
Chapter 5

Monte Carlo integration

In numerical integration, we select an appropriate method in accordance with the class of
functions to which the integrand in question belongs. The smoother the integrand is, the
more efficient numerical integration method we can apply to it. The more complicated
the integrand is, the less efficient the applicable method becomes, and the final fort is the
Monte Carlo integration.
§ 5.1 deals with integrands defined on T1 which are Bm-measurable for some m ∈ N+.

They are univariate functions, but among them there are significant probabilistic examples
to which no deterministic numerical integration methods are applicable (Example 5.8 and
Example 5.9). In this section, when 2m ≫ 1, we show that i.i.d.-sampling or pairwise
independent sampling is almost optimal in the sense of what is called L2-robustness. § 5.2
deals with important facts of RWS which we did not mention in § 2.5.2. In § 5.4, we
introduce a pairwise independent sampling for all simulatable random variables (§ 1.3),
which is called the dynamical random Weyl sampling. It is the most reliable Monte Carlo
integration method as far as the author knows.

5.1 L2-robustness
In § 2.5, we mentioned about i.i.d.-sampling and random Weyl sampling (RWS) for nu-
merical integration of functions of m coin tosses. Here we present a special characteristic
of them among all kinds of random sampling methods.

Random variables dealt with in § 2.5 are functions on {0, 1}m, which are regarded as
functions on Dm, or Bm-measurable functions on T1, as was stated in § 1.1. Throughout
Chapter 5, integrands are, mainly, functions on T1.

Theorem 5.1 (A fundamental inequality about sampling [38]) Let {ψl}2
m−1

l=1 be an or-
thonormal system of L2(Bm) such that

∫
T1 ψl(x)dx = 0 holds for each l. Then for any

sequence of random variables {Xn}2
m

n=1 ⊂ T1, the following inequality holds.

2m−1∑
l=1

E


∣∣∣∣∣∣∣ 1
N

N∑
n=1

ψl(Xn)

∣∣∣∣∣∣∣
2 ≥ 2m

N
− 1, 1 ≤ N ≤ 2m. (5.1)

Proof. Since ψl ∈ L2(Bm), we may assume that {Xn}2
m

n=1 ⊂ Dm. As a special case, each
Xn may be deterministic. Conversely, if the theorem holds for any deterministic sequence
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{xn}2
m

n=1, then it holds for any sequence of random variables {Xn}2
m

n=1. So we will prove it
for {xn}2

m

n=1 ⊂ Dm.
First, let

g(y) :=
2m

N

N∑
n=1

1[xn,xn+2−m)(y). (5.2)

Then for any f ∈ L2(Bm), we have

1
N

N∑
n=1

f (xn) = ⟨ f , g⟩L2(Bm) :=
∫
T1

f (x)g(x)dx.

Since a set of functions {1, ψ1, . . . ψ2m−1} forms a complete orthonormal system of L2(Bm),
the Parseval identity (or Pythagoras’ theorem) implies that

||g||2L2(Bm) = ⟨g, 1⟩
2
L2(Bm) +

2m−1∑
l=1

⟨g, ψl⟩2L2(Bm). (5.3)

Substitute ⟨g, 1⟩L2(Bm) = 1 and an inequality

||g||2L2(Bm) =
22m

N2

N∑
n=1

N∑
n′=1

∫
T1

1[xn,xn+2−m)1[xn′ ,xn′+2−m)dx

≥ 22m

N2

N∑
n=n′=1

∫
T1

1[xn,xn+2−m)1[xn′ ,xn′+2−m)dx (5.4)

=
22m

N2

N∑
n=n′=1

1
2m =

2m

N

for (5.3), and we see

2m

N
≤ 1 +

2m−1∑
l=1

∣∣∣∣∣∣∣ 1
N

N∑
n=1

ψl(xn)

∣∣∣∣∣∣∣
2

.

This completes the proof of (5.1). □

Corollary 5.2 ([38]) Let 2m ≥ N > 1. For any sequence of random variables {Xn}∞n=1 ⊂
T1, there exists a non-constant function f ∈ L2(Bm) which satisfies the following inequal-
ity.

E


∣∣∣∣∣∣∣ 1
N

N∑
n=1

f (Xn) −
∫
T1

f (x)dx

∣∣∣∣∣∣∣
2 ≥

(
1
N
− 2−m

)
V[ f ]. (5.5)

Indeed, by Theorem 5.1, at least one ψl satisfies (5.5). According to Corollary 5.2,
when 2m ≫ N ≫ 1, any sampling method admits an integrand for which the error is
almost as large as or larger than i.i.d.-sampling.

If a sampling method — deterministic or random — is very efficient for a certain
class of good integrands, we should not use it for integrands which are not in the class,
because there must exist a bad integrand for which the error becomes larger than that of
i.i.d.-sampling so as to satisfy the inequality (5.1). Thus, such a sampling method may be
called a “high risk and high return”-method.
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Example 5.3 Let d−i(n) denote the i-th digit of n ∈ N in its dyadic expression, i.e.,
n =

∑∞
i=1 d−i(n)2i (actually a finite sum). The sequence {xn}∞n=1 ⊂ T1 defined by

xn :=
∞∑

i=1

d−i(n)2−i, n ∈ N+,

is called the van der Corput sequence (cf. [22]). First several terms are
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About the convergence rate of the numerical integration by means of this sequence, it is
known that for any function f of bounded variation,∣∣∣∣∣∣∣ 1

N

N∑
n=1

f (xn) −
∫ 1

0
f (t)dt

∣∣∣∣∣∣∣ ≤ c(N)|| f ||BV ×
log N

N
, N ≥ 2,

where || f ||BV denotes the total variation of f on T1, and c(N) is a bounded coefficient, more
concretely, c(N) = log(N + 1)/(log 2 · log N) will do (cf. [22]). In general, a sequence
having this property is called a low discrepancy sequence, or a quasirandom sequence.

The numerical integration by means of van der Corput sequence (a quasi Monte Carlo
method) has a much smaller error than i.i.d.-sampling when || f ||BV is rather small. But
when || f ||BV is huge it may have a much greater error than i.i.d.-sampling. Indeed, for
f (x) = d30(x), we have

1
228

228∑
n=1

d30(xn) = 0,

which is quite far from the true value
∫ 1

0 d30(t)dt = 1/2.

In contrast to “high risk and high return”-methods, a low risk sampling method, i.e., a
numerical integration method that produces stable approximate values for any integrands
is said to be robust. We here give a quantitative definition of robustness.

Definition 5.4 A numerical integration method by means of a sequence of random vari-
ables {Xn}2

m

n=1 is said to be L2-robust (more precisely, L2(Bm)-robust) if for any f ∈ L2(Bm)
it holds that

E


∣∣∣∣∣∣∣ 1
N

N∑
n=1

f (Xn) −
∫
T1

f (x)dx

∣∣∣∣∣∣∣
2 ≤ V[ f ]

N
, 1 ≤ N ≤ 2m. (5.6)

Deterministic sampling is not robust in this sense. (Imagine numerical integration by
means of the deterministic sequence {xn}Nn=1 applied to the function g(y) defined by (5.2).)

Of course, i.i.d.-sampling is L2-robust, because (5.6) holds as an equality. According
to Theorem 5.1 and Corollary 5.2, when 2m ≫ N ≫ 1, the inequality (5.6) can hardly be
improved. Thus, i.i.d.-ampling is almost optimal from the viewpoint of L2-robustness.

RWS is also L2-robust, because (5.6) holds as an equality. Besides, it works as a
secure pseudorandom generator for numerical integration as is mentioned in § 2.5.2.
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5.2 Random Weyl sampling (Part 2)
In this section, we look closely at the random Weyl sampling (RWS) introduced in § 2.5.2.

5.2.1 Degeneration of CLT-scaling limit
Since RWS is a numerical integration method by means of pairwise independent ran-
dom variables, the sequence of its sample means satisfies law of large numbers (cf. [7]).
We here show that the central limit theorem scaling (abbreviated as CLT-scaling) of the
sample mean converges to 0 in probability (Theorem 5.6).

To this end, we consider RWS on T1, not on Dm. First, we look at pairwise indepen-
dence. Theorem 5.5 below is a continuous version of Theorem 2.8.

Theorem 5.5 ([13, 44]) Let (x, α) ∈ T1 × T1 = T2 be a uniformly distributed random
point. Then the sequence {x + nα}n∈Z of T1-valued random variables has the following
properties; if n , n′, then (x + nα) and (x + n′α) are (pairwise) independent, and each
(x + nα) is distributed uniformly in T1.

Proof. For any bounded Borel functions F, G defined on T1, we see∫
T1

dα
∫
T1

dx F(x + nα)G(x + n′α) =
∫
T1

dα
∫
T1

dx F(x)G(x + (n′ − n)α)

=

∫
T1

dx F(x)
∫
T1

dαG(x + (n′ − n)α)

=

∫
T1

dx F(x)
∫
T1

dαG((n′ − n)α)

=

∫
T1

dx F(x)
∫
T1

dαG(α). □

As is well-known, Weyl transformation is ergodic on (T1,B,P), and hence the law of
large numbers holds for any F ∈ L1(T1,B,P). In particular, if F is smooth, then the law of
large numbers converges fast ([22]). Indeed, for the function exp(2kπ

√
−1 x), 0 , k ∈ Z,

we have

1
N

N∑
n=1

e2
√
−1 πk(x+nα) =

1
N
× 1 − e2

√
−1 πNkα

1 − e2
√
−1 πkα

× e2
√
−1 πk(x+α) = O(N−1), N → ∞.

Since
∫
T1 exp(2kπ

√
−1 x)dx = 0, thus the law of large numbers converges at the rate

of O(N−1). For general functions, we approximate it by finite Fourier series. Since the
smoother a function is, the faster its Fourier coefficients converge to 0, in that case, the
law of large numbers converges at a rate of nearly O(N−1).

In RWS, the parameter α ∈ T1 as well as x ∈ T1 is chosen at random. The chosen
α is irrational with probability 1, and consequently, what we mentioned in the previous
paragraph occurs with probability 1. This makes us imagine that the rate of convergence
of the law of large numbers about RWS is faster than the rate about i.i.d.-samplimg. In
fact, for 1 ≤ p < 2, about the p-th mean error of RWS, we have the following theorem.
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Theorem 5.6 ([12, 44]) For any F ∈ L2(T1,B,P) and any 1 ≤ p < 2, it holds that

lim
N→∞

∫∫
T1×T1

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(
F(x + nα) −

∫
T1

F(y)dy
)∣∣∣∣∣∣∣

p

dα dx = 0.

Consequently, for any ε > 0, it holds that

P2


(x, α) ∈ T2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(
F(x + nα) −

∫
T1

F(y)dy
)∣∣∣∣∣∣∣ > ε


 −→ 0, N → ∞. (5.7)

i.e., the limit distribution of the CLT-scaling of the sample mean degenerates.

Proof. Without loss of generality, we may assume
∫
T1 dx F(x) = 0. For each M ∈ N+,

define a function FM : T1 → R by

FM(t) :=
∑
|l|≤M

F̂(l)e2
√
−1πlt,

where F̂(l) denotes the Fourier coefficient of F ;

F̂(l) =
∫
T1

dt F(t)e−2
√
−1πlt.

Note that
∫
T1 dtF(t) = 0 implies F̂(0) = 0. Fix any 1 < p < 2. By the triangular inequality,

Hölder’s inequality and Theorem 5.5, we have∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

F(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

:=

∫ ∫
T1×T1

dαdx

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

F(x + nα)

∣∣∣∣∣∣∣
p

1
p

≤
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

FM(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(F − FM)(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

≤
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

FM(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(F − FM)(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

FM(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

+
√

V(F − FM). (5.8)

Let us compute the first term of the last side of (5.8) in detail. By the definition of FM,

1
√

N

N∑
n=1

FM(x + nα) =
∑

0<|l|≤M

F̂(l)e2
√
−1πlx × 1

√
N

N∑
n=1

e2
√
−1πnlα

 .
Taking Lp(T2, dαdx)-norm, we see∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

FM(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

≤
∑

0<|l|≤M

∣∣∣∣F̂(l)
∣∣∣∣ ∫

T1
dα

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πnlα

∣∣∣∣∣∣∣
p

1/p

=
∑

0<|l|≤M

∣∣∣∣F̂(l)
∣∣∣∣ ∫

T1
dα

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πnα

∣∣∣∣∣∣∣
p

1/p

,
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where we used the fact that the transformation T1 ∋ α 7→ lα ∈ T1 preserves the Lebesgue
measure. And then∫
T1

dα

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πnα

∣∣∣∣∣∣∣
p

=

∫ 1
2

0
dα

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πnα

∣∣∣∣∣∣∣
p

+

∫ 1

1
2

dα

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πnα

∣∣∣∣∣∣∣
p

= 2
∫ 1

2

0
dα

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πnα

∣∣∣∣∣∣∣
p

(α 7→ 1 − α)

= 2
∫ 1

2

0
dα

∣∣∣∣∣∣ 1
√

N

sin πNα
sin πα

∣∣∣∣∣∣p
= 2

∫ N
2

0

dt
N

∣∣∣∣∣∣ 1
√

N

sin πt
sin π t

N

∣∣∣∣∣∣p (Nα 7→ t)

= 2
(

1
N

) p
2+1 ∫ N

2

0
dt

∣∣∣∣∣∣ π t
N

sin π t
N

∣∣∣∣∣∣
p ∣∣∣∣∣sin πt

πt

∣∣∣∣∣p N p

= 2
(

1
N

)1− p
2
∫ N

2

0
dt

∣∣∣∣∣∣ π t
N

sin π t
N

∣∣∣∣∣∣
p ∣∣∣∣∣sin πt

πt

∣∣∣∣∣p
<

(
1
N

)1− p
2

2
(
π

2

)p
∫ ∞

0
dt

∣∣∣∣∣sin πt
πt

∣∣∣∣∣p ,
where we used the fact that 0 < y < π/2 implies y/ sin y < π/2. Now we see∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

FM(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

≤
∑

0<|l|≤M

∣∣∣∣F̂(l)
∣∣∣∣ ∫

T1
dα

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πnα

∣∣∣∣∣∣∣
p

1/p

−→
N→∞

0,

and finally,

lim
N→∞

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

F(x + nα)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

≤
√

V(F − FM) −→
M→∞

0.

□

Remark 5.7 Theorem 5.6 can be extended for square integrable functions of several
variables. For details, see Theorem 5.20.

From the viewpoint of numerical integration, the convergence in probability (5.7) is
much more desirable than the central limit theorem. But for careful readers, we add a
remark. Since RWS satisfies∫

T2

∣∣∣∣∣∣∣ 1
N

N∑
n=1

F(x + nα) −
∫
T1

F(y)dy

∣∣∣∣∣∣∣
2

dxdα =
V[F]

N
(5.9)

(cf. Theorem 2.8), if the event of the left hand side of (5.7) should unfortunately occur,
the error of the sampling would be very large. Let us consider RWS mentioned in Defini-
tion 2.7 and Theorem 2.8. If we should choose α = 0 ∈ Dm+ j, then Xn(x, α) = ⌊x⌋m ∈ Dm

for all n, which is the worst sequence for sampling (cf. Remark 2.11). The probability of
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such an event is 2−(m+ j), which is much greater than the probability of the same event for
i.i.d.-sampling. However, when m is not so small, since the probability of such a very bad
event is extremely small, we need not be anxious about it in practice. On the other hand,
since (5.9) must be satisfied, when such a bad event does not occur, the error of RWS must
be smaller than that of i.i.d.-sampling. As a result, RWS is preferable to i.i.d.-sampling.

Example 5.8 To see the effect of Theorem 5.6 and what we mentioned in the last para-
graph, we computed the distribution of S 106(g(ω′))/106 of Example 2.9 by a Monte Carlo
method. Using the pseudorandom generator by means of Weyl transformation, we gen-
erated 50,000 random seeds ω′ = (x, α) ∈ D119 × D119, and investigated the frequency
distribution of S 106(g(ω′))/106.

Table 5.1: Sample mean and sample SD of RWS

Range of data Sample mean Sample SD SD of N(0, 1)
Whole 0.546095 0.000434905 1.000000
Central 99.9% 0.546094 0.000307281 0.993631
Central 99% 0.546095 0.000262653 0.956823

The true value of the sample standard deviation (abbreviated as SD) is approximately√
0.546095 · (1 − 0.546095)

106 = 0.000497871,

which almost coincides with 0.000434905, the value computed from the 50,000 trials
(Table 5.1). The second row of Table 5.1 shows the sample mean and the sample SD of
the central 99.9% of the 50,000 samples, i.e., whole data except the smallest 25 data and
the largest 25 data. In this case, the sample mean does not change but the sample SD
decreases to about 3/4 of the one in the first row. This shows that those exceptional 50
data are far from the mean. The third row shows the sample mean and the sample SD
of the central 99% of the 50,000 samples, i.e., whole data except the smallest 250 data
and the largest 250 data. In this case, the sample mean does not change, either, but the
SD decreases to about 3/5 of the one in the first row. (Similar calculations are done for
N(0, 1), which are written in the rightmost column.)

Figure 5.1 shows the frequency distribution of 50,000 samples of S 106(g(ω′))/106. In
this figure, the thick curve shows the density function of N(0.546095, 0.0002626532),
whose mean and SD are same as the third row of Table 5.1. Comparing with this, the
distribution of S 106(g(ω′))/106 is more concentrated around the mean and has thicker
tails. And the thin curve is the density function of N(0.546095, 0.0004978712), which
exactly approximates the distribution of S 106(ω)/106 (i.i.d.-sampling). Obviously, RWS
is much more preferable to i.i.d.-sampling.

5.2.2 RWS in case m ≫ 1

When applying RWS to a random variable {0, 1}m → R, Alice chooses an ω′ ∈ {0, 1}2m+2 j.
But if m is huge, by the problem of random number again, it would be impossible for her
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Figure 5.1: The frequency distribution of 50,000 samples of S 106(g(ω′))/106

to choose ω′. In such a case, Alice chooses ω′ with the help of an auxiliary pseudorandom
generator g′ : {0, 1}n → {0, 1}2m+2 j (cf. Remark 2.12).

In selecting the auxiliary pseudorandom generator g′, the drastic reduction of random-
ness of RWS has the following advantages;

(1) RWS is very insensitive to the quality of pseudorandom generator, i.e., a cheap
pseudorandom generator may work well as the auxiliary one.

(2) With almost no slowdown of generating speed of samples, we can use a slow but
precise pseudorandom generator, such as a cryptographically secure one, to get
most reliable results.

In particular, (2) is important in that it shows the speed of pseudorandom generation is
not an important factor in choosing the auxiliary pseudorandom generator g′.

Example 5.9 Let

S (m)(x) :=
m∑

i=1

di(x), x ∈ T1.

In order to see the distribution of S (500) under the Lebesgue probability measure P, we
made a histogram of the frequency distribution (Figure 5.2),

p(500)
k (N) :=

1
N

#
{
1 ≤ n ≤ N

∣∣∣ S (500)(x + nα) = k
}
, k = 0, 1, . . . , 500,
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by RWS. Here the seed (x, α) ∈ D523 × D523
†1 is 1046 bit long, which is generated by

the pseudorandom generator by means of Weyl transformation (for implementation, see
§ 6.1.2).

Figure 5.2: The frequency distribution p(500)
k (N), k = 0, . . . , 500.

N = 103 N = 104

N = 105 N = 107

Figure 5.3: Decay of error (log-log scale)
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As N → ∞, this frequency distribution approaches to a binary distribution. In fact, as
is shown by dots in Figure 5.3, the error

EN :=

√√
500∑
k=0

∣∣∣p(500)
k (N) − q(500)

k

∣∣∣2, q(500)
k :=

500!
(500 − k)!k!

× 2−500,

becomes small as N → ∞. In Figure 5.3, the horizontal axis indicates logarithm of the
sample size N (at most 107), and the vertical axis indicates logarithm of EN . The slanting
†1523 = 500 + ⌈log2 107⌉ − 1.
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straight line is the graph of the expected values√√
500∑
k=0

q(500)
k (1 − q(500)

k ) × N−1/2 = 0.03122139 × N−1/2

in the case of i.i.d.-sampling. This figure reads that RWS and i.i.d.-sampling do not much
differ for the computation of the distribution of S (500).

Theorem 5.6 asserts that the convergence of RWS is theoretically much faster than that
of i.i.d.-sampling. However, in general, it is known that when we apply a quasi-Monte
Carlo method to a function of so many independent variables which depends on those
variables almost equally, the rate of convergence is observed as slow as i.i.d.-sampling
(cf. [34] p.99). Indeed, when we apply RWS to such a function, the advantage of fast
convergence does not appear unless the sample size N becomes astronomically huge.

In the case of Example 5.9, S (m)(x) equally depends on m independent variables di(x),
i = 1, . . . ,m. As a matter of fact, when m ≫ 1, it is shown by the following theorem that
the RWS samples of S (m)(x) look like i.i.d. random variables.

Theorem 5.10 ([8]) For almost every irrational α, a stochastic process{
2m−1/2

(
S (m)( • + nα) − m

2

) }∞
n=0

defined on the Lebesgue probability space (T1,B,P) converges to N(0, 1)-i.i.d. random
variables as m→ ∞ in the sense of finite dimensional distribution.

As m → ∞, each one dimensional distribution of this process converges to N(0, 1)
by the central limit theorem. But it is not easy to see that the process converges to a
Gaussian process. Here instead, we only confirm that the two-term correlation disappears
as m→ ∞.

Noting properties of Rademacher functions {ri(x) := 1 − 2di(x)}∞i=1

ri(x) = r1(2i−1x), ∀c,
∫
T1

ri(x)r j(x + c)dx = 0, i , j,

let us calculate the correlation function. Let

φ(α) :=
∫
T1

r1(x)r1(x + α)dx = |2 − 4α| − 1. (cf. (4.83))

Since S (m)(x) − m
2 = −

1
2

∑m
i=1 ri(x),∫

T1

(
m−1/2

(
S (m)(x) − m

2

)) (
m−1/2

(
S (m)(x + nα) − m

2

))
dx

=
1

4m

m∑
i=1

m∑
j=1

∫
T1

ri(x)r j(x + nα)dx

=
1

4m

m∑
i=1

∫
T1

ri(x)ri(x + nα)dx
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=
1

4m

m∑
i=1

∫
T1

r1(2i−1x)r1(2i−1x + 2i−1nα)dx

=
1

4m

m∑
i=1

∫
T1

r1(x)r1(x + 2i−1nα)dx =
1

4m

m∑
i=1

φ(2i−1nα). (5.10)

By the ergodicity of the transformation x 7→ 2x, the last term converges to

1
4

∫
T1
φ(x)dx = 0

for almost every α as m→ ∞ ([15]). Thus the dependency vanishes in the limit.
However, the convergence of (5.10) to 0 is slow, as slow as O(m−1/2), which follows

from the fact that the central limit theorem and the law of iterated logarithm hold for the
sum (5.10) ([8, 15, 25]). Indeed, for m = 500, the process {S (m)( • + nα)}∞n=0 is not so
close toN(0, 1)-i.i.d. random variables. Intuitively speaking, when m is large, S (m)(x) and
S (m+1)(x) are not so much different for each x, and hence the rate of dependence disappear-
ance cannot be fast. Conversely, we might say that for a function which depends on many
independent variables equally and sharply, the rate of dependence disappearance would
be fast. In fact, the function Gm(x) = S (m)(x) mod 2 (cf. (4.7)) depends on each di(x)
equally, and in addition, its value sensitively changes as soon as one of di(x) changes, and
hence the dependence disappearance occurs very fast. This observation explains Theo-
rem 4.14 from another point of view.

5.2.3 Another example of pairwise independent random variables
Let GF(2m) denote the finite field (Galois field) of order 2m. Let us identify {0, 1}m,
{1, 2, 3, . . . , 2m}, and GF(2m), by any two bijections; ϕ : GF(2m) → {0, 1}m and ψ :
GF(2m) → {1, 2, 3, . . . , 2m}. For each ω′ := (x, α) ∈ GF(2m) × GF(2m) � {0, 1}2m, de-
fine

Z̃n(ω′) := x + nα, n ∈ GF(2m) � {1, 2, 3, . . . , 2m}.
Then under P2m, the sequence of random variables {Z̃n}2

m

n=1 is pairwise independent, and
each Z̃n is distributed uniformly in {0, 1}m ([24] Lecture 5). To see this, let us show that
for any a, b ∈ GF(2m) � {0, 1}m, 1 ≤ n < n′ ≤ 2m, we have

P2m(Z̃n(ω′) = a, Z̃n′(ω′) = b) = 2−2m.

Consider the following system of linear equations with coefficients in GF(2m){
x + nα = a,

x + n′α = b,

where x, α are unknowns. Let (x0, α0) ∈ GF(2m) × GF(2m) be the unique solution to the
equations. Then we see

P2m(Z̃n(ω′) = a, Z̃n′(ω′) = b) = P2m
({(x′0, α

′
0)}) = 2−2m,

which completes the proof.
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As Definition 2.7, define a pseudorandom generator g̃ : {0, 1}2m → {0, 1}Nm, N ≤ 2m,
by

g̃(ω′) := (Z̃1(ω′), Z̃2(ω′), . . . , Z̃N(ω′)) ∈ GF(2m)N � {0, 1}Nm.

Then g̃ is secure for numerical integration of random variables on ({0, 1}m, 2{0,1}m , Pm).
In order for two independent Dm-valued uniform random variables to exist, the sample

space should be equal to or larger than Dm × Dm. Therefore the size 2m of the seed of
g̃ is the smallest possible to do pairwise independent sampling for random variables on
({0, 1}m, 2{0,1}m , Pm). In particular, it is shorter than 2m + 2 j of RWS case. But, if m is a
little bit large, the multiplication in GF(2m) is so complicated that g̃ is not appropriate for
practical Monte Carlo integrations.

In [14], a pairwise independent sequence of random variables was constructed on
a prime field Fp instead of GF(2m).†2 A synthetic report about pairwise independent
sampling methods can be found in [10, 31].

5.3 i.i.d.-sampling for simulatable random variables
We can apply i.i.d.-sampling to simulatable random variables, i.e., functions which is
measurable with respect to some stopping time (§ 1.3).

Theorem 5.11 Let τ be a {Bm}m-stopping time such that P(τ < ∞) = 1, and let f be a
τ-measurable function. Define

yn(x) := 2
∑n−1

i=1 τ(yi(x))x, x ∈ T1, n ∈ N+.

Then the sequence of random variables { f (yn)}∞n=1 on (T1,B,P) is i.i.d., and the common
distribution is equal to that of f defined on (T1,B,P).

Proof. Since y1(x) = x, it is clear that the distributions of f (y1) and f coincide. By (1.7),
we have f (yn) = f (⌊yn⌋τ(yn)), and so it is sufficient to show that {⌊yn⌋τ(yn)}∞n=1 is i.i.d.†3

For any n ∈ N+ and any a1, . . . , an ∈ D = ∪m∈N+Dm,

P
(
⌊yi⌋τ(yi) = ai, 1 ≤ i ≤ n

)
=

∑
m1,...,mn−1∈N+

P
(
⌊yi⌋mi = ai, τ(yi) = mi, 1 ≤ i ≤ n − 1, ⌊yn⌋τ(yn) = an,

)
=

∑
m1,...,mn−1∈N+

P

(
⌊yi⌋mi = ai, τ(yi) = mi, 1 ≤ i ≤ n − 1,

⌊
2
∑n−1

i=1 mi x
⌋
τ
(
2
∑n−1

i=1 mi x
) = an,

)
=

∑
m1,...,mn−1∈N+

P
(⌊yi⌋mi = ai, τ(yi) = mi, 1 ≤ i ≤ n − 1

)
P

(⌊
2
∑n−1

i=1 mi x
⌋
τ
(
2
∑n−1

i=1 mi x
) = an

)
=

∑
m1,...,mn−1∈N+

P
(⌊yi⌋mi = ai, τ(yi) = mi, 1 ≤ i ≤ n − 1

)
P
(⌊x⌋τ(x) = an

)
= P

(
⌊yi⌋τ(yi) = ai, 1 ≤ i ≤ n − 1

)
P
(⌊x⌋τ(x) = an

)
.

†2Therefore since 1974, the year [14] was published, a secure pseudorandom generator for the Monte
Carlo integration has been developed without being noticed so.
†3This property is called the strong Markov property.
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Repeating this procedure, we see

P
(
⌊yi⌋τ(yi) = ai, 1 ≤ i ≤ n

)
=

n∏
i=1

P
(⌊x⌋τ(x) = ai

)
,

which completes the proof. □

Under the conditions of Theorem 5.11, we can numerically integrate f by i.i.d.-
sampling;

1
N

N∑
i=1

f (yi(x)). (5.11)

Remark 5.12 The time of computation of (5.11) is approximately proportional to the
number of required random bits. Therefore its mean is approximately proportional to
NE[τ]. Then if E[τ2] = ∞, i.e., V[τ] = ∞, the time of computation will be possibly
extremely long. So, from the practical point of view, E[τ2] < ∞ is desirable. For example,
if τ is a stopping time associated with von Neumann’s rejection method (Example 1.11),
its distribution is a geometric distribution, and hence E[τ2] < ∞ holds.

The computation of i.i.d.-sampling (5.11) may look complicated, but it can be done
by a simple algorithm. Let the integrand f in question satisfy Assumption 1.9. Here we
assume that the i.i.d. random variables {Z1,Z2, . . .} of Assumption 1.9 are expressed in
2−K precision, i.e., Z(K)

l ∈ DK . Next let us suppose that a virtual function

• function Randomm : Dm-valued;

returns a Dm-valued uniformly distributed random variable which is independent of all the
previously generated random variables. (In practice, we use a pseudorandom generator
instead.)

Finally, let N be the sample size as in (5.11). Here is the algorithm.

Algorithm of i.i.d.-sampling

• Main routine

function Mean of f : Real;
begin

S := 0.0;
For i := 1 to N do

begin
Z :=RandomK;
Try to compute f ;
while (another Z is needed to compute f ) do

begin
Z :=RandomK;
Try to compute f ;

end; // End of computation of f



98 5 Monte Carlo integration

S := S + f ;
end;

result:= S/N;
end;

The function Mean of f returns the value of result, namely, S/N. Here, Zl’s which are
needed to compute f are all generated by the random function RandomK .

5.4 Dynamic random Weyl sampling
Let us introduce a pairwise independent sampling method which is applicable to simulat-
able random variables (§ 1.3), i.e., functions which are measurable with respect to some
stopping time (§ 1.3.1). We call it the dynamic random Weyl sampling (abbreviated as
DRWS). It can be regarded as a pseudorandom generator which is exclusive for Monte
Carlo integrations of all simulatable random variables.

The algorithm of DRWS is so simple that we can write its main program code as easily
as i.i.d.-sampling (§ 6.2, [43]), and that the speed of generating pairwise independent
samples is sufficiently fast. DRWS is applicable whenever so is i.i.d.-sampling, and it is
much more reliable than i.i.d.-sampling (§ 5.4.4). However, since DRWS must keep the
random bit-sequence which is needed to generate samples stored in computer memory,
we have to note that it spends more memory than i.i.d.-sampling (§ 6.2.4).

5.4.1 Definition and Theorem

Let τ be a {Bm}m-stopping time with P(τ < ∞) = 1. For j ∈ N+, let

(xl, αl) ∈ DK+ j × DK+ j ⊂ T1 × T1, l ∈ N+, (5.12)

be i.i.d. random variables which are uniformly distributed in DK+ j×DK+ j. Define random
variables xn by

xn :=
∞∑

l=1

2−(l−1)K⌊xl + νn,l αl⌋K ∈ T1, n = 1, . . . , 2 j+1, (5.13)

where νn,l are random variables defined by

νn,l :=
{

n (l = 1),
#{ 1 ≤ u ≤ n | τ(xu) > (l − 1)K } (l > 1). (5.14)

Since τ is {Bm}m-stopping time, νn,l and xn are well-defined.
Now, the following theorem holds.

Theorem 5.13 ([39]) If f is τ-measurable, then random variables { f (xn)}2 j+1

n=1 are identi-
cally distributed and pairwise independent. The common distribution coincides with that
of f defined on (T1,B,P).
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Note that as {xn}2
j+1

n=1 are all uniformly distributed but not pairwise independent. Theo-
rem 5.13 asserts that if they are composed with a τ-measurable function f , then { f (xn)}2 j+1

n=1
become pairwise independent.

Assume E[τ] < ∞ and that f ∈ L1(Bτ). Then the sampling method for the estimation
of E[ f ] by

1
N

N∑
n=1

f (xn), 1 ≤ N ≤ 2 j+1,

is called the dynamic random Weyl sampling (abbreviated as DRWS). †4

Corollary 5.14 For each f ∈ L2(Bτ), the mean square error of DRWS is equal to that
of i.i.d.-sampling, i.e.,

E


∣∣∣∣∣∣∣ 1
N

N−1∑
n=0

f (xn) − E[ f ]

∣∣∣∣∣∣∣
2 = V[ f ]

N
, 1 ≤ N ≤ 2 j+1. (5.15)

Remark 5.15 As is mentioned in Remark 5.12, it is desirable that E[τ2] < ∞.

5.4.2 Proof of Theorem 5.13

In what follows, we take any 1 ≤ n < n′ ≤ 2 j+1 and fix them. Set

m(n, n′) := max{ l | νn,l < νn′,l }.

From νn,l < νn′,l, it follows that νn,i < νn′,i for i = 1, . . . , l, and hence

m(n, n′) = max{ l | νn,i < νn′,i, i = 1, . . . , l }. (5.16)

Now define

x̃n′ :=
∞∑

l=1

2−(l−1)K⌊xl + ν̃n′,l αl⌋K , ν̃n′,l :=
{
νn′,l ( l ≤ m(n, n′) ),
n′ ( l > m(n, n′) ). (5.17)

Lemma 5.16 (i) xn is distributed uniformly in T1.
(ii) xn and x̃n′ are independent.

Proof. In order to prove (i) and (ii), we show that for any M ∈ N+, the following 2M
random variables

⌊xl + νn,l αl⌋K , ⌊xl + ν̃n′,l αl⌋K , l = 1, . . . , M, (5.18)

are all distributed uniformly in DK and they are independent.

†4The term “dynamic” indicates that the sampling points {xn}2
j+1

n=1 vary in accordance with the integrand,
more precisely, with the stopping time τ.
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Note that if l ≥ 2, then both νn,l and ν̃n′,l depend on (x1, α1), . . . , (xl−1, αl−1), but they
are independent of (xl, αl). Note also that we always have νn,l < ν̃n′,l. Now, for any
s1, t1, . . . , sM, tM ∈ DK ,

Pr(⌊xl + νn,l αl⌋K < sl, ⌊xl + ν̃n′,l αl⌋K < tl, l = 1, . . . , M)

=
∑
p<p′

Pr
(
⌊xl + νn,lαl⌋K < sl,
⌊xl + ν̃n′,lαl⌋K < tl,

l = 1, . . . , M − 1,
νn,M = p, ⌊xM + pαM⌋K < sM

ν̃n,M = p′, ⌊xM + p′αM⌋K < tM

)
=

∑
p<p′

Pr
(
⌊xl + νn,lαl⌋K < sl,
⌊xl + ν̃n′,lαl⌋K < tl,

l = 1, . . . , M − 1,
νn,M = p
ν̃n′,M = p′

)
×Pr

(
⌊xM + pαM⌋K < sM

⌊xM + p′αM⌋K < tM

)
.

Since p , p′, Theorem 2.8 implies that two events {⌊xM + pαM⌋K < sM} and {⌊xM +

p′αM⌋K < tM} are independent. Therefore

Pr(⌊xl + νn,l αl⌋K < sl, ⌊xl + ν̃n′,l αl⌋K < tl, l = 1, . . . , M)

=
∑
p<p′

Pr
(
⌊xl + νn,lαl⌋K < sl,
⌊xl + ν̃n′,lαl⌋K < tl,

l = 1, . . . , M − 1,
νn,M = p
ν̃n′,M = p′

)
×Pr (⌊xM + pαM⌋K < sM) Pr

(⌊xM + p′αM⌋K < tM
)

=
∑
p<p′

Pr
(
⌊xl + νn,lαl⌋K < sl,
⌊xl + ν̃n′,lαl⌋K < tl,

l = 1, . . . , M − 1,
νn,M = p
ν̃n′,M = p′

)
× sMtM

= Pr
(⌊xl + νn,l αl⌋K < sl, ⌊xl + ν̃n′,l αl⌋K < tl, l = 1, . . . , M − 1

) × sMtM.

Repeating this procedure, we eventually have

Pr
(⌊xl + νn,l αl⌋K < sl, ⌊xl + ν̃n′,l αl⌋K < tl, l = 1, . . . , M

)
=

M∏
i=1

siti,

which completes the proof. □

Proof of Theorem 5.13. By Lemma 5.16(i), f (xn) and f are identically distributed. Next,
by (5.13) with n′ substituted for n and (5.17), we have

⌊xn′⌋m(n,n′)K = ⌊̃xn′⌋m(n,n′)K . (5.19)

Let s := ⌈τ(xn′)/K⌉. Then we have τ(xn′) > (s − 1)K and hence νn,s < νn′,s. Consequently,
it follows from (5.16) that

s ≤ m(n, n′). (5.20)

(5.19) and (5.20) imply
⌊xn′⌋sK = ⌊̃xn′⌋sK . (5.21)

On the other hand, since τ(xn′) ≤ sK and τ is a {Bm}m-stopping time, the value of τ(xn′) is
determined by ⌊xn′⌋sK . Namely, we see τ(xn′) = τ(⌊xn′⌋sK). Then by (5.21), we must have

τ(̃xn′) = τ(xn′) ≤ sK. (5.22)

(5.21) and (5.22) imply
⌊xn′⌋τ(xn′ ) = ⌊̃xn′⌋τ(̃xn′ ). (5.23)

Since f is Bτ-measurable, (1.7) and (5.23) imply that f (xn′) = f (̃xn′). Finally, it follows
from Lemma 5.16(ii) that f (xn) and f (xn′) are independent. This completes the proof. □
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5.4.3 Algorithm

Let us show how to implement DRWS. We use the setting of § 5.3. Assume that

1 ≤ N ≤ 2 j+1. (5.24)

Algorithm of DRWS

• Global variables

l : integer;
{xl, αl}l : array (variable length) of (DK+ j)2-valued vectors;

• Procedure and function

procedure Set First Location;
begin

l := 0;
end;

function Drws : DK-valued;
begin

l := l + 1;
if (xl, αl) has not been generated;

then
begin

xl :=RandomK+ j;
αl :=RandomK+ j;

end;
xl := xl + αl;
result:= ⌊xl⌋K;

end;

• Main routine

function Mean of f : Real;
begin

S := 0.0;
For i := 1 to N do

begin
Set First Location;
Try to compute f ;
while ( another Z is needed to compute f ) do

begin
Z :=Drws;
Try to compute f ;

end; // End of computation of f
S := S + f ;

end;
result:= S/N;

end;
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The main routine of DRWS is very similar to that of i.i.d.-sampling (§ 5.3). The
only differences are the following; in DRWS, Zl’s are not generated by the direct calls of
RandomK , but they are generated by Drws, and we must call Set First Location before
generating each sample of f .

The random function RandomK+ j is called only by Drws, only when (xl, αl) has not
yet been generated, to generate them. Thus, DRWS requires much less randomness than
i.i.d.-sampling.

Remark 5.17 DRWS is a Monte Carlo integration, and when we consider it as gam-
bling, the seeds (xl, αl) should be chosen by the player, Alice, of her own will. Of course,
it is possible for her to input (K + j) bit seed whenever RandomK+ j is called in the above
algorithm. However, in practice, it would be a tiresome task, and hence, an auxiliary
pseudorandom generator is usually used for RandomK+ j. In choosing such an auxiliary
pseudorandom generator, what we mentioned in § 5.2.2 are valid for DRWS as well.†5

Remark 5.18 In some large scale computations, i.e., when the probability that f re-
quires too many Zl’s is not negligible, DRWS may exhaust computer memory to keep
all of (xl, αl)’s that have been currently generated. A practical solution of such memory
exhaustion can be found in § 6.2.4.

5.4.4 Comparison between i.i.d.-sampling and DRWS

We computed the mean of the random variable f of Example 1.12 by DRWS. Namely,
we generated pairwise independent copies of f by DRWS, and computed sample means
with sample size being changed from 103 to 108.†6 The mean and the variance of f are
both 10.†7

Table 5.2: Comparison of Errors

Sample size rand-i.i.d. MT-i.i.d. m90-i.i.d. DRWS
103 0.15200000 -0.12500000 0.18600000 0.01700000
104 -0.05570000 0.02960000 0.03980000 -0.00030000
105 0.00650000 -0.01372000 -0.00170000 0.00076000
106 0.00470000 -0.00061300 -0.00382000 0.00007300
107 -0.00170760 0.00125260 0.00076940 0.00000560
108 -0.00095602 -0.00003483 0.00026567 -0.00000030

Final result 9.99904398 9.99996517 10.00026567 9.99999970
Time (sec.) 13 27 87 35

†5In the implementation of DRWS in § 6.2, the pseudorandom generator by means of Weyl transformation
is used for this purpose.
†6More precisely, we executed the C program drws.c of § 6.2.3, with #define SAMPLE SIZE being

changed from 103 to 108.
†7This follows from Wald’s identity ([7] (1.6) Wald’s equation, p.179 and Exercise 1.15, P.182). Or, use

a negative binary distribution.
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Table 5.2 shows the errors of this computation. For comparison, it also shows the
errors of i.i.d.-sampling with different pseudorandom generators, i.e., a standard C func-
tion rand(), MT (Mersenne twister), and the pseudorandom generator by means of Weyl
transformation (m90randombit() of § 6.2).†8 Comparing the errors, DRWS has a de-
cided advantage over i.i.d.-sampling. The error of DRWS with sample size 107, which
computation spent only 3 seconds, is much smaller than those of i.i.d.-sampling with
sample size 108.

Table 5.3: Sample mean and sample SD of DRWS

Range of values Sample mean Sample SD
Whole 9.99993 0.003129874
Central 99.9% 9.99999 0.000601414
Central 99% 10.00000 0.000231709

After Example 5.8, we computed the frequency distribution of the samples of DRWS
applied to f with sample size 106 by choosing 10,000 seeds at random (Table 5.3). The
true value of the sample SD is√

10
106 =

√
10−5 = 0.00316228,

which almost coincides with the first row (Whole) of Table 5.3. The second row (Central
99.9%) of Table 5.3 shows the sample mean and the sample SD of all the samples except
the largest 5 ones and the smallest 5 ones. In this case, the sample mean did not change,
but the sample SD decreased to about 1/5 of that of all samples. This means that the
excluded 0.1% samples are very far from the sample mean. The third row (Central 99%)
of Table 5.3 shows the sample mean and the sample SD of all the samples except the
largest 50 ones and the smallest 50 ones. In this case, the sample mean did not change,
either, but the sample SD decreased to about 1/13.6 of that of all samples. Thus a similar
phenomenon as Example 5.8 takes place in the case of DRWS, too.

In Figure 5.4, the histogram shows the frequency distribution of the above 10,000
DRWS samples. In this figure, the thick curve is the probability density function of the
normal distribution with mean 10 and SD 0.000231709 (same as the third row of Ta-
ble 5.3). Comparing them, we know that the distribution of DRWS samples is more con-
centrated around the mean and has a thicker tails than the normal distribution. The thin
line which looks almost flat located in very low position in the figure is the density func-
tion of the normal distribution with the same mean and the same SD as i.i.d.-sampling,
i.e., of N(10, 10−5).

5.4.5 Limit theorem for convergence of DRWS
The error of DRWS seen in the last section was very little with high probability. We
conjecture that a limit theorem like Theorem 5.6 should hold for DRWS, too. Indeed, in
†8Computer: Panasonic Let’s Note CF-Y5 (CPU1.66GHz, RAM 1.49GB, HD55.8GB). Complier: BOR-

LAND C++ COMPILER 5.5, COMMAND LINE TOOLS without any options.
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Figure 5.4: Frequency distribution of samples of DRWS

special cases, such as when the stopping time τ is constant, or when DRWS is applied to
von Neumann’s rejection method, such a theorem holds as we will show below.

In order to state it, let us modify the formulation of DRWS a little. Let (T∞,B∞,P∞)
denote the countable direct product of the Lebesgue probability space (T1,B,P). Define
an increasing sequence of sub σ-fields {Bm}∞m=1 of B∞ by

Bm := σ(Z1,Z2, . . . , Zm), m = 1, 2, . . . ,

where Zi : T∞ → T1 is the coordinate function (projection)

Zi(x) := xi, x = (x1, x2, . . .) ∈ T∞.

We call a random variable τ : T∞ → N+ ∪ {∞} a {Bm}m-stopping time if

∀m ∈ N+, {τ ≤ m} ∈ Bm.

We assume that P∞(τ < ∞) = 1. For a {Bm}m-stopping time τ, we define a sub σ-algebra

Bτ := { A ∈ B∞ ; ∀m ∈ N+, A ∩ {τ ≤ m} ∈ Bm }.

A Bτ-measurable function is simply called a τ-measurable function.
Now, we define a sequence of random variables {xn}∞n=1 on the product probability

space (T∞ × T∞,B∞ ⊗ B∞,P∞ ⊗ P∞) by

xn(x, α) := (x1 + νn,1α1, x2 + νn,2α2, . . .) ∈ T∞,
x = (x1, x2, . . .), α = (α1, α2, . . .) ∈ T∞, (5.25)
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where

νn,l :=
{

n (l = 1),
#{1 ≤ u ≤ n | τ(xu) > l − 1} (l > 1). (5.26)

Since τ is a {Bm}m-stopping time, νn,l and hence xn(x, α) are well-defined.

Theorem 5.19 Let τ be a {Bm}m-stopping time and f : T∞ → R be a τ-measurable
function. Then the random variables { f (xn)}∞n=1 are identically distributed and pairwise
independent. The common distribution is equal to that of f defined on (T∞,B∞,P∞).

This theorem can be proved in a similar way as Theorem 5.13. Of course, a similar
assertion as Corollary 5.14 holds in this case, too.

First, let us consider the case τ = k (constant). In this case, we have

νn,l = n, n = 1, 2, . . . , l = 1, 2, . . . , k,

and f is τ-measurable, if and only if it is Bk-measurable, i.e., it is substantially a function
on Tk. The following theorem holds.

Theorem 5.20 (cf. Remark 5.7) For any F ∈ L2(Tk,Bk,Pk) and any 1 ≤ p < 2, it holds
that

lim
N→∞

∫∫
Tk×Tk

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(
F(x + nα) −

∫
Tk

F(y)Pk(dy)
)∣∣∣∣∣∣∣

p

Pk(dα)Pk(dx) = 0.

Consequently, for any ε > 0,

lim
N→∞
P2k


(x, α) ∈ T2k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(
F(x + nα) −

∫
Tk

F(y)Pk(dy)
)∣∣∣∣∣∣∣ > ε


 = 0.

Proof. As the proof of Theorem 5.6, by using the k-dimensional Fourier series expansion
of F, Theorem 5.20 is proved by showing that∫

Tk

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πn(l1α1+···+lkαk)

∣∣∣∣∣∣∣
p

dα1 · · · dαk → 0, N → ∞.

Here at least one of l1, . . . , lk ∈ Z is not 0. If some li = 0, then the integration in αi can be
removed and it becomes a (k − 1)-dimensional integral. Thus we may assume that none
of li’s is 0. Then the transformation

Tk ∋ (α1, . . . , αk) 7→ (l1α, . . . , lkαk) ∈ Tk

preserves the Lebesgue measure Pk. Therefore we have∫
Tk

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πn(l1α1+···+lkαk)

∣∣∣∣∣∣∣
p

dα1 · · · dαk =

∫
Tk

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πn(α1+···+αk)

∣∣∣∣∣∣∣
p

dα1 · · · dαk.
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Note that for any bounded measurable function h : T1 → R, we have∫
T1

∫
T1

h(y1 + y2)dy1dy2 =

∫
T1

h(y)dy.

Therefore∫
Tk

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πn(α1+···+αk)

∣∣∣∣∣∣∣
p

dα1 · · · dαk

=

∫
Tk−2

dα1 · · · dαk−2

∫
T2

dαk−1dαk

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πn(α1+···+αk−2+αk−1+αk)

∣∣∣∣∣∣∣
p

=

∫
Tk−1

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πn(α1+···+αk−1)

∣∣∣∣∣∣∣
p

dα1 · · · dαk−1

= · · ·

=

∫
T1

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

e2
√
−1πnα1

∣∣∣∣∣∣∣
p

dα1.

As we saw in the proof of Theorem 5.6, the last integral converges to 0 as N → ∞. □

Next, let us consider the case of von Neumann’s rejection method (Example 1.11).
We assume the following conditions for integrand f .

Assumption 5.21 For f : Ω → R, there exist a {Bm}m-stopping time τ and an r ∈ N+
such that
(i) f is τ-measurable,
(ii) P∞( τ ∈ r N+ ) = 1 (then, νn,(k−1)r+1 = · · · = νn,kr−1 = νn,kr, k = 1, 2, . . .),
(iii) for any k ∈ N+, conditional on an event { τ ≥ kr }, { τ = kr } is independent of B(k−1)r,
(iv) for any k ∈ N+ and any s ∈ R, conditional on { τ ≥ kr }, { f ≤ s } is independent of
B(k−1)r.

Example 5.22 (cf. Example 1.11) Let 0 ≤ p(t) ≤ M (M > 0 being a constant) be a
probability density function on a bounded interval [a, b]. Define a {Bm}m-stopping time τ
by

τ := inf
{
2l ∈ 2N+ | p ((b − a)Z2l−1 + a) ≥ MZ2l

}
,

and a function f by
f (x) := (b − a)Zτ(x)−1(x) + b, x ∈ T∞.

Then f satisfies Assumption 5.21 with the above τ and r = 2, and the distribution of f
has the density p(t).

Theorem 5.23 If f is square integrable and satisfies Assumption 5.21, and if {xn}n is the
sequence of random variables defined by (5.25) and (5.26), then for any ε > 0, we see

lim
N→∞
P∞ ⊗ P∞


∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

( f (xn) − E[ f ])

∣∣∣∣∣∣∣ > ε
 = 0.
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To prove Theorem 5.23, we prepare a lemma. In what follows, for the sake of sim-
plicity, we assume Assumption 5.21 with r = 2. For a general r, the proof is similar.

Lemma 5.24 For any l ∈ N+ and any square integrable function g : T2 → R, define

hl(x) := 1{τ≥2l}(x) g(Z2l−1(x),Z2l(x)), x ∈ T∞.

Then for any ε > 0, we see

lim
N→∞
P∞ ⊗ P∞


∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(hl(xn) − E[hl])

∣∣∣∣∣∣∣ > ε
 = 0.

Proof. By induction. First, for l = 1, we have h1(x) = g(Z1(x),Z2(x)) and hence

h1(xn) = g(x1 + nα1, x2 + nα2), n = 1, 2, . . . ,

now the assertion of the lemma is shown by Theorem 5.20.
Next, let us assume l ≥ 2. Since 1{τ≥2l}(x) = 1{τ≤2l−2}c(x) is B2l−2-measurable and

g(Z2l−1(x),Z2l(x)) is σ(Z2l−1,Z2l)-measurable, they are independent and hence

E[hl] = ql E[g], ql := P∞(τ ≥ 2l).

For l = 2, noting that νn,3 = νn,4, since

h2(xn) = 1{τ≥4}(xn)g(x3 + νn,3α3, x4 + νn,3α4), n = 1, 2, . . . ,

we have
1
√

N

N∑
n=1

h2(xn) =
1
√

N

νN,3∑
m=1

g(x3 + mα3, x4 + mα4).

From this, we get the following inequality.∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(h2(xn) − E[h2])

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(h2(xn) − q1E[g])

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
√
νN,3

N
· 1
√
νN,3

νN,3∑
m=1

(g(x3 + mα3, x4 + mα4) − E[g])

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ νN,3√
N

E[g] −
√

Nq1E[g]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 1
√
νN,3

νN,3∑
m=1

(g(x3 + mα3, x4 + mα4) − E[g])

∣∣∣∣∣∣∣
+

E[|g|]
√

N

∣∣∣νN,3 − Nq1

∣∣∣ .
Hence

P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(h2(xn) − E[h2])

∣∣∣∣∣∣∣ > ε
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≤ P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√
νN,3

νN,3∑
m=1

(g(x3 + mα3, x4 + mα4) − E[g])

∣∣∣∣∣∣∣ > ε

2


+P∞ ⊗ P∞

(
E[|g|]
√

N

∣∣∣νN,3 − Nq1

∣∣∣ > ε

2

)
=: I1 + I2. (5.27)

Take any δ > 0. By Theorem 5.20, there exists a K0 ∈ N+ such that for any K ≥ K0, it
holds that

P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√

K

K∑
m=1

(g(x3 + mα3, x4 + mα4) − E[g])

∣∣∣∣∣∣∣ > ε

2

 < δ

3
.

Therefore

P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√
νN,3

νN,3∑
m=1

(g(x3 + mα3, x4 + mα4) − E[g])

∣∣∣∣∣∣∣ > ε

2

∣∣∣∣∣∣∣ νN,3 ≥ K0

 < δ

3
. (5.28)

On the other hand, noting that νN,3 =
∑N

n=1 1{τ≤2}c(x1 + nα1, x2 + nα2)†9, by Theorem 5.20,
there exists an N0 ∈ N+ such that for any N ≥ N0,

I2 = P
∞ ⊗ P∞

 E[|g|]
√

N

∣∣∣∣∣∣∣
N∑

n=1

(
1{τ≤2}c(x1 + nα1, x2 + nα2) − q1

)∣∣∣∣∣∣∣ > ε

2

 < δ

3
. (5.29)

Let us estimate I1. Of course, we may assume E[|g|] > 0. Take an N1 so that

∀N ≥ N1, Nq1 −
ε
√

N
2E[|g|] ≥ K0.

Then for any N ≥ N1, we see

P∞ ⊗ P∞(νN,3 < K0) ≤ P∞ ⊗ P∞
νN,3 − Nq1 < −

ε
√

N
2E[|g|]


= P∞ ⊗ P∞

E[|g|]
√

N

 N∑
n=1

(
1{τ≤2}c(x1 + nα1, x2 + nα2) − q1

) < −ε2


<
δ

3
.

Putting

B :=


∣∣∣∣∣∣∣ 1
√
νN,3

νN,3∑
m=1

(g(x3 + mα3, x4 + mα4) − E[g])

∣∣∣∣∣∣∣ > ε

2

 ,
we have that for any N ≥ max(N0,N1),

I1 = P
∞ ⊗ P∞(B)

= P∞ ⊗ P∞(B ∩ {νN,3 ≥ K0}) + P∞ ⊗ P∞(B ∩ {νN,3 < K0})
≤ P∞ ⊗ P∞(B | νN,3 ≥ K0) + P∞ ⊗ P∞(νN,3 < K0)

<
δ

3
+
δ

3
=

2δ
3
.

†9We use this notation because 1{τ≤2}c is B2-measurable.
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This and (5.29) imply I1+ I2 < δ, and so by (5.27), the proof in the case l = 2 is complete.
Now, let us show the assertion of the lemma for l + 1 assuming that it is valid for l. In

the same way as (5.27), we get

P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(hl+1(xn) − E[hl+1])

∣∣∣∣∣∣∣ > ε


≤ P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√
νN,2l+1

νN,2l+1∑
m=1

(g(x2l+1 + mα2l+1, x2l+2 + mα2l+2) − E[g])

∣∣∣∣∣∣∣ > ε

2


+P∞ ⊗ P∞

(
E[|g|]
√

N

∣∣∣νN,2l+1 − Nql

∣∣∣ > ε

2

)
=: I3 + I4. (5.30)

Putting

B′ :=


∣∣∣∣∣∣∣ 1
√
νN,2l+1

νN,2l+1∑
m=1

(g(x2l+1 + mα2l+1, x2l+2 + mα2l+2) − E[g])

∣∣∣∣∣∣∣ > ε

2


in the same way as (5.28), it holds that

P∞ ⊗ P∞ (
B | νN,2l+1 ≥ K0

)
<
δ

3
.

On the other hand, by Assumption 5.21(iii), there exists a function g̃l : T2 → R such that

1{τ≥2l+2}(x) = 1{τ≥2l}(x) (1 − 1{τ=2l}(x)) = 1{τ≥2l}(x) g̃l(Z2l−1(x),Z2l(x)), x ∈ T∞.

Consequently, by the assumption of the induction, as N → ∞, we see

P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(1{τ≥2l+2}(xn) − ql)

∣∣∣∣∣∣∣ > ε
 → 0.

Note that
∑N

n=1 1{τ≥2l+2}(xn) = νN,2l+1. Then there exists an N2 ∈ N+ such that if N ≥ N2, it
holds that

I4 = P
∞ ⊗ P∞

(
E[|g|]
√

N

∣∣∣νN,2l+1 − Nql

∣∣∣ > ε

2

)
<
δ

3
. (5.31)

Let us estimate I3. Take N3 ∈ N+ so that

∀N ≥ N3, Nql −
ε
√

N
2E[|g|] ≥ K0.

Then for N ≥ N3, we have

P∞ ⊗ P∞(νN,2l+1 < K0) <
δ

3
.

Finally, for any N ≥ max(N2,N3), it holds that

I3 = P
∞ ⊗ P∞(B′)

= P∞ ⊗ P∞(B′ ∩ {νN,2l+1 ≥ K0}) + P∞ ⊗ P∞(B′ ∩ {νN,2l+1 < K0})
≤ P∞ ⊗ P∞(B′ | νN,2l+1 ≥ K0) + P∞ ⊗ P∞(νN,2l+1 < K0)

<
δ

3
+
δ

3
=

2δ
3
.
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This and (5.31) imply I3 + I4 < δ, and so by (5.30), the proof for l + 1 is complete. □

Proof of Theorem 5.23. Suppose that f satisfies Assumption 5.21 with r = 2. For a
general r, the proof is similar. For each L ∈ N+, put

fL(x) ;= f (x)1{τ≤2L}(x), f ′L(x) := f (x) − fL(x), x ∈ T∞.

Take an arbitrary ε > 0.

P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

( f (xn) − E[ f ])

∣∣∣∣∣∣∣ > ε


≤ P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

( fL(xn) − E[ fL])

∣∣∣∣∣∣∣ > ε

2


+P∞ ⊗ P∞


∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

( f ′L(xn) − E[ f ′L])

∣∣∣∣∣∣∣ > ε

2

 =: I5 + I6.

Since | f ′L(x)|2 ≤ | f (x)|2 and f ′L(x)→ 0, as L→ ∞, P∞-a.s., by Lebesgue’s convergence
theorem, we see

lim
L→∞

E
[∣∣∣ f ′L∣∣∣2] = 0.

Therefore for any δ > 0, there exists an L0 ∈ N+ such that if L ≥ L0, we have

E
[∣∣∣ f ′L∣∣∣2] < ε2δ

8
.

Applying Chebyshev’s inequality, for any N ∈ N+,

I6 = P
∞ ⊗ P∞


∣∣∣∣∣∣∣

N∑
n=1

( f ′L(xn) − E[ f ′L])

∣∣∣∣∣∣∣ > ε
√

N
2


≤ 4

ε2N
V

 N∑
n=1

f ′L(xn)

 = 4
ε2 V[ f ′L]

≤ 4
ε2 E

[∣∣∣ f ′L∣∣∣2] < δ

2
.

Here we computed the variance by using Theorem 5.19.
Fix L ≥ L0. Let us estimate I5. Since we have

I5 ≤
L∑

l=1

P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(
f (xn)1{τ=2l}(xn) − E[ f 1{τ=2l}]

)∣∣∣∣∣∣∣ > ε

2L

 ,
we have only to estimate each summand of the right hand side. Because f satisfies As-
sumption 5.21(r = 2), for each l, there exists a function gl : T2 → R such that

f (x)1{τ=2l}(x) = 1{τ≥2l}(x) · gl(Z2l−1(x),Z2l(x)), x ∈ T∞.
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Then Lemma 5.24 implies that there exists an N0 ∈ N+ such that for any N > N0, it holds
that

P∞ ⊗ P∞

∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

(
f (xn)1{τ=2l}(xn) − E[ f 1{τ=2l}]

)∣∣∣∣∣∣∣ > ε

2L

 < δ

2L
, l = 1, . . . , L.

From this we know I5 < δ/2.
From all above, for N ≥ N0, it follows that I5 + I6 < δ. □

Remark 5.25 In general, if a sequence of random variables is L2-bounded and converges
to 0 in probability, then for any p ∈ [1, 2), it converges to 0 in Lp. Consequently, under
the assumption of Theorem 5.23, it holds that

lim
N→∞

E


∣∣∣∣∣∣∣ 1
√

N

N∑
n=1

( f (xn) − E[ f ])

∣∣∣∣∣∣∣
p  = 0, 1 ≤ p < 2.


