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Chapter 3

Geometry and discrete groups

In this section, we will introduce basic materials in the Lie group theory and geom-

etry and discrete group actions on the geometric spaces.

Geometry will be introduced as in the Erlangen program of Klein. We discuss

projective geometry in some depth. Hyperbolic geometry will be given an emphasis

by detailed descriptions of models. Finally, we discuss the discrete group actions,

the Poincaré polyhedron theorem and the crystallographic group theory.

We will not go into details as these are somewhat elementary topics. A good

source of the classical geometry is carefully written down in the book [Berger (2009)].

The rest of material is heavily influenced by the books [Ratcliffe (2006); Thurston

(1997)]; however, we sketch the material.

3.1 Geometries

We will now describe classical geometries from Lie group action perspectives, as

expounded in the Erlangen program of Felix Klein submerging all classical geome-

tries under the theory of Lie group actions: We think of an (G,X)-geometry as the

invariant properties of a manifold X under a group G acting on it transitively and

effectively. Formally, the (G,X)-geometry is simply the pair (G,X) and we should

know everything about the (G,X)-geometry from this pair.

Of course, there are many particular hidden treasures under this pair which

should surface when we try to study them.

3.1.1 Euclidean geometry

The Euclidean space is Rn (or denoted En) and the group Isom(Rn) of rigid motions

is generated by O(n) and Tn the translation group. In fact, we have an inner-product

giving us a metric.

A system of linear equations gives us a subspace (affine or linear). Hence, we have

a notion of points, lines, planes, and angles. Notice that these notions are invariantly

defined under the group of rigid motions. These give us the set theoretical model

25
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for the axioms of the Euclidean geometry. Very nice elementary introductions can

be found in the books [Berger (2009); Ryan (1987)] for example.

3.1.2 Spherical geometry

Let us consider the unit sphere Sn in the Euclidean space Rn+1. The transformation

group is O(n+ 1,R).

Many great spheres exist and they are subspaces as they are given by a homo-

geneous system of linear equations in Rn+1. The lines are replaced by arcs in great

circles and lengths and angles are also replaced by arc lengths and angles in the

tangent space of Sn.

A triangle is a disk bounded by three geodesic arcs meeting transversally in

acute angles. Such a triangle up to the action of O(n + 1,R) is classified by their

angles θ0, θ1, θ2 satisfying

0 < θi < π (3.1)

θ0 + θ1 + θ2 > π (3.2)

θi < θi+1 + θi+2 − π, i ∈ Z3. (3.3)

(See Figure 3.2.)
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Fig. 3.1 An example of a spherical triangle of angles 2π/3, π/2, π/2.

Many spherical triangle theorems exist. Given a triangle with angles θ0, θ1, θ2
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and opposite side lengths l0, l1, l2, we obtain

cos li = cos li+1 cos li+2 + sin li+1 sin li+2 cos θi,

cos θi = − cos θi+1 cos θi+2 + sin θi+1 sin θi+2 cos li,

sin θ0

sin l0
=

sin θ1

sin l1
=

sin θ2

sin l2
, i ∈ Z3. (3.4)

(See http://mathworld.wolfram.com/SphericalTrigonometry.html for more

details and proofs.) This shows for example that a triple of angles detemines the

isometry classes of spherical triangles. Also, so does the triples of lengths.

(0,π,0)

(π,π,π)

(π,0,0)

(0,0,π)

Fig. 3.2 The space of isometric spherical triangles in terms of angle coordinates. See the article

[Choi (2011)].

3.1.3 Affine geometry

A vector space Rn becomes an affine space by forgetting about the privileges of the

origin. An affine transformation of Rn is one given by x 7→ Ax+ b for A ∈ GL(n,R)

and b ∈ Rn. This notion is more general than that of rigid motions.

The Euclidean space Rn with the group A(Rn) = GL(n,R) · Rn of affine trans-

formations forms the affine geometry. Of course, angles and lengths do not make

sense. But the notion of lines exists. Also, the affine subspaces that are linear

subspaces translated by vectors make sense.

The set of three points in a line has an invariant based on ratios of lengths.

3.1.4 Projective geometry

Projective geometry was first considered from fine art. Desargues (and Kepler) first

considered points at infinity from the mathematical point of view. Poncelet first

added ideal points to the euclidean plane.

A transformation of projecting one plane to another plane by light rays from a

point source which may or may not be at infinity is called a perspectivity. Projective
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transformations are compositions of perspectivities. Often, they send finite points

to ideal points and vice versa, e.g., perspectivity between two planes that are not

parallel. For example, some landscape paintings will have horizons that are from the

“infinity” from vertical perspectives. Therefore, we need to add ideal points while

the added points are same as ordinary points up to projective transformations.

Lines have well-defined ideal points and are really circles topologically because

we added an ideal point at each pair of a direction and its opposite direction.

Some notions such as angles and lengths lose meanings. However, many interesting

theorems can be proved. Also, theorems always come in dual pairs by switching lines

to points and vice versa. Duality of theorems plays an interesting role (Busemann

and Kelly, 1953).

A formal definition with topology was given by Felix Klein using homoge-

neous coordinates. The projective space RPn is defined as the quotient space

Rn+1 − {O}/ ∼ where ∼ is given by v ∼ w if v = sw for s ∈ R − {O}. Each

point is given a homogeneous coordinate: [v] = [x0, x1, . . . , xn] where two ho-

mogeneous coordinates are equal if they differ only by a nonzero scalar. That

is [x0, x1, . . . , xn] = [λx0, λx1, . . . , λxn] for λ ∈ R − {0}. The projective trans-

formation group PGL(n + 1,R) is defined as GL(n + 1,R)/ ∼ where g ∼ h for

g, h ∈ GL(n + 1,R) if g = ch for a nonzero constant c. The group equals the quo-

tient group SL±(n + 1,R)/{I,−I} of the group SL±(n + 1,R) of determinant ±1.

Now PGL(n + 1,R) acts on RPn where each element sends each ray to a ray by

the corresponding general linear map. Each element of g of PGL(n+ 1,R) acts by

[v] 7→ [g′(v)] for a representative g′ in GL(n+1,R) of g and is said to be a projective

automorphism.

Given a basis B of n + 1 vectors v0, v1, . . . , vn of Rn+1, we let [v]B =

[λ0, λ1, . . . , λn]B for a point v if we write v = λ0v0 + λ1v1 + · · · + λnvn. Here,

[λ0, . . . , λn]B = [cλ0, cλ1, . . . , cλn]B for c ∈ R− {0}.
Also any homogeneous coordinate change is viewed as induced by a linear map:

That is, [v]B has the same homogeneous coordinate as [Mv] where M is the coor-

dinate change linear map so that Mvi = ei for i = 0, 1, . . . , n.

• For n = 1, RP1 is homeomorphic to a circle. One considers this as a real

line union an infinity.

• A set of points in RPn is independent if the corresponding vectors in Rn+1

are independent. The dimension of a subspace is the maximal cardinality

of an independent set minus 1.

• A subspace is the set of points whose representative vectors satisfy a homo-

geneous system of linear equations. The subspace in Rn+1 corresponds to

a projective subspace in RPn in a one-to-one manner while the dimension

drops by 1.

• The affine geometry can be “embedded”: Rn can be identified with the set of

points in RPn where x0 is not zero, i.e., the set of points {[1, x1, x2, . . . , xn]}.
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This is called an affine subspace. The subgroup of PGL(n+ 1,R) fixing Rn
is precisely A(Rn) = GL(n,R) · Rn as can be seen by computations.

• The subspace of points {[0, x1, x2, . . . , xn]} is the complement homeomor-

phic to RPn−1. This is the set of ideal points, i.e., directions in the affine

space Rn.

• From affine geometry, one could construct a unique projective geometry and

conversely using this idea. (See the book [Berger (2009)] for the complete

abstract approach.)

• A hyperspace is given by a single linear equation. The complement of a

hyperspace can be identified with an affine space since we can put this into

the subspace in the third item.

• A line is the set of points [v] where v = sv1 + tv2 for s, t ∈ R for the

independent pair v1, v2. Actually a line is RP1 or a line R1 with a unique

infinity. A point on a line is given a homogeneous coordinate [s, t] where

[s, t] ∼ [λs, λt] for λ ∈ R− {O}.
• RPi can be identified to the subspace of points given by x0 =

0, . . . , xn−i−1 = 0.

• A subspace is always diffeomorphic to RPi for some i, i = 0, 1, . . . , n, by a

projective automorphism.

The projective geometry has well-known invariants called cross ratios even

though lengths of immersed geodesics and angles between smooth arcs are not

invariants. (However, we do note that the properties of angles or lengths being

< π,= π, or > π are invariant properties.)

A line is either a subspace of dimension one or a connected subset of it. A

complete affine line is a complement of a point in a subspace of dimension-one

or sometimes we say it is a line of spherical length π. Since they are subsets of

a subspace isomorphic to RP1, we can give it a homogeneous coordinate system

[x0, x1] regarding it as quotient space of R2 − {O}.

• The cross ratio of four points x, y, z, and t on a one-dimensional subspace

RP1 is defined as follows. There is a unique coordinate system so that

x = [1, 0], y = [0, 1], z = [1, 1], t = [b, 1]. b = b(x, y, z, t) is defined as

the cross-ratio. Thus, it is necessary that at least three points x, y, z are

mutually distinct.

• If the four points are on a complete affine line, the cross ratio is given as

[x, y; z, t] =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

if we find a two-variable coordinate system where

x = [1, z1], y = [1, z2], z = [1, z3], t = [1, z4]

by some coordinate change. That is, if x, y, z, and t have coordinates

z1, z2, z3, and z4 respectively in some affine coordinate system of an affine

subspace of dimension 1, then the above expression is valid.
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• One can define cross ratios of four hyperplanes meeting in a projective

subspace of codimension 2. By duality, they correspond to four points on

a line.

3.1.4.1 The RP2-geometry

Let us consider RP2 as an example. We proceed with basic definitions and facts,

which can be found in the book [Coxeter (1994)]: We recall that the plane projective

geometry is a geometry based on the pair consisting of the projective plane RP2,

the space of lines passing through the origin in R3 with the group PGL(3,R), the

projectivized general linear group acting on it. RP2 is considered as the quotient

space of R3 − {O} by the equivalence relation v ∼ w iff v = sw for a scalar s.

Here we have a familiar projective plane as topological type of RP2, which is a

Mobiüs band with a disk filled in at the boundary. See http://www.geom.uiuc.

edu/zoo/toptype/pplane/cap/.

A point is an element of RP2 and a line is a codimension-one subspace of RP2,

i.e., the image of a two-dimensional vector subspace of R3 with the origin removed

under the quotient map. Two points are contained in a unique line, and two lines

meet at a unique point. Points are collinear if they lie on a common line. Lines are

concurrent if they pass through a common point. A pair of points and/or lines are

incident if the elements meet with each other.

The dual projective plane RP2† is given as the space of lines in RP2. We can

identify it as the quotient of the dual vector space R3,† of R3 with the origin removed

by the scalar equivalence relations as above:

α ∼ β if α = sβ, s ∈ R− {0}, α, β ∈ R3,† − {O}.

An element of PGL(3,R) acting on RP2 is said to be a collineation or projective

automorphism. The elements are uniquely represented by matrices of determinant

equal to 1. The set of their conjugacy classes is in a one-to-one correspondence with

the set of topological conjugacy classes of their actions on RP2. (Sometimes, we

will use matrices of determinant −1 for convenience.)

Among collineations, an order-two element is said to be a reflection. It has

a unique line of fixed points and an isolated fixed point. Actually, any pair of

reflections are conjugate to each other, and given a line and a point not on the line,

we can find a unique reflection with these fixed point sets. A reflection will often

be represented by a matrix of determinant equal to −1 and the isolated fixed point

corresponds to the eigenvector of eigenvalue −1.

Given two lines, we say that a map between the points in one line l1 to the other

l2 is a projectivity or projective isomorphism if the map is induced from a rank-two

linear map from the vector subspace corresponding to l1 to that corresponding to

l2.

By duality, we mean the one-to-one correspondence between the set of lines in

RP2 with the set of points in RP2† and one between the points in RP2 with the lines
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in RP2†. The correspondence preserves the incidence relationships.

Under duality, a line in RP2† corresponds to the set of all lines through a point

in RP2, so-called a pencil of lines, and vice-versa.

By duality, given the pencil of lines through a point p and the pencil of lines

through another point q, we define that a projectivity between the two pencils is a

one-to-one correspondence that is the projectivity from the dual line of p to that of

q.

Let l1 and l2 be two lines and let p1
1, p

1
2, p

1
3 be three distinct points of l1 and let

p2
1, p

2
2, p

2
3 be three distinct points in l2. Then there is a projectivity sending p1

i to

p2
i for i = 1, 2, 3.

A quadruple of points in RP2 in a general position are always equivalent by a

collineation. (By a general position, we mean that no three of them are in a line.)

A nonzero vector v in R3 represents a point p of RP2 if v is in the equivalence

class of p or in the ray p. We often label a point of RP2 by a vector representing it

and vice versa by an abuse of notation.

We have another definition.

Definition 3.1. Let y, z, u, v be four distinct collinear points in RPn with u =

λ1y+λ2z and v = µ1y+µ2z. The cross-ratio [y, z;u, v] is defined to be λ2µ1/λ1µ2.

Given a set of four mutually distinct points p1
1, p

1
2, p

1
3, p

1
4 on a line l1 and another

such set p2
1, p

2
2, p

2
3, p

2
4 on a line l2, we obtain a projectivity l1 → l2 sending p1

i to p2
i

iff

[p1
1, p

1
2; p1

3, p
1
4] = [p2

1, p
2
2; p2

3, p
2
4].

For example, if the coordinates y, z, u, v of four points are y = 1, z = 0, and

1 > u > v > 0 in some affine coordinate system of an affine line, then the cross

ratio [1, 0, u, v] equals

1− u
u

v

1− v

which is positive and realizes any values in the open interval (0, 1).

The cross-ratio of four concurrent lines in RP2 is also defined similarly (see the

book [Busemann and Kelly (1953)]) using the dual projective plane where they

become four collinear points.

Given a notation [y, z;u, v] with four points y, z, u, v, we usually assume that

they are to be on an image of a segment under a projective map where y, z the

endpoints and y, v separates u from z. This is the standard position of the four

points in this paper.

However, if we exchange y, z or u, v, we obtain a reciprocal. If we exchange

y, z and u, v at the same time, we do not change the cross ratios. The symmetry

properties of cross ratios are well-known and we skip the discussion here.
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3.1.4.2 Oriented projective geometry

Note that Sn double-covers RPn. Moreover, the group SL±(n + 1,R), i.e., linear

maps of Rn+1 with determinant ±1, maps to PGL(n+1,R) with discrete kernels in

the center. Then (Sn,SL±(n+1,R)) defines a geometry called an oriented projective

geometry.

This is an old idea actually, and there are several advantages working in this

space.

Each point is given a homogeneous coordinate: [v] = [x0, x1, . . . , xn] where two

homogeneous coordinates are equal if they differ only by a positive scalar; i.e.,

[x0, x1, . . . , xn] = [λx0, λx1, . . . , λxn] for λ ∈ R, λ > 0.

Two points are antipodal if their homogeneous coordinates are negatives of the

other.

Subspaces are defined by linear equations as above. A great circle is a subspace

of dimension 1. A set of a point is not a subspace. A pair of antipodal points is a

subspace. The independence is defined as above.

Again a great circle has a homogeneous coordinate system: A great circle is the

set of points [v] where v = sv1 + tv2 for s, t ∈ R for the independent pair v1, v2. A

point on a great circle is given a homogeneous coordinate [s, t] where [s, t] ∼ [λs, λt]

for λ ∈ R, λ > 0. Cross ratios can be defined on four distinct points (x, y, z, t) on a

great circle with the first homogeneous coordinates positive.

A hemisphere is a subset defined by

{[x0, x1, . . . , xn]|f(x0, x1, . . . , xn) ≥ 0}

for a linear function f on Rn+1. A convex subset of Sn is a subset such that any

two points can be connected by a segment in the subset of length ≤ π. A convex

subset is always a subset of a hemisphere of dimension n or Sn itself. (Under this

definition, the intersection of two convex subsets may not be convex. However, if

they intersect in their interiors, this problem does not happen.) See the article

[Choi (1994a)] for this point of view.

3.1.5 Conformal geometry

We can introduce two classes of symmetries of Rn. The first class is the set of

reflections of Rn. Let the hyperplane P (a, t) given by a · x = t for a unit vector a.

Then the reflection about P (a, t) is given by ρ(x) = x + 2(t − a · x)a. The second

class is the set of inversions. Let the hypersphere S(a, r) be given by |x − a| = r.

Then the inversion about S(a, r) is given by σ(x) = a+ ( r
|x−a| )

2(x− a).

We compactify Rn to R̂n = Sn by adding infinity. This is to be accomplished

as follows: Let Sn be the unit sphere in Rn+1 and identify Rn with the subspace

xn+1 = −1. Consider the stereographic projection from the point (0, 0, . . . , 1).

Taking the inverse image of Rn in Sn, we obtain a copy of Rn in Sn. The usual

differentiable structure of Sn extends that of embedded Rn. Since the stereographic
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map preserves angles, the angles of Rn agree with those of the copy in Sn with the

standard metric. The reflections and inversions of Rn become diffeomorphisms

of the copy in Sn, which extend uniquely to real analytic diffeomorphisms of Sn

respectively; that is, their Jacobians are nowhere zero. Since the maps preserve

angles almost everywhere, they do so everywhere by a limiting argument. Thus,

these reflections and inversions induce conformal homeomorphisms of R̂n = Sn;

that is, they preserve angles.

• The group of transformations generated by these homeomorphisms is called

the Mobiüs transformation group.

• They form the conformal transformation group of R̂n = Sn.

• For n = 2, R̂2 is the Riemann sphere Ĉ and a Mobiüs transformation is a

either a fractional linear transformation of form

z 7→ az + b

cz + d
, ad− bc 6= 0, a, b, c, d ∈ C

or a fractional linear transformation pre-composed with the conjugation

map z 7→ z̄.

• In higher-dimensions, a description as a sphere of positive null-lines and

the special Lorentzian group exists in the Lorentzian space R1,n+1.

3.1.5.1 Poincaré extensions

We can identify En−1 with En−1 × {O} in En and extend each Mobiüs transfor-

mation of Ên−1 to one of Ên that preserves the upper half space Un. That is, we

extend reflections and inversions in the obvious way: by extending a reflection in

En−1 about a hyperplane to a reflection in En about a hyperplane containing the

hyperplane and perpendicular to En−1, and extending the inversion in En−1 about

a sphere of radius r with center x ∈ En−1 to the inversion in En with the same

radius and center.

Each Mobiüs transformation m of Ên−1 is a composition of reflections and in-

versions, say r1r2 . . . rn. Denoting r̂i the extension, we let the extension m̂ of m be

given by r̂1r̂2 . . . r̂n.

• The Mobiüs transformations of Ên that preserve the open upper half space

are exactly the extensions of the Mobiüs transformations of Ên−1. There-

fore, M(Un) is identical with M(Ên−1).

• We put the pair (Un, Ên−1) to (Bn,Sn−1) by a Mobiüs transformation η of

Ên. Thus, M(Un) is isomorphic to M(Sn−1) for the boundary sphere by a

conjugation by η.

• By a similar reason to the above, M(Bn) is identical with M(Sn−1) by con-

sidering the Poincaré extension of reflections and inversions on hyperplanes

and spheres orthogonal to Sn−1.
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3.1.6 Hyperbolic geometry

A hyperbolic space Hn is defined as a complete Riemannian manifold of constant

curvature equal to −1. Such a space cannot be realized as a submanifold in a

Euclidean space of even very large dimensions. But it is realized as a “sphere” in a

Lorentzian space as we will see soon. A Lorentzian space is the vector space R1+n

with an inner product

x · y = −x0y0 + x1y1 + · · ·+ xn−1yn−1 + xnyn.

We will denote it by R1,n.

• A Lorentzian norm ||x|| = (x · x)1/2 is a positive number, a positive imagi-

nary number, or zero. The vector is said to be space-like, null, or time-like

depending on its norm being positive, zero, or a positive imaginary number.

• The null vectors form a light cone divided into a cone of positive null vectors,

a cone of negative null vectors, and {O}.
• The subspace of time-like vectors also has two components where x0 > 0

and x0 < 0 respectively. A time-like vector is also positive or negative

depending on which component it lies in.

• Ordinary notions such as orthogonality can be defined by the Lorentzian

inner product. A basis is orthonormal if its vectors have norms of 1 or

i and they mutually orthogonal. The Gram-Schmidt orthogonalization is

possible also for a set of vectors starting with a positive time-like vector.

• A subspace of R1,n is either space-like where all vectors in it are space-like,

is null where at least one nonzero-vector is null and no vector is time-like, or

finally time-like where at least one vector is time-like: This can be seen by

looking at the restriction of the Lorentzian inner product on the subspace

where it could be either positive-definite, semi-definite, or definite with at

least one vector with an imaginary norm.

• A pair of space-like vectors v and w spanning a space-like subspace have

an angle between them given by the formula cos θ = v·w/||v||||w||. This

can be generalized to the situations where they do not span a space-like

subspace and span a null subspace or a time-like subspace. (For details, see

the book [Ratcliffe (2006)]).

3.1.6.1 The Lorentz group

A Lorentzian transformation is a linear map preserving the inner-product. A

Lorentzian matrix is a matrix corresponding to a Lorentzian transformation under

a standard coordinate system. For the diagonal matrix J with entries −1, 1, . . . , 1,

AtJA = J if and only if A is a Lorentzian matrix.

The set of Lorentzian transformations forms a Lie group O(1, n) given by

{A ∈ GL(n+ 1,R)|AtJA = J},
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which is a subgroup of GL(n+ 1,R). A Lorentzian transformation sends time-like

vectors to time-like vectors. Thus, by continuity, it either preserves both compo-

nents of the subspace of positive time-like vectors or switches the components. It

is either positive or negative if it sends positive time-like vectors to positive time-

like ones or negative time-like ones. The set of positive Lorentzian transformations

forms a Lie subgroup PO(1, n).

The quotient map

GL(n+ 1,R)→ PGL(n+ 1,R)

maps the subgroup diffeomorphic to its image subgroup. Hence, there is an inclusion

map

PO(1, n)→ PGL(n+ 1,R).

We regard the first group as the subgroup of the next.

3.1.6.2 The hyperbolic space

For two positive time-like vectors, the subspace spanned by them is time-like and

the Lorentzian inner product restricts to an inner product of signature −1, 1. In

a new coordinate system with coordinate functions s, t, the inner product becomes

−s2 + t2. Since the vectors are positive time-like, the absolute values of second

components of the two vectors are smaller than those of the first components. Thus,

the Lorentzian inner-product of the two vectors is a negative number. Their norms

are positive imaginary numbers, and the absolute value of the inner-product is

greater than the product of the absolute values of their norms as can be verified by

simple computations. Given (s1, t1), (s2, t2), si > 0, si > ti, we can show

(−s1s2 + t1t2)2 > (−s2
1 + t21)(−s2

2 + t22),

which follows from

2s1s2t1t2 < s2
1t

2
2 + s2

2t
2
1.

Therefore, there is a time-like angle η(x, y) for two time-like vectors x and y defined

by

x · y = |||x||||||y||| cosh η(x, y)

where |||v||| for a vector v denotes the absolute value of the norm ||v|| of v.

A hyperbolic space Hn is an upper component of the submanifold defined by

||x||2 = −1 or x2
0 = 1 + x2

1 + · · · + x2
n. This is a subset of a positive cone, the

upper sheet of a hyperboloid. Topologically, it is homeomorphic to Rn since one

realizes it as a graph of the function. Sometimes, this object is called a hyperboloid

model of the hyperbolic space. (See also http://www.geom.uiuc.edu/~crobles/

hyperbolic/hypr/modl/mnkw/.)

One induces a metric from the Lorentzian space: for two tangent vectors x, y to

the hyperboloid, we define x · y by the Lorentzian inner product. Since the tangent
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vectors at a point u of the hyperboloid is orthogonal to u, the tangent space is

space-like and the norms are always positive. This gives us a Riemannian metric

of constant curvature −1. (The computation of curvature is very similar to the

computations for the sphere.)

A hyperbolic line is an intersection of Hn with a time-like two-dimensional vector

subspace. A triangle is given by three segments meeting at three vertices. Denote

the vertices by A,B, and C and the opposite segments by a, b, and c. By denoting

their angles and lengths again by A,B,C, a, b, and c respectively, we obtain

• Hyperbolic law of sines:

sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
.

• Hyperbolic law of cosines:

cosh c = cosh a cosh b− sinh a sinh b cosC, (3.5)

cosh c =
coshA coshB + cosC

sinA sinB
. (3.6)

One can assign any interior angles to a hyperbolic triangle as long as the sum

is less than π. One can assign any lengths to a hyperbolic triangle as long as the

lengths satisfy the triangle inequality.

We note that the triangle formula can be generalized to formulas for quadrilat-

erals, pentagons, hexagons with some right angles. Basic philosophy here is that

one can push the vertex outside and the angles become distances between lines.

(See the book [Ratcliffe (2006)] or http://online.redwoods.cc.ca.us/instruct/

darnold/staffdev/Assignments/sinandcos.pdf)

Since PO(1, n) includes O(n,R) acting on the subspace given by x0 = 0 and

PO(1, 1) acting transitively on the hyperbolic line through e0 and
√

2e0 + e1, it

follows that PO(1, n) acts transitively on Hn. Given any isometry k, we can find

an element g ∈ PO(1, n) so that g ◦ k fixes e0 and every vector at the tangent space

at e0. By analyticity of the isometry group, it follows that k = g−1. Therefore, the

Lie group PO(1, n) is the isometry group of Hn and acts faithfully and transitively.

3.1.7 Models of hyperbolic geometry

3.1.7.1 Beltrami-Klein models of hyperbolic geometry

The hyperboloid model Hn is a bit complicated in that we have to see a one-

dimension higher space to realize its meaning. We will give more intrinsic definitions

which are obtainable from the hyperboloid model easily.

The Klein model is directly obtained from the hyperboloid model. Recall that

an affine patch Rn in RPn is identifiable with a complement of a subspace. A

standard one is given by x0 6= 0. The standard affine patch has coordinate functions

x1, . . . , xn. There is an embedding from Hn onto an open unit ball B in the standard
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affine patch Rn of RPn:

[x0, x1, x2, . . . , xn]→ (x1/x0, x2/x0, . . . , xn/x0)

induced from a standard radial projection Rn+1 − {O} → RPn.

We regard B as a ball of radius 1 with the center at O in Rn. The hyperboloid

has a distance metric induced from the Riemannian metric. By the projection, we

obtain a distance metric dk on B. We compute that dk(P,Q) = 1/2| log(ab, PQ)|
where a, P,Q, b are on a segment with endpoints a, b and

[ab, PQ] =

∣∣∣∣
aP

bP

bQ

aQ

∣∣∣∣ (3.7)

where aP, bP, bQ, and aQ denote the Euclidean distances between the designated

points respectively.

We can verify this formula as follows: The metric is induced on B by the radial

projection

πRPn : Hn ⊂ Rn+1 − {O} → B ⊂ RPn.

Since λ(t) = (cosh t, sinh t, 0, . . . , 0) define a unit speed geodesic in Hn, we have

dk([e1], [(cosh t, sinh t, 0, . . . , 0)]) = t for t positive under the Riemannian metric dk.

On the right side of equation 3.7, we compute the same. Since any geodesic segment

of same length is congruent under the isometry, we see that the two metrics coincide.

The isometry group PO(1, n) also maps injectively to a subgroup of PGL(n+1,R)

that preserves B. Since the isometry corresponds to a linear map in R1+n and it

preserves Hn, it follows that an isometry corresponds to a projective automorphism

ofB. Conversely, we see that a projective automorphism ofB preserves dk because it

preserves the cross-ratios and hence, it must come from the isometry. The projective

automorphism group of B is precisely PO(1, n).

• The Beltrami-Klein model is “nice” because you can see outside in RPn.

The outside has the natural structure of the anti-de Sitter space. (See

http://en.wikipedia.org/wiki/Anti_de_Sitter_space.) We can treat

points outside and inside together.

• Each hyperplane in the model is dual (i.e., orthogonal by the Lorentzian

inner-product) to a point outside. A point in the model is dual to a hyper-

plane outside. In fact, any subspace of dimension i is dual to a subspace of

dimension n− i− 1 by orthogonality.

• For n = 2, the dual of a line is given by taking tangent lines to the disk at

the endpoints and taking the intersection.

• The distance between two hyperplanes can be obtained by two dual points.

The two dual points span a 2-dimensional orthogonal subspace to the both

hyperperplanes and hence provide the shortest geodesic.
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3.1.7.2 The conformal ball model ( Poincaré ball model )

We consider a stereo-graphic projection Hn to the subspace P in R1+n given by

x0 = 0 from the point (−1, 0, . . . , 0). The formula for the map κ : Hn → BP is

given by

κ(y) =

(
y1

1 + y0
, . . . ,

yn
1 + y0

)
,

where the image is the open ball BP of radius 1 with the center O in P . The inverse

is given by

ζ(x) =

(
1 + |x|2
1− |x|2 ,

2x1

1− |x|2 , . . . ,
2xn

1− |x|2
)
.

Since this is a diffeomorphism, BP has an induced Riemannian metric of constant

curvature −1. We show by computations

cosh dBP
(x, y) = 1 +

2|x− y|2
(1− |x|2)(1− |y|2)

.

This formula shows that all inversions acting on BP preserve the metric, and so does

the group M(BP ) of Mobiüs transformations of BP . The corresponding Riemannian

metric is gij = 2δij/(1− |x|2)2. Note that for two points x, y of BP , there exists a

circle perpendicular to the topological boundary sphere bdBP of BP containing x

and y. We can choose a hypersphere passing the midpoint of the segment between

x and y. Also, a stabilizer of a point x of BP is generated by reflections about

hyperspheres containing x. Since M(BP ) is generated by reflections about spheres

orthogonal to bdBP , it follows that M(BP ) is transitive on BP and the stabilizer

of a point is easily seen to be isomorphic to O(n). Since the isometry group of BP
has the same property, it follows that the group of Mobiüs transformations acting

on BP is precisely the isometry group of BP .

Moreover, Isom(BP ) can be identified with M(Sn−1) where Sn−1 is the bound-

ary sphere of BP (see Section 3.1.5.1).

Geodesics would be lines through O or would be arcs on circles perpendicular to

the sphere of radius 1. A sphere in Sn is a sphere in Rn or the closure of an affine

subspace of Rn in the sphere R̂n compactified at∞. A horosphere in BP is a sphere

S in Cl(BP ) tangent to a point x in bdBP with the point {x} = S∩bdBP removed.

Given a point x of bdBP , we obtain a one parameter family of horospheres whose

closures meet x.

3.1.7.3 The upper-half space model.

Let U be the upper half-space in Rn. Then U is homeomorphic to an open ball

in the compactification R̂n = Sn. Since BP is an open ball, we can find a Mobiüs

transformation sending BP to U by a composition of two reflections. Now we put

BP to U by the Mobiüs transformation. This gives a Riemannian metric of constant

curvature −1 on U .
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We have by computations that cosh dU (x, y) = 1 + |x− y|2/2xnyn and that the

Riemannian metric is given by gij = δij/x
2
n. Then I(U) = M(U) = M(En−1).

Geodesics would be arcs on lines or circles perpendicular to En−1.

3.1.7.4 The classification of isometries

Let U2 denote the 2-dimensional upper-half space model of the hyperbolic plane

and U3 the 3-dimensional one of the hyperbolic space. The topological boundary

bdU2 in S2 can be identified with the compactification Ê1 of the Euclidean line

E1 and bdU3 in S3 can be done with the compactification Ê2 of the Euclidean

plane E2. Since Ê1 is a circle and Ê2 equals the complex sphere Ĉ, we obtain

Isom+(U2) = PSL(2,R) and Isom+(U3) = PSL(2,C) respectively. In this model,

it is easier to classify isometries.

• Apart from the identity, orientation-preserving isometries of hyperbolic

plane U2 can have at most one fixed point. An elliptic isometry is one

fixing a unique point. A hyperbolic isometry is one preserving a unique

line. The remaining type one is a parabolic isometry. The elliptic, hyper-

bolic, and parabolic isometries are ones conjugate to

z 7→ z cos θ − sin θ

z sin θ + cos θ
, θ 6= 0 mod 2π,

z 7→ az, a 6= 1, a ∈ R+,

z 7→ z + 1

in M(U2) respectively.

• Orientation-preserving isometries of a hyperbolic space are classified as lox-

odromic, hyperbolic, elliptic, or parabolic. A loxodromic isometry is one

acting on a geodesic translating and having a nonzero rotation angle about

the geodesic and fixes two points in bdU3 corresponding to the endpoints of

the geodesic. A hyperbolic isometry is one acting on a geodesic translating

and having a zero rotation angle about the geodesic and fixes two points

in bdU3 corresponding to the endpoints of the geodesic. An elliptic isom-

etry is one acting on a geodesic fixing each points of it and its closure and

having a nonzero rotation angle about the geodesic. Finally, a parabolic

isometry is one fixing no point and acting on no geodesic in U3 but fixing a

unique point in bdU3 and acts on each of the horsopheres at this point. Up

to conjugations, they are represented as Mobiüs transformations on bdU3

which have forms

– z 7→ αz, Imα 6= 0, |α| 6= 1.

– z 7→ az, a 6= 1, a ∈ R+.

– z 7→ eiθz, θ 6= 0.

– z 7→ z + 1.
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The proofs are omitted but can be found in standard textbooks such as [Ratcliffe

(2006)].

3.2 Discrete groups and discrete group actions

Here, we let X be generally a manifold with some Lie group G acting on it tran-

sitively. In order for most of the developed theory to work, we need that X be

a sphere Sn with Lie groups such as O(n + 1,R), GL(n + 1,R), and the Mobiüs

transformation group acting on it; RPn with PGL(n + 1,R) acting on it; Rn with

O(n,R) ·Rn or A(Rn) = GL(n,R) ·Rn acting on it; or Hn with PO(1, n) acting on it.

Sometimes, we cannot let X be a symmetric space with its isometry group even or

a complex hyperbolic space. The reason is that there seems to be no good notion of

m-planes, i.e., m-dimensional subspaces with pleasant intersection properties. (See

Section 3.2.1 for details) It is a hope of geometric topologists that we can overcome

these difficulties.

We will present facts for X that will be useful in many cases with some additional

assumptions on X. However, the reader may wish to see X as one of the above.

These will be mostly sufficient.

Let X be a manifold. A discrete group is a group with a discrete topology. (It is

usually a finitely generated subgroup of a Lie group.) Any group can be made into a

discrete group. We have many notions of a group action Γ×X → X which induces a

homomorphism Γ→ Diff(X) where Diff(X) denotes the group of diffeomorphisms

of X with the Cr-topology (r ≥ 1):

• The action is effective if an element g of Γ corresponds to IX if and only if

g is the identity in Γ. The action is free if an element g fixes a point of X

if and only if g is the identity in Γ.

• The action is discrete if Γ is discrete in the group of homeomorphisms of

X with the compact open topology. (We used the fact that Diff(X) is a

subgroup of the group of homeomorphisms.)

• The action has discrete orbits if every x has a neighborhood U so that the

number of orbit points in U is finite.

• The action is wandering if every x has a neighborhood U so that the set of

elements γ of Γ so that γ(U) ∩ U 6= ∅ is finite.

• The action is properly discontinuous if for every compact subset K the set

of γ such that K ∩ γ(K) 6= ∅ is finite.

The conditions of discrete action, discrete orbit action, wandering action, and

properly discontinuous are strictly stronger according to the order presented here

as long as X is a manifold. The proof of this fact without the strictness is not

very involved by showing that the later condition implies the given condition (see

Section 3.5 of [Thurston (1997)]).
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• If the action is wandering and free, then the action gives a manifold quotient

which is possibly non-Hausdorff.

• The action of Γ is free and properly discontinuous if and only if X/Γ is a

(Hausdorff) manifold quotient and X → X/Γ is a covering map.

• Suppose that Γ is a discrete subgroup of a Lie group G acting on X with

a compact stabilizer. Then X has a G-invariant Riemannian metric. Any

(G,X)-manifold now has an induced Riemannian metric. Suppose that Γ

acts properly discontinuously on X. Let us call this the standard discrete

action.

• A complete (G,X)-manifold is one isomorphic to X/Γ where Γ acts freely

and properly discontinuously. (The notion of completeness agrees with that

of the induced Riemannian metric for G acting with compact stabilizers.

Hence, this is a natural generalization.)

• We define the deformation space of complete (G,X)-structures on M as

the set of equivalence classes of diffeomorphisms f : M → X/Γ for a dis-

crete subgroup Γ of G acting freely and properly discontinuously with the

equivalence relation that f1 : M → X/Γ1 ∼ f2 : M → X/Γ2 if there is an

(G,X)-diffeomorphism g : X/Γ1 → X/Γ2 where g ◦ f1 is isotopic to f2.

• Suppose that X is simply-connected. For a manifold M , the deformation

space of complete (G,X)-structures on M is in a one-to-one correspondence

with the space of the conjugacy classes of discrete faithful representations h

of π1(M)→ G, each of which giving a diffeomorphism M → X/h(π1(M)).

We remark that if we allow G to act on X without the compact stabilizer condition,

then we call this standard flexible type action.

As examples, we give:

• R2 − {O} with the group generated by g1 : (x, y) → (2x, y/2). This is a

free wondering action but is not properly discontinuous.

• R2 − {O} with the group generated by g : (x, y)→ (2x, 2y). This is a free

and properly discontinuous action.

• The modular group PSL(2,Z) is the group of Mobiüs transformations or

isometries of the hyperbolic plane given by

z 7→ az + b

cz + d
, a, b, c, d ∈ Z, ad− bc = 1.

This is not a free action but a properly discontinuous action on the upper-

half space model U2 of H2 as the action is a standard discrete one. (See

http://en.wikipedia.org/wiki/Modular_group.)

3.2.1 Convex polyhedrons

For Sn, a geodesic is the arc segment in a 1-plane not containing an antipodal pair

except at the endpoints. It could be a singleton. For RPn, a geodesic is just an arc



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

42 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

segment in a 1-plane.

Suppose that X is a space where a Lie group G acts effectively and transitively.

Furthermore, suppose X has notions of m-planes. An m-plane is an element of

a collection of submanifolds of X of dimension m so that given generic m + 1

points, we have a unique one containing them. We require also that every 1-plane

contains geodesic between any two points in it if geodesics are defined for the (G,X)-

geometry. Obviously, we assume that elements of G send m-planes to m-planes.

(For complex hyperbolic spaces, such notions seem to be absent.)

We also need to assume that X satisfies the increasing property: if we are given

an m-plane and every set of generic m+ 1-points in it lies in an n-plane for n ≥ m,

then the entire m-plane lies in the n-plane.

For example, any geometry with models in RPn and G a subgroup of

PGL(n + 1,R) has a notion of m-planes. Thus, hyperbolic, euclidean, spherical,

and projective geometries have notions of m-planes. Conformal geometry may not

have such notions since a generic pair of points have infinitely many circles through

them.

Suppose that the (G,X)-geometry has notions of geodesics well-defined. A con-

vex subset of X is a subset A such that for any pair of points of A, there exists a

geodesic segment in A between them. (We caution the readers that the intersection

of two convex subsets may not be convex under this definition.)

A convex hull of a subset A is a minimal convex subset in X containing A. This

is usually a well-defined set.

Assume that X is Sn, Rn, Hn, or RPn with Lie groups acting on X. Let us

state some facts about convex sets:

• The dimension of a convex set is the least integer m such that C is contained

in a unique m-plane Ĉ in X.

• The interior Co and the boundary ∂C are defined as the topological interior

and the topological boundary in Ĉ respectively.

• The closure of C is in Ĉ. If C is convex, then the interior and the closure

are convex. They are domains with the dimensions equal to that of Ĉ.

• A side of C is a nonempty maximal convex subset of ∂C.

• A convex polyhedron is a nonempty closed convex subset such that the set

of sides is locally finite in X.

3.2.2 Convex polytopes

Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space, is

a subset of an affine patch Rn. In Rn, one can talk about convex hulls.

• A convex polytope in B = Hn is a convex polyhedron with finitely many

vertices and is the convex hull of its vertices in B = Hn.
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• A polyhedron P in B = Hn is a generalized convex polytope if its closure

is a polytope in the affine patch. A generalized polytope may have ideal

vertices. An ideal vertex is a vertex in the boundary of B. The triangle

with all three vertices at the boundary of B is said to be the ideal triangle.

• For X = RPn or Sn, a convex polytope is given as a convex polyhedron in

an affine patch or an open hemisphere with finitely many vertices and is a

convex hull of its vertices.

• In general, for X with notions of m-planes, we define a convex polytope as

above.

Note here that these definitions do not depend on the model of the hyperbolic space

almost by coincidence. Of course, one needs to verify this.

A compact simplex which is a convex hull of n + 1 points in B = Hn is an

example of a convex polytope.

Take the origin O in B, and its tangent space TOB. (In fact, O could be any

point.) Start from the origin O in TOB and expand the infinitesimal euclidean

polytope from an interior point radially in TOB using linear expansion maps given

by scalars. Now map the vertices of the convex polytope by an exponential map to

B. The convex hull of the vertices is a convex polytope. Thus for any Euclidean

polytope, we obtain a one parameter family of hyperbolic polytopes. (We caution

that sometimes the combinatorial structures of the polytope might change. But in

many cases, they do not.)

A regular hyperbolic dodecahedron with all dihedral angles π/2 as seen from

inside is pictured in Figure 3.6. This is to be constructed by the above method.

Actually, the dihedral angle changes from near 116.565 degrees which is realized by a

very small regular hyperbolic dodecahedron, i.e., when s is very small, to 60 degrees

which is realized by an ideal dodecahedron, i.e., when s = +∞. Therefore, the

regular hyperbolic dodecahedron of 90-degree dihedral angles is achievable. (See also

http://demonstrations.wolfram.com/HyperbolizationOfADodecahedron/.)

3.2.3 The fundamental domains of discrete group actions

Recall Sn with spherical geometry, En with Euclidean geometry and Hn with a

hyperbolic geometry. Let X be Sn,En or Hn or more generally a geometrical space

with m-planes. Let Γ be a group acting on X. A fundamental domain for Γ is an

open domain F so that {gF |g ∈ Γ} is a collection of disjoint sets and their closures

cover X. The fundamental domain is locally finite if the above closures are locally

finite.

Suppose that X is either a hyperbolic, euclidean, or spherical space. Then the

Dirichlet domain D(u) for u ∈ X is the intersection of all

Hg(u) = {x ∈ X|d(x, u) < d(x, gu)}, g ∈ Γ− {I}.

Then the closure of D(u) is a convex fundamental polyhedron. If X/Γ is compact,
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and Γ acts properly discontinuously, then D(u) is a convex polytope. (If X is some

other types of geometries, this is somewhat only vaguely understood.)

The regular octagon example of a hyperbolic surface of genus 2 is an example

of a Dirichlet domain D(u) with the origin as u. (See Figure 3.3.)

3.2.4 Side pairings and the Poincaré fundamental polyhedron the-

orem

A tessellation of X is a locally finite collection of polyhedra covering X with mu-

tually disjoint interiors.

If P is a convex fundamental polyhedron of a discrete group Γ of isometries

acting on X, then Γ is generated by

Φ = {g ∈ Γ|P ∩ g(P ) is a side of P} :

To see this, let g be an element of Γ, and let us choose a point x of P o and consider

its image g(x) in g(P o). Then we choose a path from the initial point x to the

terminal point g(x). We perturb the path so that it meets only the interiors of the

sides of the tessellating polyhedrons. Each time the path crosses a side h(S) for a

translate h(P ) for an element h of Γ, we take the side-pairing gS obtained as below.

Then multiplying all such side-pairings in the reverse order to what occurred, we

obtain an element g′ ∈ Γ so that g′(P ) = g(P ) as hgSh
−1 moves h(P ) to the image

of P adjacent in the side h(S) for every h ∈ Γ. Since P is a fundamental domain,

g−1g′ is the identity element of Γ.

• Given a side S of a convex fundamental domain P , there is a unique element

gS such that S = P ∩ gS(P ). And S′ = g−1
S (S) is also a side of P .

• gS′ = g−1
S since S′ = P ∩ g−1

S (P ).

• The Γ-side-pairing is the set of gS for sides S of P .

• The equivalence class at P is generated by x ∼= x′ if there is a side-pairing

sending x to x′ for x, x′ ∈ P .

• The equivalence class [x] is finite for x ∈ P where [x] equals P ∩ Γ(x).

• A cycle relation for each side S of P .

– Let S1 = S for a given side S. Choose the side R of S1. Obtain S′1.

Let S2 be the side adjacent to S′1 so that gS1
(S′1 ∩ S2) = R and so on.

We obtain S1, S
′
1, S2, S

′
2, . . . , Si, S

′
i.

– Let Si+1 be the side of P adjacent to S′i such that

gSi
(S′i ∩ Si+1) = S′i−1 ∩ Si.

• Then we obtain

– There is an integer l such that Si+l = Si for each i.

–
∑l
i=1 θ(S

′
i, Si+1) = 2π/k where θ is the dihedral angle measure on X.

– gS1gS2 · · · gSl
has order k.
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– The period l is the number of sides of codimension one coming into

the image of a given side R of codimension two in X/Γ. (Of course l

depends on the side R.)

• If X does not have a G-invariant metric, we have instead of the angle

condition that for each x ∈ Ro, there exists a neighborhood Ni in P of xi
identified to x by gS1

gS2
· · · gSi

for each i, 1 ≤ i ≤ l so that we obtain a

neighborhood of x in X of form

N ∪ g(N) ∪ · · · ∪ gk−1(N) where g := gS1
gS2
· · · gSl

and

N := gS1(N1) ∪ gS1gS2(N2) ∪ · · · ∪ gS1gS2 · · · gSl
(Nl).

Also, these are all the relations since we can push any relation disk occurring

in the presentation to be transversal to the codimension 2-sides of the images of P

under Γ. Thus, any such disk reduces to a union of disks meeting the codimension

2-sides once. Thus, if Γ has a convex fundamental polytope, Γ is finitely presented.
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Fig. 3.3 Example: the octahedron in the hyperbolic plane identified to be a genus

2-surface. There is the cycle (a1, A), (a−1
1 , D),(b−1

1 , D), (b1, C), (a−1
1 , C),(a1, B), (b1, B),

(b−1
1 , E),(a2, E),(a−1

2 , H),(b−1
2 , H),(b2, G),(a−1

2 , G),(a2, F ),(b2, F ),(b−1
2 , A),(a1, A), (a−1

1 , D), . . ..

The Poincaré fundamental polyhedron theorem is the converse. We claim that

the theorem holds for geometries (G,X) with notions of m-planes. (See pp. 80–84

of the book [Kapovich (2009)].):

Theorem 3.2.1. Let (G,X) be a geometry with notions of m-planes and geodesics

and suppose that X has a G-invariant Riemannian metric. Given a convex polyhe-
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dron P in X with side-pairing automorphisms in G satisfying the above relations,

then P is the fundamental domain for the discrete subgroup of G generated by the

side-pairing isometries.

If every k equals 1, then the result of the face identification is a manifold. Otherwise,

we obtain orbifolds. The results are always complete. (See Jeff Weeks http://

www.geometrygames.org/CurvedSpaces/index.html for examples of hyperbolic

or spherical manifolds as seen from “inside”. There are more examples there such

as Seifert-Weber manifolds and so on.)

When the side-pairing maps are not isometries or equivalently X has no G-

invariant metrics, P is a fundamental domain of a manifold M with an immersion

to X. The immersions are often embeddings to open domains. See Chapter 8 for

some examples. (See the article [Sullivan and Thurston (1983)] for more details.)

We will be particularly interested in reflection groups. Suppose that X has no-

tions of angles between m-planes. A discrete reflection group is a discrete subgroup

in G generated by reflections in X about sides of a convex polyhedron. Assume

that all the dihedral angles are submultiples of π. Then the side-pairing such that

each face is side-paired to itself by a reflection satisfies the Poincaré fundamental

theorem.

The reflection group has a presentation {Si : (SiSj)
kij} where kii = 1 and

kij = kji which are examples of Coxeter groups. Notice that kij is finite if and only

if the faces corresponding to Si and Sj meet in a codimension-two side of P .

The triangle groups are examples of discrete reflection groups.

• Find a triangle in X with angles π/a, π/b, π/c submultiples of π where we

assume 2 ≤ a ≤ b ≤ c. This exists always for X = S2,E2, or H2.

• We divide into three cases π
a + π

b + π
c > π,= π,< π. The triangles are

then spherical, euclidean, or hyperbolic ones respectively. They exist and

are uniquely determined up to isometry.

– > π cases: (2, 2, c), (2, 3, 3), (2, 3, 4), and (2, 3, 5) respectively corre-

sponding to an index-two-extension of dihedral group of order 2c, a

tetrahedral group, an octahedral group, and an icosahedral group.

– = π cases: (3, 3, 3), (2, 4, 4), (2, 3, 6). The reflections generate the

corresponding wall paper groups.

– < π cases: Any other (p, q, r) gives a hyperbolic tessellation group.

Thus, there are infinitely many such groups. (See Proposition 3.2.2.)
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Fig. 3.4 The (2, 3, 8)-triangle reflection group in the Poincaré disk model. We used the package
“PoincareModel” written by W. Goldman.

Proposition 3.2.2.

• One can respectively construct a compact geodesic polygon P with angles

π/p1, π/p2, . . . , π/pn, n ≥ 3, pi ≥ 2 on a two-sphere, a Euclidean plane, or

a hyperbolic plane depending on whether the sum of outer angles∑n
i=1 π(1− 1/pi) is smaller than 2π, equal to 2π, or greater than 2π.

• This is the necessary and sufficient condition also.

• The group generated by the reflection on the sides of P generates a discrete

group.

Proof. One shows that it is possible to construct all triangles in this way. Let us

give arbitrary lengths l, l1, l2, . . . , l5.

• We show that a quadrilateral with angles π/p1, π/p2, π/2, π/2 at respective

vertices v1, v2, v3, v4, and a distinguished edge v3v4 of length l, and

• a pentagon with angles π/p1, π/2, π/2, π/2, π/2 at vertices v1, v2, . . . , v5
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Fig. 3.5 The ideal-triangle reflection group: we use the group generated by the reflections on the
sides of an ideal triangle on the hyperbolic plane. We used the package “PoincareModel”, written

by W. Goldman.

with distinguished edges v2v3, v4v5 of respective length l1 and l2, and

• a hexagon with all angles π/2 at vertices v1, v2, . . . , v6 with distinguished

edges v1v2, v3v4, and v5v6 of respective lengths l3, l4, and l5 can be con-

structed.

These are accomplished in Chapter 3 of the book [Ratcliffe (2006)] for example.

Given a topological polygon, we can divide it into quadrilaterals, pentagons,

and/or hexagons matching each other on edges of above types up to renaming

vertices. Then desired polygon P can be constructed by matching lengths of the

distinguished edges.

The necessary part comes from the Gauss-Bonnet theorem. �
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3.2.4.1 Higher-dimensional examples

To construct a 3-dimensional example, we obtain a Euclidean regular dodecahedron

in TOB, put into the hyperbolic space, expand it, and decrease the dihedral angles

until we achieve that all dihedral angles are π/3. (See Section 3.2.2.) There are

pictures of these in Geometry Center archives including the Seifert-Weber manifold

constructed in such a manner.

One can also achieve a regular octahedron with angles π/2. These are ideal

polytope examples. Heard, Pervova, and Petronio (2008) for example found very

many 3-manifolds obtained from an octahedron by side-paring constructions above.

Higher-dimensional examples were analyzed by Vinberg and so on. For example,

there is no hyperbolic reflection group of compact type above dimension ≥ 30.

Fig. 3.6 The dodecahedral reflection group as seen by an insider: One has a regular dodecahedron
with all edge angles π/2 and hence it is a fundamental domain of a hyperbolic reflection group.
This figure is captured from the program CurvedSpace by J. Weeks.
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3.2.5 Crystallographic groups

A crystallographic group is a discrete group of the rigid motions on Rn whose quo-

tient space is compact.

The Bieberbach theorem states that

Theorem 3.2.3.

• A group is isomorphic to a crystallographic group of Rn if and only if it

contains a subgroup of finite index that is free abelian of rank equal to n.

• Two crystallographic groups are isomorphic as abstract groups if and only

if they are conjugate by an affine transformation.

Once we have this theorem, the classification of crystallographic groups is re-

duced to studying the finite group extensions of abelian crystallographic groups,

which are lattices. There are only finitely many crystallographic groups for

each dimension since once the abelian group action is determined, its symmetry

group can be only finitely many. There are 17 wallpaper groups for dimension

2. (See http://www.clarku.edu/~djoyce/wallpaper/ and see Kali by Weeks

http://www.geometrygames.org/Kali/index.html.) There are 230 space groups

for dimension 3 (Conway, Friedrichs, Huson, and Thurston, 2001). These groups

have extensive applications in molecular chemistry. For further informations, see

http://www.ornl.gov/sci/ortep/topology.html.

3.3 Notes

The figures 3.4 and 3.5 were drawn by packages developed by the Experimental

Geometry Laboratory in University of Maryland, College Park. (See http://egl.

math.umd.edu/.)

A good introduction to Euclidan, affine, and projective geometry can be found

in the books [Berger (2009); Rosenbaum (1963)] and some early chapters of books

[Thurston (1997); Goldman (1988)]. There are many interactive online courses and

materials on projective geometry:

• http://www.math.poly.edu/courses/projective_geometry/

• http://demonstrations.wolfram.com/TheoremeDePappusFrench/,

• http://demonstrations.wolfram.com/TheoremeDePascalFrench/,

In fact, projective geometry is actively researched by engineers working in visions.

The book [Ratcliffe (2006)] gives us extensive descriptions of models of hyper-

bolic geometry. Discrete group actions and the Poincaré fundamental polyhedron

theorems are described well in the books [Ratcliffe (2006); Kapovich (2009)]. In

fact, this chapter is heavily influenced by the books [Ratcliffe (2006); Thurston

(1997)]. There is also an elementary book [Ryan (1987)].


