
Chapter 5

Oscillatory integrals without
convexity

Theorem 4.3.1 requires the phase function to satisfy the convexity condition
of Definition 2.2.3; however, we will also investigate solutions to hyperbolic
equations for which the characteristic roots do not necessarily satisfy such a
condition. In this section we state and prove a theorem for this case. First, we
give the key results that replaces Theorem 4.1.1 in the proof, the well-known
van der Corput Lemma. We recall the standard van der Corput Lemma as
given in, for example, [Sog93, Lemma 1.1.2], or in [Ste93, Proposition 2, Ch
VIII]:

Lemma 5.0.5. Let Φ ∈ C∞(R) be real-valued, a ∈ C∞0 (R) and m ≥ 2 be an
integer such that Φ(j)(0) = 0 for 0 ≤ j ≤ m− 1 and Φ(m)(0) 6= 0; then

∣
∣
∣

∫ ∞

0

eiλΦ(x)a(x) dx
∣
∣
∣ ≤ C(1 + λ)−1/m for all λ ≥ 0,

provided the support of a is sufficiently small. The constant on the right-hand
side is independent of λ and Φ.

If m = 1, then the same result holds provided Φ′(x) is monotonic on the
support of a.

5.1 Real-valued phase function

In the case when the convexity condition holds the estimate of Theorem 4.3.1
is given in terms of the constant γ; as in the case of the homogeneous op-
erators (see Introduction, Section 1.2) we introduce an analog to this in the
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case where the convexity condition does not hold. Let Σ be a hypersurface
in Rn; we set

γ0(Σ) := sup
σ∈Σ
inf
P
γ(Σ; σ, P ) ≤ γ(Σ)

where γ(Σ; σ, P ) is as in Definition 2.2.4.
An important result for calculating this value is the following:

Lemma 5.1.1 ([Sug96]). Suppose Σ = {(y, h(y)) : y ∈ U}, h ∈ C∞(U),
U ⊂ Rn−1 is an open set, and let

F (ρ) = h(η + ρω)− h(η)− ρ∇h(η) ∙ ω

where η ∈ U , ω ∈ Sn−2. Taking σ = (η, h(η)) ∈ Σ, ω ∈ Sn−2 and

P = {σ + s(ω,∇h(η) ∙ ω) + t(−∇h(η), 1) ∈ Rn : s, t ∈ R} ,

then

γ(Σ; σ, P ) = min
{
k ∈ N : F (k)(0) 6= 0

}
=: γ(h; η, ω) .

Therefore,

γ(Σ) = sup
η
sup
ω
γ(h; η, ω),

γ0(Σ) = sup
η
inf
ω
γ(h; η, ω) .

Now we are in a position to state and prove the result for oscillatory
integrals with a real-valued phase function that does not satisfy the earlier
introduced convexity condition. This is a parameter dependent version of
Corollary 2.2.11.

Theorem 5.1.2. Let a(ξ) be a symbol of order 1
γ0
− n of type (1, 0) on Rn.

Let τ : Rn → R be smooth on supp a, set γ0 := supλ>0 γ0(Σλ(τ)) and assume
it is finite; furthermore, on supp a, we also assume the following conditions :

(i) for all multi-indices α there exists a constant Cα > 0 such that

|∂αξ τ(ξ)| ≤ Cα(1 + |ξ|)
1−|α|;

(ii) there exist constants M,C > 0 such that for all |ξ| ≥ M we have
|τ(ξ)| ≥ C|ξ|;

(iii) there exists a constant C0 > 0 such that |∂ωτ(λω)| ≥ C0 for all ω ∈
Sn−1, λ > 0;
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(iv) there exists a constant R1 > 0 such that, for all λ > 0,

1

λ
Σλ(τ) ⊂ BR1(0) .

Then, the following estimate holds for all R ≥ 0, x ∈ Rn, t > 1:

∣
∣
∣

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)gR(ξ) dξ

∣
∣
∣ ≤ Ct

− 1
γ0 ,

where gR(ξ) is as given in (4.3.1) and C > 0 is independent of R.

Proof. We follow the proof of Theorem 4.3.1 as far as possible, and shall show
how the absence of the convexity condition affects the estimate. Thus, as in
the proof of Theorem 4.3.1, we may first assume, without loss of generality,
that either τ(ξ) ≥ 0 for all ξ ∈ Rn or τ(ξ) ≤ 0 for all ξ ∈ Rn. We will always
work on the support of a, so by writing ξ ∈ Rn we will mean ξ ∈ supp a.
Divide the integral into two parts:

I1(t, x) :=

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)gR(ξ)κ

(
t−1x+∇τ(ξ)

)
dξ ,

I2(t, x) :=

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)gR(ξ)(1− κ)

(
t−1x+∇τ(ξ)

)
dξ ,

where κ ∈ C∞0 (R
n), 0 ≤ κ(y) ≤ 1, which is identically 1 in the ball of

radius r > 0 centred at the origin, Br(0), and identically 0 outside the ball
of radius 2r, B2r(0). By Lemma 4.3.3 (which does not require the phase
function to satisfy the convexity condition), we have

|I2(t, x)| ≤ Crt
−1/γ0 for all t > 1.

To estimate |I1(t, x)| we introduce, as before, a partition of unity {Ψ`(ξ)}
L
`=1

and restrict attention to

I ′1(t, x) =

∫

Rn
ei(x∙ξ+τ(ξ)t)a(ξ)gR(ξ)Ψ1(ξ)κ

(
t−1x+∇τ(ξ)

)
dξ ,

where Ψ1(ξ) is supported in a sufficiently narrow cone, K1, that contains en =
(0, . . . , 0, 1). Parameterise this cone in the same way as above: with U ⊂
Rn−1,

K1 =

{
{(λy, λhλ(y)) : λ > 0, y ∈ U} if τ(ξ) ≥ 0 for all ξ ∈ Rn

{(λy, λhλ(y)) : λ < 0, y ∈ U} if τ(ξ) ≤ 0 for all ξ ∈ Rn .
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Here the Implicit Function Theorem ensures the existence of a smooth func-
tion hλ : U → R for each λ > 0, but there is one major difference: the
functions hλ are not necessarily concave, in contrast to the earlier proof.
Using the change of variables ξ 7→ (λy, λhλ(y))—note that

0 < C ≤
∣
∣
∣

dξ

d(λ, y)

∣
∣
∣ ≤ Cλn−1

by the same argument as in the proof of Theorem 4.3.1, providing the width
of K1 is taken to be sufficiently small—gives

I ′1(t, x) =

∫ ∞

0

∫

U

ei[λx
′∙y+λxnhλ(y)+τ(λy,λhλ(y))t]a(λy, λhλ(y))

gR(λy, λhλ(y))Ψ1(λy, λhλ(y))κ
(
t−1x+∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ .

Once again, let G ∈ C∞0 (R) so that gR(ξ) = gR(ξ)G(τ(ξ)/R) (where R =
max(R, 1)) and ã(ξ) = a(ξ)gR(ξ)Ψ1(ξ), which is a symbol of order

1
γ0
−

n supported in K1 and with all the constants in the symbolic estimates
independent of R. So, recalling that τ(λy, λhλ(y)) = λ and writing h(λ, y) ≡
hλ(y), we get

I ′1(t, x) =

∫ ∞

0

∫

U

eiλ[x
′∙y+xnhλ(y)+t]ã(λy, λhλ(y))

G(λ/R)κ
(
t−1x+∇τ(λy, λhλ(y))

) dξ

d(λ, y)
dy dλ

=

∫ ∞

0

∫

U

eiλ̃[
x̃′

x̃n
∙y+h
(
λ̃
x̃nt
,y

)
+x̃−1n ]ã

(
λ̃
x̃nt
y, λ̃
x̃nt
h
(
λ̃
x̃nt
, y
))

G
(
λ̃
Rx̃nt

)
κ
(
x̃+∇τ

(
λ̃
x̃nt
y, λ̃
x̃nt
h
(
λ̃
x̃nt
, y
))) dξ

d(λ, y)
x̃−1n t

−1 dy dλ̃ ,

where x = tx̃ and λ̃ = λxn = λx̃nt. Thus, using |κ(η)| ≤ 1, we have

|I ′1(t, x)| ≤ C|x̃n|
−1/γ0t−1/γ0

∫ ∞

0

∣
∣
∣I
(
λ̃, λ̃
x̃nt
; x̃−1n x̃

)
G
(

λ̃
Rx̃nt

)
λ̃−1+(1/γ0)

∣
∣
∣ dλ̃

(5.1.1)
where

I
(
λ̃, λ̃
x̃nt
; x̃−1n x̃

′
)
=

∫

U

eiλ̃
[
x̃−1n x̃

′∙y+h
(
λ̃
x̃nt
,y

)]
ã
(
λ̃
x̃nt
y, λ̃
x̃nt
h
(
λ̃
x̃nt
, y
))(

λ̃
|x̃n|t

)n− 1
γ0 dy .

At this point, we diverge from the proof of the earlier theorem since we
cannot apply Theorem 4.1.1; instead, note that, for some b ∈ C∞0 (R

n−1)
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with support contained in U , we have

∣
∣
∣I
(
λ̃, λ̃
x̃nt
; x̃−1n x̃

′
)∣∣
∣ ≤

∫

Rn−2

∣
∣
∣

∫

R
eiλ̃
[
x̃−1n x̃

′∙y+h
(
λ̃
x̃nt
,y

)]

ã
(
λ̃
x̃nt
y, λ̃
x̃nt
h
(
λ̃
x̃nt
, y
))(

λ̃
|x̃n|t

)n− 1
γ0 b(y) dy1

∣
∣
∣ dy′ .

We wish to apply the van der Corput Lemma, Lemma 5.0.5, to the inner
integral. Set Φ(y, μ; z) := z ∙y+hμ(y), which is real-valued, and consider the
integral ∫

R
eiλΦ(y,μ;z)a0(y, μ)b(y) dy1

where a0(y, μ) := μ
n−(1/γ0)ã(μy, μhμ(y)). Recall that

Σμ = {(y, hμ(y)) : y ∈ U} ,

so by Lemma 5.1.1,

min
{
k ∈ N : ∂ky1Φ(y, μ; z)

∣
∣
y1=0
6= 0
}
= γ(hμ; 0, (1, 0, . . . , 0)) =: m.

Fixing the size of U so that |∂(m)y1 Φ(y, μ; z)| ≥ ε > 0 for all y ∈ U ensures
that the hypotheses of Lemma 5.0.5 are satisfied. Thus, since the support
of b is compact in Rn−1, is contained in U , and a0 is smooth, we obtain

∣
∣
∣

∫

R
eiλΦ(y,μ;z)a0(y, μ)b(y) dy1

∣
∣
∣ ≤ Cλ−1/m .

Carry out a suitable change of coordinates so that m = infω γ(hμ; 0, ω) (this
is possible due to the rotational invariance of all properties used); then, since
m ≤ γ0 by definition, we have

∣
∣
∣I
(
λ̃, λ̃
x̃nt
; x̃−1n x̃

′
)∣∣
∣ ≤ Cλ̃−1/γ0 ,

for all λ̃ such that λ̃
Rx̃nt

∈ suppG (this is to ensure λ̃ is away from the origin).
Combining this with (5.1.1) then gives the required estimate:

|I ′1(t, x)| ≤ C|x̃n|
−1/γ0t−1/γ0

∫ ∞

0

∣
∣
∣λ̃−1G

(
λ̃
Rx̃nt

)∣∣
∣ dλ̃

=C|x̃n|
−1/γ0t−1/γ0

∫ ∞

0

(νRx̃nt)
−1G(ν)Rx̃nt dν ≤ Ct

− 1
γ0 .




