
Chapter 3. The analogue of the measure W for a class of linear
diffusions.

In Chapters 1 and 2, we have, starting from penalisation results, associated to Wiener measure
in dimensions 1 and 2 a positive and σ-finite measure W (resp. : W(2) in dimension 2) on the
canonical space (Ω,F∞). In this 3rd Chapter, we shall prove the existence of a measure which
is analogous to W, in the more general situation of a large class of linear diffusions. This
class is described in Section 3.2. Our approach in this Chapter does not use any penalisation
result. Then, in Section 3.3, we shall particularize these results about linear diffusions to the
situation of Bessel processes with dimension d = 2(1 − α) (0 < d < 2, or 0 < α < 1). Thus,
we shall obtain the existence of the measure W(−α)(0 < α < 1) on

(
C(R → R+), F∞

)
and

we shall then indicate its relationship with penalisation problems. Section 3.1 is devoted to
a presentation of our hypotheses and notations.

3.1 Main hypotheses and notations.

3.1.1 Our framework is that of Salminen-Vallois-Yor. [SVY], that is :
(Xt, t ≥ 0) is a R+ = [0,∞[ valued diffusion, with 0 an instantaneously reflecting barrier.
The infinitesimal generator G of (Xt, t ≥ 0) is given by :

G f(x) =
d

dm

d

dS
f(x) (x ≥ 0) (3.1.1)

where the scale function S is a continuous, strictly increasing function s.t. :

S(0) = 0, S(+∞) = +∞ (3.1.2)

and m(dx) is the speed measure of X ; we assume m({0}) = 0.

3.1.2 The semi-group of (Xt, t ≥ 0) admits p(t, x, y) as density with respect to m :

Px(Xt ∈ dy) = p(t, x, y)m(dy) (3.1.3)

with p continuous in the 3 variables, and p(t, x, y) = p(t, y, x). X̂ denotes the process X,
killed at T0 = inf{t ; Xt = 0}. We denote by p̂ its density with respect to m :

P̂x(X̂t ∈ dy) = Px(Xt ∈ dy ; 1t<T0) := p̂(t, x, y)m(dy) (3.1.4)

with p̂(t, x, y) = p(t, x, y)Px(T0 > t|Xt = y).

3.1.3 The local time process
We denote by {Lyt ; t ≥ 0, y ≥ 0} the jointly continuous family of local times of X, which
satisfy the density of occupation formula :

∫ t

0
h(Xs)ds =

∫ ∞

0
h(y)Lyt m(dy) (3.1.5)

for any h : R+ → R+, Borel. It is easily deduced from (3.1.5) and (3.1.3) that :

Ex(dt L
y
t ) = p(t, x, y)dt (3.1.6)

We denote by P τl0 the law, under P0, of (Xt, t ≤ τl) with τl := inf{t ≥ 0 ; L0
t > l}. We have

also : (
S(Xt) − Lt, t ≥ 0

)
is a martingale (3.1.7)
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a property which results from (3.1.1) and (3.1.5)
(
see [DM, RVY] for such a property in the

context of Bessel processes
)
.

3.1.4 The process X, conditioned not to vanish, is a Doob h-transform of X̂, with h(x) =

S(x). In other terms : if P ↑
x is the law of X conditioned not to vanish :

P ↑
x (Ft) =

1

S(x)
Ex[Ft S(Xt)1t<T0 ] (3.1.8)

for any Ft ∈ b(Ft). In particular, the semi-group of the conditioned process is given by :

P ↑
x (Xt ∈ dy) =

p̂(t, x, y)

S(x)
S(y)m(dy) (x ≥ 0) (3.1.9)

Later, it will be interesting to use the following :

P ↑
0 (Xt ∈ dy) = fy,0(t) S(y)m(dy) (3.1.10)

where fy,0(t) admits the following description :

fy,0(t) = lim
x↓0

p̂(t, x, y)

S(x)
(3.1.11)

fy,0(t)dt =
(a)
Py(T0 ∈ dt) =

(b)
P ↑

0 (gy ∈ dt) (3.1.12)

with

gy := sup{t ; Xt = y}

We indicate here that (3.1.12) is a partial expression of the time reversal result :

Py
(
{XT0−t, t ≤ T0}

)
= P ↑

0

(
{Xu, u ≤ gy}

)
(3.1.13)

Furthermore :
P ↑

0

(
{Xu, u ≤ gy}

∣∣gy = t
)

= P ↑
0

(
{Xu, u ≤ t}

∣∣Xt = y
)

(3.1.14)

where in (3.1.13) and in (3.1.14) we have used the notation P
(
{Xu, u ≤ a}

)
to denote the

law of the process (Xu, u ≤ a) under P . All these facts, as well as those presented in the
following Proposition may be found in [SVY], [BS], [PY2], ... which all deal with properties
of linear diffusions.

3.1.5 A useful Proposition :
We shall use the following :
Proposition 3.1.1. Let g(t) := sup{s ≤ t, Xs = 0}.
1) Under P0, conditionally on g(t), the processes (Xu, u ≤ g(t)) and (Xg(t)+u, u ≤ t − g(t))
are independent.

2) Conditionally on g(t) = s, (s ≤ t), the process (Xu, u ≤ s) is distributed as Π
(s)
0 , the law

of the bridge of X under P0, with length s, ending at x = 0 at time s.
3) The law of the couple

(
g(t), (Xg(t)+u, u ≤ t− g(t))

)
under P0 may be described as follows :

i) P0(g
(t) ∈ ds, Xt ∈ dy)S(y) = p(s, 0, 0) 1s<tP

↑
0 (Xt−s ∈ dy)ds (3.1.15)

or equivalently, with the help of (3.1.10) :
i’) P0(g

(t) ∈ ds, Xt ∈ dy) = p(s, 0, 0) fy,0(t− s) 1s<tdsm(dy) (3.1.16)
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and, on the other hand :
ii) P0

(
{Xgt+u, u ≤ t− gt}|Xt = y, gt = s

)

= P ↑
0

(
{Xu, u ≤ t− s}|Xt−s = y

)
(3.1.17)

These different properties are established in [SVY], [Sa1] and [Sa2].

3.2 The σ-finite measure W∗.

3.2.1 Definition of W∗ :
Here is the main result of this Section.
Theorem 3.2.1.
1) There exists a unique σ-finite measure, which we denote by W∗, on

(
C
(
R+ → R+), F∞

)

such that :

∀t ≥ 0, ∀Ft ∈ b(Ft) :

E0

(
Ft S(Xt)

)
= W∗(Ft 1g≤t) (3.2.1)

with g := sup{t ≥ 0 ; Xt = 0}
2) W∗ =

∫ ∞

0
dl(P τl0 ◦ P ↑

0 ) (3.2.2)

3) W∗ =

∫ ∞

0
dt p(t, 0, 0) (Π

(t)
0 ◦ P ↑

0 ) (3.2.3)

In particular, if we denote W∗
g the restriction of W∗ to Fg, we have :

W∗
g =

∫ ∞

0
dl P τl0 =

∫ ∞

0
dt p(t, 0, 0)Π

(t)
0 (3.2.4)

Of course, this Theorem 3.2.1. has been guessed from the comparison with the Brownian
situation described in Chapters 1 and 2.

Proof of Theorem 3.2.1.
i) First of all, it is not difficult to show that, starting from equation (3.2.1), where W∗ is the
unknown, this problem admits at most one solution such that g <∞, W∗ a.s.

ii) Define

W∗ =

∫ ∞

0
dl (P τl0 ◦ P ↑

0 ) (3.2.5)

We shall now prove that W∗ satisfies (3.2.3) and (3.2.4). Since, under P ↑
0 , the process

(Xt, t ≥ 0) remains in R+ \ {0}, it follows immediately, from the definition (3.2.5) of W∗
that

W∗,g =

∫ ∞

0
dl P τl0 (3.2.6)

where W∗,g denotes the restriction of W∗ to Fg.
On the other hand, a classical argument, which hinges on the fact that the random measure
(dLs) is carried by the zeros of X, allows to show easily that :

∫ ∞

0
dl P τl0 =

∫ ∞

0
dt p(t, 0, 0)Π

(t)
0 (3.2.7)
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Indeed, by integrating F :=
(
Ft := F (Xu, u ≤ t), t ≥ 0

)
a positive measurable functional,

we obtain on the LHS of (3.2.6)

∫ ∞

0
dl P τl0 (F ) =

∫ ∞

0
dl P0(Fτl) = P0

(∫ ∞

0
dLs · Fs

)

(by time change l = Ls)

= P0

(∫ ∞

0
dLs P0(Fs|Xs = 0)

)

=

∫ ∞

0
P0(dLs)P0(Fs|Xs = 0)

=

∫ ∞

0
dt p(t, 0, 0)Π

(t)
0 (F )

by (3.1.6), with x = y = 0.

ii) We now prove that W∗ satisfies (3.2.1), by showing this equality for the test functionals :

Ft = Φ(Xu, u ≤ g(t))ϕ(g(t))ψ(Xg(t)+u, u ≤ t− g(t)) (3.2.8)

From (3.2.3), the RHS of (3.2.1) is equal to (with W∗ instead of W∗) :

RF := W∗(Ft 1g≤t)

=

∫ t

0
ds p(s, 0, 0)Π

(s)
0

(
Φ(Xu, u ≤ s)

)
ϕ(s)P ↑

0

(
ψ(Xu, u ≤ t− s)

)
(3.2.9)

On the other hand, the LHS of (3.2.1) is equal to :

LF := E0

[
Ft S(Xt)

]

= E0

[
Φ(Xu, u ≤ g(t))ϕ(g(t))ψ(Xg(t)+u, u ≤ t− g(t))S(Xt)

]

=

∫ t

0
P0(g

(t) ∈ ds)ϕ(s)E0

[
Φ(Xu, u ≤ s)|Xs = 0

]
E0

[
ψ(Xs+u, u ≤ t− s)

S(Xt)|g(t) = s
]

(3.2.10)

where we have used a part of the results presented in the Proposition 3.1.1. Comparing (3.2.9)
and (3.2.10), we now see that showing equality RF = LF (i.e. the proof of (3.2.1)) has now
been reduced to showing :

P ↑
0

(
ψ(Xu, u ≤ t− s)

)
p(s, 0, 0) 1s<tds

= P0(g
(t) ∈ ds)E0

(
ψ(Xs+u ; u ≤ t− s) · S(Xt)|g(t) = s

)
(3.2.11)

But (3.2.11) is an easy consequence of point 3 of Proposition 3.1.1.

3.2.2 Some properties of W∗.
The end of this subsection 3.2.2 is devoted to the statement of some results related to the
measure W∗. These results are presented without proofs since those are close to the ones
found in Chapter 1. These theorems (below) are due to Christophe Profeta ([Pr], thesis in
preparation).

3.2.2.1 The probabilities P
(λ)
x,∞.
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Theorem 3.2.2.
1) Let, for λ ≥ 0 and x ≥ 0 :

M
(λ,x)
t :=

1 + λ
2 S(Xt)

1 + λ
2 S(x)

e−
λ
2
Lt = 1 +

λ

2 + λS(x)

∫ t

0
e−

λ
2
LsdNs (3.2.12)

where
(
Ns := S(Xs) −Ls, s ≥ 0

)
is the martingale defined by (3.1.7). Then, (M

(λ,x)
t , t ≥ 0)

is a
(
(Ft, t ≥ 0), Px

)
positive martingale such that : M

(λ,x)
t −→

t→∞
0, a.s.

2) Let us define the probability P
(λ)
x,∞ by :

P (λ)
x,∞
∣∣
Ft

= M
(λ,x)
t · Px

∣∣
Ft

(3.2.13)

Then, under P
(λ)
x,∞ :

• The canonical process (Xt, t ≥ 0) is a transient diffusion with infinitesimal generator

G(λ)
∞ :

G(λ)
∞ f(x) =

2

2 + λS(x)

(
Gf(x) +

λ

2
G(Sf)(x)

)

= Gf(x) +
2λ

2 + λS(x)

df

dm
(x) (3.2.14)

and scale function S
(λ)
∞ :

S(λ)
∞ := − 2

2 + λS
(3.2.15)

• If α < λ :

E(λ)
x,∞

(
e

α
2
L∞
)
<∞ (3.2.16)

and if α ≥ λ :

E(λ)
x,∞

(
e

α
2
L∞
)

= ∞ (3.2.17)

• The law of L∞ is given by :

P (λ)
x,∞(L∞ ∈ dl) =

λ

2 + λS(x)
e−

λ
2
ldl +

λS(x)

2 + λS(x)
δ0(dl) (3.2.18)

• P
(λ)
x,∞ admits the following decomposition :

P (λ)
x,∞ =

λ

2 + λS(x)

∫ ∞

0
du p(u, x, 0)e−

λ
2
Lu . (Π

(u)
x,0 ◦ P

↑
0 ) +

λS(x)

2 + λS(x)
P ↑
x (3.2.19)

=
λ

2 + λS(x)

∫ ∞

0
e−

λl
2 dl (P τlx ◦ P ↑

0 ) +
λS(x)

2 + λS(x)
P ↑
x (3.2.20)
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3.2.2.2 The measures (W∗
x, x ∈ R+).

Theorem 3.2.3.

1) For any λ > 0, the σ-finite measure

(
2

λ
+ S(x)

)
· eλ

2
L∞ ·P (λ)

x,∞ does not depend on λ. We

define :

W∗
x :=

(
2

λ
+ S(x)

)
e

λ
2
L∞ · P (λ)

x,∞ (3.2.21)

We have the decompositions :

W∗
x =

∫ ∞

0
du p(u, x, 0) (Π

(u)
x,0 ◦ P ↑

0 ) + S(x)P ↑
x (3.2.22)

and W∗
x =

∫ ∞

0
dl (P τlx ◦ P ↑

0 ) + S(x)P ↑
x (3.2.23)

In particular, W∗
0 = W∗, where W∗ is defined by (3.2.2) or (3.2.3).

2) i) For every (Ft, t ≥ 0) stopping time T and ΓT ∈ b(FT ) :

Ex
(
ΓTS(XT )1T<∞

)
= W∗

x(ΓT 1g≤T<∞) (3.2.24)

where g := sup{s ≥ 0 ; Xs = 0}
ii) The law of g under W∗

x is given by :

W∗
x(g ∈ dt) = p(t, x, 0)dt + S(x)δ0(dt) (t ≥ 0) (3.2.25)

and for every (Ft, t ≥ 0) stopping time T , we have :

W∗
x(1T<∞, L∞ − LT ∈ dl) = Px(T <∞) 1[0,∞[(l)dl + Ex

[
S(XT )1T<∞

]
δ0(dl) (3.2.26)

3) For every previsible and positive process (Φs, s ≥ 0), we have :

W∗
x(Φg) = S(x)Φ0 + Ex

(∫ ∞

0
ΦsdLs

)
(3.2.27)

We note that, from (3.2.19), (3.2.20), (3.2.22) and (3.2.23), we have :

lim
λ→0

2

λ
P (λ)
x,∞ = W∗

x (3.2.27′)

3.2.2.3 Martingales associated with (W∗
x, x ∈ R+).

Theorem 3.2.4.
Let F ∈ L1

+(Ω,F∞,W∗
x). There exists a positive

(
(Ft, t ≥ 0), Px

)
martingale

(
M∗
t (F ), t ≥ 0

)

such that :

1) For every t ≥ 0 and Γt ∈ b(Ft) :

W∗
x(F · Γt) = Ex

(
M∗
t (F )Γt

)
(3.2.28)

In particular, W∗
x(F ) = Ex

(
M∗
t (F )

)

2) For every λ > 0 :

M∗
t (F ) =

(
2

λ
+ S(Xt)

)
e−

λ
2
LtE(λ)

x,∞
(
Fe

λ
2
L∞ |Ft

)
(3.2.29)

= Ŵ∗
Xt

(
F (ωt, ω̂

t)
)
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3) M∗
t (F ) −→

t→∞
0 Px a.s. (3.2.30)

Examples :

• Let h : R+ → R+ such that

∫ ∞

0
h(u)du <∞. Then :

M∗
t

(
h(L∞)

)
= h(Lt)S(Xt) +

∫ ∞

Lt

h(l)dl (3.2.31)

In particular, if h(y) = e−
λ
2
y (y ≥ 0) :

M∗
t (e

−λ
2
L∞) =

(
2

λ
+ S(Xt)

)
e−

λ
2
Lt =

2

λ
M

(λ,0)
t (x = 0)

• Let Φ : R+ → R+ Borel such that

∫ ∞

0
Φ(u)p(u, x, 0)du <∞. Then

M∗
t

(
Φ(g)

)
= Φ(g(t))S(Xt) +

∫ ∞

0
Φ(t+ u)p(u,Xt, 0)du (3.2.32)

3.2.2.4 A decomposition Theorem of
(
(Ft, t ≥ 0), Px

)
positive supermartingales.

Theorem 3.2.5.
Let (Zt, t ≥ 0) a positive

(
(Ft, t ≥ 0), Px

)
supermartingale. We denote

Z∞ := lim
t→∞

Zt Px a.s.

Then :

1) z∞ := lim
t→∞

Zt
1 + S(Xt)

exists W∗
x a.s. and W∗

x(z∞) <∞

2) (Zt, t ≥ 0) admits the following decomposition :

Zt = M∗
t (z∞) + Ex

(
Z∞|Ft

)
+ ξt (3.2.33)

where
(
M∗
t (z∞), t ≥ 0

)
and

(
Ex
(
Z∞|Ft

)
, t ≥ 0

)
denote two positive

(
(Ft, t ≥ 0), Px

)

martingales and (ξt, t ≥ 0) is a positive supermartingale such that :
• Z∞ ∈ L1

+(F∞, Px), hence
(
Ex(Z∞|Ft), t ≥ 0

)
is a uniformly integrable martingale converg-

ing towards Z∞.

• Ex
(
Z∞|Ft

)
+ ξt

1 + S(Xt)
−→
t→∞

0 W∗
x a.s.

• M∗
t (z∞) + ξt −→

t→∞
0 Px a.s.

This decomposition (3.2.33) is unique.

Corollary 3.2.6.
A positive martingale (Zt, t ≥ 0) is equal to

(
M∗
t (F ), t ≥ 0

)
for some F ∈ L1

+(F∞,W∗
x) if

and only if :

Z0 = W∗
x

(
lim
t→∞

Zt
1 + S(Xt)

)
(3.2.34)

In the present framework of linear diffusions, it is possible to state a decomposition theorem
for the martingales

(
M∗
t (F ), t ≥ 0

) (
F ∈ L1(F∞,W∗

x)
)

which is similar to the result stated
in Theorem 1.2.11. We leave this task to the interested reader.
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3.2.3 Relation between the measure W∗ and penalisations.
In a submitted article, P. Salminen and P. Vallois (see [SV]) obtain the following result
involving, as weight functional, the local time of a diffusion, under a certain subexponentiality
hypothesis. We now summarize their results.
Let (τl, l ≥ 0) denote the right continuous inverse of the local time process (Lt, t ≥ 0) at
level 0 associated to (Xt, t ≥ 0) :

τl := inf{t ≥ 0 ; Lt > l}

This subordinator (τl, l ≥ 0) admits as its Levy measure a mesure ν with density, which we

denote here by
•
ν
(
see [KS]

)
:

E(e−λτl) = exp

{
−l
∫ ∞

0
(1 − e−λx)

•
ν(x)dx

}
(λ, l ≥ 0)

P. Salminen and P. Vallois then make the following hypothesis : the function F : [1,∞[→ [0, 1]
defined by :

F (x) :=
ν
(
]1, x[

)

ν
(
]1,∞[

) =

∫ x

1

•
ν(y)dy

∫ ∞

1

•
ν(y)dy

(3.2.35)

is sub-exponential 1, i.e. :

lim
x→∞

F ∗ F (x)

F (x)
= 2 (3.2.36)

where F (x) := 1 − F (x), x ≥ 1 and where ∗ indicates the convolution operation.
One of the main consequences of the subexponentiality of F is :

F (x+ y)

F (x)
−→
x→∞

1 uniformly on compacts (in y)

Thus, here
ν
(
]x+ y,∞[

)

ν
(
]x,∞[

) −→
x→∞

1 uniformly on compacts (in y) (3.2.37)

Under this subexponentiality hypothesis, P. Salminen and P. Vallois [SV] then prove the
following Theorem.

Theorem 3.2.7. (Penalisation by (1(Lt<l), t ≥ 0)
Let l > 0 be fixed. Then, for every s ≥ 0 and Γs ∈ b(Fs) :

lim
t→∞

Ex(Γs 1(Lt<l))

Px(Lt < l)
= Ex(Γs ·M (l)

s ) := P (l)
x,∞(Γs) (3.2.38)

where (M
(l)
s , s ≥ 0) is the positive martingale defined by :

M (l)
s :=

S(Xs) − Ls + l

S(x) + l
· 1Ls<l

1This notion has little to do with the sub-exponential functions, i.e. functions f : R+ → R+ which satisfy :
f(x) ≤ c1e

−c2x for some constants c1, c2 > 0, and which are considered in [RY, IX].
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Let us remark that for f : R+ → R+ such that

∫ ∞

0

(
1 +

1

l

)
f(l) dl <∞.

Then, we have :

M (f)
s :=

∫ ∞

0
M (l)
s f(l) dl

= (S(Xs) − Ls)

∫ ∞

Ls

f(l)dl

S(x) + l
+

∫ ∞

Ls

f(l)l dl

S(x) + l

and, for x = 0,

M (f)
s = (S(Xs) − Ls)

∫ ∞

Ls

f(l)

l
dl +

∫ ∞

Ls

f(l) dl

= S(Xs)h(Ls) +

∫ ∞

Ls

h(y)dy

with

h(y) :=

∫ ∞

y

f(l)

l
dl.

Thus, (M
(f)
s , s ≥ 0) is the Azéma-Yor martingale associated to h (see [AY1]).

The key point of the proof of Theorem 3.2.7 is the following

Lemma 3.2.8.
(
[SV]

)

Px(Lt < l) ∼
t→∞

(
S(x) + l

)
ν
(
]t,∞[

)
(3.2.39)

Theorem 3.2.7 now follows easily from Lemma 3.2.8 and from relation (3.2.37).

From this Theorem 3.2.7, we deduce the following relation between the probability P
(l)
0,∞

defined by (3.2.38) and the σ-finite measure W∗ defined by (3.2.2) or (3.2.3) :

1L∞<l · W∗ = W∗(L∞ < l) · P (l)
0,∞ (3.2.39)

(
We note that P

(l)
0,∞(L∞ < l) = 1

)
. The reader may compare relation (3.2.39) with relation

(1.1.107) of Theorem 1.1.11’ and with relation (3.2.21) of Theorem 3.2.3. From (3.2.39), we
also deduce, with the notation of Theorem 3.2.4, that :

M∗
t (1(L∞<l)) = W∗(L∞ < l) ·

(
S(Xt) + l − Lt

l

)
1Lt<l (x = 0) (3.2.40)

Finally, we indicate that, in further works in progress, C. Profeta (see [Pr]) studies the
penalisation of a linear diffusion reflected in 0 and 1 (the subexponentiality hypothesis is not
satisfied) with the functional (eαLt , t ≥ 0) (α ∈ R). He proves that the penalised process
is still a linear diffusion reflected in 0 and 1 and computes the scale function and the speed
measure of this new process.

3.3 The example of Bessel processes with dimension d (0 < d < 2)
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3.3.1 Transcription of our notation in the context of Bessel processes.
Let d = 2(1 − α) with 0 < d < 2 (or 0 < α < 1). We now study the particular case of the
process (Xt, t ≥ 0) described in Section 3.1 with :

m(dx) =
x1−2α

α
1[0,∞[(x)dx (3.3.1)

S(x) = x2α (x ≥ 0) (3.3.2)

Then, the process (Xt, t ≥ 0) described in Section 3.1 is a Bessel process with dimension

d, and index
d

2
− 1 = −α. We denote by (P

(−α)
x , x ∈ R+) the family of its laws. We note

(
Ω = C(R+ → R+), (Rt,Ft), t ≥ 0, F∞, P

(−α)
x (x ∈ R+)

)
the canonical realisation of the

Bessel process with index (−α). Here, the probability P ↑
x defined in 3.1.4 is the law of Bessel

process with dimension 4 − d = 2(1 + α), i.e. : index α. We shall denote this law by P
(α)
x .

The formulae of subsection 3.1 now become :

(R2α
t − Lt, t ≥ 0) is a martingale (3.3.3)

P ↑
x = P (α)

x (3.3.4)
∫ t

0
h(Rs)ds =

1

α

∫ ∞

0
h(x)Lxt x

1−2αdx (3.3.5)

E
(−α)
0 (L0

t ) = tαE
(−α)
0 (L1) =

2α tα

Γ(1 − α)
(3.3.6)

L(α)f(r) =
1

2
f ′′(r) +

1 + 2α

2r
f ′(r) (3.3.7)

The reader may refer to [DMRVY] for these formulae.

3.3.2 The measure W(−α).

In this framework, Theorem 3.2.1 becomes :
Theorem 3.3.1. For every α ∈]0, 1[ :
1) There exists a unique positive and σ-finite measure W(−α) on

(
Ω = C(R+ → R+), F∞

)

such that, for every Ft ∈ b(Ft) :

W(−α)(Ft 1g≤t) = P
(−α)
0 (Ft ·R2α

t ) (3.3.8)

2) W(−α) =

∫ ∞

0
(P

(−α, τl)
0 ◦ P (α)

0 )dl (3.3.9)

3) i) W(−α)(g ∈ dt) =
α 2α

Γ(1 − α)
tα−1dt (t ≥ 0)

ii) Conditionally on g = t, under W(−α), (Ru, u ≤ g) is a Bessel bridge with index (−α)
and of length t

iii) W(−α) =

∫ ∞

0

α 2α tα−1

Γ(1 − α)
dt(Π

(−α,t)
0 ◦ P (+α)

0 ) (3.3.10)

In this Theorem :

Π
(−α,t)
0 denotes the law of a Bessel bridge with index (−α) and of length t.

P
(−α,τl)
0 denotes the law of a Bessel process with index (−α) starting at 0 and stopped at τl,

with :
τl = inf{t ≥ 0 ; L0

t > l} (3.3.11)
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3.3.3 Relations between W(−α)
(
d = 2(1 − α)

)
and Feynman-Kac penalisations.

Remark 3.3.2. The measure W(−α) which we just described is also related to a penalisation
problem. More precisely, one can prove

(
see [RVY, I or V]

)
:

i) Let q be a positive Radon measure on R+, with compact support. Then :

2αΓ(1 + α)tα P (−α)
r

(
exp

(
−1

2
A

(q)
t

))
−→
t→∞

ϕ(−α)
q (r) (3.3.12)

with

A
(q)
t :=

∫ ∞

0
q(Rs)ds =

1

α

∫ ∞

0
Lxt x

1−2αq(dx) (3.3.13)

ii) The function ϕ
(−α)
q defined by (3.3.12) is characterised as the unique solution of :





1

2
f ′′(r) +

1 − 2α

2r
f ′(r) =

1

2
f(r)q(r)

(in the sense of Schwartz distributions)

f(r) ∼
r→∞

r2α (3.3.14)

iii) For every s ≥ 0 and Γs ∈ b(Fs) :

E(−α)
r

(
Γs

exp−1
2 A

(q)
t

E
(−α)
r

(
exp−1

2 A
(q)
t

)
)

−→
t→∞

P (−α,q)
r,∞ (Γs) (3.3.15)

where the probability P
(−α,q)
r,∞ satisfies :

P (−α,q)
r,∞ |Fs = M (−α,q)

s P (−α)
r |Fs (3.3.16)

with

M (−α,q)
s =

ϕ
(−α)
q (Rs)

ϕ
(−α)
q (r)

exp

(
−1

2
A(q)
s

)
(3.3.17)

and (M
(−α,q)
s , s ≥ 0) is a

(
(Fs, s ≥ 0), P (−α)

)
martingale.

iv) Under P
(−α,q)
r,∞ (r ≥ 0), the canonical process (Rt, t ≥ 0) is a transient diffusion with

infinitesimal generator G(−α,q) given by :

G(−α,q)f(r) =
1

2
f ′′(r) +

(
1 − 2α

2r
+

(ϕ
(−α)
q )′

ϕ
(−α)
q

(r)

)
f ′(r) (3.3.18)

Remark 3.3.3.
With the notation of Remark 3.3.2, in the particular case where q is the measure q0 such that
1

α
x1−2αq0(dx) is Dirac mass in 0 (of course, this is somewhat informal : we need to choose

a sequence q
(n)
0 such that

1

α
x1−2αq

(n)
0 (dx) converges towards δ0 as n→ ∞), we obtain :

ϕ(−α)
q0 (r) = 2 + r2α, ϕ(−α)

q0 (0) = 2 (3.3.19)

and M
(−α,q0)
t =

(
1 +

R2α
t

2

)
e−

1
2
Lt (3.3.20)

99



Now, the analogue of Theorem 1.1.5 is :
Theorem 3.3.4.
Under P

(−α,q0)
∞ , the canonical process (Rt, t ≥ 0) satisfies :

i) Let g = sup{s ≥ 0, Rs = 0}. Then :

g <∞ P (−α,q0)
∞ a.s. and (3.3.21)

ii) L∞(= Lg) admits as density :

fP
(−α,q0)
∞

L∞ (l) =
1

2
e−

l
2 1[0,∞[(l)dl (3.3.22)

iii) Conditionally on g, (Rs, s ≤ g) and (Rg+s, s ≥ 0) are independent.

iv) (Rg+s, s ≥ 0) is a (4 − d) dimensional Bessel process starting at 0
(
i.e. admits P

(+α)
0 as

its law
)
.

v) Conditionally on L∞(= Lg) = l, (Rs, s ≤ g) is a d-dimensional Bessel process stopped at

τl. Its law is P
(−α,τl)
0 .

Remark 3.3.5.

1) Since, for α =
1

2
, (Rt, t ≥ 0) under P (−α) is a reflected Brownian motion, one has :

W
(
F (|Xs|, s ≥ 0)

)
= W

(
− 1

2

)(
F (Rs, s ≥ 0)

)
(3.3.23)

(where W is defined by Theorem 1.1.2).
2) In the same spirit, since the modulus of a 2-dimensional Brownian motion is a 2-dimensional
Bessel process, hence has index 0, we conjecture that, in a sense to be made precise :

W(2)
(
F (|Xs|, s ≥ 0)

)
= lim

α↓0
W(−α)

(
F (Rs, s ≥ 0)

)
(3.3.24)

(where W(2) is defined by Theorem 2.1.2).
Remark 3.3.6.
We have given, in Subsection 1.1.6, a proof of Theorem 1.1.6 (this is precisely Theorem 1.1.10)
which hinges upon the disintegration of Wiener measure restricted to Ft, with respect to the
law of g(t)

(
see (1.1.82)

)
. Formula (3.3.10) may be proven in a quite similar way by using the

following :
i) For fixed time t, the three following random elements are independent :

•
(
ru :=

1√
g(t)

Ru g(t), u ≤ 1

)
which is a Bessel bridge with dimension d = 2(1 − α)

• g(t) := sup{u < t ; Ru = 0} which is distributed as :

P
(−α)
0 (g(t) ∈ du) =

du

bαu1−α(t− u)α
(0 ≤ u ≤ t) (3.3.25)

with : bα = B(α, 1 − α) = Γ(α)Γ(1 − α) = π
sin(πα) .
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•
(
mu :=

1√
t− g(t)

Rg(t)+u(1−g(t)), u ≤ 1

)
, which is a Bessel meander (with dimension

d).

ii) Imhof’s absolute continuity relationship between the laws of the Bessel meander (mu, u ≤ 1)
and the Bessel process with dimension 2(1 + α) (i.e. : with index α) is :

E(−α)
(
F (mu, u ≤ 1)

)
= E

(α)
0

(
F (Ru, u ≤ 1)

2αΓ(1 + α)

R2α
1

)
(3.3.26)

3.4 Another description of W(−α) (and of W∗
g).

3.4.1 We recall that
(
see (3.2.4), (3.3.9) and (3.3.10)

)
:

W∗
g =

∫ ∞

0
dl P τl0 =

∫ ∞

0
dt p(t, 0, 0)Π

(t)
0 (3.4.1)

in the context of general linear diffusions and :

W(−α)
g =

∫ ∞

0
dl P

(−α,τl)
0 =

∫ ∞

0

α2αtα−1

Γ(1 − α)
Π

(−α,t)
0 dt (3.4.2)

in the context of the Bessel processes with index (−α) (0 < α < 1)

We shall now give a new description of W
(−α)
g (resp. W∗

g) which is the restriction of W(−α)

(resp. W∗) to Fg. This new description is simply the transcript in the Bessel framework of
results found in Pitman-Yor

(
see [PY2]

)
.

3.4.2 We begin by recalling in the framework of Bessel processes some of the results from [PY2].

We denote by Ω̂ the space of continuous functions from R+ to R+ with finite lifetime ξ :

Ω̂ =
{
ω : R+ → R+ ; ∃ξ(ω) <∞ s.t. ω(0) = 0 = ω(ξ),

and ω(u) = 0 for every u ≥ ξ(ω)
}

We denote by (Rt, t ≥ 0) the set of coordinates on this space :

Rt(ω) = ω(t), ω ∈ Ω̂

The result of Pitman-Yor which we use
(
Theorem 1.1 of [PY2]

)
asserts the existence, for

every δ > 0, of a positive and σ-finite measure on (Ω̂,F∞), denoted as Λ
(δ)
0,0 and which may

be described in either of the following manners :

First description

Λ
(δ)
0,0 =

∫ ∞

0

2−
δ
2

Γ(δ/2)
t−

δ
2 Π

(
δ
2
−1, t

)
0 dt (3.4.3)

where Π

(
δ
2
−1, t

)
0 denotes the law of the Bessel bridge with index

δ

2
− 1, i.e. with dimension δ,

and length t.

Second description
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m

   0

    
   Tm Tm + Tm

~

 
R          R
~

Let m > 0 fixed and let P

(
δ
2
−1,m,↗↖

)
0 denote the law of the process obtained by putting two

Bessel processes with index

(
δ

2
− 1

)
(i.e. : with dimension δ), back to back starting from 0,

and stopped when they first reach level m. These two processes R and R̃ are assumed to be

independent. In other terms, P

(
δ
2
−1,m,↗↖

)
0 is the law of the process (Yt, t ≥ 0) defined by :

Yt =





Rt if t ≤ Tm
R̃Tm+T̃m−t if Tm ≤ t ≤ Tm + T̃m

0 if t ≥ Tm + T̃m

(3.4.4)

where Tm (resp T̃m) is the first hitting time of m by (Rt, t ≥ 0)
(
resp. by (R̃t, t ≥ 0)

)
.

Then :

Λ
(δ)
0,0 =

∫ ∞

0
m1−δdmP

(
δ
2
−1,m,↗↖

)
(3.4.5)

The measure Λ
(δ)
0,0 is called the ”generalized excursion measure” in Pitman-Yor. When δ = 3,

Λ
(3)
0,0 is the Itô measure of (positive) Brownian excursions. Formula (3.4.3) is Itô’s description

of Itô’s measure (see [ReY], Chap. XII), whereas formula (3.4.5) is Williams’ description of
that measure (see [Wi]).
3.4.3 Here is now, in the framework of the Bessel processes, the announced transcription :
Theorem 3.4.1 For every α ∈]0, 1[ :

W(−α)
∣∣
Fg

= W(−α)
g = 2αΛ

(2(1−α))
0,0 (3.4.6)

In particular :

W(−α)
∣∣
Fg

=
α2α

Γ(1 − α)

∫ ∞

0
tα−1dtΠ

(−α,t)
0 (3.4.7)

W(−α)
∣∣
Fg

= 2α

∫ ∞

0
m2α−1dmP (−α,m, ↗↖) (3.4.8)
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Thus, formula (3.4.8) provides us with a new description of the measure W
(−α)
g .

Proof of Theorem 3.4.1 Of course, from (3.4.3), and (3.4.5), it suffices to show (3.4.6).
Note that, from (3.3.8), for Γt ∈ b(Ft), one has :

W(−α)(Γt 1g≤t) = P
(−α)
0 (ΓtR

2α
t ) (3.4.9)

Thus, for every s ≤ t and Γs ∈ b(Fs), since (R2α
t − Lt, t ≥ 0) is a martingale

(
see (3.3.3)

)
,

we have :

W(−α)(Γs 1s≤g≤t) = P
(−α)
0

(
Γs(R

2α
t −R2α

s )
)

= P
(−α)
0

(
Γs(Lt − Ls)

)
(3.4.10)

We deduce from the monotone class theorem and from (3.4.10) that, for every positive pre-
visible process (Φu, u ≥ 0), one has :

W(−α)(Φg) = P
(−α)
0

(∫ ∞

0
Φu dLu

)

=

∫ ∞

0
P

(−α)
0 (Φu|Ru = 0)P

(−α)
0 (dLu)

=

∫ ∞

0
Π(−α,u)(Φu)

α2αuα−1

Γ(1 − α)
du

from (3.3.6). Hence :

W(−α)(Φg) =

(∫ ∞

0
Π

(−α,u)
0

α2αuα−1

Γ(1 − α)
du

)
(Φg)

=

(
2α

∫ ∞

0
du

2−
δ
2

Γ( δ2)
u−

δ
2 Π

( δ
2
−1,u)

0

)
(Φg)

(
since δ = 2(1 − α)

)

= 2αΛ
(2(1−α))
0,0 (Φg) (from (3.4.3))

3.4.4 In the general framework of linear diffusions, formulae (3.4.7) and (3.4.8) become :

W∗
g =

∫ ∞

0
dt p(t, 0, 0)Π

(t)
0

(
this is formula (3.2.4)

)
and :

W∗
g =

∫ ∞

0
P

(m,↗↖)
0 dS(m) (3.4.11)

The reader may refer to
(
[PY2], 2.2, Corollary 2.1, p. 298

)
where the probability P

(m,↗↖)
0

is defined in terms of the law P ↑
0

(
of the process (Xt, t ≥ 0) conditioned to remain > 0

)
just

as P
(−α,m,↗↖)
0 is, in terms of the law P

(α)
0 .

(
see (3.4.4) with δ = 2(1 + α)

)
.

3.5 Penalisations of α-stable symmetric Lévy process (1 < α ≤ 2)
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In this subsection, we summarize the results by K. Yano, Y. Yano and M. Yor [YYY] which
bears upon the penalisation of the α-stable symmetric Lévy process, with 1 < α ≤ 2. This
summary is not exhaustive ; rather, it is an invitation to read [YYY].

3.5.1 Notation and classical results.
(
see, e.g., [Be], [C], [SY]

)

3.5.1.1
(
Ω, (Xt,Ft)t≥0,F∞, Px, x ∈ R

)
denotes the canonical realization of the α-stable

symmetric Lévy process, with 1 < α ≤ 2. The notations are the same as in 1.0.1, with the
difference that Ω now denotes the space of càdlàg functions from R+ to R. α being fixed once
and for all, the dependency in α will be mostly omitted in our notation. This Lévy process
(Xt, t ≥ 0) is characterised via :

E0(e
iλXt) = exp

(
− t|λ|α

)
(t ≥ 0, λ ∈ R) (3.5.1)

The case α = 2 corresponds to (Xt, t ≥ 0) ≡ (B2t, t ≥ 0) where (Bt, t ≥ 0) is a standard
1-dimensional Brownian motion.

3.5.1.2 pt(x) denotes the density (with respect to Lebesgue measure on R) of the law of the
r.v. Xt and uλ (λ > 0) the resolvent kernel :

Px(Xt ∈ dy) = pt(x− y)dy = pt(y − x)dy (3.5.2)

pt(0) =
1

απ
Γ

(
1

α

)
t−

1
α (t > 0) (3.5.3)

uλ(x) :=

∫ ∞

0
e−λtpt(x)dt =

1

π

∫ ∞

0

cos(xy)

λ+ yα
dy (3.5.4)

uλ(0) =
1

π
B

(
1 − 1

α
,
1

α

)
λ

1
α
−1 (3.5.5)

Let, for any a ∈ R, Ta := inf{t ≥ 0 ; Xt = a}. Then :

Ex[e
−λ T0] =

uλ(x)

uλ(0)
(3.5.6)

3.5.1.3 We denote by (Lxt , t ≥ 0, x ∈ R) the jointly continuous process of local times of
(Xt, t ≥ 0), (Lt, t ≥ 0) stands for (L0

t , t ≥ 0), the local time process at 0, and (τl, l ≥ 0) its
right continuous inverse. We have :

E0(e
−λ τl) = exp

(
− l

uλ(0)

)
(3.5.7)

so that, from (3.5.5), (τl, l ≥ 0) is a stable subordinator with index 1 − 1

α
· On the other

hand :

E0

(∫ ∞

0
e−λtdLt

)
=

∫ ∞

0
E0(e

−λ τl)dl = uλ(0) (3.5.8)

and E0(dLt) = pt(0)dt =
1

απ
Γ

(
1

α

)
t−

1
α dt (3.5.9)

More generally : Ex(dLt) = E0(dt L
x
t ) = pt(x)dt (3.5.10)
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3.5.1.4 We denote by h the function defined by :

h(x) :=
1

2Γ(α) sin
[

(α−1)π
2

] |x|α−1 (x ∈ R) (3.5.11)

This function is harmonic for the process (Xt, t ≥ 0) killed when it reaches 0, i.e. : for every
x ∈ R, and t ≥ 0 :

Ex
[
h(Xt)1T0≥t

]
= h(x) (3.5.12)

Moreover, there exists a constant c > 0 such that, for every x ∈ R :

(
Nx
t := h(Xt) − h(x) − cLxt , t ≥ 0

)
(3.5.13)

is a square integrable Px-martingale
(
this formula may be compared with (3.1.7)

)
.

3.5.1.5 Since 0 is a regular and recurrent point for (Xt, t ≥ 0), Itô’s excursion theory may be
applied. We denote by Ω̃ the excursions space, where (Yt, t ≥ 0) is the process of coordinates,
ξ the lifetime of the generic excursion and n Itô’s excursion measure. The master formula
from excursion theory implies :

E0

[∫ ∞

0
e−λtf(Xt)dt

]
= E0

(∫ ∞

0
e−λ τldl

)
·
∫ ∞

0
e−λtn

(
f(Yt)

)
dt (3.5.14)

for any f : R → R+ Borel, such that f(0) = 0. In particular :

n(ξ > t) =
απ

B
(
1 − 1

α ,
1
α

)
Γ
(

1
α

) t 1
α
−1 (3.5.15)

There exists a function ρ(t, x) which is positive and jointly measurable such that :

n(Yt ∈ dx) = ρ(t, x)dx (3.5.16)

and Px(T0 ∈ dt) = ρ(t, x)dt (3.5.17)

3.5.2 Definition of the σ-finite measure P 2

The measure P is defined on (Ω,F∞) by :

P :=

∫ ∞

0
P0(dLu) (Q(u) ◦ P ↑

0 ) (3.5.18)

=
1

απ
Γ

(
1

α

)∫ ∞

0
duu−

1
α (Q(u) ◦ P ↑

0 ) (3.5.19)

(
from (3.5.3)

)
. We now explain the notations in (3.5.18) :

• Q(u) denotes the law of the α-stable symmetric bridge with length u :

Q(u)(Γu) = P0

(
Γu|Xu = 0

)
(Γu ∈ Fu) (3.5.20)

2We take up the notation from [YYY].
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• We denote by (P 0
x , x 6= 0) the law of the process (Xt, t ≥ 0) starting from x and killed

in T0 :
P 0
x (Γt) = Ex(Γt 1T0>t) Γt ∈ b(Ft)

and by P ↑
x the law obtained from that of P 0

x by Doob’s h-transform
(
recall that h is

defined by (3.5.11) and that it is harmonic for the process (Xt, t ≥ 0) killed in T0

)
:

P ↑
x |Ft

:=
h(Xt)

h(x)
· P 0

x |Ft
x 6= 0 (3.5.21)

Letting x tend to 0 in (3.5.21), we obtain :

P ↑
0 |Ft

:= lim
x→0

h(Xt)

h(x)
· P 0

x |Ft
= h(Xt)n |Ft

(3.5.22)

• Another manner to define P ↑
0 consists in first defining the law M (t) of the stable meander

(with duration t) :

M (t)(Γt) := n
(
Γt|ξ > t

)
=

n
(
Γt ∩ (ξ > t)

)

n(ξ > t)

(
Γt ∈ b(Ft)

)
(3.5.23)

then to show that :
M (t) −→

t→∞
P ↑

0 (3.5.24)

with the preceding convergence taking place along (Fs), i.e. : for every s ≥ 0 and
Γs ∈ b(Fs) :

M (t)(Γs) −→
t→∞

P ↑
0 (Γs) (3.5.25)

• The measure P defined by (3.5.18) plays for the symmetric α-stable Lévy process the
same role as the measure W for standard Brownian motion. Indeed, for α = 2, (3.5.18)
becomes

P =
1

2
√
π

∫ ∞

0

du√
u

(Q(u) ◦ P ↑
0 ) =

1√
2

W

where W is defined by (1.1.16), or (1.1.43). The multiplication factor
1√
2

arises from

the fact that, for α = 2, the 2-stable symmetric Lévy process (Xt, t ≥ 0) is the process
(B2t, t ≥ 0) and not (Bt, t ≥ 0)

(
see (3.5.1)

)
.

3.5.3 The martingales
(
Mt(F ), t ≥ 0

)
associated with P

3.5.3.1 In the same manner that we have associated to the σ-finite measures W, W(2)

and W∗ introduced in Section 1.2, and in (3.2.2) and (3.2.3), a family of martingales, we
associate here to every r.v. F ∈ L1

+(Ω,F∞,P) the
(
(Ft)t≥0, P0

)
martingale

(
Mt(F ), t ≥ 0

)

characterized by : for any t ≥ 0 and Γt ∈ b(Ft) :

EP[F · Γt] = E0

(
Mt(F ) · Γt

)
(3.5.26)

In particular, for every t ≥ 0 :
E0

[
Mt(F )

]
= EP(F ) (3.5.27)
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3.5.3.2 Example 1. Let f : R+ → R+ Borel such that

∫ ∞

0
f(y)dy <∞. Then :

Mt

(
f(L∞)

)
= f(Lt)h(Xt) +

∫ ∞

Lt

f(x)dx (t ≥ 0) (3.5.28)

where, in (3.5.28), the function h is defined by (3.5.11). It is not difficult to see, thanks
to (3.5.13), that

(
Mt

(
f(L∞)

)
, t ≥ 0

)
defined by (3.5.28) is indeed a martingale. We also

note the analogy between (3.5.28) and formula (3.2.31) obtained in the framework of linear
diffusions :

M∗
t

(
f(L∞)

)
= f(Lt)S(Xt) +

∫ ∞

Lt

f(y)dy (3.5.29)

Thus, we shift from (3.5.29) to (3.5.28) by replacing simply the scale function S by the function
h
(
these two functions are such that, in both cases,

(
S(Xt)1t<T0 , t ≥ 0

)
and

(
h(Xt)1t<T0

)

are martingales
)
.

3.5.3.3 Example 2. (Feynman-Kac martingales)
Let q denote a Radon measure on R such that :

0 <

∫

R

(
1 + h(x)

)
q(dx) <∞ (with h defined by (3.5.11)) (3.5.30)

Let

A
(q)
t :=

∫

R

Lxt q(dx) (3.5.31)

and A(q)
∞ := lim

t→∞
A

(q)
t . Then

Mt

(
exp(−A(q)

∞ )
)

= ϕq(Xt) · exp(−A(q)
t ) (3.5.32)

with

ϕq(x) := lim
t→∞

Ex(exp−A(q)
t )

n(ξ > t)
(x ∈ R) (3.5.33)

We note that : EP

(
exp(−A(q)

∞ )
)

= ϕq(0).
Other descriptions of the function ϕq are found in [YYY]. The reader will have noticed the

complete analogy between the definition of Mt(exp−A(q)
∞ ) given by (3.5.32) and that, in the

Brownian case, of Mt(exp−A(q)
∞ ) which is given by (1.2.19) :

Mt

(
exp−1

2
A(q)

∞

)
= ϕq(Xt) exp

(
−1

2
A

(q)
t

)

3.5.4 Relations between P and penalisations
The following penalisation theorems, which we now present, are found in [YYY] :

Theorem 3.5.1 Let f : R+ → R+ Borel such that

∫ ∞

0
f(y)dy <∞. Then :

1) For every s ≥ 0, Γs ∈ b(Fs) :

lim
t→∞

E0

[
Γsf(Lt)

]

n(ξ > t)
= E0

[
ΓsMs

(
f(L∞)

)]
(3.5.34)
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where
(
Mt

(
f(L∞), t ≥ 0

)
is the positive martingale defined by (3.5.28).

2) Let P
f(L)
0,∞ the probability induced on (Ω,F∞) by :

P
f(L)
0,∞ |Ft

:=
Mt

(
f(L∞)

)

M0

(
f(L∞)

) · P0 |Ft
(3.5.35)

Then, the absolute continuity formula :

f(L∞) ·P = EP

(
f(L∞)

)
· P f(L)

0,∞ holds (3.5.36)

(
Note that : EP

(
f(L∞)

)
=

∫ ∞

0
f(y)dy = E0

(
Mt

(
f(L∞)

)
.
)

Clearly, this formula (3.5.36) is formally identical to formula (1.1.107) obtained in the Brow-
nian set-up (with h+ = h− = f).

Theorem 3.5.2 Let q denote a Radon measure on R such that 0 <

∫

R

(
1 + h(x)

)
q(dx) <∞

(
with h defined by (3.5.11)

)
and let A

(q)
t :=

∫

R

Lxt q(dx). Then :

1) For every s ≥ 0 and Γs ∈ b(Fs) :

lim
t→∞

E0

(
Γs exp

(
−A

(q)
t )
)

n(ξ > t)
= E0

[
ΓsMs

(
exp(−A(q)

∞ )
)]

(3.5.37)

where
(
Mt

(
exp(−A(q)

∞ )
)
, t ≥ 0

)
is the positive martingale defined by (3.5.32).

2) Let P
(q)
0,∞ denote the probability induced on (Ω,F∞) by :

P
(q)
0,∞ |Ft

=
Mt

(
exp(−A(q)

∞ )
)

M0

(
exp−(A

(q)
∞ )
) · P0 |Ft

(3.5.38)

Then, the absolute continuity formula :

exp(−A(q)
∞ ) ·P = EP(exp(−A(q)

∞ )
)
· P (q)

0,∞ holds (3.5.39)

Of course, this formula is formally identical to formula (1.1.16’) obtained in the Brownian

framework (one should note that EP(exp−A(q)
∞ ) = ϕq(0) = E0

(
Mt

(
exp(−A(q)

∞ )
)

where ϕq is
defined by (3.5.33)).

Throughout the preceding discussion, a particular role was played by the point x = 0. How-
ever, since any Lévy process enjoys a property of invariance by translation, we may define,
for every x ∈ R the σ-finite measure Px by the formula :

EPx

[
F (Xt, t ≥ 0)

]
= EP

[
F (x+Xt, t ≥ 0)

]

for every positive measurable functional ; thus, the knowledge of P induces that of Px, for
any x 6= 0.
The reader will have noticed the quasi complete analogy between, on one hand, the results
of [YYY] which we just described in the set-up of the α-stable symmetric Lévy process with
1 < α ≤ 2 and the results of Chapter 1 of this monograph, in the Brownian set-up. We refer
the interested reader to [YYY] where the proofs of the results announced above are found, as
well as many other informations.
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