
Chapter 4

Energy-transport model

This chapter is devoted to showing Theorem 2.4, which asserts that the time global solution
for the energy-transport model converges to that for the drift-diffusion model as the param-
eter ζ tends to zero. The proof is discussed in several sections. We firstly prove in Sections
4.1–4.3 the existence of the time global solution for the energy-transport model with the
large initial data (ρ0, θ0) ∈ H1(Ω), which is summarized in Theorem 4.2. The relaxation
limit from the energy-transport model to the drift-diffusion model is justified in Section 4.4.
These discussion complete the proof of Theorem 2.4.

The unique existence of the time global solution (ρ00, j
0
0 , ϕ

0
0) for the drift-diffusion model

with the initial data ρ0 ∈ H2(Ω) has been shown in Theorem 2.4 in the authors’ previous
paper [33]. This result is, however, insufficient in the present paper as we take the initial data
(ρ0, θ0) ∈ H1(Ω) to consider the relaxation limit. Hence we show the time global solvability
of the model for ρ0 ∈ H1(Ω) in the next lemma by applying Theorem 2.4 in [33]. Here and
hereafter, we use the function spaces

Y([0, T ]) = C1([0, T ];L2(Ω)) ∩ C([0, T ];H2(Ω)) ∩H1(0, T ;H1(Ω)),

Yloc((0, T )) := C1((0, T );L2(Ω)) ∩ C((0, T );H2(Ω)) ∩H1
loc(0, T ;H

1(Ω)),

Z([0, T ]) := C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

Zloc((0, T )) := C((0, T );H1(Ω)) ∩ L2
loc(0, T ;H

2(Ω)) ∩H1
loc(0, T ;L

2(Ω)),

where Y is defined in Section 2.3.

Lemma 4.1. Let (ρ̃00, j̃
0

0, ϕ̃
0

0) be the stationary solution to (2.18), (2.20) and (3.2). Suppose
that the initial data ρ0 ∈ H1(Ω) and the boundary data ρl, ρr and ϕr satisfy (2.4), (2.6), (2.7a)
and (2.10a). Then there exists a positive constant δ0 such that if δ ≤ δ0, the initial boundary
value problem (2.15), (2.12a), (2.4) and (2.6) has a unique solution (ρ00, j

0
0 , ϕ

0
0) satisfying

ρ00 − ρ̃00 ∈ Z([0,∞))∩Yloc((0,∞)), j00 − j̃
0

0 ∈ C([0,∞);L2(Ω)), ϕ0
0 − ϕ̃

0

0 ∈ C([0,∞);H3(Ω))∩

37
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H1(0,∞;H2(Ω)) and the positivity (2.10a). Moreover it verifies the estimates

min{Bm, inf ρ0} ≤ ρ00(t, x) ≤ max{BM , sup ρ0}, (4.1a)

∥(ρ00 − ρ̃00)(t)∥21 + ∥(j00 − j̃
0

0)(t)∥2 + ∥(ϕ0
0 − ϕ̃

0

0)(t)∥23 ≤ Ce−αt, (4.1b)

t∥({ρ00}t, {ρ00}xx)(t)∥2 +
∫ t

0

∥({ρ00}t, {ρ00}xx)(τ)∥+ τ∥(ρ00)xt(τ)∥2 dτ ≤ C(1 + t) (4.1c)

for x ∈ Ω and t ≥ 0, where C and α are positive constants independent of t and δ.

Proof. In order to apply Theorem 2.4 in [33], we take an approximation sequence {ρ0i}∞i=1 ⊂
H2(Ω) such that {ρ0i}∞i=1 converges to the initial data ρ0 strongly in H1(Ω) and each ρ0i
satisfies the compatibility condition ρ0i(0) = ρl and ρ0i(1) = ρr. Theorem 2.4 in [33] shows
that the problem (2.15), (2.12a), (2.4) and (2.6) has a unique solution (ρi, ji, ϕi) in the space
Y([0,∞)) × Z([0,∞)) × C1([0,∞);H2(Ω)) for the initial data ρ0i. It is shown by a similar
computation as in [33] with using the maximum principle and the energy method that the
sequence {ρi}∞i=1 is bounded in the space Z([0, T ])∩Y([s, T ]) for arbitrary positive constants
s and T . Applying the energy method again to the equation for the difference ρn − ρm,
we show that {ρi}∞i=1 is the Cauchy sequence in Z([0, T ]) ∩Y([s, T ]). Hence, there exists a
function ρ in Z([0, T ]) ∩Yloc((0, T )) such that ρi converges to ρ in Z([0, T ]) ∩Y([s, T ]). Let
j := ρϕx − ρx and ϕ := Φ[ρ], where Φ[ · ] is defined in (4.17). It is easily to see that (ρ, j, ϕ)
is the desired solution with the initial data ρ0 ∈ H1(Ω). The estimates (4.1) are also shown
similarly as in [33].

The stability theorem for the energy-transport model is summarized as

Theorem 4.2. Let (ρ̃, j̃, θ̃, ϕ̃) be the stationary solution of (2.18)–(2.20) and (3.1), which is
constructed in Theorem 3.5. Suppose that the initial data (ρ0, θ0) ∈ H1(Ω) and the boundary
data ρl, ρr and ϕr satisfy (2.4), (2.6), (2.7a), (2.10a) and (2.10b). Then there exist positive
constants δ0 and ζ0 such that if δ ≤ δ0 and ζ ≤ ζ0, the initial boundary value problem (2.14),
(2.12a), (2.12c) and (2.4)–(2.6) has a unique solution (ρ, j, θ, ϕ) satisfying ρ − ρ̃, θ − θ̃ ∈
Z([0,∞))∩Yloc((0,∞)), j− j̃ ∈ C([0,∞);L2(Ω))∩Zloc((0,∞)), ϕ− ϕ̃ ∈ C([0,∞);H3(Ω))∩
H1([0,∞);H2(Ω)); the positivity (2.10a) and (2.10b). Moreover, it verifies

√
tρxt,

√
tθxt ∈

L2(0,∞ : L2(Ω)) and the decay estimates

∥(j − j̃)(t)∥2 + ∥(ρ− ρ̃, θ − θ̃)(t)∥21 + ∥(ϕ− ϕ̃)(t)∥23 ≤ Ce−αt, (4.2a)

t∥(jx − j̃x)(t)∥2 +
t

ζ
∥(θ − θ̃)(t)∥21 + t∥(ρ− ρ̃, θ − θ̃)(t)∥22 ≤ Ce−αt, (4.2b)

where C and α are positive constants independent of ζ, δ and t.
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To study the initial boundary value problem (2.14), (2.12a), (2.12c) and (2.4)–(2.6) with
the positivity (2.10a) and (2.10b), it is convenient to employ new unknown functions

v := log ρ, w := log θ

and rewrite the system of the equations (2.14) as(
v

3w/2

)
t

− A[v, w]

(
v
w

)
xx

+

(
0

3(1− e−w)/2ζ

)
= G[v, w], (4.3a)

A[v, w] :=

(
ew ew

ew ew + κ0e
−v

)
, G[v, w] :=

(
g1[v, w]

g1[v, w] + 3g2[v, w]/2

)
,

g1[v, w] := ew(vx + wx)
2 − ev +D − vx(Φ[e

v])x,

g2[v, w] := −
(
2

3
(Φ[ev])x −

5

3
ewwx

){
vx + wx − e−w(Φ[ev])x

}
+

2κ0
3ev

(wx)
2,

(4.3b)

where we have used (2.8) and (2.14d). Note that the matrix A[v, w] is symmetric and
positive definite. The initial and the boundary data for (v, w) are also derived from (2.4)–
(2.6), (2.12a) and (2.12c) as

v(0, x) = v0(x) := log ρ0(x), w(0, x) = w0(x) := log θ0(x), (4.4)
v(t, 0) = log ρl, v(t, 1) = log ρr, (4.5)

wx(t, 0) = wx(t, 1) = 0. (4.6)

Apparently, (4.3)–(4.6) is equivalent to (2.4)–(2.6), (2.12a), (2.12c) and (2.14) if the density
ρ and the temperature θ are positive. Namely, once it is shown that the problem (4.3)–(4.6)
has a solution (v, w), the existence of the solution to the problem (2.14), (2.12a), (2.12c) and
(2.4)–(2.6) immediately follows. In fact, letting

ρ := ev, j := −(evew)x + ev(Φ[ev])x, θ := ew, ϕ := Φ[ev], (4.7)

we see that (ρ, j, θ, ϕ) is the solution to the problem (2.14), (2.12a), (2.12c) and (2.4)–(2.6).
We also rewrite the stationary solution (ρ̃0ζ , j̃

0

ζ , θ̃
0

ζ , ϕ̃
0

ζ) to the energy-transport model, which
is constructed in Theorem 3.5, as

ṽ := log ρ̃0ζ , w̃ := log θ̃
0

ζ .

It is obvious that (ṽ,w̃) satisfies the equation

−A[ṽ, w̃]
(
ṽ
w̃

)
xx

+

(
0

3(1− e−w̃)/2ζ

)
= G[ṽ, w̃] (4.8)
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and boundary conditions (4.5) and (4.6), where A and G are defined in (4.3b).
We prove Theorem 4.2 in following steps. It is an essentially same procedure as in the

authors’ previous paper [33], where the isothermal hydrodynamic model is studied.

First step. We discuss the unique existence of the time local solution (v, w) to the problem
(4.3)–(4.6) in Section 4.1. Here it is shown in Corollary 4.5 that there exists certain positive
time T∗ independent of ζ such that the solution for the energy-transport model uniquely
exists until T∗. This independence is crucial in order to construct the time global solution
by taking the parameter ζ sufficiently small. Here we can take the initial data (v0, w0)
arbitrarily large as far as it belongs to H1(Ω).

Second step. In Section 4.2, a “semi-global existence” of the solution (v, w) is established.
Precisely, we prove in Theorem 4.9 that the solution with the arbitrary initial data (v0, w0) in
H1(Ω) exists until arbitrary time T by taking the parameter ζT is sufficiently small subject
to T . Here we also show that the difference between the non-stationary solution (v, w)(T, x)
and the stationary solution (ṽ, w̃)(x) becomes arbitrarily small if T is sufficiently large. This
result is summarized in Corollary 4.10.

Third step. Owing to Second step, we see that the perturbation (v−ṽ, w−w̃)(T, x) becomes
arbitrarily small by taking T large (and thus ζT small). Hence, in order to complete the proof
of Theorem 4.2, it suffices to show Theorem 4.11, which asserts that the asymptotic stability
of the stationary solution for the energy-transport model with the small initial disturbance.
Consequently, the proof of Theorem 4.2 follows from Theorem 4.11, Corollaries 4.5 and 4.10
in Sections 4.1–4.3.

4.1 Uniform estimate of local solution

We show in this section that there exists a certain positive time T∗, independent of the
parameter ζ, such that the solution for the energy-transport model uniquely exists until
T∗. This argument is essentially same as in [33]. We firstly state the unique existence of
the solution to the problem (4.3)–(4.6), where the existence time Tζ may depend on the
parameter ζ. The proof is postponed until the Appendix.

Lemma 4.3. Suppose the initial data (v0, w0) ∈ H1(Ω) and the boundary data ρl, ρr and ϕr

satisfy (2.4)–(2.6) and (2.7a). Let N be a certain positive constant satisfying ∥(v0, w0)∥1 ≤
N . Then there exists a positive constant Tζ, depending on ζ and N , such that the initial
boundary value problem (4.3)–(4.6) has a unique solution (v, w) ∈ Z([0, Tζ ]) ∩Yloc((0, Tζ)).
Moreover, it satisfies

√
tvxt,

√
twxt ∈ L2(0, Tζ : L

2(Ω)) and the convergence

t∥(vt, wt, vxx, wxx)(t)∥2 → 0 as t→ 0. (4.9)
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In the above lemma, the existence time of the solution is denoted by Tζ for the clarity of
its dependence on ζ. This existence theorem is insufficient in the following discussion, which
require that the existence time is independent of ζ. The independence is shown in Corollary
4.5. For this purposes, we derive the estimates (4.11) and (4.12) below. For positive constant
T and M , define X(T ;M) by a set of the functions

(v, w) ∈ Z([0, T ]) ∩Yloc((0, T ))

satisfying

∥(v, w)(t)∥21 ≤M (4.10)

for t ∈ [0, T ].

Lemma 4.4. There exists a positive constant M , depending on ∥(v0, w0)∥1 but independent
of ζ, such that if the solution (v, w) to the problem (4.3)–(4.6) belongs to X(T ; 2M), then it
satisfies

∥(v, w)(t)∥21 ≤M + C[M ]t, (4.11)∫ t

0

1

ζ
∥w(τ)∥21 + ∥(vxx, wxx)(τ)∥2 dτ ≤ C[M ](1 + t) (4.12)

for t ∈ [0, T ], where C[M ] is a positive constant depending on M but independent of ζ and
t.

Proof. Taking the inner product of (4.3a) with the vector (v, w) in L2(0, t;L2(Ω)) and ap-
plying the integration by part yield

1

2
∥v(t)∥2 + 3

4
∥w(t)∥2 +

∫ t

0

∫ 1

0

3

2ζew
(ew − 1)w dxdτ

=
1

2
∥v0∥2 +

3

4
∥w0∥2 +

∫ t

0

∫ 1

0

(v, w)
(
A[v, w](vxx, wxx)

⊤ +G[v, w]
)
dxdτ

≤ 1

2
∥v0∥2 +

3

4
∥w0∥2 + µ

∫ t

0

∥(vxx, wxx)(τ)∥2 dτ + C[µ,M ]t, (4.13)

where µ is an arbitrary positive constant to be determined. In deriving the above inequality,
we have also applied the Sobolev and the Young inequalities to the right hand side with
using the inequality

∥Φ[ev](t)∥2 ≤ C[M ], (4.14)

which holds due to the formula (2.8) and (v, w) ∈ X(T ; 2M). Next, take the inner product
of (4.3a) with the vector (−vxx,−wxx) in L2(0, t;L2(Ω)), apply the integration by part and
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use the boundary conditions vt(t, 0) = vt(t, 1) = wx(t, 0) = wx(t, 1) = 0. Then estimate the
resulting equality by using (4.14) as well as the Sobolev and the Young inequalities to get

1

2
∥vx(t)∥2 +

3

4
∥wx(t)∥2 +

∫ t

0

∫ 1

0

(vxx, wxx)A[v, w](vxx, wxx)
⊤ dxdτ +

∫ t

0

∫ 1

0

3

2ζew
w2

x dxdτ

=
1

2
∥v0x∥2 +

3

4
∥w0x∥2 +

∫ t

0

∫ 1

0

(vxx, wxx)G[v, w] dxdτ

≤ 1

2
∥v0x∥2 +

3

4
∥w0x∥2 + µ

∫ t

0

∥(vxx, wxx)(τ)∥2 dτ + C[µ,M ]t. (4.15)

Notice that the third term in the left hand side of (4.15) is estimated from below as

c[M ]

∫ t

0

∥(vxx, wxx)(τ)∥2 dτ ≤
∫ t

0

∫ 1

0

(vxx, wxx)A[v, w](vxx, wxx)
⊤ dxdτ (4.16)

since the matrix A[v, w] is symmetric and positive definite. Thus, by adding (4.13) to (4.15),
taking µ sufficiently small and then using the estimate (4.16), we have

1

2
∥v(t)∥21 +

3

4
∥w(t)∥21 +

∫ t

0

∫ 1

0

3

2ζew
(ew − 1)w +

3

2ζew
w2

x dxdτ

+ c[M ]

∫ t

0

∥(vxx, wxx)(τ)∥2 dτ ≤ 1

2
∥v0∥21 +

3

4
∥w0∥21 + C[M ]t. (4.17)

Now determine the constant M by

M := ∥v0∥21 +
3

2
∥w0∥21,

which is apparently independent of ζ. Then the estimate (4.17) immediately means the
desired estimate (4.11). It also implies the estimate (4.12) due to the mean value theorem.

Lemma 4.4 yields that the existence time of the solution (v, w) in Lemma 4.3 can be taken
independently of ζ. In addition, it gives the estimate of the time local solution uniformly in
ζ. These results are proven in the next corollary.

Corollary 4.5. Suppose the initial data (v0, w0) ∈ H1(Ω) and the boundary data ρl, ρr and ϕr

satisfy (2.4)–(2.6) and (2.7a). Let N0 be a certain positive constant satisfying ∥(v0, w0)∥1 ≤
N0. Then there exists a positive constant T∗, depending on N0 but independent of ζ, such
that the initial boundary value problem (4.3)–(4.6) has a unique solution (v, w) ∈ Z([0, T∗])∩
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Yloc((0, T∗)). Moreover, it satisfies
√
tvxt,

√
twxt ∈ L2(0, T∗;L

2(Ω)), the convergence (4.9)
and the estimates

∥(v, w)(t)∥21 ≤ C, (4.18a)∫ t

0

1

ζ
∥w(τ)∥21 + ∥(vxx, wxx)(τ)∥2 dτ ≤ C, (4.18b)∫ t

0

∥vt(τ)∥2 dτ ≤ C (4.18c)

for t ∈ [0, T∗], where C is a positive constant independent of ζ and t.

Proof. Take a positive constant T∗ so small that the right hand side of (4.11) is less than 2M
for an arbitrary t ∈ [0, T∗]. Here T∗ is apparently independent of ζ. On the other hand, define
Ts by the supermum of time T until which the solution (v, w) to (4.3)–(4.6) exists in the set
X(T ; 2M). The existence of Ts is ensured in the Lemma 4.3 even though it may depend on
ζ. We show that the solution exists in the time interval [0, Ts] and belongs to X(Ts; 2M) as
follows. For arbitrary t0 in [0, Ts), ∥(v, w)(t0)∥ ≤ 2M holds owing to (v, w) ∈ X(t0; 2M).
Regarding t0 as the initial time and (v, w)(t0) as the initial data, and letting N := 2M , we
apply Lemma 4.3. Hence, there exists a positive constant T0, depending only on N and ζ,
such that the solution (v, w) exists in X(t0 + T0; 2M). Since t0 is arbitrary in [0, Ts), the
solution exists in Z([0, Ts+ t0))∩Yloc((0, Ts+ t0)). Consequently, the solution (v, w) belongs
to X(Ts; 2M).

To show T∗ is the desired existence time, it suffices to prove the inequality T∗ ≤ Ts.
This inequality is proven by contradiction as follows. Suppose that Ts < T∗. Lemma 4.4
means that the solution contained in X(Ts; 2M) satisfies the estimate (4.11) for an arbitrary
t ∈ [0, Ts]. Applying Lemma 4.3 with regarding Ts as initial time, we see that there exists
a positive constant t0 such that the solution exists until the time Ts + t0 and belongs to
X(Ts + t0; 2M). Apparently it contradicts the definition of Ts. Hence we have T∗ ≤ Ts,
which means that the solution (v, w) belongs to X(T∗; 2M).

In constructing the time local solution in Lemma 4.3, we have already proven the con-
vergence (4.9). The estimates (4.18a) and (4.18b) apparently hold owing to Lemma 4.4.
Moreover, solve the first component of the system (4.3a) with respect to vt and take the
L2-norm of the result. Then, by using the inequalities (4.18a) and (4.18b), we have the
desired estimate (4.18c).

4.2 Semi-global existence of solution
This section is devoted to proving the semi-global existence of the solution in Theorem 4.9,
which asserts the solution to (2.1) exists until arbitrary positive time T provided that ζ is
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sufficiently small. It is proven by the essentially same argument as in the proof of Corollary
4.5 together with a-priori estimates in Lemmas 4.6 and 4.8.

Hereafter in this section, (vζ , wζ) denotes the solution to the problem (4.3)–(4.6). For
the solution (ρ00, j

0
0 , ϕ

0
0) to the problem (2.15), (2.12a), (2.4) and (2.6) define

v00 := log ρ00.

Then we have

(v00)t − (v00)xx = g1[v
0
0, 0], (4.19)

where g1 is given in (4.3b). The notations

Rζ := vζ − v00, Qζ := wζ ,

Lζ(t) := sup
T∗≤τ≤t

∥(Rζ , Qζ)(τ)∥1

are frequently used in the following discussions. Here and hereafter in this section, the
constant T∗ means the one defined in Corollary 4.4 with N0 := ∥(v0, w0)∥1. Subtracting the
equation (4.19) from the first component of the system (4.3a) gives

(Rζ)t − (Rζ)xx = ewζ(Qζ)xx − (ewζ − 1) (vζ)xx + g1[vζ , wζ ]− g1[v
0
0, 0]. (4.20)

Subtract the first component of the system (4.3a) from the second component of the system
(4.3a) to obtain

(Qζ)t −
2

3
(vζ)t −

2κ0
3evζ

(Qζ)xx +
1

ζ

(
1− 1

ewζ

)
= g2[vζ , wζ ]. (4.21)

The boundary conditions for Rζ and Qζ are derived from (2.4) and (2.5) as

Rζ(t, 0) = Rζ(t, 1) = (Qζ)x(t, 0) = (Qζ)x(t, 1) = 0. (4.22)

Lemma 4.6. Let T be an arbitrary positive constant greater than or equal to T∗, and
(vζ , wζ) ∈ Z([0, T ]) ∩ Yloc((0, T )) be a solution to (4.3)–(4.6). Then there exist positive
constants δ0 and δ1 such that if δ + ζ ≤ δ0 and Lζ(T ) ≤ δ1, then the estimates

∥(vζ , wζ)(t)∥21 + |Φ[evζ ](t)|2 ≤ C, (4.23a)∫ t

0

1

ζ
∥wζ(τ)∥21 + ∥({vζ}t, {vζ}xx, {wζ}xx)(τ)∥2 dτ ≤ C(1 + t), (4.23b)

t

ζ
∥wζ(t)∥21 + t∥({vζ}t, {vζ}xx, {wζ}xx)(t)∥2 +

∫ t

0

τ

ζ2
∥wζ(τ)∥21

+
τ

ζ
∥(wζ)xx(τ)∥2 + τ∥({wζ}t, {vζ}xt, {wζ}xt)(τ)∥2 dτ ≤ Ceβt (4.23c)

hold for an arbitrary t ∈ [0, T ], where C and β are positive constants independent of t, δ and
ζ.
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Proof. The estimate (4.18a) and the definition of Lζ(T ) immediately give ∥(vζ , wζ)(t)∥21 ≤ C,
which together with the formula (2.8) shows |Φ[evζ ](t)|2 ≤ C. Hence the estimate (4.23a)
holds. The inequality (4.23b) is derived similarly as the derivations of (4.12) and (4.18c).

We derive the estimate (4.23c) as follows. Multiply the equation (4.21) by twζ/ζ and
integrate the result by part over [0, T ]× Ω to obtain

t

∫ 1

0

1

2ζ
(wζ)

2 dx+

∫ t

0

∫ 1

0

τ

ζ2ewζ
(ewζ − 1)wζ dxdτ

=

∫ t

0

∫ 1

0

1

2ζ
(wζ)

2 +
τ

ζ

(
2

3
(vζ)t +

2κ0
3evζ

(wζ)xx + g2[vζ , wζ ]

)
wζ dxdτ

≤ µ

∫ t

0

τ

ζ2
∥(ewζ − 1)(τ)∥2 + C[µ](1 + t2).

In deriving the last inequality, we have also used the estimates (4.23a) and (4.23b). Making
µ in the above inequality so small that the inequality

t

ζ
∥wζ(t)∥2 +

∫ t

0

τ

ζ2
∥wζ(τ)∥2 dτ ≤ C(1 + t2) (4.24)

holds. Taking the inner product of (4.3a) with the vector (−t{vζ}xxt,−t{wζ}xxt) in L2(0, t;L2(Ω))
and applying the integration by parts, we have

t

2

∫ 1

0

1

ζewζ
{(wζ)x}2 + ({vζ}xx, {wζ}xx)A[vζ , wζ ]({vζ}xx, {wζ}xx)⊤ dx

+

∫ t

0

∫ 1

0

τ{(vζ)xt}2 +
3

2
τ{(wζ)xt}2 dxdτ

= −t
∫ 1

0

({vζ}xx, {wζ}xx)G[vζ , wζ ] dx+

∫ t

0

∫ 1

0

({vζ}xx, {wζ}xx) (τG[vζ , wζ ])τ dxdτ

+

∫ t

0

∫ 1

0

1

2
({vζ}xx, {wζ}xx)(τA[vζ , wζ ])τ ({vζ}xx, {wζ}xx)⊤ +

(
τ

2ζewζ

)
τ

{(wζ)x}2 dxdτ

≤ µt∥(vxx, wxx)(t)∥2 + µ

∫ t

0

τ∥(vxt, wxt)(τ)∥2 dτ

+ C[µ]

∫ t

0

τ

(
1 +

∥∥∥∥(wx√
ζ
, vxx, wxx

)∥∥∥∥2
)∥∥∥∥(wx√

ζ
, vxx, wxx

)∥∥∥∥2 dτ + C[µ](1 + t2).

In deriving the last inequality, we have used the Sobolev and the Young inequalities as well
as the estimates (4.23a), (4.23b), (4.24) and

∥(wζ)t(t)∥ ≤ C

ζ
∥wζ(t)∥+ C∥({vζ}t, {wζ}xx)(t)∥+ C, (4.25)
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which follows from the equation (4.21). As the matrix A is positive definite, taking µ
sufficiently small and using the Gronwall inequality yield that

t

ζ
∥(wζ)x(t)∥2 + t∥({vζ}xx, {wζ}xx)(t)∥2 +

∫ t

0

τ∥({vζ}xt, {wζ}xt)(τ)∥2 dτ ≤ Ceβt. (4.26)

Multiply the equation (4.21) by −t(wζ)xx/ζ and integrate the result by part over [0, T ]×Ω.
Then estimate the resulting equality by using the estimates (4.23a), (4.23b), (4.24) and
(4.26). The result is ∫ t

0

τ

ζ2
∥(wζ)x(τ)∥2 +

τ

ζ
∥(wζ)xx(τ)∥2 dτ ≤ Ceβt. (4.27)

The estimate (4.23c) except the term (vζ)t immediately holds with aid of (4.24), (4.25),
(4.26) and (4.27). Solve the first component of the system (4.3) with respect to (vζ)t and
take the L2-norm of the result. These computations yield the estimate of (vζ)t. Hence, the
proof is completed.

The next corollary immediately follows from the same computations as in the proof of
Lemma 4.6.

Corollary 4.7. Let (vζ , wζ) ∈ Z([0, T ]) ∩ Yloc((0, T )) be a solution to (4.3)–(4.6). If the
solution (vζ , wζ) verifies the estimate (4.18) uniformly in ζ for arbitrary t ∈ [0, T ], it also
verifies the estimate (4.23) uniformly in ζ for arbitrary t ∈ [0, T ].

The next lemma ensures that Lζ(T ) becomes arbitrarily small if ζ is taken sufficiently
small.

Lemma 4.8. Let T be an arbitrary positive constant greater than or equal to T∗, and
(vζ , wζ) ∈ Z([0, T ]) ∩ Yloc((0, T )) be a solution to (4.3)–(4.6). Suppose that the inequali-
ties in (4.23) hold for t ∈ [0, T ]. Then it holds that

∥Rζ(t)∥2 +
∫ t

0

∥(Rζ)x(τ)∥2 dτ ≤ Cζeβt, (4.28a)

∥Qζ(t)∥2 ≤ ∥ log θ0∥2e−νt/ζ + Cζeβt, (4.28b)

∥({Rζ}x, {Qζ}x)(t)∥2 ≤ Cζ
eβt

t
, (4.28c)

Lζ(T ) ≤ Cζ
eβT

T∗
(4.28d)

for t ∈ (0, T ], where ν, β and C are positive constants independent of t, δ and ζ.
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Proof. Firstly, we show the estimate (4.28a). The straight forward computation leads to the
estimate

∥Φ[evζ ]− Φ[ev
0
0 ]∥2 ≤ C∥Rζ∥. (4.29)

Multiply the equation (4.20) by Rζ and integrate the resulting equality by part over the
domain Ω. Then apply the Sobolev and the Young inequalities to the resultant equality
with using (4.1), (4.23a) and (4.29). These computations give∫ 1

0

1

2
(Rζ)

2(t) dx+

∫ t

0

∫ 1

0

{(Rζ)x}2 dxdτ

= −
∫ t

0

∫ 1

0

(Qζ)x(e
wζRζ)x +

{
(ewζ − 1) (vζ)xx − g1[vζ , wζ ] + g1[v

0
0, 0]

}
Rζ dxdτ

≤
∫ t

0

µ∥(Rζ)x(τ)∥2 + C[µ]
{
(1 + ∥(vζ)xx(τ)∥2)∥Rζ(τ)∥2 + ∥Qζ(τ)∥21

}
dτ,

where µ is an arbitrary positive constant. Then taking µ small enough and using the estimate
of Qζ in (4.23b), we have

∥Rζ(t)∥2 +
∫ t

0

∥(Rζ)x(τ)∥2 dτ ≤ C

∫ t

0

(1 + ∥(vζ)xx(τ)∥2)∥Rζ(τ)∥2 dτ + Cζ(1 + t). (4.30)

The estimate (4.28a) is derived by the application of the Gronwall inequality to (4.30) with
aid of (4.23b).

Secondly, the estimate (4.28b) is shown. Multiplying the equation (4.21) by eνt/ζQζ where
ν is a positive constant to be determined and integrating the resultant equality by part over
the domain Ω yield

eνt/ζ
∫ 1

0

1

2
(Qζ)

2(t) dx+

∫ t

0

∫ 1

0

eντ/ζ

ζewζ
(ewζ − 1)Qζ dxdτ −

∫ t

0

∫ 1

0

νeντ/ζ

2ζ
(Qζ)

2 dxdτ

+

∫ t

0

∫ 1

0

2κ0e
ντ/ζ

3evζ
{(Qζ)x}2 dxdτ =

∫ 1

0

1

2
(log θ0)

2 dx

+

∫ t

0

∫ 1

0

eντ/ζ
{
2κ0
3evζ

(vζ)x(Qζ)x +
2

3
(vζ)t + g2[vζ , wζ ]

}
Qζ dxdτ. (4.31)

Use the estimate (4.23a) and the mean value theorem to handle the second term in the left
hand side of (4.31) as∫ t

0

∫ 1

0

eντ/ζ

ζewζ
(ewζ − 1)(Qζ) dxdτ ≥ c

∫ t

0

eντ/ζ

ζ
∥Qζ(τ)∥2dτ, (4.32)
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where c is a positive constant independent of ζ. Moreover, by the estimates (4.23a) and
(4.23b) as well as the Sobolev and the Young inequalities, the last term in the right hand
side of (4.31) is estimated as

(last term) ≤ µ

∫ t

0

eντ/ζ

ζ
∥Qζ(τ)∥2 dτ + C[µ]ζeνt/ζ(1 + t). (4.33)

Substituting (4.32) and (4.33) in (4.31), making µ and ν so small that c > µ+ ν/2 and then
dividing the result by eνt/ζ , we obtain (4.28b).

Thirdly, we derive the estimate (4.28c). For this purpose, it suffices to show the estimate
of Rζ since the estimate of Qζ have been already shown in (4.23c). By the Poincaré and the
Sobolev inequalities as well as (4.1), (4.23a) and (4.29), the L2-norm of the right hand side
of the equation (4.20) is handled as

t ∥(right hand side)∥2 ≤ Ceβt∥(Rζ , Qζ)(t)∥21 + Ct∥{Qζ}xx(t)∥2. (4.34)

Multiplying the equation (4.21) by −t(Rζ)xx, integrating the result by part over the do-
main [0, t]× Ω and then estimating the resulting equality by the Sobolev and the Schwartz
inequalities as well as (4.23b), (4.23c), (4.28a) and (4.34), we have

t

2

∫ 1

0

{(Rζ)x}2(t) dx+
∫ t

0

∫ 1

0

τ{(Rζ)xx}2 dxdτ

=

∫ t

0

∫ 1

0

{(Rζ)x}2

2
− τ

{
ewζ(Qζ)xx − (ewζ − 1) (vζ)xx + g1[vζ , wζ ]− g1[v

0
0, 0]

}
(Rζ)xx dxdτ

≤ µ

∫ t

0

τ∥(Rζ)xx(τ)∥2 dτ + C[µ]ζeβt.

Then making µ sufficiently small yields the desired estimate (4.28c). Lastly, the estimate
(4.28d) immediately follows from the estimates (4.28a)–(4.28c).

Now we are at the position to prove the “semi-global existence” of the solution to the
energy-transport model.

Theorem 4.9. Suppose that the initial data (v0, w0) ∈ H1(Ω) and the boundary data ρl, ρr
and ϕr satisfy (2.4), (2.6) and (2.7a). For arbitrarily positive time T , there exist positive
constants δ0, independent of T , and ζT , depending on T , such that if δ ≤ δ0 and ζ ≤ ζT , then
the initial boundary value problem (4.3)–(4.6) has a unique solution (vζ , wζ) ∈ Z([0, T ]) ∩
Yloc((0, T )). Moreover, it satisfies

√
tvxt,

√
twxt ∈ L2(0, T ;L2(Ω)) as well as the estimates

(4.23) and (4.28).
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Proof. Corollary 4.5 ensures the solution (vζ , wζ) exists until time T∗ independent of ζ.
Moreover, (vζ , wζ) satisfies (4.18), which immediately means (4.23) owing to Corollary 4.7.
Then we can apply Lemma 4.8 and see that the estimate (4.28d) holds. Hence Lζ(T∗)
becomes arbitrarily small by taking ζ small enough in (4.28d). Here it is crucial that the
existence time T∗ is independent of ζ.

To construct the solution (vζ , wζ) until the time T , take δ and ζ so small that δ+ ζ ≤ δ0,

Lζ(T∗) < δ1, (4.35)
ζ < δ1T∗/2Ce

βT , (4.36)

where δ0 and δ1 are defined in Lemma 4.6 as well as T∗, C and β are given in (4.28d).
The condition (4.36) makes the right hand side of (4.28d) be less than δ1/2. Let T ∗ be the
supermum of time t until which the solution exists and satisfies Lζ(t) ≤ δ1, that is,

T s
∗ := sup

t
{t > 0;Lζ(t) ≤ δ1}

It is obvious that T∗ < T s
∗ owing to (4.35). Since Lζ(t0) ≤ δ1 holds for arbitrary t0 in [T∗, T

s
∗ ),

we have
∥(vζ , wζ)(t0)∥1 ≤ δ1 + sup

0≤T∗

∥v00(t)∥1.

Regarding the right hand side above as N0 in Corollary 4.5, t0 as the initial time and
(vζ , wζ)(t0) as the initial data, we see that the solution (vζ , wζ) exists in the time interval
[T∗, T

s
∗ ] and satisfies Lζ(T

s
∗ ) ≤ δ1.

We show T ≤ T s
∗ by contradiction. Suppose that T s

∗ < T . As Lζ(T
s
∗ ) ≤ δ1 which means

the assumptions in Lemma 4.6 hold, the solution satisfies the estimate (4.23) for t ∈ [0, T s
∗ ].

Thus it is possible to apply Lemma 4.8 and get Lζ(T
s
∗ ) ≤ δ1/2 due to (4.28d) and (4.36).

Applying Lemma 4.3 with regarding T s
∗ as initial time, we see that there exists a positive

constant T0 such that the solution exists until T s
∗ + T0 and satisfies Lζ(T

s
∗ + T0) ≤ δ1. It

contradicts the definition of T s
∗ . Consequently, we have T ≤ T s

∗ , that is, the solution exists
until time T .

The difference between the solution to the non-stationary problem and the stationary
solution becomes arbitrarily small as the time T is taken large enough, and thus ζ is small
enough, in Theorem 4.9. This property is shown in the next corollary.

Corollary 4.10. Let (ṽζ , w̃ζ) be the stationary solution to the problem (4.8), (4.5) and (4.6).
Suppose the same assumptions as in Theorem 4.9. For an arbitrary positive number Λ, there
exist positive constants TΛ and ζΛ such that if ζ ≤ ζΛ, the solution (vζ , wζ) to the problem
(4.3)–(4.6) exists in the function space Z([0, TΛ]) ∩Yloc((0, TΛ)) and verifies

∥(vζ − ṽζ , wζ − w̃ζ)(TΛ)∥1 ≤ Λ. (4.37)

Moreover, it satisfies
√
tvxt,

√
twxt ∈ L2(0, TΛ;L

2(Ω)) as well as the estimates (4.23).
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Proof. It is sufficient to show the inequality (4.37) as the other assertions are proven in
Theorem 4.9. Use the inequalities (3.49), (4.1b) and (4.28a), and then take TΛ sufficiently
large to obtain

∥(vζ − ṽζ)(TΛ)∥ ≤ ∥Rζ(TΛ)∥+ ∥(v00 − ṽ00)(TΛ)∥+ ∥ṽ00 − ṽζ∥
< C

{
ζ1/2eβTΛ/2 + ζ

}
+ Λ/8, (4.38)

where ṽ00 := log ρ̃00. We take ζΛ so small that the right hand side of (4.38) is smaller than
Λ/4 for an arbitrary ζ ∈ (0, ζΛ]. As the other estimates in (4.37) are shown similarly, the
proof is completed.

4.3 Global existence of solution
In this section, we prove the time global existence of the solution and the asymptotic stability
of the stationary solution for the large initial data. For this purpose, it suffices to show the
stability theorem with the small initial disturbance by virtue of Corollary 4.10.

Theorem 4.11. Let (ṽ, w̃) be the stationary solution for (4.8). Suppose that the initial data
(v0, w0) ∈ H1(Ω) and the boundary data ρl, ρr and ϕr satisfy (2.4), (2.6) and (2.7a). Then
there exists a positive constant δ∗, independent of ζ, such that if

δ + ζ + ∥(v0 − ṽ, w0 − w̃)∥1 ≤ δ∗, (4.39)

then the initial boundary value problem (4.3)–(4.6) has a unique solution (v, w) satisfying
(v−ṽ, w−w̃) ∈ Z([0,∞))∩Yloc((0,∞)). Moreover, the solution (v, w) verifies

√
tvxt,

√
twxt ∈

L2(0,∞;L2(Ω)) and the convergence (4.9). It also satisfies the decay estimates

∥(v − ṽ, w − w̃,Φ[ev]− Φ[eṽ])(t)∥21 ≤ C∥(v0 − ṽ, w0 − w̃)∥21e−αt, (4.40a)
t

ζ
∥(w − w̃)(t)∥21 + t∥(v − ṽ, w − w̃)(t)∥22 ≤ C∥(v0 − ṽ, w0 − w̃)∥21e−αt, (4.40b)

where C and α are positive constants independent of t, δ and ζ.

To show Theorem 4.11, we regard the solution (v, w) to the non-stationary problem
(4.3)–(4.6) as a perturbation from the stationary solution (ṽ, w̃) to (4.8):

u(t, x) := v(t, x)− ṽ(x), ϖ(t, x) := w(t, x)− w̃(x).

Subtracting (4.8) from (4.3a), we see that (u,ϖ) verifies the equation(
u

3ϖ/2

)
t

− A[ṽ + u, w̃ +ϖ]

(
u
ϖ

)
xx

+

(
0

−3(e−ϖ−w̃ − e−w̃)/2ζ

)
= H, (4.41a)

H := {A[ṽ + u, w̃ +ϖ]− A[ṽ, w̃]}
(
ṽ
w̃

)
xx

+G[ṽ + u, w̃ +ϖ]−G[ṽ, w̃]. (4.41b)
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The initial and the boundary conditions to the system (4.41) follow from (4.4)–(4.6) as

u(x, 0) = u0(x) := v0(x)− ṽ(x), ϖ(x, 0) = ϖ0(x) := w0(x)− w̃(x), (4.42)
u(t, 0) = u(t, 1) = ϖx(t, 0) = ϖx(t, 1) = 0. (4.43)

Theorem 3.5 and Corollary 4.5 apparently mean the local existence of the solution (u,ϖ) to
the initial boundary value problem (4.41)–(4.43).

Lemma 4.12. Suppose that the initial data (u0, ϖ0) belongs to H1(Ω). Then there exists a
positive constant T∗, independent of ζ, such that the initial boundary value problem (4.41)–
(4.43) has a unique local solution (u,ϖ) ∈ Z([0, T∗]) ∩ Yloc((0, T∗)). Moreover, it verifies√
tuxt,

√
tϖxt ∈ L2(0, T∗;L

2(Ω)) and the convergence (4.9).

The standard continuation argument with the local existence in Lemma 4.12 and an a-
priori estimate (4.44) in Proposition 4.13 yields the existence of the solution globally in time
to the problem (4.41)–(4.43), stated in Theorem 4.11. To show the a-priori estimate (4.44),
we use a notation

Nζ(t) := sup
0≤τ≤t

{
∥(u,ϖ)(τ)∥1 +

√
t

ζ
∥ϖ(τ)∥1 +

√
t∥(u,ϖ)(τ)∥2

}
.

Proposition 4.13. Let T > 0 and let (u,ϖ) ∈ Z([0, T ]) ∩ Yloc((0, T )) be a solution to
(4.41)–(4.43) satisfying

√
tuxt,

√
tϖxt ∈ L2(0, T ;L2(Ω)) and the convergence (4.9). Then

there exists a positive constant δ0, independent of T and ζ, such that if Nζ(T ) + δ + ζ ≤ δ0,
then the estimate

(1 + t)
(
∥(u,ϖ)(t)∥21 + ∥{Φ[eṽ+u]− Φ[eṽ]}x(t)∥2

)
+ t

(
1

ζ
∥ϖ(τ)∥21 + ∥(uxx, ϖxx)(t)∥2

)
+

∫ t

0

(1 + τ)

(
1

ζ
∥ϖ(τ)∥21 + ∥{Φ[eṽ+u]− Φ[eṽ]}x(τ)∥2 + ∥(u,ϖ)(τ)∥22

)
dτ

+

∫ t

0

τ

(
1

ζ2
∥ϖ(τ)∥2 + ∥(uxt, ϖxt)(τ)∥2

)
dτ ≤ C∥(u0, ϖ0)∥21 (4.44)

holds for t ∈ [0, T ], where C is a positive constant independent of T , δ and ζ.

Proof. The proof is divided into the three parts studied in Lemmas 4.14–4.16. Multiply the
estimate (4.57) by α, the estimate (4.58) by α2, and the estimate (4.68) by α3, respectively.
Summing up these three resulting inequalities and the estimate (4.54), using the estimate
(4.66a) and making α and Nζ(T )+ δ+ ζ

1/4 sufficiently small, we obtain the a-priori estimate
(4.44).
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We begin detailed discussions with deriving the basic estimate (4.50) in Lemma 4.14. For
this purpose, an energy form

E1 := ρθ̃Ψ

(
ρ̃

ρ

)
+

1

2

{
(ϕ− ϕ̃)x

}2

+
3

2
ρθ̃Ψ

(
θ

θ̃

)
, (4.45)

Ψ(s) := s− 1− log s.

is employed. Here E1 is equivalent to |(u,ϖ, {Φ[eṽ+u] − Φ[eṽ]}x)|2 if |(u,ϖ)| is sufficiently
small since Ψ(s) is equivalent to |s− 1|2 if s ≥ c > 0. Namely, there exist positive constants
δ0, c1 and C1 such that if |(u,ϖ)| ≤ δ0, then the next inequality holds:

c1
∣∣(u,ϖ, {Φ[eṽ+u]− Φ[eṽ]}x

)∣∣2 ≤ E1 ≤ C1

∣∣(u,ϖ, {Φ[eṽ+u]− Φ[eṽ]}x
)∣∣2 . (4.46)

Moreover, the energy form E1 verifies the equation

(E1)t +
1

ρ
(j − j̃)2 +

3ρ

2ζθ
(θ − θ̃)2 +

κ0
θ
{(θ − θ̃)x}2 = −{(θ − θ̃)(j − j̃)}x + (R1)x +R2,

(4.47)

R1 := (ϕ− ϕ̃)(ϕ− ϕ̃)xt + (ϕ− ϕ̃)(j − j̃)− θ̃u(j − j̃) +
κ0
θ
(θ − θ̃)(θ − θ̃)x,

R2 :=− j̃

(
1

ρ
− 1

ρ̃

)
(j − j̃) + θ̃xu(j − j̃)− 3

2
θ̃(j − j̃)xΨ

(
θ

θ̃

)
+
κ0θx
θ2

(θ − θ̃)(θ − θ̃)x

−

{
3

2
(jθx − j̃θ̃x) + j̃(vxθ − ṽxθ̃)−

(
j2

ρ2
− j̃

2

ρ̃2

)
+

3(θ̃ − 1)

2ζ
(ρ− ρ̃)

}
(θ − θ̃)

θ
.

Here the potentials are given by the formula (2.8):

ϕ := Φ[ev], ϕ̃ := Φ[eṽ].

Owing to the boundary condition (2.6), we have

(ϕ− ϕ̃)(t, 0) = (ϕ− ϕ̃)(t, 1) = 0. (4.48)

The equation (4.47) is seen as a special case of the equation for an energy form (5.63) to the
hydrodynamic model (2.11). Actually, it is derived similarly as (5.63). See Section 5.3 for
the derivation.

In the proof of the following lemma, we use the estimates

c∥u(t)∥i ≤ ∥(ρ− ρ̃)(t)∥i = ∥(ev − eṽ)(t)∥i ≤ C∥u(t)∥i, (4.49a)

c∥ϖ(t)∥i ≤ ∥(θ − θ̃)(t)∥i = ∥(ew − ew̃)(t)∥i ≤ C∥ϖ(t)∥i, (4.49b)
∥(Φ[eṽ+u]− Φ[eṽ])x(t)∥1+i ≤ C∥u(t)∥i, (4.49c)

∥(jx − j̃x)(t)∥ ≤ C∥ut(t)∥ (4.49d)

for i = 0, 1, 2, which immediately follow from the equation (2.14a).
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Lemma 4.14. Under the same conditions as in Proposition 4.13, the following estimate
holds for t ∈ [0, T ].

(1 + t)
(
∥(u,ϖ)(t)∥2 + ∥(Φ[eṽ+u]− Φ[eṽ])x(t)∥2

)
+

∫ t

0

(1 + τ)

(
1

ζ
∥ϖ(τ)∥2 + ∥(u,ϖ)(τ)∥21 + ∥(Φ[eṽ+u]− Φ[eṽ])x(τ)∥2

)
dτ

≤ C∥(u0, ϖ0)∥2 + C(Nζ(T ) + δ + ζ1/4)

∫ t

0

(1 + τ)∥ut(τ)∥2 dτ, (4.50)

where C is a positive constant independent of T , δ and ζ.

Proof. Multiplying the equation (4.45) by tk for k = 0, 1 and integrating the resulting equal-
ity by part over Ω give

d

dt

(
tk
∫ 1

0

E1 dx
)
+ tk

∫ 1

0

1

ρ
(j − j̃)2 +

3ρ

2ζθ
(θ − θ̃)2 +

κ0
θ
{(θ − θ̃)x}2 dx

= ktk−1

∫ 1

0

E1 dx− tk(θ − θ̃)(j − j̃)(t, 1) + tk(θ − θ̃)(j − j̃)(t, 0) + tk
∫ 1

0

R2 dx (4.51)

since the integration of (R1)x over Ω is zero owing to the boundary conditions (4.43) and
(4.48). Applying the Sobolev and the Young inequalities with using (4.49b) yields

|(θ − θ̃)(j − j̃)(t)|0 ≤ C∥(θ − θ̃)(t)∥1/2(∥(θ − θ̃)(t)∥+ ∥(θ − θ̃)x(t)∥)1/2∥(j − j̃)(t)∥1

≤ Cζ1/4
(
1

ζ
∥ϖ(t)∥2 + ∥(ϖ, j − j̃)(t)∥21

)
. (4.52)

Moreover, using the inequalities (3.11a), (3.25) and (4.49), we estimate the last term of
(4.51) as ∫ 1

0

R2 dx ≤ C(Nζ(T ) + δ)∥(u,ϖ, j − j̃)(t)∥21. (4.53)

Substituting (4.46), (4.52) and (4.53) in (4.51) and then using (4.49), we have

d

dt

(
tk
∫ 1

0

E1 dx
)
+ ctk

(
∥(j − j̃)(t)∥2 + 1

ζ
∥ϖ(t)∥2 + ∥ϖx(t)∥2

)
≤ kCtk−1∥(u,ϖ)(t)∥2

+ C(Nζ(T ) + δ + ζ1/4)tk
(
1

ζ
∥ϖ(t)∥2 + ∥(u, j − j̃, ux, ϖx, ut)(t)∥2

)
. (4.54)

Divide the equation (2.14d) by eṽ+u and the equation (3.1d) by eṽ, respectively. Take the
difference between the two results and multiply the resulting equation by ux. Then integrate
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the resultant equality by parts over Ω and use the equations (2.14c) and (3.1c) as well as
the boundary condition (4.43) to get

tk
∫ 1

0

ew̃(ux)
2 + u(eṽ+u − eṽ) dx

= tk
∫ 1

0

{
(ew̃+ϖ − ew̃)x + vx(e

w̃+ϖ − ew̃) +

(
j

eṽ+u
− j̃

eṽ

)}
ux dx

≤ tk
{
µ∥ux(t)∥2 + C(Nζ(T ) + δ)∥u(t)∥21 + C[µ]∥(j − j̃, ϖ,ϖx)(t)∥2

}
, (4.55)

where µ is an arbitrary positive constant to be determined. In deriving the above inequality,
we have also used (3.25) and (4.49) as well as the Schwarz and the Sobolev inequalities. The
left hand side of (4.55) is estimated from below by ctk∥u∥21 for a positive constant c due to
the mean value theorem. Using this fact with (4.49c) and letting µ sufficiently small, we
obtain

tk∥u(t)∥21 + tk∥(Φ[eṽ+u]− Φ[eṽ])x(t)∥2

≤ Ctk
{
(Nζ(T ) + δ)∥u(t)∥21 + ∥(j − j̃, ϖ,ϖx)(t)∥2

}
. (4.56)

Multiply (4.56) with k = 1 by α3, (4.54) with k = 1 by α2 and (4.56) with k = 0 by
α, respectively, where α is an arbitrary positive constant. Then sum up these results and
(4.54) with k = 0, let α and Nζ(T ) + δ+ ζ1/4 small enough, and then integrate the resulting
inequality with respect to t. These computations give the desired estimate (4.50).

Lemma 4.15. Under the same conditions as in Proposition 4.13, the following estimates
hold for t ∈ [0, T ].

(1 + t)∥(ux, ϖx)(t)∥2 +
∫ t

0

(1 + τ)

(
1

ζ
∥ϖx(τ)∥2 + ∥(uxx, ϖxx)(τ)∥2

)
dτ

≤ C∥(u0, ϖ0)∥21 + C

∫ t

0

(1 + τ)∥(u,ϖ)(τ)∥21 dτ, (4.57)

t

ζ
∥ϖ(t)∥2 +

∫ t

0

τ

ζ2
∥ϖ(τ)∥2 dτ ≤ C

∫ t

0

1

ζ
∥ϖ(τ)∥2 + τ∥(u,ϖ)(τ)∥22 dτ, (4.58)

where C is a positive constant independent of T , δ and ζ.

Proof. Take the inner product of the equation (4.41a) with the vector (−tkuxx,−tkϖxx) for
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k = 0, 1 in L2(Ω) and apply the integration by part to get

d

dt

(
tk
∫ 1

0

1

2
(ux)

2 +
3

4
(ϖx)

2 dx

)
+ tk

∫ 1

0

(uxx, ϖxx)A[v, w](uxx, ϖxx)
⊤ dx

+ tk
∫ 1

0

3

2ζew
(ϖx)

2 dx = ktk−1

∫ 1

0

1

2
(ux)

2 +
3

4
(ϖx)

2 dx

− tk
∫ 1

0

3w̃x

2ζ

(
1

ew̃+ϖ
− 1

ew̃

)
ϖx dx+ tk

∫ 1

0

(uxx, ϖxx)H dx. (4.59)

Notice that the L2-norm of H, which is defined in (4.41b), is estimated as

∥H∥ ≤ C∥(u,ϖ)∥1 + C∥(u,ϖ)∥1/21 ∥(uxx, ϖxx)∥1/2. (4.60)

This inequality together with (3.25d) gives the estimate of the right hand side of (4.59) as

(right hand side) ≤ µtk∥(uxx, ϖxx)(t)∥2+C[µ]tk∥(u,ϖ)(t)∥21+Cktk−1∥(ux, ϖx)(t)∥2, (4.61)

where µ is an arbitrary positive constant. Since A[v, w] is symmetric and positive definite,
substituting (4.61) in (4.59) and making µ sufficiently small yield the inequality

d

dt

(
tk

2
∥ux(t)∥2 +

3tk

4
∥ϖx(t)∥2 dx

)
+ ctk

(
∥(uxx, ϖxx)(t)∥+

1

ζ
∥ϖx(t)∥2

)
≤ Ctk∥(u,ϖ)(t)∥21 + Cktk−1∥(ux, ϖx)(t)∥2. (4.62)

Summing up the estimates (4.62) with k = 0, 1 and integrating the result with respect to t,
we have the desired estimate (4.57).

Taking the inner product of the equation (4.41a) with the vector (0,−tϖ/ζ) in L2(Ω)
and applying the integration by part yield

d

dt

(
3t

4ζ

∫ 1

0

ϖ2 dx

)
− 3t

2ζ2

∫ 1

0

(
1

ew̃+ϖ
− 1

ew̃

)
ϖdx

=
3

4ζ

∫ 1

0

ϖ2 dx+
t

ζ

∫ 1

0

(0, ϖ)
(
A[v, w](uxx, ϖxx)

⊤ +H
)
dx. (4.63)

Due to the mean value theorem, the second term on the left hand side is estimated as

ct

ζ2
∥ϖ(t)∥2 ≤ − 3t

2ζ2

∫ 1

0

(
1

ew̃+ϖ
− 1

ew̃

)
ϖdx (4.64)

from below. Substituting (4.64) in (4.63) and computing similarly as in the derivation of
(4.62), we have

d

dt

(
3t

4ζ
∥ϖ(t)∥2

)
+
ct

ζ2
∥ϖ(t)∥2 ≤ C

ζ
∥ϖ(t)∥2 + tC∥(u,ϖ)(t)∥22. (4.65)

Integration of (4.65) with respect to t gives the desired estimate (4.58).
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To derive the estimates for the second derivatives, we use

∥ut∥ ≤ C∥(u,ϖ)∥2, (4.66a)
∥ϖt∥ ≤ C∥ϖ∥/ζ + C∥(u,ϖ)∥2, (4.66b)

∥Ht∥ ≤ C(1 + ∥(u,ϖ)∥2)∥(ut, ϖt)∥1. (4.66c)

They follow from the equation (4.41a), the estimates (3.25), (4.60) and

∥(Φ[eṽ+u]− Φ[eṽ])xt(t)∥1+i ≤ C∥ut(t)∥i (4.67)

for i = 0, 1.

Lemma 4.16. Under the same conditions as in Proposition 4.13, the estimate

t∥(uxx, ϖxx)(t)∥2 +
t

ζ
∥ϖx(t)∥2 +

∫ t

0

τ∥(uxt, ϖxt)(τ)∥2 dτ ≤ Ct∥(u,ϖ)(t)∥21

+ C

∫ t

0

τ

ζ2
∥ϖ(τ)∥2 + (1 + τ)

(
1

ζ
∥ϖ(τ)∥21 + ∥(u,ϖ)(τ)∥22

)
dτ (4.68)

holds for t ∈ [0, T ], where C is a positive constant independent of T , δ and ζ.

Proof. Taking the inner product of the equation (4.41a) with the vector (−tuxxt,−tϖxxt) in
L2(Ω) and applying the integration by part yield

d

dt

(
t

2

∫ 1

0

(uxx, ϖxx)A[v, w](uxx, ϖxx)
⊤ +

3

4ζew̃
ϖ2

x dx

)
+ t

∫ 1

0

(uxt)
2 +

3

2
(ϖxt)

2 dx

=
d

dt

(
t

∫ 1

0

(uxx, ϖxx)H dx

)
+

∫ 1

0

3

4ζew̃
ϖ2

x dx+
3t

2ζ

∫ 1

0

wx

(
1

ew̃+ϖ
− 1

ew̃

)
ϖxt dx

+

∫ 1

0

(uxx, ϖxx)

{
1

2
(tA[v, w])t(uxx, ϖxx)

⊤ + (tH)t

}
dx

≤ d

dt

(
t

∫ 1

0

(uxx, ϖxx)H dx

)
+ µt∥(uxt, ϖxt)(t)∥2 + C[µ]

t

ζ2
∥ϖ(t)∥2

+ C[µ](1 + t)

(
1

ζ
∥ϖ(t)∥21 + ∥(u,ϖ)(t)∥22

)
, (4.69)

where µ is an arbitrary positive constant. In deriving the last inequality, we have used the
Sobolev and the Young inequalities as well as the estimates (3.25d), (4.60), (4.66) and

√
t(∥(u,ϖ)(t)∥2 + ∥ϖ(t)∥1/ζ) ≤ CNζ(T ) ≤ C.
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Making µ small enough, we obtain

d

dt

(
t

2

∫ 1

0

(uxx, ϖxx)A[v, w](uxx, ϖxx)
⊤ +

3

2ζew̃
ϖ2

x dx

)
+
t

2

∫ 1

0

(uxt)
2 + (ϖxt)

2 dx

≤ d

dt

(
t

∫ 1

0

(uxx, ϖxx)H dx

)
+ C

t

ζ2
∥ϖ(t)∥2 + C(1 + t)

(
1

ζ
∥ϖ(t)∥21 + ∥(u,ϖ)(t)∥22

)
.

(4.70)

The first term of the right hand side of (4.70) is handled by using

t

∫ 1

0

(uxx, ϖxx)H dx ≤ µ′t∥(uxx, ϖxx)(t)∥2 + C[µ′]t∥(u,ϖ)(t)∥21, (4.71)

where µ′ is an arbitrary positive constant. The inequality (4.71) follows from the estimate
(4.60). On the other hand, the first term in the left hand side of (4.70) is handled by

ct∥(uxx, ϖxx)(t)∥2 ≤ t

∫ 1

0

(uxx, ϖxx)A[v, w](uxx, ϖxx)
⊤ dx ≤ Ct∥(uxx, ϖxx)(t)∥2, (4.72)

which holds as A[v, w] is positive definite. Integrate (4.70) over [ε, t], substitute (4.71) and
(4.72) in the result, and then let µ′ sufficiently small. Finally, letting ε ↓ 0 yields the desired
estimate (4.68) since the right hand side both of (4.71) and (4.72) converge to zero due to
(4.9).

Proof of Theorem 4.11. The existence of the time global solution is established by the stan-
dard continuation argument with the local existence in Corollary 4.12 and the a-priori esti-
mate in Proposition 4.13. Hence, to complete the proof of Theorem 4.11, it suffices to show
the decay estimates in (4.40).

Multiply (4.56) with k = 0 by β, (4.54) with k = 1 by β2, (4.56) with k = 1 by β3, (4.62)
with k = 0 by β4, (4.62) with k = 1 by β5, (4.65) by β6, (4.70) by β7, respectively. Here
β ∈ (0, 1] is a constant, to be determined. Summing up these results and the estimate (4.54)
with k = 0, we have an ordinary differential inequality

d

dt
E(t) + c1D(t) ≤ C1βD(t)

+ C(Nζ(T ) + δ + ζ1/4)(1 + t)

(
1

ζ
∥ϖ(t)∥2 + ∥(j − j̃)(t)∥2 + ∥(u,ϖ)(t)∥22

)
, (4.73)

E(t) :=

∫ 1

0

(1 + β2t)E1 + (β4 + β5t)

(
1

2
(ux)

2 +
3

4
(ϖx)

2

)
+ β6 3t

4ζ
ϖ2 + β7 3t

4ζew̃
q2x

+ β7 t

2
(uxx, ϖxx)A[v, w](uxx, ϖxx)

⊤ − β7t(uxx, ϖxx)H dx,
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D(t) :=(1 + β2t)

(
∥(j − j̃, ϖx)(t)∥2 +

1

ζ
∥ϖ(t)∥2

)
+ (β + β3t)∥(Φ[eṽ+u]− Φ[eṽ])x(t)∥2

+ (β + β3t)∥u(t)∥21 + (β4 + β5t)

(
∥(uxx, ϖxx)(t)∥2 +

1

ζ
∥ϖx(t)∥2

)
+ β6 t

ζ2
∥ϖ(t)∥2.

If the constant β is sufficiently small, we see from (4.71) and the Poincaŕe inequality that
E(t) is estimated as

c∥(u,ϖ)(t)∥21 + c(1+ t)∥(Φ[eṽ+u]−Φ[eṽ])(t)∥21 + c
t

ζ
∥ϖ(τ)∥21 + ct∥(u,ϖ)(t)∥22 ≤ E(t), (4.74)

where c is a positive constant. Let β so small that both (4.74) and c1 −C1β > 0 hold. Then
take Nζ(T )+δ+ζ

1/4 small enough in (4.73) and use c̄E(t) ≤ D(t), which holds for a suitably
chosen small positive constant c̄, to get an ordinary differential inequality

d

dt
E(t) + αE(t) ≤ 0, (4.75)

where α is a positive constant. Solving (4.75), we have the inequality

E(t) ≤ E(0)e−αt ≤ C∥(u0, ϖ0)∥21e−αt.

This inequality together with (4.74) yields the decay estimates in (4.40). 2

We are now at the position to complete the proof of Theorem 4.2, which shows the time
global existence of the solution for the energy transport model (2.14) with the large initial
data.

Proof of Theorem 4.2. Determine the constant Λ in Corollary 4.10 so small that the assump-
tion (4.39) in Theorem 4.11 holds. Applying Theorem 4.11 with regarding the time TΛ in
Corollary 4.10 as the initial time, we see that the initial boundary value problem (4.3)–(4.6)
has a unique time global solution (v, w) satisfying (v − ṽ, w − w̃) ∈ Z([0,∞)) ∩Yloc((0,∞))
without any restriction on the norm of the initial data. The decay estimates in (4.40) im-
mediately means

∥(v − ṽ, w − w̃,Φ[ev]− Φ[eṽ])(t)∥21 ≤ Ce−αt, (4.76a)
t

ζ
∥(w − w̃)(t)∥21 + t∥(v − ṽ, w − w̃)(t)∥22 ≤ Ce−αt, (4.76b)

for t ∈ [0,∞). Owing to (4.66b), it also verifies∫ ∞

0

1

ζ
∥(w− w̃)(τ)∥21+∥(vt, vxx− ṽxx, wxx− w̃xx)(τ)∥2+ τ∥(wt, vxt, wxt)(τ)∥2 dτ ≤ C. (4.77)
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In computing (4.77), we have divided the integral interval [0,∞) into two parts [0, TΛ] and
[TΛ,∞], and then used (4.23) and (4.44), respectively. The estimate (4.77) shows the solution
verifies

√
tvxt,

√
twxt ∈ L2(0,∞;L2(Ω)).

Letting

ρ := ev, j := −(evew)x + ev(Φ[ev])x, θ := ew, ϕ := Φ[ev],

we see that (ρ, j, θ, ϕ) is the desired time global solution. Moreover, the estimates (4.2) follow
from (4.76). 2

4.4 Energy relaxation limit

In this section, we justify the relaxation limit of the energy-transport model to the drift-
diffusion model. Since we have already constructed the time global solutions to the both
models, it suffices to show the estimates (2.25)–(2.27) in order to complete the proof.

Proof of Theorem 2.4. By virtue of Corollary 4.10, the time global solution (v, w), constructed
in the proof of Theorem 4.2, satisfies the estimates in (4.28) for arbitrary time t ∈ [0, TΛ].
We show that (4.28) holds for t ∈ [0,∞). As the solution (v, w) verifies (4.76a), the formula
(2.8) gives (4.23a). Moreover, the estimates (4.23b) and (4.23c) are shown for t ∈ [0,∞) by
the same manner as in the proof of Lemma 4.6. Consequently, since the assumption (4.23)
in Lemma 4.8 holds, the estimates in (4.28) follow for t ∈ [0,∞).

Secondly, we show the estimates (2.25)–(2.27). Let λ ∈ (0, 1) be an arbitrarily fixed
constant and define a constant T1 := (log 1/ζλ)/β. By the estimates in (4.28), the difference
(ρ0ζ − ρ00, θ

0
ζ − θ00) between the solutions of both models is estimated as

∥(ρ0ζ − ρ00)(t)∥2 ≤ C∥Rζ(t)∥2 ≤ CeβT1 ≤ Cζ1−λ, (4.78a)

∥(θ0ζ − θ00)(t)∥2 ≤ C∥Qζ(t)∥2 ≤ C∥θ0 − 1∥2e−νt/ζ + Cζ1−λ, (4.78b)
∥({ρ0ζ − ρ00}x, {θ0ζ − θ00}x)(t)∥2 ≤ C∥(Rζ , Qζ)(t)∥21

≤ C∥θ0 − 1∥2e−νt/ζ + Cζ1−λ(1 + t−1) ≤ Cζ1−λ(1 + t−1) (4.78c)

for t ≤ T1. If t ≥ T1, it holds from the estimates (3.54), (4.1b) and (4.2a) that

∥(ρ0ζ − ρ00, θ
0
ζ − 1)(t)∥21 ≤ C∥(ρ0ζ − ρ̃0ζ , ρ

0
0 − ρ̃00, ρ̃

0
ζ − ρ̃00)(t)|21 + C∥(θ0ζ − θ̃

0

ζ , θ̃
0

ζ − 1)(t)∥21
≤ C

(
e−αT1 + ζ

)
≤ C

(
ζαλ/β + ζ

)
. (4.79)

Let γ := min{1− λ, αλ/β}. Then the estimates (2.25)–(2.27) follow from (4.78) and (4.79)
together with (2.8), (2.14d) and (2.15c). 2
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4.5 Additional regularity
We improve, in this section, the regularity of the solution for the energy-transport model
by assuming additional regularity of the initial data. This discussion is necessary since the
regularity, shown in the previous sections, are insufficient to justify the relaxation limit, which
is discussed in Section 5.4. Precisely, we study the regularity of the solution (ρ, j, θ, ϕ) for the
energy-transport model with the initial data (ρ0, θ0) ∈ H2(Ω) in place of (ρ0, θ0) ∈ H1(Ω) in
Theorem 4.2.

Corollary 4.17. Let (ρ̃, j̃, θ̃, ϕ̃) be the stationary solution of (2.18)–(2.20) and (3.1), which is
constructed in Theorem 3.5. Suppose that the initial data (ρ0, θ0) ∈ H2(Ω) and the boundary
data ρl, ρr and ϕr satisfy (2.4), (2.6), (2.7a), (2.7b), (2.10a) and (2.10b). Then there exist
positive constants δ0 and ζ0 such that if δ ≤ δ0 and ζ ≤ ζ0 the initial boundary value problem
(2.14), (2.12a), (2.12c) and (2.4)–(2.6) has a unique solution (ρ, j, θ, ϕ) satisfying (ρ− ρ̃, θ−
θ̃) ∈ Y([0,∞)), j − j̃ ∈ C([0,∞);H1(Ω)) ∩ H1(0,∞;L2(Ω)), ϕ − ϕ̃ ∈ C1([0,∞);H2(Ω));
the positivity (2.10a) and (2.10b). Moreover, it verifies the additional regularity ρt, θt ∈
Yloc((0,∞)), ρtt, θtt ∈ Zloc((0,∞)) and θxxx ∈ L2

loc(0,∞;L2(Ω)), the convergence

t∥(ρxt, θxt)(t)∥+ t2∥ρtt(t)∥2 → 0 as t→ 0 (4.80)

and the estimates

inf
x∈Ω

ρ, inf
x∈Ω

θ ≥ c, (4.81a)

∥(j − j̃)(t)∥21 +
1

ζ
∥(θ − θ̃)(t)∥21 + ∥(ρ− ρ̃, θ − θ̃)(t)∥22 + ∥ρt(t)∥2 ≤ Ce−αt, (4.81b)

t∥(ρxt, θxt)(t)∥2 ≤ C(1 + t), t2∥ρtt(t)∥2 ≤ C(1 + t2), (4.81c)∫ t

0

∥(ρt, θt)(τ)∥21 + ∥jt(τ)∥2 dτ ≤ C, (4.81d)∫ t

0

τ∥(ρtt, ρxxt, θxxt)(τ)∥2 + ∥θxxx(τ)∥2 dτ ≤ C(1 + t), (4.81e)∫ t

0

τ 2∥(θtt, ρxtt(τ)∥2 dτ ≤ C(1 + t2),

∫ t

0

τ 3∥ρttt(τ)∥2 dτ ≤ C(1 + t3) (4.81f)

for t ∈ [0, T ], where C and c are positive constants independent of δ and t.

Proof. The proof of Corollary 4.17 is divided into the five steps, which are stated in Lemmas
4.19–4.23. Once they are proven, Corollary 4.17 immediately follows from the relations in
(4.7) with aid of the estimates (4.76a) and (4.77).

Remark 4.18. For the special case θ0 = 1, the constant C in (4.81b)–(4.81f) is taken
independently of ζ. It is shown similarly as in the proofs of Lemmas 4.19–4.23. This fact is
utilized in the proof of Remark 2.6.
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Lemma 4.19. Let (ṽ, w̃) be the stationary solution for (4.8). Suppose that the initial data
(v0, w0) ∈ H2(Ω) and the boundary data ρl, ρr and ϕr satisfy (2.4), (2.6), (2.7a) and (2.7b).
Then there exists a positive constant δ0 and ζ0 such that if δ ≤ δ0 and ζ ≤ ζ0, then the initial
boundary value problem (4.3)–(4.6) has a unique solution (v, w) satisfying (v − ṽ, w − w̃) ∈
Y([0,∞)) and wxxx ∈ L2

loc(0,∞;L2(Ω)). Moreover, the solution (v, w) verifies the additional
regularity

vt, wt ∈ Yloc((0,∞)), vtt, wtt ∈ Zloc((0,∞)), (4.82)

the convergence

t∥(vxt, wxt)(t)∥2 + t2∥(vtt, wtt, vxxt, wxxt)(t)∥2 + t3∥(vxtt, wxtt)(t)∥2 → 0 as t→ 0 (4.83)

and the estimates

∥vt(t)∥2 +
1

ζ
∥(w − w̃)(t)∥21 + ∥(vxx − ṽxx, wxx − w̃xx)(t)∥2 ≤ Ce−αt, (4.84a)∫ t

0

∥(wt, vxt, wxt)(τ)∥2 dτ ≤ C, (4.84b)∫ t

0

∥wxxx(τ)∥2 dτ ≤ C(1 + t) (4.84c)

for t ∈ [0,∞], where C and α are positive constants independent of δ and t.

Proof. Theorem 4.2 ensures the existence of the time global solution (v, w) for the initial
data (v0, w0) ∈ H1(Ω). As the initial data (v0, w0) belongs to H2(Ω), it is obvious that the
solution verifies (v−ṽ, w−w̃) ∈ Y([0,∞)). Moreover, the regularity wxxx ∈ L2

loc(0,∞;L2(Ω))
is shown by the straight forward computation with using the equation (4.21).

We derive the estimate (4.84). It is shown that the estimates (4.84a) and (4.84b) hold
for t ∈ [0, 1] by the essentially same computation as in the derivation of (4.23c). On the
other hand, the estimates (4.84a) and (4.84b) apparently hold for t ∈ [1,∞) thanks to the
estimates (4.66a), (4.76b) and (4.77). To show (4.84c), differentiate the equation (4.21)
with respect to x, multiply the result by −wxxx and integrate by part over the domain Ω.
Then apply the Sobolev and the Young inequalities to the resulting equality with using the
estimates (3.25d), (4.84a) and (4.84b). The result is∫ t

0

∫ 1

0

2κ0
3ev

(wxxx)
2 +

(wxx)
2

ζew
dxdτ =

∫ t

0

∫ 1

0

(wx)
2

ζew
wxx +

(
wt −

2

3
vt − g2[vζ , wζ ]

)
x

wxxx dxdτ

≤ µ

∫ t

0

∥wxxx(τ)∥2 +
1

ζ
∥wxx(τ)∥ dτ + C[µ](1 + t),

where µ is an arbitrary positive constant. Taking µ sufficiently small gives the desired
estimate (4.84c). Finally, the solution (v, w) verifies the regularity (4.82) and the convergence
(4.83) by the standard theory of the parabolic systems.
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The assertion on the regularity and the convergence in Corollary 4.17 follows from Lemma
4.19. In order to complete the proof, it suffice to derive the estimates of higher derivatives.
Differentiating the equation (4.3a) yields(

v
3w/2

)
tt

−A[v, w]

(
v
w

)
xxt

+

(
0

3wt/2ζe
w

)
= (A[v, w])t

(
v
w

)
xx

+(G[v, w])t. (4.85)

The L2-norm of the derivatives of A and G in t are estimated as

∥(A[v, w])t∥21 + ∥(G([v, w])t∥2 ≤ C∥(vt, wt)(t)∥21 (4.86)

with aid of the estimates (4.76a) and (4.84a). Moreover, differentiate (4.85) in t again to
obtain(

v
3w/2

)
ttt

− A[v, w]

(
v
w

)
xxtt

+

(
0

3wt/2ζe
w

)
t

= (A[v, w])t

(
v
w

)
xxt

+

{
(A[v, w])t

(
v
w

)
xx

+ (G[v, w])t

}
t

. (4.87)

Lemma 4.20. Under the same conditions as in Lemma 4.19, it holds that

t∥(vxt, wxt)(t)∥2 +
∫ t

0

τ∥(vxxt, wxxt)(τ)∥2 +
τ

ζ
∥wxt(τ)∥2 dτ ≤ C(1 + t), (4.88a)∫ t

0

τ∥vtt(τ)∥2 dτ ≤ C(1 + t) (4.88b)

for t ∈ [0,∞), where C is a positive constant independent of δ and t.

Proof. Take the inner product of the equation (4.85) with (−tvxxt,−twxxt) in L2(Ω) and
apply the integration by part to obtain

d

dt

(
t

∫ 1

0

1

2
(vxt)

2 +
3

4
(wxt)

2 dx

)
+ t

∫ 1

0

(vxxt, wxxt)A[v, w](vxxt, wxxt)
⊤ dx

+ t

∫ 1

0

3

2ζew
(wxt)

2 dx =

∫ 1

0

1

2
(vxt)

2 +
3

4
(wxt)

2 dx+ t

∫ 1

0

3wx

2ζew
wtwxt dx

− t

∫ 1

0

(vxxt, wxxt)
{
(A[v, w])t(vxx, wxx)

⊤ + (G[v, w])t
}
dx. (4.89)

Applying the Schwarz and the Sobolev inequalities to the right hand side of (4.89) with
using the estimates (4.76a), (4.84a), (4.86) and ∥wx∥2/ζ ≤ C, which follows from (3.25d)
and (4.84a), we have

(right hand side) ≤ µt

(
∥(vxxt, wxxt)(t)∥2 +

1

ζ
∥wxt(t)∥2

)
+C[µ](1 + t)∥(vt, wt)(t)∥21, (4.90)
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where µ is an arbitrary positive constant. On the other hand, the second term on the left
hand side is estimated by c∥(vxxt, wxxt)∥2 from below since A is positive definite. Substitute
(4.90) in (4.89), integrate the resultant inequality with respect to t and successively let µ
small enough. The estimates (4.77) and (4.84b) as well as the convergence (4.83) give the
desired estimate (4.88a).

By solving the first component of the system (4.85) with respect to vtt and then taking
the L2-norm, we obtain

∥vtt(t)∥2 ≤ C∥(vt, wt)(t)∥22, (4.91)

which immediately yields the estimate (4.88b) with aid of (4.77), (4.84b) and (4.88a).

Lemma 4.21. Under the same conditions as in Lemma 4.19, it holds that

tk+1

ζk
∥wt(t)∥2 +

∫ t

0

τ k+1

ζk+1
∥wt(τ)∥2 dτ ≤ C(1 + tk+1), (4.92a)∫ t

0

τ 2∥wtt(τ)∥2 dτ ≤ C(1 + t2) (4.92b)

for k = 0, 1 and t ∈ [0,∞), where C is a positive constant independent of δ and t.

Proof. Taking the inner product in L2(Ω) of the equation (4.85) with (0,−tk+1wt/ζ
k) for

k = 0, 1 and applying the integration by part lead to

d

dt

(
tk+1

ζk

∫ 1

0

3

4
(wt)

2 dx

)
+
tk+1

ζk+1

∫ 1

0

3

2ew
(wt)

2 dx

= (k + 1)
tk

ζk

∫ 1

0

3

4
(wt)

2 dx+
tk+1

ζk

∫ 1

0

(0, wt)
{
A[v, w](vxx, wxx)

⊤ +G[v, w]
}
t
dx

≤ µ
tk+1

ζ2k
∥wt(t)∥2 + C[µ]tk+1∥(vt, wt)(t)∥22 + C

tk

ζk
∥wt(t)∥2, (4.93)

where µ is an arbitrary positive constant. In deriving the last inequality, we have used
the Schwarz and the Sobolev inequalities with the estimates (4.76a), (4.84a) and (4.86).
Integrating (4.93) with k = 0 in t, making µ sufficiently small, and then using the estimates
(4.77), (4.84b) and (4.88a), we have the estimate (4.92a) with k = 0. The estimate (4.92a)
with k = 1 follows from the similar computation as above, where we have to utilize (4.92a)
with k = 0. Finally, solve the second component of the system (4.85) with wtt, take L2-norm
and use (4.86), (4.88a) and (4.92a) to get the estimate (4.92b).

Owing to the estimates (4.76a), (4.84a), (4.88a) and (4.92a), the estimate (4.86) is rewrit-
ten to

t∥(A[v, w])t∥21 + t∥(G[v, w])t∥2 ≤ C(1 + t). (4.94)
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Similarly, the second derivatives of A and G are estimated as

t2∥(A[v, w])tt∥21 + t2∥(G[v, w])tt∥2 ≤ C(1 + t)t∥(vt, wt)(t)∥22 + Ct2∥(vtt, wtt)(t)∥21. (4.95)

Lemma 4.22. Under the same conditions as in Lemma 4.19, it holds that

t2∥(vtt, vxxt, wxxt)(t)∥2 +
t2

ζ
∥wxt(t)∥2 +

∫ t

0

τ 2∥(vxtt, wxtt)(τ)∥2 dτ ≤ C(1 + t2) (4.96)

for t ∈ [0,∞), where C is a positive constant independent of δ and t.

Proof. Take the inner product of the equation (4.85) with the vector (−t2vxxtt,−t2wxxtt) in
L2(Ω) and apply the integration by part to get

d

dt
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∫ 1
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⊤ +

3

2ζew
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xt dx

)
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∫ 1
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2 dx
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∫ 1

0
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⊤ +
3t2

2ζew
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+

∫ 1

0

(
3t2

4ζew

)
t

w2
xt + (vxxt, wxxt)

{
t2(A[v, w])t(vxx, wxx)

⊤ + t2(G[v, w])t
}
t
dx. (4.97)

We integrate (4.97) with respect to t. The left hand side gives the positive terms appearing
in (4.96) since A is positive definite. We handle the right hand side by applying the Sobolev
and the Schwarz inequalities with using using the estimates (4.76a), (4.84a), (4.88a), (4.92a),
(4.94) and (4.95) as

(integration of right hand side in t)

≤ µt2∥(vxxt, wxxt)(t)∥2 + µ

∫ t

0

τ 2∥(vxtt, wxtt)(τ)∥2 dτ + C[µ](1 + t2)

+ C[µ]

∫ t

0

τ 2∥(vtt, wtt)(τ)∥2 dτ + C[µ](1 + t)

∫ t
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∥wt(τ)∥21 + τ∥(vt, wt)(τ)∥22 dτ

≤ µt2∥(vxxt, wxxt)(t)∥2 + µ

∫ t

0

τ 2∥(vxtt, wxtt)(τ)∥2 dτ + C[µ](1 + t2), (4.98)

where µ is an arbitrary positive constant. In deriving the second inequality, we have also
used the estimates (4.77) (4.84b), (4.88) and (4.92). Letting µ sufficiently small and then
using (4.91) yields the estimate (4.96).
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Lemma 4.23. Under the same conditions as in Lemma 4.19, it holds that

t3∥(vxtt, wxtt)(t)∥2 +
∫ t

0

τ 3∥(vxxtt, wxxtt)(τ)∥2 +
τ 3
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∥wxtt(τ)∥2 dτ ≤ C(1 + t3), (4.99a)∫ t

0

τ 3∥vttt(τ)∥2 dτ ≤ C(1 + t3) (4.99b)

for t ∈ [0,∞), where C is a positive constant independent of δ and t.

Proof. Taking the inner product of the equation (4.87) with the vector (−t3vxxtt,−t3wxxtt)
in L2(Ω) and applying the integration by part, we have
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)
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∫ 1

0

(vxxt, wxxt)
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(A[v, w])t(vxx, wxx)

⊤ + (G[v, w])t
}
t
dx. (4.100)

Integrating (4.100) with respect to t, we have the positive terms appearing in (4.99a) from
the left hand side. On the other hand, the right hand side is estimated as

(integration of right hand side)

≤ µ

∫ t

0

τ 3∥(vxxtt, wxxtt)(τ)∥2 +
τ 3

ζ
∥wxtt(τ)∥2 dτ + C[µ](1 + t3), (4.101)

where µ is an arbitrary positive constant. Hence, integrating (4.100) in t and making µ
small enough give the desired estimate (4.99a). Moreover, solving the first component of the
system (4.87) with respect to vttt, taking the L2-norm and using the estimates (4.94)–(4.96)
and (4.99a), we obtain (4.99b).


