Chapter 6

Appendix

6.1 Time local solvability of energy-transport model

We begin the detail discussion on the solvability to the problem (4.3)-(4.6) with studying the linear system of equations for an unknown function (\hat{v}, \hat{w})

$$
\begin{gather*}
\binom{\hat{v}}{3 \hat{w} / 2}_{t}-A[v, w]\binom{\hat{v}}{\hat{w}}_{x x}+B[v, w]\binom{\hat{v}}{\hat{w}}_{x}=F[v, w] \tag{6.1}\\
B[v, w]:=\left(\begin{array}{cc}
-e^{w}\left(v_{x}+w_{x}\right) & -e^{w}\left(v_{x}+w_{x}\right) \\
-e^{w}\left(v_{x}+w_{x}\right)-5 e^{w} w_{x} / 2-e^{w}\left(v_{x}+w_{x}\right)-5 e^{w} w_{x} / 2-\kappa_{0} e^{-v} w_{x}
\end{array}\right), \\
F[v, w]:=\binom{-e^{v}+D-v_{x}\left(\Phi\left[e^{v}\right]\right)_{x}}{-e^{v}+D-\left(\Phi\left[e^{v}\right]\right)_{x}\left\{2 v_{x}+7 w_{x} / 2-e^{-w}\left(\Phi\left[e^{v}\right]\right)_{x}\right\}-3\left(1-e^{-w}\right) / 2 \zeta},
\end{gather*}
$$

where A and Φ are given in (2.8) and (4.3b), respectively. The equation (6.1) is a linearization of (4.3). We prescribe the initial condition (4.4) and the boundary conditions (4.5) and (4.6).

The coefficients (v, w) in (6.1) are functions satisfying

$$
\begin{equation*}
v, w \in \mathfrak{Z}([0, T]) \cap \mathfrak{Y}_{l o c}((0, T)) \tag{6.2}
\end{equation*}
$$

and the estimates

$$
\begin{gather*}
\|(v-\Xi, w)(t)\|_{1}^{2} \leq M_{1}, \quad \Xi(x):=(1-x) \log \rho_{l}+x \log \rho_{r}, \tag{6.3a}\\
\int_{0}^{t}\left\|\left(v_{t}, w_{t}, v_{x x}, w_{x x}\right)(\tau)\right\|^{2} d \tau \leq M_{2}, \tag{6.3b}\\
t\left\|\left(v_{t}, w_{t}, v_{x x}, w_{x x}\right)(t)\right\|^{2}+\int_{0}^{t} \tau\left\|\left(v_{x t}, w_{x t}\right)(\tau)\right\|^{2} d \tau \leq M_{3} \tag{6.3c}
\end{gather*}
$$

for $t \in[0, T]$, where T, M_{1}, M_{2} are positive constants. Hereafter, $\mathcal{X}\left(T ; M_{1}, M_{2}, M_{3}\right)$ denotes a set of the functions satisfying (6.2) and (6.3). We often abbreviate $\mathcal{X}\left(T ; M_{1}, M_{2}, M_{3}\right)$ by $\mathcal{X}(\cdot)$ without confusion. Note that due to (6.2) and (6.3),

$$
\Phi\left[e^{v}\right] \in H^{1}\left(0, T ; H^{2}\right), \quad\left\|\Phi\left[e^{v}\right](t)\right\|_{2}^{2} \leq C\left[M_{1}\right], \quad \int_{0}^{t}\left\|\left(\Phi\left[e^{v}\right]\right)_{t}(\tau)\right\|_{2}^{2} d \tau \leq C\left[M_{1}, M_{2}\right]
$$

holds for $t \in[0, T]$.
Lemma 6.1. Suppose the initial data $\left(v_{0}, w_{0}\right) \in H^{1}(\Omega)$ and the boundary data ρ_{l}, ρ_{r} and ϕ_{r} satisfy (2.4), (2.6) and (2.7a). Then the initial boundary value problem (6.1) and (4.4)-(4.6) has a unique solution $(\hat{v}, \hat{w}) \in \mathfrak{Z}([0, T]) \cap \mathfrak{Y}_{\text {loc }}((0, T))$. Moreover, it verifies the additional regularity $\left(\hat{v}_{t}, \hat{w}_{t}\right) \in H_{l o c}^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L_{\text {loc }}^{2}\left(0, T ; H^{2}(\Omega)\right)$, the convergence

$$
\begin{equation*}
t\left\|\left(\hat{v}_{t}, \hat{w}_{t}, \hat{v}_{x x}, \hat{w}_{x x}\right)(t)\right\|^{2} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 \tag{6.4}
\end{equation*}
$$

and the estimate

$$
\begin{equation*}
\int_{0}^{t} \tau\left\|\left(\hat{v}_{x t}, \hat{w}_{x t}\right)(\tau)\right\|^{2}+\tau^{2}\left\|\left(\hat{v}_{t t}, \hat{w}_{t t}, \hat{v}_{x x t}, \hat{w}_{x x t}\right)(\tau)\right\|^{2} d \tau \leq C \tag{6.5}
\end{equation*}
$$

where C is a positive constant depending on T, M_{1} and M_{2}.
Proof. We define a function $\hat{u}:=\hat{v}-\Xi$ and rewrite the problem (6.1) and (4.4)-(4.6) as

$$
\begin{gather*}
\binom{\hat{u}}{3 \hat{w} / 2}_{t}-A[v, w]\binom{\hat{u}}{\hat{w}}_{x x}=-B[v, w]\binom{\hat{u}_{x}+\Xi_{x}}{\hat{w}_{x}}+F[v, w], \tag{6.6}\\
\hat{u}(0, x)=u_{0}(x):=v_{0}(x)-\Xi(x), \quad \hat{w}(0, x)=w_{0}(x), \tag{6.7}\\
\hat{u}(t, 0)=\hat{u}(t, 1)=\hat{w}_{x}(t, 0)=\hat{w}_{x}(t, 1)=0 . \tag{6.8}
\end{gather*}
$$

To prove Lemma 6.1, it suffices to show that the problem (6.6)-(6.8) has a unique solution $(\hat{v}, \hat{w}) \in \mathfrak{Z}([0, T]) \cap \mathfrak{Y}_{\text {loc }}((0, T))$ and that (\hat{v}, \hat{w}) satisfies the additional regularity $\left(\hat{v}_{t}, \hat{w}_{t}\right) \in$ $H_{l o c}^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L_{\text {loc }}^{2}\left(0, T ; H^{2}(\Omega)\right)$, the convergence (6.4) and the estimate (6.5).

The solvability of the problem (6.6)-(6.8) is shown by the Galerkin method (for the details of this method, see [39, 41]). Define complete orthonormal systems $\left\{d_{l}\right\}_{l=1}^{\infty}$ and $\left\{e_{l}\right\}_{l=0}^{\infty}$ in H_{0}^{1} and H^{1}, respectively, as

$$
d_{l}(x):=\sqrt{\frac{2}{1+(l \pi)^{2}}} \sin l \pi x, \quad e_{0}(x):=1, \quad e_{l}(x):=\sqrt{\frac{2}{1+(l \pi)^{2}}} \cos l \pi x
$$

where $l \geq 1$. Then define approximate sequences as

$$
\hat{u}^{n}(t, x):=\sum_{l=1}^{n} a_{l}^{n}(t) d_{l}(x), \quad \hat{w}^{n}(t, x):=\sum_{l=1}^{n-1} b_{l-1}^{n}(t) e_{l-1}(x)
$$

by solving a system of the ordinary differential equations for $a_{l}^{n}(t)$ and $b_{l-1}^{n}(t)$:

$$
\begin{align*}
\int_{0}^{1}\left(d_{l}, 0\right)\left\{\left(\hat{u}_{t}^{n}, \frac{3}{2} \hat{w}_{t}^{n}\right)^{\top}\right. & \left.-A[v, w]\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)^{\top}\right\} d x \\
& =\int_{0}^{1}\left(d_{l}, 0\right)\left\{-B[v, w]\left(\hat{u}_{x}^{n}+\Xi_{x}, \hat{w}_{x}^{n}\right)^{\top}+F[v, w]\right\} d x \tag{6.9a}\\
\int_{0}^{1}\left(0, e_{l-1}\right)\left\{\left(\hat{u}_{t}^{n}, \frac{3}{2} \hat{w}_{t}^{n}\right)^{\top}\right. & \left.-A[v, w]\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)^{\top}\right\} d x \\
& =\int_{0}^{1}\left(0, e_{l-1}\right)\left\{-B[v, w]\left(\hat{u}_{x}^{n}+\Xi_{x}, \hat{w}_{x}^{n}\right)^{\top}+F[v, w]\right\} d x \tag{6.9b}
\end{align*}
$$

with the initial condition

$$
\begin{equation*}
a_{l}^{n}(0)=\int_{0}^{1} u_{0} d_{l}+u_{0 x} d_{l x} d x, \quad b_{l-1}^{n}(0)=\int_{0}^{1} w_{0} e_{l-1}+w_{0 x}\left(e_{l-1}\right)_{x} d x \tag{6.10}
\end{equation*}
$$

for $l=1,2, \cdots, n$. Note that the integrands in (6.9) are the inner products of vectors. The system of the ordinary differential equations (6.9) has a unique solution $a_{l}^{n}, b_{l-1}^{n} \in$ $\mathcal{B}^{1}([0, T])$ owing to the standard theory of the ordinary differential equations. By the straight forward computation, $\left(a_{l}^{n}\right)_{t}$ and $\left(b_{l-1}^{n}\right)_{t}$ are absolutely continuous in $(0, \mathrm{~T})$ and satisfy $\sqrt{t}\left(a_{l}^{n}\right)_{t t}, \sqrt{t}\left(b_{l-1}^{n}\right)_{t t} \in L^{2}(0, T)$. Thus we see that \hat{u}^{n} and \hat{w}^{n} belong to the space $C^{1}\left([0, T] ; H^{2}\right) \cap H_{l o c}^{2}\left(0, T ; H^{2}\right)$.

We derive the estimates of (\hat{u}^{n}, \hat{w}^{n}) uniformly in n. Multiply (6.9a) by $\left\{1+(l \pi)^{2}\right\} a_{l}^{n}$ and (6.9b) by $\left\{1+(l-1)^{2} \pi^{2}\right\} b_{l-1}^{n}$ as well as sum up the resultant equalities for $l=1,2, \cdots, n$. Integrate the result by part with using the equalities $d_{l x x}=-(l \pi)^{2} d_{l}$ and $e_{l x x}=-(l \pi)^{2} e_{l}$. Then estimate the result by using the Sobolev and the Young inequalities as well as the inequalities in (6.3). These computations give

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{1}{2}\left\|\hat{u}^{n}(t)\right\|_{1}^{2}+\frac{3}{4}\left\|\hat{w}^{n}(t)\right\|_{1}^{2}\right)+\int_{0}^{1}\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right) A[v, w]\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)^{\top} d x \\
& \leq \mu\left\|\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)(t)\right\|^{2}+C[\mu]\left(1+\left\|\left(\hat{u}^{n}, \hat{w}^{n}\right)(t)\right\|_{1}^{2}\right), \tag{6.11}
\end{align*}
$$

where μ is an arbitrary positive constant. Multiply (6.9a) by $t(l \pi)^{2}\left(a_{l}^{n}\right)_{t}$ and (6.9b) by $t(l-1)^{2} \pi^{2}\left(b_{l-1}^{n}\right)_{t}$, respectively, and then sum up the resultant equalities for $l=1,2, \cdots, n$. Integrate the result by part and estimate similarly as above to get

$$
\begin{align*}
& \frac{d}{d t} \int_{0}^{1} \frac{t}{2}\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right) A[v, w]\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)^{\top} d \tau+t\left\|\hat{u}_{x t}^{n}(t)\right\|^{2}+\frac{3 t}{2}\left\|\hat{w}_{x t}^{n}(t)\right\|_{1}^{2} \\
& \leq \mu t^{2}\left\|\left(\hat{u}_{x x t}^{n}, \hat{w}_{x x t}^{n}\right)(t)\right\|^{2}+C[\mu]\left(1+\left\|\left(\hat{u}^{n}, \hat{w}^{n}\right)(t)\right\|_{1}^{2}\right) \\
& \quad+C\left(1+t^{2}\left\|(A[v, w])_{t}(t)\right\|_{1}^{2}\right)\left\|\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)(t)\right\|^{2} . \tag{6.12}
\end{align*}
$$

To handle $\hat{u}_{x x t}^{n}$ and $\hat{w}_{x x t}^{n}$ in the right hand side of (6.12), we differentiate the system (6.9):

$$
\begin{align*}
& \int_{0}^{1}\left(d_{l}, 0\right)\left\{\left(\hat{u}_{t t}^{n}, \frac{3}{2} \hat{w}_{t t}^{n}\right)^{\top}-A[v, w]\left(\hat{u}_{x x t}^{n}, \hat{w}_{x x t}^{n}\right)^{\top}\right\} d x \\
& =\int_{0}^{1}\left(d_{l}, 0\right)\left\{(A[v, w])_{t}\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)^{\top}-\left(B[v, w]\left(\hat{u}_{x}^{n}+\Xi_{x}, \hat{w}_{x}^{n}\right)^{\top}-F[v, w]\right)_{t}\right\} d x \tag{6.13a}\\
& \int_{0}^{1}\left(0, e_{l-1}\right)\left\{\left(\hat{u}_{t t}^{n}, \frac{3}{2} \hat{w}_{t t}^{n}\right)^{\top}-A[v, w]\left(\hat{u}_{x x t}^{n}, \hat{w}_{x x t}^{n}\right)^{\top}\right\} d x \\
& =\int_{0}^{1}\left(0, e_{l-1}\right)\left\{(A[v, w])_{t}\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)^{\top}-\left(B[v, w]\left(\hat{u}_{x}^{n}+\Xi_{x}, \hat{w}_{x}^{n}\right)^{\top}-F[v, w]\right)_{t}\right\} d x \tag{6.13b}
\end{align*}
$$

Multiply (6.13a) by $t^{2}(l \pi)^{2}\left(a_{l}^{n}\right)_{t}$ and (6.13b) by $t^{2}(l-1)^{2} \pi^{2}\left(b_{l-1}^{n}\right)_{t}$, and then sum up the results for $l=1,2, \cdots, n$. Integrating the resultant equality by part and applying the Sobolev, the Poincaré and the Young inequalities as well as (6.3), we have

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{t^{2}}{2}\left\|\hat{u}_{x t}^{n}(t)\right\|^{2}+\frac{3 t^{2}}{4}\left\|\hat{w}_{x t}^{n}(t)\right\|^{2}\right)+t^{2} \int_{0}^{1}\left(\hat{u}_{x x t}^{n}, \hat{w}_{x x t}^{n}\right) A[v, w]\left(\hat{u}_{x x t}^{n}, \hat{w}_{x x t}^{n}\right)^{\top} d x \\
& \leq \mu t^{2}\left\|\left(\hat{u}_{x x t}^{n} \hat{w}_{x x t}^{n}\right)(t)\right\|^{2}+C[\mu] t\left\|\left(\hat{u}_{x t}^{n}, \hat{w}_{x t}^{n}\right)(t)\right\|^{2}+C[\mu] t^{2}\left\|F_{t}\right\|^{2} \\
& \quad+C[\mu] t^{2}\left(\left\|(A[v, w])_{t}(t)\right\|_{1}^{2}+\left\|(B[v, w])_{t}(t)\right\|^{2}\right)\left\|\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)(t)\right\|^{2} . \tag{6.14}
\end{align*}
$$

Multiply (6.12) by α and (6.14) by α^{2}, where α is an arbitrary positive constant. Sum up the two results and (6.11), and then let μ and α are sufficiently small. Then integrate the resultant inequality over $[0, t]$ and apply the Gronwall inequality to result to get

$$
\begin{align*}
& \left\|\left(\hat{u}^{n}, \hat{w}^{n}\right)(t)\right\|_{1}^{2}+t\left\|\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)(t)\right\|^{2}+t^{2}\left\|\left(\hat{u}_{x t}^{n}, \hat{w}_{x t}^{n}\right)(t)\right\|^{2} \\
& \quad+\int_{0}^{t}\left\|\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)(\tau)\right\|^{2}+\tau\left\|\left(\hat{u}_{x t}^{n}, \hat{w}_{x t}^{n}\right)(\tau)\right\|^{2}+\tau^{2}\left\|\left(\hat{u}_{x x t}^{n}, \hat{w}_{x x t}^{n}\right)(\tau)\right\|^{2} d \tau \leq C \tag{6.15}
\end{align*}
$$

where C is a positive constant independent of t and n. In this computation, we have used the positivity of the matrix $A[v, w]$ and the estimates

$$
\left\|\hat{u}^{n}(0)\right\|_{1}^{2} \leq\left\|u_{0}\right\|_{1}^{2}, \quad\left\|\hat{w}^{n}(0)\right\|_{1}^{2} \leq\left\|w_{0}\right\|_{1}^{2}
$$

which follow from the Bessel inequality.
Moreover, multiply (6.13a) by $\left(a_{l}^{n}\right)_{t}$ and (6.13b) by $\left(b_{l-1}^{n}\right)_{t}$ as well as sum up the results for $l=1,2, \cdots, n$. Then applying the Sobolev and the Young inequalities with using (6.15) gives

$$
\begin{equation*}
\left\|\left(\hat{u}_{t}^{n}, \hat{w}_{t}^{n}\right)(t)\right\|^{2} \leq\left\|\left(\hat{u}_{x x}^{n}, \hat{w}_{x x}^{n}\right)(t)\right\|^{2}+C . \tag{6.16}
\end{equation*}
$$

Similarly, from the system (6.13), it holds that

$$
\begin{equation*}
\int_{0}^{t} \tau^{2}\left\|\left(\hat{u}_{t t}^{n}, \hat{w}_{t t}^{n}\right)(\tau)\right\|^{2} d \tau \leq \int_{0}^{t} \tau^{2}\left\|\left(\hat{u}_{x x t}^{n}, \hat{w}_{x x t}^{n}\right)(t)\right\|^{2} d \tau+C \tag{6.17}
\end{equation*}
$$

Consequently, the inequalities (6.15) and (6.16) show that the sequences $\left\{\hat{u}^{n}\right\}_{n=1}^{\infty}$ and $\left\{\hat{w}^{n}\right\}_{n=1}^{\infty}$ are bounded in $\mathcal{Z}([0, T])$. Hence, there exist subsequences, still denoted by $\left\{\hat{u}^{n}\right\}_{n=1}^{\infty}$ and $\left\{\hat{w}^{n}\right\}_{n=1}^{\infty}$, as well as the functions \hat{u} and \hat{w} such that

$$
\begin{align*}
& \left(\hat{u}^{n}, \hat{w}^{n}\right) \rightarrow(\hat{u}, \hat{w}) \quad \text { in } \quad \\
& \left.\left(\hat{u}^{n}, \hat{w}^{n}\right) \rightarrow(\hat{u}, \hat{w}) \quad \text { in } \quad L^{2}(0, T] ; T ; L^{2}\right) \quad \text { strongly, } \tag{6.18}\\
& \text { 年 }) \cap H^{1}\left(0, T ; L^{2}\right) \quad \text { weakly, }
\end{align*}
$$

as n tends to infinity.
We show that $(\hat{u}, \hat{w}) \in C\left([0, T] ; L^{2}\right) \cap H^{1}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{2}\right)$ is a solution to the problem (6.6)-(6.8). Since $\left\{d_{l}\right\}_{l=1}^{\infty}$ and $\left\{e_{l}\right\}_{l=0}^{\infty}$ are the complete orthonormal systems in H_{0}^{1} and $H^{1}, \hat{u}^{n}(0)$ and $\hat{w}^{n}(0)$ converge to $u_{0} \in H_{0}^{1}$ and $w_{0} \in H^{1}$ as n tends to ∞, respectively. Thus \hat{u} and \hat{w} verify the initial condition (6.7) owing to the convergence (6.18). The boundary condition (6.8) follows from $\hat{u}^{n}(t, 0)=\hat{u}^{n}(t, 1)=\hat{w}_{x}^{n}(t, 0)=\hat{w}_{x}^{n}(t, 1)=0$ and the convergences (6.18). Passing to the limit in (6.9), we see that (\hat{u}, \hat{w}) satisfies the equation (6.6) in distribution sense.

We confirm that the solution (\hat{u}, \hat{w}) satisfies the desired properties. By the straight forward computation with using the uniform estimates (6.15)-(6.17) in n, the solution verifies the regularities $(\hat{u}, \hat{w}) \in C\left((0, T] ; H^{1}\right) \cap \mathfrak{Y}_{\text {loc }}((0, T))$ and $\left(\hat{u}_{t}, \hat{w}_{t}\right) \in H_{l o c}^{1}\left(0, T ; L^{2}(\Omega)\right) \cap$ $L_{\text {loc }}^{2}\left(0, T ; H^{2}(\Omega)\right)$ as well as the estimate (6.5). The convergence

$$
\left\|\left(\hat{u}_{x}-u_{0 x}, \hat{w}_{x}-w_{0 x}\right)(t)\right\|^{2}+t\left\|\left(\hat{u}_{t}, \hat{w}_{t}, \hat{u}_{x x}, \hat{w}_{x x}\right)(t)\right\|^{2} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0
$$

follows from the standard theory (see [35] for example). The uniqueness is proven by the energy method. Consequently, (\hat{u}, \hat{w}) is the desired solution to the problem (6.6)-(6.8).

For suitably chosen constants T, M_{1}, M_{2} and M_{3}, the set $\mathcal{X}(\cdot)$ is invariant under the mapping $(v, w) \rightarrow(\hat{v}, \hat{w})$, which is defined by solving the problem (6.1) and (4.4)-(4.6). This fact is summarized in the next lemma.

Lemma 6.2. Assume the same condition as in Lemma 6.1. Then there exist positive constants T, M_{1}, M_{2} and M_{3}, such that if $(v, w) \in \mathcal{X}(\cdot)$, then the problem (6.1) and (4.4)-(4.6) admits a unique solution (\hat{v}, \hat{w}) in the same set $\mathcal{X}(\cdot)$.

Proof. We firstly determine the constant M_{1} by $M_{1}:=2\left\|\left(v_{0}-\Lambda, w_{0}\right)\right\|_{1}^{2}$. Take the inner product of (6.1) with the vector $\left(\hat{v}-\Lambda-\hat{v}_{x x}, \hat{w}-\hat{w}_{x x}\right)$ in $L^{2}\left(0, t ; L^{2}(\Omega)\right)$ and apply integration
by part. Then estimate the resulting equality by using (6.3a) as well as the Sobolev and the Young inequalities to get

$$
\begin{align*}
\frac{1}{2}\|(\hat{v}-\Lambda)(t)\|_{1}^{2} & +\frac{3}{4}\|\hat{w}(t)\|_{1}^{2}+c\left[M_{1}\right] \int_{0}^{t}\left\|\left(\hat{v}_{x x}, \hat{w}_{x x}\right)(\tau)\right\|^{2} d \tau \\
& \leq \frac{1}{2}\left\|v_{0}-\Lambda\right\|_{1}^{2}+\frac{3}{4}\left\|w_{0}\right\|_{1}^{2}+C\left[M_{1}\right] \int_{0}^{t}\|(\hat{v}-\Lambda, \hat{w})(\tau)\|_{1}^{2} d \tau+C\left[M_{1}\right] t \tag{6.19}
\end{align*}
$$

Apply the Gronwall inequality to (6.19) and take T so small that

$$
\begin{equation*}
\|(\hat{v}-\Lambda, \hat{w})(t)\|_{1}^{2} \leq 2\left\|\left(v_{0}-\Lambda, w_{0}\right)\right\|_{1}^{2}=M_{1} \tag{6.20}
\end{equation*}
$$

holds for $t \in[0, T]$.
Substituting (6.20) in (6.19) also yields that

$$
\begin{equation*}
\int_{0}^{t}\left\|\left(\hat{v}_{x x}, \hat{w}_{x x}\right)(\tau)\right\|^{2} d \tau \leq \bar{C}_{1}\left[M_{1}\right] \tag{6.21}
\end{equation*}
$$

for $t \in[0, T]$. On the other hand, solve the equation (6.1) with respect to $\left(\hat{v}_{t}, \hat{w}_{t}\right)$ and then take the L^{2}-norm to obtain

$$
\begin{equation*}
\left\|\left(\hat{v}_{t}, \hat{w}_{t}\right)(t)\right\| \leq C\left[M_{1}\right]\left(\left\|\left(\hat{v}_{x}, \hat{w}_{x}\right)(t)\right\|_{1}+1\right) . \tag{6.22}
\end{equation*}
$$

Its integration in t together with (6.20) and (6.23) immediately gives

$$
\begin{equation*}
\int_{0}^{t}\left\|\left(\hat{v}_{t}, \hat{w}_{t}\right)(\tau)\right\|^{2} d \tau \leq \bar{C}_{2}\left[M_{1}\right] . \tag{6.23}
\end{equation*}
$$

Determining $M_{2}:=\bar{C}_{1}\left[M_{1}\right]+\bar{C}_{2}\left[M_{1}\right]$, we see from (6.21) and (6.23) that (6.3b) holds for $t \in[0, T]$.

Finally, the constant M_{3} are determined as follows. Taking the inner product of (6.1)
with the vector $\left(-t \hat{v}_{x x t},-t \hat{w}_{x x t}\right)$ in $L^{2}\left(0, t ; L^{2}(\Omega)\right)$, we have

$$
\begin{align*}
& \frac{t}{2} \int_{0}^{1}\left(\hat{v}_{x x}, \hat{w}_{x x}\right) A_{1}[v, w]\left(\hat{v}_{x x}, \hat{w}_{x x}\right)^{\top} d x+\int_{0}^{t} \int_{0}^{1} \tau\left(\hat{v}_{x t}\right)^{2}+\frac{3}{2} \tau\left(\hat{w}_{x t}\right)^{2} d x d \tau \\
& =-t \int_{0}^{1}\left(\hat{v}_{x x}, \hat{w}_{x x}\right)\left(B[v, w]\left(\hat{v}_{x}, \hat{w}_{x}\right)^{\top}+F[v, w]\right) d x \\
& \quad+\frac{1}{2} \int_{0}^{t} \int_{0}^{1}\left(\hat{v}_{x x}, \hat{w}_{x x}\right) A_{1}[v, w]\left(\hat{v}_{x x}, \hat{w}_{x x}\right)^{\top}+\tau\left(\hat{v}_{x x}, \hat{w}_{x x}\right)\left(A_{1}[v, w]\right)_{t}\left(\hat{v}_{x x}, \hat{w}_{x x}\right)^{\top} d x d \tau \\
& \quad+\int_{0}^{t} \int_{0}^{1}\left(\hat{v}_{x x}, \hat{w}_{x x}\right)\left\{\left(B[v, w]\left(\hat{v}_{x}, \hat{w}_{x}\right)^{\top}+F[v, w]\right)+\tau\left(B[v, w]\left(\hat{v}_{x}, \hat{w}_{x}\right)^{\top}+F[v, w]\right)_{t}\right\} d x d \tau \\
& \leq \mu t\left\|\left(\hat{v}_{x x}, \hat{w}_{x x}\right)(t)\right\|^{2}+\mu \int_{0}^{t} \tau\left\|\left(\hat{v}_{x t}, \hat{w}_{x t}\right)(\tau)\right\| d \tau+C\left[M_{1}, M_{2}, \mu\right]+C\left[M_{1}, M_{2}, M_{3}, \mu\right] \sqrt{t} \\
& \quad+C\left[M_{1}\right] \int_{0}^{t}\left(\tau\left|\left(A_{1}[v, w]\right)_{t}\right|_{0}^{2}+\tau^{9 / 4}\left\|(B[v, w])_{t}\right\|^{2}\right)\left\|\left(\hat{v}_{x x}, \hat{w}_{x x}\right)(\tau)\right\|^{2} d \tau \tag{6.24}
\end{align*}
$$

where μ is an arbitrary positive constant. In deriving the last inequality, we have used the Sobolev and the Young inequalities as well as (6.3), (6.20) and (6.21). Then take μ small enough, apply the Gronwall inequality to (6.24) and then take T sufficiently small subject to M_{3} in (6.24), in order to get

$$
t\left\|\left(\hat{v}_{x x}, \hat{w}_{x x}\right)(t)\right\|^{2}+\int_{0}^{t} \tau\left\|\left(\hat{v}_{x t}, \hat{w}_{x t}\right)(\tau)\right\|^{2} d \tau \leq \bar{C}_{3}\left[M_{1}, M_{2}\right]
$$

for $t \in[0, T]$, which together with (6.20) and (6.22) yields

$$
t\left\|\left(\hat{v}_{t}, \hat{w}_{t}\right)(t)\right\|^{2} \leq \bar{C}_{4}\left[M_{1}, M_{2}\right]
$$

Determine $M_{3}:=\bar{C}_{3}\left[M_{1}, M_{2}\right]+\bar{C}_{4}\left[M_{1}, M_{2}\right]$ to see the estimate (6.3c) holds for $t \in[0, T]$. Consequently, the solution (\hat{v}, \hat{w}) satisfies (6.3).

The above two lemmas are used in the proof of Lemma 4.3, which asserts the unique existence of the time local solution to the non-linear problem (4.3)-(4.6).

Proof of Lemma 4.3. We define a successive approximation sequence $\left\{\left(v^{n}, w^{n}\right)\right\}_{n=0}^{\infty} \subset \mathfrak{Z}([0, T]) \cap$ $\mathfrak{Y}_{\text {loc }}((0, T))$ by

$$
\left(v^{0}, w^{0}\right):=(\Xi, 0)
$$

and the solution to a problem

$$
\begin{gathered}
\binom{v^{n+1}}{3 w^{n+1} / 2}_{t}-A\left[v^{n}, w^{n}\right]\binom{v^{n+1}}{w^{n+1}}_{x x}+B\left[v^{n}, w^{n}\right]\binom{v^{n+1}}{w^{n+1}}_{x}=F\left[v^{n}, w^{n}\right], \\
v^{n+1}(0, x)=v_{0}(x), \quad w^{n+1}(0, x)=w_{0}(x) \\
v^{n+1}(t, 0)=\log \rho_{l}, \quad v^{n+1}(t, 1)=\log \rho_{r}, \\
w_{x}^{n+1}(t, 0)=w_{x}^{n+1}(t, 1)=0
\end{gathered}
$$

for $n>0$. The sequence is well-defined and contained in $\mathcal{X}(\cdot)$ thanks to Lemmas 6.1 and 6.2. Thus (v^{n}, w^{n}) satisfies the estimates (6.3). Moreover, it apparently verifies the estimate (6.5) with the constant C independent of n. Then applying the standard energy method to the equations for $\left(v^{n}-v^{n+1}, w^{n}-w^{n+1}\right)$, we see that $\left(v^{n}, w^{n}\right)$ is the Cauchy sequence in $\mathfrak{Z}([0, T])$. Thus there exists a function $(v, w) \in \mathfrak{Z}([0, T])$ such that $\left(v^{n}, w^{n}\right) \rightarrow(v, w)$ strongly in $\mathcal{Z}([0, T])$. In addition, apply the energy method again, to see that $\left(\sqrt{t} v_{t}^{n}, \sqrt{t} w_{t}^{n}\right)$ and $\left(\sqrt{t} v_{x x}^{n}, \sqrt{t} w_{x x}^{n}\right)$ are the Cauchy sequence in $C\left([0, T]: L^{2}(\Omega)\right) ;\left(\sqrt{t} v_{x t}^{n}, \sqrt{t} w_{x t}^{n}\right)$ is the Cauchy sequence in $L^{2}\left(0, T: L^{2}(\Omega)\right)$. These facts together with (6.4) immediately mean that $(v, w) \in \mathfrak{Y}_{\text {loc }}((0, T)),\left(\sqrt{t} v_{x t}, \sqrt{t} w_{x t}\right) \in L^{2}\left(0, T: L^{2}(\Omega)\right)$ and the convergence (4.9) hold. Consequently, (v, w) is the desired solution to the problem (4.3)-(4.6).

6.2 Time local solvability of hydrodynamic model

In this section we study the unique existence of the time local solution for the initial boundary value problem (2.11), (2.12) and (2.4)-(2.6). Linearizing (2.11), we have the system for an unknown function $(\hat{\rho}, \hat{j}, \hat{\theta})$:

$$
\begin{gather*}
\hat{\rho}_{t}+\hat{j}_{x}=0, \tag{6.25a}\\
\varepsilon \hat{j}_{t}+S[\rho, j, \theta] \hat{\rho}_{x}+2 \varepsilon \frac{j}{\rho} \hat{j}_{x}+\rho \hat{\theta}_{x}=\rho \phi_{x}-j, \tag{6.25b}\\
\rho \hat{\theta}_{t}+j \hat{\theta}_{x}+\frac{2}{3}\left(\frac{j}{\rho}\right)_{x} \rho \hat{\theta}-\frac{2 \kappa_{0}}{3} \hat{\theta}_{x x}=\left(\frac{2}{3}-\frac{\varepsilon}{3 \zeta}\right) \frac{j^{2}}{\rho}-\frac{\rho}{\zeta}(\hat{\theta}-1), \tag{6.25c}\\
\phi=\Phi[\rho] \tag{6.25d}
\end{gather*}
$$

with the initial data (2.12) and the boundary data (2.4)-(2.6). Here Φ in $(6.25 \mathrm{~d})$ is given by (2.8). Suppose that the functions (ρ, j, θ) in the coefficients in (6.25) satisfy conditions

$$
\begin{gather*}
(\rho, j, \theta)(0, x)=\left(\rho_{0}, j_{0}, \theta_{0}\right), \tag{6.26}\\
\rho, j \in \mathfrak{X}_{2}([0, T]), \quad \theta, \theta_{x} \in \mathfrak{Y}([0, T]) \tag{6.27}
\end{gather*}
$$

and inequalities

$$
\begin{gather*}
\inf _{x \in \Omega} \rho, \quad \inf _{x \in \Omega} \theta, \quad \inf _{x \in \Omega} S[\rho, j, \theta] \geq m \tag{6.28a}\\
\|(\rho, j, \theta)(t)\|_{2}^{2}+\left\|\left(\rho_{t}, j_{t}, \theta_{t}\right)(t)\right\|_{1}^{2}+\left\|\left(\rho_{t t}, j_{t t}, \theta_{x x x}\right)(t)\right\|^{2}+\int_{0}^{t}\left\|\theta_{x x t}(\tau)\right\|^{2} d \tau \leq M \tag{6.28b}
\end{gather*}
$$

for an arbitrary $t \in[0, T]$, where T, m and M are positive constants. We denote by $\mathcal{Y}(T ; m, M)$ a set of the functions satisfying (6.26)-(6.28b). The formula (2.8) together with the regularity (6.27) and the inequality (6.28b) imply that

$$
\phi \in C^{2}\left([0, T] ; H^{2}(\Omega)\right), \quad\left\|\partial_{t}^{i} \phi(t)\right\|_{2} \leq C[M]
$$

for $i=0,1,2$ and $t \in[0, T]$. The unique solvability of the linearized system (6.25) is summarized in

Lemma 6.3. Suppose the initial data $\left(\rho_{0}, j_{0}, \theta_{0}\right) \in H^{2}(\Omega) \times H^{2}(\Omega) \times H^{3}(\Omega)$ and the boundary data ρ_{l}, ρ_{r} and ϕ_{r} satisfy (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Then the initial boundary value problem (6.25), (2.12) and (2.4)-(2.6) has a unique solution ($\hat{\rho}, \hat{j}, \hat{\theta})$ satisfying $\hat{\rho}, \hat{j} \in \mathfrak{X}_{2}([0, T])$, and $\hat{\theta}, \hat{\theta}_{x} \in \mathfrak{Y}([0, T])$.

Proof. We first solve the parabolic equation (6.25c) to determine $\hat{\theta}$. Then substitute it in (6.25a) and (6.25b), and solve the resultant system with respect to $\hat{\rho}$ and \hat{j}. In this procedure, applying the Galerkin method similarly as the proof of Lemma 6.1, we see that the parabolic equation (6.25c) with the initial data $\hat{\theta}=\theta_{0}$ and the boundary data (2.5) has a unique solution $\hat{\theta}$ satisfying $\hat{\theta}, \hat{\theta}_{x} \in \mathfrak{Y}([0, T])$ for given functions $\rho, j \in \mathfrak{X}_{2}([0, T])$. Hence, it suffices to show the unique solvability of the hyperbolic equations (6.25a) and (6.25b) for given functions ρ, j, θ and $\hat{\theta}$. To this end, we consider a system

$$
\begin{gather*}
\mathcal{A}^{0}\binom{v}{\omega}_{t}+\mathcal{A}^{1}\binom{v}{\omega}_{x}+\mathcal{B}\binom{v}{\omega}=\mathcal{F}^{1}+\mathcal{F}^{2}, \tag{6.29}\\
\mathcal{A}^{0}:=\left(\begin{array}{cc}
S[\rho, j, \theta] & 0 \\
0 & 1
\end{array}\right), \quad \mathcal{A}^{1}:=\left(\begin{array}{cc}
0 & -S[\rho, j, \theta] \\
-S[\rho, j, \theta] & 2 \varepsilon j / \rho
\end{array}\right), \\
\mathcal{B}:=\left(\begin{array}{cc}
0 & 0 \\
-(S[\rho, j, \theta])_{x} & (2 \varepsilon j / \rho)_{x}
\end{array}\right), \mathcal{F}^{1}:=\binom{0}{-\phi_{x x} \rho}, \mathcal{F}^{2}:=\binom{0}{\left(\rho \hat{\theta}_{x}\right)_{x}-\phi_{x} \rho_{x}+j_{x}}
\end{gather*}
$$

with the initial and the boundary conditions

$$
\begin{gather*}
v(0, x)=v_{0 x}(x), \quad \omega(0, x)=-j_{0 x}(x), \tag{6.30}\\
\omega(t, 0)=\omega(t, 1)=0 . \tag{6.31}
\end{gather*}
$$

The system (6.29) is derived from differentiating (6.25b) with respect to x and using the equations (6.25a). Hence, if $(\hat{\rho}, \hat{j}) \in \mathfrak{X}_{2}([0, T])$ is a solution to the problem (6.25a), (6.25b), (2.12) and (2.4) then $(v, \omega)=\left(\hat{\rho}_{x}, \hat{\rho}_{t}\right) \in \mathfrak{X}_{1}([0, T])$ satisfies (6.29)-(6.31). Once solving the problem (6.29)-(6.31), we construct the solution $(\hat{\rho}, \hat{j}) \in \mathfrak{X}_{2}([0, T])$ to the problem (6.25a), (6.25b), (2.12), (2.4) from (v, ω). In fact, let

$$
\begin{gathered}
\hat{\rho}(t, x):=\int_{0}^{x} v(t, x) d x+\rho_{l}, \\
\hat{j}(t, x):=\int_{0}^{x}-\omega(t, x) d x+\hat{j}(t, 0), \\
\hat{j}(t, 0):=\int_{0}^{t}\left\{-S[\rho, j, \theta] v+\frac{2 \varepsilon j}{\rho} \omega-\rho \hat{\theta}_{x}+\phi_{x} \rho-j\right\}(t, 0) d t+j_{0}(0) .
\end{gathered}
$$

Then, by the straight forward computation, we see that the function $(\hat{\rho}, \hat{j}) \in \mathfrak{X}_{2}([0, T])$ is a desired solution to the linearized problem (6.25a), (6.25b), (2.12) and (2.4). Consequently, it suffices to show the unique solvability of the problem (6.29)-(6.31).

To solve the symmetric linear problem (6.29)-(6.31), we define approximation sequences of the symmetric matrices $\left\{\mathcal{A}_{i}^{0}\right\}_{i=0}^{\infty},\left\{\mathcal{A}_{i}^{1}\right\}_{i=0}^{\infty} \subset C^{2}\left([0, T] ; H^{2}(\Omega)\right)$ such that \mathcal{A}_{i}^{0} and \mathcal{A}_{i}^{1} converge to \mathcal{A}^{0} and \mathcal{A}^{1} strongly in $C\left(0, T ; H^{2}(\Omega)\right) \cap C^{1}\left(0, T ; H^{1}(\Omega)\right)$ as i tends to infinity, respectively. Similarly take $\left\{\mathcal{B}_{i}\right\}_{i=0}^{\infty} \subset C^{2}\left([0, T] ; H^{2}(\Omega)\right)$ such that $\mathcal{B}_{i} \rightarrow \mathcal{B}$ strongly in $\mathfrak{X}_{1}([0, T])$; $\left\{\mathcal{F}_{i}^{1}\right\}_{i=0}^{\infty} \subset C^{1}\left([0, T] ; H^{1}(\Omega)\right)$ such that $\mathcal{F}_{i}^{1} \rightarrow \mathcal{F}^{1}$ strongly in $C^{1}\left([0, T] ; L^{2}(\Omega)\right)$. Define a successive approximation sequence $\left\{\left(v^{i}, \omega^{i}\right)\right\}_{i=0}^{\infty}$ by solutions to problems

$$
\mathcal{A}_{i}^{0}\binom{v^{i}}{\omega^{i}}_{t}+\mathcal{A}_{i}^{1}\binom{v^{i}}{\omega^{i}}_{x}+\mathcal{B}_{i}\binom{v^{i}}{\omega^{i}}=\mathcal{F}_{i}^{1}+\mathcal{F}^{2}
$$

with the initial data (6.30) and the boundary data (6.31) for $i=0,1, \cdots$. It is shown by following the proof of Theorem-A1 in [37] that the sequence $\left\{\left(v^{i}, \omega^{i}\right)\right\}_{i=0}^{\infty}$ is well-defined in $\mathfrak{X}_{1}([0, T])$. The standard energy method gives the estimates for the solution $\left(v^{i}, \omega^{i}\right)$

$$
\begin{equation*}
\left\|\left(v^{i}, \omega^{i}\right)(t)\right\|_{1}+\left\|\left(v_{t}^{i}, \omega_{t}^{i}\right)(t)\right\| \leq C \tag{6.32}
\end{equation*}
$$

for $t \in[0, T]$, where C is a positive constant, independent of $i=0,1, \ldots$ Applying the energy method again to the equations for the difference $\left(v^{i}-v^{j}, \omega^{i}-\omega^{j}\right)$, we see from (6.32) that $\left\{\left(v^{i}, \omega^{i}\right)\right\}_{0}^{\infty}$ is the Cauchy sequence in $\mathfrak{X}_{0}([0, T])$. Hence, there exists a function $(v, \omega) \in \mathfrak{X}_{0}([0, T])$ such that $\left(v^{i}, \omega^{i}\right) \rightarrow(v, \omega)$ strongly in $\mathfrak{X}_{0}([0, T])$ as $i \rightarrow \infty$. The higher regularity $(v, \omega) \in \mathfrak{X}_{1}([0, T])$ follows from the standard theory for the hyperbolic equations (see [35] for example). The uniqueness of the solution (v, ω) to the initial boundary value problem (6.29)-(6.31) immediately follows from by the standard energy method.

The next lemma shows that $\mathcal{Y}(T ; m, M)$ is an invariant set by the mapping $(\rho, j, \theta) \rightarrow$ $(\hat{\rho}, \hat{j}, \hat{\theta})$ for suitably chosen constants T, m and M. Since it is proven similarly as in [20, 21], we omit the proof (also see the proof of Lemma 5.2).

Lemma 6.4. There exist positive constants T, m and M such that if $(\rho, j, \theta) \in \mathcal{Y}(T ; m, M)$, then the problem (6.25), (2.12) and (2.4)-(2.6) admits a unique solution $(\hat{\rho}, \hat{j}, \hat{\theta})$ in the same set $\mathcal{Y}(T ; m, M)$.

Using Lemmas 6.3 and 6.4, we complete to the proof of the unique solvability of the non-linear problem (2.11), (2.12) and (2.4)-(2.6) in Lemma 5.1.
Proof of Lemma 5.1. We first define the approximation sequence $\left\{\left(\rho^{n}, j^{n}, \theta^{n}\right)\right\}_{n=0}^{\infty}$ by

$$
\left(\rho^{0}, j^{0}, \theta^{0}\right):=\left(\rho_{0}, j_{0}, \theta_{0}\right)
$$

and for $n>0$

$$
\begin{gathered}
\rho_{t}^{n+1}+j_{x}^{n+1}=0, \\
\varepsilon j_{t}^{n+1}+S\left[\rho^{n}, j^{n}, \theta^{n}\right] \rho_{x}^{n+1}+2 \varepsilon \frac{j^{n}}{\rho^{n}} j_{x}^{n+1}+\rho^{n} \theta_{x}^{n+1}=\rho^{n} \phi_{x}^{n}-j^{n}, \\
\rho^{n} \theta_{t}^{n+1}+j^{n} \theta_{x}^{n+1}+\frac{2}{3}\left(\frac{j^{n}}{\rho^{n}}\right)_{x} \rho^{n} \theta^{n+1}-\frac{2 \kappa_{0}}{3} \theta_{x x}^{n+1}=\left(\frac{2}{3}-\frac{\varepsilon}{3 \zeta}\right) \frac{\left(j^{n}\right)^{2}}{\rho^{n}}-\frac{\rho^{n}}{\zeta}\left(\theta^{n+1}-1\right), \\
\phi^{n}=\Phi\left[\rho^{n}\right]
\end{gathered}
$$

with the initial and the boundary conditions

$$
\begin{gathered}
\left(\rho^{n+1}, j^{n+1}, \theta^{n+1}\right)(0, x)=\left(\rho_{0}, j_{0}, \theta_{0}\right)(x) \\
\rho^{n+1}(t, 0)=\rho_{l}, \quad \rho^{n+1}(t, 1)=\rho_{r} \\
\theta_{x}^{n+1}(t, 0)=\theta_{x}^{n+1}(t, 1)=0
\end{gathered}
$$

where $\Phi[\cdot]$ is given by (2.8).
By virtue of Lemmas 5.1 and 5.2, the sequence $\left\{\left(\rho^{n}, j^{n}, \theta^{n}\right)\right\}_{n=1}^{\infty}$ is well-defined and belongs to the set $\mathcal{Y}(T ; m, M)$. Hence $\left(\rho^{n}, j^{n}, \theta^{n}\right)$ satisfies the estimates in (6.28). Then apply the standard energy method to the system of the equations for the difference ($\rho^{n+1}-$ $\left.\rho^{n}, j^{n+1}-j^{n}, \theta^{n+1}-\theta^{n}\right)$. This procedure shows that $\left\{\left(\rho^{n}, j^{n}, \theta^{n}\right)\right\}_{n=1}^{\infty}$ is the Cauchy sequence in $\mathfrak{X}_{1}([0, T]) \times \mathfrak{X}_{1}([0, T]) \times \mathfrak{Y}([0, T])$. Hence, there exists a function $(\rho, j, \theta) \in$ $\mathfrak{X}_{1}([0, T]) \times \mathfrak{X}_{1}([0, T]) \times \mathfrak{Y}([0, T])$ such that

$$
\begin{equation*}
\left(\rho^{n}, j^{n}, \theta^{n}\right) \rightarrow(\rho, j, \theta) \quad \text { strongly in } \quad \mathfrak{X}_{1}([0, T]) \times \mathfrak{X}_{1}([0, T]) \times \mathfrak{Y}([0, T]) \tag{6.33}
\end{equation*}
$$

as $n \rightarrow \infty$.

The higher regularity $(\rho, j) \in \mathfrak{X}_{2}([0, T])$ and $\theta_{x} \in \mathfrak{Y}([0, T])$ is derived as follows. The estimate (6.28b), which is uniform in n, immediately means $\theta_{x x t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$. By the standard theory (for example, see [35]), we see that $\theta_{x t}(t)$ is continuous in L^{2} at $t=0$. On the other hand, apply the mollifier with respect to time variable t to the equation (2.11c). Apply the energy method to the equation thus obtained. Then passing the limit with using the above continuity at $t=0$, we see $\theta_{x t} \in C\left([0, T] ; L^{2}\right)$. Since these discussions are standard, we omit the details. The regularity $(\rho, j) \in \mathfrak{X}_{2}([0, T])$ follows from the standard theory for the hyperbolic equations (see [35]). Finally $\theta_{x x x} \in C\left([0, T] ; L^{2}(\Omega)\right)$ holds by the straight forward computation with using the equation (2.11c).

Let $\phi:=\Phi[\rho]$ for the function ρ thus obtained. Then we see that (ρ, j, θ, ϕ) is the desired solution to the problem (2.11), (2.12) and (2.4)-(2.6). Notice that this solution also satisfies (2.10a), (2.10b) and (2.13) owing to the convergence (6.33) and the estimate (6.28a). Consequently the proof of Lemma 5.1 is completed.

