
Chapter 6

Appendix

6.1 Time local solvability of energy-transport model

We begin the detail discussion on the solvability to the problem (4.3)–(4.6) with studying
the linear system of equations for an unknown function (v̂, ŵ)(

v̂
3ŵ/2

)
t

− A[v, w]

(
v̂
ŵ

)
xx

+B[v, w]

(
v̂
ŵ

)
x

= F [v, w], (6.1)

B[v, w] :=

(
−ew(vx + wx) −ew(vx + wx)

−ew(vx + wx)− 5ewwx/2 −ew(vx + wx)− 5ewwx/2− κ0e
−vwx

)
,

F [v, w] :=

(
−ev +D − vx(Φ[e

v])x
−ev +D − (Φ[ev])x{2vx + 7wx/2− e−w(Φ[ev])x} − 3(1− e−w)/2ζ

)
,

where A and Φ are given in (2.8) and (4.3b), respectively. The equation (6.1) is a linearization
of (4.3). We prescribe the initial condition (4.4) and the boundary conditions (4.5) and (4.6).

The coefficients (v, w) in (6.1) are functions satisfying

v, w ∈ Z([0, T ]) ∩Yloc((0, T )) (6.2)

and the estimates

∥(v − Ξ, w)(t)∥21 ≤M1, Ξ(x) := (1− x) log ρl + x log ρr, (6.3a)∫ t

0

∥(vt, wt, vxx, wxx)(τ)∥2 dτ ≤M2, (6.3b)

t∥(vt, wt, vxx, wxx)(t)∥2 +
∫ t

0

τ∥(vxt, wxt)(τ)∥2 dτ ≤M3 (6.3c)
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for t ∈ [0, T ], where T,M1,M2 are positive constants. Hereafter, X (T ;M1,M2,M3) denotes
a set of the functions satisfying (6.2) and (6.3). We often abbreviate X (T ;M1,M2,M3) by
X ( · ) without confusion. Note that due to (6.2) and (6.3),

Φ[ev] ∈ H1(0, T ;H2), ∥Φ[ev](t)∥22 ≤ C[M1],

∫ t

0

∥(Φ[ev])t(τ)∥22 dτ ≤ C[M1,M2]

holds for t ∈ [0, T ].

Lemma 6.1. Suppose the initial data (v0, w0) ∈ H1(Ω) and the boundary data ρl, ρr and ϕr

satisfy (2.4), (2.6) and (2.7a). Then the initial boundary value problem (6.1) and (4.4)–(4.6)
has a unique solution (v̂, ŵ) ∈ Z([0, T ]) ∩ Yloc((0, T )). Moreover, it verifies the additional
regularity (v̂t, ŵt) ∈ H1

loc(0, T ;L
2(Ω)) ∩ L2

loc(0, T ;H
2(Ω)), the convergence

t∥(v̂t, ŵt, v̂xx, ŵxx)(t)∥2 → 0 as t→ 0 (6.4)

and the estimate∫ t

0

τ∥(v̂xt, ŵxt)(τ)∥2 + τ 2∥(v̂tt, ŵtt, v̂xxt, ŵxxt)(τ)∥2 dτ ≤ C, (6.5)

where C is a positive constant depending on T , M1 and M2.

Proof. We define a function û := v̂ − Ξ and rewrite the problem (6.1) and (4.4)–(4.6) as(
û

3ŵ/2

)
t

− A[v, w]

(
û
ŵ

)
xx

= −B[v, w]

(
ûx + Ξx

ŵx

)
+ F [v, w], (6.6)

û(0, x) = u0(x) := v0(x)− Ξ(x), ŵ(0, x) = w0(x), (6.7)
û(t, 0) = û(t, 1) = ŵx(t, 0) = ŵx(t, 1) = 0. (6.8)

To prove Lemma 6.1, it suffices to show that the problem (6.6)–(6.8) has a unique solution
(v̂, ŵ) ∈ Z([0, T ]) ∩ Yloc((0, T )) and that (v̂,ŵ) satisfies the additional regularity (v̂t, ŵt) ∈
H1

loc(0, T ;L
2(Ω)) ∩ L2

loc(0, T ;H
2(Ω)), the convergence (6.4) and the estimate (6.5).

The solvability of the problem (6.6)–(6.8) is shown by the Galerkin method (for the details
of this method, see [39, 41]). Define complete orthonormal systems {dl}∞l=1 and {el}∞l=0 in
H1

0 and H1, respectively, as

dl(x) :=

√
2

1 + (lπ)2
sin lπx, e0(x) := 1, el(x) :=

√
2

1 + (lπ)2
cos lπx,

where l ≥ 1. Then define approximate sequences as

ûn(t, x) :=
n∑

l=1

anl (t)dl(x), ŵn(t, x) :=
n−1∑
l=1

bnl−1(t)el−1(x)
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by solving a system of the ordinary differential equations for anl (t) and bnl−1(t):∫ 1

0

(dl, 0)

{(
ûnt ,

3

2
ŵn

t

)⊤

− A[v, w] (ûnxx, ŵ
n
xx)

⊤

}
dx

=

∫ 1

0

(dl, 0)
{
−B[v, w] (ûnx + Ξx, ŵ

n
x)

⊤ + F [v, w]
}
dx, (6.9a)∫ 1

0

(0, el−1)

{(
ûnt ,

3

2
ŵn

t

)⊤

− A[v, w] (ûnxx, ŵ
n
xx)

⊤

}
dx

=

∫ 1

0

(0, el−1)
{
−B[v, w] (ûnx + Ξx, ŵ

n
x)

⊤ + F [v, w]
}
dx (6.9b)

with the initial condition

anl (0) =

∫ 1

0

u0dl + u0xdlx dx, bnl−1(0) =

∫ 1

0

w0el−1 + w0x(el−1)x dx (6.10)

for l = 1, 2, · · · , n. Note that the integrands in (6.9) are the inner products of vectors.
The system of the ordinary differential equations (6.9) has a unique solution anl , b

n
l−1 ∈

B1([0, T ]) owing to the standard theory of the ordinary differential equations. By the
straight forward computation, (anl )t and (bnl−1)t are absolutely continuous in (0,T) and
satisfy

√
t(anl )tt,

√
t(bnl−1)tt ∈ L2(0, T ). Thus we see that ûn and ŵn belong to the space

C1([0, T ];H2) ∩H2
loc(0, T ;H

2).
We derive the estimates of (ûn, ŵn) uniformly in n. Multiply (6.9a) by {1+ (lπ)2}anl and

(6.9b) by {1 + (l − 1)2π2}bnl−1 as well as sum up the resultant equalities for l = 1, 2, · · · , n.
Integrate the result by part with using the equalities dlxx = −(lπ)2dl and elxx = −(lπ)2el.
Then estimate the result by using the Sobolev and the Young inequalities as well as the
inequalities in (6.3). These computations give

d

dt

(
1

2
∥ûn(t)∥21 +

3

4
∥ŵn(t)∥21

)
+

∫ 1

0

(ûnxx, ŵ
n
xx)A[v, w](û

n
xx, ŵ

n
xx)

⊤ dx

≤ µ∥(ûnxx, ŵn
xx)(t)∥2 + C[µ](1 + ∥(ûn, ŵn)(t)∥21), (6.11)

where µ is an arbitrary positive constant. Multiply (6.9a) by t(lπ)2(anl )t and (6.9b) by
t(l − 1)2π2(bnl−1)t, respectively, and then sum up the resultant equalities for l = 1, 2, · · · , n.
Integrate the result by part and estimate similarly as above to get

d

dt

∫ 1

0

t

2
(ûnxx, ŵ

n
xx)A[v, w](û

n
xx, ŵ

n
xx)

⊤ dτ + t∥ûnxt(t)∥2 +
3t

2
∥ŵn

xt(t)∥21

≤ µt2∥(ûnxxt, ŵn
xxt)(t)∥2 + C[µ](1 + ∥(ûn, ŵn)(t)∥21)

+ C
(
1 + t2∥(A[v, w])t(t)∥21

)
∥(ûnxx, ŵn

xx)(t)∥2. (6.12)
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To handle ûnxxt and ŵn
xxt in the right hand side of (6.12), we differentiate the system (6.9):∫ 1

0

(dl, 0)

{(
ûntt,

3

2
ŵn

tt

)⊤

− A[v, w] (ûnxxt, ŵ
n
xxt)

⊤

}
dx

=

∫ 1

0

(dl, 0)
{
(A[v, w])t (û

n
xx, ŵ

n
xx)

⊤ −
(
B[v, w] (ûnx + Ξx, ŵ

n
x)

⊤ − F [v, w]
)
t

}
dx, (6.13a)∫ 1

0

(0, el−1)

{(
ûntt,

3

2
ŵn

tt

)⊤

− A[v, w] (ûnxxt, ŵ
n
xxt)

⊤

}
dx

=

∫ 1

0

(0, el−1)
{
(A[v, w])t (û

n
xx, ŵ

n
xx)

⊤ −
(
B[v, w] (ûnx + Ξx, ŵ

n
x)

⊤ − F [v, w]
)
t

}
dx. (6.13b)

Multiply (6.13a) by t2(lπ)2(anl )t and (6.13b) by t2(l−1)2π2(bnl−1)t, and then sum up the results
for l = 1, 2, · · · , n. Integrating the resultant equality by part and applying the Sobolev, the
Poincaré and the Young inequalities as well as (6.3), we have

d

dt

(
t2

2
∥ûnxt(t)∥2 +

3t2

4
∥ŵn

xt(t)∥2
)
+ t2

∫ 1

0

(ûnxxt, ŵ
n
xxt)A[v, w](û

n
xxt, ŵ

n
xxt)

⊤ dx

≤ µt2∥(ûnxxt, ŵn
xxt)(t)∥2 + C[µ]t∥(ûnxt, ŵn

xt)(t)∥2 + C[µ]t2∥Ft∥2

+ C[µ]t2
(
∥(A[v, w])t(t)∥21 + ∥(B[v, w])t(t)∥2

)
∥(ûnxx, ŵn

xx)(t)∥2. (6.14)

Multiply (6.12) by α and (6.14) by α2, where α is an arbitrary positive constant. Sum up
the two results and (6.11), and then let µ and α are sufficiently small. Then integrate the
resultant inequality over [0, t] and apply the Gronwall inequality to result to get

∥(ûn, ŵn)(t)∥21 + t∥(ûnxx, ŵn
xx)(t)∥2 + t2∥(ûnxt, ŵn

xt)(t)∥2

+

∫ t

0

∥(ûnxx, ŵn
xx)(τ)∥2 + τ∥(ûnxt, ŵn

xt)(τ)∥2 + τ 2∥(ûnxxt, ŵn
xxt)(τ)∥2 dτ ≤ C, (6.15)

where C is a positive constant independent of t and n. In this computation, we have used
the positivity of the matrix A[v, w] and the estimates

∥ûn(0)∥21 ≤ ∥u0∥21, ∥ŵn(0)∥21 ≤ ∥w0∥21,

which follow from the Bessel inequality.
Moreover, multiply (6.13a) by (anl )t and (6.13b) by (bnl−1)t as well as sum up the results

for l = 1, 2, · · · , n. Then applying the Sobolev and the Young inequalities with using (6.15)
gives

∥(ûnt , ŵn
t )(t)∥2 ≤ ∥(ûnxx, ŵn

xx)(t)∥2 + C. (6.16)
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Similarly, from the system (6.13), it holds that∫ t

0

τ 2∥(ûntt, ŵn
tt)(τ)∥2 dτ ≤

∫ t

0

τ 2∥(ûnxxt, ŵn
xxt)(t)∥2 dτ + C. (6.17)

Consequently, the inequalities (6.15) and (6.16) show that the sequences {ûn}∞n=1 and {ŵn}∞n=1

are bounded in Z([0, T ]). Hence, there exist subsequences, still denoted by {ûn}∞n=1 and
{ŵn}∞n=1, as well as the functions û and ŵ such that

(ûn, ŵn) → (û, ŵ) in C([0, T ];L2) strongly,
(ûn, ŵn) → (û, ŵ) in L2(0, T ;H2) ∩H1(0, T ;L2) weakly, (6.18)

as n tends to infinity.
We show that (û, ŵ) ∈ C([0, T ];L2)∩H1(0, T ;L2)∩L2(0, T ;H2) is a solution to the prob-

lem (6.6)–(6.8). Since {dl}∞l=1 and {el}∞l=0 are the complete orthonormal systems in H1
0 and

H1, ûn(0) and ŵn(0) converge to u0 ∈ H1
0 and w0 ∈ H1 as n tends to ∞, respectively. Thus

û and ŵ verify the initial condition (6.7) owing to the convergence (6.18). The boundary
condition (6.8) follows from ûn(t, 0) = ûn(t, 1) = ŵn

x(t, 0) = ŵn
x(t, 1) = 0 and the conver-

gences (6.18). Passing to the limit in (6.9), we see that (û, ŵ) satisfies the equation (6.6) in
distribution sense.

We confirm that the solution (û, ŵ) satisfies the desired properties. By the straight
forward computation with using the uniform estimates (6.15)–(6.17) in n, the solution ver-
ifies the regularities (û, ŵ) ∈ C((0, T ];H1) ∩ Yloc((0, T )) and (ût, ŵt) ∈ H1

loc(0, T ;L
2(Ω)) ∩

L2
loc(0, T ;H

2(Ω)) as well as the estimate (6.5). The convergence

∥(ûx − u0x, ŵx − w0x)(t)∥2 + t∥(ût, ŵt, ûxx, ŵxx)(t)∥2 → 0 as t→ 0

follows from the standard theory (see [35] for example). The uniqueness is proven by the
energy method. Consequently, (û, ŵ) is the desired solution to the problem (6.6)–(6.8).

For suitably chosen constants T , M1, M2 and M3, the set X ( · ) is invariant under the
mapping (v, w) → (v̂, ŵ), which is defined by solving the problem (6.1) and (4.4)–(4.6). This
fact is summarized in the next lemma.

Lemma 6.2. Assume the same condition as in Lemma 6.1. Then there exist positive con-
stants T , M1, M2 and M3, such that if (v, w) ∈ X ( · ), then the problem (6.1) and (4.4)–(4.6)
admits a unique solution (v̂, ŵ) in the same set X ( · ).

Proof. We firstly determine the constant M1 by M1 := 2∥(v0 − Λ, w0)∥21. Take the inner
product of (6.1) with the vector (v̂−Λ−v̂xx, ŵ−ŵxx) in L2(0, t;L2(Ω)) and apply integration
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by part. Then estimate the resulting equality by using (6.3a) as well as the Sobolev and the
Young inequalities to get

1

2
∥(v̂ − Λ)(t)∥21 +

3

4
∥ŵ(t)∥21 + c[M1]

∫ t

0

∥(v̂xx, ŵxx)(τ)∥2 dτ

≤ 1

2
∥v0 − Λ∥21 +

3

4
∥w0∥21 + C[M1]

∫ t

0

∥(v̂ − Λ, ŵ)(τ)∥21 dτ + C[M1]t. (6.19)

Apply the Gronwall inequality to (6.19) and take T so small that

∥(v̂ − Λ, ŵ)(t)∥21 ≤ 2∥(v0 − Λ, w0)∥21 =M1 (6.20)

holds for t ∈ [0, T ].
Substituting (6.20) in (6.19) also yields that

∫ t

0

∥(v̂xx, ŵxx)(τ)∥2 dτ ≤ C1[M1] (6.21)

for t ∈ [0, T ]. On the other hand, solve the equation (6.1) with respect to (v̂t, ŵt) and then
take the L2-norm to obtain

∥(v̂t, ŵt)(t)∥ ≤ C[M1](∥(v̂x, ŵx)(t)∥1 + 1). (6.22)

Its integration in t together with (6.20) and (6.23) immediately gives

∫ t

0

∥(v̂t, ŵt)(τ)∥2 dτ ≤ C2[M1]. (6.23)

Determining M2 := C1[M1] + C2[M1], we see from (6.21) and (6.23) that (6.3b) holds for
t ∈ [0, T ].

Finally, the constant M3 are determined as follows. Taking the inner product of (6.1)
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with the vector (−tv̂xxt,−tŵxxt) in L2(0, t;L2(Ω)), we have

t

2

∫ 1

0

(v̂xx, ŵxx)A1[v, w](v̂xx, ŵxx)
⊤ dx+

∫ t

0

∫ 1

0

τ(v̂xt)
2 +

3

2
τ(ŵxt)

2 dxdτ

= −t
∫ 1

0

(v̂xx, ŵxx)
(
B[v, w](v̂x, ŵx)

⊤ + F [v, w]
)
dx

+
1

2

∫ t

0

∫ 1

0

(v̂xx, ŵxx)A1[v, w](v̂xx, ŵxx)
⊤ + τ(v̂xx, ŵxx)(A1[v, w])t(v̂xx, ŵxx)

⊤ dxdτ

+

∫ t

0

∫ 1

0

(v̂xx, ŵxx)
{(
B[v, w](v̂x, ŵx)

⊤ + F [v, w]
)
+ τ

(
B[v, w](v̂x, ŵx)

⊤ + F [v, w]
)
t

}
dxdτ

≤ µt∥(v̂xx, ŵxx)(t)∥2 + µ

∫ t

0

τ∥(v̂xt, ŵxt)(τ)∥ dτ + C[M1,M2, µ] + C[M1,M2,M3, µ]
√
t

+ C[M1]

∫ t

0

(
τ |(A1[v, w])t|20 + τ 9/4∥(B[v, w])t∥2

)
∥(v̂xx, ŵxx)(τ)∥2 dτ, (6.24)

where µ is an arbitrary positive constant. In deriving the last inequality, we have used the
Sobolev and the Young inequalities as well as (6.3), (6.20) and (6.21). Then take µ small
enough, apply the Gronwall inequality to (6.24) and then take T sufficiently small subject
to M3 in (6.24), in order to get

t∥(v̂xx, ŵxx)(t)∥2 +
∫ t

0

τ∥(v̂xt, ŵxt)(τ)∥2 dτ ≤ C3[M1,M2]

for t ∈ [0, T ], which together with (6.20) and (6.22) yields

t∥(v̂t, ŵt)(t)∥2 ≤ C4[M1,M2].

Determine M3 := C3[M1,M2] + C4[M1,M2] to see the estimate (6.3c) holds for t ∈ [0, T ].
Consequently, the solution (v̂, ŵ) satisfies (6.3).

The above two lemmas are used in the proof of Lemma 4.3, which asserts the unique
existence of the time local solution to the non-linear problem (4.3)–(4.6).

Proof of Lemma 4.3. We define a successive approximation sequence {(vn, wn)}∞n=0 ⊂ Z([0, T ])∩
Yloc((0, T )) by

(v0, w0) := (Ξ, 0)
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and the solution to a problem(
vn+1

3wn+1/2

)
t

− A[vn, wn]

(
vn+1

wn+1

)
xx

+B[vn, wn]

(
vn+1

wn+1

)
x

= F [vn, wn],

vn+1(0, x) = v0(x), wn+1(0, x) = w0(x),

vn+1(t, 0) = log ρl, vn+1(t, 1) = log ρr,

wn+1
x (t, 0) = wn+1

x (t, 1) = 0.

for n > 0. The sequence is well-defined and contained in X ( · ) thanks to Lemmas 6.1 and
6.2. Thus (vn, wn) satisfies the estimates (6.3). Moreover, it apparently verifies the estimate
(6.5) with the constant C independent of n. Then applying the standard energy method
to the equations for (vn − vn+1, wn − wn+1), we see that (vn, wn) is the Cauchy sequence
in Z([0, T ]). Thus there exists a function (v, w) ∈ Z([0, T ]) such that (vn, wn) → (v, w)
strongly in Z([0, T ]). In addition, apply the energy method again, to see that (

√
tvnt ,

√
twn

t )
and (

√
tvnxx,

√
twn

xx) are the Cauchy sequence in C([0, T ] : L2(Ω)); (
√
tvnxt,

√
twn

xt) is the
Cauchy sequence in L2(0, T : L2(Ω)). These facts together with (6.4) immediately mean
that (v, w) ∈ Yloc((0, T )), (

√
tvxt,

√
twxt) ∈ L2(0, T : L2(Ω)) and the convergence (4.9) hold.

Consequently, (v, w) is the desired solution to the problem (4.3)–(4.6). 2

6.2 Time local solvability of hydrodynamic model

In this section we study the unique existence of the time local solution for the initial boundary
value problem (2.11), (2.12) and (2.4)–(2.6). Linearizing (2.11), we have the system for an
unknown function (ρ̂, ĵ, θ̂):

ρ̂t + ĵx = 0, (6.25a)

εĵt + S[ρ, j, θ]ρ̂x + 2ε
j

ρ
ĵx + ρθ̂x = ρϕx − j, (6.25b)

ρθ̂t + jθ̂x +
2

3

(
j

ρ

)
x

ρθ̂ − 2κ0
3
θ̂xx =

(
2

3
− ε

3ζ

)
j2

ρ
− ρ

ζ
(θ̂ − 1), (6.25c)

ϕ = Φ[ρ] (6.25d)

with the initial data (2.12) and the boundary data (2.4)–(2.6). Here Φ in (6.25d) is given
by (2.8). Suppose that the functions (ρ, j, θ) in the coefficients in (6.25) satisfy conditions

(ρ, j, θ)(0, x) = (ρ0, j0, θ0), (6.26)
ρ, j ∈ X2([0, T ]), θ, θx ∈ Y([0, T ]) (6.27)
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and inequalities

inf
x∈Ω

ρ, inf
x∈Ω

θ, inf
x∈Ω

S[ρ, j, θ] ≥ m, (6.28a)

∥(ρ, j, θ)(t)∥22 + ∥(ρt, jt, θt)(t)∥21 + ∥(ρtt, jtt, θxxx)(t)∥2 +
∫ t

0

∥θxxt(τ)∥2 dτ ≤M (6.28b)

for an arbitrary t ∈ [0, T ], where T , m and M are positive constants. We denote by
Y(T ;m,M) a set of the functions satisfying (6.26)–(6.28b). The formula (2.8) together
with the regularity (6.27) and the inequality (6.28b) imply that

ϕ ∈ C2([0, T ];H2(Ω)), ∥∂itϕ(t)∥2 ≤ C[M ]

for i = 0, 1, 2 and t ∈ [0, T ]. The unique solvability of the linearized system (6.25) is
summarized in

Lemma 6.3. Suppose the initial data (ρ0, j0, θ0) ∈ H2(Ω)×H2(Ω)×H3(Ω) and the boundary
data ρl, ρr and ϕr satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Then the initial
boundary value problem (6.25), (2.12) and (2.4)–(2.6) has a unique solution (ρ̂, ĵ, θ̂) satisfying
ρ̂, ĵ ∈ X2([0, T ]), and θ̂, θ̂x ∈ Y([0, T ]).

Proof. We first solve the parabolic equation (6.25c) to determine θ̂. Then substitute it
in (6.25a) and (6.25b), and solve the resultant system with respect to ρ̂ and ĵ. In this
procedure, applying the Galerkin method similarly as the proof of Lemma 6.1, we see that
the parabolic equation (6.25c) with the initial data θ̂ = θ0 and the boundary data (2.5) has
a unique solution θ̂ satisfying θ̂, θ̂x ∈ Y([0, T ]) for given functions ρ, j ∈ X2([0, T ]). Hence,
it suffices to show the unique solvability of the hyperbolic equations (6.25a) and (6.25b) for
given functions ρ, j, θ and θ̂. To this end, we consider a system

A0

(
υ
ω

)
t

+A1

(
υ
ω

)
x

+ B
(
υ
ω

)
= F1 + F2, (6.29)

A0 :=

(
S[ρ, j, θ] 0

0 1

)
, A1 :=

(
0 −S[ρ, j, θ]

−S[ρ, j, θ] 2εj/ρ

)
,

B :=

(
0 0

− (S[ρ, j, θ])x (2εj/ρ)x

)
, F1 :=

(
0

−ϕxxρ

)
, F2 :=

(
0

(ρθ̂x)x − ϕxρx + jx

)
with the initial and the boundary conditions

υ(0, x) = υ0x(x), ω(0, x) = −j0x(x), (6.30)
ω(t, 0) = ω(t, 1) = 0. (6.31)
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The system (6.29) is derived from differentiating (6.25b) with respect to x and using the
equations (6.25a). Hence, if (ρ̂, ĵ) ∈ X2([0, T ]) is a solution to the problem (6.25a), (6.25b),
(2.12) and (2.4) then (υ, ω) = (ρ̂x, ρ̂t) ∈ X1([0, T ]) satisfies (6.29)–(6.31). Once solving the
problem (6.29)–(6.31), we construct the solution (ρ̂, ĵ) ∈ X2([0, T ]) to the problem (6.25a),
(6.25b), (2.12), (2.4) from (υ, ω). In fact, let

ρ̂(t, x) :=

∫ x

0

υ(t, x) dx+ ρl,

ĵ(t, x) :=

∫ x

0

−ω(t, x) dx+ ĵ(t, 0),

ĵ(t, 0) :=

∫ t

0

{
−S[ρ, j, θ]υ +

2εj

ρ
ω − ρθ̂x + ϕxρ− j

}
(t, 0) dt+ j0(0).

Then, by the straight forward computation, we see that the function (ρ̂, ĵ) ∈ X2([0, T ]) is a
desired solution to the linearized problem (6.25a), (6.25b), (2.12) and (2.4). Consequently,
it suffices to show the unique solvability of the problem (6.29)–(6.31).

To solve the symmetric linear problem (6.29)–(6.31), we define approximation sequences
of the symmetric matrices {A0

i }∞i=0, {A1
i }∞i=0 ⊂ C2([0, T ];H2(Ω)) such that A0

i and A1
i con-

verge to A0 and A1 strongly in C(0, T ;H2(Ω))∩C1(0, T ;H1(Ω)) as i tends to infinity, respec-
tively. Similarly take {Bi}∞i=0 ⊂ C2([0, T ];H2(Ω)) such that Bi → B strongly in X1([0, T ]);
{F1

i }∞i=0 ⊂ C1([0, T ];H1(Ω)) such that F1
i → F1 strongly in C1([0, T ];L2(Ω)). Define a

successive approximation sequence {(υi, ωi)}∞i=0 by solutions to problems

A0
i

(
υi

ωi

)
t

+A1
i

(
υi

ωi

)
x

+ Bi

(
υi

ωi

)
= F1

i + F2

with the initial data (6.30) and the boundary data (6.31) for i = 0, 1, · · · . It is shown by
following the proof of Theorem-A1 in [37] that the sequence {(υi, ωi)}∞i=0 is well-defined in
X1([0, T ]). The standard energy method gives the estimates for the solution (υi, ωi)

∥(υi, ωi)(t)∥1 + ∥(υit, ωi
t)(t)∥ ≤ C (6.32)

for t ∈ [0, T ], where C is a positive constant, independent of i = 0, 1, . . . . Applying the
energy method again to the equations for the difference (υi − υj, ωi − ωj), we see from
(6.32) that {(υi, ωi)}∞0 is the Cauchy sequence in X0([0, T ]). Hence, there exists a function
(υ, ω) ∈ X0([0, T ]) such that (υi, ωi) → (υ, ω) strongly in X0([0, T ]) as i → ∞. The higher
regularity (υ, ω) ∈ X1([0, T ]) follows from the standard theory for the hyperbolic equations
(see [35] for example). The uniqueness of the solution (υ, ω) to the initial boundary value
problem (6.29)–(6.31) immediately follows from by the standard energy method.
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The next lemma shows that Y(T ;m,M) is an invariant set by the mapping (ρ, j, θ) →
(ρ̂, ĵ, θ̂) for suitably chosen constants T , m and M . Since it is proven similarly as in [20, 21],
we omit the proof (also see the proof of Lemma 5.2).

Lemma 6.4. There exist positive constants T , m and M such that if (ρ, j, θ) ∈ Y(T ;m,M),
then the problem (6.25), (2.12) and (2.4)–(2.6) admits a unique solution (ρ̂, ĵ, θ̂) in the same
set Y(T ;m,M).

Using Lemmas 6.3 and 6.4, we complete to the proof of the unique solvability of the
non-linear problem (2.11), (2.12) and (2.4)–(2.6) in Lemma 5.1.

Proof of Lemma 5.1. We first define the approximation sequence {(ρn, jn, θn)}∞n=0 by

(ρ0, j0, θ0) := (ρ0, j0, θ0)

and for n > 0

ρn+1
t + jn+1

x = 0,

εjn+1
t + S[ρn, jn, θn]ρn+1

x + 2ε
jn

ρn
jn+1
x + ρnθn+1

x = ρnϕn
x − jn,

ρnθn+1
t + jnθn+1

x +
2

3

(
jn

ρn

)
x

ρnθn+1 − 2κ0
3
θn+1
xx =

(
2

3
− ε

3ζ

)
(jn)2

ρn
− ρn

ζ
(θn+1 − 1),

ϕn = Φ[ρn]

with the initial and the boundary conditions

(ρn+1, jn+1, θn+1)(0, x) = (ρ0, j0, θ0)(x),

ρn+1(t, 0) = ρl, ρn+1(t, 1) = ρr,

θn+1
x (t, 0) = θn+1

x (t, 1) = 0,

where Φ[ · ] is given by (2.8).
By virtue of Lemmas 5.1 and 5.2, the sequence {(ρn, jn, θn)}∞n=1 is well-defined and be-

longs to the set Y(T ;m,M). Hence (ρn, jn, θn) satisfies the estimates in (6.28). Then
apply the standard energy method to the system of the equations for the difference (ρn+1 −
ρn, jn+1 − jn, θn+1 − θn). This procedure shows that {(ρn, jn, θn)}∞n=1 is the Cauchy se-
quence in X1([0, T ]) × X1([0, T ]) × Y([0, T ]). Hence, there exists a function (ρ, j, θ) ∈
X1([0, T ])× X1([0, T ])×Y([0, T ]) such that

(ρn, jn, θn) → (ρ, j, θ) strongly in X1([0, T ])× X1([0, T ])×Y([0, T ]) (6.33)

as n→ ∞.
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The higher regularity (ρ, j) ∈ X2([0, T ]) and θx ∈ Y([0, T ]) is derived as follows. The
estimate (6.28b), which is uniform in n, immediately means θxxt ∈ L2(0, T ;L2(Ω)). By the
standard theory (for example, see [35]), we see that θxt(t) is continuous in L2 at t = 0. On
the other hand, apply the mollifier with respect to time variable t to the equation (2.11c).
Apply the energy method to the equation thus obtained. Then passing the limit with using
the above continuity at t = 0, we see θxt ∈ C([0, T ];L2). Since these discussions are standard,
we omit the details. The regularity (ρ, j) ∈ X2([0, T ]) follows from the standard theory for
the hyperbolic equations (see [35]). Finally θxxx ∈ C([0, T ];L2(Ω)) holds by the straight
forward computation with using the equation (2.11c).

Let ϕ := Φ[ρ] for the function ρ thus obtained. Then we see that (ρ, j, θ, ϕ) is the
desired solution to the problem (2.11), (2.12) and (2.4)–(2.6). Notice that this solution also
satisfies (2.10a), (2.10b) and (2.13) owing to the convergence (6.33) and the estimate (6.28a).
Consequently the proof of Lemma 5.1 is completed. 2


