Supplements.

§1. Borel's density theorem for fuchsian groups. ${ }^{1}$ Let $G_{\mathbf{R}}=P S L_{2}(\mathbf{R})$. Then all finite dimensional irreducible ordinary representations of $G_{\mathbf{R}}$ are given by $\rho_{n}(n=$ $0,1,2, \cdots)$, defined in Chapter 3, $\S 3$. Since they are algebraic representations, it is clear that if Δ is a subgroup of G_{R} not contained in any proper algebraic subgroup of G_{R}, then $\rho_{n} \mid \Delta$ is also irreducible. In particular, if Δ is a discrete subgroup of $G_{\mathbf{R}}$ whose quotient has finite invariant volume, then Δ is Zariski dense in G_{R} (a special case of Borel's density theorem [1]; but since $\operatorname{dim} G_{\mathbf{R}}=3$ is small, it can also be checked directly); hence $\rho_{n} \mid \Delta$ is irreducible.

In particular, $\rho_{1} \mid \Delta$ is irreducible. Since ρ_{1} is equivalent to the adjoint representation Ad. of G_{R} in its Lie algebra g_{R}, this shows that no proper Lie subalgebra $\neq\{0\}$ of g_{R} is invariant by $\operatorname{Ad} \Delta$. Now if H_{R} is a closed subgroup of $G_{\mathbf{R}}$ containing Δ with $\left(H_{\mathbf{R}}: \Delta\right)=\infty$, then H_{R} is non-discrete, and hence the corresponding Lie subalgebra $\mathfrak{b}_{\mathrm{R}}$ is non-trivial. But $\mathfrak{b}_{\mathbf{R}}$ is invariant by $\operatorname{Ad} H_{\mathbf{R}}$, and hence also by $\operatorname{Ad} \Delta$. Therefore $\mathfrak{b}_{\mathbf{R}}=\mathfrak{g}_{\mathbf{R}}$; hence $H_{\mathbf{R}}=G_{\mathbf{R}}$ (since G_{R} is connected).

Therefore, if $\tilde{\Delta}$ is a group with $G_{\mathbf{R}} \supset \tilde{\Delta} \supset \Delta$ and with $(\tilde{\Delta}: \Delta)=\infty$, then $\tilde{\Delta}$ is dense in G_{R}.

Supplements to Chapter 1.

§2. A generalization of Lemma 10 of Chapter 1. Here, we shall verify the following assertion. ${ }^{2}$

The Lemma 10 of Chapter 1 remains valid if we weaken the compactness assumption of the quotient $G_{\mathbf{R}} / \Delta$ and replace it by the finiteness of volume, and if we assume that $f(z)$ is a cusp form. (also by Kuga.)

Proof. As in $\S 21$ (Chapter 1), put

$$
\begin{equation*}
F(g)=f(g(\sqrt{-1})) \cdot j(g, \sqrt{-1}) \quad\left(g \in G_{\mathbf{R}}\right), \tag{1}
\end{equation*}
$$

so that $F(g)$ is a Δ-invariant continuous function on $G_{\mathbf{R}}$. In this case, the quotient $G_{\mathbf{R}} / \Delta$ may not be compact, but we shall check that $|F(g)|$ still achieves its maximum value on

[^0]$G_{\mathbf{R}}$. Since the compactness assumption of the quotient $G_{\mathbf{R}} / \Delta$ is not used in the rest of the proof of Lemma 10 (Chapter 1), this would settle our assertion.

Let \mathfrak{F} be a closed fundamental domain of Δ on \mathfrak{H}, so that $\widetilde{\mathscr{F}}=\left\{g \in G_{\mathbf{R}} \mid g(\sqrt{-1}) \in \mathfrak{F}\right\}$ is a closed fundamental domain for $\Delta \backslash G_{\mathrm{R}}$. Let T_{1}, \cdots, T_{t} be all the non-equivalent cusps lying on the borders of \mathfrak{F}. It is enough to check

$$
\begin{equation*}
\lim _{g \in \tilde{\xi}, g(\sqrt{-1}) \rightarrow T_{i}}|F(g)|=0 \quad(i=1, \cdots, t) . \tag{2}
\end{equation*}
$$

(In fact, assuming (2), take sufficiently small neighborhoods U_{1}, \cdots, U_{t} of T_{1}, \cdots, T_{t} on \mathfrak{F}. Then $\sup _{g \in \tilde{\mathcal{F}}}|F(g)|=\sup _{g \in \tilde{\mathcal{F}}, g(\sqrt{-1}) \& U_{i}^{\prime} \mathrm{s}}|F(g)|$, and $\mathcal{F}-\bigcup_{i=1}^{t} U_{i}$ is compact; hence $|F(g)|$ achieves its maximum value on \mathfrak{F}.) Now to check (2), we may assume, without loss of generality, that the cusp in question is $\sqrt{-1} \infty$. Then by the definition of cusp forms, (2) is easily reduced to the following trivial equality:

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \delta^{-k / 2} e^{-\mu / \delta}=0 \tag{3}
\end{equation*}
$$

where μ is a positive real constant.

Supplements to Chapter 2.

§3. Lemma 8 (Chapter 2) for " p-side", and application. Let Γ be a discrete subgroup of $G=G_{R} \times G_{p}$ whose quotient G / Γ has finite invariant volume and whose projections Γ_{R}, Γ_{p} are dense in G_{R}, G_{p} respectively.

First, let Γ^{\prime} be another such subgroup of G, satisfying $\Gamma_{p}^{\prime}=\Gamma_{p}$. For each $\gamma_{p} \in \Gamma_{p}$, let $\gamma=\gamma_{\mathbf{R}} \times \gamma_{\mathrm{p}} \in \Gamma, \gamma^{\prime}=\gamma_{\mathbf{R}}^{\prime} \times \gamma_{p} \in \Gamma^{\prime}$, and put $\gamma_{\mathbf{R}}^{\prime}=\varphi\left(\gamma_{\mathbf{R}}\right)$. Then, it is clear that φ satisfies the conditions stated in Lemma 8 (Chapter 2). Therefore, there exists $x \in G_{\mathbf{R}}^{\prime}=P L_{2}(\mathbf{R})$ such that $\varphi\left(\gamma_{\mathbf{R}}\right)=x^{-1} \gamma_{\mathbf{R}} x$ for all $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$. Therefore, if Γ and Γ^{\prime} are moreover commensurable with each other, then x must commute with all elements of $\left(\Gamma \cap \Gamma^{\prime}\right)_{\mathbf{R}}$; hence $x=1$; hence $\varphi=1$; hence we get $\Gamma^{\prime}=\Gamma$.

Here, we shall prove the following:
Proposition. Let Γ be as above, and let Γ^{\prime} be another such subgroup of G, satisfying $\Gamma_{\mathbf{R}}^{\prime}=\Gamma_{\mathbf{R}}$. For each $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}$, let $\gamma=\gamma_{\mathbf{R}} \times \gamma_{\mathrm{p}} \in \Gamma, \gamma^{\prime}=\gamma_{\mathbf{R}} \times \gamma_{\mathrm{p}}^{\prime} \in \Gamma^{\prime}$, and put $\gamma_{p}^{\prime}=\varphi\left(\gamma_{\mathrm{p}}\right)$. Then, there is a topological automorphism σ of G_{p} such that $\varphi\left(\gamma_{p}\right)=\sigma\left(\gamma_{p}\right)$ for all $\gamma_{p} \in \Gamma_{p}$.

Corollary 1. Let Γ, Γ^{\prime} be as in the above proposition, and assume that Γ and Γ^{\prime} are moreover commensurable with each other. Then $\Gamma^{\prime}=\Gamma$.

Corollary 2. Let Γ be as above. Then there exist only finitely many subgroups Δ of G satisfying $\Delta \supset \Gamma$ and $(\Delta: \Gamma)<\infty$.

First, let us prove the corollaries, assuming the proposition.
Proof of Corollary 1. The automorphism σ must be trivial on ($\left.\Gamma \cap \Gamma^{\prime}\right)_{p}$, but $\left(\Gamma \cap \Gamma^{\prime}\right)_{p}$ is dense in G_{p} (since it is of finite index in $\Gamma_{\mathfrak{p}}$). Therefore $\sigma=1$. Therefore $\Gamma^{\prime}=\Gamma$.

Proof of Corollary 2. Let V be an open compact subgroup of G_{p}, and put $\Gamma^{V}=$ $\Gamma \cap\left(G_{\mathbf{R}} \times V\right), \Delta^{V}=\Delta \cap\left(G_{\mathbf{R}} \times V\right)$. Then $\Delta_{p}=\Delta_{p}^{V} \cdot \Gamma_{p}$ (since Γ_{p} is dense in $\left.G_{p}\right)$; hence $\Delta=\Delta^{V} \cdot \Gamma$. But $\Gamma_{\mathbf{R}}^{V}$ is a discrete subgroup of $G_{\mathbf{R}}$ whose quotient has finite invariant volume, and $\Delta_{\mathbf{R}}^{V} \supset \Gamma_{\mathbf{R}}^{V},\left(\Delta_{\mathbf{R}}^{V}: \Gamma_{\mathbf{R}}^{V}\right)=(\Delta: \Gamma)<\infty$. Therefore, there are only finitely many possibilities for $\Delta_{\mathbf{R}}^{V}$; hence there are only finitely many possibilities for $\Delta_{\mathbf{R}}=\Delta_{\mathbf{R}}^{V} \cdot \Gamma_{\mathbf{R}}$. But if $\Delta, \Delta^{\prime} \supset \Gamma,(\Delta: \Gamma)<\infty,\left(\Delta^{\prime}: \Gamma\right)<\infty$ and $\Delta_{\mathbf{R}}=\Delta_{\mathbf{R}}^{\prime}$ then by the above Corollary 1, we get $\Delta=\Delta^{\prime}$. Therefore for each Δ_{R}, there exists at most one Δ. Therefore, there are at most finitely many groups Δ.

Remark 1. The above proof shows that the number of such Δ is at most equal to the number of fuchsian groups containing $\Gamma_{\mathbf{R}}^{V}$ for $V=P S L_{2}\left(O_{\mathrm{p}}\right)$.

Proof of the Proposition. This is completely parallel to the proof of Lemma 8 (Chapter 2). Call $g_{\mathfrak{p}} \in G_{\mathfrak{p}} \mathfrak{p}$-elliptic if its eigenvalues are not contained in k_{p}. Then, $g_{p} \in G_{p}$ is \mathfrak{p}-elliptic if and only if its centralizer in G_{p} is compact. Therefore, by an argument completely parallel to the proof of Lemma 9 (Chapter 2), we can prove that if $\gamma=\gamma_{R} \times \gamma_{p} \in \Gamma$, then γ_{p} is \mathfrak{p}-elliptic if and only if the centralizer of γ_{R} in Γ_{R} is discrete in G_{R}; hence also if and only if γ_{p}^{\prime} is \mathfrak{p}-elliptic, where $\gamma^{\prime}=\gamma_{\mathbf{R}} \times \gamma_{p}^{\prime} \in \Gamma^{\prime}$. Therefore, φ and φ^{-1} preserve the p ellipticity of elements of $\Gamma_{p}, \Gamma_{p}^{\prime}$. We can also prove the assertion corresponding to Lemma 10 (Chapter 2) by an argument completely parallel to that used in the proof of Lemma 10 (Chapter 2). Namely, we assert that if $\gamma_{1}, \gamma_{2}, \cdots$ is any sequence in Γ_{p}, then it tends to 1 if and only if for any \mathfrak{p}-elliptic element $\delta \in \Gamma_{\mathfrak{p}}, \gamma_{n} \delta$ are \mathfrak{p}-elliptic for all sufficiently large n. The proof runs as follows. The "only if" part is trivial, since \mathfrak{p}-elliptic elements of G_{p} form an open subset of G_{p}. To prove the "if" part, we first remark that there exist four elements $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4} \in \Gamma_{\mathfrak{p}}$ such that $\delta_{i}(1 \leq i \leq 4)$ are \mathfrak{p}-elliptic and are (additively) linearly independent over k_{p}. In fact, put

$$
g_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & \alpha
\end{array}\right), g_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & \beta
\end{array}\right), g_{3}=\left(\begin{array}{cc}
\alpha & -1 \\
1 & 0
\end{array}\right), g_{4}=\left(\begin{array}{cc}
\alpha & -\frac{1}{2} \\
2 & 0
\end{array}\right)
$$

where

$$
\alpha, \beta \in k_{p}, \alpha \neq \beta, \alpha, \beta \neq 0 ; \quad \alpha^{2}-4, \beta^{2}-4 \notin k_{p}^{2} .
$$

Then they are \mathfrak{p}-elliptic elements of $G_{\mathfrak{p}}$ and are linearly independent over $k_{\mathfrak{p}}$. Since $\Gamma_{\mathfrak{p}}$ is dense in G_{p}, we can take $\delta_{i} \in \Gamma_{\mathfrak{p}}(1 \leq i \leq 4)$ to be sufficiently near $g_{i}(1 \leq i \leq 4)$ respectively. Then $\delta_{i}(1 \leq i \leq 4)$ satisfy the desired conditions. Put $\Pi=\left\{x \in G_{\mathfrak{p}} \mid x \delta_{i}(1 \leq\right.$ $i \leq 4$) are \mathfrak{p}-elliptic\}. Then, since the map

$$
M_{2}\left(k_{p}\right) \ni x \mapsto\left(\operatorname{tr}\left(x \delta_{1}\right), \cdots, \operatorname{tr}\left(x \delta_{4}\right)\right) \in k_{p}^{4}
$$

gives an isomorphism of the two vector spaces over k_{p}, and since the image of Π is contained in $O_{\mathfrak{p}}^{4}$ (eigenvalues of \mathfrak{p}-elliptic elements of $G_{\mathfrak{p}}$ are integers since their norms over k_{p} are 1), we see that Π is relatively compact. Now, let $\gamma_{1}, \gamma_{2}, \cdots$ be a sequence in Γ_{p} such that for any \mathfrak{p}-elliptic element $\delta \in \Gamma_{\mathfrak{p}}, \gamma_{n} \delta$ are \mathfrak{p}-elliptic for all sufficiently large n. Then, $\gamma_{n} \in \Pi$ holds for all large n. Therefore, it suffices to show that if $\xi \in G_{p}$ is an accumulating point of $\gamma_{1}, \gamma_{2}, \cdots$ (hence $\xi \in \bar{\Pi}$), then $\xi=1$. Let ξ be an accumulating point of $\gamma_{1}, \gamma_{2}, \cdots$. Then, for each \mathfrak{p}-elliptic element $\delta \in \Gamma_{p}, \xi \delta$ is an accumulating point
of \mathfrak{p}-elliptic elements $\gamma_{n} \delta(n \gg 0)$. Hence $\operatorname{tr}(\xi \delta) \in O_{p}$ holds for all such δ. Therefore, $\operatorname{tr}\left(\xi g_{\mathfrak{p}}\right) \in O_{\mathfrak{p}}$ holds for all \mathfrak{p}-elliptic elements $g_{\mathfrak{p}} \in G_{\mathfrak{p}}$. Put $\xi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $g_{\mathfrak{p}}=\left(\begin{array}{cc}0 & -z \\ \frac{1}{z} & \alpha\end{array}\right)$, with

$$
\alpha \in k_{\mathfrak{p}}, \alpha^{2}-4 \notin k_{p}^{2} \text { and } z \in k_{p}^{x} .
$$

Then $g_{\mathfrak{p}}$ is \mathfrak{p}-elliptic, and we have $\operatorname{tr}\left(\xi g_{\mathfrak{p}}\right)=\frac{b}{z}-c z+d \alpha$. Now if $b \neq 0$, let $|z|$ be sufficiently small; and if $c \neq 0$, let $|z|$ be sufficiently large. Then in either case we get a contradiction to $\operatorname{tr}\left(\xi g_{p}\right) \in O_{p}$. Therefore $b=c=0$; hence $\xi=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$. Now we have shown that if $\delta \in \Gamma_{\mathfrak{p}}$ is \mathfrak{p}-elliptic, then $\xi \delta$ is an accumulating point of \mathfrak{p}-elliptic elements. But there are \mathfrak{p} elliptic elements $\delta \in \Gamma_{p}$ which are arbitrarily near 1 . Therefore, ξ itself is an accumulating point of \mathfrak{p}-elliptic elements. But ξ being of the form $\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$, this is possible only when $a= \pm 1$. Therefore $\xi=1$.

Therefore, the convergence (to 1) of sequences $\gamma_{1}, \gamma_{2}, \cdots$ in Γ_{p} is characterized in terms of p-ellipticity, which is invariant by φ. Therefore, φ is bicontinuous. Therefore, φ can be extended to a topological automorphism σ of G_{p}.

Remark 2. By a slight modification of the above argument, we can also prove that if G_{p}^{\prime} is a subgroup of $P L_{2}\left(k_{p}\right)$ with $P S L_{2}\left(k_{p}\right)=G_{p} \subset G_{p}^{\prime} \subset P L_{2}\left(k_{p}\right)$, and if Γ^{\prime} is a discrete subgroup of $G^{\prime}=G_{\mathbf{R}} \times G_{p}^{\prime}$ whose quotient has finite volume and whose projections $\Gamma_{\mathbf{R}}^{\prime}, \Gamma_{p}^{\prime}$ are dense in $G_{\mathbf{R}}, G_{\mathfrak{p}}^{\prime}$ respectively, and if moreover $\Gamma_{\mathbf{R}}^{\prime}=\Gamma_{\mathbf{R}}$ holds, then $G_{\mathfrak{p}}^{\prime}=G_{p}$, and Γ^{\prime} is mapped onto Γ by some topological automorphism σ of $G_{\mathfrak{p}}$. This remark is needed in Chapter 4, §4.
§4. Proof of Lemma 1 (Chapter 2). In E. B. Dynkin [8], the following Theorem is proved (cf. [8] Part 1, Theorems I, II).

Theorem (Dynkin). Let K be a non-discrete simple normed field, and let R_{1} and R_{2} be normed Lie algebras over K. Then a homomorphism of R_{1} into R_{2} is at the same time a local homomorphism of the local group $G\left(R_{1}\right)$ into the local group $G\left(R_{2}\right)$. Conversely, an arbitrary local homomorphism of $G\left(R_{1}\right)$ into $G\left(R_{2}\right)$ is equivalent to a certain homomorphism of R_{1} into R_{2}. In this manner, homomorphisms $R_{1} \rightarrow R_{2}$ and local homomorphism classes $G\left(R_{1}\right) \rightarrow G\left(R_{2}\right)$ correspond in a one-to-one manner.

Here, by a non-discrete simple normed field, he means either the real number field \mathbf{R} or the p-adic number field \mathbf{Q}_{p}. The definition of normed Lie algebra over a normed field (cf. [8]) is given in [8]. In particular, every finite dimensional Lie algebra over a normed field K is a normed Lie algebra over K (in a natural manner). For each normed Lie algebra R_{1} over a normed field K, the local group $G\left(R_{1}\right)$ is defined (cf. [8]). As a set, $G\left(R_{1}\right)$ is a certain neighborhood of 0 in R_{1}.

Consider the following special cases. Let $K=\mathbf{R}$ or $=\mathbf{Q}_{p}$, and let K^{\prime} be a finite extension of K. Let \mathfrak{G} be a Lie subalgebra of $M_{n}\left(K^{\prime}\right)$ over K^{\prime}, and consider \mathfrak{G} as a Lie algebra over K. Then $G(\mathfrak{G})$ is a neighborhood of 0 in \mathfrak{G}, with the product law given
by $A \cdot B=\log (\exp A \exp B)(A, B \in G(\mathfrak{G}))$ whenever it exists and is contained in $G(\mathfrak{G})$. Therefore, if $\mathfrak{G}=\left\{X \in M_{n}\left(K^{\prime}\right) \mid \operatorname{tr} X=0\right\}$, then $G(\mathfrak{F})$ can be identified (by exp, log) with the local group of $P L_{n}\left(K^{\prime}\right)$. But we can verify the following lemma without any difficulty.

Lemma. Let $\mathfrak{F}=\left\{X \in M_{2}\left(K^{\prime}\right) \mid \operatorname{tr} X=0\right\}$ be considered as a Lie algebra over K. Then the non-zero endomorphisms of \mathfrak{b} over K are automorphisms of \mathfrak{F}, and are composites of inner automorphisms (by $P L_{2}\left(K^{\prime}\right)$) and automorphisms of \mathfrak{G} induced by field automorphisms of K^{\prime} over K.

Now $G(\mathfrak{G})$ being identified with the local group of $P L_{2}\left(K^{\prime}\right)$, it is clear that the corresponding local automorphisms of $G(\mathfrak{F})$ are the restrictions to $G(\mathfrak{G})$ of the global automorphisms $\varphi=\operatorname{Int}(t) \circ \sigma$ of $P L_{2}\left(K^{\prime}\right)$, where $t \in P L_{2}\left(K^{\prime}\right)$ and σ are the automorphisms of $P L_{2}\left(K^{\prime}\right)$ induced by the field automorphisms of K^{\prime} over K. Therefore, by the above Dynkin's theorem, every local automorphism of $P L_{2}\left(K^{\prime}\right)$ is equivalent to a global automorphism φ of $P L_{2}\left(K^{\prime}\right)$ of the form $\varphi=\operatorname{Int}(t) \circ \sigma\left(t \in P L_{2}\left(K^{\prime}\right), \sigma \in \mathrm{Aut}_{K}\left(K^{\prime}\right)\right)$. By putting $K^{\prime}=k_{p}$, Lemma 1 (i) of Chapter 2 is settled. To prove the remaining parts of this lemma, we shall show that
(I) A global automorphism of $P S L_{2}\left(k_{p}\right)$ which is an identity on some neighborhood of 1 is itself the identity map.
(II) A global automorphism of $P L_{2}\left(k_{p}\right)$ which is an identity on $P S L_{2}\left(k_{p}\right)$ is itself the identity map.
It is clear that (I) and (II) settle (ii) and (iii) of Lemma 1 (Chapter 2). In fact, if ψ is any global automorphism of $P S L_{2}\left(k_{p}\right)$, then it is equivalent to a global automorphism of $P L_{2}\left(k_{p}\right)$ of the form $\varphi=\operatorname{Int}(t) \circ \sigma$. Then $\psi \circ \varphi^{-1}$ is a global automorphism of $P S L_{2}\left(k_{p}\right)$ which is an identity on some neighborhood of 1 . Therefore by (I), we get $\psi=\varphi$ on $P S L_{2}\left(k_{p}\right)$, which settles (iii). In particular, if ψ is a global automorphism of $P L_{2}\left(k_{p}\right)$, then its restriction ${ }^{3}$ to $P S L_{2}\left(k_{\mathrm{p}}\right)$ coincides with some $\varphi=\operatorname{Int}(t) \circ \sigma$. Hence by (II) $\psi=\varphi$ on $P L_{2}\left(k_{p}\right)$, which settles (ii).

Proof of (I). Let ψ be a global automorphism of $P S L_{2}\left(k_{p}\right)$ which is an identity on some neighborhood of 1 . We claim that ψ is then an identity on $N=\left\{\left.\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right) \right\rvert\, a \in k_{p}\right\}$. To show this, put $x=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ with $a \in k_{p}, a \neq 0$. Let p be the characteristic of the residue class field O_{p} / \mathfrak{p}, and let n be a sufficiently large integer such that $x^{p^{n}}=\left(\begin{array}{cc}1 & p^{n} a \\ 0 & 1\end{array}\right)$ is invariant by ψ. Then $\psi(x)^{p^{n}}=x^{p^{n}}$. But x commutes with $x^{p^{n}}$; hence $\psi(x)$ commutes with $\psi\left(x^{p^{n}}\right)=x^{p^{n}}$; hence $\psi(x)$ is also of the form $\pm\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ with $b \in k_{p}$. Therefore by $\psi(x)^{p^{n}}=x^{p^{n}}$ we get $b=a$; hence $\psi(x)=x$. Therefore, ψ is an identity on N. In the same manner, ψ is an

[^1]identity on ${ }^{t} N=\left\{\left.\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right) \right\rvert\, a \in k_{p}\right\}$. But $P S L_{2}\left(k_{p}\right)$ is generated by N and ${ }^{t} N$. Therefore, ψ is the identity map on $P S L_{2}\left(k_{p}\right)$.

Proof of (II). Let ψ be a global automorphism of $P L_{2}\left(k_{p}\right)$ which is an identity on $P S L_{2}\left(k_{\mathrm{p}}\right)$. Let $x \in P L_{2}\left(k_{\mathrm{p}}\right)$. Then for any $y \in P S L_{2}\left(k_{\mathrm{p}}\right)$, we have $x^{-1} y x=y^{\prime} \in P S L_{2}\left(k_{\mathrm{p}}\right)$. Therefore, $\psi(x)^{-1} y \psi(x)=\psi\left(y^{\prime}\right)=y^{\prime}$. Therefore, $\psi(x) x^{-1}$ commutes with y. Since y is an arbitrary element of $P S L_{2}\left(k_{p}\right)$, we get $\psi(x) x^{-1}=1$; hence $\psi(x)=x$ for all $x \in P L_{2}\left(k_{p}\right)$.

This completes the proof of Lemma 1 (Chapter 2).
§5. On admissible extensions. Let k be any field, and let K be an algebraic function field of one variable over k. Let $e=e(P)$ be a $\{1,2, \cdots ; \infty\}$-valued function defined on the set of all prime divisors P of K such that
(i) $e(P)=1$ for almost all P,
(ii) if $e(P)<\infty$, then $e(P)$ is not divisible by the characteristic p of k,
and
(iii) $2 g-2+\sum_{P}\left(1-\frac{1}{e(P)}\right)>0$, where g is the genus of K.

A separable extension K^{\prime} of K will be called an admissible extension of $\{K, e\}$ if for each prime divisor P of K and its prime factor P^{\prime} of $K^{\prime}, P^{\prime} / P$ is (at most) tamely ramified, and moreover if the ramification index of P^{\prime} / P divides $e(P)$ (if $e(P)<\infty$).

We shall give here the proofs of the following two (probably well-known) facts (1), (2), to supplement the arguments of the main text. ${ }^{5}$
(1) The composite of two admissible extensions of $\{K, e\}$ is also admissible.

Thus, to each $\{K, e\}$, there exists a (unique) maximum admissible extension. Call it M. It is clear that a conjugate field (over K) of an admissible extension of $\{K, e\}$ is also admissible; hence M / K is a Galois extension.
(2) If $k=\mathbf{C}$, then for each prime divisor P of K and its prime factor P^{\prime} of M, the ramification index of P^{\prime} / P coincides with $e(P)$.
Proof of (1). It is enough to prove in the case of finite extensions. Let K_{1}, K_{2} be two finite admissible extensions of $\{K, e\}$, let K_{1}, \cdots, K_{m} be all the conjugate fields of K_{1}, K_{2} over K, and let K^{\prime} be the composite of K_{1}, \cdots, K_{m} (so that all K_{i} are also admissible, and K^{\prime} is the smallest Galois extension of K containing K_{1}, K_{2}). It is enough to prove that K^{\prime} is an admissible extension of $\{K, e\}$. Let P^{\prime} be any prime divisor of K^{\prime}, and put $\left.P^{\prime}\right|_{K}=P$. Since P^{\prime} / P is tamely ramified in all K_{i} / K, it is tamely ramified in K^{\prime} / K. So, the inertia group T^{\prime} of P^{\prime} / P is cyclic. Put $e=e(P), e^{\prime}=\left(T^{\prime}: 1\right)$, and let H_{i} be the subgroup of $G\left(K^{\prime} / K\right)$ corresponding to K_{i}. Since the inertia group of P^{\prime} in K^{\prime} / K_{i} is $T^{\prime} \cap H_{i}$, the ramification index of P^{\prime} in K_{i} / K is given by ($T^{\prime}: T^{\prime} \cap H_{i}$); hence by assumption we have $\left(T^{\prime}: T^{\prime} \cap H_{i}\right) \mid e$. Let e_{0} be the greatest common divisor of e and e^{\prime}. Then since $\left(T^{\prime}: 1\right)=e^{\prime}$, we get $\left(T^{\prime}: T^{\prime} \cap H_{i}\right) \mid e_{0}$. Let σ be a generator of T^{\prime}. Then this implies that

[^2]${ }^{5}(1)$ for Chap. 5 §30; (2) for Chap. 2 §42.
$T^{\prime} \cap H_{i}$ contains $\sigma^{e_{0}}$. But we have $\bigcap_{i=1}^{m} H_{i}=1$; hence $\sigma^{e_{0}}=1$; hence $e_{0}=e^{\prime}$; hence $e^{\prime} \mid e$. Since this holds for all P^{\prime}, K^{\prime} is an admissible extension of $\{K, e\}$.

Proof of (2). Since $\{K, e\}$ over \mathbf{C} corresponds to a fuchsian group Δ, and finite admissible extensions of $\{K, e\}$ correspond to subgroups of Δ with finite indices in a natural manner (see Chapter 2, $\S 40$), it is enough to prove here the following: Let z_{1}, \cdots, z_{s} be all the non-equivalent cusps of Δ, and let H_{i} be the stabilizer of z_{i} in Δ (so that H_{i} are infinite cyclic). Then for any positive number N, there exists a subgroup Δ^{\prime} of Δ of finite index such that (i) Δ^{\prime} is torsion-free, and (ii) $\left(H_{i}: \Delta^{\prime} \cap H_{i}\right) \geq N$ for all i. But this is easily checked as follows: Let w_{1}, \cdots, w_{t} be all the non-equivalent elliptic fixed points of Δ and let E_{j} be the stabilizer of w_{j} in Δ (so that E_{j} are finite cyclic). Let $\Delta=\Delta_{1} \supset \Delta_{2} \supset \cdots \supset \Delta_{n} \supset \cdots$ be any descending series of normal subgroups of Δ of finite indices such that $\bigcap_{k=1}^{n} \Delta_{k}=\{1\}$. Then $\Delta_{k} \cap H_{i}(k=1,2, \cdots)$ and $\Delta_{k} \cap E_{j}(k=1,2, \cdots)$ are also descending series with trivial intersection. Hence for some $k, \Delta_{k} \cap E_{j}=1$ for all j (hence Δ_{k} is torsion-free), and $\left(H_{i}: \Delta_{k} \cap H_{i}\right) \geq N$ for all i.

Supplements to Chapter 3.

§6. The vanishing of $H^{1}\left(\Gamma_{\mathbf{R}}, \rho_{n}\right)$ without compactness assumption for G / Γ. Here we shall give a generalization of the Corollary of Theorem 1 of Chapter 3 (§5) to the case where G / Γ is non-compact; namely,

Theorem. Let Γ be a discrete subgroup of $G=G_{R} \times G_{p}$ such that Γ_{R}, Γ_{p} are dense in G_{R}, G_{p} respectively and that the quotient G / Γ has finite invariant volume. Let $\rho_{n}(n=$ $0,1,2, \cdots)$ be the symmetric tensor representations of degree $2 n$ defined in Chapter 3 (§3). Then

$$
\begin{equation*}
H^{1}\left(\Gamma_{\mathbf{R}}, \rho_{n}\right)=0 \quad(n=0,1,2, \cdots) \tag{4}
\end{equation*}
$$

Corollary . The group Γ being as above, the commutator quotient $\Gamma /[\Gamma, \Gamma]$ is finite.
This is a generalization of (a part of) Theorem 2 of Chapter 3 (§6), and is an immediate consequence of the above Theorem for $n=0$ (see §6).

For the proof of this Theorem, our study of parabolic elements of Γ (Part 2 of Chapter 1) is basic.

Proof of the Theorem. Let $\Gamma_{\mathbf{R}}^{0}$ be any fuchsian group and let $\rho_{n 0}(n=0,1,2, \cdots)$ be the restriction of ρ_{n} to $\Gamma_{\mathbf{R}}^{0}$. Let V_{n} be the representation space of ρ_{n}. A 1-cocycle $a(\gamma)$ with respect to $\Gamma_{\mathbf{R}}^{0}$ and $\rho_{n 0}$ is called a parabolic cocycle if for each parabolic element $\varepsilon \in \Gamma_{\mathbf{R}}^{0}$, there exists some $b=b_{\varepsilon} \in V_{n}$, which may depend on ε, such that $a(\varepsilon)=$ $b-\rho_{n 0}(\varepsilon) b$. It is clear that the set of all parabolic cocycles forms a group containing the group of all coboundaries. Let H_{n}^{\prime} be the factor group, so that H_{n}^{\prime} can be considered as a subgroup of $H^{1}\left(\Gamma_{\mathbf{R}}^{0}, \rho_{n 0}\right)$. Then by Shimura [31], all results recalled in $\S 4$ hold (without the compactness assumption of the quotient $\left.G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{0}\right)$ if we replace $H^{1}\left(\Gamma_{\mathbf{R}}^{0}, \rho_{n 0}\right)$ by H_{n}^{\prime} and if $\mathfrak{M}_{2 n+2}$ is the space of all cusp forms (of weight $2 n+2$ with respect to $\Gamma_{\mathbf{R}}^{0}$).

Now let Γ be as in the above theorem, and put $\Gamma^{0}=\Gamma \cap\left(G_{R} \times P S L_{2}\left(O_{p}\right)\right)$, so that Γ_{R}^{0} is a fuchsian group. Let φ be the restriction homomorphism of $H^{1}\left(\Gamma_{\mathbf{R}}, \rho_{n}\right)$ into $H^{1}\left(\Gamma_{\mathbf{R}}^{0}, \rho_{n 0}\right)$. Then φ is injective. In fact, this follows exactly in the same manner as in §5, Chap. 3. Now we claim that the image of φ is contained in H_{n}^{\prime}. To prove this, let $a(\gamma)$ be any cocycle with respect to $\Gamma_{\mathbf{R}}, \rho_{n}$, and let ε be a parabolic element of $\Gamma_{\mathbf{R}}^{0}$. Our purpose is to prove that $a(\varepsilon)$ is contained in $\left(1-\rho_{n}(\varepsilon)\right) V_{n}$. By the Corollary 2 of Theorem 3 of Chapter 1 (Part 2, §25), there exists an element $\delta \in \Gamma_{\mathrm{R}}$ and an integer $d>1$ such that $\delta^{-1} \varepsilon \delta=\varepsilon^{d}$. Take $t \in G_{\mathrm{R}}$ such that $\varepsilon^{\prime}=t^{-1} \varepsilon t=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and put $\delta^{\prime}=t^{-1} \delta t$. Then by $\delta^{\prime-1} \varepsilon^{\prime} \delta^{\prime}=\varepsilon^{\prime d}, \delta^{\prime}$ stabilizes $i \infty$ but is not parabolic; hence δ^{\prime} is of the form $\delta^{\prime}=\left(\begin{array}{cc}a^{-1} & b \\ 0 & a\end{array}\right)$, with $a=\sqrt{d}>1$. If $b \neq 0$, replace t by the matrix $\left(\begin{array}{cc}1 & -b\left(a-a^{-1}\right)^{-1} \\ 0 & 1\end{array}\right) t$, and assume from the beginning that $\delta^{\prime}=\left(\begin{array}{cc}a^{-1} & 0 \\ 0 & a\end{array}\right)$. Now by the definition of $\rho_{n}(\S 3$, Chap. 3), we have

$$
\rho_{n}\left(\varepsilon^{\prime}\right)=\left(\begin{array}{ccccc}
1 & 2 n & & & * \tag{5}\\
& 1 & 2 n-1 & & \\
& & \ddots & \ddots & \\
& 0 & & \ddots & 1 \\
& & & & 1
\end{array}\right), \quad \rho_{n}\left(\delta^{\prime}\right)=\left(\begin{array}{ccccc}
d^{-n} & & & & \\
& d^{1-n} & & O & \\
& & d^{2-n} & & \\
& 0 & & \ddots & \\
& & & & d^{n}
\end{array}\right)
$$

Therefore, the rank of $\rho_{n}\left(\varepsilon^{\prime}\right)$ is $2 n\left(=\operatorname{dim} V_{n}-1\right)$, and ${ }^{t}\left(x_{1}, \cdots, x_{2 n+1}\right) \in V_{n}$ is contained in $\left(1-\rho_{n}\left(\varepsilon^{\prime}\right)\right) V_{n}$ if and only if $x_{2 n+1}=0$. Put $A^{\prime}=1-\rho_{n}\left(\delta^{\prime}\right)\left\{1+\rho_{n}\left(\varepsilon^{\prime}\right)+\cdots+\rho_{n}\left(\varepsilon^{\prime}\right)^{d-1}\right\}$. Then A^{\prime} is upper triangular, and the i-th diagonal component is $1-d^{i-n}(1 \leq i \leq 2 n+1)$. We claim now that if $x \in V_{n}$ with $A^{\prime} x \in\left(1-\rho_{n}\left(\varepsilon^{\prime}\right)\right) V_{n}$, then $x \in\left(1-\rho_{n}\left(\varepsilon^{\prime}\right)\right) V_{n}$. Put $x={ }^{t}\left(x_{1}, \cdots, x_{2 n+1}\right)$. Then $A^{\prime} x \in\left(1-\rho_{n}\left(\varepsilon^{\prime}\right)\right) V_{n}$ implies $\left(1-d^{n+1}\right) x_{2 n+1}=0$; hence $x_{2 n+1}=0$; hence $x \in\left(1-\rho_{n}\left(\varepsilon^{\prime}\right)\right) V_{n}$. Now put $A=1-\rho_{n}(\delta)\left\{1+\rho_{n}(\varepsilon)+\cdots+\rho_{n}(\varepsilon)^{d-1}\right\}$, so that $A^{\prime}=\rho_{n}(t)^{-1} A \rho_{n}(t)$; hence

$$
\begin{equation*}
A x \in\left(1-\rho_{n}(\varepsilon)\right) V_{n} \quad \text { implies } \quad x \in\left(1-\rho_{n}(\varepsilon)\right) V_{n} . \tag{6}
\end{equation*}
$$

Therefore it is enough to prove that $A a(\varepsilon) \in\left(1-\rho_{n}(\varepsilon)\right) V_{n}$. But by $\varepsilon \delta=\delta \varepsilon^{d}$, we have

$$
\begin{aligned}
& a(\varepsilon)+\rho_{n}(\varepsilon) a(\delta)=a(\delta)+\rho_{n}(\delta) a\left(\varepsilon^{d}\right) \\
& =a(\delta)+\rho_{n}(\delta)\left\{1+\rho_{n}(\varepsilon)+\cdots+\rho_{n}(\varepsilon)^{d-1}\right\} a(\varepsilon)
\end{aligned}
$$

hence $A a(\varepsilon)=\left(1-\rho_{n}(\varepsilon)\right) a(\delta)$. Therefore, by (8), we obtain $a(\varepsilon) \in\left(1-\rho_{n}(\varepsilon)\right) V_{n}$ for each parabolic element ε of $\Gamma_{\mathbf{R}}^{0}$; hence the image of φ is contained in H_{n}^{\prime}.

Now the proof is completed exactly in the same manner as in the proof of Theorem 1 in §5, Chapter 3, if we use Supplement §2 instead of Lemma 10 of Chapter 1.

[^0]: ${ }^{1}$ This is referred to in the following places: Chapter 2, §7, §24, Chapter 3, §1, §8.
 ${ }^{2}$ This is used in the proofs of Theorem 7 (Chapter 1, Part 2) (the inequality (171)), and the Theorem in Supplement §6.

[^1]: ${ }^{3}$ Since $P S L_{2}\left(k_{p}\right)$ is a characteristic subgroup of $P L_{2}\left(k_{p}\right)$ (since $P S L_{2}\left(k_{p}\right)$ is infinite and simple; see proof of Corollary 2 of Theorem 3, $\S 15$, Chap. 2), we have $\psi\left(P S L_{2}\left(k_{p}\right)\right)=P S L_{2}\left(k_{p}\right)$.

[^2]: ${ }^{4}$ i.e., the residue field extension is also separable and the ramification index is coprime to p.

