
CHAPTER 3

Hyperbolicity and spectral gaps

There are two main sources of quasimorphisms: hyperbolic geometry (i.e. nega-
tive curvature) and symplectic geometry (i.e. partial orders and causal structures).
In this chapter we study scl in hyperbolic manifolds, and more generally, in word-
hyperbolic groups in the sense of Rips and Gromov [98] and groups acting on
hyperbolic spaces (we return to symplectic geometry, and quasimorphisms with a
dynamical or causal origin in Chapter 5). The construction of explicit quasimor-
phisms is systematized by Bestvina–Fujiwara ([13]), who show that in order to
construct (many) quasimorphisms on a group G, it suffices to exhibit an isometric
action of G on a δ-hyperbolic space X which is weakly properly discontinuous (see
Definition 3.51). It is crucial for many important applications that X need not be
itself proper.

The relationship between negative curvature and quasimorphisms is already
evident in the examples from § 2.3.1. If M is a closed hyperbolic manifold, the
space of smooth 1-forms Ω1M injects into Q(π1(M)). Evidently, quasimorphisms
are sensitive to a great deal of the geometry of M ; one of the goals of this chapter
is to sharpen this statement, and to say what kind of geometry quasimorphisms are
sensitive to.

A fundamental feature of the geometry of hyperbolic manifolds is the thick-thin
decomposition. In each dimension n there is a universal constant ǫ(n) (the Margulis
constant) such that the part of a hyperbolic n-manifold M with injectivity radius
less than ǫ (i.e. the “thin” piece) has very simple topology — each component
is either a neighborhood of a cusp, or a tubular neighborhood of a single short
embedded geodesic. Margulis’ observation implies that in each dimension, there is
a universal notion of what it means for a closed geodesic to be short.

In this chapter we prove fundamental inequalities relating length to scl in hy-
perbolic spaces and to show that there is a universal notion of what it means for a
conjugacy class in a hyperbolic group to have small scl. We think of this as a kind
of homological Margulis Lemma. These inequalities generalize to certain groups
acting on hyperbolic spaces, such as amalgamated free products and mapping class
groups of surfaces.

Much of the content in this chapter is drawn from papers of Bestvina, Calegari,
Feighn, and Fujiwara (sometimes in combination), especially [82, 83, 13, 42, 49,

12].

3.1. Hyperbolic manifolds

We start with the simplest and most explicit examples of groups acting on
hyperbolic spaces, namely fundamental groups of hyperbolic manifolds. In this
context, scl can be controlled by directly studying maps of surfaces to manifolds.
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52 3. HYPERBOLICITY AND SPECTRAL GAPS

When we come to study more general hyperbolic spaces, the use of quasimorphisms
becomes more practical.

3.1.1. Margulis’ Lemma. The most straightforward formulation of Mar-
gulis’ Lemma is the following:

Theorem 3.1 (Margulis’ Lemma [123]). For each dimension n there is a posi-
tive constant ǫ(n) (called a Margulis constant) with the following property. Let Γ be
a discrete subgroup of Isom(Hn). For any x ∈ Hn the subgroup Γx(ǫ) of Γ generated
by elements which translate x less than ǫ is virtually Abelian.

Here a group is said to virtually satisfy some property P if it contains a subgroup
of finite index which satisfies P . If Γ is torsion-free, Γx(ǫ) is free Abelian. If Γ is co-
compact, Γx(ǫ) is either trivial or isomorphic to Z. If M is a hyperbolic manifold,
there is a so-called thick-thin decomposition of M into the thin part, namely the
subset M<ǫ consisting of points where the injectivity radius is less than ǫ, and the
thick part, namely the subset M≥ǫ which is the complement of M<ǫ. Margulis’
Lemma implies that if M is complete with finite volume, M<ǫ is a disjoint union
of cusps and solid torus neighborhoods of short simple geodesics.

Remark 3.2. Good estimates for ǫ(n) are notoriously difficult to obtain. In dimension
2 there is an elementary estimate ǫ(2) ≥ arcsinh(1) = 0.8813 · · · due to Buser [37].

Meyerhoff [152] showed ǫ(3) ≥ 0.104, and Kellerhals [124, 125] showed ǫ(n) ≥
√

3/9π =
0.0612 · · · for n = 4, 5, and obtained an explicit estimate [126] for arbitrary n:

ǫ(n) ≥ 2

3ν+1πν

Z π/2

0

sinν+1 tdt

where ν = [n−1
2

]. The same paper gives explicit lower bounds on the diameter of an
embedded tube around a sufficiently short geodesic.

3.1.2. Drilling and Filling. In 3-dimensions, Margulis’ Lemma implies that
a sufficiently short geodesic is simple, and it can be drilled to produce a cusped
hyperbolic 3-manifold. That is, the open manifold M − γ admits a complete finite-
volume hyperbolic structure, defining a hyperbolic manifold Mγ . We denote this
suggestively by

M
drill−−→Mγ

Conversely, M can be obtained from Mγ by adding a solid torus under hyperbolic
Dehn surgery

Mγ
fill−→M

The geodesic γ is the core of the added solid torus.

Let T = ∂N(γ) be the torus cusp of Mγ . Choose meridian-longitude generators
m, l for H1(T ; Z) so that the longitude is trivial in H1(Mγ ; Q), and the meridian
intersects the longitude once. Note that the meridian is ambiguous, and different
choices differ by multiples of the longitude.

Some multiple n of the longitude l is trivial in H1(Mγ ; Z) and bounds a surface
S. Let p and q be coprime integers, and let Mp/q be the result of p/q Dehn surgery
on Mγ ; i.e. topologically, Mp/q is obtained from Mγ by adding a solid torus in such
a way that the meridian of the added solid torus represents a primitive class pm+ql
in H1(T ; Z). The p, q co-ordinates depend on the choice of meridian m. A change
of basis m→ m+ l induces p→ p and q → q − p.
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Thurston’s hyperbolic Dehn surgery Theorem ([198, 10]) says that except for
finitely many choices of p/q, the manifold Mp/q is hyperbolic. Moreover, as p or
q or both go to infinity, length(γ) → 0, and the geometry of Mp/q converges on
compact subsets (in the Gromov–Hausdorff sense) to that of Mγ .

The longitude wraps p times around the core γ of the added solid torus in
Mp/q. Hence ∂S wraps np times. If a denotes the conjugacy class in π1(Mp/q)
corresponding to the free homotopy class of γ, we obtain an estimate

scl(a) ≤ −χ(S)

2np

In particular, for fixed Mγ , and for any positive constant δ, away from finitely many
lines in Dehn surgery space (corresponding to choices p, q for which |p| is small)
the core of the added solid torus has scl < δ. Heuristically, most sufficiently short
geodesics in hyperbolic 3-manifolds have arbitrarily small scl.

Conversely, we will see that conjugacy classes in π1(M) with sufficiently small
scl are represented by arbitrarily short geodesics.

3.1.3. Pleated surfaces. To study scl in π1(M), we need to probe M topo-
logically by maps of surfaces S → M . Under suitable geometric hypotheses, it
makes sense to take representative maps of surfaces which are tailored to the ge-
ometry of M . For M hyperbolic, a very useful class of maps of surfaces into M are
so-called pleated surfaces.

Pleated surfaces were introduced by Thurston [198].

Definition 3.3. Let M be a hyperbolic manifold. A pleated surface is a com-
plete hyperbolic surface S of finite area, together with an isometric map f : S →M
which takes cusps to cusps, and such that every p ∈ S is in the interior of a straight
line segment which is mapped by f to a straight line segment.

Note that the term “isometric map” here means that f takes rectifiable curves
on S to rectifiable curves in M of the same length.

The set of points L ⊂ S where the line segment through p is unique is called the
pleating locus. It turns out that L is a geodesic lamination on S; i.e. a closed union
of disjoint simple geodesics. Moreover, the restriction of f to each component of
S − L is totally geodesic.

Since S has finite area, L is nowhere dense, and S − L has full measure in S.

Example 3.4 (Thurston’s spinning construction; § 8.8 and § 8.10 [198]). The
most important and useful method of producing pleated surfaces is Thurston’s
spinning construction.

Let P be a pair of pants; i.e. a hyperbolic surface with three boundary com-
ponents. Let f : P → M be a relative homotopy class of map sending the three
boundary components by maps of nonzero degree to three (not necessarily simple)
geodesics in M . The class of f determines a homomorphism from π1(P ) to π1(M)
up to conjugacy.

We give P a hyperbolic structure, and let ∆ be a geodesic triangle in P with one
vertex on each boundary component. As we move the vertices around on ∂P , the
geodesic triangle deforms continuously. Spinning ∆ involves dragging the vertices
around and around the components of ∂P . The sides of ∆ get longer and longer,
and accumulate on ∂P . The Hausdorff limit of ∂∆ is a geodesic lamination L in P
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with three infinite leaves spiraling around ∂P , and whose complement consists of
two (open) ideal triangles. See Figure 3.1.

spin−−→

Figure 3.1. Spinning produces an ideal triangulation of a pair of pants

We can build a pleated surface f : P → M in the homotopy class of f with
pleating locus contained in L as follows. First, f takes components of ∂P to the
unique closed geodesics in the homotopy class of f(∂P ). For each infinite geodesic
l ∈ L, the ends of f(l) spiral around f(∂P ). Except in degenerate cases, the image
of f(l) is a quasigeodesic which can be straightened to a unique geodesic l which
spirals around two components of f(∂P ). This defines the map f on L. Each

component of P −L is an ideal triangle, and we define f on each such triangle ∆ to
be the unique totally geodesic map which extends f (after possibly reparameterizing
by a translation on each edge) on ∂∆ ⊂ L.

Remark 3.5. If M has parabolic elements, the construction in Example 3.4 must be
modified very slightly.

Suppose f : P →M takes some boundary component ∂0 of P to a free homotopy class
in M corresponding to a parabolic conjugacy class α in π1(M). After lifting f̃ : P̃ → M̃ ,
each conjugate of α fixes a unique point in the sphere at infinity S2

∞. If ∆ is a triangle
with a vertex v on ∂0, and ∆̃ is a lift of ∆ to P̃ , straighten f̃ on ṽ by sending this vertex to
the unique fixed point of the corresponding conjugate of α. The rest of the construction
is as before.

Lemma 3.6 (Thurston, § 8.10 [198]). A map f : P →M from a pair of pants
into a hyperbolic manifold M can be straightened to a pleated surface unless it
factors through a map to a circle.

Proof. The map f : P → M determines an equivariant map P̃ → Hn from
the universal cover P̃ of P . A lift of the triangle ∆ has vertices on three distinct
edges e1, e2, e3 of P̃ . Spinning drags the vertices of ∆ to endpoints of the ei, so f
can be straightened on ∆ providing the endpoints of the ei are distinct for different
i. If α, β ∈ π1(M) don’t commute, their axes have disjoint endpoints at infinity.
Commuting elements in a closed hyperbolic manifold group generate a cyclic group.
So the straightening can be achieved if and only if the image of π1(P ) in π1(M)
does not factor through a cyclic group. �

Using this lemma, we show that a map f : S → M either admits an obvious
simplification which reduces the genus, or has a pleated representative.

Lemma 3.7. Let M be a hyperbolic manifold, and let a be a nontrivial conjugacy
class in π1(M). Let S be a compact oriented surface with exactly one boundary
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component. If f : S → M is a map sending the class of ∂S in π1(S) to a then
there is another map f ′ : S′ →M where the genus of S′ is no more than that of S,
and where f ′ sends the class of ∂S′ in π1(S

′) to a, which is homotopic to a pleated
representative.

Proof. We decompose S into subsurfaces S = S1 ∪ S2 ∪ · · · ∪ Sg where each
Si is a twice-punctured torus for i < g, and Sg is a once-punctured torus. For each

i denote the two boundary components of Si by γ±i where γ+
i is glued to γ−i+1 in

S, and γ−1 maps to a by f .
If any γ±i maps by f to an inessential loop in M , we can compress f, S along

the image of this curve, sewing in two disks, to produce a map f ′ : S′ →M where
S′ is of smaller genus than S, and for which f ′(∂S′) is in the class of a. After
finitely many compressions of this kind, we assume that every γ±i maps by f to an
essential loop in M .

For each i < g, let α±i , βi be embedded essential loops in Si as in Figure 3.2:

α+
i

α−

i

βiγ−

i γ+
i

Figure 3.2. The curves α±i and β in Si

The loops α+
i , βi intersect in one point p+

i . Their images under f define el-
ements a+, b of π1(M) based at f(p+

i ). If [a+, b] = id then we can compress S,
cutting out a neighborhood of α+

i ∪βi in Si, and sewing in a disk, thereby reducing
the genus of S. So without loss of generality, we assume the elements a+, b do not
commute.

The curves α−i and βi intersect at a different point. By sliding this point half
way around βi and mapping by f , we obtain an element a− ∈ π1(M) based at
f(p+

i ) if we slide in one direction, and ba−b−1 if we slide in the other direction.
Also without loss of generality, we assume a−, b do not commute.

Let P−i , P
+
i be the two pairs of pants obtained from Si by cutting along α+

i ∪α−i .
Suppose f : P−i → M factors up to homotopy through a map to a circle. This
happens if a+, a− as above generate a cyclic subgroup of π1(M). In this case, we
replace α±i by their images under a Dehn twist around βi (see Example 3.59 for a
definition). At the level of π1, this replaces a+, a− by a+b, b−1a−, and defines a new
pair of pants decomposition in which f : P−i →M does not factor up to homotopy
through a map to a circle. Of course, now f : P+

i → M might factor through a
circle, in which case we do another Dehn twist, replacing the original a+, a− by
a+b2, b−2a−. In this way we obtain a decomposition of Si into two pairs of pants
such that the restriction of f to either does not factor up to homotopy through a
map to a circle. By Lemma 3.7 f can be replaced by a pleated representative on
each such pair of pants, and we are done.

The construction of a pleated representative on Sg is similar but simpler, with

α±i being replaced by a single αg. �
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Remark 3.8. Other surfaces which perform a similar function include harmonic (maps
of) surfaces and minimal surfaces. The use of one kind of surface or the other is often
a matter of taste. One technical advantage of pleated surfaces is that they generalize in
some sense to arbitrary δ-hyperbolic groups; see Definition 3.39.

3.2. Spectral Gap Theorem

Let M be a closed hyperbolic manifold. There is a natural bijection between
the set of conjugacy classes in π1(M) and the set of closed geodesics in M . It is a
fundamental fact that the function

{closed geodesics} length−−−−→ R

which assigns to a closed geodesic its length, is proper; i.e. there are only finitely
many closed geodesics with length bounded above by any constant. By contrast, if
G = π1(M), the function

{conjugacy classes in [G,G]} scl−→ R

which assigns to a (homologically trivial) conjugacy class its stable commutator
length, is not proper: i.e. there are always infinitely many distinct conjugacy
classes with uniformly bounded stable commutator length. However, some vestige
of properness holds in this context. If the stable commutator length of a conjugacy
class is sufficiently small, the length of the corresponding geodesic must also be
(comparably) small. This implies that at least for sufficiently small ǫ, the preimage
scl−1([0, ǫ]) is finite. One can define δ∞ to be the supremum of the set of ǫ with
this property; it turns out that there is a universal estimate 1

12 ≤ δ∞ ≤ 1
2 .

3.2.1. Length inequality. We now show that in a hyperbolic manifold group,
a conjugacy class with sufficiently small stable commutator length is represented
by an arbitrarily short geodesic. The material in this section is largely drawn from
§ 6 of [42].

Theorem 3.9 (Length inequality). For every dimension m and any ǫ > 0 there
is a positive constant δ(ǫ,m) such that if M is a complete hyperbolic m-manifold,
and a is a conjugacy class in π1(M) with scl(a) ≤ δ(ǫ,m) then if a is represented
by a geodesic γ, we have

length(γ) ≤ ǫ
Proof. Let S be a surface of genus g with one boundary component, and

f : S → M a map wrapping ∂S homotopically n times around γ. By Lemma 3.7,
after possibly reducing the genus of S if necessary, we can assume without loss of
generality that f, S is a pleated surface. This determines a hyperbolic structure
on S with geodesic boundary for which the map f is an isometry on paths. In
particular, length(∂S) = n · length(γ) and area(S) = −2πχ(S) = (4g − 2)π by
Gauss–Bonnet.

Choose ǫ which is small compared to the 2-dimensional Margulis constant ǫ(2).
We defer the precise choice of ǫ for the moment. Consider the thick-thin decompo-
sition of S with respect to 2ǫ in the sense of § 3.1.1. More precisely, let DS denote
the double of S (which is a closed hyperbolic surface), Let DSthick and DSthin de-
note the subsets of DS where the injectivity radius is ≥ 2ǫ and < 2ǫ respectively,
and define Sthick and Sthin to be equal to DSthick ∩ S and Dthin ∩ S respectively.
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The set Sthin is a union of open embedded annuli around very short simple
geodesics, together with a union of open embedded rectangles which run between
pairs of segments of ∂S which are distance < ǫ apart at every point. Each rectangle
doubles to an annulus in DSthin. If there are s annuli and r rectangles in Sthin,
then there are 2s + r annuli in DSthin. Components of DSthin are disjoint and
pairwise non-isotopic. Any maximal collection of disjoint pairwise non-isotopic
simple closed curves in a closed orientable surface of negative Euler characteristic
must decompose the surface into pairs of pants. Since the genus of DS is 2g, we
estimate 2s+r ≤ − 3

2χ(DS) = 6g−3. Hence r, the number of rectangle components
of Sthin, is at most 6g − 3.

By abuse of notation, we add to Sthick the annulus components of Sthin (if any),
so that Sthin consists exactly of the set of thin rectangles running between pairs of
arcs in ∂S. With this new definition, a point p ∈ ∂S is in Sthick if and only if the
length of an essential arc in S from p to ∂S is at least ǫ. In particular, the ǫ/2
neighborhood of ∂S ∩ Sthick is embedded, and there is an estimate

(4g − 2)π = area(S) ≥ area(Sthick) ≥
ǫ

2
length(∂S ∩ Sthick)

Since there are at most 6g− 3 components of Sthin, and each component intersects
∂S in two arcs, there are at most 12g − 6 components of ∂S ∩ Sthin. But

length(∂S ∩ Sthin) = length(∂S)− length(∂S ∩ Sthick) ≥ n · length(γ)− (8g − 4)
π

ǫ

where we used length(∂S) = n · length(γ) and the previous inequality. It follows
that there is at least one arc σ of ∂S ∩ Sthin satisfying

length(σ) ≥ n · length(γ)− (8g − 4)π/ǫ

12g − 6
=
n · length(γ)

12g − 6
− 2π

3ǫ

Hence Sthin contains a component R which is a rectangular strip of thickness
≤ ǫ with σ on one side. We denote the side opposite to σ by σ′. We call σ and σ′

the long sides of R. Because S is oriented, the orientations on opposite sides of R
are “anti-aligned”. We lift R to the universal cover Hn, and by abuse of notation
refer to the lifted rectangle as R. The sides σ, σ′ of R are contained in geodesics
l, l′ that cover γ. Without loss of generality, we can suppose that l is an axis for a,
and l′ is an axis for bab−1 where b(l) = l′. Moreover, the action of a on l and a′ on
l′ move points is (nearly) opposite directions.

Let p be the midpoint of σ, and let q be a point on the opposite side of R with
d(p, q) < ǫ. Suppose further that

length(σ) = length(σ′) > 2 · length(γ) + 4ǫ

It follows that bab−1(q) ∈ σ′ and there is r ∈ σ with d(bab−1(q), r) ≤ ǫ and therefore
d(bab−1(p), r) ≤ 2ǫ. Since d(q, bab−1(q)) = length(γ),

|d(p, r) − length(γ)| ≤ 2ǫ

and therefore d(p, a(r)) ≤ 2ǫ and we can estimate

d(p, abab−1(p)) ≤ 4ǫ

Similarly we estimate d(p, bab−1a(p)) ≤ 4ǫ. See Figure 3.3. In the figure, the
axes l and l′ are both roughly vertical. The element a translates points roughly
downwards along l, and bab−1 translates points roughly upwards along l′.
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pq

bab−1(q)
bab−1(p) r

a(r)

abab−1(p)

Figure 3.3. The composition abab−1 translates the midpoint p a
small distance

If we choose 4ǫ less than an m-dimensional Margulis constant ǫ(m) then abab−1

and bab−1a must commute. There are two possibilities, which break up into sub-
cases.

Case (abab−1 and bab−1a are hyperbolic with the same axis). In this case,
since they are conjugate, they are either equal or inverse.

Subcase (abab−1 = bab−1a). In this case a and bab−1 commute, and since
they are conjugate, they are equal or inverse. But a and bab−1 translate their
respective axes in almost opposite directions, so they cannot be equal; hence we
must have bab−1 = a−1 and therefore b has order 2, which is impossible in a
hyperbolic manifold group.

Subcase (abab−1 = a−1ba−1b−1). In this case a2 = ba−2b−1 and therefore b
has order 2, which is impossible as we already remarked.

Case (abab−1 and bab−1a parabolic with the same fixed point). z ∈ Sn−1
∞ . In

this case, a−1(abab−1)a is parabolic with fixed point a−1(z). But a−1(abab−1)a =
bab−1a which has fixed point z, so a−1(z) = z. Since a translates along an axis, it
is hyperbolic, and we have obtained a hyperbolic and a parabolic element in π1(M)
with a common fixed point at infinity. This is well-known to violate discreteness,
see for instance Maskit [147], p. 19 for details.

In every case we obtain a contradiction, and therefore we must have

2 · length(γ) + 4ǫ ≥ length(σ)

Putting this together with our earlier inequality, we obtain

2 · length(γ) + 4ǫ ≥ n · length(γ)

12g − 6
− 2π

3ǫ

Rearranging this gives

length(γ) ·
(

n

12g − 6
− 2

)
≤ 4ǫ+

2π

3ǫ
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The right hand side is a constant which depends only on the size of a Margulis
constant in dimension n. If scl is very small, we can make n/g very large, and
therefore obtain an upper bound on length(γ) which goes to 0 as scl→ 0 as claimed.

�

Remark 3.10. Note that when m < n a hyperbolic m-manifold group is also a hyperbolic
n-manifold group, and therefore δ(ǫ,m) ≥ δ(ǫ, n). In § 3.3 we will see that for small ǫ
there are estimates

δ(ǫ, 3) = O(ǫ1/2)

and

δ(ǫ, 3) ≥ δ(ǫ, n) ≥ O(ǫ(n−1)/(n+1))

in any fixed dimension n.

On the other hand, the dependence of δ on ǫ is not proper. In particular, as
ǫ → ∞, the constant δ(ǫ, n) is bounded above by some finite bound, independent
of dimension n. This universal upper bound should be thought of as a kind of
homological Margulis constant. In the next subsection, we will give an explicit
estimate for this constant.

3.2.2. Spectral Gap.

Theorem 3.11 (Spectral Gap Theorem). Let M be a closed hyperbolic mani-
fold, of any dimension ≥ 2. Let δ∞(M) be the first accumulation point for stable
commutator length on conjugacy classes in π1(M). That is, δ∞(M) is the small-
est number such that for any δ < δ∞(M), there are only finitely many conjugacy
classes a in π1(M) with scl(a) ≤ δ. Then

1

12
≤ δ∞(M) ≤ 1

2

Proof. We use the same setup and notation as in the proof of Theorem 3.9.
Since M is a closed hyperbolic manifold, there are only finitely many conjugacy
classes represented by geodesics shorter than any given length. So we suppose a
is a conjugacy class represented by a geodesic γ which is “sufficiently long” (in a
sense to be made precise in a moment). We choose ǫ and find a segment σ, as in
the proof of Theorem 3.9, and suppose we have

length(γ) + 4ǫ < length(σ)

(note the missing factor of 2). We choose p to be one of the endpoints of σ, so that

d(p, abab−1(p)) ≤ 4ǫ

Since M is fixed, there is some ǫ such that 4ǫ is smaller than the translation
length of any nontrivial element in π1(M). Hence abab−1 = id. But this means
bab−1 = a−1, and b has order 2, which is impossible in a manifold group.

Contrapositively, this means that we must have

length(γ) + 4ǫ ≥ length(σ)

and therefore, just as in the proof of Theorem 3.9, we obtain

length(γ) ·
(

n

12g − 6
− 1

)
≤ 4ǫ+

2π

3ǫ

In contrast to the case of Theorem 3.9, the right hand side definitely depends on
the manifold M . Nevertheless, for fixed M , it is a constant, and we see that for γ
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sufficiently long, g/n cannot be much smaller than 1/12. This establishes the lower
bound in the theorem.

We now establish the upper bound. M is a closed hyperbolic manifold, and
therefore π1(M) contains many nonabelian free groups. In fact, if a, b are arbitrary
noncommuting elements of π1(M), sufficiently high powers of a and b generate a free
group, by the ping-pong lemma. This copy of F2 is quasi-isometrically embedded,
and by passing to a subgroup, one obtains quasi-isometrically embedded copies of
free groups of any rank.

For each n, the element [an, bn] is in the commutator subgroup. In fact, it is a
commutator, and therefore satisfies scl([an, bn]) ≤ 1/2. In a free group, the words
xnynx−ny−n are cyclically reduced of length 4n. Since the embedding is quasi-
isometric, the geodesic representatives of [an, bn] have length which goes to infinity
linearly in n. It follows that these elements fall into infinitely many conjugacy
classes, and the upper bound is established. �

Remark 3.12. From the method of proof one sees for sufficiently long γ that if no translate
l′ of l is ǫ-close and anti-aligned with l along segments σ, σ′ whose length is at least
(λ+ ǫ) · length(γ) then scl(a) ≥ 1

12λ
.

For example, in a free group, a cyclically reduced word w and a conjugate of its inverse
cannot share a subword of length longer than 1

2
length(w). This leads to an estimate

scl(a) ≥ 1/6 in a free group, which is not yet optimal, but is still an improvement (a sharp
bound scl(a) ≥ 1/2 in a free group will be established in Theorem 4.111).

An estimate on the size of anti-aligned translates is essentially a kind of macroscopic
small cancellation property. One can give an alternative proof of Theorem 3.11 along these
lines using generalized small cancellation theory (see [65] for more details). For certain
groups, ordinary small cancellation theory can be applied, leading to sharp results; we
will discuss this approach in § 4.3.

3.3. Examples

3.3.1. Hyperbolic Dehn surgery. We elaborate on the discussion in § 3.1.2.

Lemma 3.13. Let M be a hyperbolic 3-manifold, and let γ be a geodesic loop
which is the core of an embedded solid torus of radius T . Then there is a 1-form
α supported in the tube of radius T about γ, with

∫
γ
α = length(γ) sinh(T ) and

‖dα‖ ≤ 1 + 1/(T − ǫ) for any ǫ > 0.

Proof. Let S be the solid torus of radius T about γ. On S, let r : S → R be
the function which measures distance to γ. Denote radial projection to γ by

p : S → γ

Parameterize γ by θ, so that dθ is the length form on γ, and
∫
γ dθ = length(γ).

Pulling back by p extends θ and dθ to all of S. We define

α = dθ · (sinh(T )− sinh(r))

on S, and extend it by 0 outside S. Notice that

‖dθ‖ = 1/ cosh(r)

on S. By direct calculation, dα = cosh(r)dθ ∧ dr on S, so ‖dα‖ = 1 at every point
of S.

The form α is not smooth along ∂S, but it is Lipschitz. Let βǫ(r) be a C∞

function on [0, T ] taking the value 1 in a neighborhood of 0 and the value 0 in a
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neighborhood of T , and with |β′ǫ| < 1/(T − ǫ) throughout, for some small ǫ. The
product αǫ := βǫ(r)α is C∞ and satisfies

dαǫ = dθ ∧ dr(βǫ(r) cosh(r) + β′ǫ(r) sinh(r))

so ‖dαǫ‖ ≤ 1 + 1/(T − ǫ). �

As in § 2.3.1 there is a de Rham quasimorphism qα associated to α by inte-
gration over based geodesic representatives of elements, after choosing a basepoint.
The homogenization of qα is obtained by integrating α over free geodesic loops.
A limit of such quasimorphisms as ǫ → 0 has defect at most 2π(T + 1)/T by
Lemma 2.58.

In order for Lemma 3.13 to be useful, we need a good estimate of T in terms
of length(γ).

Lemma 3.14 (Hodgson–Kerckhoff, p. 403 [111]). Let S be a Margulis tube in
a hyperbolic 3-manifold. Let T be the radius of S and length(γ) the length of the
core geodesic. Then there is an estimate

length(γ) ≥ 0.5404
tanh(T )

cosh(2T )

Note for γ sufficiently small this implies eT ≥ 1.03 length−1/2(γ).

Remark 3.15. In any dimension n a much cruder argument due to Reznikov [177] shows

that for sufficiently small γ there is a constant Cn such that eT ≥ Cn length−2/(n+1)(γ).

Now fix M , a 1-cusped hyperbolic 3-manifold. Fix generators m, l for H1(∂M)
for which l generates the kernel of H1(∂M ; Q)→ H1(M ; Q). Let Mp/q denote the
result of p/q Dehn surgery on M in these co-ordinates, and let γ(p/q), or just γ for
short, denote the core geodesic of the filled solid torus.

Theorem 3.16. Let Mp/q be the result of p/q surgery on M . Suppose Mp/q is
hyperbolic. When the core geodesic γ is contained in a Margulis tube of radius at
least T then

length(γ) ≤
(

7.986π scl(l)(T + 1)

Tp

)2

Proof. By Lemma 3.13 there is a homogeneous quasimorphism qα on π1(Mp/q)
with defect at most 2π, and satisfying

qα(γ) ≥ length(γ) sinh(T )
T

T + 1

On the other hand, the conjugacy class of γp contains the image of l under the
surjective homomorphism π1(Mγ)→ π1(Mp/q) induced by Dehn surgery, so by the
easy direction of Bavard’s Duality Theorem 2.70, we estimate

qα(γ)

4π
≤ scl(γ) ≤ scl(l)

p

Using the estimate from Lemma 3.14, a straightforward calculation gives the desired
conclusion. �

Neumann–Zagier [161] introduce the following quadratic form Q:

Q(p, q) =
(length of pm+ ql)2

area(∂S)
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Here ∂S is the horotorus boundary of the cusp of M , and pm+ ql is a straight
curve on the horotorus (in the intrinsic Euclidean metric) representingmplq. Equiv-
alently, if we scale the Euclidean cusp to have area 1, the form just becomes
Q(p, q) = length2(pm+ ql).

Lemma 3.17 (Neumann–Zagier, Prop. 4.3 [161]). With notation as above, in
the manifold Mp/q there is an estimate

length(γ) = 2πQ(p, q)−1 +O

(
1

p4 + q4

)

In particular, for q fixed, there is an estimate

lim
p→∞

(pm)2length(γ)/2π = 1

where m is the length of the meridian in the Euclidean cusp, normalized to have
area 1.

Remark 3.18. We see from Lemma 3.17 that the estimates obtained in Theorem 3.16 are
sharp, up to an order of magnitude. Together with Remark 3.15, this justifies the claims
made in Remark 3.10.

Theorem 3.19. Let M be a 1-cusped hyperbolic manifold, with notation as
above. Normalize the Euclidean structure on the cusp ∂S to have area 1, and let m
be the length of the shortest curve on ∂S which is homologically essential in M . If
length(m) < 1 then

scl(l) ≥ 1

4π length(m)2

Proof. For brevity, we denote (normalized) length(m) by m. We expand S
to a maximal horotorus. For a maximal horotorus, every essential slope on ∂S
has length at least 1, by Jørgensen’s inequality [147]. It follows that if m <
1, then area(∂S) ≥ 1/m2. Under p/q surgery for very large p, the area of the
boundary of a maximal embedded tube around γ is almost equal to that of area(∂S).
The boundary of such a tube is intrinsically Euclidean in its induced metric, and
is isometric to a torus obtained from a product annulus by gluing the two end
components with a twist. The boundary components of the annulus have have
length equal to the circumference of a circle in the hyperbolic plane of radius T ,
which is 2π sinh(T ). By elementary hyperbolic trigonometry, the height of the
annulus is equal to length(γ) cosh(T ). Hence the area of the boundary of the tube
is 2π length(γ) sinh(T ) cosh(T ).

So we can estimate

area(∂S) = lim
p→∞

2π length(γ) sinh(T ) cosh(T )

and therefore

eT ≥
√

2

m
√
π

length−1/2(γ)

Using this estimate in the place of Lemma 3.14 in Theorem 3.16, and applying
Lemma 3.17, we obtain

2π

(pm)2
= lim

p→∞
length(γ) ≤

(
4scl(l)mπ

√
2π

p

)2
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and therefore

scl(l) ≥ 1

4πm2

as claimed �

In other words, one can estimate scl(l) from below from the geometry of the
cusp.

3.3.2. Manifolds with small δ∞. Note that the proof of Theorem 3.11 actu-
ally shows that if M is any closed hyperbolic manifold, and a is a conjugacy class in
π1(M) represented by a geodesic γ, then if length(γ) is sufficiently long, scl(a) ≥ δ
for any δ < 1/12.

Example 3.20. Let S be a closed nonorientable surface with χ(S) = −1. A
presentation for π1(S) is

〈a, b, c | [a, b] = c2〉
so the conjugacy class of c satisfies scl(c) ≤ 1/4. On the other hand, for a suitable
choice of hyperbolic structure on S, the geodesic in the free homotopy class of c
can be arbitrarily long.

Question 3.21. What are the optimal constants in Theorem 3.11?

We will see in § 4.3.4 that the upper bound of 1/2 is sharp, and is realized in
free and orientable surface groups.

Example 3.22. For any group G and any elements a, b ∈ G the element [a, b]
satisfies scl([a, b]) ≤ 1/2. Moreover, by Proposition 2.104, if a and b do not generate
a free rank 2 subgroup of G, we must have scl([a, b]) < 1/2.

However, a theorem of Delzant [64] shows that in any word-hyperbolic group
G (see § 3.4 for a definition) there are only finitely many conjugacy classes of non-
free 2-generator subgroups. Note that this class of groups includes fundamental
groups of closed hyperbolic manifolds of any dimension. Therefore only finitely
many conjugacy classes of elements [a, b] with scl([a, b]) < 1/2 can be constructed
in a fixed hyperbolic group G this way.

3.3.3. Complex length. If M is a closed hyperbolic 3-manifold, a conju-
gacy class a ∈ π1(M) determines a geodesic γ which has a complex length, de-
noted lengthC(γ), defined as follows. The hyperbolic structure on M determines
a representation ρ : π1(M) → PSL(2,C). The trace tr(a) is well-defined up to
multiplication by ±1. We set

lengthC(γ) = cosh−1(tr(a)/2)

which is well-defined up to integral multiples of 2πi. The real part of lengthC is the
usual length of γ, and the imaginary part is the angle of rotation on the normal
bundle νγ to γ induced by parallel transport around γ.

If γ is trivial in H1(M ; Q) there is a slightly different C-valued complex length,
denoted lengthH(γ), and defined as follows. Let N(γ) be an open solid torus
neighborhood of γ, and let T be the torus boundary of M − N(γ). Let l be the
slope on T which generates the kernel of the map H1(T ; Q)→ H1(M−N(γ); Q). If
M is obtained fromM−N(γ) by p/q filling with respect to some basis (q is arbitrary,
depending on a choice of meridian m, but p is well-defined) then l determines a
framing of νγp, the normal bundle of the p-fold cover of γ. This framing determines
the imaginary part of lengthH(γ); in words, minus the imaginary part is the angle
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that the framing l twists relative to parallel transport around γ. Note that the
imaginary part of lengthH(γ) and the imaginary part of lengthC(γ) will only agree
up to integral multiples of 2πi/p. Note that for a fixed choice of meridian m one
can estimate

imaginary part of lengthH(γ) = some function of p, q +O(1)

In terms of differential forms: near γ we can define cylindrical co-ordinates
θ, φ, r where θ parameterizes the length along γ and r is distance to γ, as in
Lemma 3.13, and where φ is the angular co-ordinate, taking values (locally) in
R/2πZ. The co-ordinate φ is not globally well-defined unless lengthC(γ) has imag-
inary part which is a multiple of 2πi, but the forms dφ and dθ are well-defined.
With respect to this co-ordinate system,

lengthH(γ) =
1

p

∫

l

dθ + idφ

In analogy to the construction in Lemma 3.13, define β = dφ(cosh(T ) − cosh(r))
and observe that

‖d(α+ iβ)‖ = 1

on T − γ. One must be careful, since dφ does not extend over γ. Nevertheless, if S
is a surface in M −N(γ) of genus g whose boundary wraps m times around l, we
can represent S by a pleated surface in M . For sufficiently large p or q the length
(in the usual sense) of γ will be very short, and any surface S which intersects
γ transversely will have area at least eT . In particular, for all but finitely many
surgeries, a pleated representative of S in M is disjoint from γ, and we obtain an
estimate of the form

|lengthH(γ)| ≤ some function of scl(l), p, q

valid for large p or q, which refines the inequality in Theorem 3.16.

3.4. Hyperbolic groups

We would like to generalize Theorem 3.9 and Theorem 3.11 beyond fundamental
groups of hyperbolic manifolds to more general (word) hyperbolic groups. There
are two essential ingredients in the proof of these theorems:

(1) the existence of a pleated surface representative in each homotopy class
(2) the existence of a Margulis constant in each dimension n

In fact, the proof of Theorem 3.11 only uses the existence of a Margulis constant
in dimension 2, and the fact that in a given closed hyperbolic manifold there is a
uniform positive lower bound on the translation length of any element.

We will see that both of these ingredients have acceptable generalizations to
the context of hyperbolic groups, and therefore we obtain generalizations of these
theorems with similar (geometric) proofs.

Alternatively, these theorems can be proved by explicitly constructing quasi-
morphisms with suitable properties and appealing to (the easy direction of) Bavard
duality. The construction of quasimorphisms on hyperbolic groups extends to
groups acting (weakly properly discontinuously) on hyperbolic spaces, such as map-
ping class groups, groups acting on trees, Out(Fn) and so on, as we shall see in
subsequent sections.

Where it pertains to quasimorphisms and stable commutator length, the ma-
terial in the remainder of this chapter draws substantially on [13, 12, 49]. We also
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appeal to [98, 24, 156] for facts about hyperbolic spaces and groups, and [21, 148]
for facts about the geometry of the curve complex.

3.4.1. Definitions and basic properties. Let G be a group with a finite
symmetric generating set A. Let CA(G) be the Cayley graph of G with respect to
A. In other words, CA(G) is the graph with one vertex for each element of G, and
one edge from vertices g to g′ for each pair of elements g, g′ ∈ G and each a ∈ A
for which g′ = ga. We make CA(G) into a path metric space by declaring that the
length of every edge is 1. The left action of G on itself extends to a simplicial (and
therefore isometric) action of G on CA(G). Providing A contains no elements of
order 2, the action is free and cocompact, with quotient a wedge of |A| circles.

Definition 3.23. A path metric space is δ-hyperbolic for some δ ≥ 0 if for
every geodesic triangle abc, every point in the edge ab is contained in the union of
the δ-neighborhoods of the other two edges:

ab ⊂ Nδ(bc) ∪Nδ(ca)
A group G with a finite symmetric generating set A is δ-hyperbolic if CA(G) is
δ-hyperbolic as a path metric space.

G is word-hyperbolic (or simply hyperbolic) if there is a δ ≥ 0 and a finite
symmetric generating set A for which CA(G) is δ-hyperbolic.

Remark 3.24. Note that our definition of a δ-hyperbolic space requires it to be a path
metric space; other definitions (e.g. in terms of the Gromov product) do not require this.

Example 3.25. Finitely generated free groups are hyperbolic. Fundamental
groups of compact surfaces with χ < 0 are hyperbolic.

Example 3.26. Let M be a closed Riemannian manifold with sectional curva-
ture uniformly bounded above by a negative number. Then π1(M) is hyperbolic.

Example 3.27. A group with a presentation satisfying the small cancellation
condition C(7) (see § 4.3) is hyperbolic.

Example 3.28. A group G = 〈Xm | R〉 on a finite generating set Xm with
a “random” set of relations R, drawn according to a suitable probability law (see
[163]) is hyperbolic with probability 1.

In some sense, “most” groups are hyperbolic. On the other hand, many nat-
urally occurring classes of groups (e.g. amenable groups, SL(n,Z) for n ≥ 3, fun-
damental groups of cusped hyperbolic manifolds of dimension at least 3) are not
hyperbolic. Nevertheless, hyperbolic groups are central in geometric group theory.

Remark 3.29. If G is δ-hyperbolic with respect to a generating set A, there is an n
depending only on δ so that if An denotes the set of elements in G of word length at most
n, then G is 7-hyperbolic with respect to the generating set An. Hence δ may be taken to
be some fixed small number at the expense of possibly increasing |A|. On the other hand,
δ cannot be made arbitrarily small: a graph is 0-hyperbolic if and only if it is a tree. If
CA(G) is a tree, then G is free, and A is a free generating set for G.

We assume the reader is familiar with basic elements of coarse geometry: (k, ǫ)-
quasi-isometries, quasigeodesics, etc. We summarize some of the main properties
of δ-hyperbolic spaces below (see [98] or [24] for details):

Theorem 3.30 (Basic properties of hyperbolic spaces). Let X be a δ-hyperbolic
path metric space.
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(1) Morse Lemma. For every k, ǫ there is a universal constant C(δ, k, ǫ)
such that every (k, ǫ)-quasigeodesic segment with endpoints p, q ∈ X lies
in the C-neighborhood of any geodesic joining p to q.

(2) Quasigeodesity is local. For every k, ǫ there is a universal constant
C(δ, k, ǫ) such that every map φ : R→ X which restricts on each segment
of length C to a (k, ǫ)-quasigeodesic is (globally) (2k, 2ǫ)-quasigeodesic.

(3) Ideal boundary. There is an ideal boundary ∂X functorially associated
to X, whose points consist of quasigeodesic rays up to the equivalence rela-
tion of being a finite Hausdorff distance apart. There is a natural topology
on ∂X for which it is metrizable. If X is proper, ∂X is compact. More-
over, any quasi-isometric embedding X → Y between hyperbolic spaces
induces a continuous map ∂X → ∂Y .

If G is hyperbolic, we denote the ideal boundary of its Cayley graph by ∂G.
As a topological space, this does not depend on the choice of a generating set, so
we call it the ideal boundary (or just the boundary) of G. The left action of G on
itself induces an action of G on ∂G by homeomorphisms. Every element g ∈ G is
either finite order (i.e. is elliptic), or fixes two points p± in ∂G with “source-sink”
dynamics (i.e is hyperbolic). That is, for any q ∈ ∂G − p± and any neighborhood
U of p+, the translate gn(q) lies in U for all sufficiently large positive n. The point
p+ is called the attracting fixed point of g, and p− is called the repelling fixed point.
Note that p− is the attracting fixed point and p+ the repelling fixed point for g−1.

In fact, hyperbolic groups are completely characterized by the dynamics of their
action on the boundary. The following characterization is due to Bowditch.

Theorem 3.31 (Bowditch, [20]). Let M be a perfect metrizable compact Haus-
dorff space. Let G be a group acting faithfully on M by homeomorphisms. Let M3

denote the space of distinct ordered triples of elements of M ; i.e. the open subset of
M ×M ×M consisting of triples which are pairwise distinct. If the induced action
of G on M3 is properly discontinuous and cocompact, then G is hyperbolic, and
there is a G-equivariant homeomorphism from M to ∂G.

It is straightforward to show that a hyperbolic group acts on its boundary as
in Theorem 3.31 and therefore this theorem gives a complete characterization of
hyperbolic groups. IfG is hyperbolic and ∂G contains more than two points, Klein’s
ping-pong argument applied to the action of G on ∂G shows that G contains many
(quasi-isometrically embedded) nonabelian free groups of arbitrary finite rank. A
hyperbolic group for which ∂G contains at most two points is said to be elementary;
a group is elementary hyperbolic if and only if it is virtually cyclic.

Definition 3.32. If X is a metric space, and g ∈ Isom(X), the translation
length of g, denoted τ(g), is the limit

τ(g) = lim
n→∞

dX(p, gn(p))

n
where p ∈ X is arbitrary.

The triangle inequality implies that this limit exists and is independent of p
(and is therefore a conjugacy invariant). If X is a path metric space, and g fixes
some geodesic l and acts on it as a translation, then τ(g) = dX(q, g(q)) for any q ∈ l.
If G is a word-hyperbolic group and A is a generating set, then for any g ∈ G the
translation length τA(g), or just τ(g) if A is understood, is the translation length
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of g thought of as an element of Isom(CA(G)) under the natural left action of G on
itself. Algebraically, τ(g) = limn→∞ ‖gn‖A/n where ‖ · ‖ denotes word length with
respect to the generating set A.

Example 3.33. Let G be any group, and let S denote the set of commutators
in G. Then the commutator subgroup [G,G] acts on CS([G,G]) by isometries, and
for every g ∈ [G,G] there is an equality scl(g) = τ(g).

The following Lemma is an easy consequence of the local finiteness of CA(G),
the fact that quasigeodesity is local, and the Morse Lemma.

Lemma 3.34 (Axes in hyperbolic Cayley graphs). Let G be δ-hyperbolic with
respect to the generating set A. Then there is a positive constant C(δ, |A|) such that
every g ∈ G either has finite order, or there is some n ≤ C such that gn fixes some
bi-infinite geodesic axis lg and acts on it by translation.

For a proof, see Theorem 5.1 from [78], or [24].

Corollary 3.35. Let G be δ-hyperbolic with respect to the generating set A.
Then there is a positive constant C′(δ, |A|) such that every g ∈ G either has finite
order, or satisfies τ(g) ≥ C′.

Proof. Since CA(G) is a graph in which every edge has length 1, elements
of Isom(CA(G)) act on CA(G) simplicially. It follows that if an element γ ∈
Isom(CA(G)) acts on some geodesic l by translation, then τ(γ) is an integer. Now
apply Lemma 3.34. �

Remark 3.36. The same argument shows that for a fixed hyperbolic group G, there is a
constant n(δ, |A|) so that τ (g) ∈ 1

n
Z for all g ∈ G.

3.4.2. Mineyev’s flow space. The main difference between hyperbolic man-
ifolds and Cayley groups of hyperbolic groups is synchronous exponential conver-
gence of asymptotic geodesics. Two asymptotic geodesic rays in the hyperbolic
plane have parameterizations by length such that the distance between correspond-
ing points goes to 0 like e−t. In a word-hyperbolic group, asymptotic geodesic
rays eventually come within distance δ of each other, but may not get any closer.
It is this synchronous exponential convergence which lets one estimate area from
topology in hyperbolic surfaces, and it is crucial for our applications.

It is a fundamental insight due originally to Gromov that the geometry of a
δ-hyperbolic space becomes much more tractable when one considers as primitive
elements not points, but (bi-infinite) geodesics. Mineyev gave a precise codification
of this insight, and constructed a geometric flow space associated to a δ-hyperbolic
metric space, in which synchronous exponential convergence of asymptotic geodesics
is restored.

A bi-infinite geodesic in a δ-hyperbolic space X contains two distinct geodesic
rays, which are asymptotic to distinct points in ∂X . Conversely, if X is a proper
metric space (i.e. the closed balls of any radius are compact) then any two distinct
points in ∂X are the endpoints of some infinite geodesic.

We use the abbreviation ∂2X to denote the space of ordered pairs of distinct
points in ∂X :

∂2X = {(a, b) ∈ ∂X × ∂X for which a 6= b}
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Mineyev’s flow space is not quite a metric space but rather a pseudo-metric
space, i.e. a space together with a non-negative function d(·, ·) on pairs of points
which satisfies all the axioms of a metric space except that d(p, q) should be strictly
positive for distinct points p and q. The reason is that Mineyev’s space is a union
(in a suitable sense) of oriented geodesics. Two geodesics with opposite orientation
corresponding to the same (equivalence class of) geodesic in X cannot be distin-
guished by the distance function. However, there is a natural quotient of Mineyev’s
flow space in which these distinct oriented geodesics are identified, and the function
d descends to a genuine metric on the quotient.

Theorem 3.37 (Mineyev’s flow space [156]). Let X, dX be a δ-hyperbolic graph
whose vertices all have valence ≤ n. Then there exists a pseudo-metric space
F(X), d× called the flow space of X with the following properties:

(1) F(X) is homeomorphic to ∂2X×R. The factors (p, q, ·) under this home-
omorphism are called the flowlines.

(2) There is an R-action on F(X) (the geodesic flow) which acts as an iso-
metric translation on each flowline (p, q, ·).

(3) There is a Z/2Z action x → x∗ which anti-commutes with the R action,
which satisfies d×(x, x∗) = 0, and which interchanges the flowlines (p, q, ·)
and (q, p, ·).

(4) There is a natural action of Isom(X) on F(X) by isometries. If g ∈
Isom(X) is hyperbolic with fixed points p± in ∂X then g fixes the flowline
(p−, p+, ·) of F(X) and acts on it as a translation by a distance which
we denote τ(g). This action of Isom(X) commutes with the R and Z/2Z

actions.
(5) There are constants C ≥ 0 and 0 ≤ λ < 1 such that for all triples

a, b, c ∈ ∂X, there is a natural isometric parameterization of the flow-
lines (a, c, ·), (b, c, ·) for which there is exponential convergence

d×((a, c, t), (b, c, t)) ≤ Cλt

Explicitly, (a, c, 0) is the point on (a, c, ·) closest to b, and similarly for
(b, c, 0) and a (as measured by suitable horofunctions).

(6) If X admits a cocompact isometric action, then up to an additive error,
there is an Isom(X) equivariant (k, ǫ) quasi-isometry between F(X), d×

and X, dX .

Moreover, all constants as above depend only on δ and n.

This theorem conflates several results and constructions in [156]. The pseudo-
metric d× is defined in § 3.2 and § 8.6 on a slightly larger space which Mineyev
calls the symmetric join. The flow space, defined in § 13, is a natural subset of this
space. The basic properties of the R,Z/2Z and Isom(X) action are established in
§ 2. The remaining properties are subsets of Theorem 44 (p. 459) and Theorem 57
(p. 468).

There are a number of subtle details in the statement of this theorem, which
require some discussion.

Bullet (3) implies that after quotienting F(X) by Z/2Z, the flowlines (p, q, ·)
and (q, p, ·) become identified, and we can speak of the (unparameterized) geodesic

joining p and q in the quotient which we denote F(X). By abuse of notation, for
each pair of distinct points p, q ∈ ∂X , let (p, q, ·) denote a particular isometric

parameterization of the unique geodesic in F(X) joining p to q.
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Bullet (5) is precisely the synchronous exponential convergence of flowlines
which is achieved in hyperbolic space, but which is not achieved in hyperbolic
groups. We refer to the special isometric synchronous parameterizations of asymp-
totic geodesics in this bullet as nearest point parameterizations. Note that nearest
point parameterizations also make sense for ideal triangles in hyperbolic space, or
hyperbolic space scaled to have constant curvature K for any K < 0. We define an
ideal triangle in F(X) to be the union of three (unparameterized) geodesics joining
distinct a, b, c ∈ ∂X in pairs.

The additive error in Bullet (6) spoiling genuine equivariance is necessary in
case Isom(X) is indiscrete or does not act freely on X . If X is the Cayley graph of
a torsion-free hyperbolic group G, then G acts freely on both F(X) and on X , and
therefore the quasi-isometry can be chosen to be truly G-equivariant.

Lemma 3.38. Let ∆ be an ideal triangle in F(X). For each K < 0, let ∆K

be the edges of an ideal triangle in the complete simply-connected 2-manifold of
constant curvature K. For each K, let ι be the map ι : ∆K → ∆, unique up to
permutation of vertices, which is an isometry on each edge, and which is compatible
with the nearest point parameterizations. Then for suitable K depending only on n
and δ, the map ιK is Lipschitz, with Lipschitz constant depending only on n and δ.

Proof. Multiplying distances by K−1/2 scales curvature by K. On an ideal
triangle in H2, with the nearest point parameterization, there is an estimate

d((a, c, t), (b, c, t)) ≤ e−t

So it suffices to make K big enough so that e−|K|
−1/2 ≤ λ. Since λ depends only

on n and δ, so does K. Since C depends only on n and δ, so does the Lipschitz
constant. �

3.4.3. Spectral gap theorem. With a suitably modified definition, we can
construct pleated surfaces in F(X) just as we did in hyperbolic manifolds.

Definition 3.39. A pleated surface (possibly with boundary) in F(X) consists
of the following data:

(1) a hyperbolic surface S containing a geodesic lamination L whose comple-
mentary regions are all ideal triangles, and for which ∂S ⊂ L

(2) a homomorphism ρ : π1(S)→ Isom(F(X))

(3) if L̃ denotes the preimage of L in the universal cover S̃, a map ι : L̃ →
F(X), equivariant with respect to the covering space action of π1(S) on

L̃ and the action of π1(S) on F(X) by ρ, which multiplies distances by
a fixed constant on each edge, and is compatible with the nearest point
parameterizations.

Notice that with this definition, the image of an element of π1(∂S) under ρ
has infinite order, and fixes two points in ∂X . Notice too that the map ι is not
typically an isometry on leaves of L̃, but is rather an isometry after the metric on
S has been scaled by some factor. The reason is so that we can insist that the map
ι is Lipschitz, as in Lemma 3.38.

For a given ρ : π1(S)→ Isom(F(X)) it is by no means clear which laminations L
on S are realized by pleated surfaces for some hyperbolic structure on S. However,
if L is proper (i.e. every leaf accumulates only on the boundary) then the natural
analogues of Lemma 3.6 and Lemma 3.7 are valid, with essentially the same proof, at



70 3. HYPERBOLICITY AND SPECTRAL GAPS

least in the case where ρ(π1(S)) does not contain any elliptic or parabolic elements.
For the sake of simplicity therefore, we state our theorems below for torsion free
hyperbolic groups.

Lemma 3.40. Suppose Isom(X) is torsion-free and cocompact, and ρ : π1(S)→
Isom(X) is incompressible (i.e. injective on essential simple loops). Then there is
a pleated surface in the sense of Definition 3.39 compatible with ρ.

Proof. We show how to choose a hyperbolic metric on S so that ι as in
Definition 3.39 exists. Explicitly, choose K as in Lemma 3.38. We will construct a
metric on S of constant curvature K; scaling this metric completes the proof.

Let g ∈ π1(S) be in the conjugacy class of the loop ∂S. If l is a geodesic

whose ends spiral around ∂S, the ends of a lift l̃ are asymptotic to two fixed points
of conjugates of g. Using ρ and equivariance, the images of these fixed points
in ∂X are well-defined and distinct. As in Lemma 3.7, we can choose a proper
full lamination L on S (i.e. one for which every complementary region is an ideal
triangle, and each geodesic spirals around ∂S at both ends) for which the three
points in ∂π1(S) associated to each ideal triangle are mapped to three distinct
points in ∂X .

For each edge of L̃ there is a corresponding flowline of F(X) we would like to
map it to. If we fix an ideal triangle of constant curvature K, there is a unique
map ι from its boundary to F(X) which is isometric on each edge and compatible
with the nearest point parameterizations at each of the three endpoints.

An edge in L̃ contained in two distinct triangles in S̃ inherits two different
parameterizations; glue the corresponding ideal triangles in S̃ with a shear which is
the difference of these two parameterizations. Then ι as defined on the two triangles
is compatible on this edge. Since L is proper, the result of this gluing is connected,
and determines a (scaled) hyperbolic structure on S̃ and a Lipschitz map ι : L̃ →
F(X) which is an isometry on each edge. This construction is equivariant, and

therefore the scaled hyperbolic structure on S̃ covers a scaled hyperbolic structure
on S. �

From this fact we can deduce analogues of Theorem 3.9 and Theorem 3.11.

Theorem 3.41 (Calegari–Fujiwara [49], Thm. A). Let G be a torsion-free group
which is δ-hyperbolic with respect to a symmetric generating set |A|. Then there
is a positive constant C(δ, |A|) > 0 such that for all nontrivial a ∈ G there is an
inequality scl(a) ≥ C.

Proof. Let a ∈ G be given. Let X denote the Cayley graph CA(G), and

construct F(X) and F(X). Let S be a surface of genus g with one boundary
component, and ρ : π1(S) → G a homomorphism taking the generator of π1(∂S)
to an. By Lemma 3.40, after reducing the genus of S if necessary, we can find a
pleated surface (S,L) and ι : L̃→ F(X) with notation as in Definition 3.39. Let C
be such that ι is C-Lipschitz.

As in the proof of Theorem 3.9, for any ǫ > 0, we can find a component σ of
∂S ∩ S<ǫ of length at least

length(σ) ≥ length(∂S)

12g − 6
− 2π

3ǫ

and a rectangular strip R of thickness ≤ ǫ with σ on one side. For the sake of
notation, and by analogy with Theorem 3.9, we define length(γ) = length(∂S)/n.
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If τ denotes the translation length of ρ(a) on a flowline of F(X), then τ ≤
C · length(γ). Assume length(σ) > length(γ) + 4ǫ and let p be one endpoint of

σ. Let σ̃ ⊂ L̃ be a lift of σ to S̃ and let p̃ be the corresponding lift of p. Let
a, bab−1 ∈ π1(S) be as in the proof of Theorem 3.9. Then we have

d×(ι(p̃), ρ(abab−1)(ι(p̃))) ≤ 4Cǫ

This implies that the translation length of ρ(abab−1) on F(X) is at most 4Cǫ, and
therefore, by bullet (6) of Theorem 3.37 the translation length of ρ(abab−1) on X is
at most 4Ckǫ. On the other hand, by Corollary 3.35, since G is torsion free, there
is a positive lower bound C′ on the translation length of any nontrivial element of
G. So if we choose ǫ so that 4Ckǫ < C′ we can conclude that ρ(bab−1) = ρ(a)−1;
which implies ρ(b) has finite order in G, contrary to the hypothesis that G is torsion
free.

This contradiction implies that length(σ) ≤ length(γ) + 4ǫ and therefore

length(γ) ·
(

n

12g − 6
− 1

)
≤ 4ǫ+

2π

3ǫ

On the other hand, since a is nontrivial, Ck · length(γ) ≥ τ(a) ≥ C′ (note that ad-
ditive constants in quasi-isometries disappear when comparing translation lengths).
Putting this together with our earlier estimate, and rearranging gives

scl(a) ≥ 1

12

(
C′

C′ + Ck ·
(
kǫ+ 2π

3ǫ

)
)

Finally, all constants which appear depend only on δ and |A|. �

Theorem 3.42 (Calegari–Fujiwara [49], Thm. B). Let G be a torsion-free
nonelementary word hyperbolic group. Let δ∞(G) be the first accumulation point
for stable commutator length on conjugacy classes in G. Then

1

12
≤ δ∞(G) ≤ 1

2

Proof. With setup and notation as in Theorem 3.41 we obtain the estimate

length(γ) ·
(

n

12g − 6
− 1

)
≤ 4ǫ+

2π

3ǫ

If γ is sufficiently long, this implies n/(12g − 6) is arbitrarily close to 1, so scl(a)
cannot be much smaller than 1/12. This establishes the lower bound.

The upper bound follows exactly as in the proof of Theorem 3.11 by finding
a quasi-isometrically embedded copy of F2, the free group of rank 2, in G (which
exists because G is nonelementary). �

3.5. Counting quasimorphisms

The geometric methods we have used to this point can be pushed only so
far. The construction of Mineyev’s flow space and the fine properties of its metric
are very delicate and involved, and there are no realistic prospects of extending
them more generally (e.g. to non-proper δ-hyperbolic spaces). Instead we turn to
a generalization of Brooks’ counting quasimorphisms (see § 2.3.2) due to Epstein–
Fujiwara [78] for hyperbolic groups, and Fujiwara [82] in general.
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3.5.1. Definition and properties. Let G be a group acting simplicially on
a δ-hyperbolic complex X (not assumed to be locally finite).

Definition 3.43. Let σ be a finite oriented simplicial path in X , and let σ−1

denote the same path with the opposite orientation. A copy of σ is a translate a ·σ
where a ∈ G.

If we fix a basepoint p ∈ X , then for any a ∈ G there is a geodesic γ from p
to a(p). It is no good to try to define a counting function by counting (disjoint)
copies of σ in γ, since γ is in general not unique. Instead, one considers a function
which is sensitive to all possible paths from p to a(p).

Definition 3.44. Let σ be a finite oriented simplicial path in X , and let
p ∈ X be a base vertex. For any oriented simplicial path γ in X , let |γ|σ denote
the maximal number of disjoint copies of σ contained in γ. Given a ∈ G, define

cσ(a) = d(p, a(p))− inf
γ

(length(γ)− |γ|σ)

where the infimum is taken over all oriented simplicial paths γ in X from p to a(p).
Define the (small) counting quasimorphism hσ by the formula

hσ(a) = cσ(a)− cσ−1(a)

Since length and | · |σ take integer values on simplicial paths, the infimum of
length(γ)− |γ|σ is achieved on some path γ. Any path with this property is called
a realizing path for cσ.

One may similarly define a “big” counting function Cσ which counts all copies
of σ in each path γ, and a “big” counting quasimorphism Hσ. For the moment
these are just names; we will show that hσ is a quasimorphism, and estimate its
defect in terms of δ.

If p, q are any two vertices in X , one can define

cσ([p, q]) = d(p, q)− inf
γ

(length(γ)− |γ|σ)

where the infimum is taken over all paths from p to q.

Lemma 3.45. One has the following elementary facts:

(1) cσ([p, q]) = cσ−1([q, p])
(2) |cσ([p, q])− cσ([p, q′])| ≤ d(q, q′)
(3) If q is on a realizing path for σ from p to r, then

cσ([p, r]) ≥ cσ([p, q]) + cσ([q, r]) ≥ cσ([p, r])− 1

Proof. Reversing a realizing path for cσ gives a realizing path for cσ−1 . A
realizing path from p to q can be concatenated with a path of length d(q, q′) to
produce some path from p to q′, and vice versa. If q is on a realizing path from p
to r, then it can intersect at most one copy of σ in that path. �

In the sequel, we always assume that the length of σ is at least 2. It follows
that length(γ)−|γ|σ ≥ length(γ)/2 for any path γ, and we obtain an a priori upper
bound on d(p, a(p))− length(γ) + |γ|σ.

Realizing paths have the following universal geometric property:

Lemma 3.46 (Fujiwara, Lemma 3.3 [82]). Suppose length(σ) ≥ 2. Any realizing
path for cσ is a (2, 4)-quasigeodesic.
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Proof. Let γ be a realizing path, and q, r points on γ. Let α be the subpath
of γ from q to r, and let β be a geodesic with the same endpoints. Then β intersects
at most two disjoint copies of σ in γ. Let γ′ be obtained from γ by cutting out the
subpath from q to r and replacing it with β. We have

|γ′|σ ≥ |γ|σ − 2− |α|σ ≥ |γ|σ − 2− length(α)/2

since each copy of σ in α has length at least 2 by assumption. On the other hand,
since γ is a realizing path,

length(γ′)− |γ′|σ ≥ length(γ)− |γ|σ
Since length(γ′) − length(γ) = length(β) − length(α), putting these estimates to-
gether gives

length(β) ≥ length(α)/2 − 2

�

Remark 3.47. More generally, one can obtain better constants

K =
length(σ)

length(σ)− 1
, ǫ =

2 · length(σ)

length(σ)− 1

which depend explicitly on the length of σ. The argument is essentially the same as that
of Lemma 3.46.

By bullet (1) from Theorem 3.30 (i.e. the “Morse Lemma”), there is a constant
C(δ) such that any realizing path for cσ from p to a(p) must be contained in the
C-neighborhood of any geodesic between these two points. In particular, we have
the following consequence:

Lemma 3.48. There is a constant C(δ) such that for any path σ in X of length
at least 2, and for any a ∈ G, if the C-neighborhood of any geodesic from p to a(p)
does not contain a copy of σ, then cσ(a) = 0.

Finally, the defect of hσ can be controlled independently of length(σ):

Lemma 3.49 (Fujiwara, Prop. 3.10 [82]). Let σ be a path of length at least 2.
Then there is a constant C(δ) such that D(hσ) ≤ C.

Proof. It is evident from the definitions that hσ is antisymmetric, so it suffices
to bound |hσ(a) + hσ(b) + hσ(b

−1a−1)|. More generally, let p1, p2, p3 be any three
points in X . We will bound |∑i hσ([pi, pi+1])| where here and in the sequel, indices
are taken mod 3.

Let αi and α′i be realizing paths for cσ and cσ−1 respectively from pi to pi+1.
By δ-thinness and Lemma 3.46, we can find points qi, q

′
i in each αi, α

′
i so that all 6

points are mutually within distance N = N(δ) of each other.
By definition, |∑i hσ([pi, pi+1])| = |

∑
i cσ(αi)− cσ−1(α′i)|. By Lemma 3.45

cσ(αi) ≥ cσ([pi, qi]) + cσ([qi, pi+1]) ≥ cσ(αi)− 1

and

cσ−1(α′i) ≥ cσ−1([pi, q
′
i]) + cσ−1([q′i, pi+1]) ≥ cσ−1(α′i)− 1

By Lemma 3.45 again, |cσ([qi, pi+1])− c−1
σ ([pi+1, q

′
i+1])| ≤ N for each i, and there-

fore D ≤ 6 + 6N by the triangle inequality and the estimates above. �
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3.5.2. Weak proper discontinuity. Lemma 3.49 is not by itself enough to
deduce the existence of nontrivial quasimorphisms on a group G acting simplicially
on a δ-hyperbolic complex X , as the following example shows.

Example 3.50. Let G = SL(2,Z[1/2]). The ring Z[1/2] admits a discrete 2-
adic valuation, with valuation ring Z. Let A = SL(2,Z) thought of as a subgroup
of G, and let B be the group of matrices of the form

B =

{(
a 2−1b
2c d

)}

where
(
a b
c d

)
is in SL(2,Z). The intersection C = A∩B is the subgroup of SL(2,Z)

consisting of matrices of the form
(
a b
c d

)
where c is an even integer, and the group

G is abstractly isomorphic to A ∗C B.
There is a natural simplicial action of G on the Bass–Serre tree associated to

its description as an amalgamated free product. Note that C has index 3 in both
A and B, and therefore the Bass–Serre tree is regular and 3-valent. The action of
G on this tree is simplicial and minimal. Nevertheless, Q(G) = 0, as follows from
a Theorem of Liehl (see Example 5.38).

In order to show that hσ is nontrivial, one wants to use Lemma 3.48. To apply
this lemma, it is only necessary to find elements g such that if l is an axis for g
on X , there are no translates of l−1 (i.e. l with the opposite orientation) which
stay almost parallel to l on a scale large compared to the translation length of
g, say of size Nτ(g) where τ(g) is the translation length of g. Informally, such a
pair of translates are said to be “anti-aligned”. If p is in the midpoint of such a
pair of anti-aligned axes l and l′ = h(l), the element hgnh−1gn translates gm(p) a
uniformly short distance, for all n,m with |n|+ |m| small compared to N .

This discussion motivates the following definition, introduced in the paper [13]
by Bestvina–Fujiwara:

Definition 3.51. Suppose a group G acts simplicially on a δ-hyperbolic com-
plex X . The action of an element g ∈ G is weakly properly discontinuous if for
every x and every C > 0 there is a constant N > 0 such that the set of elements
f ∈ G for which

dX(x, fx) ≤ C and dX(gNx, fgNx) ≤ C
is finite.

To see how this addresses the issue of anti-aligned axes, suppose hi are a se-
quence of elements for which hi(l) is anti-aligned with l (i.e. the axes are C apart
with opposite orientation) on bigger and bigger segments centered at x ∈ l, and
where C is as in Lemma 3.48. Then every fi of the form fi = hig

nh−1
i gn satisfies

dX(x, fix) ≤ C and dX(gNx, fig
Nx) ≤ C for any fixed N,n providing i is suffi-

ciently big. If there are only finitely many distinct fi, then for some i and for some
distinct n,m we conclude

hig
nh−1

i gn = hig
mh−1

i gm

and therefore
hig

n−mh−1
i = gm−n

In other words, some nontrivial power of g is conjugate to its inverse.
Conversely, suppose no nontrivial power of g is conjugate to its inverse, and

suppose that the action of g on X is weakly properly discontinuous. Let σ be a
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fundamental domain for the action of g on an axis, and let σN be a fundamental
domain for gN . Then for sufficiently big n, no translate of σ−N is contained in any
realizing path for gn, and therefore the homogenization of hσN is nontrivial on g.

Remark 3.52. To make this discussion rigorous, one must replace “axis” throughout by
“quasi-axis”. This extension is routine and does not lead to any more substantial difficul-
ties. See [13] for details.

3.5.3. Crossing number and growth in surface groups. We briefly men-
tion a nontrivial application of counting quasimorphisms. Let S be a closed, ori-
entable surface of genus at least 2.

Definition 3.53. If a ∈ π1(S) is primitive, the crossing number of a, denoted
cr(a), is the number of self-intersections of the geodesic representative of the free
homotopy class of a in S. If b = an then define cr(an) = n2cr(a).

Actually, crossing number is a somewhat subtle notion. For precise definitions,
see § 4.2.1.

Remark 3.54. Note that the function cr(·) is characteristic (i.e. constant on orbits of
Aut(G)).

For each non-negative integer n let Sn ⊂ π1(S) denote the set consisting of
elements with cr(a) ≤ n. Note that Sn generates π1(S) for all n ≥ 0. For each
a ∈ π1(S), let wn(a) denote the word length of a in the generators Sn.

The following is the main theorem of [44]:

Theorem 3.55 (Calegari [44], Thm. A). Let S be a closed, orientable surface
of genus at least 2. Then there are constants C1(S), C2(S), C3(S) such that for any
non-negative integers n,m and any a ∈ π1(S) with cr(a) > 0 there is an inequality

wn(am) ≥ C1m√
n+ C2

− C3

A rough outline of the proof is as follows. Fix a finite generating set A for
π1(S), and consider the Cayley graph CA(S). For each a, we build a counting
quasimorphism h associated to a multiple of a which has an axis in CA(S). If
b ∈ π1(S) satisfies h(b) 6= 0, then an axis for b contains a long segment which
is close to the axis of a. This implies that the geodesic representative of b has
a long segment which is close to the geodesic representative of a, and therefore
b has a definite number of self-intersections. More precisely, if a realizing path
for b contains p copies of a fundamental domain for the axis of a, the geodesic
representative of b contains at least p2 self-intersections. In particular, one obtains
an estimate |h(b)| . O(

√
n)+O(1). Since the defect of h is independent of a, b, the

proof follows.

3.5.4. Separation theorem. If G is δ-hyperbolic with finite generating set
|A|, the action of G on the Cayley graph CA(G) is properly discontinuous (and
therefore certainly weakly properly discontinuous). It follows that there are many
nontrivial counting quasimorphisms on G. In fact, one has the following theorem,
which generalizes Theorem 3.41:

Theorem 3.56 (Calegari–Fujiwara [49], Thm. A′). Let G be a group which is
δ-hyperbolic with respect to some symmetric generating set A. Let a be nontorsion,
with no positive power conjugate to its inverse. Let ai ∈ G be a collection of
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elements with T := supi τ(ai) finite. Suppose that for all nonzero integers n,m and
all b ∈ G and indices i we have an inequality

ami 6= banb−1

Then there is a homogeneous quasimorphism φ ∈ Q(G) such that

(1) φ(a) = 1 and φ(ai) = 0 for all i

(2) The defect satisfies D(φ) ≤ C(δ, |A|)
(

T
τ(a) + 1

)

Proof. By Lemma 3.34, after replacing each ai by a fixed power whose size
depends only on δ and |A|, we can assume that each ai acts as translation on some
geodesic axis li. Similarly, let l be a geodesic axis for a. Choose some big N (to
be determined), and let σ be a fundamental domain for the action of aN on l. The
quasimorphism φ will be a multiple of the homogenization of hσ, normalized to
satisfy φ(a) = 1. We need to show that if N is chosen sufficiently large, there are
no copies of σ or σ−1 contained in the C-neighborhood of any li or l−1, where C is
as in Lemma 3.48.

Suppose for the sake of argument that there is such a copy, and let p be the
midpoint of σ. The segment σ is contained in a translate b(l). The translation
length of ai on li is τ(ai) ≤ T , and the translation length of bab−1 on b(l) is τ(a)
(the case of l−1 is similar and is omitted). For big N , we can assume the length of
σ is large compared to τ(a) and τ(ai). Then for each n which is small compared to
N , the element wn := aiba

nb−1a−1
i ba−nb−1 satisfies d(p, wn(p)) ≤ 4C. Since there

are less than |A|4C elements in the ball of radius 4C about any point, eventually
we must have wn = wm for distinct n,m. But this implies

aiba
nb−1a−1

i ba−nb−1 = aiba
mb−1a−1

i ba−mb−1

and therefore a−1
i and ban−mb−1 commute. Since G is hyperbolic, commuting

elements have powers which are equal, contrary to the hypothesis that no conjugate
of a has a power equal to a power of ai.

This contradiction implies that τ(ai) + |A|4Cτ(a) ≥ Nτ(a). On the other
hand, D(hσ) is uniformly bounded, by Lemma 3.49, and satisfies hσ(a

Nn) ≥ n.
Homogenizing and scaling by the appropriate factor, we obtain the desired result.

�

In fact, let
∑
niai be any integral chain which is nonzero in BH1 . Without

loss of generality, we may replace this chain by a rational chain with bounded
denominators, with the same scl, and such that no distinct ai, aj have conjugate
powers. After reordering, suppose τ(a1) ≥ τ(ai) for all i, and let φ be as in
Theorem 3.56, so that φ(a1) = 1 and φ(ai) = 0 for i 6= 1. The defect D(φ) is
bounded above by a constant depending only on δ and |A|. The coefficient of a1

is bounded below by a positive constant depending only on δ and |A|. Hence by
Bavard duality, scl(

∑
niai) is bounded below by a positive constant depending only

on δ and |A|. In other words we have proved:

Corollary 3.57. Let G be hyperbolic. Then scl is a norm on BH1 (G). More-
over, the value of scl on any nonzero integral chain in BH1 (G) is bounded below by
a positive constant that depends only on δ and |A|.
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3.6. Mapping class groups

In this section we survey some of what is known about scl in mapping class
groups. Our survey is very incomplete, since our main goal is to state an analogue
of Theorem 3.41 for mapping class groups, and to give the idea of the proof.

Definition 3.58. Let S be an oriented surface (possibly punctured). The
mapping class group of S, denoted MCG(S), is the group of isotopy classes of
orientation-preserving self-homeomorphisms of S.

Example 3.59 (Dehn twist). Let γ be an essential simple curve in S. A
right-handed Dehn twist in γ is the map tγ : S → S supported on an annulus
neighborhood γ × [0, 1] which takes each curve γ × t to itself by a positive twist
through a fraction t of its length. If the annulus is parameterized as R/Z × [0, 1],
then in co-ordinates, the map is given by (θ, t)→ (θ + t, t).

By abuse of notation, we typically refer to both a specific homeomorphism and
its image in MCG(S) as a Dehn twist.

Remark 3.60. The inverse of a right-handed Dehn twist is a left-handed Dehn twist.
Sometimes, right-handed Dehn twists are called positive Dehn twists. Notice that the
handedness of a Dehn twist depends on an orientation for S but not on an orientation for
γ.

The mapping class group is a fundamental object in 2-dimensional topology,
and the literature on it is vast. Our treatment of it in this section is very cursory,
and intended mainly just to introduce definitions and notation. For simplicity,
we restrict attention throughout this section to mapping class groups of closed,
orientable surfaces, although most of the results generalize to mapping class groups
of surfaces with boundary or punctured surfaces. We refer the interested reader to
[16] or [80] for background and details.

An element of MCG(S) induces an outer automorphism of π1(S) (outer, be-
cause homeomorphisms are not required to keep the basepoint fixed). This fact
connects geometry with algebra. In fact, the connection is more intimate than it
may appear at first glance, because of

Theorem 3.61 (Dehn–Nielsen). The natural map MCG(S) → Out(π1(S)) is
an injection, with image equal to subgroup consisting of automorphisms which per-
mute the peripheral subgroups.

In particular, for S closed, MCG(S) is isomorphic to Out(π1(S)). For each S,
the group MCG(S) is finitely presented. A finite generating set consisting of Dehn
twists was first given by Dehn; a description of a finite set of relations (with respect
to a slightly different generating set) was first given by Hatcher–Thurston [106].

The mapping class group of any closed orientable S is generated by finite order
elements; in particular, its Abelianization is finite. If the genus of S is at least 3,
the Abelianization is trivial:

Theorem 3.62 (Powell, [171]). Let S be a closed, orientable surface of genus
at least 3. Then MCG(S) is perfect.

A short proof of this theorem is due to Harer:

Proof. It is well-known that MCG(S) is generated by Dehn twists about
nonseparating curves (e.g. Lickorish’s generating set [134]). By the classification of
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surfaces, any two nonseparating curves may be interchanged by a homeomorphism
of S; it follows that H1(MCG(S); Z) is generated by the image t of a twist about
any nonseparating curve.

If the genus of S is at least 3, then S contains a non-separating four-holed
sphere. The lantern relation, in MCG(4-holed sphere), says that the product of
Dehn twists in the boundary components of a 4-holed sphere is equal to the product
of twists in three curves in the sphere which separate the boundary components
in pairs, and intersect each other in two points. The image of this relation in
H1(MCG(S); Z) is t4 = t3, so MCG(S) is perfect. �

3.6.1. Right-handed Dehn twists. Interesting lower bounds in scl can be
obtained using gauge theory. This is a subject which has been pioneered by
Kotschick, in [130, 131] and Endo–Kotschick [73, 74].

The following theorem is essentially due to Endo–Kotschick [73] although for
technical reasons, the result is stated in that paper only for powers of a single
separating Dehn twist. This technical assumption is removed in [23], and the
result extended to products of positive twists in disjoint simple curves in [131].

Theorem 3.63 (Endo–Kotschick [73], Kotschick [131]). Let S be a closed
orientable surface of genus g ≥ 2. If a ∈ MCG(S) is the product of k right-handed
Dehn twists along essential disjoint simple closed curves γ1, · · · , γk then

scl(a) ≥ k

6(3g − 1)

It is beyond the scope of this survey to give a complete proof, but the way in
which gauge theory enters the picture is the following. The product a = tγ1tγ2 · · · tγk

lets one build a Lefschetz fibration E over the disk with fiber S which is singular
over k distinct points, and such that the restriction of E to ∂D is a surface bundle
with monodromy a. Over each singular point pi, the fiber is a copy of S “pinched”
along the curve γi, and such that the monodromy of a small loop around pi is the
twist tγi . Since the curves γi are all disjoint, we can adjust the fiber structure on E
so there is only one singular fiber, which degenerates along all the γi simultaneously.
Since the twists are all right-handed, E admits a symplectic structure. Take an n-
fold branched cover of the disk over the singular point, and pull back the fibration.
After a suitable resolution, we get a new symplectic Lefschetz fibration E′ over D
with one singular fiber, such that the monodromy around the boundary is an, and
such that the singular fiber has kn vanishing cycles, which come in parallel families
of the γi.

An expression of an as a product of commutators in MCG(S) defines a nonsin-
gular S bundle E′′ over a once-punctured surface F , and by gluing E′′ to E′ along
their boundaries in a fiber-respecting way, one obtains a closed symplectic mani-
fold W . Then the engine of the proof is the well-known theorem of Taubes [194] in
Seiberg–Witten theory which shows that for a minimal symplectic 4-manifold with
b+2 > 1 the canonical class is represented by a symplectically embedded surface
without spherical components. From this one derives inequalities on intersection
numbers of certain surfaces in W and the result follows.

It is crucial in Theorem 3.63 that the twists in the different curves should all
have the same handedness.
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Example 3.64 (Kotschick, Endo–Kotschick [131, 74]). Let α be an essential
simple closed curve, and let g ∈ MCG(S) be such that g(α) ∩ α = ∅, and g(α) is
not isotopic to α. Let h = tαt

−1
g(α). Since α and g(α) are disjoint,

hn = tnαt
−n
g(α) = tnαgt

−n
α g−1 = [tnα, g]

so scl(h) = 0. Note in this case that there is always some f ∈ MCG(S) which
interchanges α and g(α). For such an f we have fhf−1 = h−1, so that h = 0 in
BH1 .

As another example, let α, β, γ be disjoint nonseparating non-isotopic simple
closed curves, and define h = t−1

α t−1
β t2γ . If g interchanges α and γ, and g′ inter-

changes β and γ, then hk = [tkγ , g][t
k
γ , g
′]. In this case, all powers of h are in distinct

conjugacy classes, and h is not in BH1 . This example shows that H is not closed in
B1(MCG(S)).

Interesting upper bounds on scl can be obtained by explicit examples.

Example 3.65 (Korkmaz [129]). Let a ∈ MCG(S) be a Dehn twist in a non-
separating closed curve. Then a10 can be written as a product of two commutators.

Let a1, · · · , a5 be curves on S as in Figure 3.4, where a4, a5 are nonseparating.
For each i, let ti denote a positive Dehn twist in ai. Notice that t1, t3, t4, t5 all

a1

a3

a2a4 a5

Figure 3.4. The curves a1, · · · , a5 in S

commute. Moreover, a neighborhood of a1 ∪ a2 is a once-punctured torus. An
element of the mapping class group of a punctured torus is determined by its
action on homology, and one may verify that the relation t1t2t1 = t2t1t2 holds
by an elementary calculation, and similarly with t3 in place of t1. The relation
t4t5 = (t1t2t3)

4 is a little harder to see, but still elementary.
Following [129], we calculate

t4t5 = (t1t2t3)(t1t2t3)(t1t2t3)(t1t2t3)

= (t1t2t1)(t3t2t3)(t1t2t1)(t3t2t3)

= (t2t1t2)(t2t3t2)(t2t1t2)(t2t3t2)

Since t2 commutes with both t4 and t5, this gives

t4t5 = t1(t
2
2t3t

−2
2 )t42t1t

−1
2 (t32t3t

−3
2 )t−1

2 t62

If α = t22(a3) and β = t32(a3) then this yields

(t4t
−1
α t5t

−1
1 ) = t42(t1t

−1
2 tβt

−1
2 )t62

Each bracketed expression is of the form tat
−1
b tct

−1
d for simple curves a, b, c, d. It

can be verified in each case that the curves a∪ b lie in S in the same combinatorial
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pattern as d ∪ c. Therefore there is g ∈ MCG(S) for which g(a) = d and g(b) = c.
But this means

tat
−1
b tct

−1
d = tat

−1
b gtbt

−1
a g−1 = [tat

−1
b , g]

That is, each of the two bracketed expressions are commutators, and the proof
follows.

In case genus(S) = 2, one obtains

1

30
≤ scl(t) ≤ 3

20

where the first inequality comes from Theorem 3.63.

Let t denote a Dehn twist in a nonseparating curve (for concreteness). One
may ask to what extent scl(t) depends on genus(S). In fact, it turns out that
Theorem 3.63 gives the correct order of magnitude. This follows from a general
phenomenon, especially endemic in transformation groups, which we describe.

Example 3.66 (Münchhausen trick). Suppose we are given a group G acting
on a set Y . Suppose further that there is an identity a =

∏n
i=1[bi, ci] in G where

a, bi, ci all have support in some subset X ⊂ Y . Suppose finally that there is g ∈ G
such that X ∩ gi(X) = ∅ for 0 < i ≤ m.

If H is a subgroup of G consisting of elements with support in X , define ∆ :
H → G by

∆(h) = hhghg
2 · · ·hgm−1

where the superscript notation denotes conjugation. The condition on g ensures
∆ is a homomorphism, and therefore cl(∆(a)) ≤ n. Now define an element j =

a(a2)g(a3)g
2 · · · (am)g

m−1

. We have the identity [j, g] = ∆(a)(a−m)g
m

, which ex-
hibits am as a product of at most n+ 1 commutators. If m is large compared to n,
then scl(a) is small.

Corollary 3.67 (Kotschick). If t is a Dehn twist in a non-separating curve,
there is an estimate scl(t) = O(1/g).

Proof. The lower bound is Theorem 3.63. The upper bound follows by ex-
hibiting t as a product of commutators of elements bi, ci supported in some fixed
surface T with boundary, which can be included into a surface S of arbitrary genus.
Then apply the Münchhausen trick. �

Remark 3.68. Many variations on Corollary 3.67 are proved in [132] and [29], and the
same trick appears in the proof of Theorem 5.13. The trick works whenever there is
“enough room” in Y for many disjoint copies of X; in many important applications, X is
(in some sense) a copy of Y . The terminology “Münchhausen trick” is taken from [118],
and “refers to the story about how the legendary baron allegedly succeeded in pulling
himself out of a quagmire by his own hair”. This trick goes back at least to [81] (in fact
one could argue it goes back to Zeno of Elea).

3.6.2. The complex of curves. For most surfaces S, the group MCG(S)
is not word-hyperbolic. Nevertheless, it acts naturally on a certain δ-hyperbolic
simplicial complex, called the complex of curves. This complex was first introduced
by Harvey [103], but it was Masur–Minsky [148] who established some of its most
important basic properties. A similar complex was also introduced by Hatcher–
Thurston [106]. A good introductory reference to the complex of curves is [182].
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Definition 3.69 (Harvey [103]). Let S be a closed, orientable surface of genus
at least 2. The complex of curves, denoted C(S), is the simplicial complex whose k
simplices consist of isotopy classes of pairwise disjoint non-parallel essential simple
closed curves on S.

With this definition, C(S) is a simplicial complex of dimension 3g − 4. The
natural permutation action of MCG(S) on the set of isotopy classes of essential
simple curves on S induces a simplicial action of MCG(S) on C(S).

Remark 3.70. Similar definitions can be made when S has smaller genus, or has punctures
or boundary components. See [148].

We can think of C(S) as a metric space, by taking every edge to have length 1
and every simplex to be equilateral. In the sequel, we are typically interested not
in C(S) itself, but in its 1-skeleton. Usually, by abuse of notation, when we talk
about C(S) we really mean its 1-skeleton. It should be clear from context which
sense is meant in each case.

The main property of C(S) from our point of view is the following theorem:

Theorem 3.71 (Masur–Minsky [148]). Let S be as above. Then C(S) is δ-
hyperbolic for some δ(S).

An element a ∈ MCG(S) is reducible if it permutes some finite set of isotopy
classes of disjoint, non-parallel essential simple closed curves. It turns out that an
element a ∈MCG(S) has a finite orbit in C(S) if and only if a is either finite order
or reducible. An element which is neither finite order nor reducible is said to be
pseudo-Anosov.

Theorem 3.72 (Masur–Minsky [148]). Let a ∈ MCG(S) be pseudo-Anosov.
Then every orbit of a on C(S) is a quasigeodesic.

In particular, every pseudo-Anosov element has a positive translation length
τ(a). In fact, Bowditch [21] proves the following analogue of Lemma 3.34:

Theorem 3.73 (Bowditch, Theorem 1.4 [21]). Let S be a closed, orientable
surface of genus at least 2. Then there is a constant C(S) such that for every
pseudo-Anosov a ∈ MCG(S), there is n ≤ C such that an fixes some bi-infinite
geodesic axis la and acts on it by translation.

3.6.3. Acylindricity. The action of MCG(S) on C(S) is not proper; the sta-
bilizer of a vertex is isomorphic to a copy of MCG(S′) for some smaller surface S′.
Nevertheless, Bestvina–Fujiwara ([13]) show that every pseudo-Anosov element of
MCG(S) acts weakly properly discontinuously on C(S). As a corollary, they deduce
the following theorem:

Theorem 3.74 (Bestvina–Fujiwara, [13], Theorem 12). Let G be a subgroup
of MCG(S) which is not virtually Abelian. Then the dimension of Q(G) is infinite.

In particular, if φ is pseudo-Anosov, and p, q are sufficiently far apart on an
axis for φ, only finitely many elements of MCG(S) move both p and q a bounded
distance. This is enough to show that every pseudo-Anosov element either has a
(bounded) power conjugate to its inverse, or has positive scl. To obtain uniform
estimates on scl, one needs a slightly stronger statement, captured in the following
theorem of Bowditch:
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Theorem 3.75 (Bowditch, Acylindricity Theorem [21]). Let S be a closed
orientable surface of genus g ≥ 2. For any t > 0 there exist positive constants
C1(t, S), C2(t, S) such that given any two points x, y ∈ C(S) with d(x, y) ≥ C1 there
are at most C2 elements a ∈MCG(S) such that d(x, ax) ≤ t and d(y, ay) ≤ t.
Remark 3.76. A similar theorem is also proved by Masur–Minsky [148].

We are now in a position to state the analogue of Theorem 3.41 and Theo-
rem 3.56 for mapping class groups.

Theorem 3.77 (Calegari–Fujiwara [49], Thm. C). Let S be a closed orientable
surface of genus at least 2. Then there are constants C1(S), C2(S) > 0 such that for
any pseudo-Anosov element a ∈ MCG(S) either there is a positive integer n ≤ C1

for which an is conjugate to its inverse, or else there is a homogeneous quasimor-
phism φ ∈ Q(MCG(S)) with φ(a) = 1 and D(φ) ≤ C2.

Moreover, suppose ai ∈ MCG(S) are a (possibly infinite) collection of elements
with T := supi τ(ai) finite. Suppose that for all nonzero integers n,m and all
b ∈ MCG(S) and indices i we have an inequality

ami 6= banb−1

Then there is a homogeneous quasimorphism φ ∈ Q(MCG(S)) such that

(1) φ(a) = 1 and φ(ai) = 0 for all i

(2) The defect satisfies D(φ) ≤ C2(S)
(

T
τ(a) + 1

)

Proof. The proof is essentially the same as the proof of Theorem 3.56, with
Theorem 3.73 used in place of Lemma 3.34. After replacing a and ai by (bounded)
powers, one assumes that they stabilize axes l and li respectively. For each n, let
wn := aiba

nb−1a−1
i ba−nb−1. If b(l) is close to li on a segment σ which is long

compared to τ(a), τ(ai) and C1 (as in Theorem 3.75), then one can find points p
and p′ on li with d(p, p′) ≥ C1 such that d(p, wn(p)) ≤ t and d(p′, wn(p′)) ≤ t for
all n small compared to length(σ).

One needs to know that two pseudo-Anosov elements in MCG(S) which com-
mute have powers which are proportional (the pseudo-Anosov hypothesis cannot
be omitted here); see e.g [198]. Otherwise, the remainder of the proof is copied
verbatim from the proof of Theorem 3.56. �

Remark 3.78. In contrast with the case of word-hyperbolic groups, it should be noted that
there are infinitely many conjugacy classes of pseudo-Anosov elements in MCG(S) with
bounded translation length. In fact, the first accumulation point for translation length in
MCG(S) is O(1/g log(g)), where g is the genus of S; see Theorem 1.5 of [79].

The separation property of the quasimorphisms produced by Theorem 3.77 is
very powerful, and has a number of consequences, including the following.

Corollary 3.79. Let Σ be a subset of MCG(S) consisting only of reducible
elements, and let G be the subgroup it generates. Suppose G contains a pseudo-
Anosov element a with no power conjugate to its inverse. Then the Cayley graph
of G with respect to the generating set Σ has infinite diameter.

Proof. By Theorem 3.77 there is a homogeneous quasimorphism φ defined on
MCG(S) with φ(an) = n which vanishes on Σ. If b is an element of G with length
at most m in the generators Σ, then φ(b) ≤ (m− 1)D(φ). �
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The hypotheses of this Corollary are satisfied whenever G is not reducible or
virtually cyclic.

Example 3.80 (Broaddus–Farb–Putman [25]). The Torelli group, denoted
I(S), is the kernel of the natural map MCG(S) → Aut(H1(S)) = Sp(2g,Z). It
is not a perfect group; the kernel of the map

I(S)→ H1(I(S); Z)/torsion

is denoted K(S), and is generated by Dehn twists about separating simple closed
curves. This is an infinite (in fact, characteristic) generating set. On the other
hand, by Corollary 3.79 the diameter of the Cayley graph of K with respect to this
generating set is infinite.

3.7. Out(Fn)

Very recently, the methods discussed in this chapter have been used to construct
many nontrivial quasimorphisms on Out(Fn), the group of outer automorphisms of
a free group. The main results described in § 3.7.2 were announced by Hamenstädt
in May 2008, and first appeared in (pre-)print in Bestvina–Feighn [12]. In what
follows we restrict ourselves to describing the construction of suitable δ-hyperbolic
simplicial complexes on which Out(Fn) acts, and summarizing the important prop-
erties of these complexes and the action without justification.

3.7.1. Outer space. In what follows, Out(Fn) denotes the outer automor-
phism group of the free group Fn of rank n ≥ 2. The modern theory of Out(Fn) is
dominated by several deep analogies between this group and mapping class groups.
The cornerstone of these analogies is Culler–Vogtmann’s construction [61] of Outer
space, which serves as an analogue of Teichmüller space.

Definition 3.81. Fix Fn, a free group of rank n. An action of Fn on an R-tree
T is minimal if there is no proper Fn-invariant subtree of T . Let ρ : Fn → Isom(T )
be an action which is minimal, free and discrete. Associated to any such ρ there is
a length function ℓρ ∈ RFn where ℓρ(g) is the translation length of ρ(g) on T .

Outer space, denoted in the sequel PT, is the projectivization of the space of
length functions of minimal, free, discrete actions of Fn on R-trees, with the weak
topology. Its compactification PT is obtained by adding weak limits of projective
classes of length functions.

If ρ : Fn → Isom(T ) is a minimal, free, discrete action of Fn on an R-tree,
and ϕ : Fn → Fn is an automorphism, then ρ ◦ ϕ−1 : Fn → Isom(T ) is another
action. If ϕ is inner, the length functions ℓρ and ℓρ◦ϕ−1 are equal. Hence the group
Out(Fn) acts in a natural way on PT, and this action extends continuously to its
compactification.

Outer space has a natural cellular structure, which can be described as follows.
For each action ρ : Fn → Isom(T ), let Γρ be the quotient of T by ρ(Fn), thought
of as a metric graph together with an isomorphism of its fundamental group with
Fn (i.e. a marking), which is well-defined up to conjugacy. The cells of PT are the
actions which correspond to a fixed combinatorial type of Γρ, together with a choice

of marking. This cellular structure extends naturally to PT.
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3.7.2. Fully irreducible automorphisms.

Definition 3.82. An element ϕ ∈ Out(Fn) is fully irreducible if for all proper
free factors F of Fn and all k > 0 the subgroup ϕk(F ) is not conjugate to F .

The main result of [12] is as follows:

Theorem 3.83 (Bestvina–Feighn [12], p.11). For any finite set ϕ1, · · · , ϕk of
fully irreducible elements of Out(Fn) there is a connected δ-hyperbolic graph X
(depending on the ϕi) together with an isometric action of Out(Fn) on X such that

(1) the stabilizer in Out(Fn) of a simplicial tree in PT has bounded orbits
(2) the stabilizer in Out(Fn) of a proper free factor F ⊂ Fn has bounded orbits
(3) the ϕi all have nonzero translation lengths

The construction of the graph X is somewhat complicated, and follows a tem-
plate developed by Bowditch [20] to study convergence group actions. A fully
irreducible automorphism ψ has one stable and one unstable fixed point in the
boundary of PT, which we denote T±ψ . A tree T is irreducible if it is of the form

T+
ψ for some fully irreducible ψ.

Choose sufficiently small closed neighborhoods D±i of T±ϕi
. In PT, let M be the

subspace of all irreducible trees. Define an annulus to be an ordered pair of closed
subsets of M either of the form (ψ(D−i )∩M, ψ(D+

i )∩M) or (ψ(D+
i )∩M, ψ(D−i )∩M),

where ψ ∈ Out(Fn) and D±i are as above. Denote the set of annuli (defined as
above) by A. The pair (M,A) depends on the choice of the ϕi, and both M and A

admit natural actions by Out(Fn).
For any subset K ⊂ M and any annulus A = (A−, A+) write K < A if K ⊂

intA−, and write A < K if K ⊂ intA+. If A = (A−, A+) and B = (B−, B+) are
two annuli, write A < B if intA+ ∪ intB− = M. Then for any pair of subsets K,L
of M, define (K|L) ∈ [0,∞] to be the biggest number of annuli Ai in A such that

K < A1 < A2 < · · · < An < L

Let Q denote the set of ordered triples of distinct points in M. If A = (a1, a2, a3)
and B = (b1, b2, b3) are elements of Q, then define

ρ(A,B) = max({ai, aj}|{bk, bl})
where the maximum is taken over all i 6= j and k 6= l. The Bowditch complex of
the pair (M,A), is the graph whose vertices are the elements of Q and whose edges
are the pairs of elements A,B ∈ Q with ρ(A,B) ≤ r for some sufficiently big r.
Bowditch [20] gives certain axioms for an abstract pair (M,A) which ensure that
the associated Bowditch complex is δ-hyperbolic. The substance of Theorem 3.83
is the proof that (M,A) as above satisfies Bowditch’s axioms.

In order to construct quasimorphisms, one must also know that many elements
of Out(Fn) act weakly properly discontinuously. This is the following proposition,
also from [12]:

Proposition 3.84 (Bestvina–Feighn [12], p.24). For ϕi and X as in Theo-
rem 3.83, the action of each ϕi on X is weakly properly discontinuous; i.e. for
every x ∈ X and every C > 0 there is a constant N > 0 such that the set of
ψ ∈ Out(Fn) for which

dX(x, ψx) ≤ C and dX(ϕNi x, ψϕ
N
i x) ≤ C

is finite.
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Theorem 3.83 allows one to construct many quasimorphisms on Out(Fn) by the
method of § 3.5. Proposition 3.84 implies that these quasimorphisms are nontrivial
and independent. Consequently, one concludes that Q(Out(Fn)) is infinite dimen-
sional; in fact ([12] Corollary 4.28), for any subgroup Γ of Out(Fn) which contains
two independent fully irreducible automorphisms, Q(Γ) is infinite dimensional.
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