (a = 0, 1) ;

Π0+
Λn = IndG̃ II

D̃n×Z1

(
P+

γ · χ1

) (
IR of G̃ II

n

)
.

Part III

Spin irreducible characters of

R
(
G(m, 1, n)

)
of Types (−1,−1,±1)

13 Conjugacies in Sn and An, and in S̃n and Ãn

13.1 Standard elements in Sn and in S̃n

To give characters of spin representations of permutation groups, we should study
conjugacy classes in S̃n and Ãn, together with those in the base groups Sn and
An.

Conjugacy class of σ ∈ Sn is denoted by [σ]S and that under conjugations
of An is denoted by [σ]A. Conjugacy class [σ]S is determined by the type of its
decomposition into disjoint cycles. This means the following. Let σ = σ1 · · ·σs

be a cycle decomposition such that `1 ≥ `2 ≥ . . . ≥ `s > 1 with `j = `(σj). Add
`s+1 = . . . = `t = 1 if necessary, so that we have a partition of n as

∑
1≤j≤t

`j = n, `1 ≥ `2 ≥ . . . ≥ `t ≥ 1.(13.1)

Put mk := ]{j ; `j = k}, then 1m12m2 · · ·nmn is called the type of σ or of the
partition above.

As a representative of the conjugacy class of type 1m12m2 · · ·nmn , we de�ne
a standard element (or permutation) in Sn, and also a corresponding standard

element in the covering group S̃n = T′n as follows.

De�nition 13.1. Put N0 = 0, N1 = `1, Nk = `1 + · · ·+ `k (1 ≤ k ≤ t), and

σ1 = s1s2 · · · sN1−1, σk = sNk−1+1 · · · sNk−1 (1 ≤ k ≤ t);

σ′1 = r1r2 · · · rN1−1, σ′k = rNk−1+1 · · · rNk−1 (1 ≤ k ≤ t),
(13.2)

where the elements σk and σ′k for k > s mean the identity elements in Sn and
S̃n respectively. We call σ = σ1σ2 · · ·σt and σ′ = σ′1σ

′
2 · · · σ′t standard elements

of type 1m12m2 · · ·nmn in Sn and S̃n respectively.
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Note that in the expression of σ′ the order of product is essential, since
σ′jσ

′
k = z

LjLk

1 σ′kσ
′
j, Lj = `j − 1, for j 6= k.

13.2 First, second and third kind of elements

In this and the next subsection, the main reference is [Sch3, Abschnitt II]. Af-
ter Schur, we de�ne the �rst, the second and the third kind of elements (or
permutations) in Sn, and transfer this de�nition to the covering group S̃n.

De�nition 13.2. For σ ∈ Sn, let σ = σ1σ2 · · · σt be a cycle decomposition
of σ, and `i = `(σi) length of σi, and 1m12m2 · · ·nmn type of σ.

(1) σ is called of �rst kind, if either σ is even and contains at least one odd
cycle σi (or `i even), or σ is odd and contains at least one pair of cycles of the
same lengths;

(2) σ is called of second kind, if it is not of the �rst kind, that is, if either σ
is even and contains only even cycles (or all `i odd), or σ is odd and lengths of
cycles are all di�erent;

(3) σ is called of third kind, if σ is even and lengths of cycles are all di�erent,
so that the number of the trivial cycle (= cycle of length 1) should be ≤ 1.

An element σ′ ∈ S̃n is called of �rst kind, of second kind, and of third kind,
if so is the image σ = ΦS(σ′) ∈ Sn respectively.

Lemma 13.1. Let n ≥ 4. For σ ∈ An, let σ = σ1σ2 · · ·σt be its cycle
decomposition. Then its conjugacy class [σ]S in Sn splits into two conjugacy
classes in An if and only if σ is of 2nd kind and 3rd kind at the same time, that
is, all σi's are even and with di�erent lengths. In that case, for σ standard,

[σ]S = [σ]A t [s1σs −1
1 ]A .(13.3)

Note that this has been given in the study of characters of An by Frobenius
[Frob2].

13.3 Conjugacies in S̃n and in Ãn and central functions

For σ′ ∈ S̃n, denote by [σ′]S̃ its conjugacy class under S̃n, and by [σ′]Ã its
conjugacy class under Ãn. For σ′ ∈ Ãn standard, [σ′]S̃ = [σ′]Ã ∪ [r1σ

′r −1
1 ]Ã,

and we ask relations among 4 conjugacy classes [σ′]Ã, [r1σ
′r −1

1 ]Ã, [z1σ
′]Ã and

[z1r1σ
′r −1

1 ]Ã.

Theorem 13.2. Let n ≥ 4, and σ′ ∈ S̃n. Under conjugations of S̃n,
σ′ is conjugate to z1σ

′ or not, according as σ′ is of 1st kind or of 2nd kind
respectively.
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Theorem 13.3. Let n ≥ 4, and σ′ ∈ Ãn be standard.
(i) If σ′ is of 1st kind and not of 3rd kind, then σ′ is conjugate to z1σ

′ under
Ãn :

[σ]A = [s1σs −1
1 ]A ;

[σ′]S̃ = [z1σ
′]S̃ ,

[σ′]Ã = [z1σ
′]Ã = [r1σ

′r −1
1 ]Ã = [z1r1σ

′r −1
1 ]Ã .

(ii) If σ′ is of 1st kind and also of 3rd kind, then σ′ is conjugate to z1σ
′

under S̃n, but not under Ãn, and [σ′]S̃ does not split under Ãn :

[σ]A = [s1σs −1
1 ]A ;

[σ′]S̃ = [z1σ
′]S̃ ,

[σ′]Ã 6= [z1σ
′]Ã , [r1σ

′r −1
1 ]Ã 6= [z1r1σ

′r −1
1 ]Ã , [σ′]Ã = [z1r1σ

′r −1
1 ]Ã .

(iii) If σ′ is of 2nd kind and not of 3rd kind, then σ′ is not conjugate to z1σ
′

under S̃n, and [σ′]S̃ does not split under Ãn :

[σ]A = [s1σs −1
1 ]A ;

[σ′]S̃ 6= [z1σ
′]S̃ ,

[σ′]Ã = [r1σ
′r −1

1 ]Ã 6= [z1σ
′]Ã = [z1r1σ

′r −1
1 ]Ã .

(iv) If σ′ is of 2nd kind and also of 3rd kind, then σ′ is not conjugate to z1σ
′

under S̃n and [σ′]S̃ splits into two conjugacy classes under Ãn :

[σ]A 6= [s1σs −1
1 ]A ;

[σ′]S̃ 6= [z1σ
′]S̃ ,

[σ′]S̃ = [σ′]Ã t [r1σ
′r −1

1 ]Ã ,

[σ′]Ã , [z1σ
′]Ã , [r1σ

′r −1
1 ]Ã , [z1r1σ

′r −1
1 ]Ã (4 are di�erent).

Theorem 13.4. A complete set of representatives of conjugacy classes
in S̃n is given as follows: denote a standard element of types 1m12m2 · · ·nmn

simply by σ′, then {
σ′ of 1st kind,
σ′, z1σ

′ of 2nd kind.

Theorem 13.5. A complete set of representatives of conjugacy classes
in Ãn is given as follows: denote a standard element of types 1m12m2 · · ·nmn

simply by σ′, then




σ′ of 1st kind and not of 3rd kind,
σ′, z1σ

′ (or r1σ
′r −1

1 ) of 1st kind and also of 3rd kind,
σ′, z1σ

′ (or z1r1σ
′r −1

1 ) of 2nd kind and not of 3rd kind,
σ′, z1σ

′, r1σ
′r −1

1 , z1r1σ
′r −1

1 of 2nd kind and also of 3rd kind.

A function f on S̃n or on Ãn is called spin if f(z1σ
′) = −f(σ′).
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Theorem 13.6. Let f be a spin central function on S̃n. Then f(σ′) = 0
if σ′ is of the 1st kind. Moreover f is completely determined by the values f(σ′)
for every standard elements σ′ of the 2nd kind.

Theorem 13.7. Let f be a spin central function on Ãn. Then f(σ′) = 0
if σ′ is of the 1st kind and not of the 3rd kind. Moreover f is completely
determined by

(1) the values f(σ′) for every standard elements σ′ either of the 1st and the
3rd kind or of the 2nd and not the 3rd kind, and

(2) the values f(σ′), f(r1σ
′r −1

1 ) for every standard elements σ′ of the 2nd
and the 3rd kind.

14 Characters of spin representations of Sn

and An

14.1 Traces of spin representations ∇n and ∇−
n of Sn

Let 4 ≤ n < ∞. We de�ned in (8.2) and (8.3), spin representations ∇n and ∇−
n

as follows: put Y ′
j = (−1)j−1Yj (j ∈ In), then

∇n(ri) :=
(−1)j−1

√
2

(Yi + Yi+1) =
1√
2

(Y ′
i − Y ′

i+1) (i ∈ In−1) ;(14.1)

and for n = 2n′ + 1 odd,




∇−

n (ri) := ∇n(ri) (i ∈ In−2),

∇−
n (rn−1) := −Yn∇n(rn−1)Y

−1
n =

(−1)n−1

√
2

(Yn−1 − Yn).
(14.2)

Since the characters χ∇n and χ∇−n are invariant under S̃n, by Theorem 13.6,
it is su�cient for us to calculate the trace tr

(∇n(σ′)
)
, tr

(∇−
n (σ′)

)
for standard σ′

of 2nd kind. Let σ′ ∈ S̃n and σ = Φ(σ′) ∈ Sn be standard elements in De�nition
13.1, but hereafter we omit the trivial factors σs+1, . . . , σt and σ′s+1, . . . , σ

′
t added

in (13.2) in case s < t as

{
σ = σ1σ2 · · · σs ,

σ′ = σ′1σ
′
2 · · ·σ′s ,

σj = Φ(σ′j), `1 ≥ `2 ≥ . . . ≥ `s > 1,(14.3)

`k := `(σk), `(σk) = Nk −Nk−1 ≥ 2 (k ∈ Is).(14.4)

• Trace of spin representation ∇n of Sn :
The matrix corresponding to σ′ is expressed as

∇n(σ′) = ∇n(σ′1) · · · ∇n(σ′s),(14.5)
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∇n(σ′k) = ∇n

(
rNk−1

) · · ·∇n

(
rNk−2

)

=
1

2(`k−1)/2

∏
Nk−1+1≤i≤Nk−1

(−1)i−1(Yi + Yi+1),
(14.6)

where the product is taken in the natural order of the index i.
In addition to Lemmas 5.9 � 5.10, the following lemma will be used repeatedly

in calculating traces.

Lemma 14.1. (i) A monomial product Yk1Yk2 · · ·Yk2n′Yk2n′+1
such that

{k1, k2, . . . , k2n′+1} = I2n′+1 has non-zero trace given as

tr
(
Yk1Yk2 · · ·Yk2n′Yk2n′+1

)
= (2i)n′sgn(σ),(14.7)

where σ ∈ S2n′+1 is such that σ(i) = ki (i ∈ I2n′+1).
(ii) For a formal monomial F = Y a1

1 Y a2
2 · · ·Y an

n , put supp(F ) := {j ∈
In ; aj 6≡ 0 (mod 2)}. For two such monomials F1 and F2, suppose supp(F1)∩
supp(F2) = ∅, and supp(F1) ∪ supp(F2) ⊂ I2n′ ( I2n′+1, then

tr(F1F2) = 2n′ · tr(F1)

2n′ · tr(F2)

2n′(14.8)

Proof. (ii) Let F1 = Y a1
1 Y a2

2 · · ·Y an
n and F2 = Y b1

1 Y b2
2 · · ·Y bn

n , then ajbj = 0
for all j, and F1F2 = ±Y c1

1 Y c2
2 · · ·Y cn

n with cj = aj + bj. If tr(F1F2) 6= 0, then
cj ≡ 0 (mod 2) for all j ∈ In, since supp(F1F2) 6= I2n′+1. This means that
aj ≡ 0 (mod 2) and bj ≡ 0 (mod 2) for j ∈ In. Then, actually as matrices,
F1 = E2n′ , F2 = E2n′ .

If tr(F1F2) = 0, then cj ≡ 1 (mod 2) for at least one of j ∈ In. For that j, aj

or bj is odd, and accordingly tr(F1) = 0 or tr(F2) = 0. 2

CASE 1: when Y2n′+1 does not appear in (14.5) � (14.6) :
Note that when ∇n(σ′j)'s are expanded into linear combinations of monomials

of the form
∏

p∈Kj
Y

cp
p , Kj := supp(σ′j), their supports are mutually disjoint for

j ∈ Is, since so are Kj's, and that, when tr
(∇n(σ′j)

) 6= 0, its monomial term

with non-zero trace is of the form
∏

p∈Kj
Y

2c′p
p and is unique among its monomials

(to see this, we appeal to the explicit form of ∇(ri) in (14.1)). Then we see from
Lemmas 5.9 � 5.10 and 14.1 the following:

(1-1) tr
(∇n(σ′)

)
= 2n′ · tr

(∇n(σ′1)
)

2n′ · · · tr
(∇n(σ′s)

)

2n′ ;

(1-2) tr
(∇n(σ′k)

) 6= 0 =⇒ L(σ′k) ≡ 0 (mod 2).

Lemma 14.2. Suppose that Y2n′+1 does not appear in (14.5) � (14.6). Then,
for a standard σ′ = σ′1 · · · σ′s in (14.3), L(σ′) =

∑
k∈Is

L(σ′k), and

tr
(∇n(σ′)

)
=

{
2n′(−2)−

∑
k∈Is

(`k−1)/2, if L(σ′k) ≡ `k − 1 ≡ 0 (mod 2, ∀k ∈ Is),

0 , otherwise.
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CASE 2: when Y2n′+1 appears in (14.5) � (14.6) :
From the setting, we have |supp(σ)| = n = 2n′+1 in this case if tr

(∇n(σ′)
) 6=

0. By Lemmas 5.9 � 5.10 and 14.1, as monomials with non-zero traces, there are
two cases:

Case (2-1): Yk1Yk2 · · ·Yk2n′Yk2n′+1
, {k1, k2, . . . , k2n′+1} = I2n′+1 ;

Case (2-2): Y 2
q1

Y 2
q2
· · ·Y 2

qu
.

For Case (2-1), from the degree of the monomial, we see that if tr
(∇n(σ′)

) 6=
0, then

∑
k(`k − 1) should be equal to n = 2n′ + 1. But this is impossible.

For Case (2-2), similarly as in CASE 1, all σk should be even, and we have
the following.

Lemma 14.3. Suppose that Y2n′+1 appears in (14.5) � (14.6). Then we
have n = 2n′ + 1 odd and |supp(σ)| = n = 2n′ + 1. For a standard σ′ = σ′1 · · ·σ′s
in (14.3),

tr
(∇n(σ′)

)
=

{
2n′ · (−2)−

∑
k∈Is

(`k−1)/2, if L(σ′k) ≡ 0 (mod 2, ∀k ∈ Is),

0 , otherwise.

Thus, from Lemmas 14.2 and 14.3, we obtain for the trace of∇n the following:

Theorem 14.4. Let n ≥ 4 and put n′ = [n/2]. For a standard element

σ′ = σ′1 · · · σ′s ∈ S̃n in (13.2),

tr
(∇n(σ′)

)
=





2[n/2] · (−2)−
∑

k∈Is
(`k−1)/2 = 2n′ ·∏k∈Is

(−2)−(`k−1)/2,

if L(σ′k) ≡ 0 (mod 2) for all k ∈ Is,

0 , otherwise.

As a corollary, we have the following. According to De�nition 8.1, for a spin
character χ of Sn the associate character is sgn ·χ, and χ is called self-associate
if sgn · χ = χ. Then the character χ∇n is self-associate, or sgn · χ∇n = χ∇n .

Corollary 14.5. The product of the representation ∇n and the one-dimen-
sional character sgn is again equivalent to ∇n, or sgn · ∇n

∼= ∇n, that is, the
spin representation ∇n is self-associate.

• Trace of spin representation ∇−
n of Sn :

From the formula (14.1) � (14.2), we see that

−Yn∇n(ri) Y −1
n = ∇−

n (ri) (1 ≤ i ≤ n− 1).(14.9)

This gives us the following result.

Theorem 14.6. The spin representation ∇−
n is equivalent to sgn · ∇n.

Moreover it is also equivalent to ∇n since sgn · ∇n
∼= ∇n , so that

∇−
n
∼= ∇n and χ∇−n = χ∇n .
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14.2 Traces of spin representations ∇′
n and ∇II

n

14.2.1 Trace of spin representation ∇′
n of Sn

Let the notation be as in De�nition 13.1 and (14.3) � (14.4). Then, under the
spin representation ∇′

n , the matrix corresponding to a standard σ′ is expressed
as

∇′
n(σ′) = ∇′

n(σ′1) · · ·∇′
n(σ′s),

∇′
n(σ′k) =

1

2(`k−1)/2

∏
Nk−1+1≤i≤Nk−1

(Yi − Yi+1),
(14.10)

where the product is taken in the natural order.

CASE 1: when Y2n′+1 does not appear in (14.10) :
Then we see that

(1) tr
(∇′

n(σ′)
)

= 2n′ · tr
(∇′n(σ′1)

)

2n′ · · · tr
(∇′n(σ′s)

)

2n′ ;

(2) tr
(∇′

n(σ′k)
) 6= 0 =⇒ L(σk) ≡ `k − 1 ≡ 0 (mod 2).

Lemma 14.7. Suppose that Y2n′+1 does not appear in (14.10), or equiv-
alently that we are either in the case of even n = 2n′, or in the case of odd
n = 2n′ + 1 and |supp(σ)| < n = 2n′ + 1. Then, for a standard σ′ = σ′1 · · ·σ′s in
(14.3),

tr
(∇′

n(σ′)
)

=

{
2n′ · (−2)−

∑
k∈Is

(`k−1)/2, if L(σ′k) ≡ 0 (mod 2, ∀k ∈ Is),

0 , otherwise.

CASE 2: when Y2n′+1 appears in (14.10):
We can discuss similarly as for ∇n, and obtain the following.

Lemma 14.8. Suppose that Y2n′+1 appears in (14.10). If tr
(∇′

n(σ′)
) 6= 0,

then n = 2n′ + 1 and |supp(σ)| = n = 2n′ + 1. For a standard σ′ = σ′1 · · · σ′s in
(14.3),

tr
(∇′

n(σ′)
)

=

{
2n′ · (−2)−

∑
k∈Is

(`k−1)/2, if L(σ′k) ≡ 0 (mod 2, ∀k ∈ Is),

0 , otherwise.

Thus, from Lemmas 14.7 and 14.8, we obtain for the trace of ∇′
n the following:

Theorem 14.9. Let n ≥ r and put n′ = [n/2].

(i) For a standard element σ′ = σ′1 · · · σ′s ∈ S̃n in (14.3),

tr
(∇′

n(σ′)
)

=





2[n/2] · (−2)−
∑

k∈Is
(`k−1)/2 = 2n′ ·∏k∈Is

(−2)−(`k−1)/2,

if L(σ′k) ≡ 0 (mod 2) for all k ∈ Is,

0 , otherwise.

(ii) There hold equivalencies ∇′
n
∼= ∇n

∼= ∇−
n , and ∇′

n is self-associate.
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14.2.2 Trace of spin representation ∇II
n of Sn, n = 2n′

Recall that, for n = 2n′, we de�ned in (8.6) operators ∇II
n (rj) for j ∈ In−1, and

proved that they give a spin representation of Sn :

∇II
n (rj) = (iY2n′+1) · ∇′

n(rj) = ∇′
n(rj) · (−iY2n′+1).(14.11)

For σ′ = rj1rj2 · · · rjL
, j1 < j2 < . . . < jL < 2n′,

∇II
n (σ′) = ∇′

n(σ′) = ∇′
n(rj1)∇′

n(rj2) · · ·∇′
n(rjL

) if L(σ′) ≡ 0 (mod 2),

∇II
n (σ′) = ∇′

n(σ′) (−iY2n′+1) if L(σ′) ≡ 1 (mod 2).

Theorem 14.10. For S̃n, n = 2n′, the characters χ∇II
n
and χ∇′n of ∇II

n

and ∇′
n coincide with each other, and so these spin representations are mutually

equivalent.

Proof. Suppose L(σ′) ≡ 0 (mod 2). Then ∇II
n (σ′) = ∇′

n(σ′).
Suppose L(σ′) ≡ 1 (mod 2). Then ∇II

n (σ′) = (iY2n′+1) · ∇′
n(σ′), and ∇′

n(σ′)
does not contain Y2n′+1 and is a linear combination of monomial terms Yk1Yk2 · · ·
of order ≤ 2n′ − 1. Therefore (iY2n′+1)∇′

n(σ′) cannot contain Y2n′+1Yq1Yq2 · · · of
degree 2n′+1, whence every homogeneous terms in it are of trace 0, and in total
the trace of ∇II

n (σ′) is zero. 2

Note 14.1. As will be seen in Theorem 15.5 (i), when n even, ∇′
n
∼= sgn·∇′

n

is a direct sum of inequivalent spin IRs ∆′
n and sgn·∆′

n : ∇′
n
∼= ∆′

n ⊕ sgn·∆′
n .

14.3 Traces of spin representations 0±
n of An

Let n = 2n′ + 1 odd. Spin representations 0±
n of An are de�ned by the formula

(12.3). Then, for v′ = z b
1 σ′, σ′ = ri1ri2 · · · riL ∈ Ãn, L(σ′) ≡ L even,

0+
n (v′) = ∇′

n(v′) = (−1)b · ∇′
n(σ′) ;

0−
n (v′) = (iY2n′+1) · ∇′

n(v′) · (iY2n′+1)
−1.

(14.12)

Thus 0±
n are restrictions of spin representations, equivalent to ∇′

n, of the
group S̃n to the subgroup Ãn. So their characters are invariant under S̃n.
Therefore, in spite of Theorems 13.5 and 13.7 on a complete set of represen-
tatives of conjugacy classes in S̃n and on central functions on it respectively, the
characters χ0

±
n
are completely determined by their values on standard elements

in Ãn.

Theorem 14.11. The traces of the spin representations 0+
n and 0−

n are

restrictions of the character χ∇′n of S̃n onto Ãn.
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For v′ = z b
1 σ′ ∈ Ãn with a standard σ′,

tr
(
0±

n (v′)
)

=





(−1)b · 2n′ · (−2)−
∑

k∈Is
(`k−1)/2,

if σ = ΦS(σ′) has a cycle decomposition
σ = σ1 · · ·σs, L(σk) ≡ 0 (mod 2) (k ∈ Is);

0 , otherwise.

Note 14.2. As will be seen in Theorem 15.5 (ii), when n = 2n′ + 1 odd,
0+

n
∼= 0−

n is a direct sum of two inequivalent spin IRs 0
(κ)
n , κ = 0, 1, of Ãn, where

0
(1)
n =

(
0

(0)
n

)r1 .

14.4 Behaviors of ∇II+
n and ∇II−

n on S̃n, n = 2n′ + 1

For n = 2n′ + 1, the matrix-valued functions ∇II+
n and ∇II−

n on S̃n, de�ned
in (8.7), coincide with the spin representation ∇II

n−1 on the subgroup S̃n−1 =
〈z1, r1, . . . , rn−2〉, and also give equivalent spin representations 0+

n and 0−
n on

the subgroup Ãn by restriction. Consider them on the remainder subset S̃n \(
S̃n−1

⋃
Ãn

)
, then, since n = 2n′ + 1, it is a union of Ãn−1-cosets as⊔

j∈In−1,even

Ãn−1rn−1rn−2 · · · rj

⊔ ⊔

j∈In−1,odd

Ãn−1r1rn−1rn−2 · · · rj .

Proposition 14.12. For σ′ ∈ S̃n\
(
S̃n−1

⋃
Ã

)
, there holds tr

(∇II−
n (σ′)

)
=

−tr
(∇II+

n (σ′)
)
. In particular, for σ′ = σ′′rn−1 with a standard σ′′ ∈ Ãn−1 ,

tr
(∇II±

n (σ′)
)

= tr
(∇II

n−1(σ
′′)

) · (∓i/
√

2 ).

Proof. Under the conjugation of Ãn−1, σ′ is conjugate, modulo a mul-
tiple of powers of z1, to an element τ ′ such that τ ′ = τ ′1τ

′
2 · · · τ ′s with dis-

joint cycles, τ ′k = rNk−1
rNk−1+1 · · · rNk−1 (k < s) and τ ′s = rprp+1 · · · rn−1. Put

τ ′′ = τ ′1 · · · τ ′s−1(rprp+1 · · · rn−2), then τ ′ = τ ′′rn−1 with τ ′′ ∈ Ãn−1. Note that
∇II±

n (σ′) = ∇II±
n (τ ′1) · · ·∇II±

n (τ ′s), and

∇II±
n (τ ′s) = ∇II

n−1(rp) · · · ∇II
n−1(rn−2) · i√

2
(Y2n′+1Y2n′ ∓ E2n′ ).

Expand the right hand side of ∇II±
n (σ′) into a linear combination of monomials

Y a1
1 · · ·Y an

n as before, then we see from Lemmas 5.9 � 5.10 that, as the contri-
bution from the last term of ∇II±

n (rn−1), we should take ∓E2n′ (not Y2n′+1Y2n′).
This gives us the �rst assertion.

The proof of the second assertion is similar. 2

15 Relations to Hauptdarstellung of Schur

15.1 Rewriting of Hauptdarstellung ∆n for S̃n

Schur's Hauptdarstellung ∆n is given for the representation group Tn [Sch3, �22].
So we rewrite it for another representation group S̃n = T′n of our present choice,
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and denote it by ∆′
n. Then we compare it with ∇n,∇−

n and ∇′
n
∼= ∇′′

n. Put

N = [(n− 1)/2] (n = 2N + 1 or 2N + 2)(15.1)

and de�ne (only in this section)




X ′
2k−1 := c⊗(k−1) ⊗ a⊗ ε⊗(N−k) (1 ≤ k ≤ N),

X ′
2k := c⊗(k−1) ⊗ b⊗ ε⊗(N−k) (1 ≤ k ≤ N),

X ′
2N+1 := c⊗N .

(15.2)

Note that we have de�ned in (5.13) matrices Yj (j ∈ In) of type 2n′ × 2n′ with
n′ = [n/2], and here X ′

j (j ∈ In) are similar but of type 2N × 2N .
Put for 1 ≤ j ≤ 2N + 1,

T ′
j := aj−1X

′
j−1 + bjX

′
j (X ′

0 := O),(15.3)

in such a way that they satisfy the relations
{

(T ′
j)

2 = E (1 ≤ j ≤ 2N + 1),

T ′
jT

′
j+1 + T ′

j+1T
′
j + E = O (1 ≤ j ≤ 2N),

where E = E2N . Then the equations for aj's and bj's are



a0 = 0, b 2
1 = 1,

a 2
j−1 + b 2

j = 1 (1 ≤ j ≤ 2N + 1).

2ajbj = −1 (1 ≤ j ≤ 2N).

(15.4)

A set of solutions is immediate from [Sch3, Abschnitt VI] as follows.

Lemma 15.1.



a0 = 0, b1 = 1,

a2ν = −
√

ν√
2ν + 1

, b2ν+1 =

√
ν + 1√
2ν + 1

(1 ≤ ν ≤ N),

a2ν+1 = −
√

2ν + 1
2
√

ν + 1
, b2ν+2 =

√
2ν + 3

2
√

ν + 1
(1 ≤ ν ≤ N − 1).

Thus we get a spin representation rj 7→ T ′
j (1 ≤ j ≤ n − 1) of S̃n, which is

denoted by ∆′
n and called `Hauptdarstellung' of S̃n = T′n , for n = 2N + 1 or

n = 2N + 2.

15.2 Character of `Hauptdarstellung' ∆′
n of S̃n = T′n

Theorem 15.2 (cf. [Sch3, �23]). Let n = 2N + 2 even. The character

of ∆′
n is given as follows: for a standard σ′ = σ′1σ

′
2 · · · σ′s ∈ S̃n, σk = Φ(σ′k)

disjoint cycles, with `k = `(σ′k),

χ∆′n(σ′) =





2N · (−2)−
∑

k∈Is
(`k−1)/2 = 2n/2−1 (−2)−

∑
k∈Is

(`k−1)/2,
if L(σ′k) ≡ 0 (mod 2) (k ∈ Is),

iN
√

N + 1 = in/2−1
√

n/2 , if σ′ = r1r2 · · · rn−1 (odd),
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and χ∆′n(σ′) = 0 if σ′ is not conjugate to an element above or to z1-times of
it.

Proof. For σ′ = r1r2 · · · rn−1, we express the following product as a linear
combination of monomial terms X ′

1
a1X ′

2
a2 · · ·X ′

n
an :

T ′
1T

′
2 · · ·T ′

n−1 = X ′
1

∏
2≤j≤2N+1

(
aj−1X

′
j−1 + bjX

′
j

)
, 2N + 1 = n− 1.

Then, since the degrees of each monomials are all n−1 = 2N +1 odd, the unique
monomial term with non-zero trace is

X ′
1 · b2X

′
2 · · · · · b2N+1X

′
2N+1 = b2 · · · b2N+1 · (abc)⊗N = b2 · · · b2N+1 · (iε)⊗N .

On the other hand,

∏
0≤ν≤N−1

b2ν+1b2ν+2 × b2N+1 =
∏

0≤ν≤N−1

√
2ν + 3

2
√

2ν + 1
×
√

N + 1√
2N + 1

=

√
N + 1
2N

Hence we obtain

χ∆′n(σ′) =

√
N + 1
2N

· (2i)N = iN
√

N + 1 = in/2−1
√

n/2 . 2

Theorem 15.3 (cf. [Sch3, �23]). Let n = 2N +1 odd. The character of ∆′
n

is given as follows: for a standard σ′ = σ′1σ
′
2 · · · σ′s, σk = ΦS(σ′k) disjoint cycles,

χ∆′n(σ′) =





2N · (−2)−
∑

k∈Is
(`k−1)/2 = 2(n−1)/2 (−2)−

∑
k∈Is

(`k−1)/2,
if L(σ′k) ≡ 0 (mod 2) (k ∈ Is),

0 , otherwise.

15.3 Relations to `Hauptdarstellung' ∆′
n

Lemma 15.4. In the case where n = 2N + 2 is even,

χ∆′n + χsgn·∆′n =





2 · 2N · (−2)−
∑

k∈Is
(`k−1)/2 = 2n/2 · (−2)−

∑
k∈Is

(`k−1)/2,
if L(σ′k) ≡ 0 (mod 2) (∀k),

0 , otherwise.

Theorem 15.5. (i) The spin representations ∇n
∼= ∇−

n
∼= ∇′

n of S̃n
∼= T′n

is related to Schur's `Hauptdarstellung' ∆′
n as

∇n
∼= ∆′

n ⊕ (sgn ·∆′
n), if n = 2n′ even (N = n′ − 1),

∇n
∼= ∆′

n (irreducible), if n = 2n′ + 1 odd (N = n′).

(ii) The restriction of ∆′
n, n ≥ 4, onto the subgroup Ãn are as follows:

• When n is even, ∆′
n is not self-associate, and ∆′

n

∣∣
Ãn

is irreducible.



192 T. Hirai, A. Hora and E. Hirai

• When n is odd, ∆′
n is self-associate, and ∆′

n

∣∣
Ãn

∼= 0+
n
∼= 0−

n , and it

is a direct sum of two inequivalent spin IRs 0
(κ)
n , κ = 0, 1, of Ãn, where

0
(1)
n =

(
0

(0)
n

)r1.

Proof. (i) follows from Theorem 15.3 and Lemma 15.4 above, together with
the results on characters in �14.

(ii) is proved by applying Lemma 17.4 in [I] (cf. also Lemma 12.4), and char-
acter formulas in ��14 �15. 2

In case n is odd, our representation∇n is another realization of `Hauptdarstel-
lung' ∆′

n of Schur. On the contrary, in case n is even, ∇n is decomposed into the
direct sum of ∆′

n (cf. �8.2).

16 Characters of IRs of D̃n

I
o S(Pγ), D̃n

I
o S(P±

γ )

This section for CASE I, Type (−1,−1,−1), and the next one for CASE II, Type
(−1,−1, 1), correspond to the step (f-7) in �3, and are very important steps on
the way of getting character formulas for spin IRs of R

(
G(m, 1, n)

)
of CASEs I

and II.

16.1 Formulas for calculating trace of πI
γ(g

′), πI±
γ (g′)

16.1.1 Preparation for calculating characters

As in �11, consider spin representation ∇n and ∇−
n of S̃n and the IR Pγ of D̃n :

∇n(ri) =
(−1)i−1

√
2

(Yi + Yi+1) =
1√
2

(Y ′
i − Y ′

i+1) (i ∈ In−1) ;(16.1)





∇−
n (ri) = ∇n(ri) (i ∈ In−2),

∇−
n (rn−1) =

(−1)n−2

√
2

(Yn−1 − Yn) =
1√
2

(Y ′
n−1 + Y ′

n) (i = n−1) ;
(16.2)

Pγ(η
′
j) = (−1)j−1ωγjρ(ηj) = χγ(η

′
j) Yj = ζγ(η

′
j)Y

′
j (j ∈ In) ;(16.3)

where Y ′
j = (−1)j−1Yj (j ∈ In).

The complete sets of representatives of the set of equivalence classes ̂̃
Dn

spin

are

Case n = 2n′ even : Rep(D̃n) =
{
[Pγ] ; γ ∈ Γ0

n

}
;

Case n = 2n′ + 1 odd : Rep(D̃n) = Rep+(D̃n)
⊔

Rep−(D̃n),
(16.4)

where Rep±(D̃n) =
{
[P±

γ ] ; γ ∈ Γ0
n

}
, P+

γ = Pγ, P−
γ = Pτnγ . The set Γ0

n

consists of γ = (γ1, γ2, . . . , γn) satisfying 0 ≤ γk < m′ = m/2 (k ∈ In) as in
(11.7), and τnγ = (γ1, . . . , γn−1, γn + m′).
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For representatives Pγ (resp. P+
γ and P−

γ if n is odd) with γ ∈ Γ0
n, the sta-

tionary subgroups in S̃n of their equivalence classes are given as

S(Pγ) =
{
σ′ ∈ S̃n ; σ′γ = γ

}
in case n is even ;

S(P±
γ ) =

{
σ′ ∈ S̃n ; σ′γ = γ

}
in case n is odd.

(16.5)

Recall IRs of the subgroup D̃n

I
o S(Pγ) of G̃ I

n given as

πI
γ(d

′, σ′) := Pγ(d
′) · ∇n(σ′)

(
(d′, σ′) ∈ D̃n

I
o S(Pγ)

)
;

πI±
γ (d′, σ′) := P±

γ (d′) · ∇±
n (σ′)

(
(d′, σ′) ∈ D̃n

I
o S(P±

γ )
)
,

(16.6)

or πI
γ = Pγ · ∇n and πI±

γ = P±
γ · ∇±

n with ∇+
n = ∇n. Put their characters as

f I
γ (g′) := tr

(
πI

γ(g
′)
) (

g′ ∈ D̃n

I
o S(Pγ)

)
if n is even ;

f I±
γ (g′) := tr

(
πI±

γ (g′)
) (

g′ ∈ D̃n

I
o S(P±

γ )
)

if n is odd.
(16.7)

Before starting calculation of them, we refer Table 4.1 on the general property
of supports of characters. We keep to the notations in �6.1 and De�nition 11.2,
which we recall brie�y. We have two abelian subgroups of D̃n = D̃(m,n) de�ned
as

D̃0(m,n) = 〈η 2
1 , η 2

2 , . . . , η 2
n 〉 ⊂ D̃1(m,n) =

〈
z2, D̃

0(m,n)
〉
.(16.8)

A spin character of D̃1
n = D̃1(m,n) is given as χ1

γ = χγ

∣∣
D̃1

n
with a spin function

χγ in (6.2) on D̃n. A character ζγ = (ζ1, . . . , ζn) on D(m,n) and a non-spin
character ζγ ◦ΦD (denoted again by ζγ) on D̃(m,n) are de�ned for γ ∈ Γn. Here
ζj = ζj,γj

= ζγ

∣∣
Tj

for j-th copy Tj of the protocol T ∼= Zm. De�ne a partition of

In by ζγ = (ζj)j∈In , γ ∈ Γ0
n, as

In =
⊔

ζ∈T̃ 0
In,ζ , In,ζ :=

{
j ∈ In ; ζj = ζ

}
.(16.9)

We normalize γ = (γ1, . . . , γn) ∈ Γ0
n under conjugation of Sn so that (11.12) �

(11.14) hold. Then the above partition is nothing but (11.13) with Ik = In,ζ an
interval for ζ = ζ(ck).

16.1.2 Normalization of representatives of conjugacy classes in CASE I

Any element g′′ ∈ D̃n

I
o S(Pγ)

(
resp. D̃n

I
o S(P±

γ ) if n is odd
)
has a standard

decomposition as




g′′ = z b1
1 z b2

2 g′, g′ = (d′, σ′) = ξ′q1
· · · ξ′qr

g′1 · · · g′s,
ξ′q = tq = η′q

aq , σ′ = σ′1 · · · σ′s , d′ = ξ′q1
· · · ξ′qr

· z X
2 d′1 · · · d′s,

g′j = (d′j, σ
′
j), σj = ΦS(σ′j) a cycle, Kj := supp(σ′j) ⊃ supp(d′j),

d′j =
∏

p∈Kj

η′p
ap = d0

jhj, d0
j ∈D̃0

n =D̃0(m,n), hj =
∏

p∈Kj

η′p
βp, βp = 0, 1,

(16.10)
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with X =
∑

2≤j≤s

ord(d′j)
(
L(σ′1) + · · ·+ L(σ′j−1)

)
,(16.11)

since rI
i(η

′
j) = z2η

′
si(j)

. Here the product of η′p
ap for d′j is in the natural order

except otherwise indicated. Note that the top term z b1
1 z b2

2 has usually some
ambiguity, because ξ′qi

ξ′qk
= z2ξ

′
qk

ξ′qi
(qi 6= qk) if ord(ξ′qi

) ≡ ord(ξ′qk
) ≡ 1 (mod 2)

and σ′jσ
′
k = z1σ

′
kσ

′
j if L(σ′j) ≡ L(σ′k) ≡ 1 (mod 2) etc. When we study spin

characters of Type (−1,−1,−1), it is su�cient to determine their values for
conjugacy classes modulo the center Z̃ = 〈z1, z2〉, so that we consider principally
elements of the form g′ above.

We normalize representatives g′ = ξ′q1
· · · ξ′qr

g′1 · · · g′s, g′j = (d′j, σ
′
j), under

conjugacy of D̃n

I
o ΦS

( ∏
ζ∈T̂ SIn,ζ

)
. To do so, recall Lemmas 1.3 � 1.6. Let

σj = Φ(σ′j) be a cycle (k1 k2 . . . k`j
), `j = `(σ′j). To �x the choice of the

preimage σ′j of σj, let k1 be the smallest among {k1, . . . , k`j
}, and put

σ′j := rk1, k2rk2, k3 · · · rk`j−1, k`j
.(16.12)

The support Kj = supp(σ′j) = {k1, k2, . . . , k`j
} is contained in some In,ζ , and

suppose here for simplicity that In,ζ is equal to [1, M ] ⊂ In.

Lemma 16.1. (i) Put σ0′
j := r1r2 · · · r`j−1, then σ0

j = Φ(σ0′
j ) = (1 2 . . . `j).

Take a τ ′ ∈ S̃M such that τσjτ
−1 = σ0

j with τ = ΦS(τ ′). Then τ ′σ′jτ
′−1 =

z Y
1 σ0′

j , where the exponent Y is computable.

(ii) Let σ′j = σ0′
j . Then Kj = [1, N ], N = `j, and there exists a d̃ ∈ D̃N such

that

d̃ g′j d̃−1 = (d′′j , σ
′
j) with d′′j = z

ord(σ′j)ord(d̃ )+X

2 η′1
ord(d′j),(16.13)

where, express d′j with new generators η′k as d′j = η′1
a1η′2

a2 · · · η′N aN , then

X ≡
∑

2≤p<q≤N−1

bpbq (mod 2) with bp := a2 + · · ·+ ap (p ≥ 2).

(iii) Let g′j = (d′j, σ
′
j) = (η′k

b, σ0′
j ). Then σ′j

−1g′jσ
′
j = (d′′j , σ

0′
j ) with

d′′j =

{
(z2η

′
k−1)

b if ord(d′j) ≡ L(σ′j) ≡ 1 (mod 2),

(η′k−1)
b otherwise.

Proof. Note that ord(d′j) ≡ a1 + · · ·+aN (mod m). Let d̃ = η′1
b′1η′2

b′2 · · · η′N b′N .
Then d̃ g′j d̃−1 =

(
d̃ d′j σ′j

I(d̃ )−1, σ′j) and

σ′j
I
(d̃ ) = σ′j d̃ σ′j

−1
= z

ord(d̃ )L(σ′j)
2 η′σj(1)

b′1η′σj(2)
b′2 · · · η′σj(N)

b′N =

= z
ord(d̃ )L(σ′j)

2 η′2
b′1η′3

b′2 · · · η′1b′N ,
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d̃ d′j σ′j
I
(d̃ )−1 =

(
η′1

b′1η′2
b′2 · · · η′N b′N

)(
η′1

a1η′2
a2 · · · η′N aN

)×
×(

z
ord(d̃ )L(σ′j)

2 η′1
−b′N η′N

−b′N−1 · · · η′3−b′2η′2
−b′1

)

= η′1
b′1+a1−b′N η′2

b′2+a2−b′1 · · · η′N b′N+aN−b′N−1 × z X
2 .

Put b′k+1 + ak+1 − b′k = 0 (1 ≤ k ≤ N − 1). Then a solution is given by

b′1 = 0, b′k = −(a2 + a3 + · · ·+ ak) = −bk (2 ≤ k ≤ N).

Moreover X is computed to be equal to
∑

2≤p<q≤N−1 bpbq modulo 2. 2

By this lemma, we see that each g′j is conjugate under S̃In,ζ
, modulo powers

of z1 and z2, to the following normal form g0′
j :

• Let Kj ⊂ In,ζ be an interval [nj, nj + `j − 1] ⊂ In, then for some kj ∈ Kj,

g0′
j = (η′kj

ord(d′j), σ0′
j ) with σ0′

j = rnj
rnj+1 · · · rnj+`j−2.(16.14)

For such a normalization, we can take kj the smallest in Kj, but here we take
kj an arbitrary element in Kj to prepare for calculation of characters of induced
representations. In this connection, see also �22.2, Part V, below.

Example 16.1 (Representatives in Sn(T ) under conjugacy). In the case
of a wreath product group Sn(T ) := Dn(T ) oSn, Dn(T ) :=

∏
k∈In

Tk, Tk = T,
with a non-abelian T , a general element is expressed as

g = ξq1 · · · ξqrg1 · · · gs, ξq = (tq), gj = (dj, σj), dj = (tp)p∈Kj
, Kj = supp(σj),

with σj disjoint cycles, tk ∈ Tk. The datum determining its conjugacy class
(cf. Theorem 1.2 in [HHH1, p.6]) is the set of

{
[tq1 ], . . . , [tqr ]

}
and

{(
Pσj

(dj), `(σj)
)
;

j ∈ Is

}
, where [tk] denotes the conjugacy class of tk in Tk = T , and for

σj = (k1 k2 . . . k`j
),

Pσj
(dj) :=

[
tk`j

· · · tk2tk1

]
.

Example 16.2 (Representatives in G̃ I
n under conjugacy). For simplicity, let

g′ = ξ′1g
′
1, ξ′1 = η′1, g′1 = (d′1, σ

′
1), σ′1 = r2r3r4, d′1 = η′2

a2η′3
a3η′4

a4η′5
a5 .

Then g = Φ(g′) = ξ1g1, ξ1 = y1, g1 = (d1, σ1), σ1 = s2s3s4 = (2 3 4 5), d1 =
y a2

2 y a3
3 y a4

4 y a5
5 . Take d′ = η′1

c1η′2
c2η′3

c3η′4
c4 with c4 = a5, c3 = a4 + a5, c2 = a3 +

a4 + a5, and consider the conjugate d′g′d′−1. Then

d′g′d′−1
= ξ′′1g

′′
1 , ξ′′1 = d′ξ′1d

′−1
, g′′1 = d′g′1d

′−1
,

ξ′′1 = z c2+c3+c4
2 ξ′1, g′′1 = z x

2 η′2
ord(d′1)

,

with x = (c1 + a3 + a5) + c1(a2 + a3 + a4 + a5) + (a2 + a3)a5 + a2(a4 + a5).
This simple example shows that the set of data

ord(ξ′qi
) (i ∈ Ir),

(
ord(d′j), `(σ

′
j)

)
(j ∈ Is)

usually does not determine uniquely the conjugacy class of g′ in (16.10), whereas
it determines the conjugacy class modulo the central group Z̃ = 〈z1, z2〉.
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16.1.3 Product formulas for traces of πI
γ(g

′) and πI±
γ (g′)

For g′ = ξ′q1
· · · ξ′qr

g′1 · · · g′s, g′j = (d′j, σ
′
j) ∈ D̃n

I
o S(Pγ), put

Q := {q1, q2, . . . , qr}, J := Is = {1, 2, . . . , s}.(16.15)

Case n = 2n′ even :

πI
γ(g

′) =
∏
q∈Q

Pγ(ξ
′
qi
)×

∏
j∈J

(
Pγ(d

′
j)∇n(σ′j)

)
,(16.16)

Pγ(ξ
′
q) = χγ(η

′
q
aq) Y aq

q = ζγ(η
′
q
aq) Y ′

q
aq (q ∈ Q) ,(16.17)

Pγ(d
′
j) =

∏
p∈Kj

χγ

(
η′p

ap
)
Y ap

p = ζγ(d
′
j) ·

∏
p∈Kj

Y ′
p

βp ,(16.18)

where ap ≡ βp (mod 2), and the product is taken in the natural order. After
normalization (16.14), ap 6= 0 at most for one p ∈ Kj, and ∇n(σ′j) is given by a
product of ∇n(ri) in (16.1) correspondingly.

Case of n = 2n′ + 1 odd :
For ∇+

n = ∇n, P+
γ = Pγ and πI+

γ = πI
γ, the same formulas as (16.1) and

(16.16) � (16.18) hold automatically. Also recall that

πI−
γ (g′) = P−

γ (d′) · ∇−
n (σ′)

(
g′ = (d′, σ′) ∈ D̃n

I
o S(P−

γ )
)

P−
γ = Pτnγ, ∇−

n (rj) := −Yn∇n(rj) Y −1
n (j ∈ In−1).

Calculations for πI+
γ for n odd are carried out together with πI

γ for n even,
and distinction depending on the parity of n will be remarked at the place.

In the expression of πI
γ(g

′
j) = Pγ(d

′
j)∇n(σ′j) for g′j = (d′j, σ

′
j) in (16.16), we

expand the right hand side into a linear combination of monomial terms such
as Y c1

k1
Y c2

k2
· · ·Y cn

kn
. We know that the terms with non-zero traces are those such

that

Y c1
k1

Y c2
k2
· · ·Y cn

kn
, c1 ≡ c2 ≡ . . . ≡ cn ≡ 0 (mod 2), or(16.19)

Yk1Yk2 · · ·Yk2n′+1
, with {k1, k2, . . . , k2n′+1} = I2n′+1.(16.20)

Similar assertions hold also for πI±
γ . Therefore, since the supports of ξ′qi

's and
g′j's are mutually disjoint, we have the following.

Lemma 16.2. (i) Case of n even : f I
γ (g′) 6= 0 =⇒ (Condition I-00) :

(Condition I-00)

{
ord(d′) + L(σ′) ≡ 0 (mod 2) ;

ord(ξ′qi
) ≡ 0 (∀i), ord(d′j) + L(σ′j) ≡ 0 (mod 2) (∀j).

(ii) Case of n odd :
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if |supp(g′)| < n, f I±
γ (g′) 6= 0 =⇒ (Condition I-00) ;

if |supp(g′)| = n, f I±
γ (g′) 6= 0 =⇒ (Condition I-00) or (Condition I-11) :

(Condition I-11)

{ |supp(g′)| = n odd, ord(d′) + L(σ′) ≡ 1 (mod 2) ;

ord(ξ′qi
) ≡ 1 (∀i), ord(d′j) ≡ 1 (mod 2) (∀j).

Proof. The assertion (i) comes from the statement above on (16.19). The
�rst half of (ii) is similar as (i), and the second half should come from Lemma
14.1 on Yk1Yk2 · · ·Yk2n′+1

in (16.20) with n = 2n′ + 1, and this will be con�rmed
from the detailed discussion in �16.3 below. However here we quote it from Table
4.1. 2

For g′ = (d′, σ′) ∈ D̃n

I
o S(Pγ), we separate g′ into two cases as

CASE 1 : ord(d′) + L(σ′) ≡ 0 (mod 2) ;
CASE 2 : ord(d′) + L(σ′) ≡ 1 (mod 2).

Note that, in G̃ I
n , since their supports are mutually disjoint (cf. (I-v) and

(I-v′) in �2.3),




d′ig
′
j = z

ord(d′i)(ord(d′j)+L(σ′j))
2 g′jd

′
i ,

g′jg
′
k = z

ord(d′j) ord(d′k)+ord(d′j) L(σ′k)+L(σ′j) ord(d′k)

2 z
L(σ′j) L(σ′k)

1 g′kg
′
j .

(16.21)

Then we obtain the following lemma.

Lemma 16.3. Under (Condition I-00), the operators πI
γ(ξ

′
qi
)'s and πI

γ(g
′
j)'s

all commute with each other.

Lemma 16.4. (i) Case of n = 2n′ even : The following product formula
holds

f I
γ (g′) = 2n′ ·

∏
q∈Q

f I
γ

(
ξ′q

)

2n′ ·
∏
j∈J

f I
γ

(
g′j

)

2n′ .

(ii) Case of n odd : Except the case of (Condition I-11), the analogous
product formulas hold for f I+

γ and f I−
γ respectively.

Proof. (i) In the expansion of the operator πI
γ(g

′
j) into a linear combination of

monomial terms, those with non-zero traces are of the form Y
2c′1

j1
Y

2c′2
j2

· · ·Y 2c′p
jp

(
=

E2n′
)
. Moreover, for each of f I

γ

(
ξ′qi

)
's and f I

γ

(
g′j

)
's, the supports in In of their

monomials with non-zero traces are mutually disjoint since so are supp
(
ξ′qi

)
's and

supp(g′j)'s. Here the support of a monomial Y c1
j1

Y c2
j2
· · ·Y cp

jp
means the collection

of su�ces jk ∈ In with ck 6= 0. This proves the assertion (i).
The proof for (ii) is similar. 2
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(NM) Normalization of the situation:

(NM1) Since we work with a representative of ̂̃
Dn

spin

of an Sn-orbit, we can
assume that every In,ζ ⊂ In is an interval in In.

(NM2) Assume the normalization (NM1). Then, inside each In,ζ , the charac-
ter of πI

γ and πI±
γ are invariant at least under S̃In,ζ

⊂ S(Pγ)
(
resp. ⊂ S(P±

γ )
)
. So,

to calculate their characters, we can assume that every Kj = supp(σj), contained
in some In,ζ , is itself an interval.

16.2 Characters of IRs πI
γ of D̃n

I
o S(Pγ), CASE 1

To start with, we assume only the condition ord(d′) + L(σ′) ≡ 0 (mod 2) for
g′ = (d′, σ′). Let us calculate f I

γ (g′) = tr(πI
γ

(
g′)

)
. This is automatically common

to f I+
γ (g′) = tr(πI+

γ

(
g′)

)
in case n odd. By Lemma 16.4, it is enough for us to

calculate tr
(
πI

γ(ξ
′
q)

)
and tr

(
πI

γ(g
′
j)

)
independently.

(1-1) Case of ξ′q (q ∈ Q) :

f I
γ

(
ξ′q

)
= tr

(
πI

γ(ξ
′
q)

)
=

{
2n′ χγ

(
ξ′q

)
, if ord

(
ξ′q

) ≡ 0 (mod 2),

0 , if ord
(
ξ′q

) ≡ 1 (mod 2) .
(16.22)

(1-2) Case of g′j = (d′j, σ
′
j), j ∈ J = Is :

d′j =
∏

p∈Kj

η′p
ap = d0

jhj, d0
j ∈ D̃0

n, hj =
∏

p∈Kj

η′p
βp , βp = 0, 1 ;(16.23)

πI
γ(g

′
j) = Pγ(d

′
j)∇n(σ′j)(16.24)

= χγ(d
′
j) ·

∏
p∈Kj

Y βp
p ×

∏
p, p+1∈Kj

(−1)p−1

√
2

(
Yp + Yp+1

)
,

where the products on p ∈ Kj are in the natural order of p. In fact, ζγ(d
′
j) ·∏

p∈Kj
Y ′

p
βp = χγ(d

′
j) ·

∏
p∈Kj

Y
βp

p . In the rightmost hand side of (16.24), we see
from Lemmas 5.9 � 5.10 and 14.1 that, to have a non-zero trace, it is necessary
that the degrees of monomials in its expansion should be even, i.e.,

ord(d′j) + L(σ′j) ≡ 0 (mod 2).(16.25)

Note that f I
γ (g′j) is invariant under D̃Kj

and S̃Kj
⊂ S̃In,ζ

, then we may
assume by Lemma 16.1 to simplify complicated su�ces that g′j is normalized
modulo z a

1 z b
2 as





Kj = supp(σ′j) = {nj, nj+1, . . . , nj+`j−1}, an interval in In,

d′j = η′kj

ord(d′j) for some kj ∈ Kj,

σ′j = rnj
rnj+1 · · · rnj+`j−2, σj = Φ(σ′j) = (nj nj+1 . . . nj+`j−1).

(16.26)
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For simplicity of calculations, we take nj = 1 and put N = nj + `j − 1 = `j so
that Kj = [1, N ] ⊂ In. The expression d′j = d0

jhj is given as

d0
j = η′kj

2[ord(d′j)/2]
, hj =

{
η′kj

if ord(d′j) ≡ 1 (mod 2),

eT if ord(d′j) ≡ 0 (mod 2).
(16.27)

Put κp := (−1)p−1/
√

2 for simplicity, then

∏
p, p+1∈Kj

κp = (−1)[(`j−1)/2] · 2−(`j−1)/2.(16.28)

In fact,
∏

p, p+1∈Kj
(−1)p−1 = (−1)(`j−1)(`j−2)/2 = (−1)[(`j−1)/2]. Thus, modulo

constant coe�cient (−1)[(`j−1)/2] · 2−(`j−1)/2, we come to calculate the trace of

{
Ykj

(Y1 + Y2)(Y2 + Y3) · · · (YN−1 + YN) if ord(d′j) ≡ 1 (mod 2),

(Y1 + Y2)(Y2 + Y3) · · · (YN−1 + YN) if ord(d′j) ≡ 0 (mod 2).
(16.29)

To get a monomial term of the form (16.19) with non-zero trace from expan-
sion of (16.29), we put on each Yp (p ∈ IN) a color black or white depending
on if it comes in or not to form this monomial term. When Ykj

corresponds to
η′kj

= hj, we express it as Ykj
∈ hj. First we start with putting color black to

Ykj
∈ hj, the front multiplicative factor in (16.29).
Then, we proceed successively from ∇n(r1) = κ1(Y1 + Y2) until ∇n(rN−1) =

κN−1(YN−1 + YN) in (16.24), putting colors on Yp and Yp+1 in ∇n(rp) = κp(Yp +
Yp+1) successively. At the point for ∇n(rq) = κq(Yq + Yq+1), if we pick up the
�rst component Yq to get Y 2

q , then we color it black and the second component
Yq+1 white, and similarly in the reversed case. The mode of coloring of two terms
Yp, Yp+1 of ∇n(rp) is called the parity of ∇n(rp), for which we denote (black,
white) simply by (b, w), and (white, black) by (w, b).

Step 1. First start with ∇n(r1) = κ1(Y1 + Y2).
Case (1): If Y1 ∈ hj, then Y1 in ∇n(r1) should be black to get Y 2

1 , and
the parity of ∇n(r1) is (black, white)= (b, w).

Case (2): If Y1 6∈ hj, then Y1 in∇n(r1) should be white and automatically
Y2 in ∇n(r1) should be black, and the parity is (w, b).

Step 2. Next take ∇n(r2) = κ2(Y2 + Y3).
• Suppose the parity of ∇n(r1) is (b, w).
Case (bw): Since hj = η′1, Y2 in ∇n(r2) should be white, and the parity

of ∇n(r2) is (w, b) expecting Y 2
3 , by supposing to get black Y3 in the next step.

• Suppose the parity of ∇n(r1) is (w, b).
Case (wb-1): If Y2 ∈ hj, then Y2 in ∇n(r2) should be white to have twice

(not triple) of black Y2 in total. The parity of ∇n(r2) is (w, b).
Case (wb-2): Otherwise, Y2 in ∇n(r2) should be black, and the parity of

∇n(r2) is (b, w).
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Step q +1. Assume that the parity of ∇n(rp) has been decided for p =
1, . . . , q.

• Firstly suppose the parity of ∇n(rq) is (b, w).
Case (bw-1): If Yq+1 ∈ hj, then Yq+1 in ∇n(rq+1) = κq+1(Yq+1 + Yq+2)

should be black, and the parity of ∇n(rq+1) is (b, w).
Case (bw-2): If Yq+1 6∈ hj, then Yq+1 in ∇n(rq+1) = κq+1(Yq+1 + Yq+2)

should be white, and the parity of ∇n(rq+1) is (w, b).
• Secondly suppose the parity of ∇n(rq) is (w, b).
Case (wb-1): If Yq+1 ∈ hj, then Yq+1 in ∇n(rq+1) = κq+1(Yq+1 + Yq+2)

should be white, not to get Y 3
q+1 (triple of Yq+1), and the parity of ∇n(rq+1) is

(w, b).
Case (wb-2): If Yq+1 6∈ hj, then Yq+1 in ∇n(rq+1) = κq+1(Yq+1 + Yq+2)

should be black, and the parity of ∇n(rq+1) is (b, w).

Step N−1. At the end,
Case (1): if YN ∈ hj, then the parity of ∇n(rN−1) should be (w, b).
Case (2): If YN 6∈ hj, then the parity should be (b, w).

This last step is guaranteed if and only if ord(d′j) + L(σ′j) ≡ 0. In fact, the
front factor in (16.29) coming from hj = η′kj

controls the change of parities of
∇n(rp) according to p as follows.

Parity Rule I-00. The parity of ∇n(rp) remains unchanged be-
tween p = kj − 1, kj, and at p = kj + 1 it changes. If we put aside
of consideration ∇n(rkj

) for hj = η′kj
, then for the rest of ∇n(rp)'s

their parities change alternatively, from (w , b) to (b,w), or from
(b,w) to (w , b).

In this situation, we should have even number of blacks, and so L(σ′j) −
|supp(hj)| = L(σ′j) − ord(hj) should be even. This is equivalent to ord(d′j) +
L(σ′j) ≡ 0.

The above process to determine parities of ∇n(rp) is illustrated in the table
below.

Table 16.1. Parity of ∇n(rp) (p = 1, 2, . . . , N − 1)

In each small unit table, on the 1st row, columns after the separation ` || '
are for Ykj

∈ hj. On the 2nd row, sections are for parities (b, w) or (w, b) of
∇n(rp), p = 1, 3, . . ., and on the 3rd row, sections are for ∇n(rp), p = 2, 4, . . .

Case : N = `(σ′j) = 8
(
L(σ′j) ≡ 7

)
:

Ykj ∈ hj = η1 b

∇n(rp) (p = 1, 3, 5, 7) b w b w b w b w

∇n(rp) (p = 2, 4, 6) × w b w b w b ×
Ykj ∈ hj = η2 b

∇n(rp) (p = 1, 3, 5, 7) w b b w b w b w

∇n(rp) (p = 2, 4, 6) × w b w b w b ×
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Ykj ∈ hj = η7 b

∇n(rp) (p = 1, 3, 5, 7) w b w b w b b w

∇n(rp) (p = 2, 4, 6) × b w b w b w ×
Ykj ∈ hj = η8 b

∇n(rp) (p = 1, 3, 5, 7) w b w b w b w b

∇n(rp) (p = 2, 4, 6) × b w b w b w ×
hj = e

∇n(rp) (p = 1, 3, 5, 7) w b w b w b ? ?
∇n(rp) (p = 2, 4, 6) × b w b w b w ×

NOT OK

In this way, we obtain the only one monomial term with non-zero trace, apart
from its coe�cient (−1)[(`j−1)/2] · 2−(`j−1)/2 χγ(d

′
j), as

∏

k∈supp(hj)

Yk ×
∏

1≤p≤`j−1

Xp = E2n′ ,(16.30)

with Xp :=

{
Yp if Yp is black for ∇n(rp),

Yp+1 if Yp+1 is black for ∇n(rp).
(16.31)

Lemma 16.5. For g′j = (d′j, σ
′
j), assume it is normalized as in (16.26). If

the condition (16.25) holds, then

tr
(
πI

γ(g
′
j)

)
= tr

(
Pγ(d

′
j)∇n(σ′j)

)
(16.32)

= χγ(d
′
j) · 2n′ · (−1)[(`j−1)/2] · 2−(`j−1)/2.

Otherwise tr
(
πI

γ(g
′
j)

)
= 0.

Moreover, when πI
γ(g

′
j) = Pγ(d

′
j)∇n(σ′j) is expanded into a linear combina-

tion of monomial terms Y c1
1 Y c2

2 · · ·Y cN
N , N = `j, there exists at most one term

with trace non-zero, which is of the form Y
2c′1

1 Y
2c′2

2 · · ·Y 2c′N
N (= E2n′ ).

Proof. Let hj = η′kj
. Then the factor Ykj

is put in front of ∇n(r1) as

Ykj
· κ1(Y1 + Y2) · κ2(Y2 + Y3) · · ·κN−1(YN−1 + YN).(16.33)

We send Ykj
step by step by exchanging with ∇n(r1) = κ1(Y1+Y2), . . . ,∇n(rkj−1)

= κkj−1(Ykj−1 + Ykj
). Since we are only interested in the unique monomial

with non-zero trace in (16.30) � (16.31) obtained from (16.33) by expansion, the
sign changes to send Ykj

from the front of ∇n(r1) until the back of ∇n(rkj−1)
accumulate in total to even number of times, since Ykj

permutes elements of the
following form

{
Y

2c′1
j1

· · ·Y 2c′u
ju

, j1 < . . . < ju < kj, or

Y
2c′1

j1
· · ·Y 2c′u

ju
Ykj

, j1 < . . . < ju < kj. 2

Summarizing the results until now, we have the following.
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Proposition 16.6. Assume that g′ = (d′, σ′) ∈ D̃n

I
o S(Pγ), expressed as

in (16.10), satis�es the condition ord(d′) + L(σ′) ≡ 0 (mod 2).

(i) For f I
γ (g′) = tr

(
πI

γ(g
′)
) 6= 0, it is necessary and su�cient that (Condition

I-00) holds for g′. In that case the following product formula holds

f I
γ (g′) = 2n′ ·

∏
q∈Q

f I
γ

(
ξ′q

)

2n′ ·
∏
j∈J

f I
γ

(
g′j

)

2n′ ,(16.34)

where f I
γ

(
ξ′q

)
is given in (16.22), and f I

γ

(
g′j

)
is in Lemma 16.5.

(ii) Suppose f I
γ (g′) = tr

(
πI

γ(g
′)
) 6= 0. When πI

γ(g
′) is expanded into a linear

combination of monomial terms Y c1
1 Y c2

2 · · ·Y cn
n , there exists only one term with

trace non-zero, which is of the form Y
2c′1

1 Y
2c′2

2 · · ·Y 2c′n
n (= E2n′ ).

Remark 16.1. Note that χγ(η
′
p) = (−1)p−1ζγ(ηp) and by de�nition ζγ(η

′
p) =

ζγ(ηp). The di�erence between χγ and ζγ will have an important meaning in the
following (cf. Part III). So, to make the di�erence much clearer, we introduce a
sign function on D̃n : for d′′ ∈ D̃n, express it as d′′ = z b

2 η b1
1 η b2

2 · · · η bn
n , and put

sgnD̃(d′′) := (−1)b = χγ(d
′′)/ζγ(d

′′).(16.35)

The point is that sgnD̃(d′′) and χγ(d
′′) do not behave well under the action

of S̃n. In fact, for rp (p ∈ In−1), in CASE I,

sgnD̃

(
rI
p(d

′′)
)

= (−1)ord(d′′)+bpbp+1+bp+bp+1 sgnD̃(d′′),(16.36)

with ord(d′′) = b1 + · · ·+ bn.

However, when d′′ has a normalized form as d′′ = η′kj

bkj or d′′ = η
bkj

kj
, bkj

=

ord(d′′), the sign function sgnD̃(d′′) behave much simple way as

sgnD̃

(
rI
p(d

′′)
)

=

{
(−1)ord(d′′)sgnD̃(d′′) for p 6= kj, kj + 1 ;

sgnD̃(d′′) for p = kj, kj + 1.
(16.37)

In particular, if ord(d′′) is even, then sgnD̃(d′′) is invariant under S̃n in the sense
that sgnD̃

(
σ′I(d′′)

)
= sgnD̃(d′′) (σ′ ∈ S̃n). This is one of the reasons for the

choice of a representative of the conjugacy class of g′j = (d′j, σ
′
j) modulo Z̃ in the

form of d′j = η′kj

bj , bj = ord(d′j) (∃kj ∈ Kj).

Here we add a remark for CASE II too. Recall that rII
p (ηk) = ηsp(k), sp =

ΦS(rp), then we have sgnD̃

(
rII
p (d′′)

)
= (−1)bpbp+1 sgnD̃(d′′). Therefore, if d′′ has

a normalized form as d′′ = ηk
bk , bk = ord(d′′), then sgnD̃(d′′) is invariant under

S̃n in the sense that sgnD̃

(
σ′II(d′′)

)
= sgnD̃(d′′) (σ′ ∈ S̃n).
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16.3 Characters of πI+
γ of D̃n

I
o S(Pγ), CASE 2

To start with, we assume only the condition ord(d′) + L(σ′) ≡ 1 (mod 2) for
g′ = (d′, σ′). Here also the formulas (16.23) � (16.24) are valid.

In the right hand side of (16.24), when expanded into a linear combination
of monomials in Yk's, the only one which has non-zero trace is, multiplicatively
modulo

∏
k∈In

Y
2c′k

k ,

Y1Y2 · · ·Y2n′Y2n′+1

(
= in

′
E2n′

)
,(16.38)

and so there should be

n = 2n′ + 1 odd, and |supp(g′)| = n = 2n′ + 1.(16.39)

This turns out to be a case only for πI+
γ (= πI

γ for n odd). We prefer to change
here the notations to those with super�ces + (for instance as P+

γ = Pγ, ∇+
n =

∇n, πI+
γ = πI

γ etc.), in comparison to the case of πI−
γ which will be treated later.

Let us determine contributions to the monomial Y1Y2 · · ·Y2n′+1 from each of
πI+

γ (ξ′q) and πI+
γ (g′j).

(2-1) Case of πI+
γ (ξ′q) : For each πI+

γ (ξ′q) = P+
γ (ξ′q), we should have the

term Yq so that ord(ξ′q) ≡ 1 (q ∈ Q).

(2-2) Case of πI+
γ (g′j) : For each πI+

γ (g′j) = P+
γ (d′j)∇+

n (σ′j), we should

have
∏

k∈Kj
Yk multiplicatively modulo

∏
k∈Kj

Y
2c′k

k , and accordingly ord(d′j) +

L(σ′j) ≡ |Kj|. On the other hand, |Kj| ≡ L(σ′j) + 1 (mod 2), and accordingly
ord(d′j) ≡ 1 (j ∈ Is). Hence, if f I+

γ (g′) 6= 0, then g′ satis�es (Condition I-11) in
Lemma 16.2.

As in CASE 1, we may assume that g′j is normalized as in (16.26), and put
here for simplicity of calculations as nj = 1 and N = nj + `j − 1 = `j so that
Kj = [1, N ] ⊂ In. Note that d′j = d0

jhj, d0
j = η′kj

ord(d′j)−1, hj = η′kj
(kj ∈ Kj).

Then we have

P+
γ (d′j)∇+

n (σ′j) = (−1)[(`j−1)/2] 2−(`j−1)/2 χγ(d
′
j)×

×Ykj
(Y1 + Y2)(Y2 + Y3) · · · (YN−1 + YN).

(16.40)

To get in total the monomial term (16.38), we should pick up from (16.40) a
monomial term Y1Y2 · · ·YN in modulo. On picking up from Y1 until YN succes-
sively, the parity of each ∇+

n (rp) will be uniquely determined one after another
as is seen below. As in CASE 1, Ykj

∈ hj should be black from the beginning.

Step 1. We have two cases as follows.
Case (1): Y1 ∈ hj. In this case, Y1 in ∇+

n (r1) should be white and so Y2

in it is forced to be black, and the parity of ∇+
n (r1) should be (w, b).

Case (2): Y1 6∈ hj. In this case, Y1 in ∇+
n (r1) should be black, and so

the parity of ∇+
n (r1) should be (b, w).
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Now suppose that, the parities of∇+
n (rp), p = 1, . . . , q, have been determined.

Step q + 1.
• Suppose the parity of ∇+

n (rq) is (w, b). Then hj = η′kj
with kj ≤ q.

Case (wb): Here Yq+1 6∈ hj, and Yq+1 in ∇+
n (rq+1) should be white, to

keep Yq+1 once, already taken from∇+
n (rq) as black, and so the parity of∇+

n (rq+1)
should be (w, b).

• Suppose the parity of ∇+
n (rq) is (b, w).

Case (bw-1): If Yq+1 ∈ hj, then Yq+1 in ∇+
n (rq+1) = κq+1(Yq+1 + Yq+2)

should be white, and so the parity should be (w, b).
Case (bw-2): If Yq+1 6∈ hj, then Yq+1 in ∇+

n (rq+1) should be black, and
so the parity should be (b, w).

Parity Rule I-11. As a general rule, at the step for ∇+
n (rq+1),

(1) if Yq+1 ∈ hj, then the parity of ∇+
n (rq+1) is reversed from that of ∇+

n (rq) ;
(2) if Yq+1 6∈ hj, then the parity of ∇+

n (rq+1) is unchanged from that of
∇+

n (rq).

Step N − 1. At the end,
Case (1): if YN ∈ hj, then YN in ∇+

n (rN−1) = κN−1(YN−1 + YN) should
be white, to have YN only one time (from hj). So the parity should be (b, w).

Case (2): If YN 6∈ hj, then the parity should be (w, b).

Let check the consistency of Step N−1 above with Parity Rule I-11. Note
that, in the above, the factor Ykj

∈ hj in the front multiplicative factor in (16.40)
changes the parity of ∇+

n (rkj
) = κkj

(Ykj
+Ykj+1). Consider three cases depending

on
(a) whether Y1 ∈ hj or not, and
(b) whether YN ∈ hj or not.

We see below each case is possible under ord(d′j) ≡ L(σ′j) ≡ 1.

Case (Yes, No): The parities of ∇+
n (rp) starts from (w, b) for p = 1 and

should end at (w, b) for p = N .
Case (No, Yes): The parities of ∇+

n (rp) starts from (b, w) for p = 1 and
should end at (b, w) for p = N .

Case (No, No): The parities of ∇+
n (rp) starts from (b, w) for p = 1 and

should end at (w, b) for p = N .

Altogether we see the following.

Lemma 16.7. Assume a g′ = (d′, σ′) ∈ D̃n

I
o S(Pγ) is in CASE 2 :

ord(d′) + L(σ′) ≡ 1 (mod 2). Then, to have tr
(
πI

γ(g
′)
) 6= 0, n should be odd

and |supp(g′)| = n. In this case, f I+
γ (g′) = tr

(
πI+

γ (g′)
) 6= 0 if and only if

(Condition I-11) holds for g′.
Moreover, in the expansion of πI+

γ (g′) into a linear combination of mono-
mials terms Y c1

1 Y c2
2 . . . Y cn

n , there exists one and only one term with non-zero

trace, which is Y1 · · ·Y2n′Y2n′+1 (multiplicatively modulo Y
2c′1

1 Y
2c′2

2 . . . Y
2c′n

n ) in
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(16.38).

The way of determining parities of ∇+
n (rp)'s is illustrated in the following

table.

Table 16.2. Parities of ∇+
n (rp) = κp(Yp + Yp+1) (p + 1 ∈ Kj) in πI+

γ (g′j).

Case: N = `(σ′j) = 10
(
L(σ′j) ≡ 9

)
: Kj = {1, 2, . . . , N},

Ykj ∈ hj = η1 b

∇+
n (rp) (p = 1, 3, 5, 7, 9) w b w b w b w b w b

∇+
n (rp) (p = 2, 4, 6, 8) × w b w b w b w b ×

Ykj ∈ hj = η2 b

∇+
n (rp) (p = 1, 3, 5, 7, 9) b w w b w b w b w b

∇+
n (rp) (p = 2, 4, 6, 8) × w b w b w b w b ×

Ykj ∈ hj = η9 b

∇+
n (rp) (p = 1, 3, 5, 7, 9) b w b w b w b w w b

∇+
n (rp) (p = 2, 4, 6, 8) × b w b w b w b w ×

Ykj ∈ hj = η10 b

∇+
n (rp) (p = 1, 3, 5, 7, 9) b w b w b w b w b w

∇+
n (rp) (p = 2, 4, 6, 8) × b w b w b w b w ×

hj = eT

∇+
n (rp) (p = 1, 3, 5, 7, 9) b w b w b w b w ? ?
∇+

n (rp) (p = 2, 4, 6, 8) × b w b w b w b w ×
NOT OK

Thus, under (Condition I-11), we have a unique monomial term inside πI+
γ (g′j)

for each j ∈ Is, to get Y1Y2 · · ·Y2n′+1 in total, together with πI+
γ (ξ′q) (q ∈ Q). The

speci�ed monomial term from πI+
γ (g′j), apart from its coe�cient (−1)[(`j−1)/2] ·

2−(`j−1)/2 · χγ(d
′
j), is in case hj = η′kj

(∃kj ∈ Kj)

Ykj
·

∏
1≤p≤N−1

Xp = εI+(g′j)
∏

p∈Kj

Yp ,(16.41)

with Xp =

{
Yp if Yp is black for ∇+

n (rp),
Yp+1 if Yp+1 is black for ∇+

n (rp),
(16.42)

where εI+(g′j) := (−1)kj−1, in the above setting that Kj = [1, N ].
For πI+

γ (g′) in total, by taking product over q ∈ Q := {qi ; i ∈ Ir} and
j ∈ J := Is, we get the following.

Proposition 16.8. Let n be odd, and g′ = (d′, σ′) ∈ D̃n

I
o S(P+

γ ) satis�es
(Condition I-11). Assume that each g′j (j ∈ J) is normalized as in (16.26).

Then f I+
γ (g′) = tr

(
πI+

γ (g′)
)

is given by

f I+
γ (g′) =

∏
q∈Q

χγ(ξ
′
q) ·

∏
j∈J

εI+(g′j)χγ(d
′
j) (−1)[(`j−1)/2] 2−(`j−1)/2 ×
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× tr
( ∏

q∈Q

Yq ·
∏
j∈J

∏
p∈Kj

Yp

)

= εI(g′) ·
∏
q∈Q

χγ(ξ
′
q) ·

∏
j∈J

χγ(d
′
j) · (2i)n′

∏
j∈J

(−1)[(`j−1)/2] 2−(`j−1)/2,

where the sign εI+(g′j) is given by (16.41)�(16.42), and the one εI(g′) comes
from rearrangement to have Y1Y2 · · ·Y2n′+1 as

∏
q∈Q

Yq ×
∏
j∈J

{
Ykj

∏

p∈Kj\{kj} :
Yp black

Yp

}
= εI(g′) · Y1Y2 · · ·Yn .(16.43)

Moreover, since ord(d′j) ≡ 1 (j ∈ J), d′ = z X
2 ξ′q1

· · · ξ′qr
d′1 · · · d′s with X in (16.11)

which is given here as X =
∑

2≤j≤s

(
L(σ′1) + · · ·+ L(σ′j−1)

)
.

16.4 Characters of IRs πI−
γ = P−

γ · ∇−
n of D̃n

I
o S(P−

γ )

Assume that n = 2n′+1 odd. Then, for πI−
γ = P−

γ ·∇−
n , P−

γ = Pτnγ with γ ∈ Γ0
n,

we have the following formulas by (16.1) � (16.3),




∇−

n (ri) = ∇+
n (ri) =

(−1)i−1

√
2

(Yi + Yi+1) (i ∈ In−2),

∇−
n (rn−1) =

(−1)n−2

√
2

(Yn−1 − Yn) (i = n− 1) ;
(16.44)

{
P−

γ (η′j) = Pτnγ(η
′
j) = ωγjρ(η′j) = χγ(η

′
j) Yj (j ∈ In−1 = I2n′),

P−
γ (η′n) = Pτnγ(η

′
n) = ωγn+m′

ρ(η′n) = −χγ(η
′
n) Yn (j = n = 2n′ + 1).

(16.45)

Let g′ = (d′, σ′) ∈ D̃n

I
o S(P−

γ ). We can discuss just as in ��16.2 �16.3 for
πI+

γ , and only the di�erence from there is that,

(A) χγ(η
′
n)Yn, n = 2n′ + 1, is replaced by χτnγ(η

′
n)Yn = −χγ(η

′
n)Yn ,

(from the contribution of d′-side);

(B) Yn in ∇I+
n (rn−1) = κn−1(Yn−1 + Yn) is replaced by −Yn in ∇I−

n (rn−1) =
κn−1(Yn−1 − Yn), where κp = (−1)p−1/

√
2 ,

(from the contribution of σ′-side).

Altogether, we see that, for πI−
γ , it is enough to replace Yn by −Yn everywhere

on the way of calculating characters of πI+
γ . In more detail, we see the following.

CASE 1 : ord(d′) + L(σ′) ≡ 0 (mod 2):
In the case where Yn, n = 2n′+1, does not contribute to the unique monomial

term with non-zero trace Y
2c′1

1 Y
2c′2

2 · · ·Y 2c′n
n , we have tr

(
πI+

γ (g′)
)

= tr
(
πI−

γ (g′)
)
.

On the contrary, when Yn, n = 2n′ + 1, actually contributes to the unique
monomial term with non-zero term Y

2c′1
1 Y

2c′2
2 · · ·Y 2c′n

n , there are two cases:
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Case (1-1) The case where Yn appears only as a contribution from d′. In

this case, there appear
(
χγ(η

′
n)Yn

)2c′n for πI+
γ (g′) in �16.2, and

( − χγ(η
′
n)Yn

)2c′n

for πI−
γ (g′) here. Thus we have tr

(
πI+

γ (g′)
)

= tr
(
πI−

γ (g′)
)
.

Case (1-2) The case where Yn appears as contributions both from d′ and
from σ′. In this case, for πI+

γ (g′) in �16.2, there appear as contributions from
the side of d′ and from the side of σ′ respectively:

(
χγ(η

′
n)Yn

)2c′n−1
and Yn in ∇+

n (rn−1) = κn−1(Yn−1 + Yn).

On the other hand, for πI−
γ (g′) here, there appear as contributions from the

side of d′ and from the side of σ′ respectively:
(− χγ(η

′
n)Yn

)2c′n−1
and −Yn in ∇−

n (rn−1) = κn−1 (Yn−1 − Yn).

Both for πI+
γ and πI−

γ , these two elements contribute as their product to the
monomial with non-zero trace, and so the di�erence of the signs cancels out.
Hence tr

(
πI+

γ (g′)
)

= tr
(
πI−

γ (g′)
)
.

Lemma 16.9. Suppose n = 2n′ + 1 odd, and ord(d′) + L(σ′) ≡ 0 (mod 2)

for g′ = (d′, σ′) ∈ D̃n

I
o S(P−

γ ). Then

tr
(
πI−

γ (g′)
)

= tr
(
πI+

γ (g′)
)
,

and tr
(
πI−

γ (g′)
) 6= 0 if and only if (Condition I-00) holds for g′. In that

case, when πI−
γ (g′) is expanded into a linear combination of monomial terms

such as Y c1
1 Y c2

2 · · ·Y cn
n , the term with non-zero trace is unique and of the form

Y
2c′1

1 Y
2c′2

2 · · ·Y 2c′n
n

(
= E2n′

)
.

CASE 2 : ord(d′) + L(σ′) ≡ 1 (mod 2):
In this case, we can discuss as in �16.3 for πI+

γ . The unique non-zero trace

comes from Y1Y2 · · ·Y2n′+1 multiplicatively modulo
∏

j∈In
Y

2c′j
j as in (16.38), and

to have such a term, g′ should satisfy the condition (16.39).
Moreover, in a similar discussion here for πI−

γ as that for πI+
γ in �16.3, the

only di�erence between them is (A) and (B) above. There follows from this the
following.

Lemma 16.10. Suppose n = 2n′ + 1 odd, and ord(d′) + L(σ′) ≡ 1 (mod 2)

for g′ = (d′, σ′) ∈ D̃n

I
o S(P−

γ ). Then

tr
(
πI−

γ (g′)
)

= −tr
(
πI+

γ (g′)
)
,

and tr
(
πI−

γ (g′)
) 6= 0 if and only if (Condition I-11) holds for g′. In that

case, when πI−
γ (g′) is expanded into a linear combination of monomial terms

such as Y c1
1 Y c2

2 · · ·Y cn
n , the term with non-zero trace is unique and of the form

Y1Y2 · · ·Yn

(
= in

′
E2n′

)
.



208 T. Hirai, A. Hora and E. Hirai

Remark 16.2 (Sum of IRs πI+
γ ⊕πI−

γ for n odd). From the above lemma,
the character of the direct sum πI,odd

γ := πI+
γ ⊕ πI−

γ for n odd is given as follows:

for g′ = (d′, σ′) ∈ D̃n

I
o S(P+

γ ) = D̃n

I
o S(P−

γ ),

tr
(
πI,odd

γ (g′)
)

=

{
2 · tr(πI+

γ (g′)
)

if ord(d′) + L(σ′) ≡ 0 (mod 2) ;

0 if ord(d′) + L(σ′) ≡ 1 (mod 2) .
(16.46)

By the results in �5, we see that πI,odd
γ is naturally constructed using the repre-

sentation ρn,+ ⊕ ρn,− of Fn.

16.5 Character formulas for πI
γ (n even), and πI±

γ (n odd)

Summarizing the results until here we have character formulas for πI
γ of D̃n

I
o

S(Pγ), and πI±
γ of D̃n

I
o S(P±

γ ) as follows.

Theorem 16.11. Let γ ∈ Γ0
n. Take a g′ = (d′, σ′) from D̃n

I
o S(Pγ)

for n = 2n′ even, or from D̃n

I
o S(P±

γ ) for n = 2n′ + 1 odd respectively,
and express it as g′ = (d′, σ′) = ξ′q1

· · · ξ′qr
g′1 · · · g′s in (16.10). Assume that g′ is

normalized modulo Z̃ = 〈z1, z2〉 in such a way that each g′j (j ∈ J = Is) satis�es
(16.26).

(i) Case n = 2n′ even: The normalized character f̃ I
γ = tr

(
πI

γ

)
/2n′ is

factorizable in the sense that the product formula (16.47) below holds in general.
If ord(d′) + L(σ′) ≡ 0 (mod 2), then f I

γ (g′) = tr
(
πI

γ(g
′)
) 6= 0 if and only if

(Condition I-00) in Lemma 16.2 holds for g′. In that case,

f̃ I
γ (g′) =

∏
q∈Q

f̃ I
γ

(
ξ′q

) ·
∏
j∈J

f̃ I
γ

(
g′j

)
,(16.47)

f̃ I
γ

(
ξ′q

)
= χγ

(
ξ′q

)
(q ∈ Q) ,

f̃ I
γ (g′j) = χγ(d

′
j) · (−1)[(`j−1)/2] 2−(`j−1)/2 (j ∈ J).

If ord(d′) + L(σ′) ≡ 1 (mod 2), then f I
γ (g′) = 0 identically.

(ii) Case n = 2n′ + 1 odd: The normalized characters f̃ I±
γ = tr

(
πI±

γ

)
/2n′

are not factorizable. If ord(d′) + L(σ′) ≡ 0 (mod 2), then f I+
γ (g′) = tr

(
πI+

γ (g′)
)

is given by the same formula as for f I
γ (g′) = tr

(
πI

γ(g
′)
)
above, and

f I−
γ (g′) = f I+

γ (g′).

If ord(d′) + L(σ′) ≡ 1 (mod 2), then f I+
γ (g′) 6= 0 if and only if (Condition

I-11) holds for g′. In that case,

f I+
γ (g′) = εI(g′) χγ(d

′) · (2i)n′
∏
j∈J

(−1)[(`j−1)/2] 2−(`j−1)/2,
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f I−
γ (g′) = − f I+

γ (g′) ,

where the sign εI(g′) comes from rearrangement to have Y1Y2 · · ·Yn as
∏
q∈Q

Yq ×
∏
j∈J

{
Ykj

∏

p∈Kj\{kj} :
Yp black

Yp

}
= εI(g′) · Y1Y2 · · ·Yn .

(iii) Suppose f I
γ (g′) 6= 0 (resp. f I±

γ (g′) 6= 0) for g′ = (d′, σ′) ∈ D̃n

I
o S(Pγ)(

resp. D̃n

I
o S(P±

γ )
)
. Then, when πI

γ(g
′) = Pγ(d

′)∇n(σ′)
(
resp. πI±

γ (g′) =

P±
γ (d′)∇±

n (σ′)
)
is expanded into a linear combination of monomial terms such

as Y c1
1 Y c2

2 · · ·Y cn
n , there exists only one monomial term having non-zero trace,

which is of the form Y
2c′1

1 Y
2c′2

2 · · ·Y 2c′n
n

(
= E2n′

)
if ord(d′)+L(σ′) ≡ 0 (mod 2),

or of the form Y1Y2 · · ·Yn

(
= in

′
E2n′

)
if n is odd and ord(d′) + L(σ′) ≡

1 (mod 2).
Suppose f I

γ (g′) = 0 (resp. f I±
γ (g′) = 0), then all the monomial terms have

trace zero.

17 Characters of IRs of D̃n

II
o S(Pγ), D̃n

II
o S(P±

γ )

17.1 Formulas for calculating trace of πII
γ (g′), n = 2n′

Recall the de�nitions of spin representations ∇II
n in �8.1 of S̃n, and πII

γ in �12.2 :

∇′
n(rp) =

1√
2

(Yp − Yp+1) (p ∈ In−1) of S̃n ;(17.1)

∇II
n (rp) = (iY2n′+1)∇′

n(rp) =∇′
n(rp) (−i Y2n′+1) (p∈I2n′−1) of S̃2n′ ;(17.2)

πII
γ (d′, σ′) = Pγ(d

′) · ∇II
n (σ′)

(
(d′, σ′) ∈ D̃n

II
o S(Pγ)

)
for n = 2n′.(17.3)

Let n = 2n′ even, and put the character of πII
γ = Pγ · ∇II

n as

f II
γ (g′) := tr

(
πII

γ (g′)
) (

g′ ∈ D̃n

II
o S(Pγ)

)
.(17.4)

Then f II
γ (z1g

′) = f II
γ (z2g

′) = −f II
γ (g′), since πII

γ (z1) = πII
γ (z2) = −E.

Here we refer to Table 4.1 for general information on the supports of spin
characters of CASE II. We keep to the notation in the preceding section.

Any element g′′ ∈ D̃n

II
o S(Pγ) ⊂ G̃ II

n = D̃n

II
o S̃n has a standard decomposi-

tion as 



g′′ = z b1
1 z b2

2 g′, g′ = (d′, σ′) = ξ′q1
· · · ξ′qr

g′1 · · · g′s,
ξ′q = tq = η

aq
q , σ′ = σ′1 · · · σ′s , d′ = ξ′q1

· · · ξ′qr
· d′1d′2 · · · d′s,

g′j = (d′j, σ
′
j), σj = ΦS(σ′j) a cycle, Kj := supp(σ′j) ⊃ supp(d′j),

d′j =
∏

p∈Kj

η ap
p = d0

jhj, d0
j ∈ D̃0

n = D̃0(m,n), hj =
∏

p∈Kj

η βp
p , βp = 0, 1 ,

(17.5)
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where the product over p ∈ Kj is in the natural order of p. In appearance, this
decomposition is similar as (16.10), but we use here the generators η1, . . . , ηn

of D̃n instead of η′1, . . . , η
′
n there, and the multiplication rule here should be

understood in CASE II. For instance, the factor z X
2 in (16.10) in front of the

expression of d′ does not appear here in (17.5) because rII
i (ηk) = ηsi(k) (k ∈ In).

We normalize γ = (γ1, . . . , γn) ∈ Γ0
n under Sn so that (11.12) � (11.14) hold,

in particular, every In,ζ is an interval of In.

Lemma 17.1. For g′j = (d′j, σ
′
j), assume that Kj = supp(σ′j) ⊂ In,ζ =

[1,M ].

(i) Put σ0′
j := r1r2 · · · r`j−1, and take a τ ′ ∈ S̃In,ζ

such that τσjτ
−1 = σ0

j =

ΦS(σ0′
j ) in Sn with σ0 = (1 2 . . . `j) and τ = ΦS(τ ′). Then τ ′σ′jτ

′−1 is equal
to σ0′

j modulo a power of z1.

(ii) In case σ′j = σ0′
j , Kj = supp(σ′j) = I`j

, there exists a d̃ ∈ D̃Kj
such

that

d̃ g′j d̃−1 = z x
2 · (d′′j , σ′j) with d′′j = η

ord(d′j)
k ,

for some k ∈ Kj with a certain exponent x.

(iii) Let g′j = (d′j, σ
′
j) be such that d′j = η b

k , σ′j = σ0′
j . Then, with su�x k− 1

modulo `j ,

σ′j
−1

g′jσ
′
j = (η b

k−1, σ
0′
j ).

For each j ∈ J = Is, we have Kj ⊂ In,ζ for some ζ ∈ T̂ 0, since g′ = (d′, σ′) ∈
D̃n

II
o S(Pγ) with S(Pγ) = Φ−1

S

( ∏
ζ∈T̂ 0 SIn,ζ

)
in case n = 2n′ even. We have

for n = 2n′ even, with Q = {q1, q2, . . . , qr},

πII
γ (g′) =

∏
q∈Q

Pγ(ξ
′
q)×

∏
j∈J

(
Pγ(d

′
j)∇II

n (σ′j)
)
,(17.6)

Pγ(ξ
′
q) = χγ(η

aq
q ) Y aq

q = ζγ(η
aq

q ) Y aq
q (q ∈ Q) ,(17.7)

Pγ(d
′
j) =

∏
p∈Kj

χγ

(
η ap

p

)
Y ap

p = ζγ(d
′
j) ·

∏
p∈Kj

Y βp
p (j ∈ J) ,(17.8)

where ∇II
n (σ′j) is given by a product of ∇II

n (rp) in (17.2), and the product over
p ∈ Kj should be in the natural order of p.

To calculate characters, we can assume as in �16.1.3 the normalization of the
situation according to (NM) Normalization of the situation: (NM1)+(NM2).

We work dividing the situation into two cases as

CASE 1sig: L(σ′) ≡ ∑
j∈J L(σ′j) ≡ 0 (mod 2),

CASE 2sig: L(σ′) ≡ ∑
j∈J L(σ′j) ≡ 1 (mod 2).
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17.2 Characters of πII
γ = Pγ ·∇II

n of D̃n

II
o S(Pγ), CASE 1sig

17.2.1 Reduction of calculations in CASE 1sig : L(σ′) ≡ 0

In the expression of πII
γ (d′j, σ

′
j) = Pγ(d

′
j)∇II

n (σ′j) in terms of Yk's, there appears
the term Y2n′+1 if L(σ′j) ≡ 1 (mod 2). However, in the present case of L(σ′) ≡ 0,
Y2n′+1 appears even number of times, and so it disappears in the total product
expression of πII

γ (g′) in (17.6), since Y 2
2n′+1 = E2n′ .

Moreover, in case L(σ′) ≡ 0, to express πII
γ (d′, σ′), we may use only the

operators ∇′
n(rj) = 1√

2
(Yj − Yj+1) instead of ∇II

n (rj) = ∇′
n(rj) · (−iY2n′+1).

Expanding the right hand side of (17.6) into a linear combination of monomial
terms such as Y c1

1 Y c2
2 · · ·Y cn

n , n = 2n′ < 2n′ + 1, we see that the terms with
non-zero traces are only those such that

Y
2c′1

1 Y
2c′2

2 · · ·Y 2c′n
n (= E2n′ ).(17.9)

Since the supports of ξ′qi
's and g′j's are mutually disjoint, f I

γ (g′) 6= 0 implies

(Condition II-00)

{
ord(d′) ≡ 0, L(σ′) ≡ 0 (mod 2) ;

ord(ξ′qi
) ≡ 0 (∀i), ord(d′j) + L(σ′j) ≡ 0 (mod 2) (∀j),

because L(σ′) ≡ 0 is assumed. Note that, in G̃ II
n = G̃ II(m, 1, n),

g′jg
′
l = z

ord(d′j) ord(d′l)
2 · z L(σ′j) L(σ′l)

1 g′lg
′
j (j 6= l) ,(17.10)

then we see that, if ord(d′j) ≡ L(σ′j) ≡ 1, ord(d′l) ≡ L(σ′l) ≡ 1,

g′jg
′
l = z1z2 g′lg

′
j

(
in D̃n

II
o S(Pγ)

)
,

∴ πII
γ (g′j)π

II
γ (g′l) = πII

γ (g′l)π
II
γ (g′j).

Lemma 17.2. Assume L(σ′) ≡ 0 (mod 2). Under (Condition II-00),
the operators πII

γ (ξ′qi
)'s and πII

γ (g′j)'s commute with each other. In particular, if
ord(d′j) ≡ L(σ′j) ≡ ord(d′l) ≡ L(σ′l) ≡ 1, then πII

γ (g′jg
′
l) = πII

γ (g′lg
′
j).

Lemma 17.3. Let n = 2n′ be even. Assume L(σ′) ≡ 0 (mod 2) and

(Condition II-00) for g′ = (d′, σ′) ∈ D̃n

II
o S(Pγ).

(i) Divide the index set J = {1, 2, . . . , s} as

J = J+

⊔
J−, J± := {j ∈ J ; sgn(σ′j) = ±1},(17.11)

and divide J− into pairs as J− =
⊔ {j1, j2} and denote this as {j1, j2} < J−.

Then

f II
γ (g′) = 2n′ ·

∏
q∈Q

f II
γ

(
ξ′q

)

2n′ ·
∏
j∈J+

f II
γ

(
g′j

)

2n′ ·
∏

{j1, j2}<J−

f II
γ

(
g′j1g

′
j2

)

2n′ .(17.12)



212 T. Hirai, A. Hora and E. Hirai

(ii) For {j1, j2} < J− or for a pair {j1, j2} such that L(σ′j1) ≡ L(σ′j2) ≡ 1,

f II
γ (g′j1g

′
j2

) = f II
γ (g′j2g

′
j1

).

Proof. (i) Since L(σ′) ≡ 0, the operator Y2n′+1 actually appears neither
in πII

γ (g′j) for j ∈ J+ nor in πII
γ (g′j1g

′
j2

) for {j1, j2} < J−, because ∇II(σ′′) =

∇′(σ′′) if sgn(σ′′) = 1 for σ′′ ∈ S̃2n′ . Monomial terms with non-zero traces in

these cases are of the form Y
2c′1

j1
Y

2c′2
j2

· · ·Y 2c′p
jp

. Moreover, for πII
γ

(
ξ′qi

)
, πII

γ

(
g′j

)

and πII
γ

(
g′j1g

′
j2

)
, supports in In of their monomials in Yj's are mutually disjoint.

Hence the assertion follows from Lemma 14.1 (ii).
(ii) This assertion follows from Lemma 17.2. 2

Note 17.1. For g′j with L(σ′j) ≡ 1 or equivalently j ∈ J−, we have f II
γ (g′j) =

0 except when |supp(g′j)| = n as will be seen in CASE 2sig below. This is
the reason why an exact product formula (not a quasi-product-formula such as
(17.12)) does not hold for the character f II

γ .
Actually for {j1, j2} < J−, f II

γ

(
g′j1g

′
j2

) 6= 0 = f II
γ

(
g′j1

)
f II

γ

(
g′j2

)
.

Example 17.1. Let (d′j, σ
′
j) be with d′j = η b

k , σ′j = r1r2 · · · rN−1, N ≤ n =
2n′. Then L(σj) = N − 1, ord(dj) = b, ∴ ord(dj) + L(σj) = b + (N − 1), and

Pγ(d
′
j) = χγ(η

b
k )Y b

k = ωbγkY b
k ,

πII
γ (g′j) = ωbγk 2(N−1)/2 Y b

k ×

×
{

(Y1 − Y2)(Y2 − Y3) · · · (YN−1 − YN) (−iY2n′+1) if N is even ;

(Y1 − Y2)(Y2 − Y3) · · · (YN−1 − YN) if N is odd.

If b is even and N is odd, then the unique monomial term with non-zero trace
in the right hand side is (−Y 2

2 ) · · · (−Y 2
N−1) and

tr
(
πII

γ (g′j)
)

= ωbγk (−1)(N−1)/2 2n′−(N−1)/2.

If b is odd and N = 2n′ even, then the unique monomial term with non-zero
trace is

{
Y1(−Y2) · · · (−Y2n′)(−iY2n′+1) = i Y1Y2 · · ·Y2n′+1 if k = 1,

Yk · Y1 · · ·Yk−1(−Yk+1) · · · (−Y2n′)(−iY2n′+1) = i Y1Y2 · · ·Y2n′+1 otherwise,

∴ tr
(
πII

γ (g′j)
)

= ωbγk 2−(N−1)/2 · i(2i)n′ = ωbγk in
′+1 21/2.

In all other cases, we have tr
(
πII

γ (g′j)
)

= 0.

17.2.2 Calculation of f II
γ (·) = tr(πII

γ

(·)), CASE 1sig-1 and CASE 1sig-2

(CASE 1sig-1) Case of q ∈ Q :

We have f I
γ

(
ξ′qi

)
=

{
2n′ χγ

(
ξ′q

)
, if ord

(
ξ′q

) ≡ 0 (mod 2),

0 , if ord
(
ξ′q

) ≡ 1 (mod 2) .
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Now we divide g′j into two subcases, (CASE 1sig-2) or (CASE 1sig-3), de-
pending on j ∈ J+ or j ∈ J−.

(CASE 1sig-2) Case of g′j, j ∈ J+ :
Suppose j ∈ Jζ . Since sgn(σ′j) = 1 or L(σ′j) ≡ 0 (mod 2) in this case, we

have ord(d′j) ≡ 0 (mod 2) under (Condition II-00), and ∇II(σ′j) = ∇′(σ′j), and

πII
γ (g′j) = Pγ(d

′
j)∇′

n(σ′j)(17.13)

= χγ(d
′
j) ·

∏
p∈Kj

Y βp
p ×

∏
p, p+1∈Kj

1√
2

(
Yp − Yp+1

)
.

Note that f II
γ (·) is invariant under S̃In,ζ

if Kj ⊂ In,ζ , then we may assume,

to simplify complicated su�ces, that modulo Z̃ (cf. Lemma 17.1)




Kj = supp(σ′j) = [nj, nj + `j − 1], an interval in In,

d′j = ηkj
bj , bj = ord(d′j), for some kj ∈ Kj,

σ′j = rnj
rnj+1 · · · rnj+`j−2, σj = Φ(σ′j) = (nj nj+1 . . . nj+`j−1).

(17.14)

For calculations at present, we put nj = 1 and N = nj + `j − 1 = `j odd,
then

σ′j = r1r2 · · · rN−1, σj = Φ(σ′j) = (1 2 . . . N),(17.15)

Since ord(d′j) ≡ 0 (mod 2), the decomposition d′j = d0
jhj is trivial as hj = eT .

Thus we come to calculate the trace of

2−(`j−1)/2 (Y1 − Y2)(Y2 − Y3) · · · (YN−1 − YN).(17.16)

When this is expanded as a linear combination of monomial terms in Y1, . . . , YN ,
the unique term with non-zero trace, up to 2−(`j−1)/2, is

(−Y 2
2 ) · · · (−Y 2

N−1) = (−1)(`j−1)/2Y 2
2 · · ·Y 2

N−1.

Lemma 17.4. In CASE 1sig-2, under the above normalization of g′j =
(d′j, σ

′
j),

f II
γ (g′j) = tr

(
Pγ(d

′
j)∇′

n(σ′j)
)

= χγ(d
′
j) (−1)(`j−1)/2 2n′−(`j−1)/2.

17.2.3 Calculation of f II
γ (·) = tr(πII

γ

(·)), CASE 1sig-3

(CASE 1sig-3) Case of a product g′j1g
′
j2

, {j1, j2} < J− :

Here ord(d′j1) ≡ ord(d′j2) ≡ L(σ′j1) ≡ L(σ′j2) ≡ 1 (mod 2), and so ord(d′j1d
′
j2

) ≡
L(σ′j1σ

′
j2

) ≡ 0 (mod 2). Hence, by σ′j1d
′
j2

= d′j2σ
′
j1
in CASE II,

πII
γ (g′j1g

′
j1

) = Pγ(d
′
j1

d′j2)∇II(σ′j1σ
′
j2

) = Pγ(d
′
j1

d′j2)∇′
n(σ′j1σ

′
j2

).(17.17)
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∴ f II
γ (g′j1g

′
j1

) = tr
(
πII

γ (g′j1g
′
j1

)
)

= tr
(
Pγ(d

′
j1

d′j2)∇′
n(σ′j1σ

′
j2

)
)
.

Remark 17.1. For n ≥ 4 general, we have from Lemma 10.1 (i)

ι
(∇′

n(σ′)
)
Pγ(d

′) =

{
P(τ1τ2···τn)γ

(
σ′ II(d′)

)
if sgn(σ′) = −1 ;

Pγ

(
σ′ II(d′)

)
if sgn(σ′) = 1,

(17.18)

for g′ = (d′, σ′) ∈ D̃n

II
o S(Pγ). Moreover, for {j1, j2} < J− ,

Pγ(d
′
j1

d′j2)∇′
n(σ′j1σ

′
j2

) = Pγ(d
′
j1

)Pγ(d
′
j2

)∇′
n(σ′j1)∇′

n(σ′j2)

= −Pγ(d
′
j1

)∇′
n(σ′j1) · Pγ(d

′
j2

)∇′
n(σ′j2).

(17.19)

Therefore, the map D̃noS(Pγ) 3 g′ 7→ Pγ(d
′)∇′

n(σ′) does not give a representa-
tion of this group, but it does if it is restricted on the subgroup D̃no

(S(Pγ)∩Ãn

)
.

In this sense, when sgn(σ′) = −1, we understand the symbol Pγ(d
′)∇′

n(σ′) simply
as an operator (or a matrix), and do not use a representation-like notation such
as π′γ(g

′) for Pγ(d
′)∇′

n(σ′).

As in (17.14), g′j (j = j1, j2) are supposed to be normalized as follows: with
`j even,

{
σ′j = rnj

rnj+1 · · · rnj+`j−2, Kj = [nj, nj+`j−1] ⊂ In,

d′j = d0
jhj, d0

j = η
bj−1

kj
, hj = ηkj

, bj = ord(d′j) (∃kj ∈ Kj).
(17.20)

Then, taking into account (17.19), we calculate the trace of the following

Pγ(d
′
j1

d′j2)∇′
n(σ′j1σ

′
j2

) = χγ(d
′
j1

)χγ(d
′
j2

) · (−1)×(17.21)

× 2−(`j1
−1)/2 Yk′1(Yn′1−Yn′1+1)(Yn′1+1−Yn′1+2) · · · (Yn′1+N1−2−Yn′1+N1−1)

× 2−(`j2
−1)/2 Yk′2(Yn′2−Yn′2+1)(Yn′2+1−Yn′2+2) · · · (Yn′2+N2−2−Yn′2+N2−1),

where n′t = njt , Nt = `jt (t = 1, 2).
To get a monomial term of the form (17.9) from the right hand side, we put

on each Yp a color black or white depending on if it comes in or not, to form a
monomial term such as (17.9). At the point of starting, we �rst color black all
Ykj

∈ hj (j = j1, j2).
The process of coloring is independent for each of the 2nd line (for j1) and

the 3rd line (for j2) of (17.21). It is similar to that in CASE 1sig-2, and we have
the following rule which is illustrated in Table 17.1 below.

Parity Rule II-00. For Ykj
·∇′(rn′j)∇′(rn′j+1) · · · ∇′(rn′j+Nj−2), the

parity of ∇′(ri) begins with (b, w) or (w, b) depending on kj = nj

or not. The parity changes alternatively until i = kj − 1. From
i = kj − 1 to i = kj it remains unchanged, and it again changes
alternatively starting from i = kj.
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Table 17.1. Parities of ∇′
n(rp) = 1√

2
(Yp−Yp+1) (p, p+1 ∈ Kj) in πII

γ (g′j).

Case: Nj = `j = 10
(
L(σ′j) ≡ 9

)
: Kj = [nj, nj+`j−1] = [1, Nj],

Ykj ∈ hj = η1 b

∇′n(rp) (p = 1, 3, 5, 7, 9) b w b w b w b w b w

∇′n(rp) (p = 2, 4, 6, 8) × w b w b w b w b ×
accumulated
sign = (−1)4

Ykj ∈ hj = η2 b

∇′n(rp) (p = 1, 3, 5, 7, 9) w b b w b w b w b w

∇+
n (rp) (p = 2, 4, 6, 8) × w b w b w b w b ×

accumulated
sign = (−1)5

Ykj ∈ hj = η9 b

∇+
n (rp) (p = 1, 3, 5, 7, 9) w b w b w b w b b w

∇+
n (rp) (p = 2, 4, 6, 8) × b w b w b w b w ×

accumulated
sign = (−1)4

Ykj ∈ hj = η10 b

∇+
n (rp) (p = 1, 3, 5, 7, 9) w b w b w b w b w b

∇+
n (rp) (p = 2, 4, 6, 8) × b w b w b w b w ×

accumulated
sign = (−1)5

Thus we get the unique monomial term with non-zero trace as
∏
t=1,2

2−(`jt−1)/2
(
Ykt ×

∏
p, p+1∈Kjt

Xp

)
,(17.22)

with Xp :=

{
Yp if the parity of ∇′

n(rp) is (b, w),
−Yp+1 if the parity of ∇′

n(rp) is (w, b).
(17.23)

In our circumstances where ord(d′j1) ≡ ord(d′j2) ≡ 1 (mod 2), we have
d′j1d

′
j2

= z2d
′
j2

d′j1 , and so χγ(d
′
j1

d′j2) = −χγ(d
′
j2

d′j1) and χγ(d
′
j1

)χγ(d
′
j2

) = χγ(d
′
j1

d′j2)
if Kj1 is on the left of Kj2 .

On the other hand, ζγ(d
′
j1

)ζγ(d
′
j2

) = ζγ(d
′
j1

d′j2) = ζγ(d
′
j2

d′j1) in general, and
if d′j =

∏
p∈Kj

η
ap

p , a product in the natural order, without z2-factor, then
χγ(d

′
j) = ζγ(dj), and when this is the case for j = j1, j2, we have χγ(d

′
j1

)χγ(d
′
j2

) =
ζγ(d

′
j1

)ζγ(d
′
j2

) = ζγ(d
′
j1

d′j2). So, we may use ζγ instead of χγ with careful attention
on their di�erences.

Lemma 17.5. In CASE 1sig-3, for {j1, j2} < J−, under the normalization
(17.20),

tr(πII
γ (g′j1g

′
j2

)
)

= tr
(
Pγ(d

′
j1

d′j2)∇′
n(σ′j1σ

′
j2

)
)

= ε(g′j1g
′
j2

) · 2n′ · (−1)
∏

j=j1, j2

χγ(d
′
j) (−1)`j/2 2−(`j−1)/2,

where χγ(d
′
j1

)χγ(d
′
j2

) = ζγ(d
′
j1

d′j2), and the sign ε(g′j1g
′
j2

) = ±1 is determined so
that, in (17.22),

∏
t=1,2

2−(`jt−1)/2
(
Ykt ×

∏
p, p+1∈Kjt

Xp

)
=
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= ε(g′j1g
′
j2

) · (−1)
∏

j=j1, j2

(−1)`j/2 2−(`j−1)/2 · E2n′ .(17.24)

Practically speaking, suppose, for j = j1, j2, that kj ∈ Kj is the cj-th number
from the smallest one in the increasing order in Kj, then

ε(g′j1g
′
j2

) =
∏

j=j1, j2

(−1)cj(17.25)

Proof. In the middle line (j1 = 1) in (17.21), we pick up a monomial as
follows:

(−Y 2
2 ) · · · (−Y 2

2u ) · (Y 2
2u+1) · (−Y 2

2u+3) · · · (−Y 2
`1−1) = (−1)`1/2−1E2n′

if k1 = 2u + 1;

(−Y 2
2 ) · · · (−Y 2

2u−2) · (−Y 2
2u ) · (−Y 2

2u+1) · · · (−Y 2
`1−1) = (−1)`1/2E2n′

if k1 = 2u.
Similarly for the last line in (17.21). 2

17.3 Characters of πII
γ = Pγ ·∇II

n of D̃n

II
o S(Pγ), CASE 2sig

Recall that CASE 2sig for n = 2n′ even is de�ned by L(σ′) ≡ ∑
1≤j≤s L(σ′j) ≡

1 (mod 2), and in this case, ∇II
n (σ′) = ∇′

n(σ′) (−iY2n′+1). Moreover ∇II
n (σ′j) =

∇′(σ′j) or ∇II
n (σ′j) = ∇′

n(σ′j) (−iY2n′+1) according as L(σ′j) ≡ 0 or ≡ 1, and we
have in total

πII
γ (g′) = κ

∏
q∈Q

Pγ(ξ
′
q) ·

∏
j∈J

(
Pγ(d

′
j)∇′

n(σ′j)
)
× (−iY2n′+1), κ = ±1.(17.26)

Here the orders of products on q ∈ Q and on j ∈ J should follow the order in
the expression g′ = ξ′q1

· · · ξ′qr
g′1 · · · g′s. Even so, there remains some ambiguity

for the sign κ. In fact, in general

g′jg
′
j′ = z

L(σ′j)L(σ′
j′ )

1 z
ord(d′j)ord(d′

j′ )
2 g′j′g

′
j.(17.27)

Suppose
(
ord(d′j), L(σ′j)

) ≡ (1, 0) and
(
ord(d′j′), L(σ′j′)

) ≡ (0, 1), then g′j and g′j′
are commutative as g′jg

′
j′ = g′j′g

′
j. However Pγ(d

′
j)∇′

n(σ′j′) = −∇′
n(σ′j′) Pγ(d

′
j),

and so
(
Pγ(d

′
j)∇′

n(σ′j)
)(

Pγ(d
′
j′)∇′

n(σ′j′)
)

= −
(
Pγ(d

′
j′)∇′

n(σ′j′)
)(

Pγ(d
′
j)∇′

n(σ′j)
)
.

This ambiguity of κ in (17.26) is introduced by using ∇′
n instead of ∇II

n . To
avoid this, we take a representative of g′ in (17.5) of conjugacy class modulo Z̃
expressed as

g′j (j ∈ J+) are placed before g′j (j ∈ J−).(17.28)

Then κ = 1 in (17.26). Here |J−| is odd since L(σ′) ≡ 1 (mod 2).
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In the right hand side of (17.26), when expanded into a linear combination of
monomials in Yk's, the only one with non-zero trace is, multiplicatively modulo∏

i∈In
Y

2c′i
i ,

Y1Y2 · · ·Y2n′Y2n′+1 ,(17.29)

since n = 2n′, and so there should be |supp(g′)| = n. Since the degree of
monomials Y c1

1 · · ·Y c2n′
2n′ coming out of

∏
j∈J∇′

n(σ′j), J = Is, is odd, there should

be ord(d′) ≡ 1 to get together Y1Y2 · · ·Y2n′ multiplicatively modulo
∏

i∈In
Y

2c′i
i .

For each Pγ(ξ
′
q), we should have the term Yq multiplicatively modulo Y 2c

q so
that ord(ξq) ≡ 1 for all q ∈ Q. Moreover, for each Pγ(d

′
j)∇′

n(σ′j), we should have∏
k∈Kj

Yk multiplicatively modulo
∏

k∈Kj
Y

2c′k
k , and accordingly ord(d′j)+L(σ′j) ≡

|Kj|. On the other hand, |Kj| ≡ L(σ′j)+1, and accordingly ord(d′j) ≡ 1 (j ∈ J).
Therefore ord(d′) =

∑
i ord(ξ′qi

) +
∑

j ord(d′j) ≡ r + s ≡ 1, so r + s odd and

(Condition II-11)

{ |supp(g′)| = n = 2n′, ord(d′) ≡ L(σ′) ≡ 1, r + s ≡ 1,

ord(ξ′qi
) ≡ 1 (i ∈ Ir), ord(d′j) ≡ 1 (j ∈ Is) (mod 2).

We normalize g′j = (d′j, σ
′
j) as in (17.20), with d′j = η

bj

kj
, bj = ord(d′j) odd,

and σ′j = rnj
rnj+1 · · · rnj+`j−2, then

Pγ(d
′
j)∇′

n(σ′j) = ζγ(d
′
j) · 2−(`j−1)/2 ×(17.30)

×Ykj
(Ynj

− Ynj+1)(Ynj+1 − Yni+2) · · · (Ynj+`j−2 − Ynj+`j−1).

Expanding into a linear combination of monomials of Yp's, we are forced to pick
up the term

ζγ(d
′
j) 2−(`j−1)/2 · Ykj

· Ynj
Ynj+1 · · ·Ykj−1 · (−Ykj+1) · · · (−Ynj+`j−1)(17.31)

= ζγ(d
′
j) 2−(`j−1)/2 (−1)`j−1 · Ynj

Ynj+1 · · ·Ykj
· · ·Ynj+`j−1,

where the �rst line should be appropriately understood in the extremal cases:
kj = nj or kj = nj + `j − 1. Note that

∏
j∈J(−1)`j−1 = sgn(σ′) = −1 in this

case.

Proposition 17.6. Let g′ = (d′, σ′) ∈ D̃n

II
o S(Pγ) be in CASE 2sig, that

is, L(σ′) ≡ 1 (mod 2). Then f II
γ (g′) = tr

(
πII

γ (g′)
) 6= 0 if and only if (Condition

II-11) holds for g′ = ξ′q1
· · · ξ′qr

g′1 · · · g′s.
Assume that g′ is normalized, modulo Z̃, as in (17.14). Then

f II
γ (g′) =

∏
q∈Q

χγ(ξ
′
q) ·

∏
j∈J

χγ(d
′
j) (−1)`j−1 2−(`j−1)/2 × 2n′ ×

× tr
( ∏

q∈Q

Yq ·
∏
j∈J

∏
p∈Kj

Yp · (−iY2n′+1)
)
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= −εII(g′) · ζγ(d
′) · in′−1 2n′ ·

∏
j∈J

2−(`j−1)/2,

where the product
∏

p∈Kj
Yp is along the natural order of p ∈ Kj, and the sign

εII(g′) = ±1 is given by rearranging the product of Yp's as∏
i∈QYq ·

∏
j∈J

( ∏
p∈Kj

Yp

)
= εII(g′) · Y1Y2 · · ·Y2n′ .

Note that the normalization (17.28) is not asked here, instead of it we intro-
duce the sign εII(g′).

17.4 Character formula for πII
γ =Pγ·∇II

n of D̃n

II
oS(Pγ), n=2n′

De�ne normalized character f̃ II
γ (g′) := f II

γ (g′)/ dim πII
γ = tr

(
πII

γ (g′)
)
/2n′ .

Theorem 17.7 (Case n = 2n′ even). Assume that g′ = (d′, σ′) ∈ D̃n

II
o

S(Pγ) is expressed as g′ = ξ′q1
· · · ξ′qr

g′1 · · · g′s, g′j = (d′j, σ
′
j). Put Q = {q1, . . . , qr}

and

J = Is, J = J+ t J−, J± = {j ∈ J ; sgn(σ′j) = ±1}.(17.32)

(i) Case L(σ′) ≡ 0 (mod 2) or sgn(σ′) = 1 : Here f̃ II
γ (g′) 6= 0 if and only

if (Condition II-00) holds for g′. In that case, there holds a product formula as

f̃ II
γ (g′) =

∏
q∈Q

f̃ II
γ (ξ′q)×

∏
j∈J+

f̃ II
γ (g′j)×

∏

{j1, j2}<J−

f̃ II
γ

(
g′j1g

′
j2

)
.

If g′ is normalized modulo Z̃ as in (17.14), then

f̃ II
γ (ξ′q) = ζγ(ξ

′
q),

f̃ II
γ (g′j) = ζγ(d

′
j) (−1)(`j−1)/2 2−(`j−1)/2, for j ∈ J+,

f̃ II
γ

(
g′j1g

′
j2

)
= ε(g′j1g

′
j2

) · (−1)
∏

j=j1, j2

ζγ(d
′
j) (−1)`j/2 2−(`j−1)/2, for {j1, j2} < J− ,

where the sign ε(g′j1g
′
j2

) is de�ned by (17.22) � (17.24), and suppose, for j =
j1, j2, kj ∈ Kj is the cj-th number from the smallest one in Kj, then

ε(g′j1g
′
j2

) =
∏

j=j1, j2

(−1)cj(17.33)

(ii) Case L(σ′) ≡ 1 (mod 2) or sgn(σ′) = −1 : Here f̃ II
γ (g′) 6= 0 if and

only if (Condition II-11) holds for g′. In that case, if g′ is taken in a normalized
form as in (17.14), then

f̃ II
γ (g′) = −εII(g′) in

′−1 · ζγ(d
′) ·

∏
j∈J

2−(`j−1)/2,
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where εII(g′) = ±1 is given by
∏
q∈Q

Yq ·
∏
j∈J

∏
p∈Kj

Yp = εII(g′) · Y1Y2 · · ·Y2n′ .(17.34)

17.5 Character formula for π0±
γ = P±

γ · 0±
n , n = 2n′ + 1

Recall that π0±
γ = P±

γ · 0±
n for n = 2n′ + 1, where two spin representations 0+

n

and 0−
n of Ãn are given as

{
0+

n (σ′) = ∇′
n(σ′)

0−
n (σ′) = ∇′′

n(σ′) = Y2n′+1 · ∇′
n(σ′) · Y −1

2n′+1

(σ′ ∈ Ãn).(17.35)

with two spin representations for S̃n :
{
∇′

n(ri) =
1√
2

(Yi − Yi+1)

∇′′
n(ri) = −Y2n′+1 · ∇′

n(ri) · Y −1
2n′+1

(i ∈ In−1).

Assume n = 2n′ + 1. For γ ∈ Γ0
n, we prepare two spin IRs of D̃n,

P+
γ (ηj) = ωγj ρ(ηj) = χγ(ηj) Yj (j ∈ In) ;(17.36)

P−
γ (ηj) = χτnγ(ηj) Yj =

{
χγ(ηj)Yj (j ∈ In−1),

−χγ(ηn)Yn (j = n).
(17.37)

Stationary subgroups of the equivalence classes [P+
γ ] and [P−

γ ] are

S(P±
γ ) = {σ′ ∈ Ãn ; σ(γ) = γ} = Ãn

⋂
Φ −1
S

(∏
ζ∈T̂ 0

SIn,ζ

)
.(17.38)

In the following, we denote by Ã
( ∏

ζ∈T̂ 0 SIζ

)
the group at the right hand side.

Lemma 17.8. For g′ = (d′, σ′) ∈ D̃n

II
o S(P+

γ ) = D̃n

II
o S(P−

γ ),

tr
(
π0+

γ (g′)
)

= tr
(
Pγ(d

′)∇′
n(σ′)

)
;

tr
(
π0−

γ (g′)
)

= tr
(
P(τ1τ2···τn)γ(d

′)∇′
n(σ′)

)
= (−1)ord(d′) tr

(
π0+

γ (g′)
)
.

Proof. For the second equality, we have

π0−
γ (g′) = P−

γ (d′) 0−
n (σ′) = Pτnγ(d

′) · Yn∇′
n(σ′) Y −1

n ,

Y −1
n Pτnγ(d

′) Yn = P(τ1τ2···τn)γ(d
′) = (−1)ord(d′)Pγ(d

′) . 2

By this lemma, our task is reduced to calculate the trace of the operators

Pγ(d
′)∇′

n(σ′). Put f0±
γ (g′) := tr

(
π0±

γ (g′)
)
, Then, for g′ = (d′, σ′) ∈ D̃n

II
o S(P±

γ ),

f0−
γ (g′) = (−1)ord(d′) f0+

γ (g′).(17.39)
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De�ne normalized character as

f̃ 0±
γ (g′) := f0±

γ (g′)/ dim π0±
γ , dim π0±

γ = 2n′ , n′ = [n/2].

Take g′ = (d′, σ′) ∈ D̃n

II
o S(P±

γ ) normalized modulo Z̃ as

g′ =
∏
q∈Q

ξ′q ·
∏
j∈J+

g′j ·
∏

{j1, j2}<J−

g′j1g
′
j2

, g′j = (d′j, σ
′
j),(17.40)

where Q, J and J± are as in (17.32). Note that, since S(P±
γ ) ⊂ Ãn, g′j (j ∈ J−)

should be considered always as products g′j1g
′
j2
of pairs of two elements.

•• CASE ord(d′) ≡ 0 (mod 2) :
Since L(σ′) ≡ 0 (mod 2) a priori, the calculations are quite similar as those

in �17.2 for πII
γ in CASE 1sig. At �rst, it is proved that f0±

γ (g′) 6= 0 if and only
if (Condition II-00) below holds for g′ :

(Condition II-00)

{
ord(d′) ≡ 0, L(σ′) ≡ 0 (mod 2) ;

ord(ξ′q) ≡ 0 (q ∈ Q), ord(d′j) + L(σ′j) ≡ 0 (j ∈ J).

In that case, we get the explicit form of f0±
γ (g′) as in Theorem 17.9 (i) below.

•• CASE ord(d′) ≡ 1 (mod 2) :
Note that, in CASE II, we have (d′j, σ

′
j)(d

′
k, σ

′
k) = (d′kd

′
j, σ

′
kσ

′
j) (j 6= k), and

so, π0±
γ (g′jg

′
k) = π0±

γ

(
(d′jd

′
k, σ

′
jσ
′
k)

)
. Since L(σ′) ≡ 0 a priori, we have ord(d′) +

L(σ′) ≡ 1 (mod 2). Hence when we expand the operator

π0±
γ (g′) =

∏
q∈Q

P±
γ (ξq) ·

∏
j∈J+

P±
γ (d′j)0

±
n (σ′j) ·

∏

{j1, j2}<J−

π0±
γ

(
(d′j1d

′
j2

, σ′j1σ
′
j2

)
)

into a linear combination of monomial terms in Yj's such as Y c1
1 Y c2

2 · · ·Y cn

2n′+1,
only one monomial term with trace non-zero is

Y1Y2 · · ·Y2n′+1 (= in
′
E2n′ ),

multiplicatively modulo Y
2c′1

1 Y
2c′2

2 · · ·Y 2c′n
2n′+1 . Then we see that f0±

γ (g′) 6= 0 if
and only if (Condition 0-11) below holds for g′ :

(Condition 0-11)

{ |supp(g′)|=n=2n′+1, ord(d′) ≡ 1, L(σ′) ≡ 0 (mod 2),

ord(ξ′q) ≡ 1 (q ∈ Q), ord(d′j) ≡ 1 (j ∈ J) (∴ r+s≡1).

Case of j ∈ J+: Suppose that g′j is normalized modulo Z̃ as in (17.14).
Then, we pick up from the expansion of

Ykj
· 2−(`j−1)/2 ·

∏

nj≤p<nj+`j−1

(Yp − Yp+1),(17.41)
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a monomial term

Ykj
· 2−(`j−1)/2 · Ynj

· · ·Ykj−1(−Ykj+1) · · · (−Ynj+`j−1)

= 2−(`j−1)/2 (−1)`j−1 · Ynj
· · ·Ykj−1Ykj

Ykj+1 · · ·Ynj+`−1.
(17.42)

Case of {j1, j2} < J− : Note �rst that g′j1g
′
j2

= z1z2g
′
j2

g′j1 , and so π0+
γ (g′j1g

′
j2

)

= π0+
γ (g′j2g

′
j1

). Suppose that, for j = j1 and j2, g′j's are normalized modulo Z̃ as
above. Then we should pick up from

Ykj1
Ykj2

·
∏

j=j1, j2

2−(`j−1)/2 · (Ynj
− Ynj+1)(Ynj+1 − Ynj+2) · · · (Ynj+`j−2 − Ynj+`j−1),

a monomial term

−
∏

j=j1, j2

2−(`j−1)/2 (−1)`j−1 · Ynj
· · ·Ykj−1Ykj

Ykj+1 · · ·Ynj+`j−1 .

Thus, in total, we have

π0+
γ (g′) = ε0(g′) · ζγ(d

′) · (−1)|J−|/2 ·
∏
j∈J

2−(`j−1)/2 (−1)`j−1 × Y1Y2 · · ·Yn ,

where the sign ε0(g′) = ±1 is determined by

∏
q∈Q

Yq ×
∏
j∈J

( ∏
p∈Kj

Yp

)
= ε0(g′) · Y1Y2 · · ·Yn .(17.43)

Its trace is f 0+
γ (g′) = ε0(g′) · ζγ(d

′) · (−1)|J−|/2 · (2i)n′ ·∏j∈J 2−(`j−1)/2, since∏
j∈J(−1)`j−1 = sgn(σ′) = 1.

Theorem 17.9 (Case n = 2n′+1 odd). Let g′ = (d′, σ′) = ξ′q1
· · · ξ′qr

g′1 · · · g′s,
g′j = (d′j, σ

′
j), be an element of D̃n

II
o S(P±

γ ), where S(P±
γ ) = Ã

( ∏
ζ∈T̂ 0 SIζ

)
.

(i) Suppose ord(d′) ≡ 0 (mod 2). Then f 0+
γ (g′) = f 0−

γ (g′), and f 0+
γ (g′) 6=

0 if and only if (Condition II-00) holds for g′. Moreover there holds a product
formula as

f̃ 0±
γ (g′) =

∏
q∈Q

f̃ 0±
γ (ξ′q)×

∏
j∈J+

f̃ 0±
γ (g′j)×

∏

{j1, j2}<J−

f̃ 0±
γ

(
g′j1g

′
j2

)
.

If g′ is normalized as in (17.14), then

f̃ II
γ (ξ′q) = ζγ(ξ

′
q),

f̃ II
γ (g′j) = ζγ(d

′
j) (−1)(`j−1)/2 2−(`j−1)/2, for j ∈ J+,

f̃ II
γ

(
g′j1g

′
j2

)
= ε(g′j1g

′
j2

)·(−1)
∏

j=j1, j2

ζγ(d
′
j) (−1)`j/2 2−(`j−1)/2, for {j1, j2} < J− ,



222 T. Hirai, A. Hora and E. Hirai

where the sign ε(g′j1g
′
j2

) is de�ned by (17.22) � (17.24), and also by (17.25).

(ii) Suppose ord(d′) ≡ 1 (mod 2). Then f 0+
γ (g′) = −f 0−

γ (g′) and f 0+
γ (g′) 6=

0 if and only if (Condition 0-11) holds for g′. If g′ is normalized as in (17.14),
then

f0+
γ (g′) = ε0(g′) · ζγ(d

′) · (−1)|J−|/2 · (2i)n′ ·
∏
j∈J

2−(`j−1)/2 ,

where the sign ε0(g′) = ±1 is determined by (17.43).

Remark 17.2. In the special case where |In,ζ | ≤ 1 (∀ζ ∈ T̂ ) or S(P±
γ ) =

Z1 = 〈z1〉, we see in Example 12.3 that π0+
γ = P+

γ ·χ1, so its character is easy to
get.

17.6 A covariance property of characters f0±
γ = tr

(
π0±

γ

)

Recall that π0±
γ is no more a group representation when we go out from

D̃n

II
o S(P±

γ ) = D̃n

II
o Ã

( ∏
ζ∈T̂ 0 SIn,ζ

)
to D̃n

II
o Φ −1

S

( ∏
ζ∈T̂ 0 SIn,ζ

)
.

Hence the following covariance property of f0±
γ = tr

(
π0±

γ

)
is very interesting,

and it plays an important role in calculating characters of spin IRs of G̃ II
n in

�20.3.
Let s′0 ∈ Φ −1

S

( ∏
ζ∈T̂ 0 SIn,ζ

)
. If sgn(s′0) = 1, then f0±

γ (s′0g
′s′0

−1) = f0±
γ (g′),

since s′0 ∈ S(P±
γ ).

Lemma 17.10. Let sgn(s′0) = −1 or s′0 6∈ Ã
( ∏

ζ∈T̂ 0 SIn,ζ

)
. Take a g′ ∈

D̃n

II
o S(P±

γ ) normalized as g′ = ξ′q1
· · · ξ′qr

g′1 · · · g′s with d′j = η
bj

kj
(∃kj ∈ Kj, j ∈

J). Then

f0±
γ (s′0g

′s′0
−1

) = (−1)ord(d′) f0±
γ (g′).

Proof. First, by Theorem 10.2 (i), ι
(∇′

n(σ′)
)
Pγ(d

′) = P(τ1τ2···τn)σγ

(
σ′II(d′)

)

for σ′ ∈ S̃n if sgn(σ′) = −1, where σ = Φ(σ′). Take σ′ = s′0
−1, then s−1

0 γ = γ,
and so we have

∇′
n(s′0)

−1Pγ

(
s′0

II
(d′)

)∇′
n(s′0) = P(τ1τ2···τn)γ(d

′) = (−1)ord(d′) Pγ(d
′),(17.44)

for d′ ∈ D̃n . Note that s′0g
′s′0

−1 =
(
s′0

II(d′), s′0σ
′s′0

−1
)
, then

π0+
γ (s′0g

′s′0
−1

) = P+
γ

(
s′0

II
(d′)

) · 0+
n

(
s′0σ

′s′0
−1)

= Pγ

(
s′0

II
(d′)

) · ∇′
n

(
s′0σ

′s′0
−1)

= ∇′
n(s′0)

((∇′
n(s′0)

−1Pγ

(
s′0

II
(d′)

)∇′
n(s′0)

) · ∇′
n(σ′)

)
∇′

n(s′0
−1

)

= ∇′
n(s′0) ·

(
P(τ1τ2···τn)γ(d

′)∇′
n(σ′)

) · ∇′
n(s′0

−1
)
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= ∇′
n(s′0) · (−1)ord(d′) Pγ(d

′)∇′
n(σ′) · ∇′

n(s′0
−1

)

= (−1)ord(d′) · ∇′
n(s′0) π0+

γ (g′)∇′
n(s′0)

−1.

Hence we get f0+
γ (s′0g

′s′0
−1) = (−1)ord(d′)f0+

γ (g′). 2

Another proof. We appeal to detailed calculations in the preceding subsec-
tion. Note that

s′0g
′s′0

−1
=

(
s′0

II
(d′), s′0σ

′s′0
−1)

= s′0
II
(ξ′q1

) · · · s′0II
(ξ′qr

) (s′0g
′
1s
′
0
−1

) · · · (s′0g
′
ss
′
0
−1

),

where s′0g
′
js
′
0
−1 =

(
s′0

II(d′j), s
′
0σ
′
js
′
0
−1

)
. On the one hand, for ξ′q = η

aq
q and

d′j =
∏

p∈Kj
η

ap
p ,

s′0
II
(ξ′q) = η

aq

s0(q), s′0
II
(d′j) =

∏
p∈Kj

η
ap

s0(p),

whence P+
γ

(
s′0

II(ξ′q)
)

=
(
ωγs0(q)Ys0(q)

)aq
, P+

γ

(
s′0

II(d′j)
)

=
∏

p∈Kj

(
ωγs0(p)Ys0(p)

)ap .
On the other hand, note that, for j ∈ J+ and {j1, j2} < J− respectively

∇′
n

(
s′0σ

′
js
′
0
−1)

= ∇′
n(s′0)∇′

n(σ′j)∇′
n(s′0)

−1 ;

∇′
n

(
s′0σ

′
j1

σ′j2s
′
0
−1)

= ∇′
n(s′0)∇′

n(σ′j1σ
′
j2

)∇′
n(s′0)

−1 ,

and that ∇′
n(s′0)Yp∇′

n(s′0)
−1 = −Ys0(p) (p ∈ In).

From these two facts, the one for P+
γ and the other for ∇′

n, and also from
L(σ′j) ≡ 0, L(σ′j1σ

′
j2

) ≡ 0 (mod 2), we see that the e�ect of π0+
γ (g′) 7→

π0+
γ (s′0g

′s′0
−1), on their expressions by means of Yp's, is just the replacement

Yp 7→ Ys0(p) (p ∈ In), and on their coe�cients is χγ(d
′) = ωa1γ1+···+anγn 7→

ωa1γs0(1)+···+anγs0(n) = χγ(d
′) since s −1

0 γ = γ.
Under this replacement Yp 7→ Ys0(p), every monomial Y c1

1 Y c2
2 · · ·Y cn

n with
trace zero (resp. trace non-zero) is sent to such a one with trace zero (resp. trace
non-zero).

In case ord(d′) ≡ 0 (mod 2), the traces themselves remain unchanged.
In case ord(d′) ≡ 1 (mod 2), f0+

γ (g′) 6= 0 if and only if g′ satis�es (Condition
0-11), and the sign ε0(g′) changes as ε0(s′0g

′s′0
−1) = −ε0(g′), since

∏
q∈Q

Ys0(q) ×
∏
j∈J

∏
p∈Kj

Ys0(p) = sgn(s0) ·
∏
q∈Q

Yq ×
∏
j∈J

∏
p∈Kj

Yp .

This proves the assertions for f0+
γ . 2

18 Factorisability of characters and covariance

of trace functions

18.1 Origin of factorizability of normalized characters

We explain here the origin of the factorizability of the normalized character
f̃ I

γ (g′) = tr
(
πI

γ(g
′)
)
/ dim πI

γ such as f̃ I
γ (g′jg

′
l) = f̃ I

γ (g′j) f̃ I
γ (g′l). This will be impor-

tant in studying induced characters of πI
γ. Similar for f̃ II

γ etc.
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Put n′ = [n/2] as before. Among monomial terms in Y1, . . . , Y2n′+1 such as

Y c1
1 · · ·Y c2n′+1

2n′+1 , those who have non-zero trace are of the form Y
2c′1
1 · · ·Y 2c′n

n (=

E2n′ ) or Y1Y2 · · ·Y2n′+1 (= in
′
E2n′ )

(
multiplicatively modulo Y

2c′1
1 · · ·Y 2c′

2n′+1

2n′+1

)
.

Any of other monomials, which has trace zero, will be called an odd monomial.
To calculate f I

γ (g′j) (resp. f II
γ (g′j)), we expand πI

γ(g
′
j) (resp. πII

γ (g′j)) into a
linear combination of monomial terms in Y1, . . . , Y2n′+1 such as Y c1

1 · · ·Y c2n′+1

2n′+1 .
Then we appeal to the following lemma.

Lemma 18.1. When πI
γ(g

′
j) is expanded into a linear combination of mono-

mial terms in Y1, . . . , Y2n′+1 such as Y c1
1 · · ·Y c2n′+1

2n′+1 , there exists only one term
with trace non-zero and all others are odd monomials, or

πI
γ(g

′
j) = λjE2n′ +

∑

odd

λ(j)
c1,...,cn

Y c1
1 · · ·Y cn

n ,(18.1)

where λj = tr
(
πγ(g

′
j)

)
/2n′ = f̃ I

γ (g′j), and λ
(j)
c1,...,cn are constants such that if

λ
(j)
c1,...,cn 6= 0, then supp

(
Y c1

1 · · ·Y cn
n

)
:= {p ∈ In ; cp 6= 0} ⊂ Kj. Similar

assertion holds for πII
γ (g′j) and f̃ II

γ (g′j).

A proof for the factorizability of f̃ I
γ under (Condition I-00) :

Let us prove f̃ I
γ (g′jg

′
l) = f̃ I

γ (g′j)f̃
I

γ (g′l) for j 6= l. Expand πI
γ(g

′
l) also as

πI
γ(g

′
l) = λlE2n′ +

∑

odd

λ(l)
c1,...,cn

Y c1
1 · · ·Y cn

n ,(18.2)

where λ
(l)
c1,...,cn 6= 0 implies that supp

(
Y c1

1 · · ·Y cn
n

) ⊂ Kl. Multiply (18.1) with
(18.2), and note that supports of monomials in (18.1) and (18.2) are mutually
disjoint because Kj ∩Kl = ∅, we have

πI
γ(g

′
jg
′
l) = πI

γ(g
′
j)π

I
γ(g

′
l) = λjλlE2n′ +

∑

odd

λ(jl)
c1,...,cn

Y c1
1 · · ·Y cn

n .

Taking the traces of both sides, we obtain f̃ I
γ (g′jg

′
l) = λjλl = f̃ I

γ (g′j)f̃
I

γ (g′l). 2

18.2 Covariance of certain trace functions (CASE I)

Let us study the behavior of characters of stationary subgroups under the con-
jugation of S̃n. To calculate induced characters, e.g., for πI

γ, we should calculate

f I
γ (s′g′s′−1) for s′ ∈ S̃n in case s′g′s′−1 ∈ D̃n

I
o S(Pγ), and similarly for πI±

γ etc.

More generally we de�ne several (spin) trace functions on G̃ I
n as follows: for

γ ∈ Γn and g′ = (d′, σ′) ∈ D̃n

I
o S̃n = G̃ I

n,

T I
γ (g′) := tr

(
Pγ(d

′)∇n(σ′)
)
, T I±

γ (g′) := tr
(
P±

γ (d′)∇I±
n (σ′)

)
,(18.3)
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and study their covariance under conjugation of s′ ∈ S̃n.

Suppose g′ = (d′, σ′) is in the stationary subgroup D̃n

I
o S(Pγ) (resp. D̃n

I
o

S(P±
γ )), and express it (modulo z a

1 z b
2 ) as

{
g′ = ξ′q1

· · · ξ′qr
g′1g

′
2 · · · g′s, ξ′q = η′q

aq (q ∈ Q = {q1, . . . , qr}),
g′j = (d′j, σ

′
j), d′j =

∏
p∈Kj

η′p
ap , Kj = supp(g′j) (j ∈ J = Is).

(18.4)

For any s′ ∈ S̃n, put s = ΦS(s′) ∈ Sn, then
{

s′g′s′−1 =
(
s′ I(d′), s′σ′s′−1

)
, s′ I(ξ′q) =

(
z

L(s)
2 η′s(q)

)aq
,

s′g′js
′−1 =

(
s′ I(d′j), s

′σ′js
′−1

)
, s′ I(d′j) =

∏
p∈Kj

(z
L(s)
2 η′s(p))

ap .
(18.5)

Lemma 18.2. Under conjugation of s′ ∈ S̃n, we have a covariance as

Pγ

(
s′ I(ξ′q)

)
= ζs−1γ(ξ

′
q)

(
sgn(s)Y ′

s(q)

)aq

=

{
ζs−1γ(ξ

′
q) E2n′ if aq ≡ 0 (mod 2) ,

ζs−1γ(ξ
′
q) sgn(s)Y ′

s(q) if aq ≡ 1 (mod 2).

tr
(
Pγ(s

′ξ′qs
′−1)

)

ζs−1γ(ξ′q)
=

tr
(
Pγ

(
ξ′q)

)

ζγ(ξ′q)
(q ∈ Q, s′ ∈ S̃n).

Proof. Pγ

(
s′ I(ξ′q)

)
=

(
ζγ(η

′
s(q))sgn(s)Y ′

s(q)

)aq
= ζs−1γ(ξ

′
q)

(
sgn(s)Y ′

s(q)

)aq
. 2

Lemma 18.3. The operator Pγ(d
′
j)∇n(σ′j) is transformed by conjugation

of s′ ∈ S̃n as

Pγ

(
s′ I(d′j)

)
= ζs−1γ(d

′
j) ·

∏
p∈Kj

(
sgn(s)Y ′

s(p)

)ap
.(18.6)

Express ∇n(σ′) as a product of ∇n(rp)'s and then expand it into a linear com-
bination of monomial terms

∏
p∈Kj

Y
cp

p as

∇n(σ′j) =
∑

c

λc ·
∏

p∈Kj
Y ′

p
cp , c = (cp)p∈Kj

, λc ∈ C,(18.7)

then its conjugation by s′ ∈ S̃n is

∇n(s′σ′js
′−1

) =
∑

c

λc ·
∏

p∈Kj

(
sgn(s)Y ′

s(p)

)cp
,(18.8)

where the products are along with the natural order of p ∈ Kj. Moreover

tr
(
Pγ

(
s′ I(d′j)∇n(s′σ′js

′−1)
))

ζs−1γ(d
′
j)

=
tr

(
Pγ(d

′
j)∇n(σ′)

)

ζγ(d′j)
(j ∈ J, s′ ∈ S̃n).(18.9)
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Proof. (i) Note that ∇n(s′σ′js
′−1) = ∇n(s′)∇n(σ′j)∇n(s′)−1 and

∇n(ri)Y
′
p∇n(ri)

−1 = −Y ′
si(p) (p ∈ In)

∴ ∇n(s′)Y ′
p∇n(s′)−1 = sgn(s)Y ′

s(p) (p ∈ In).

Compare the expansion of Pγ(d
′
j)∇(σ′j) into a linear combination of monomi-

als in Y ′
p 's obtained from (18.7) with that of Pγ

(
s′ I(d′j)

)∇n(s′σ′js
′−1) obtained

from (18.6) and (18.8). Then, apart from the proportional constants ζγ(d
′
j)

and ζs−1γ(d
′
j), the latter is obtained from the former by replacing each Y ′

p by
sgn(s)Y ′

s(p).
On the other hand, as is remarked in Lemma 16.5 and in Theorem 16.11,

in the expansion of Pγ(d
′
j)∇(σ′j), there exists at most one monomial term with

trace non-zero and all others are odd monomials (cf. also Lemma 18.1). Since
the monomial term with trace non-zero is of the form

∏
p∈Kj

Y ′
p

2c′p (= E2n′ ), we
have the following rule.

Consequence of Replacement I-00: Under replacement I-00:
Y ′

p 7→ sgn(s)Y ′
s(p) (p ∈ Kj), the unique monomial term with trace

non-zero
∏

p∈Kj
Y ′

p
2c′p = E2n′ for g′j remains to be equal to E2n′ ,

and all the other odd monomials are mapped to odd monomials with
supports inside s(Kj).

Thus we get the covariance relation (18.9). 2

Proposition 18.4. Let n = 2n′ even, and s′ ∈ S̃n. For g′ = (d′, σ′) ∈
D̃n

I
o S(Pγ), expressed as in (18.4), the value T I

γ (s′g′s′−1) is obtained as follows.
According to the decomposition T I

γ (g′) =
∏

q∈Q T I
γ (ξ′q) ·

∏
j∈J T I

γ (g′j),

T I
γ (s′g′s′−1

) =
∏
q∈Q

T I
γ (s′ξ′qs

′−1
) ·

∏
j∈J

T I
γ (s′g′js

′−1
),(18.10)

and T I
γ (s′ξ′qs

′−1) (resp. T I
γ (s′g′js

′−1)) is obtained from the formula in Theorem
16.11 (i) for T I

γ (ξ′q) (resp. T I
γ (g′j)) by replacing γ with s−1γ. In short,

T I
γ (s′g′s′−1) is obtained from the formula of T I

γ (g′) by replacing γ with
s−1γ.

Proof. By Theorem 9.2 (i), for any s′ ∈ S̃n and d′ ∈ D̃n, ∇n(s′)Pγ(d
′)∇n(s′)−1

= Psγ

(
s′ I(d′)

)
. Then we have

Pγ

(
s′ I(d′)

)∇n(s′σ′s′−1
) = ∇n(s′)Ps−1γ(d

′)∇n(s′)−1 · ∇n(s′)∇n(σ′)∇n(s′)−1

= ∇n(s′)
(
Ps−1γ(d

′)∇n(σ′)
)∇n(s′)−1.

Taking traces of both extremities, we see that T I
γ (s′g′s′−1) is obtained from T I

γ (g′)
by replacing γ with s−1γ. 2
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Lemma 18.5. Let n = 2n′ + 1 odd. Then, for g′ = (d′, σ′) ∈ D̃n

I
o S(P+

γ )

and s′ ∈ S̃n. Express g′ as in (18.4).
(i) If ord(d′) + L(σ′) ≡ 0 (mod 2), then there holds for T I+

γ the similar
assertion as in Lemma 18.3.

(ii) Assume ord(d′) + L(σ′) ≡ 1 (mod 2). Then εI(s′g′s′−1) = εI(g′) and

T I+
γ (s′g′s′−1)

ζs−1γ(d′)
=

T I+
γ (g′)

ζγ(d′)
.

Proof. The proof is similar as for Lemma 18.3 except the proof for εI(s′g′s′−1)
= εI(g′) in (ii). For this, when πI+

γ (g′) is expanded into a linear combination of
monomial terms in Y ′

p 's, there exists only one with trace non-zero given as

∏
q∈Q

Y ′
q ·

∏
j∈J

∏
p∈Kj :

Y ′p black

Y ′
p = εI(g′) · Y ′

1Y
′
2 · · ·Y ′

n

(
= εI(g′) · (−i)n′E2n′

)
,

and all others are odd monomials. Under the replacement Y ′
p 7→ sgn(s)Y ′

s(p) (p ∈
In), it is replaced by

∏
q∈Q

(
sgn(s)Y ′

s(q)

) ·
∏
j∈J

∏
p∈Kj :

Y ′p black

(
sgn(s)Y ′

s(p)

)
= sgn(s)n+1

∏
q∈Q

Y ′
q ·

∏
j∈J

∏
p∈Kj :

Y ′p black

Y ′
p . 2

Similarly as Proposition 18.4, we can prove the following.

Proposition 18.6. Let n = 2n′+1, s′ ∈ S̃n and g′ = (d′, σ′) ∈ G̃ I
n. Then,

T I+
γ (s′g′s′−1) (resp. T I−

γ (s′g′s′−1)) is obtained from the formula of
T I+

γ (g′) (resp. T I−
γ (g′)) by replacing γ with s−1γ.

Proof. For T I+
γ , the proof for T I

γ in Proposition 18.4 is also valid, since

P+
γ = Pγ and ∇+

n = ∇n. For T I−
γ , by Theorem 9.2 (ii), we have, for any s′ ∈ S̃n

and d′ ∈ D̃n, ∇−
n (s′)P−

γ (d′)∇−
n (s′)−1 = P−

sγ

(
s′ I(d′)

)
. Then

P−
γ

(
s′ I(d′)

)∇−
n (s′σ′s′−1

) = ∇−
n (s′)

(
P−

s−1γ(d
′)∇−

n (σ′)
)∇−

n (s′)−1.

Taking traces of both sides, we obtain the assertion. 2

18.3 Covariance of certain trace functions (CASE II)

We de�ne (spin) trace functions on G̃ II
n as follows: for γ ∈ Γn and g′ = (d′, σ′) ∈

D̃n

II
o S̃n = G̃ II

n ,

T II
γ (g′) := tr

(
Pγ(d

′)∇II
n (σ′)

)
, T 0±

γ (g′) := tr
(
P±

γ (d′)0±
n (σ′)

)
.(18.11)
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Proposition 18.7. Let n = 2n′ ≥ 4. For s′ ∈ S̃n and g′ = (d′, σ′) ∈ G̃ II
n ,

T II
γ (s′g′s′−1) is obtained from the formula of T II

γ (g′) by replacing γ with s−1γ.

Proof. By Theorem 10.2 (ii), for any s′ ∈ S̃n and d′ ∈ D̃n,
∇II

n (s′)Pγ(d
′)∇II

n (s′)−1 = Psγ

(
s′ II(d′)

)
. Then we have

Pγ

(
s′ II(d′)

)∇II
n (s′σ′s′−1

) = ∇II
n (s′)

(
Ps−1γ(d

′)∇II
n (σ′)

)∇n(s′)−1.

Taking traces of both sides, we obtain the assertion. 2

Proposition 18.8. Let n = 2n′+1 ≥ 5. For s′ ∈ Ãn and g′ = (d′, σ′) ∈ G̃ II
n

with σ′ ∈ Ãn,

T 0+
γ (s′g′s′−1) (resp. T 0−

γ (s′g′s′−1)) is obtained from the formula of T 0+
γ (g′)

(resp. T 0−
γ (g′)) by replacing γ with s−1γ.

Proof. By Theorem 10.2 (iii), for any s′ ∈ Ãn and d′ ∈ D̃n,
0±

n (s′)P±
γ (d′)0±

n (s′)−1 = P±
sγ

(
s′ II(d′)

)
. Then we have for σ′ ∈ Ãn

P±
γ

(
s′ II(d′)

)
0±

n (s′σ′s′−1
) = 0±

n (s′)
(
P±

s−1γ(d
′)0±

n (σ′)
)
0±

n (s′)−1.

Taking traces of both sides, we obtain the assertion. 2

19 Characters of spin IRs of G̃ I
n (CASE I)

19.1 Formula for calculating characters of spin IRs

First we prepare formulas for characters of induced representations. For γ ∈ Γ0
n,

we have ζγ = (ζj)j∈In with ζj = ζj,γj
identi�ed with ζ(γj) ∈ T̂ 0 ⊂ T̂ , and a

partition in De�nition 11.2 as

In =
⊔

ζ∈T̂ 0
In,ζ , In,ζ = {j ∈ In ; ζj = ζ}.(19.1)

Here T̂ 0 = {η(a) ∈ T̂ ; η(a)(η) = ωa, 0 ≤ a < m′ = m/2}. We assume that γ is
normalized (under the action of Sn) so that all In,ζ 's are intervals in In. IRs of∏

ζ∈T̂ 0 SIn,ζ
are parametrized by a set of Young diagrams Λn =

(
λn,ζ)ζ∈T̂ 0 as

πΛn = £
ζ∈T̂ 0

π(λn,ζ) ,(19.2)

where λn,ζ is of size |In,ζ | and π(λn,ζ) is an IR of SIn,ζ
corresponding to λn,ζ .

Consider IRs of D̃n

I
o S(Pγ), and those of D̃n

I
o S(P±

γ ) given as

πI
γ,Λn := πI

γ ¡ πΛn if n = 2n′ even ;

πI±
γ,Λn := πI±

γ ¡ πΛn if n = 2n′ + 1 odd.
(19.3)
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By inducing them up to G̃ I
n = G̃ I(m, 1, n), we obtain spin IRs of CASE I, Type

(−1,−1,−1), as

ΠI
Λn = Ind

G̃ I
n

D̃n
I
oS(Pγ)

πI
γ,Λn in case n is even ;

ΠI±
Λn = Ind

G̃ I
n

D̃n
I
oS(P±γ )

πI±
γ,Λn in case n is odd.

(19.4)

Remark 19.1. In the parametrization above such as ΠI
Λn and ΠI±

Λn , γ is
implicit but, as is shown by the parametrization in �11.5 and �12, it is subordinate
to Λn. In fact, the information of (the equivalence class of) γ is fully contained in
Λn = (λn,ζ)ζ∈T̂ 0 , since |λn,ζ | is equal to the multiple |In,ζ | of ζ in ζγ = (ζ1, . . . , ζn).

Put fΛn(σ′) := tr
(
πΛn(σ′)

)
, then fΛn(σ′) = fΛn(σ) = tr

(
πΛn(σ)

)
, σ = Φ(σ′),

and

f I
γ,Λn = tr

(
πI

γ,Λn

)
, F I

Λn = tr
(
ΠI

Λn

)
in case n is even ;

f I±
γ,Λn = tr

(
πI±

γ,Λn

)
, F I±

Λn = tr
(
ΠI±

Λn

)
in case n is odd.

(19.5)

Then we have at �rst

f I
γ,Λn

(
(d′, σ′)

)
= f I

γ

(
(d′, σ′)

) · fΛn(σ),

f I±
γ,Λn

(
(d′, σ′)

)
= f I±

γ

(
(d′, σ′)

) · fΛn(σ).
(19.6)

Let G′ = G̃ I
n, and H ′ = D̃n

I
o S be one of D̃n

I
o S(Pγ) and D̃n

I
o S(P±

γ ),
where S is one of S(Pγ) and S(P±

γ ) correspondingly. Also let π be one of IRs

of H ′ in (19.3), and put Π = IndG′
H′π. Denote by fπ and FΠ their characters.

Extend fπ from H ′ to G′ by putting identically zero outside H ′. Then we have

FΠ(g′) =
1

|H ′|
∑

g′0∈G′
fπ(g′0g

′g′0
−1

).(19.7)

From this, we see that FΠ(g′) = 0 if g′ is not conjugate under G′ to an element
of H ′, and so FΠ is completely determined by its values on H ′.

Lemma 19.1. Let g′ = (d′, σ′) ∈ H ′ = D̃n

I
o S, then

FΠ(g′) =
1

|S|
∑

s′∈S̃n :
s′σ′s′−1∈S

fπ

(
(s′ I(d′), s′σ′s′−1

)
)
.

Proof. This follows from the facts that fπ is invariant under D̃n ⊂ H ′ and
that s′g′s′−1 = (s′ I(d′), s′σ′s′−1). 2

Lemma 19.2. Let g′=(d′, σ′)∈H ′=D̃n

I
o S, and f I

γ =tr
(
πI

γ

)
, f I±

γ =tr
(
πI±

γ

)
.
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(i) In case n = 2n′ even, S = S(Pγ) = Φ −1
S

( ∏
ζ∈T̂ 0 SIn,ζ

)
and with s = Φ(s′),

F I
Λn(g′) =

∑

s′∈S\S̃n :

s′σ′s′−1∈S

f I
γ

(
(s′ I(d′), s′σ′s′−1

)
) · fΛn(sσs−1).

(ii) In case n = 2n′ + 1 odd, S = S(P±
γ ) = Φ −1

S

( ∏
ζ∈T̂ 0 SIn,ζ

)
and

F I±
Λn(g′) =

∑

s′: as above

f I±
γ

(
(s′ I(d′), s′σ′s′−1

)
) · fΛn(sσs−1).

Now we prepare here, as an important ingredient, explicit formulas for char-
acters of the special spin IRs of G̃ I

n given in Example 11.1:

ΠI
0 = P0 · ∇n with P0 = Pγ(0) for G̃ I

n, n ≥ 4 even,

ΠI
± = P± · ∇±

n with P± = P±
γ(0) for G̃ I

n, n ≥ 5 odd.

Their characters are calculated in �16 as special cases, which we denote by
F I

0,n, F I
+,n and F I

−,n respectively. Their intimate relations with the general case of
γ facilitate to understand the covariance in �18.2 above, and also the calculation
below.

An element of G̃ I
n is expressed as g′′ = z a

1 z b
2 g′, g′ = (d′, σ′) = ξ′q1

· · · ξ′qr
g′1 · · · g′s

with g′j = (d′j, σ
′
j) (j ∈ J = Is). Normalize g′ as in (16.26) modulo z a

1 z b
2 .

Theorem 19.3. (i) Case n = 2n′ even: If ord(d′) + L(σ′) ≡ 0 (mod 2),
then F I

0,n(g′) = tr
(
ΠI

0(g
′)
) 6= 0 if and only if (Condition I-00) in Lemma 16.2

holds for g′. In that case, with `j = `(σ′j),

F I
0,n(g′) = 2n′ ·

∏
j∈J

(−1)[(`j−1)/2] 2−(`j−1)/2

If ord(d′) + L(σ′) ≡ 1 (mod 2), then F I
0,n(g′) = 0 identically.

(ii) Case n = 2n′ + 1 odd: Suppose ord(d′) + L(σ′) ≡ 0 (mod 2). Then,
F I
−,n(g′) = F I

+,n(g′) = F I
0,n(g′), and is given by the above formula.

Suppose ord(d′) + L(σ′) ≡ 1 (mod 2). Then F I
−,n(g′) = −F I

+,n(g′), and
F I

+,n(g′) 6= 0 if and only if (Condition I-11) in Lemma 16.2 holds for g′. In that
case,

F I
+,n(g′) = εI(g′) (2i)n′ ·

∏
j∈J

(−1)[(`j−1)/2] 2−(`j−1)/2,

where the sign εI(g′) comes from rearrangement to have Y1Y2 · · ·Yn as

∏
q∈Q

Yq ×
∏
j∈J

{
Ykj

∏

p∈Kj\{kj} :
Yp black

Yp

}
= εI(g′) · Y1Y2 · · ·Yn .(19.8)
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19.2 Reduction of the summation over s′ ∈ S\S̃n

Let γ ∈ Γ0
n. Take a g′ = (d′, σ′) from D̃n

I
o S(Pγ) for n = 2n′ even, or from

D̃n

I
o S(P±

γ ) for n = 2n′ + 1 odd respectively, and express it as g′ = (d′, σ′) =
ξ′q1
· · · ξ′qr

g′1 · · · g′s. Normalize g′ as in (16.26) modulo z a
1 z b

2 . From Theorem 16.11,
we get the following.

Lemma 19.4. (i) Case n = 2n′ even: If ord(d′) + L(σ′) ≡ 0 (mod 2),
then f I

γ (g′) = tr
(
πI

γ(g
′)
) 6= 0 if and only if (Condition I-00) in Lemma 16.2

holds for g′. If ord(d′) + L(σ′) ≡ 1 (mod 2), then f I
γ (g′) = 0 identically. In

general, for g′ = (d′, σ′) ∈ D̃n

I
o S(Pγ),

f I
γ (g′) = ζγ(d

′) · F I
0,n(g′).

(ii) Case n = 2n′ + 1 odd: If ord(d′) + L(σ′) ≡ 0 (mod 2), then f I−
γ (g′) =

f I+
γ (g′). If ord(d′)+L(σ′) ≡ 1 (mod 2), then f I−

γ (g′) = − f I+
γ (g′), and f I+

γ (g′) 6=
0 if and only if (Condition I-11) in Lemma 16.2 holds for g′. In general, for

g′ = (d′, σ′) ∈ D̃n

I
o S(P+

γ ),

f I+
γ (g′) = ζγ(d

′) · F I
+,n(g′).

Using Propositions 18.4 and 18.6 together with Lemma 19.2, we obtain the
following summation formulas for spin irreducible characters F I

Λn , F I+
Λn and F I−

Λn .

Proposition 19.5. Let γ ∈ Γ0
n and Λn = (λn,ζ)ζ∈T̂ 0 be as in (19.2) � (19.4).

Take g′ = (d′, σ′) ∈ G̃ I
n and let

g = Φ(g′) = (d, σ) ∈ Gn = Dn oSn = G(m, 1, n),

with d = Φ(d′) ∈ Dn, σ = Φ(σ′) ∈ Sn. For s′ ∈ S̃n, put s = Φ(s′), then
Φ(s′g′s′−1) = sgs−1 =

(
s(d), sσs−1

)
, and ζs−1γ(d

′) = ζs−1γ(d) = ζγ

(
s(d)

)
.

(i) Case n = 2n′ even: If ord(d′) + L(σ′) ≡ 0 (mod 2), then F I
Λn(g′) =

tr
(
ΠI

Λn(g′)
) 6= 0 only if (Condition I-00) in Lemma 16.2 holds for g′. If ord(d′)+

L(σ′) ≡ 1 (mod 2), then F I
Λn(g′) = 0 identically. In general, for g′ = (d′, σ′) ∈

D̃n

I
o S(Pγ), with Sγ := Φ

(S(Pγ)
)

= {s ∈ Sn ; sγ = γ},
F I

Λn(g′) = F I
0,n(g′) ·

∑

s∈Sγ\Sn :
sσs−1∈Sγ

ζγ

(
s(d)

)
fΛn(sσs−1).

(ii) Case n = 2n′+1 odd: If ord(d′)+L(σ′) ≡ 0 (mod 2), then F I−
Λn(g′) =

F I+
Λn(g′) = F I

Λn(g′). If ord(d′) + L(σ′) ≡ 1 (mod 2), then F I−
Λn(g′) = −F I+

Λn(g′),
and F I+

Λn(g′) 6= 0 only if (Condition I-11) in Lemma 16.2 holds for g′. In

general, for g′ = (d′, σ′) ∈ D̃n

I
o S(P+

γ ),

F I+
Λn(g′) = F I

+,n(g′) ·
∑

s: as above

ζγ

(
s(d)

)
fΛn(sσs−1).
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19.3 Relations to non-spin irreducible characters of G(m,1,n)

The group G̃ I
n is a quadruple covering group of the base group Gn = DnoSn =

G(m, 1, n), and the sum
∑

s∈Sγ\Sn : sσs−1∈Sγ

ζγ

(
s(d)

)
fΛn(sσs−1)(19.9)

is the value of a (non-spin) irreducible character of Gn at the point g = Φ(g′).
Let us explain this a little more in detail. Take γ ∈ Γn and a character

ζγ = (ζ1, ζ2, . . . , ζn) of Dn, and de�ne a partition of In as

In :=
(
In,ζ

)
ζ∈T̂

, In =
⊔

ζ∈T̂

In,ζ , In,ζ = {j ∈ In ; ζj = ζ}.(19.10)

Then the stationary subgroup Sγ in Sn is given as Sγ =
∏

ζ∈T̂ SIn,ζ
. Take an

IR πΛn := £ζ∈T̂ π(λn,ζ) of Sγ with Λn = (λn,ζ)ζ∈T̂ , |λn,ζ | = |In,ζ |. Then we have
an IR π̆γ,Λn(g) = ζγ(d) πΛn(σ) of Hn := Dn o Sγ, and inducing it up, an IR of
Gn = Dn oSn as

Π̆γ,Λn := IndGn
Hn

π̆γ,Λn .(19.11)

Lemma 19.6. The characters f̆γ,Λn of π̆γ,Λn and F̆γ,Λn of Π̆γ,Λn are respec-
tively given by

f̆γ,Λn(h) = ζγ(d) fΛn(σ)
(
h = (d, σ) ∈ Dn o Sγ

)
;

F̆γ,Λn(g) =
∑

s∈Sγ\Sn :
sσs−1∈Sγ

f̆γ,Λn(sgs−1)
(
g = (d, σ) ∈ Dn oSn

)
.

Note that the above sum is nothing but the sum in (19.9). On the other
hand, the irreducible character F̆γ,Λn is explicitly expressed as follows.

Denote by χ(λn,ζ ; σ) the character value of π(λn,ζ) at σ ∈ SIn,ζ
. If σ =

σ1σ2 · · ·σt is a cycle decomposition of σ, then the value χ(λn,ζ ; σ) is determined
by the set {`p = `(σp); 1 ≤ p ≤ t} of lengths, and so it is also denoted by
χ(λn,ζ ; (`p)1≤p≤t), that is,

χ
(
λn,ζ ; (`p)1≤p≤t

)
:= χ(λn,ζ ; σ) if σ = σ1σ2 · · · σt, `p = `(σp).(19.12)

Recall that the redundancy `j = 1 (s < j ≤ t) is admitted, and g = (d, σ) ∈
Gn is expressed by its decomposition into basic elements as

{
g = (d, σ) = ξq1ξq2 · · · ξqrg1g2 · · · gs, ξq = y

aq
q (q ∈ Q),

gj = (dj, σj), supp(dj) ⊂ supp(σj) (j ∈ J),
(19.13)

with Q = {q1, q2, . . . , qr} and J = {1, 2, . . . , s}. Consider partitions of Q and J
as

Q = (Qζ)ζ∈T̂ , Q =
⊔

ζ∈T̂
Qζ , and J = (Jζ)ζ∈T̂ , J =

⊔
ζ∈T̂

Jζ .(19.14)
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For a pair of partitions (Q,J ) satisfying the condition

(Condition QJ) |Qζ |+
∑

j∈Jζ
`j ≤ |In,ζ | (ζ ∈ T̂ ),

we de�ne a function of g given as

X
(
Λn ; Q, J ; g

)
:=

∏

ζ∈T̂

(
ζ
( ∏

q∈Qζ
ξq ·

∏
j∈Jζ

dj

)× χ
(
λn,ζ ; (`j)j∈Jζ

))
.(19.15)

Note that, if g is conjugate under Sn to an element of Dn o Sγ, then there
exists at least one (Q, J ) which satis�es (Condition QJ). We have

n− |supp(g)| =
∑

ζ∈T̂

(
|In,ζ | − |Qζ | −

∑
j∈Jζ

`j

)
.(19.16)

De�ne an important number N(In;Q,J ; g) as

N(In ; Q, J ; g) := (n− |supp(g)|)!×(19.17)

×
∏

ζ∈T̂

|In,ζ |
(|In,ζ | − 1

) · · ·
(
|In,ζ | − |Qζ | −

∑
j∈Jζ

`j + 1
)
.

Then
∑

(Q,J ) N(In;Q,J ; g) = n! , where (Q,J ) runs over those satisfying (Con-
dition QJ). Furthermore we put

b(In;Q,J ; g) :=
N(In;Q,J ; g)

|Sγ| =
(n− |supp(g)|)!∏

ζ∈T̃

(
|In,ζ | − |Qζ | −

∑
j∈Jζ

`j

)
!
.(19.18)

Here, even for a pair (Q,J ) which does not satisfy (Condition QJ), the above
formulas have meaning if we understand as N(In;Q,J ; g) = 0.

By a simpler discussions than those in [HHH1, ��4.3 � 4.4], we obtain the
character of an IR of the wreath product Gn = Sn(T ) = DnoSn , Dn = Dn(T ),
of the cyclic group T = Zm with the n-th symmetric group Sn as follows.

Theorem 19.7 (Non-spin Case).
(i) Let Λn = (λn,ζ)ζ∈T̂ ∈ Yn(T ) be a set of Young diagrams such that λn,ζ

determines an IR π(λn,ζ) of SIn,ζ
∼= S|In,ζ |, |In,ζ | = |λn,ζ |. Put π̆γ,Λn = ζγ ¡

πΛn . Then π̆γ,Λn is an IR of Dn o Sγ with Sγ =
∏

ζ∈T̂ SIn,ζ
, and the induced

representation Π̆γ,Λn is irreducible. Every IR of Gn is equivalent to an induced
representation of this type.

(ii) Take a g = (d, σ) ∈ Dn o Sγ ⊂ Gn, and let its standard decomposition
be as in (19.13), and put Q = {q1, q2, . . . , qr}, J = {1, 2, . . . , s}. Then the
character value F̆γ,Λn(g) of the IR Π̆γ,Λn of Gn is given by

F̆γ,Λn(g) =
∑

(Q,J )

b(In;Q,J ; g) X
(
Λn ; Q, J ; g

)
,(19.19)
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where the summation runs over all pairs of partitions (Q,J ) for which (Con-
dition QJ) holds, and b(In;Q,J ; g) is given in (19.18), and X

(
Λn ; Q, J ; g

)
in (19.15).

(iii) For a g = (d, σ) ∈ Gn which is not conjugate to any element in DnoSγ,
the character vanishes. The above character formula (19.19) is also valid in
this case, in the sense that there is no pair (Q,J ) satisfying (Condition QJ).

Lemma 19.8. For g = (d, σ) ∈ Gn = G(m, 1, n),

F̆γ,tΛn(g) = sgn(σ) · F̆γ,Λn(g) ;

F̆(τ1τ2···τn)γ,Λn(g) = (−1)ord(d) · F̆γ,Λn(g).

Remark 19.2. One dimensional characters of Gn = Dn oSn are given as
follows: for (k, ε), 0 ≤ k < m, ε = 0, 1, and for g = (d, σ) ∈ Gn, d = (ti)i∈In ,

χk,ε(g) := ζk

(
P (d)

) · sgn(σ)ε = ωk·ord(d) · sgn(σ)ε,

where P (d) := tntn−1 · · · t1 and ω = e2πi/m.

19.4 Explicit formula for spin irreducible characters of
G̃ I

n

Summarizing the above results we obtain the following formulas for spin irre-
ducible characters F I

Λn , F I+
Λn and F I−

Λn .

Theorem 19.9. Let γ ∈ Γ0
n and take Λn =

(
λn,ζ)ζ∈T̂ 0 ∈ Yn(T )0 cor-

respondingly. Take g′ = (d′, σ′) ∈ G̃ I
n expressed as g′ = ξ′q1

· · · ξ′qr
g′1g

′
2 · · · g′s

with ξ′q = η′q
aq (q ∈ Q = {q1, . . . , qr}) and g′j = (d′j, σ

′
j) (j ∈ J = Is). Let

g = Φ(g′) = (d, σ) ∈ Gn = Dn oSn = G(m, 1, n).

(i) Case n = 2n′ even: If ord(d′) + L(σ′) ≡ 0 (mod 2), then F I
Λn(g′) =

tr
(
ΠI

Λn(g′)
) 6= 0 only if (Condition I-00) in Lemma 16.2 holds for g′. If ord(d′)+

L(σ′) ≡ 1 (mod 2), then F I
Λn(g′) = 0 identically. In general,

F I
Λn(g′) = F I

0,n(g′)× F̆γ,Λn(g),

where F̆γ,Λn(g) is given in (19.19).

(ii) Case n = 2n′+1 odd: If ord(d′)+L(σ′) ≡ 0 (mod 2), then F I+
Λn(g′) 6= 0

only if (Condition I-00) in Lemma 16.2 holds for g′. In that case, F I−
Λn(g′) =

F I+
Λn(g′) = F I

Λn(g′). If ord(d′) + L(σ′) ≡ 1 (mod 2), then F I−
Λn(g′) = −F I+

Λn(g′),
and F I+

Λn(g′) 6= 0 only if (Condition I-11) in Lemma 16.2 holds for g′. In
general,

F I+
Λn(g′) = F I

+,n(g′)× F̆γ,Λn(g).

(iii) With sgn(σ′) = sgn(σ),
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F I
tΛn(g′) = sgn(σ′) F I

Λn(g′), F I±
tΛn(g′) = sgn(σ′) F I±

Λn (g′).

Corollary 19.10. Spin IRs in CASE I, Type (−1,−1,−1), are expressed
as tensor products of special spin IRs with non-spin IRs as follows:

ΠI
Λn
∼= ΠI

0 ⊗ Π̆γ,Λn for Λn ∈ Y n(T )0,

ΠI+
Λn
∼= ΠI

+ ⊗ Π̆γ,Λn for Λn ∈ Y n(T )0.

20 Characters of spin IRs of G̃ II
n (CASE II)

20.1 Formulas for calculating spin IRs of G̃ II
n

For γ ∈ Γ0
n, let ζγ = (ζj)j∈In be as before, and denote by In the partition

In =
⊔

ζ∈T̂ 0 In,ζ , In,ζ = {j ∈ In ; ζj = ζ} in De�nition 11.2 or (19.1). Here we
assume that γ is normalized so that every In,ζ is an interval in In.

As seen in Theorem 12.6, equivalence classes of IRs of G̃ II
n = G̃ II(m, 1, n) in

CASE II, Type (−1,−1, 1), are realized as induced representations as follows.
Recall that, in CASE II, the stationary subgroup S is S(Pγ) = Φ −1

S

( ∏
ζ∈T̂ 0 SIn,ζ

)

or S(P±
γ ) = Ã

( ∏
ζ∈T̂ 0 SIn,ζ

)
according as n is even or odd.

Case n = 2n′ even : For Λn =
(
λn,ζ)ζ∈T̂ 0 ∈ Yn(T )0,

πII
γ,Λn = πII

γ ¡ πΛn , IR of D̃n

II
o S(Pγ) ,

ΠII
Λn = Ind

G̃ II
n

D̃n
II
oS(Pγ)

πII
γ,Λn , IR of G̃ II

n .
(20.1)

Put fΛn(σ′) := tr
(
πΛn(σ′)

)
, then fΛn(σ′) = fΛn(σ) := tr

(
πΛn(σ)

)
, σ = Φ(σ′), and

f II
γ,Λn := tr

(
πII

γ,Λn

)
, F II

Λn := tr
(
ΠII

Λn

)
;

f II
γ,Λn

(
(d′, σ′)

)
= f II

γ

(
(d′, σ′)

) · fΛn(σ),

f II
γ

(
(d′, σ′)

)
:= tr

(
πII

γ

(
(d′, σ′)

))
.

(20.2)

Case n = 2n′ + 1 odd : For {Λn, tΛn} ∈ Y A
n (T )0,1 and (Λn, κ) ∈ Y A

n (T )0,2

respectively, we have, with two spin representations 0+
n , 0−

n of Ãn in (17.35),

{
π0±

γ,Λn = π0±
γ ¡ ρΛn with π0±

γ = P±
γ · 0±

n ,

π0±
γ,Λn,κ = π0±

γ ¡ ρ
(κ)
Λn ,

IR of D̃n

II
o S(

P±
γ

)
;(20.3)





Π0±
Λn = Ind

G̃ II
n

D̃n
II
oS(P±γ )

π0±
γ,Λn ,

Π0±
Λn,κ = Ind

G̃ II
n

D̃n
II
oS(P±γ )

π0±
γ,Λn,κ ,

IR of G̃ II
n ;(20.4)
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{
f0±

γ,Λn := tr
(
π0±

γ,Λn

)
, F0±

Λn := tr
(
Π0±

Λn

)
,

f0±
γ,Λn,κ := tr

(
π0±

γ,Λn,κ

)
, F0±

Λn,κ := tr
(
Π0±

Λn,κ

)
;

(20.5)





f0±
γ,Λn

(
(d′, σ′)

)
= f0±

γ

(
(d′, σ′)

) · fρ
Λn(σ),

f0±
γ := tr

(
π0±

γ

)
, fρ

Λn(σ) := tr
(
ρΛn(σ)

)
,

f0±
γ,Λn,κ

(
(d′, σ′)

)
= f0±

γ

(
(d′, σ′)

) · fρ
Λn,κ(σ),

fρ
Λn,κ(σ) := tr

(
ρ

(κ)
Λn (σ)

)
.

(20.6)

Lemma 20.1. Let γ ∈ Γ0
n, and take g′ = (d′, σ′) ∈ D̃n

II
o S.

(i) In case n = 2n′ even, S = S(Pγ) = Φ −1
S

( ∏
ζ∈T̂ 0 SIn,ζ

)
and with s = Φ(s′),

f II
Λn(g′) =

∑

s′∈S\S̃n :

s′σ′s′−1∈S

f II
γ

(
(s′ II(d′), s′σ′s′−1

)
) · fΛn(sσs−1).

(ii) In case n = 2n′ + 1 odd, S = S(P±
γ ) = Ã

( ∏
ζ∈T̂ 0 SIn,ζ

)
and

F0±
Λn (g′) =

∑

s′ : as above

f0±
γ

(
(s′ II(d′), s′σ′s′−1

)
) · fρ

Λn(sσs−1) ;

F0±
Λn,κ(g

′) =
∑

s′ : as above

f0±
γ

(
(s′ II(d′), s′σ′s′−1

)
) · fρ

Λn,κ(sσs−1).

On the other hand, special spin IRs are given in Example 12.2:

ΠII
0 = P0 · ∇II

n with P0 = Pγ(0) for G̃ II
n , n ≥ 4 even,

ΠII,H̃
+ = P+ · 0+

n with P+ = P+
γ(0) for H̃ II

n = D̃n

II
o Ãn, n ≥ 5 odd,

ΠII
+ = Ind

G̃ II
n

H̃II
n

ΠII,H̃
+ for G̃ II

n .

Their characters are calculated in �17 as special cases, and we denote them by

F II
0,n, F II,H̃

+,n and F II
+,n respectively. Their intimate relations with the general case of

γ facilitate to understand the covariance in �18.3 above, and also the calculations
below.

Take a g′ = (d′, σ′) from D̃n

II
o S(Pγ) for n = 2n′ even, or from D̃n

II
o

S(P±
γ ) for n = 2n′ + 1 odd respectively, expressed as g′ = ξ′q1

· · · ξ′qr
g′1g

′
2 · · · g′s

and normalized as in (17.14), or, ξ′q = η
aq

q (q ∈ Q = {q1, . . . , qr}) and g′j =
(d′j, σ

′
j) (j ∈ J = In) with `j = `(σ′j) and

{
d′j = η

bj

kj

(∃kj ∈ Kj = [nj, nj + `j − 1]),

σ′j = rnj
rnj+1 · · · rnj+`j−2 , σ = Φ(σ′) = (nj nj+1 . . . nj+`j−1).

(20.7)

Theorem 20.2. (i) Case n = 2n′ even: If L(σ′) ≡ 0 (mod 2), then
F II

0,n(g′) = tr
(
ΠII

0 (g′)
) 6= 0 if and only if (Condition II-00) in �17.2.1 holds for
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g′. In that case,

F II
0,n(g′) = 2n′ · ε(∏j∈J− g′j

) ·
∏
j∈J

(−1)(`j−1)/2 2−(`j−1)/2,

where ε
(∏

j∈J− g′j
)

:=
∏
{j1, j2}<J− ε(g′j1g

′
j2

), with the sign ε(g′j1g
′
j2

) = ±1 de�ned
by (17.22) � (17.24), and also by (17.25), and for j ∈ J−, `j are even and we
use the rule (−1)1/2(−1)1/2 = −1.

If L(σ′) ≡ 1 (mod 2), then F II
0,n(g′) 6= 0 if and only if (Condition II-11) in

�17.3 holds for g′. In that case,

F II
0,n(g′) = εII(g′) · 2n′in

′−1 ·
∏
j∈J

(−1)`j−1 2−(`j−1)/2

= −εII(g′) · 2n′in
′−1 ·

∏
j∈J

2−(`j−1)/2,

where εII(g′) = ±1 is given by (17.34).

(ii) Case n = 2n′ + 1 odd: Let g′ = (g′, σ′) ∈ H̃ II
n = D̃n

II
o Ãn ( G̃ II

n .

If ord(d′) ≡ 0 (mod 2), then F II,H̃
+,n (g′) 6= 0 if and only if (Condition II-00)

in �17.5 holds for g′. In that case,

F II,H̃
+,n (g′) = 2n′ · ε(∏j∈J− g′j

) ·
∏
j∈J

(−1)(`j−1)/2 2−(`j−1)/2.(20.8)

If ord(d′) ≡ 1 (mod 2), then F II,H̃
+,n (g′) 6= 0 if and only if (Condition 0-11)

in �17.5 holds for g′. In that case,

F II,H̃
+,n (g′) = ε0(g′) · (−1)|J−|/2 · (2i)n′ ·

∏
j∈J

2−(`j−1)/2,(20.9)

where the sign ε0(g′) = ±1 is determined by (17.43).

Let τ ′ ∈ S̃n \ Ãn. If ord(d′) ≡ 0 (mod 2), then F II,H̃
+,n (τ ′g′τ ′ −1) = F II,H̃

+,n (g′).

If ord(d′) ≡ 1 (mod 2), then F II,H̃
+,n (τ ′g′τ ′ −1) = −F II,H̃

+,n (g′).

(iii) Case n = 2n′+1 odd: Let g′ = (d′, σ′) ∈ H̃ II
n and τ ′ ∈ S̃n \ Ãn, then

F II
+,n(g′) =

{
2 F II,H̃

+,n (g′) if ord(d′) ≡ 0 (mod 2),

0 if ord(d′) ≡ 1 (mod 2),
(20.10)

and F II
+,n(τ ′g′) = 0 identically on τ ′H̃ II

n .

From Theorems 17.7 and 17.9, we get the following. In particular, for the
assertion (ii) below, we should note that ζ(τ1τ2···τn)γ(d

′) = (−1)ord(d′) ζγ(d
′).
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Lemma 20.3. Let γ ∈ Γ0
n and g′ = (d′, σ′) ∈ D̃n

II
o S be as above.

(i) Case n = 2n′ even: S = S(Pγ) = Φ−1
( ∏

ζ∈T̂ 0 SIn,ζ

)
.

If L(σ′) ≡ 0 (mod 2), then f II
γ (g′) = tr

(
πII

γ (g′)
) 6= 0 if and only if (Condition

II-00) in �17.2.1 holds for g′. If L(σ′) ≡ 1 (mod 2), then f II
γ (g′) 6= 0 if and

only if (Condition II-11) in �17.3 holds for g′. In general,

f II
γ (g′) = ζγ(d

′) · F II
0,n(g′).

(ii) Case n = 2n′ + 1 odd: S = S(P+
γ ) = Ã

( ∏
ζ∈T̂ 0 SIn,ζ

)
.

If ord(d′) ≡ 0 (mod 2), then f 0+
γ (g′) 6= 0 if and only if (Condition II-00)

in �17.5 holds for g′. If ord(d′) ≡ 1 (mod 2), then f 0+
γ (g′) 6= 0 if and only if

(Condition 0-11) in �17.5 holds for g′. In general,

f0+
γ (g′) = ζγ(d

′) · F II,H̃
+,n (g′).

20.2 Spin irreducible characters of G̃ II
n (Case n even)

Using Proposition 18.7 together with Lemma 20.1, we obtain the following for-
mula for spin irreducible characters F II

Λn , n even, for Λn = (λn,ζ)ζ∈T̂ 0 ∈ Yn(T )0.

Take g′ = (d′, σ′) ∈ G̃ II
n , and let

g = Φ(g′) = (d, σ) ∈ Gn = Dn oSn = G(m, 1, n),(20.11)

with d = Φ(d′) ∈ Dn, σ = Φ(σ′) ∈ Sn. The non-spin character ζγ(d
′) on D̃n

is considered also as a character of Dn which is denoted by the same symbol as
ζγ(d).

For s′ ∈ S̃n, put s = Φ(s′), then Φ(s′g′s′−1) = sgs−1 =
(
s(d), sσs−1

)
, and

ζs−1γ(d
′) = ζs−1γ(d) = ζγ

(
s(d)

)
. Let F̆γ,Λn(g) be the character of an IR of the

base group Gn = G(m, 1, n) given in (19.15) � (19.19).
By Proposition 18.7 and Lemma 20.3 (i), we obtain the following, through

similar discussions as for Theorem 19.9.

Theorem 20.4 (Case n = 2n′ ≥ 4 even). Let Λn = (λn,ζ)ζ∈T̂ 0 ∈ Yn(T )0.

(i) Take g′ = (d′, σ′) ∈ D̃n

II
o S(Pγ), S(Pγ) = Φ −1

S

( ∏
ζ∈T̂ 0 SIn,ζ

)
. Suppose

L(σ′) ≡ 0 (mod 2). Then F II
Λn(g′) = tr

(
ΠII

Λn(g′)
) 6= 0 only if (Condition II-00)

in �17.2.1 holds for g′. In that case,

F II
tΛn(g′) = F II

Λn(g′),

F II
Λn(g′) = F II

0,n(g′)× F̆γ,Λn(g).

Suppose L(σ′) ≡ 1 (mod 2). Then F II
Λn(g′) = tr

(
ΠII

Λn(g′)
) 6= 0 only if

(Condition II-11) in �17.3 holds for g′. In that case,

F II
tΛn(g′) = −F II

Λn(g′),
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F II
Λn(g′) = F II

0,n(g′)× F̆γ,Λn(g).

(ii) If g′ ∈ G̃ II
n is not conjugate to an element of D̃n

II
o S(Pγ), then

F II
Λn(g′) = 0.
(iii) In total, F II

Λn = F II
0,n × F̆γ,Λn, and so ΠII

Λn
∼= ΠII

0 ⊗ Π̆γ,Λn .

20.3 Spin irreducible characters of G̃ II
n

(Case n odd, Case of {Λn, tΛn} ∈Y A
n (T )0,1)

20.3.1 Preparatory formulas in Case n odd

Let n = 2n′+1 ≥ 5 be odd, and γ ∈ Γ0
n. Note that, as is remarked in �14.3.1, the

character of 0+
n is invariant under S̃n, since 0+

n is the restriction to the subgroup
Ãn of a spin representation of the group S̃n which is equivalent to ∇′

n.
Take s′0 from Φ −1

S

( ∏
ζ∈T̂ 0 SIn,ζ

) \ Ã
( ∏

ζ∈T̂ 0 SIn,ζ

)
, then s0γ = γ and

s0 = Φ(s′0) ∈ Sγ \ Aγ, with Aγ := A
( ∏

ζ∈T̂ 0

SIn,ζ

)
, Sγ =

∏

ζ∈T̂ 0

SIn,ζ
,(20.12)

and Sγ = Aγ t s0Aγ. Moreover we have by Lemmas 12.4 and 17.10 respectively
{ (

ρΛn

)s0 ∼= ρΛn , for {Λn, tΛn} ∈ Y A
n (T )0,1 ;

(
ρ

(κ)
Λn

)s0 ∼= ρ
(κ+1)
Λn , for (Λn, κ) ∈ Y A

n (T )0,2 ,
(20.13)

f0+
γ (s′0g

′s′0
−1

) = (−1)ord(d′) f0+
γ (g′).(20.14)

where the super�x κ + 1 is understood modulo 2. For d′ ∈ D̃n and s′ ∈ S̃n, put
d = Φ(d′), s = Φ(s′), then

ζγ

(
(s′0s

′)II(d′)
)

= ζγ

(
s0s(d)

)
= ζγ

(
s(d)

)
= ζγ

(
s′ II(d′)

)
;

ζ(τ1τ2···τn)s−1γ(d
′) = (−1)ord(d) ζs−1γ(d) = (−1)ord(d) ζγ

(
s(d)

)
.

(20.15)

By Proposition 18.8, we have, for g′ = (d′, σ′) ∈ D̃n

II
o Ãn ⊂ G̃ II

n and s′ ∈ Ãn,

tr
(
P+

γ

(
s′II(d′)

)
0+

n (s′σ′s′−1))
= tr

(
P+

γ (d′)0+
n (σ′)

) · ζs−1γ(d
′)

ζγ(d′)
,(20.16)

and in particular, for g′ = (d′, σ′) ∈ D̃n

II
o S(P+

γ ) and s′ ∈ Ãn,

f0+
γ (s′g′s′−1

) = f0+
γ (g′) · ζs−1γ(d

′)
ζγ(d′)

.(20.17)

Therefore, noting that s′0g
′s′0

−1 =
(
s′0

II(d′), s′0σ
′s′0

−1
)
, we have by Lemma 20.3 (ii)

the following.
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Lemma 20.5. Let g′ = (d′, σ′) ∈ D̃n

II
o S(P±

γ ) and s′ ∈ Ãn .
(i) Suppose ord(d′) ≡ 0 (mod 2). Then, under (Condition II-00) on g′,

f0+
γ (s′g′s′−1

) = F II,H̃
+,n (g′)× ζγ

(
s(d)

)
;

f0+
γ (s′s′0g

′s′0
−1

s′−1
) = F II,H̃

+,n (g′)× ζγ

(
ss0(d)

)
.

(ii) Suppose ord(d′) ≡ 1 (mod 2). Then, under (Condition 0-11) on g′,

f0+
γ (s′g′s′−1

) = F II,H̃
+,n (g′)× ζγ

(
s(d)

)
;

f0+
γ (s′s′0g

′s′0
−1

s′−1
) = −F II,H̃

+,n (g′)× ζγ

(
ss0(d)

)
.

20.3.2 Case of Λn = (λn,ζ)ζ∈T̂ 0 , {Λn, tΛn} ∈ Y A
n (T )0,1 (Part 1)

Using the above results, we discuss spin irreducible characters F0+
Λn , depending

on the cases whether ord(d′) ≡ 0 (mod 2) or ord(d′) ≡ 1 (mod 2). Here we treat
the case of ord(d′) ≡ 0 (mod 2).

We obtain from Lemmas 19.8 and 20.1 (ii) the following result.

Lemma 20.6. Let {Λn, tΛn} ∈ Y A
n (T )0,1, n = 2n′+1. For g′ = (d′, σ′) ∈

D̃n

II
o S(P+

γ ), S(P+
γ ) = Ã

( ∏
ζ∈T̂ 0 SIn,ζ

)
, assume that ord(d′) ≡ 0 (mod 2).

Then, under (Condition II-00) on g′,

F0+
Λn (g′) = F II,H̃

+,n (g′)×
×

∑

s∈Aγ\An :
sσs−1∈Aγ

(
ζγ

(
s(d)

)
fρ

Λn(sσs−1) + ζγ

(
ss0(d)

)
fρ

Λn

(
ss0σ(ss0)

−1
))

.(20.18)

For g = Φ(g′) ∈ Dn oAγ, the character of an IR ζγ · ρΛn of Dn oAγ is given
by

Xγ,Λn(g) := ζγ(d) · fρ
Λn(σ).

The sum in (20.18) gives the character of the induced representation

IndDnoSn
DnoAγ

(
ζγ · ρΛn

) ∼= IndDnoSn
DnoSγ

(
Ind

DnoSγ

DnoAγ

(
ζγ · ρΛn

))
.(20.19)

With an element s0 ∈ Sγ \ Aγ , the character of Ind
DnoSγ

DnoAγ
(ζγ · ρΛn) is given as

Xγ,Λn(g) + Xγ,Λn(s0gs −1
0 ) = ζγ(d)

(
fρ

Λn(σ) + fρ
Λn

(
s0σs0

−1)
)
,

because s −1
0 γ = γ and so ζγ

(
s0(d)

)
= ζγ(d). Moreover the above sum is the

character of Ind
Sγ

Aγ
ρΛn ∼= πΛn ⊕ πtΛn by Lemma 12.4, which is zero outside of

Aγ. Thus we see that the sum in (20.18) is equal to F̆γ,Λn(g) + F̆γ,tΛn(g) =(
1 + sgn(σ)

)
F̆γ,Λn(g) = 2F̆γ,Λn(g).
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Proposition 20.7. For g′ = (d′, σ′) ∈ D̃n

II
o S(P±

γ ) with ord(d′) ≡
0 (mod 2), F0±

Λn (g′) 6= 0 only if g′ satis�es (Condition II-00). In that case,

F0+
Λn (g′) = F II,H̃

+,n (g′) · 2 · F̆γ,Λn(g) = F II
+,n(g′)× F̆γ,Λn(g).

20.3.3 Case of Λn = (λn,ζ)ζ∈T̂ 0 , {Λn, tΛn} ∈ Y A
n (T )0,1 (Part 2)

Here we treat the case of ord(d′) ≡ 1 (mod 2). In this case, as is seen in Lemma
17.9 (ii), f0±

γ (g′) 6= 0 if and only if the following condition holds for g′ :

(Condition 0-11)

{ |supp(g′)|=n=2n′+1, ord(d′) ≡ 1, L(σ′) ≡ 0 (mod 2),

ord(ξ′q) ≡ 1 (q ∈ Q), ord(d′j) ≡ 1 (j ∈ J) (∴ r+s≡1).

Apply this, and use Lemma 20.5 (ii) and
(
ρΛn

)s0 ∼= ρΛn , then we obtain the
following.

Lemma 20.8. Let g′ = (d′, σ′) ∈ D̃n

II
o S(P±

γ ) be as in (20.7). Assume

ord(d′) ≡ 1 (mod 2). Then, possibly F0±
Λn (g′) 6= 0 only if g′ satis�es (Condition

0-11). In that case,

F0+
Λn (g′) = F II,H̃

+,n (g′)×
×

∑

s∈Aγ\An, sσs−1∈Aγ

(
ζγ

(
s(d)

)
fρ

Λn(sσs−1)− ζγ

(
ss0(d)

)
fρ

Λn(ss0σs0
−1s−1)

)
.

Now, on the base group level, we consider induced representations of ζγ ¡ρΛn

from Dn o Aγ = Φ
(
D̃n

II
o S(P±

γ )
)
up to Hn := Dn o An and also up to Gn =

Dn oSn as

P̆ Hn
γ,Λn := IndHn

DnoAγ

(
ζγ ¡ ρΛn

)
of Hn ;

P̆ Gn
γ,Λn := IndGn

DnoAγ

(
ζγ ¡ ρΛn

)
of Gn .

(20.20)

Since Ind
Sγ

Aγ
ρΛn ∼= πΛn ⊕ πtΛn , we have P̆ Gn

γ,Λn
∼= Π̆γ,Λn ⊕ Π̆γ,tΛn .

Denote by F̆ Hn
γ,Λn the character of P̆ Hn

γ,Λn . Then the sum in the above lemma

gives us F̆ Hn
γ,Λn(g) − F̆ Hn

γ,Λn

(
s0gs0

−1
)
. On the other hand, since Λn 6= tΛn, we

have s −1
0 (ρΛn) ∼= ρΛn and s −1

0 (ζγ · ρΛn) ∼= ζγ · ρΛn . This gives us F̆ Hn
γ,Λn(g) =

F̆ Hn
γ,Λn

(
s0gs0

−1
)
.

Theorem 20.9 (Case n = 2n′ + 1 ≥ 5 odd). Let {Λn, tΛn} ∈ Y A
n (T )0,1.

(i) Let g′ = (d′, σ′) ∈ D̃n

II
o S(P±

γ ) be as in (20.7).

Assume ord(d′) ≡ 0 (mod 2). Then F0+
Λn (g′) 6= 0 only if g′ satis�es (Con-

dition II-00). In that case,

F0+
Λn (g′) = F II,H̃

+,n (g′) · 2 · F̆γ,Λn(g) = F II
+,n(g′)× F̆γ,Λn(g).
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where F̆γ,Λn(g) denotes the character of non-spin IR of the base group Gn =
Dn oSn = G(m, 1, n) given in (19.19) in Theorem 19.7.

Assume ord(d′) ≡ 1 (mod 2). Then F0+
Λn (g′) = 0, F II

+,n(g′) = 0, and

F0+
Λn (g′) = F II

+,n(g′)× F̆γ,Λn(g).

(ii) If g′ ∈ G̃ II
n is not conjugate to an element in D̃n

II
o S(P±

γ ), then

F0+
Λn (g′) = 0, F̆γ,Λn(g) = 0, and F0+

Λn (g′) = F II
+,n(g′)× F̆γ,Λn(g).

(iii) Let Π̆γ,Λn = IndGn
Hn

π̆γ,Λn be as in (19.11). Then

F0+
Λn = F II

+,n × F̆γ,Λn and Π0+
Λn
∼= ΠII

+ ⊗ Π̆γ,Λn.

Remark 20.1. Let n ≥ 5 be odd, and {Λn, tΛn} ∈ Y A
n (T )0,1. Then,

Π0−
Λn
∼= Π0+

Λn , as IRs of G̃ II
n .

20.4 Spin irreducible characters of G̃ II
n

(Case n odd, Case of (Λn, κ) ∈ Y A
n (T )0,2, κ = 0, 1)

20.4.1 Irreducible characters of Hn = Dn o An

First we discuss on the base group level. Recall De�nition 13.2 for Sn and refer
Theorems 13.3, 13.5 and 13.7 for Ãn.

Lemma 20.10. Let g = (d, σ) = ξq1 · · · ξqrg1 · · · gs be an element of Hn =
Dn o An, with ξq = y

aq
q , gj = (dj, σj), for n ≥ 4. Let τ ∈ Sn \ An. Then

the conjugacy class of g under Gn = Dn oSn splits into two conjugacy classes
under Hn if and only if r ≤ 1 and σ = σ1 · · · σs ∈ An is of the 2nd kind and
of the 3rd kind (in the sense of Schur) at the same time, that is, `(σj) (j ∈ J)
are all odd and mutually di�erent.

Let Λn = (λn,ζ)ζ∈T̂ ∈ Yn(T ) be such that tΛn = Λn and |λn,ζ | ≥ 2 (∃ζ),
and let γ ∈ Γn is subordinate to Λn. On the base group level, for the subgroup

DnoAγ = Φ
(
D̃n

II
o S(P±

γ )
)
of Gn = DnoSn, consider its IRs ζγ¡ρ

(κ)
Λn (κ = 0, 1),

and take their induced representations up to Hn := Dn o An and also up to
Gn = Dn oSn as

P̆ Hn
γ,Λn,κ := IndHn

DnoAγ

(
ζγ ¡ ρ

(κ)
Λn

)
of Hn ;

P̆ Gn
γ,Λn,κ := IndGn

DnoAγ

(
ζγ ¡ ρ

(κ)
Λn

)
of Gn .

(20.21)

Take an s0 ∈ Sγ \ Aγ . Then ζγ(s0ds −1
0 ) = ζγ(d) (d ∈ Dn), s0

(
ρ

(κ)
Λn

) ∼= ρ
(κ+1)
Λn ,

and Ind
Sγ

Aγ
ρ

(κ)
Λn
∼= Ind

Sγ

Aγ
ρ

(κ+1)
Λn

∼= πΛn , and accordingly

P̆ Gn
γ,Λn,κ

∼= Π̆γ,Λn (κ = 0, 1).(20.22)
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Denote by F̆ Hn
γ,Λn,κ the characters of P̆ Hn

γ,Λn,κ. Then, for h = (d, σ) ∈ Hn ,





F̆ Hn
γ,Λn,κ(s0hs −1

0 ) = F̆ Hn
γ,Λn,κ+1(h) ;

F̆ Hn
γ,Λn,0(h) + F̆ Hn

γ,Λn,1(h) = F̆γ,Λn(h) ;

F̆ Hn

(τ1τ2···τn)γ,Λn,κ(h) = (−1)ord(d) F̆ Hn
γ,Λn,κ(h).

(20.23)

Since F̆γ,Λn(g) = 0 outside Hn, the second equality above can be expressed as
F̆γ,Λn = F̆ Hn

γ,Λn,0 + F̆ Hn
γ,Λn,1 if each F̆ Hn

γ,Λn,κ is extended identically zero outside Hn.

Proposition 20.11 (non-spin irreducible characters of Hn). Let Λn be such
that tΛn = Λn, and γ ∈ Γ is subordinate to Λn. For a g = (d, σ) ∈ Dn o
Aγ ⊂ Hn = Dn o An, let its standard decomposition be as in (19.13), and

put Q = {q1, q2, . . . , qr}, J = {1, 2, . . . , s}. Then the character F̆ Hn
γ,Λn,κ(g) of IR

P̆ Hn
γ,Λn,κ of Hn is given by

F̆ Hn
γ,Λn,κ(g) =

1

2

∑

(Q,J )

b(In;Q,J ; g) X
(
Λn, κ ; Q, J ; g

)
,(20.24)

where the summation runs over all pairs of partitions (Q,J ) for which (Con-
dition QJ) in �19.3 holds, and the coe�cient b(In;Q,J ; g) is given in (19.18),
and

X
(
Λn, κ; Q, J ; g

)
:=

∏

ζ∈T̂

ζ
(∏

q∈Qζ
ξq ·

∏
j∈Jζ

dj

)
× fρ

Λn,κ

(
σJ

)
.(20.25)

Here σJ denotes an An-conjugate of σ such that σJ =
∏

ζ∈T̂ σζ with σζ ∈ SIn,ζ

a product of cycles of lengths `j (j ∈ Jζ).
For any g = (d, σ) ∈ Hn which is not conjugate to any element in Dn oAγ,

the character vanishes.

To calculate F̆ Hn
γ,Λn,κ(g) − F̆ Hn

γ,Λn,κ(s0gs0
−1), the evaluation of the di�erence

fρ
Λn,κ

(
σJ

)− fρ
Λn,κ

(
s0σJ s0

−1
)
is essential. The latter has been already studied for

irreducible characters of An by Frobenius [Frob2], and here we remark only the
following.

Lemma 20.12. The di�erence fρ
Λn,κ

(
σJ

) − fρ
Λn,κ

(
s0σJ s0

−1
)
of character

values is non-zero only when, for each ζ ∈ T̂ ,

|In,ζ |−
∑

j∈Jζ
`j ≤ 1 , and `j (j ∈ Jζ) are all di�erent, odd integers.

20.4.2 Characters of spin IRs Π0+
Λn,κ of G̃ II

n for (Λn, κ) ∈ Y A
n (T )0,2

Now we study characters of spin IRs Π0+
Λn,κ of G̃ II

n for (Λn, κ) ∈ Y A
n (T )0,2, and

apply Lemma 20.12 and Proposition 20.11. Introduce a condition on g′ as
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(Condition 0-11s)





|supp(g′)| = n = 2n′+1, ord(d′) ≡ 1, L(σ′) ≡ 0 (mod 2),

ord(ξ′q) ≡ 1 (q ∈ Q), ord(d′j) ≡ 1 (j ∈ J), r ≤ 1 (|Q|≤1),

L(σ′j) ≡ 0 (j ∈ J), and `(σ′j) (j ∈ J) all di�erent.

Theorem 20.13 (Case n = 2n′ + 1 ≥ 5 odd).
Let (Λn, κ) ∈ Y A

n (T )0,2, κ = 0, 1.

(i) Let g′ = (d′, σ′) ∈ D̃n

II
o S(P±

γ ) be as in (20.7).

Assume ord(d′) ≡ 0 (mod 2). Then F0±
Λn,κ(g

′) 6= 0 only if (Condition II-00)
holds for g′. In that case,

F0+
Λn,0(g

′) = F0+
Λn,1(g

′) = F II,H̃
+,n (g′)× F̆γ,Λn(g),

where F̆γ,Λn(g) denotes the character of non-spin IR of the base group Gn =

Dn oSn = G(m, 1, n) given in (19.19), and F̆γ,Λn(g) = 0 if sgn(σ) = −1.

Assume ord(d′) ≡ 1 (mod 2). Then F0±
Λn,κ(g

′) 6= 0 only if (Condition 0-11s)

holds for g′, and F0+
Λn,1(g

′) = −F0+
Λn,0(g

′), and

F0+
Λn,κ(g

′) = F II,H̃
+,n (g′)× (

F̆ Hn
γ,Λn,κ(g)− F̆ Hn

γ,Λn,κ+1(g)
)

(κ = 0, 1).

(ii) If g′ ∈ G̃ II
n is not conjugate to an element in D̃n

II
o S(P±

γ ), then

F0±
Λn,κ(g

′) = 0.

Proof. We start with the summation formula in Lemma 20.1. Take an
s′0 ∈ Φ−1

( ∏
ζ∈T̂ 0 SIn,ζ

) \ S. Then the main sum in the formula is rewritten as

∑

s′∈S\Ãn : s′σ′s′−1∈S

{
f0+

γ

(
(s′ II(d′), s′σ′s′−1

)
) · fρ

Λn,κ(sσs−1) +

f0+
γ

((
s′ II

(
s′0

II
(d′)

)
, s′(s′0σ

′s′0
−1

)s′−1)) · fρ
Λn,κ(s(s0σs0

−1)s−1)
}

.

By Proposition 18.8, for g′ = (d′, σ′), this is equal to

∑

s′ : as above

{
f0+

s−1γ(g
′)·fρ

Λn,κ(sσs−1) + f0+
s−1γ(s

′
0g
′s′0

−1
)·fρ

Λn,κ(s(s0σs0
−1)s−1)

}
.

By Theorem 17.9 (ii), we have f0+
γ (g′) = f0+

γ (g′) = ζγ(d
′) · F II,H̃

+,n (g′).
On the other hand, by Lemma 17.10, f0+

γ (s′0g
′s′0

−1) = (−1)ord(d′) f0+
γ (g′).

Therefore, under the condition sgn(σ′) = 1, the sum above is equal to

∑

s′ : as above

f0+
s−1γ(g

′) · (fρ
Λn,κ(sσs−1)± fρ

Λn,κ+1(sσs−1)
)
,

according as (−1)ord(d′) = ±1. This gives us the formulas for F0+
Λn,κ.
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Remark that F̆ Hn

(τ1τ2···τn)γ,Λn,κ(g) = (−1)ord(d) F̆ Hn
γ,Λn,κ(g), then the results for

Π0−
Λn,κ are obtained from those for Π0+

Λn,κ . 2

Remark 20.2. Let n ≥ 5 odd, and (Λn, κ) ∈ Y A
n (T )0,2, κ = 0, 1. Then,

Π0−
Λn,0

∼= Π0+
Λn,1 , Π0−

Λn,1
∼= Π0+

Λn,0 , as IRs of G̃ II
n .

20.5 Spin irreducible characters of G̃ II
n

(Case n odd, Case of Λn ∈ Y A
n (T )0,3)

This is an exceptional case in the case of n odd, and we say that the corresponding
IRs Π0+

Λn are in Case (Exc). As seen in Example 12.3, P+
γ ·0+

n = P+
γ ·χ1 with a spin

character χ1 of Z1 = 〈z1〉 ⊂ Ãn : χ(z1) = −1, and ρΛn = 1 for Λn ∈ Y A
n (T )0,3.

Here D̃n

II
o S(P+

γ ) = D̃n × Z1, and Π0+
Λn = IndG̃ II

D̃n×Z1

(
P+

γ · χ1

)
.

Theorem 20.14. Let n = 2n′ + 1 ≤ m′ = m/2, and Λn = (λn,ζ)ζ∈T̂ 0 ∈
Y A

n (T )0,3. The character F0+
Λn of Π0+

Λn is given as follows. Let γ = (γ1, . . . , γn) ∈
Γ0

n in (11.7) be subordinate to Λn, then γj's are all di�erent.

Let g′′ = (d′′, σ′) ∈ G̃ II = D̃n

II
o S̃n with d′′ = z b

2 d′, d′ = η a1
1 η a2

2 · · · η an
n .

Then F0+
Λn (g′′) = 0 except when σ′ = z a

1 . For g′′ = (d′′, z a
1 ),

(∗) F0+
Λn (g′′) =





(−1)a(−1)b 2n′ ∑
σ∈Sn

ζσγ(d
′),

if d′ ∈ D̃0
n or aq ≡ 0 (mod 2) (q ∈ Q) ;

(−1)a(−1)b (2i)n′
{ ∑

σ∈An
ζσγ(d

′)−∑
σ∈An

ζσs1γ(d
′)
}
,

if aq ≡ 1 (mod 2) (q ∈ Q) ;

0, otherwise.

where χγ is given in De�nition 6.1, and ζγ(d
′) = ωγ1a1+···+γnan , ω = e2πi/m, and

s1 = (1 2) ∈ Sn.

Note 20.1. In this exceptional case, Λn ∈ Y A
n (T )0,3, all 0 ≤ γj ≤ m′ =

m/2 (j ∈ In) are mutually di�erent. So ζσγ, σ ∈ Sn, are all di�erent non-spin
characters of Dn. Moreover, in the middle line in (∗), put aj = 2bj + 1, then

ζσ−1γ(d
′) = ωγ1+···+γn

(
ω2)γσ(1)b1+···+γσ(n)bn .

This shows that we have there a non-zero function on (η1 · · · ηn)D̃0
n .



Part IV

Spin characters of in�nite group

R
(
G(m, 1,∞)

)
of Types (−1,−1,±1)

For a �nite dimensional representation π of a group H, its normalized character
is de�ned as χ̃π(h) := tr

(
π(h)

)
/ dim π (h ∈ H). In this part, we study pointwise

limits of normalized spin irreducible characters of R
(
G(m, 1, n)

)
as n → ∞, in

CASEs I and II. We prove that the set of all limits gives exactly the set of all
characters of the in�nite group R

(
G(m, 1,∞)

)
of each spin type.

21 Towards limits of spin irreducible characters

21.1. Summary on spin IRs and spin irreducible characters.
To start with, we summarize the fundamental results on spin IRs and their

characters of R
(
G(m, 1, n)

)
in CASEs I and II as follows. For CASE I, Type

(−1,−1,−1), spin IRs are classi�ed in Theorem 11.5 with their parameter space
in (11.21), and their characters are given in Theorem 19.9. For CASE II, Type
(−1,−1, 1), spin IRs are classi�ed in Theorem 12.6 with their parameter spaces
in (12.14), and their characters are given in Theorems 20.4, 20.9, 20.13 and 20.14.
The parameter spaces for them are given as follows: let Y be the set of all Young
diagrams, and T̂ 0 = {ζ ∈ T̂ ; ζ(η) = ωa, 0 ≤ a < m′ = m/2}, then

Yn(T )0 =
{
Λ = (λζ)

ζ∈T̂ 0 ; λζ ∈ Y ,
∑

ζ∈T̂ 0
|λζ | = n

}
;

Y An (T )0 = Y An (T )0,1 t Y An (T )0,2 t Y An (T )0,3, with




Y An (T )0,1 =
{{Λn, tΛn} ; Λn = (λn,ζ)

ζ∈T̂ 0 ∈ Yn(T )0, tΛn 6= Λn
}
,

Y An (T )0,2 =
{
(Λn, κ) ; Λn ∈ Yn(T )0, tΛn = Λn, |λn,ζ | ≥ 2 (∃ζ), κ = 0, 1

}
,

Y An (T )0,3 =
{
Λn = (λn,ζ)

ζ∈T̂ 0 ; |λn,ζ | ≤ 1 (∀ζ)
}
.

Table 21.1. Spin IRs and spin irreducible characters for G(m, 1, n).

CASE
Type

Parity
of n

Symbol of
IRs

irreducible
characters

given in
Theorem

I
n even ΠI

Λn (Λn ∈ Yn(T )0) F I
Λn 19.9 (i)

(−1,−1,−1)
n odd ΠI+

Λn , ΠI−
Λn (Λn ∈ Yn(T )0) F I+

Λn , F I−
Λn 19.9 (ii)

II
n even ΠII

Λn (Λn ∈ Y An (T )0) F II
Λn 20.4

(−1,−1, 1)
n odd

Π0+
Λn ({Λn, tΛn} ∈ Y An (T )0,1) F0+

Λn 20.9

Π0+
Λn,κ ((Λn, κ) ∈ Y An (T )0,2) F0+

Λn,κ 20.13

Π0+
Λn (Λn ∈ Y An (T )0,3) F0+

Λn 20.14

246
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21.2. Evaluation of supports of spin irreducible characters.

We evaluate the supports of each irreducible characters and obtain the fol-
lowing Table 21.2, which is a re�nement of Table 4.1.

Table 21.2. Supports of spin irreducible characters for G̃Y(m, 1, n),
Y=I, II, 4 ≤ n < ∞, m = 2m′:

CASE Y f(g′) 6= 0 ⇒ Condition for g′=d′σ′=ξ′q1
· · · ξ′qr

g′1 · · · g′s, g′j =(d′j , σ
′
j)

(spin) Type ord(d′) + L(σ′) ≡ 0 (mod 2) ord(d′) + L(σ′) ≡ 1 (mod 2)
(β1, β2, β3) ord(d′) ≡ 0 ord(d′) ≡ 1 ord(d′) ≡ 0 ord(d′) ≡ 1
parity of n L(σ′) ≡ 0 L(σ′) ≡ 1 L(σ′) ≡ 1 L(σ′) ≡ 0
I (n even)

(−1,−1,−1)
Condition I-00 ∅

I (n odd)
(−1,−1,−1)

Condition I-00 Condition I-11

II (n even)
(−1,−1, 1)

Condition II-00 Condition II-11 ∅

II (n odd)
(−1,−1, 1)

Condition II-00 ∅

except Case (Exc):
Condition 0-11s

in Case (Exc):
Condition 0-Exc

Here the symbol ∅ means that characters are identically zero there.

(Condition I-00) and (Condition I-11) are given in Lemma 16.2, (Condition II-00)
in �17.2.1, (Condition II-11) in �17.3, (Condition 0-11) in �17.5, and (Condition 0-
11s) in �20.4.2. For the convenience of readers, we list up them here, together with
(Condition 0-Exc) below appearing in Case (Exc) in �20.5 :

(Condition I-00)

{
ord(d′) + L(σ′) ≡ 0 (mod 2) ,

ord(ξ′q) ≡ 0 (q ∈ Q), ord(d′j) + L(σ′j) ≡ 0 (mod 2) (j ∈ J) ;

(Condition I-11)

{
|supp(g′)| = n odd, ord(d′) + L(σ′) ≡ 1 (mod 2) ,

ord(ξ′q) ≡ 1 (q ∈ Q), ord(d′j) ≡ 1 (mod 2) (j ∈ J) ;

(Condition II-00)

{
ord(d′) ≡ 0, L(σ′) ≡ 0 (mod 2) ,

ord(ξ′q) ≡ 0 (q ∈ Q), ord(d′j) + L(σ′j) ≡ 0 (mod 2) (j ∈ J) ;

(Condition II-11)

{
|supp(g′)| = n = 2n′, ord(d′) ≡ L(σ′) ≡ 1, r + s ≡ 1,

ord(ξ′q) ≡ 1 (q ∈ Q), ord(d′j) ≡ 1 (mod 2) (j ∈ J) ;

(Condition 0-11)

{
|supp(g′)|=n odd, ord(d′) ≡ 1, L(σ′) ≡ 0 (mod 2),
ord(ξ′q) ≡ 1 (q ∈ Q), ord(d′j) ≡ 1 (j ∈ J) (∴ r+s≡1) ;

(Condition 0-11s)





|supp(g′)|=n odd, ord(d′) ≡ 1, L(σ′) ≡ 0 (mod 2),
ord(ξ′q) ≡ 1 (q ∈ Q), ord(d′j) ≡ 1 (j ∈ J), r≤1 (|Q|≤1),
L(σ′j) ≡ 0 (j ∈ J), and `(σ′j) (j ∈ J) all di�erent ;

(Condition 0-Exc)

{
|supp(g′)|=n (≤ m′) odd, ord(d′) ≡ 1 (mod 2),
σ′ = z a

1 (a = 0, 1) ; ord(ξ′q) ≡ 1 (∀q ∈ Q = In).
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When we consider limits of characters of spin IRs of G̃Y
n , Y = I, II as n → ∞, as

soon as n > |supp(g′)|, there does not hold any of (Condition I-11), (Condition II-11),
(Condition 0-11) and (Condition 0-11s) for g′, no more. So we are naturally led to
consider only the cases of g′ under (Condition I-00) or (Condition II-00). The case of
Λn ∈ Yn(T )0,3 is out of our present consideration since n ≤ m′ = m/2.

The inductive limits G̃Y∞ := limn→∞ G̃Y
n (Y=I, II) are covering groups of G∞ :=

G(m, 1,∞) = limn→∞G(m, 1, n) and are quotients of the representation group

R
(
G(m, 1,∞)

)
:= lim

n→∞R
(
G(m, 1, n)

)
(21.1)

by a central subgroup ZI := 〈z2z
−1

3 〉 or ZII := 〈z3〉 corresponding respectively to Y=I
or Y=II as

G̃Y
∞ = R

(
G(m, 1,∞)

)
/ZY (Y=I, II).(21.2)

We may consider as G̃Y∞ =
⋃

nÀ0 G̃Y
n , and as topological groups with the inductive

limit topologies, they are discrete and countable. (Condition Y-00) for each G̃Y
n can

be extended to (Condition Y-00) for G̃Y∞. Denote by F̃ I
Λn the normalized character

F I
Λn/F I

Λn(e), and similarly for other cases.

Lemma 21.1. (i) In CASE I, Type (−1,−1,−1), the limits

lim
n=2n′→∞

F̃ I
Λn(g′), lim

n=2n′+1→∞
F̃ I+

Λn (g′) = lim
n=2n′+1→∞

F̃ I−
Λn (g′)

are all zero if g′ ∈ G̃ I∞ does not satisfy (Condition I-00).
(ii) In CASE II, Type (−1,−1, 1), the limits

lim
n=2n′→∞

F̃ II
Λn(g′), lim

n=2n′+1→∞
F̃ 0+

Λn (g′), lim
n=2n′+1→∞

F̃ 0+
Λn,κ(g′)

are all zero if g′ ∈ G̃ II∞ does not satisfy (Condition II-00).

21.3. General theory on limiting process as n →∞.
In ��2�3 of [HoHH], we studied harmonic analysis on a general branching graph,

allowing in�nite valencies of the graph (see Theorem 3.2, loc. cit. in particular). Gen-
eralizing it, we give Theorem 14.3 in our �rst paper [I], for the case of an increasing
sequence of compact groups. As its corollary in the case of increasing sequence of �nite
groups, we have the following.

Theorem 21.2. Let · · · ⊂ Hn ⊂ Hn+1 ⊂ · · · be a sequence of �nite groups,
and H∞ = limn→∞Hn be its inductive limit. Let f be a character of H∞ (i.e., an
extremal, normalized central positive de�nite function on H∞). Then there exists at
least a sequence of IRs πn of Hn such that f is the pointwise limit of normalized
irreducible characters χ̃πn = χπn/dimπn as n →∞.

With this as our background, to obtain the set E(G) of all characters, for G = H∞,
by the limiting process, there are the following two points to be checked:

(1) To pick up all the good limit functions on G,



[II] 22 Limits of special spin irreducible characters 249

(2) Not to pick up any bad limit functions on G.

In our previous papers [HHH1] and [HoHH], we have studied the case of wreath
products Hn = Sn(T ) and G = H∞ = S∞(T ), with T any compact group. In [HHH1],
concerning the point (2) above, it is proved that, if T is in�nite, then there exists always
non-continuous limit functions (of course, positive de�nite), which are certainly out
of K1(G) and are called as bad limits. Also a necessary and su�cient condition is
given for a path {πn; n ∈ N} to have a good limit (cf. Theorems 6.1 and 7.1, loc. cit.).
Moreover, in Example 6.1, loc. cit., for G = S∞(T ) with certain in�nite T , interesting
bad limits are given explicitly.

21.4. Limits of the special spin irreducible characters.

In CASE I, we gave in Example 11.1 (�11.4) special spin IRs

ΠI
0 of G̃ I

n, in case n = 2n′ is even,
ΠI

+ of G̃ I
n, in case n = 2n′ + 1 is odd,

and their characters F I
0,n and F I

+,n are given in Theorem 19.3 (�19.1). Note that

if F I
0,n(g′) 6= 0

(
resp. F I

+,n(g′) 6= 0
)
, then g′ ∈ G̃ I

n satis�es (Condition I-00), and
that (Condition I-00) does not contain any condition explicitly referring n. Then we
see easily that, when n′ → ∞, these characters, after normalization, have naturally
pointwise limits on G̃ I∞ = limn′→∞ G̃ I

2n′ = limn′→∞ G̃ I
2n′+1. We denote them by F̃ I

0,∞
and F̃ I

+,∞ respectively.

In CASE II, we gave special spin IRs in Example 12.2 (�12.4) as follows:

ΠII
0 of G̃ II

n = D̃n

II
o S̃n, in case n = 2n′ ;

ΠII,H̃
+ of H̃II = D̃n

II
o Ãn, and ΠII

+ = IndG̃ II
n

H̃II
n

ΠII,H̃
+ of G̃ II

n , in case n=2n′+1.

Their characters are denoted by F II
0,n, F II,H̃

+,n and F II
+,n respectively and are given in

Theorem 20.2 (�20.1). Note that if F II
0,n(g′) 6= 0

(
resp. F II,H̃

+,n (g′) 6= 0 or F II
+,n(g′) 6= 0

)
,

then g′ ∈ G̃ II
n satis�es (Condition II-00), and that (Condition II-00) does not contain

any condition explicitly referring n, then we see that, when n′ → ∞, these charac-
ters, after normalization, have naturally pointwise limits on G̃ II∞ = limn′→∞ G̃ II

2n′ =

limn′→∞ G̃ II
2n′+1. We denote these limits by F̃ II

0,∞, F̃ II,H̃
+,∞ and F̃ II

+,∞ respectively.

For Y = I, II, denote by OY the subset of G̃Y∞ consisting of all g′ which satisfy
(Condition Y-00). Then, as we see above, the supports of limiting functions above are
contained in OY in CASE Y.

22 Limits of special spin irreducible characters

For Y=I, II, denote by FY the set of all the limits of normalized spin irreducible
characters of G̃Y

n as n →∞. Then FY consists of central positive de�nite functions on
G̃Y∞ = limn→∞ G̃Y

n , and we see from Theorem 21.2 that FY contains the set EY
(
G̃Y∞

)

of all the characters of G̃Y∞ of (spin) Type Y:

FY ⊃ EY
(
G̃Y
∞

)
(Y=I, II).(22.1)
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To obtain these sets F Y, the following calculations of limits of normalized char-
acters of special spin IRs play important roles as is explained in the �rst subsection
below and will be seen in the next section. Our goal is to give explicit form of each
limit functions f ∈ FY, and also to prove the equality FY = EY

(
G̃Y∞

)
, and thus to

get character formulas.

22.1 General situation before taking limits

CASE I. For general spin IRs, we have in Theorem 19.9 tensor product structures
as follows: let Λn =

(
λn,ζ)

ζ∈T̂ 0 ∈ Yn(T )0 and γ ∈ Γ0
n subordinate to Λn, then

{
ΠI

Λn
∼= ΠI

0 ⊗ Π̆γ,Λn , F I
Λn(g′) = F I

0,n(g′)× F̆γ,Λn(g), in case n ≥ 4 even,

ΠI+
Λn
∼= ΠI

+ ⊗ Π̆γ,Λn , F I+
Λn(g′) = F I

+,n(g′)× F̆γ,Λn(g), in case n ≥ 5 odd,
(22.2)

where g′ ∈ G̃ I
n, g = Φ(g′), and F̆γ,Λn(g) denotes the character given in (19.19) of

non-spin IR Π̆γ,Λn = IndGn
Hn

π̆γ,Λn of Gn = Φ
(
G̃ I

n

)
in (19.11).

Denote by F̆ ∼
γ,Λn the normalized character F̆γ,Λn/F̆γ,Λn(e). Then we have the

following product formula:

{
F̃ I

Λn(g′) = F̃ I
0,n(g′)× F̆ ∼

γ,Λn(g), in case n ≥ 4 even,

F̃ I+
Λn(g′) = F̃ I

+,n(g′)× F̆ ∼
γ,Λn(g), in case n ≥ 5 odd.

(22.3)

CASE II. For general spin IRs, we have in Theorems 20.4, 20.9 and 20.13 tensor
product structures as follows:

Case n = 2n′ ≥ 4 even :

For Λn ∈ Yn(T )0, ΠII
Λn
∼= ΠII

0 ⊗ Π̆γ,Λn and F II
Λn = F II

0,n × F̆γ,Λn .

Case n = 2n′ + 1 ≥ 5 odd :

For {Λn, tΛn} ∈ Y An (T )0,1, Π0+
Λn

∼= ΠII
+ ⊗ Π̆γ,Λn and F0+

Λn = F II
+,n × F̆γ,Λn .

For (Λn, κ) ∈ Y An (T )0,2, κ = 0, 1, for g′ = (d′, σ′) ∈ G̃ II
n ,

if ord(d′) ≡ 0 (mod 2), F0+
Λn,0(g

′) = F0+
Λn,1(g

′) = F II,H̃
+,n (g′)× F̆γ,Λn(g),

if ord(d′) ≡ 1 (mod 2), F0+
Λn,κ(g′) = F II,H̃

+,n (g′)×(
F̆ Hn

γ,Λn,κ(g)− F̆ Hn
γ,Λn,κ+1(g)

)
,

From the above list, together with the detailed data from Theorem 20.13, we obtain
the following product formula:

In case n ≥ 4 is even, F̃ II
Λn(g′) = F̃ II

0,n(g′)× F̆ ∼
γ,Λn(g), Λn ∈ Yn(T )0 ;

In case n ≥ 5 odd, F̃ II
Λn = F̃ II

0,n × F̆∼
γ,Λn , {Λn, tΛn} ∈ Y An (T )0,1, and

F̃0+
Λn,κ(g′) = F̃ II,H̃

+,n (g′)× F̆∼
γ,Λn(g), (Λn, κ) ∈ Y An (T )0,2, if |supp(g′)| < n.

From the above product formulas, we see for each of CASEs I and II, the following.
On the subset OI, for which OI ∩ G̃ I

n contains the supports of F I
0,n and F I

+,n,

the study of limits of F̃ I
Λn(g′) and F̃ I+

Λn(g′) as n = 2n′ → ∞ or n = 2n′ + 1 → ∞, is
equivalent to that on limits of non-spin normalized irreducible characters F̆ ∼

γ,Λn(g) on
the subsets OI = ΦI

(OI
)
of G∞.
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Similarly, on the subset OII containing the supports of F II
0,n (n = 2n′) and F II,H̃

+,n

(n = 2n′ + 1) if |supp(g′)| < n, the study of limits of F̃ II
Λn(g′) and F̃0+

Λn,κ(g′), κ = 0, 1,
as n′ →∞, is equivalent to that on limits of non-spin normalized irreducible characters
F̆ ∼

γ,Λn(g) on the subsets OII = ΦII

(OII
)
of G∞.

22.2 Explicit formulas for special limit characters

As indicated above, special limit functions F̃ I
0,∞, F̃ I

+,∞ etc. are important and also will

be known to be characters on G̃ I∞ etc. Their explicit formulas follow from Theorems
19.3 and 20.2 respectively.

CASE I, Type (−1,−1,−1):

Take g′ = (d′, σ′) ∈ G̃ I∞ = D̃∞
I
o S̃∞ normalized as before as





g′ = ξ′q1
· · · ξ′qr

g′1g
′
2 · · · g′s, ξ′q = η′q

aq (q ∈ Q = {q1, . . . , qr}),
g′j = (d′j , σ

′
j), d′j = η′kj

bj
(∃kj ∈ Kj = supp(g′j), j ∈ J = Is

)
;

σ′j = rnjrnj+1 . . . rnj+`j−2, Kj = [nj , nj + `j − 1].
(22.4)

Lemma 22.3. (i) If ord(d′) + L(σ′) ≡ 0 (mod 2), then F̃ I
0,∞(g′) 6= 0 if and only

if (Condition I-00) holds for g′. In that case, with `j = `(σ′j),

F̃ I
0,∞(g′) =

∏

j∈J

(−1)[(`j−1)/2] 2−(`j−1)/2.(22.5)

If ord(d′) + L(σ′) ≡ 1 (mod 2), then F̃ I
0,∞(g′) = 0 identically.

(ii) There holds F̃ I
0,∞ = F̃ I

+,∞ on the whole group G̃ I∞ .

CASE II, Type (−1,−1, 1):

Let g′ = (d′, σ′) ∈ G̃ II∞ = D̃∞
II
o S̃∞ be normalized as





g′ = ξ′q1
· · · ξ′qr

g′1g
′
2 · · · g′s, ξ′q = η

aq
q (q ∈ Q = {q1, . . . , qr}),

g′j = (d′j , σ
′
j), d′j = ηkj

bj (∃kj ∈ Kj = supp(g′j), j ∈ J = Is) ;
σ′j = rnjrnj+1 . . . rnj+`j−2, Kj = [nj , nj + `j − 1].

(22.6)

Lemma 22.4. (i) If L(σ′) ≡ 0 (mod 2), then F̃ II
0,∞(g′) 6= 0 if and only if (Condi-

tion II-00) holds for g′. In that case,

F̃ II
0,∞(g′) = ε

(∏
j∈J− g′j

) ·
∏

j∈J

(−1)(`j−1)/2 2−(`j−1)/2,(22.7)

where ε
(∏

j∈J− g′j
)

:=
∏
{j1, j2}<J− ε(g′j1g

′
j2

), with the sign ε(g′j1g
′
j2

) = ±1 de�ned by
(17.22) � (17.24), and also by (17.25).

If L(σ′) ≡ 1 (mod 2), then F̃ II
0,∞(g′) = 0 identically.

(ii) Let g′ = (g′, σ′) ∈ H̃II∞ = D̃∞
II
o Ã∞ ( G̃ II∞. If ord(d′) ≡ 0 (mod 2), then

F̃ II,H̃
+,∞(g′) 6= 0 if and only if (Condition II-00) holds for g′. In that case,

F̃ II,H̃
+,∞(g′) = ε

(∏
j∈J− g′j

) ·
∏

j∈J

(−1)(`j−1)/2 2−(`j−1)/2.(22.8)
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If ord(d′) ≡ 1 (mod 2), then F̃ II,H̃
+,∞(g′) = 0 identically.

(iii) Let g′ = (d′, σ′) ∈ H̃II∞ and τ ′ ∈ S̃∞ \ Ã∞, then F̃ II
+,∞(g′) = F̃ II,H̃

+,∞(g′), and
F̃ II

+,∞(τ ′g′) = 0 identically.

22.3 Notes on representative elements of conjugacy classes

For the formula in Lemma 22.3, we take g′ = (d′, σ′) ∈ G̃ I∞ = D̃∞
I
o S̃∞ normalized

as in (22.4) above.
Let us give a note on the normalization of d′j in g′j = (d′j , σ

′
j) as d′j = η′kj

bj . As

is seen above, it is enough to consider limn→∞ F̃ I
Λn(g′) under (Condition I-00). Now

take a general g′ ∈ G̃ I∞ for which d′j 's are not yet normalized. For any h′ = (d′′, σ′′) ∈
D̃Kj

I
o S̃Kj , we have h′ξ′qh′

−1 = ξ′q and for k 6= j,

h′g′kh
′−1 = z

L(σ′k)L(σ′′)
1 z

ord(d′k)L(σ′′)
2 g′k =

{
g′k if k ∈ J+,

(z1z2)L(σ′′)g′k if k ∈ J−.
(22.9)

Moreover, for the transform g′j 7→ h′g′jh
′−1, suppose σj = (1 2 . . . `j) and so Kj = I`j .

Then, for g′j = (d′j , σ
′
j) and i ∈ Kj ,

η′ig
′
jη
′
i
−1 = z

L(σ′j)
2 (η′id

′
jη
′
i+1, σ′j) =

{
(η′id

′
jη
′
i+1, σ′j) for j ∈ J+ ;

z2(η′id
′
jη
′
i+1, σ′j) for j ∈ J− .

(22.10)

Case of j ∈ J+ = {j ∈ J ; sgn(σ′j) = 1} : In this case, L(σ′j) ≡ 0, ord(d′j) ≡
0 (mod 2). For example, for d′j = η′1

a1η′2
a2η′3

a3 , we have ord(d′j) = a1 +a2 +a3 ≡ 0 and

η′1
−a1g′j η′1

a1 = (η′2
a2η′3

a3η′2
a1 , σ′j) = z a1a3

2 (η′2
a1+a2η′3

a3 , σ′j),

η′2
−a1−a2

(
η′1
−a1g′j η′1

a1
)
η′2

a1+a2 = z a1a3
2 (η′3

a1+a2+a3 , σ′j),

and z a1a3
2 can be equal to z2 or to e under the �xed even a1 + a2 + a3.

This explains the necessity to take d′j in the normal form as η′kj

bj , bj = ord(d′j).

Moreover note that σ′jη
′
kj

bjσ′j
−1 = η′kj+1

bj , then we see that the choice of kj ∈ Kj

may be arbitrary.

Case of j ∈ J− = {j ∈ J ; sgn(σ′j) = −1}: In this case, L(σ′j) ≡ 1, ord(d′j) ≡
1 (mod 2). Note that, for d′j = η′1

a1η′2
a2η′3

a3 , we have ord(d′j) = a1 + a2 + a3 ≡ 1 and

η′1
−a1g′j η′1

a1 = z a1
2 (η′2

a2η′3
a3η′2

a1 , σ′j) = z a1+a1a3
2 (η′2

a1+a2η′3
a3 , σ′j),

η′2
−a1−a2

(
η′1
−a1g′j η′1

a1
)
η′2

a1+a2 = z a1+a1a3
2 z a1+a2

2 (η′3
a1+a2+a3 , σ′j),

and z a1+a1a3
2 z a1+a2

2 = z a1a3+a2
2 can be equal to z2 or to e under the �xed odd a1 +

a2 + a3. This explains the necessity to take d′j in the normal form as η′kj

bj .

Moreover we have σ′jη
′
kj

bjσ′j
−1 = z2η

′
kj+1

bj or σ′jηkj
bjσ′j

−1 = ηkj+1
bj . If γkj

= γkj+1,
then since bj ≡ 1 (mod 2),

χγ

(
η′kj

bj
)

= (−1)(kj−1)bjω
γkj = −(−1)(kj+1−1)bjω

γkj+1 = χγ

(
z2η

′
kj+1

bj
)
.
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Note that this equality has an important meaning with respect to the formula of
tr

(
πI

γ(g′j)
)
in Lemma 16.5, for which we should pay attention on the factor χγ(d′j) at

the rightmost hand side of the formula (16.32).
On the other hand, we have χγ

(
η′kj

bj
)

= −χγ

(
η′kj+1

bj
)
. This is consistent with the

property of a central positive de�nite function f on G̃ I∞ of type (−1,−1,−1) such
that f(z2g

′) = −f(g′). In more detail, for the conjugacy class [g′j ]Z̃ of g′j modulo

Z̃ under D̃Kj

I
o S̃Kj , we can take, as its representative, g

(1)
j =

(
η′kj

bj , σ′j
)
and also

g
(2)
j =

(
η′kj+1

bj , σ′j
)
, which are conjugate to each other modulo 〈z2〉 under conjugation

by S̃Kj as σ′jg
(1)
j σ′j

−1 = z2g
(2)
j .

23 Limits of spin irreducible characters

23.1 Limits of non-spin irreducible characters F̆γ,Λn of Gn

For the completeness, we refer here brie�y ��5�6 in [HHH1] in the simpler case of
Gn = Dn(Zm)oSn and G∞ = D∞(Zm)oS∞. Put, for a non-spin IR πλn,ζ of SIn,ζ

,

χ̃(λn,ζ ; σ) :=
tr

(
πλn,ζ (σ)

)

dim πλn,ζ

(
σ ∈ SIn,ζ

)
,

and when σ is a product of disjoint cycles of lengths `j (j ∈ Jζ), it is denoted also
by χ̃

(
λn,ζ ; (`j)j∈Jζ

)
. Then, for non-spin IRs Πγ,Λn of Gn , with Λn =

(
λn,ζ)

ζ∈T̂ 0 ∈
Yn(T )0, its normalized character is given as follows (cf. �19.3).

With a partition In = (In,ζ)ζ∈T̂ 0 of In, and partitions Q = (Qζ)ζ∈T̂ 0 of Q =
{q1, . . . , qr}, and J = (Jζ)ζ∈T̂ 0 of J = {1, . . . , s} satisfying the condition (Condition
QJ) in �19.3, we de�ne a function of g ∈ Gn as

c(In ; Q, J ; g) :=
n|supp(g)|

n(n− 1) · · · (n− |supp(g)|+ 1)
×

×
∏

ζ∈T̂ 0

|In,ζ |
n

· |In,ζ | − 1
n

· · · ·
|In,ζ | − |Qζ | −

∑
j∈Jζ

`j + 1

n
.

X̃
(
Λn ; Q, J ; g

)
:=

∏

ζ∈T̂ 0

(
ζ
(∏

q∈Qζ
ξq ·

∏
j∈Jζ

dj

)× χ̃
(
λn,ζ ; (`j)j∈Jζ

))
.

F̆ ∼
γ,Λn(g) =

F̆γ,Λn(g)
F̆γ,Λn(e)

=
∑

(Q,J )

c(In;Q,J ; g) X̃
(
Λn ; Q, J ; g

)
.(23.1)

First consider F̆ ∼
γ,Λn on the subgroup Dn ⊂ Gn through the above formula.

Lemma 23.1. To have a pointwise limit limn→∞ F̆ ∼
γ,Λn(d) on Dn, it is necessary

and su�cient that the following limits exist : for every ζ ∈ T̂ 0,

∃ lim
n→∞

|In,ζ |
n

(=: Bζ (put)
)
.(23.2)
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In that case,
∑

ζ∈T̂ 0 Bζ = 1.

On the other hand, we know the following about the asymptotic behavior of irre-
ducible characters of Sn (cf. [VK] or [HHH1, Theorem 5.4]). For a Young diagram λn

of size n, let lengths of its rows and columns be ri(λn), ci(λn) (i ∈ In) respectively,
and put

ai(λn) := ri(λn)− i + 1/2, bi(λn) := ci(λn)− i + 1/2 (i ∈ In).(23.3)

Lemma 23.2. Suppose that the following limits exist:

α′i := lim
n→∞

ai(λn)
n

, β′i := lim
n→∞

bi(λn)
n

(i ∈ N).(23.4)

Then there exists the pointwise limit of χ̃
(
λn; (`j)j∈J

)
as

lim
n→∞ χ̃

(
λn; (`j)j∈J

)
=

∏

j∈J

( ∑

i∈N
α′i

`j + (−1)`j−1
∑

i∈N
β′i

`j

)
.(23.5)

Lemma 23.3. Assume that Bζ = limn→∞ |In,ζ |/n exists for any ζ ∈ T̂ 0, and

that, for every ζ ∈ T̂ 0 with Bζ > 0, the following limits exist:

α′ζ,i := lim
n→∞

ai(λn,ζ)
|In,ζ | , β′ζ,i := lim

n→∞
bi(λn,ζ)
|In,ζ | (i ∈ N).(23.6)

Then the limit of F̆ ∼
γ,Λn(g) as n →∞ exists and

lim
n→∞ F̆ ∼

γ,Λn(g) =
∑

Q,J

∏

ζ∈T̂ 0

{
ζ
( ∏

q∈Qζ

ξq ·
∏

j∈Jζ

dj

)
·(23.7)

· B |Qζ |
ζ ·

∏

j∈Jζ

B
`j

ζ ·
( ∑

i∈N
α′ζ,i

`j + (−1)`j−1
∑

i∈N
β′ζ,i

`j

)}
.

Put
{

αζ,i := Bζ · α′ζ,i , βζ,i := Bζ · β′ζ,i (i ∈ N),

µζ := Bζ −
∑

i∈N αζ,i −
∑

i∈N βζ,i (ζ ∈ T̂ 0),
(23.8)

and reorder (αζ,i)i∈N , (βζ,i)i∈N in the descending order, and then introduce a param-
eter A as

A = (α, β ; µ), α =
(
αζ

)
ζ∈T̂ 0 , β =

(
βζ

)
ζ∈T̂ 0 , µ =

(
µζ

)
ζ∈T̂ 0 ;(23.9)

{
αζ = (αζ,i)i∈N , αζ,1 ≥ αζ,2 ≥ αζ,3 ≥ · · · ≥ 0 ,

βζ = (βζ,i)i∈N , βζ,1 ≥ βζ,2 ≥ βζ,3 ≥ · · · ≥ 0 ,
µζ ≥ 0 ,(23.10)

∑

ζ∈T̂ 0

(
‖αζ‖+ ‖βζ‖+ µζ

)
= 1, ‖αζ‖ :=

∑

i∈N
αζ,i .(23.11)

Then we have the following result on as a special case of Theorem 7.1 in [HHH1].
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Theorem 23.4. (i) Assume that Bζ = limn→∞ |In,ζ |/n exists for any ζ ∈ T̂ 0,

and that, for any ζ ∈ T̂ 0 with Bζ > 0, the limits in Lemma 23.3 exist. Then, for
g =

∏
q∈Q ξq ·

∏
j∈J gj , gj = (dj , σj), `j = `(σj),

lim
n→∞ F̆ ∼

γ,Λn(g) =
∑

Q,J

∏

ζ∈T̂ 0

{ ∏

q∈Qζ

( ∑

i∈N
αζ,i +

∑

i∈N
βζ,i + µζ

)
ζ(ξq)×(23.12)

×
∏

j∈Jζ

( ∑

i∈N
α

`j

ζ,i + (−1)`j−1
∑

i∈N
β

`j

ζ,i

)
ζ(dj)

}
,

where (Q,J ) runs over all pairs of partitions Q = (Qζ)ζ∈T̂ 0 of Q = {q1, . . . , qr}
and J = (Jζ)ζ∈T̂ 0 of J = {1, . . . , s}. The right hand side is a function fA with the

parameter A = (α, β ; µ) given as

fA(g) =
∏

q∈Q

fA(ξq) ·
∏

j∈J

fA(gj) ,(23.13)

fA(ξq) =
∑

ζ∈T̂ 0

(
‖αζ‖+ ‖βζ‖ + µζ

)
ζ(ξq),(23.14)

fA(gj) =
∑

ζ∈T̂ 0

( ∑

i∈N
α

`j

ζ,i + (−1)`j−1
∑

i∈N
β

`j

ζ,i

)
ζ(dj).(23.15)

(ii) Put

A(T̂ 0) := {A = (α, β ;µ) ; parameter satisfying (23.9)�(23.11)},
F(T̂ 0) := {fA ; A ∈ A(T̂ 0)}.

(23.16)

Then F(T̂ 0) is the set of all pointwise limits of normalized irreducible characters F̆ ∼
γ,Λn

as n →∞.

Put tA := (β, α ; µ), then τ : A 7→ tA is an involutive action on A(T̂ 0)

Lemma 23.5. (i) For A ∈ A(T̂ 0), the restriction of fA onto the subset OI ⊂ G∞
determines its parameter A completely. In other words, let A′ = (α′, β′; µ′) ∈ A(T̂ 0)
be another parameter such that fA′

∣∣
OI = fA

∣∣
OI, then A′ = A.

(ii) For A,A′ ∈ A(T̂ 0), their restrictions on the subset OII ⊂ G∞ coincide with
each other, or fA′

∣∣
OII = fA

∣∣
OII , if and only if A′ = A or A′ = tA = τ(A).

Proof. (i) is proved by using the following equality: for z ∈ C,

exp

{ ∑

`≥2

∑

i∈N

(
α `

i + (−1)`−1β `
i

)z`

`

}
= exp

{
−z

∑

i∈N
(αi + βi)

} ∏

i∈N

1 + βiz

1− αiz
.

(ii) The equality fA′
∣∣
OII = fA

∣∣
OII holds if and only if the following equalities hold.

For ζ ∈ T̂ 0, ` ≥ 1, with

C(ζ, `) :=
∑

i∈N
α `

ζ,i + (−1)`−1
∑

i∈N
β `

ζ,i, C ′(ζ, `) :=
∑

i∈N
α′ζ,i

` + (−1)`−1
∑

i∈N
β′ζ,i

`
,
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C(ζ, 1) + µζ = C ′(ζ, 1) + µ′ζ (` = 1) ;

C(ζ, `) = C ′(ζ, `) (` ≥ 3 odd) ;

C(ζ, `) C(ζ, k) = C ′(ζ, `) C ′(ζ, k) (`, k ≥ 2 even).

From the last equation we have either C(ζ, `) = C ′(ζ, `) or C(ζ, `) = −C ′(ζ, `)
for any ζ ∈ T̂ 0, ` ≥ 3 odd. Actually the former gives us A′ = A and the latter gives
A′ = tA. We omit the details. 2

23.2 Limits of spin irreducible characters for (CASE I)

Under the condition |supp(g′)| < n, the characters F I
Λn and F I+

Λn , with Λn ∈ Yn(T )0,
have the same form. If g′ ∈ G̃ I

n satis�es (Condition I-00), then the normalized charac-
ters corresponding to them are expressed as

F̃ I
0,n(g′)× F̆ ∼

γ,Λn(g),(23.17)

where g = Φ(g′) and F̆ ∼
γ,Λn(g) is given in (23.1). Then we get the following result on

the limit of normalized spin irreducible characters of G̃ I
n as n → ∞. Note that this

limit concerns essentially on the subsets OI ∩ G̃ I
n of G̃ I

n and OI of G̃ I∞ both de�ned by
(Condition I-00).

Theorem 23.6 (CASE I). Assume that Bζ = limn→∞ |In,ζ |/n exists for any ζ ∈
T̂ 0, and that, for any ζ ∈ T̂ 0 with Bζ > 0, the limits in (23.4) exist.

(i) The normalized spin irreducible characters F̃ I
Λn(g′) have a limit f I

A(g′) :=
limn→∞ F̃ I

Λn(g′) with a parameter A ∈ A(T̂ 0) as

f I
A(g′) = F̃ I

0,∞(g′)× fA(g).(23.18)

(ii) In another expression, the limit function f I
A is factorizable in the sense that,

for g′ = ξ′q1
ξ′q2
· · · ξ′qr

g′1g
′
2 · · · g′s in (22.4),

f I
A(g′) =

∏

q∈Q

f I
A(ξ′q) ·

∏

j∈J

f I
A(g′j).(23.19)

And f I
A(g′) 6= 0 only if g′ satis�es (Condition I-00) or g′ ∈ OI, and for ξ′q = η′q

aq
(
ord(ξ′q) ≡

0 (mod 2)
)
, g′j = (d′j , σ

′
j)

(
ord(d′j) + L(σ′j) ≡ 0 (mod 2)

)
with d′j = η′kj

bj (∃kj ∈ Kj),

f I
A(ξ′q) =

∑

ζ∈T̂ 0

(
‖αζ‖+ ‖βζ‖ + µζ

)
ζ(ξ′q),(23.20)

f I
A(g′j) =

∑

ζ∈T̂ 0

(−1)[(`j−1)/2] 2−(`j−1)/2
( ∑

i∈N
α

`j

ζ,i + (−1)`j−1
∑

i∈N
β

`j

ζ,i

)
ζ(d′j).(23.21)

If g′ does not satisfy (Condition I-00), then f I
A(g′) = 0.

(iii) Let F I be the set of all the limits of normalized spin irreducible characters on
G̃ I

n of Type (−1,−1,−1) as n →∞. Then

F I =
{
f I

A ; A ∈ A(T̂ 0)
}

=
{
F̃ I

0,∞ · fA ; A ∈ A(T̂ 0)
}
.(23.22)
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23.3 Limits of spin irreducible characters (CASE II)

Recall that (Condition II-00) in �21.1 is used both in Case n = 2n′ even and in Case
n = 2n′ + 1 odd in common.

23.3.1. Case n = 2n′ ≥ 4 even.
By Theorem 20.4, irreducible spin characters are given by F II

Λn = tr
(
ΠII

Λn

)
with

Λn = (λn,ζ)
ζ∈T̂ 0 ∈ Yn(T )0, and that F II

Λn = F II
0,n× F̆γ,Λn on G̃ II

n , and moreover that, if

|supp(g′)| < n, then F II
Λn(g′) 6= 0 only if (Condition II-00) holds for g′. The normalized

character is given as

F̃ II
Λn(g′) = F̃ II

0,n(g′)× F̆ ∼
γ,Λn(g).(23.23)

23.3.2. Case n = 2n′ + 1 ≥ 5 odd.

(1) Let {Λn, tΛn} ∈ Y An (T )0,1. Then, from Theorem 20.9, the corresponding
irreducible spin characters are given as F0+

Λn = F0+
tΛn and

F0+
Λn (g′) = F II

0,n(g′)× F̆γ,Λn(g) (g′ ∈ G̃ II
n , g = Φ(g′) ∈ Gn)

and the normalized ones are

F̃ 0+
Λn (g′) = F̃ II

0,n(g′)× F̆ ∼
γ,Λn(g).

Moreover, if |supp(g′)| < n, then F0+
Λn (g′) 6= 0 only if g′ satis�es (Condition II-00).

(2) Let (Λn, κ) ∈ Y An (T )0,2 with tΛn = Λn, κ = 0, 1. Then, by Theorem 20.2 and
20.13, under ord(d′) ≡ 0 (mod 2), F 0+

Λn,κ(g′) 6= 0 only if (Condition II-00) holds for g′,
and F 0+

Λn,0(g
′) = F 0+

Λn,1(g
′),

F 0+
Λn,0(g

′) = F II,H̃
+,n (g′)× F̆γ,Λn(g),

and, under ord(d′) ≡ 0 (mod 2), if |supp(g′)| < n, then F 0+
Λn,κ(g′) = 0. Therefore, if

|supp(g′)| < n, the normalized ones is

F̃ 0+
Λn,0(g

′) = F̃ II
+,n(g′)× F̆ ∼

γ,Λn(g) (g′ ∈ G̃ II
n ).

We see from Theorem 20.2 that, if |supp(g′)| < n, then F̃ II
+,n(g′) = F̃ II

0,n(g′), and
also by Lemma 22.4 that, for the limits as n →∞, F̃ II

0,∞ = F̃ II
+,∞ on G̃ II∞.

23.3.3. Limits of normalized spin characters (CASE II).

As is seen above, the normalized spin irreducible characters F̃ II
Λn(g′), F̃ 0+

Λn (g′),
and F̃ 0+

Λn,0(g
′), under |supp(g′)| < n, are all of the same form: F̃ II

0,n(g′) × F̆ ∼
γ,Λn(g),

which is not zero only when g′ satis�es (Condition II-00). Therefore, on the subset
OII =

⋃
4≤n<∞OII

n of G̃ II∞, the existence of the limit as n → ∞ depends completely

on that of the series of non-spin irreducible characters F̆ ∼
γ,Λn(g).

The latter is discussed in Theorem 23.4, and we get the following.

Theorem 23.7 (CASE II). Assume that Bζ = limn→∞ |In,ζ |/n exists for any ζ ∈
T̂ 0, and that, for any ζ ∈ T̂ 0 with Bζ > 0, the limits in (23.4) exist.
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(i) The series of normalized spin irreducible characters F̃ II
Λn(g′), F̃ 0+

Λn (g′), and
F̃ 0+

Λn,0(g
′) have the same limit f II

A (g′) with a parameter A ∈ A(T̂ 0) written as

f II
A (g′) = F̃ II

0,∞(g′)× fA(g).(23.24)

(ii) In another expression, the limit function f II
A is weaklyfactorizable in the

following sense. For g′ = ξ′q1
ξ′q2
· · · ξ′qr

g′1g
′
2 · · · g′s ∈ G̃ II∞ =

⋃
46n<∞ G̃ II

n , put Q =
{q1, . . . , qr}, J = Is, J± = {j ∈ J ; sgn(σ′j) = ±1}. Suppose g′ satis�es (Condition

II-00) or g′ ∈ OII, then |J−| is even, and decompose J− into disjoint pairs as J− =⊔{j1, j2}, expressed as {j1, j2} < J−, and

f II
A (g′) =

∏

q∈Q

f II
A (ξ′q) ·

∏

j∈J+

f II
A (g′j) ·

∏

{j1, j2}<J−

f II
A (g′j1g

′
j2),(23.25)

where each factors are given as, after assuming that the expression of g′ is normalized,
modulo z a

1 z b
2 , as in (22.6),

f II
A (ξ′q) =

∑

ζ∈T̂ 0

(
‖αζ‖ + ‖βζ‖ + µζ

)
ζ(ξ′q) for q ∈ Q,

f II
A (g′j) =

∑

ζ∈T̂ 0

(−1)(`j−1)/2 2(`j−1)/2
( ∑

i∈N
α

`j

ζ,i +
∑

i∈N
β

`j

ζ,i

)
ζ(d′j) for j ∈ J+,

and for {j1, j2} < J− , with the sign ε
(
gj1gj2) in (17.22)�(17.24), or in (17.25),

f II
A

(
g′j1g

′
j2

)
= ε

(
gj1gj2

) ·
∏

j=j1, j2

{ ∑

ζ∈T̂ 0

(−1)`j/2−1 2(`j−1)/2
( ∑

i∈N
α

`j

ζ,i −
∑

i∈N
β

`j

ζ,i

)
ζ(d′j)

}
.

Suppose g′ does not satisfy (Condition II-00), then f II
A (g′) = 0 identically.

(iii) Let F II be the set of all the limits of normalized spin irreducible characters of
G̃ I

n of Type (−1,−1,−1) as n →∞. Then

F II =
{
f II

A ; A ∈ A(T̂ 0)
}

=
{
F̃ II

0,∞ · fA ; A ∈ A(T̂ 0)
}
.(23.26)

Corollary 23.8. Suppose αζ,i 6= βζ,i for at least one of (ζ, i) ∈ T̂ 0×N . Then the
limit function f II

A is not factorizable because, for g′ = ξ′q1
ξ′q2
· · · ξ′qr

g′1g
′
2 · · · g′s in (22.6)

satisfying (Condition II-00), f II
A (g′j) = 0 for any g′j , j ∈ J− , whereas

f II
A (g′j1g

′
j2

) 6= 0 for an appropriate choice of g′j1 , g′j2 with {j1, j2} ⊂ J−.

The limit function f II
A is factorizable if and only if αζ = βζ for all ζ ∈ T̂ 0 or

α = β.

Proof. We have f II
A (g′j1g

′
j2

) = 0 always, if and only if, for any (ζ, i) ∈ T̂ 0 ×N ,

∑

i∈N
α

`j

ζ,i =
∑

i∈N
β

`j

ζ,i for all even `j ≥ 2.
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On the other hand, note that

exp
{ ∑

2≤k<∞

∑

i∈N
x k

i

zk

k

}
= exp

{
−z

∑

1≤i<∞
xi

} ∏

1≤i<∞

1
1− xiz

(z ∈ C).(23.27)

Then we have α 2
ζ,i = β 2

ζ,i and so αζ,i = βζ,i (i ∈ N) . 2

24 Determination of spin characters of G(m, 1,∞)

24.1 Preliminaries

Recall that (cf. �3), for a topological group G′, K(G′) denotes the set of all central,
continuous positive de�nite functions on G′, K1(G′) the set of f ∈ K(G′) normalized
as f(e) = 1 at the identity element e ∈ G′, and E(G′) the set of extremal points
(called characters) in the convex set K1(G′). Let Z ′ be a central subgroup of G′ and χ
a character of G′. Denote by Kχ

1 (G′)
(
resp. Eχ(G′)

)
the elements f ∈ K1(G′)

(
resp.

E(G′)
)
satisfying f(z′g′) = χ(z′)f(g′) (z′ ∈ Z ′, g′ ∈ G′). Then the set of all extremal

points of Kχ
1 (G′) is equal to Eχ(G′) and E(G′) =

⊔
χ∈Ẑ′ E

χ(G′).
Furthermore let N ′ be a normal subgroup of G′, and de�ne a restriction map for

f ∈ K1(G′) by RN ′
G′ f := f

∣∣
N ′ . Then, as is seen in �6 in [I], we have the following.

Lemma 24.1 (cf. [I, �6]). Suppose G′ is discrete.
(i) The restriction map RN ′

G′ maps K1(G′) into K1(N ′), and E(G′) into E(N ′).
(ii) Suppose that a function ϕ on N ′ is invariant under G′: ϕ(g′h′g′−1) = ϕ(h′) (g′ ∈

G′, h′ ∈ N ′), if it is invariant (under N ′). Then RN ′
G′ maps K1(G′) onto K1(N ′).

(iii) Suppose moreover that a central subgroup Z ′ of G′ is contained in N ′, and that
every f ∈ Kχ

1 (G′) vanishes outside N ′, then RN ′
G′ maps Eχ(G′) onto Eχ(N ′).

Now put G̃∞ := R(G∞), G∞ = G(m, 1,∞), and let G̃Y∞, Y=I, II, be the quotient
groups of G̃∞ given as

G̃Y
∞ := G̃∞

/
ZY ∼= lim

n→∞ G̃Y
n , ZY =

{
〈z2z

−1
3 〉 for Y= I ;

〈z3〉 for Y= II.
(24.1)

Denote by Φ (resp. ΦY and ΦY) the canonical homomorphism G̃∞ → G∞
(
resp.

G̃∞ → G̃Y∞ and G̃Y∞ → G∞, similar to those in Diagram 2.1.
De�ne subsets O(I) and O(II) in G̃∞ respectively by (Condition I-00) and (Con-

dition II-00) as follows:

O(I) :=
{
g′′ ∈ G̃∞ ; g′ = ΦI(g′′) ∈ G̃ I∞ satis�es (Condition I-00)

}
,

O(II) :=
{
g′′ ∈ G̃∞ ; g′ = ΦII(g′′) ∈ G̃II∞ satis�es (Condition II-00)

}
.

(24.2)

Then ΦY
(O(Y)

)
= OY ⊂ G̃Y∞ , Φ

(O(Y)
)

= OY ⊂ G∞, for Y=I, II. Consider a

normal subgroup Ñ := Φ−1(N) of G̃∞ of �nite index, where N := A∞(T )S(2) a
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normal subgroup of G∞ = S∞(T ) :




Ñ = Φ−1
(
A∞(T )S(2)

)
, T = Zm, S(2) = {t2 ; t ∈ T} ⊂ T = Zm ,

N = A∞(T )S(2) =
{
(d, σ) ∈ G∞ ; P (d) ∈ S(2), σ ∈ A∞

}

=
{
(d, σ) ∈ G∞ ; ord(d) ≡ 0, L(σ) ≡ 0 (mod 2)

}
.

(24.3)

Then Ñ contains the subset O(II) but not O(I).
As in [I, �10], for the mother group G̃∞ = R

(
G(m, 1,∞)

)
, let χY (Y = I ∼ VIII)

be the character of Z = 〈z1, z2, z3〉 ⊂ G̃∞ in CASE Y, Type (β1, β2, β3), that is,

χY(zi) = βi (i = 1, 2, 3),(24.4)

and put KY
1 (G̃∞) := KχY

1 (G̃∞), EY
(
G̃∞

)
:= EχY(

G̃∞
)
, and call f ∈ EY

(
G̃∞

)
a

character of G̃∞ of CASE Y, Type (β1, β2, β3). We have a decomposition of the set of
characters as

E
(
G̃∞

))
=

⊔

Y=I∼VIII
EY

(
G̃∞

)
.(24.5)

From the studies in [I, ��9�10] on the supports of central functions, we have the
following (cf. the summary in Table 10.1 in [I]).

Lemma 24.2. For Y=I, II, every f ∈ KY
1 (G̃∞) vanishes outside the subset O(Y).

We have studied in [I, ��10 �11] the properties of KY
1 (G̃∞) and the subsets O(Y),

and summarized the results in Tables 10.1 and 13.1, loc. cit. In particular, by the
detailed study of structure of O(I), we obtain in [I, Theorem 11.1 (ii)] the following
important result.

Lemma 24.3. For f ∈ KY
1

(
G̃∞

)
of CASE Y, the criterion (EF) to be a character

holds for Y = I.

For the level of quotient groups G′ = G̃Y∞, Y= I, II, we set similarly as above:
let χ′ be the character of Z̃ = 〈z1, z2〉 given by χ′(zi) = −1 (i = 1, 2), and put
EY(G′) = Eχ′(G′) for G′ = G̃Y∞. An element f ∈ EY

(
G̃Y∞

)
is a character of a factor

representation of G̃Y∞ and the natural correspondence

EY
(
G̃Y
∞

) 3 f −→ f ◦ ΦY ∈ EY
(
G̃∞

)
(24.6)

is a bijection.

Problem setting: Prove the completeness of the set of limit functions FY in
CASE Y for CASE Y, Y=I and II, that is, FY = EY

(
G̃Y∞

)
.

The inclusion FY ⊃ EY
(
G̃Y∞

)
is already known in (22.1), so that the problem is

to see the converse inclusion FY ⊂ EY
(
G̃Y∞

)
.
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24.2 F I = EI
(
G̃ I
∞

)
and parametrization of spin characters

Every limit function f in F I (on G̃ I∞) is factorizable as proved in Theorem 23.6 (ii),
and so, it is extremal by Lemma 24.3, whence F I ⊂ EI

(
G̃ I∞

)
. Thus we obtain the

following theorem.

Theorem 24.4. (i) Every limit as n →∞ of normalized spin irreducible charac-
ters of G̃ I

n = G̃ I(m, 1, n), in CASE I, Type (−1,−1,−1), is extremal or is a character
of G̃ I∞ = G̃ I(m, 1,∞), so that F I = EI

(
G̃ I∞

)
, and this gives a formula of spin char-

acters as

EI
(
G̃ I
∞

)
= {f I

A ; A ∈ A(T̂ 0)
}

= {F̃ I
0,∞ · fA ; A ∈ A(T̂ 0)

}
,

where A(T̂ 0) denotes the set of all parameters A = (α, β ; µ) satisfying (23.9)�(23.11).
The above equality can be rewritten as EI

(
G̃∞

)
= F I ◦ ΦI.

(ii) The space EI
(
G̃ I∞

) ⊂ K1

(
G̃ I∞

)
of spin characters of G(m, 1,∞) in CASE I is

parametrized by A(T̂ 0) and is compact as a topological space, and the map A(T̂ 0) 3
A 7→ f I

A ∈ E I
(
G̃ I∞

)
is homeomorphic.

24.3 F II = EII
(
G̃II
∞

)
and parametrization of spin charac-

ters

24.3.1. Restriction map from G̃∞ to Ñ = Φ−1(N), N = A∞(T )S(2).

Denote by KY
1

(
Ñ

)
, Y= I, II, the set of all normalized central positive de�nite

function f on Ñ satisfying

f(zh′) = χY(z) f(h′) (z ∈ Z = 〈z1, z2, z3〉, h′ ∈ Ñ),(24.7)

where χI(zi) = −1 (i = 1, 2, 3), and χII(zi) = −1 (i = 1, 2), χII(z3) = 1, respectively.
Moreover, let EY

(
Ñ

)
be the set of extremal elements of the convex set KY

1

(
Ñ

)
, that

is, the set of characters of Ñ of Type (−1,−1,−1) or (−1,−1, 1) respectively.
First we have the following fact, similar to Theorem 6.2 in [I]. De�ne a restriction

map RÑ
G̃
from K1

(
G̃∞

)
as

RÑ
G̃

: K1

(
G̃∞

) 3 F 7→ f = F |
Ñ
∈ K1

(
Ñ

)
(24.8)

Proposition 24.5. (i) A function f on the normal subgroup Ñ is G̃∞-invariant
if and only if it is invariant (under Ñ).

(ii) The restriction map RÑ
G̃

gives a surjection from E
(
G̃∞

)
onto E

(
Ñ

)
, and also

a surjection from EY
(
G̃∞

)
onto EY

(
Ñ

)
for Y=I, II.

The proof is similar as that for Theorem 6.2 (ii) and (iii), loc. cit., and omitted.
Now put, for Y= I, II,

RY(f) := RÑ
G̃

(
f ◦ ΦY

) (
f ∈ K1

(
G̃Y
∞

))
.(24.9)

By the proposition above, we obtain from Theorem 24.4 the following.
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Proposition 24.6. The set of characters EI
(
Ñ

)
of the normal subgroup Ñ =

Φ−1(N) in CASE I, Type (−1,−1,−1), is equal to the set of RI(f I
A) :

EI
(
Ñ

)
=

{RI(f I
A) ; A = (α, β ;µ) ∈ A(T̂ 0)

}
.

As a property of the restriction maps RY, Y = I, II, we remark the following.

Proposition 24.7. (i) For Y=I, we have RI
(
f I

A

)
= RI

(
f I

tA

)
for A ∈ A(T̂ 0),

and the restriction map RI is 2-to-1 if tA 6= A, and 1-to-1 if tA = A.

(ii) For Y=II, the restriction map RII is bijective.

Proof. We see easily that RI
(
f I

A

)
= RI

(
f I

tA

)
from the explicit form of f I

A given in
Theorem 23.6, or more directly from Lemma 23.5 (ii). On the contrary, suppose that,
for A = (α, β ;µ) and A′ = (α′, β′, µ′), there holds

(
f I

A ◦ ΦI
)∣∣

Ñ
=

(
f I

A′ ◦ ΦI
)∣∣

Ñ
. Then,

we can discuss just as in the proof of Lemma 23.5 (ii).
The assertion (ii) is easy to prove. 2

24.3.2. Operators M and N of multiplying the character χ̃π2,ζ0
.

In CASE VII, Type (1, 1,−1), there exist 2-dimensional IRs π2,ζk
of G̃∞ =

R
(
G∞

)
, given in [I, �12]. Here ζk ∈ T̂ , ζk(η) := ωk, with the generator η of T = Zm,

and π2,ζk
(z a

1 z b
2 z c

3 ) = (−1)cE2 , and

π2,ζk
(η′j) =

(
ζk(η) 0

0 −ζk(η)

)
, π2,ζk

(ri) =
(

0 1
1 0

)
(i, j ∈ N),(24.10)

where η′j = z j−1
2 ηj (ηj ∈ Tj

∼= T, j ∈ N) form another set of generators of D̃∞.

The trace character of π2,ζk
is given as follows. For g′′ = z a

1 z b
2 z c

3 d′σ′ ∈ R(G), d′ =∏
j∈N η′j

aj , σ′ ∈ S̃∞ , put ord(d′) :=
∑

j∈N aj (mod m), then

χπ2,ζk
(g′′) =

{
2 · (−1)cζk(η)ord(d′) if L(σ′) ≡ 0, ord(d′) ≡ 0 (mod 2),

0 otherwise.
(24.11)

So the support of the character χπ2,ζk
is equal to Ñ = Φ−1(N), N = A∞(T )S(2).

Let χ̃π2,ζk
denote the normalized character χπ2,ζk

/2, then the inner tensor product
π2,ζk

£ π2,ζ`
has normalized character given as

χ̃π2,ζk
(g′′) · χ̃π2,ζ`

(g′′) =
(
ζk(η) ζ`(η)

)ord(d′) ·X
Ñ

(g′′),

where X
Ñ
denotes the indicator function of Ñ . In particular, for k = ` = 0, we have

(
χ̃π2,ζ0

)2 = X
Ñ

.(24.12)

Noting that χ̃2,ζ0 is a character of G̃∞ = R(G∞) of Type (1, 1,−1), we de�ne two
maps M and N similarly as [I, De�nition 16.1]:
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De�nition 24.1. Between the set of normalized central positive de�nite functions
KI

1

(
Ñ

)
in CASE I and the set of such functions KII

1

(
Ñ

)
in CASE II, we de�ne two

maps M and N as follows: for F ∈ KI
1

(
Ñ

)
and f ∈ KII

1

(
Ñ

)
, put

{
M(F )(g′′) := χ̃π2,ζ0

(g′′) · F (g′′),
N (f)(g′′) := χ̃π2,ζ0

(g′′) · f(g′′),
(
g′′ ∈ Ñ

)
.(24.13)

We see from [I, �10, Table 10.1] that for any f ∈ KII
1

(
G̃∞

)
, its support supp(f) is

contained in the subset O(II) ⊂ Ñ . Therefore the restriction map

KII
1

(
G̃∞

) 3 f 7−→ f
∣∣
Ñ
∈ KII

1

(
Ñ

)
(24.14)

is bijective, and maps EII
(
G̃∞

)
onto EII

(
Ñ

)
bijectively.

Moreover note that
(
χ̃π2,ζ0

)2 is just the indicator function of N = A∞(T )S(2) ⊂ G∞
if considered as a function of g = Φ(g′′) through modulo Z, and is the indicator function
of Ñ = Φ−1(N) as a function in g′′ ∈ G̃∞.

These facts guarantee that M and N are mutually the inverse of the other and so
both are bijective. Moreover since they are both linear, they map the sets of extremal
points EI(Ñ) and EII

(
Ñ

)
mutually each other.

24.3.3. Spin characters in CASE II, Type (−1,−1, 1).

Proposition 24.8. (i) The map M and N between KI
1

(
Ñ

)
and KII

1

(
Ñ

)
are

mutually the inverse of the other, and both preserve convex combinations. They induce
bijective maps M′ and N ′ between the sets of extremal points EI

(
Ñ

)
and EII

(
Ñ

)
.

(ii) With restriction maps from EY
(
G̃∞

)
, Y=I, II, there gives rise to the following

diagram, with G̃∞ = R
(
G(m, 1,∞)

)
:

EI
(
G̃ I∞

) ∼= EI
(
G̃∞

)
EII

(
G̃∞

) ∼= EII
(
G̃ II∞

)

RÑ
G̃
↓ surj. bijec. ↓ RÑ

G̃

EI
(
Ñ

) M′−→
←−
N ′

EII
(
Ñ

)

(iii) Under these maps, the correspondence of functions are as follows: for A ∈
A(T̂ 0), f I

A = F̃ I
0,∞ · fA, f II

A = F̃ II
0,∞ · fA,

EI
(
G̃ I∞

) 3 f I
A ↔ f I

A ◦ ΦI f II
A ◦ ΦII ↔ f II

A ∈ EII
(
G̃ II∞

)

surj. ↓ RI RII ↓ bijec.
(
f I

A ◦ ΦI
)∣∣

Ñ
À

(
f II

A ◦ ΦII
)∣∣

Ñ

Note 24.1. As a spacial case of the proposition above, we have for the special
characters,

χ̃ππ2,ζ0
× (

F̃ I
0,∞ ◦ ΦI

)
=

(
F̃ II

0,∞ ◦ ΦII
)
.
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Now, appealing to Theorem 24.4 in CASE I, we arrive at our �nal theorem as
follows. As a parameter space for EII

(
G̃∞

)
, we have the quotient space A(

T̂ 0
)
/〈τ〉 of

the set A(
T̂ 0

)
of A = (α, β ;µ) satisfying (23.9)�(23.11) by the action τ : A 7→ tA.

Theorem 24.9. (i) Every limit as n →∞ of normalized spin irreducible charac-
ters of G̃ II

n = G̃ II(m, 1, n), in CASE II, Type (−1,−1, 1), is extremal or a character of
G̃ II∞ = G̃ II(m, 1,∞), so that F II = EII

(
G̃II∞

)
. This gives a formula of spin characters

in CASE II, Type (−1,−1, 1), as

EII
(
G̃II
∞

)
=

{
f II

A ; A ∈ A(
T̂ 0

)}
=

{
F̃ II

0,∞ · fA ; A ∈ A(T̂ 0)
}
.

This equality can be rewritten as EII
(
G̃∞

)
= F II ◦ ΦII.

(ii) The map A(
T̂ 0

) 3 A 7→ f II
A ∈ E II

(
G̃ II∞

) ⊂ K1

(
G̃ II∞

)
is continuous and, as its

image, the space EII
(
G̃ II∞

)
is homeomorphic to the quotient space A(

T̂ 0
)/〈τ〉 and is

compact as a topological space.

25 Structure of the space of spin characters of

G(m, 1,∞)

25.1. Multiplicative structure of spin characters of G(m, 1,∞).
Here we quote the main result of the paper [DuNe] by Dudko and Nessonov on

spin characters of G(m, 1,∞). The notations ibid. are as follows:

Bm := S∞ n Z∞
m , Z∞

m :=
⋃

n>1 Z n
m

(
Bm

∼= G(m, 1,∞)
)
, and B̃m a representation group of Bm isomorphic to R

(
G(m, 1,∞)

)

(cf. Theorems 3.2 and 3.3 in the present paper). The canonical homomorphism B̃m →
Bm is denoted by pr.

The cocycles θ = [tϑ, tµ, tν ] in De�nition 9, p.1428, of a factor representation π

of B̃m is equal to our (spin) Type β = (β1, β2, β3) modulo ordering as [tϑ, tµ, tν ] =
[β1, β3, β2]. There are 8 cocycles named as

θ0 = [1, 1, 1], θ1 = [−1, 1, 1], θ2 = [1,−1, 1], θ3 = [−1,−1, 1],
θ4 = [1, 1,−1], θ5 = [−1, 1,−1], θ6 = [1,−1,−1], θ7 = [−1,−1,−1].

For each cocycle θ, except θ = θ0, a special factor representation πb
θ, called basis repre-

sentation of �nite type of B̃m, is constructed, in such a way that, in its representation
space V (πb

θ), there exists a unit cyclic vector ξb
θ such that (πb

θ(g)ξb
θ, ξ

b
θ) = χb

θ(g) (g ∈
B̃m), where χb

θ denotes the character of πb
θ. (This representation, uniquely determined

modulo equivalence by positive de�nite function f = χb
θ, can be called as Gelfand-

Raikov representation associated to f , cf. [GeRa].). First, for three cocycles θ = θ1, θ2

and θ7, the representation πb
θ is de�ned by specifying the operator πb

θ(g) for each stan-
dard generators g of B̃m. Second, for a cycle θ other than the above, write θ as a
product

θ = θ i
1 θ j

2 θ k
7 , i, j, k ∈ {0, 1},
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and consider the tensor product

π′θ := (πb
1)
⊗i ⊗ (πb

2)
⊗j ⊗ (πb

7)
⊗k.

Put ξb
θ := (ξb

θ1
)⊗i⊗(ξb

θ2
)⊗j⊗(ξb

θ7
)⊗k ∈ V (π′θ) and take the closed subspace Hb

θ spanned

by π′θ
(
B̃m

)
ξb
θ, then πb

θ := π′θ|Hb
θ
.

It is claimed that Theorem 10 on p.1429 is the main result of the paper:

Theorem 10. Let χ be an arbitrary indecomposable character of B̃m cor-
responding to a cocycle θi. Then there exists an indecomposable character
χ′ on Bm such that

χ(g) = χb
θi

(g) χ′
(
pr(g)

)
(15)

holds for each g ∈ B̃m. Conversely, every function χ of the form (15) is
an indecomposable character on B̃m corresponding to the cocycle θi.

25.2. Parameter spaces of spin characters of S∞ and G(m, 1,∞).
As the parameter space of (non-spin) characters of the in�nite symmetric group

S∞, the set of Thoma parameters is given (Satz 3 in [Tho2]) as

A1 :=
{
(α, β) ; α = (αi)i∈N , β = (βi)i∈N satisfying (25.1)

}
,

{
α1 ≥ α2 ≥ . . . ≥ αi ≥ . . . ≥ 0, β1 ≥ β2 ≥ . . . ≥ βi ≥ . . . ≥ 0,

‖α‖+ ‖β‖ ≤ 1, ‖α‖ :=
∑

i∈N αi, ‖β‖ :=
∑

i∈N βi.
(25.1)

De�ne a subset C1 ⊂ A1 of � nearly of half a dimension � of A1 (even though both of
in�nite dimensions) as

C1 :=
{
γ ; γ = (γi)i∈N satisfying (25.2)

}
,

γ1 ≥ γ2 ≥ . . . ≥ γi ≥ . . . ≥ 0, ‖γ‖ ≤ 1.(25.2)

Moreover, for a subset K of the dual T̂ of the group T = Zm, put

A(K) :=
{
(α, β; µ) ; α = (αζ)ζ∈K , β = (βζ)ζ∈K , µ = (µζ)ζ∈K

satisfying (25.3)�(25.4)
}
,{

αζ = (αζ,i)i∈N , βζ = (βζ,i)i∈N ,

αζ,1 ≥ αζ,2 ≥ . . . ≥ 0, βζ,1 ≥ βζ,2 ≥ . . . ≥ 0 ; µζ ≥ 0,
(25.3)

‖α‖+ ‖β‖+ ‖µ‖ = 1,(25.4)

where ‖α‖ :=
∑

ζ∈K ‖αζ‖, ‖β‖ :=
∑

ζ∈K ‖βζ‖, ‖µ‖ :=
∑

ζ∈K µζ . Then, A(T̂ ) for

K = T̂ is the parameter spaces for non-spin characters, and the subset A(T̂ 0) for
K = T̂ 0 ( �of nearly half a dimension� ) is used to prepare parameter spaces for spin
characters of G(m, 1,∞).

Let f̃∞ be the pointwise limit (on S̃∞) of the normalized character χ̃∆′n as n →∞.

The exact form of f̃∞ is obtained directly from Theorems 15.2 and 15.3, and see that
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the support of f̃∞ is contained in the subset B ⊂ Ã∞ := Φ −1
S

(
A∞

)
consisting of

elements σ′ ∈ Ã∞ of the following form (cf. De�nition 13.2 (2)):

σ′ = σ′1σ
′
2 · · ·σ′s, σk = ΦS(σ′k) disjoint cycles, `k = `(σ′k) all odd.

Nazarov proved that any spin character of S̃∞ is given as a product f̃∞ · f , of
f̃∞ and a non-spin normalized character f of S∞ (Theorem 3.3 in [Naz], cf. also
Ivanov [Iva]). The latter is given by a parameter (α, β) ∈ A1 as f = fα,β . Every
f ∈ E(S∞) is factorizable in the sense that, if σ = σ1σ2 in S∞ is a decomposition
such that supp(σk) (k = 1, 2) are mutually disjoint, then f(σ) = f(σ1) f(σ2). So, fα,β

is uniquely determined by the following formula: for a cycle τ` of length `,

fα,β(τ`) =
∑

i∈N α `
i + (−1)`−1

∑
i∈N β `

i ,(25.5)

where (−1)`−1 = sgn(τ`). Since supp(f̃∞) ⊂ B, we have f̃∞ · fα,β = f̃∞ · fγ,0,
where γ = α t β is given from (α, β) by rearranging the union of {αi (i ∈ N)} and
{βi (i ∈ N)} in the descending order.

Table 25.1. Spaces of non-spin and spin characters of S∞ and G(m, 1,∞).

parametrization
through

parameter
space

subset
⊃ supp(f)

symmetric
group S∞ (α, β) 7→ fα,β (α, β) ∈ A1 S∞

covering
group S̃∞ γ 7→ f̃∞ · fγ,0 γ ∈ C1 ⊂ A1 B ⊂ Ã∞

For G(m, 1,∞) = S∞(Zm) and its covering groups:

CASE
Y

(spin)
type

cocy-
cle

parametriza-
tion through

parameter
space

subset
⊃ supp(f)

I (−1,−1,−1) θ7 A 7→ F̃ I∞ · fA A ∈ A(
T̂ 0

) O(I)

II (−1,−1, 1) θ5 A 7→ F̃ II∞ · fA {A, tA} ∈ A(
T̂ 0

)
/〈τ〉 O(II)

VII (1, 1,−1) θ2 A 7→ χ̃π2,ζ0
· fA {A, tA} ∈ A(

T̂ 0
)
/〈τ〉 O(VII)

VIII (1, 1, 1) θ0 A 7→ fA A ∈ A(
T̂

)
S∞(Zm)

The subsets O(I), O(II) and O(VII) are given in Table 10.1 in [I], and O(I), O(II)
are rede�ned in (24.2). Moreover, O(VII) = Φ−1(N), N = A∞(Zm)S(2).

Note 25.1. The factor representation πb
2 = πb

θ2
in [DuNe] is equal to 2-times

multiple of our 2-dimensional spin representation π2,ζ0 in CASE VII (Theorem 12.1 in
[I]), and that χb

θ2
is equal to χ̃2,ζ0 . The one πb

7 = πb
θ7

loc. cit. can be constructed from

IRs ΠI
0, ΠI

+ of G̃ I
n (depending on n even or odd) in Example 11.1 as n →∞, and χb

θ7

is equal to F̃ I∞. Similarly the one πb
5 = πb

θ5
loc. cit. can be constructed from ΠII

0 , ΠII
+

in Example 12.2 as n →∞, and χb
θ5

is equal to F̃ II∞.



Acknowledgements for papers [E], [I] and [II] 267

The problem of transcribing the parametrization of spin characters of G(m, 1,∞),
in Table 25.1, in terms of parameters in [MoJo] for spin IRs (cf. [Iva]), is an interesting
problem but left to be open here.
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List of symbols and de�nitions for [II]:

De�nitions:
(Condition I-00) : Lem. 16.2 Parity Rule I-11 : 15.3

(Condition I-11) : Lem. 16.2 Parity Rule II-00 : 17.2.3

(Condition II-00) : 17.2.1 Parity Rule II-11 : 17.3

(Condition II-11) : 17.3 representation group of G : Th. 1.1
(Condition 0-11) : 17.5 (spin) type of projective IR : 2.3, Table 4.1
Criterion (EF) : Def. 3.1 standard decomposition of g : (4.1)
factorizable for f : Def. 3.1 standard decomposition of g′′ : 16.1.2, 17.1
Parity Rule I-00 : 16.2 standard decomposition of σ′ : Def. 13.1

type β = (β1, β2, β3) : 2.3, Table 4.1
Symbols:

A = (α, β; µ) : (23.9) P+
γ , P−γ : (6.17), (6.18)

A(T̂ 0) : (23.16) P0, P+, P− : 6.4

a, b, c triplet : (5.11) ρn, ρn,+, ρn,− : Th. 5.6

Ãn =Φ −1
S

(
An

)
, Bn =R(An) : Th. 2.7 ∇n, ∇−n , ∇′, ∇′′n, ∇II

n , ∇II±
n : 8.1

CASE I, CASE II : 2.3 ri (i ∈ In−1) : Th. 1.2

Cn Cli�ord algebra : 5.1 rI
i(d

′), rII
i (d′) (d′ ∈ D̃n) : 7.1, 7.2

γ, Γn, Γ0
n : Def. 6.2 rij : Def. 1.1

D̃(m,n) : 2.3 R(An) = Bn : Th. 2.7

D̃n = D̃(m, n) : 6.1 R(G) : 1.1

D̃0(m,n) : (5.2) Rep
(
D̃n

)
,Rep+

(
D̃n

)
,Rep−

(
D̃n

)
: Th. 6.5

∆′
n : 15.1 < : Lem. 17.3

ε 2× 2 unit matrix : 5.3 S(Pγ), S(Pγ) : just before Th. 7.2
f I

γ = tr(πγ) : 16.2 S(P+
γ ), S(P−γ ) : Lem. 12.2

f̃ I
γ normalized character : 16.5 SI(T ), SI(T )S : 2.1.1

f II
γ = tr(πII

γ ) : 17.1 S(p) ⊂ Zm : 2.1.1

Fn, F ′n : 5.1 S̃n = T′n : Th. 1.2
FY (Y=I,II) : top of �22 sgn(σ′) = sgn(σ) : Notation 4.1
ζγ , γ = (γ1, γ2, . . . , γn) : 6.1 sgnD̃(d′) : Def. 6.1, (16.35)
gj = (dj , σj) : (4.1) supp(g), supp(g′) : Notation 2.1
G(m, p, n) = Sn(Zm)S(p) : 2.1.1 supp(d), supp(σ) : Notation 2.1
G(m, p,∞) : 2.1.1 τkγ (γ ∈ Γn) : Def. 6.4

G̃ I(m, 1, n), G̃ II(m, 1, n) : 2.3 T ′j (j ∈ I2N+1) : 15.1

ηj (j ∈ In) : Th's 2.2�2.3 T̂ 0 : 11.5

η′j (j ∈ In) : (2.12), (7.2)
I
o,

II
o : 3, STEP1

In = {1, 2, . . . , n} : Rem. 1.1 ΦS : S̃n → Sn : Th. 1.2
In,ζ : Def. 11.2, (19.1) Φ : Th's 2.2�2.3

ι(A)B = ABA−1 : 8.5 ΦD : D̃(m,n) → D(m, n) : 4

`(σ) length of a cycle : 1.3 ΦY, ΦY : Diagram 2.1

`j = `(σj) : 13.1 Ψ : D̃(m,n) → Fn : Lem. 5.3

L(σ), L(σ′) : Def. 1.1, Notation 4.1 χγ(d′)
(
γ ∈ Γn, d′ ∈ D̃(m,n)

)
: Def. 6.1

L·R : 5.2 X ′
j (j ∈ I2N+1) : 15.1

ξq = (tq, q) : (4.1) yi (i ∈ In) : Prop. 2.1
0+

n , 0−n : (8.22) Yj (j ∈ I2n′+1) : (5.13)
ord(d′), ord(d) : Notation 4.1 Y ′

j = (−1)j−1Yj : 7.1

π0 ¡ π1, Π(π0, π1) : (3.4) Yn(T ), Yn(T )0 : 11.5

Pγ(d′) : Def. 6.3 Y A
n (T )0, Y A

n (T )0,1, Y A
n (T )0,2 : 12.3

[Pγ ] equivalence class of Pγ : 7.1 z1 ∈ S̃n : Th. 1.2
Z = 〈z1, z2, z3〉 : Th. 2.3


