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Part 2. Non-abelian classfields attached to subgroups of I' = PS L,(Z®)
with finite indices.

PutT = PSLy(Z®) and I = {x € GLy(Z®P)|detx € IT}/ + II, where Z®) = I1 - Z and
IT = pZ (the infinite cyclic group generated by p), so thatI™* > T, (I"* : I') = 2. Our main
purpose in Part 2 of this chapter is to show that the group I'* (resp. T, or other related
groups) describes a certain “non-abelian classfield theory” over the rational function field
K* = F,(j) (tesp. szG), or other related algebraic function fields). Namely, for each
normal subgroup I of (say) I'* with finite index, a finite Galois extension K’ of K* called
the I'""-classfield is defined, and the following main theorems are proved:

(1) for each I, the I'"-classfield exists and is unique;
(i1) there is a certain isomorphism v : G(K'/K*) = I"*/T";
(iii) the law of decomposition of prime divisors of K* in K’ is completely described by
the primitive elliptic conjugacy classes of I'* (and the isomorphism ).

More precisely, let p(I'*), p(K*) and the bijection J* : p(I"*) — p(K*) be as in §10
(Part 1), 7 being defined with respect to a fixed prime factor p of p in Q? (the algebraic
closure of Q in C). Then a finite Galois extension K’ over X is called a I'""-classfield if the
following condition (}#) (§29) is satisfied:

(#) An ordinary prime divisor B° of K* (i.e., those B° contained in p(K*)) is decomposed
completely * in K” if and only if T is contained in I'"; where z(€ $) is a representative
of the I'*-equivalence class 7*~!(P°), and I'; denotes its stabilizer in I"*.

With this definition, we have the following main theorems (§30):
MaN TaeoreM (I'*-1). For each 1", I''-classfield exists and is unique.

MaN THEOREM (I™*-2). Let & be the composite of all I -classfields, where I'" runs over
all normal subgroups of I'* with finite indices. Then there is a dense injection. : I* —
G(8/K*) satisfying the following conditions:

(1) ¢ induces an isomorphism of the completion of T with respect to “subgroups with
finite indices topology” and G(]/K™); hence subgroups of I'* with finite indices and
finite extensions of K* contained in ! correspond in a one-to-one manner. Moreover,

if I is any normal subgroup of T'* with finite index, then the corresponding finite
extension of K* is nothing but the I"'-classfield.

(ii) Let PB° be any ordinary prime divisor of K*, let z be a representative of T*}($°),
and let I'; be the stabilizer of z in ™. Let E; be the torsion subgroup of T, and let y
be a positive generator of T, mod E; with respect to p (see §23). Then P° has an
extension ‘B, to ] whose inertia group is 1(E}) and whose Frobenius substitution is

«y) (mod «(E?)).

3j.e., the relative degree is one.
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(iii) Let B° be the infinite prime divisor of K* (i.e., B(j) = oo; see §22). Then B° has

an extension B,,, 1o ] whose inertia group is generated by L(((l) })) and whose

Frobenius substitution (modulo the inertia group) is given by . (((1) z))

MAIN THEOREM (I'*-3). Let R be as in Main Theorem (I'*-2). Then, K C K.

Here, under the assumptionp # 2, 3, the field R is defined to be the maximum Galois
extension of F2K* such that
(i) if BO() # 0,123, co, then P° is unramified in R;
(i) if B°G) = 0,123, oo, then B° is at most tamely ramified in & with the ramification
indices dividing 3, 2, oo respectively.
(iii) if P° is supersingular (i.e., P° ¢ p(K*) and P°(j) # o), then the relative degree of
PO in §/szK* is one.

On the other hand, whether & coincides with & is an open problem (our main conjec-
ture for the group I'*; see §30).

Now, in the above formulation, I” was any normal subgroup of I'* with finite index.
By Mennicke [23], however, the group SL,(Z®) and hence also the group I'* have the
congruence subgroup property; hence such I" is actually a congruence subgroup (i.e.,
contains some principal congruence subgroup). This fact is used essentially in the proof
of Main Theorem (I'*-1). (Without Mennicke’s result, we had to assume in our Main The-
orems that I is (or runs over) a congruence subgroup(s).) Apart from this, the proofs of
our Main Theorems are based exclusively on a detailed study on the connection between
the group I'* and the Shimura’s and Igusa’s modular function fields (i.e., certain fields
obtained by division of elliptic curves whose modulus is a variable over the prime field
of characteristic 0 and p respectively). Thus, although our main theorems are formulated
without using elliptic curves at all their proofs are based on full applications of modern
theory of elliptic curves. In fact, e.g., the existence of I"-classfield is shown by its explicit
construction, using division points of elliptic curves.

Here, we note that since the bijection J* : p(I'*) — p(K*) is not “absolutely well-
defined” but depends on the choice of a prime factor p of p in Q?, the definition of the
I"-classfield also depends on the choice of p. This dependency, which is of quite a subtle
nature (possibly reflecting some basic character of this theory), is studied in §32. We shall
show that the composite & of all I"-classfields is independent of p, and then determine
what change on the injection : of Main Theorem (I'*-2) (and hence also on the definition
of I"-classfield) should be made when p is replaced by p” (o € G(Q*/Q)).

§11 ~ §14 are preliminaries; in §15 ~ §16, the connections between I'™ and the
Shimura’s and Igusa’s modular function fields are established; §17 ~ §28 are for the study
of arithmetic of Igusa’s modular function field, using our group I'*. The main theorems
are formulated and proved in §29 ~ §30, and some supplements (including the effect of

6See §30 for the definition of ] for r=2,3.
"Supersingular prime divisors of K* can also be defined without using elliptic curves. See [4].
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changing p) are given in §31~ §32’; The final section §33 is for the remarks and numerical
evidences for the conjecture & = K ?

Examples of two simple facts obtained as applications of our results:

(1) For any given integer N, there is an example of algebraic curves over F 2, which has
no F,.-birational non-singular projective model in PV. See §26, Remark 2.

(ii) Examples of elements of the group I'* that are not conjugate in I'* but are conjugate
in all finite factor groups of I"* (Note that I'* is residually finite and that all non-trivial
factor groups of I'* are finite.)® See §31, Remark 2

[An Indication]. For the proof of the announcement of §10 (Part 1), see §24.

Preliminaries on elliptic curves; results of Igusa and Shimura.

§11. Fields k(E(n)), k(E(n))°.. Let E be an elliptic curve over a field k. Let k(E) be
the field of all k-rational functions on E, and k(E)° the subfield of all f € k(E) satisfying
S(=u) = f(u) (for all u € E). Let n be a positive integer not divisible by the characteristic
of k, and let E(n) be the group of all points u € E with nu = 0. Put

20) {k(E(n»=ktf<u>|ueE<n>,fek<E»,
KE®n))° = k(f(u) | u € E(n), f € k(E)°).

Fix any isomorphism E(n) = (Z/nZ)*. Then k(E(n)) is a finite Galois extension of k, and
by the action of its Galois group G on E(n), we can regard G as a subgroup of GL,(Z/nZ).
Let G° be the subgroup of G that corresponds to k(E(n))°. Then G° = G n {+1}). In
fact, if o € G, then f(u”) = f(u) for all u € E(n), f € k(E)°. But then ¥© = +u
for all # € E(n); hence in particular, for u = (1,0),(0, 1) and (1, 1). From this follows
immediately that o = +1; hence G® c {+1}. On the other hand, GN {+1} c G is obvious;
hence G° = G n {+1).

RemARK 1. The fact that «” = +u for each u € E(n) implies o- = +1 is used throughout
the following without any remarks.

It is known that k(E(n)) always contains a primitive n-th root of unity ¢,, and that for
each o € G, we have

(21) =% (see Igusa [14], §3).

8This last fact is due to Mennicke [23].
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Hence k(£,) € k(E(n))°, and the Galois group of X(E(n))/k(,,) is G N S Ly(Z/nZ).

k(Em) --- {1}
I I

KE@m) --- Gnf{xl)
(22) l l
k&) - GNSLyZ/nZ)
| |
k -+ Gc GL(Z/nZ).

Now let j be the absolute invariant of E (hence j € k).

Prorposrrion 1. (i) If j # 0,123, the automorphism group of E is {£1);
(i) if ch. k # 2, an automorphism of E which leaves fixed all elements of E(2) is +1;
(iii) if ch. k # 3, an automorphism of E which leaves fixed all elements of E(3) is 1.

Remark 2. In (ii), (iii), there is no condition on j. The important cases are (ii) j = 123,
(iii) j = 0.

ProposITION 2. If j # 0,123, the field k(E(n))® depends only on k, j and n.

Proor oF ProposrTioN 1. (i) is rather well-known, and is indicated in J. Igusa [14].

(ii) Let o be such an automorphism of E, and let p, be the 2-adic representation of
the endomorphism ring of E. Then detp,(c)) = v(o) = 17 hence p,(o) is contained in
the group X = {x € SLy(Z;) | x = 1 (mod 2)}. Since the automorphism group of E is
always finite and since p, is faithful, it is enough to prove that the only elements of X of
finite orders are +1. Since X is 2-primary, all finite subgroups of X are 2-groups; hence it

is enough to show that no element of X/{+1} is of order two. Suppose that x = + (a b)

c d
were such an element. Then (a b) = :t( d
c d —C

hence a contradiction; if itis —, thend = —a, a* + bc = —1;buta=1,b = c =0 (mod 2);
hence —~1 = @*> + bc = 1 (mod 4), which is also a contradiction.
(iii) In the same manner, it is enough to prove that the group X = {x € SLy(Z3) | x =1

—ab). If the last sign is +, then x = +1;

(mod 3)} has no elements of order 3. Suppose that x = ccz 3 were such an element.

Thena+d = -1,ad - bc = 1; hence a(~1 —a) = ad = 1 + bc = 1 (mod 9); hence
a@*+a+1=0 (mod 9), which is a contradiction.
This completes the proof of Proposition 1. ]

Proor oF ProposiTioN 2. Let E, E’ be two elliptic curves over k with the same absolute
invariant j # 0, 123. Then there is an isomorphism p of E onto E’ defined over the alge-
braic closure of k. But by Chow’s theorem [3], p is defined over the separable closure &°
of k. Let o~ be any element of the Galois group G(k*/k). Then p~! 0 p” is an automorphism
of E; hence p~! o p” = +1 (Proposition 1). Therefore, p(u)” = p (") = e,pu”) for all

9See Weil [35] for the symbol v( ).
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u € E(n) with e, = 1. Therefore, p(¥)” = +p(u) (for u € E(n)) holds if and only if
u® = zu (for u € E(n)); which settles Proposition 2. m|

DEerNTTION . In view of Proposition 2, we shall put
(23) kin = K(E(n))°.

§12. Reduction of k(E(n))® modv. Now let j € k, with j # 0,123, Then the
following Tate’s equation gives an elliptic curve over k with the absolute invariant j;

36 1
o123 T o
the neutral element being (x, y) = (oo, 00). An advantage of this over Weierstrass’ equation
¥ = 4x*—gyx—gs (j = 12343 /(g3 —2743)) is that (24) gives an elliptic curve (with absolute
invariant ;) for any characteristic including 2 and 3. We shall call this elliptic curve (24)

25) E;

(24) Paxy=x —

throughout the following. Its addition theorem is given by
i) -y =x-x-p);
(x1,51) + (x2, 2) = (x, ), with
(ii) X =m+m?—x —xs,
y =(m+1)(x; +x3 —m—m?) - L2220

X1—X2

(26)

where m = -'x:L:-'ﬁ Thus, it is clear that

an { KE,(m) = K(x(), y(u) | u € E(n),
kin = KE;m)° = k(x(u) | u € E(n)).

Let v be an additive discrete valuation of k such that v(j) = v(j — 123) = 0. Let O, and
k be the valuation ring and the residue class field of v respectively; and for each g € , let
a denote its residue class mod v, so that @ € k (a € 0,), @ = o (a ¢ O,). In particular,
j#0,123, co.

Now E; — Ej; is a good reduction of elliptic curves, and the addition theorem for E;
is also given by (26); hence the general theory of good reduction of abelian varieties (cf.
e.g., Shimura [29]) can be applied, and we obtain:

ProposrTioN 3. The notations being as above, let v(j) = v(j — 123) = v(n) = 0, and let
v be any extension of v to k(E j(n)). Then, ‘

(28) (x0),y@) +—_(6D.¥@) (u € Ejn)

gives an isomorphism of E j(n) onto E5(n). ((x(u), y(u)) are the (x, y)-coordinates of points
of Es(n).)

In particular, x(u), y(u) are finite for u # 0 for all extensions v of v; hence x(u) and
y(u) for u # 0 must be integral over O,.
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CoroLLARY . The notations and assumptions being as above and as in Proposition 3,
express by ~ the residue class or residue field modulov. Then

Q) ka0 &

J"’

(ii) ifthe two fields of (i) coincide, thenv is unramified in k;, (k.

ReMARK . The two fields F; and E;,n always coincide if k is perfect. In fact, -IE;-;/E
is then a Galois extension, and hence the homomorphism o +— & (defined below) is
surjective. Moreover the argument below shows that oz = 1 implies o~ = 1. Therefore,

J.n

757,” must coincide with ;.

Proor or THE CoROLLARY. (i) is an immediate consequence of Proposition 3. To prove
(ii), let G’ be the decomposition group of v'in k;,/k, so that there is a natural onfo homo-
morphism G’ 3 o - T € G(k;,/k) (since k;,, = %’n and hence it is a Galois extension
over k). Let o be such that & = 1. Then for each u € E (n), x(u)” and x(u) have the
same residue classes. But then it follows directly from Proposition 3 that x(w)® = x(u)
for all u € E;(n); hence o~ = 1. Therefore, the inertia group of v'in k;,/k is trivial. Since
k,,, = k , 18 separable over k, this settles (ii). 0

§13. k(E(n))° when £ is a rational function field over a prime field. Now let F be
a prime field, j a variable over F, and k = F(j). For each n 2 0 (mod ch.F), putk, = k;,
and let £, be a primitive »n-th root of unity. So by §11, the Galois group G(k,/k) can be
considered as a subgroup of GL,(Z/nZ)/ = 1. Now by G. Shimura [30] (ch F = 0) and J.
Igusa [14] (ch F > 0), we have the following:

TueoreM A. The notations being as above, k((,) is algebraically closed in k,, and the
Galois group G(k,/k) is given by
G(k./k) = GLy(Z/nZ)/ +1---ch.F =0,
= {0 € GLy(Z/nZ)| deto €1,}/ +1---ch.F >0,'°

where if ch.F = p > 0, II, denotes the cyclic subgroup of (Z/nZ)* generated by p. In
particular, we have G(k,/k({,)) = SLy(Z/nZ)/ + 1 in both cases (see §11).

(29)

Exampies (Igusa [14], §3). We have

(30) b= kD), with j=2slo At

W (ChF # 2),
3
(31) ks = k(u, ), with j= {3%(1’—;3—_112-3—)} (ch.F # 3).

Since G(k;/k) = SLy(Z/2Z) = G, k, contains a quadratic extension of k, which is

generated by j— 123 = 2U2ANAED, Since G(ks /K(5)) = SLZ/3Z)] + 1 = W, ks

1011 1gusa [14], it is proved that if k = F*(j) (F : the prime field of characteristic p > 0, F* : the algebraic
closure), then G(k,/k) = SLy(Z/nZ)/ + 1 for n # 0 (mod p). Our formulation follows immediately from
this by using (21), (22). Actually, this Igusa’s theorem can also be proved by our method; i.c., by using the
decomposition law of prime divisors of k in k.
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contains a cubic cyclic extension of k({3) (corresponding to the Klein’s four group in %),
which is generated by +/j. Thus,

(32) ko \j-12%, k>

§14. k(E(n))° when £ is a rational function field over Q; modular functions of
level n. We denote by 3 the variable of the complex upper half plane $, and by z special
points of §. Let j(3) be the elliptic modular function, and put £ = Q(j(3)). For each n,
put k, = kj;)». Then by G. Shimura [30], &, can be realized as a subfield of the field of
automorphic functions of level ». This is done as follows.

Let p(ulw;, w,) be the Weierstrass g-function with periods w;, w,, and let g{(w, w;)
(i = 2,3) denote 60 3’ (mw; + nw,)™ and 140 ¥’ (mw; + nw,)® respectively, where (m, n)
runs over Z* — (0,0). Put g,(3) = i3, 1) (i = 2,3), so that jG3) = 12°9,(3)*/(9:3)° -
27g3(3)?). For each positive integer n, consider Z/nZ as a subgroup of Q/Z, so that the
elements of Z/nZ are i/n (i € Z, considered mod n). For each «, 8 € Z/nZ with (a,B) #
(0,0), put

(33) {";ﬁ(s) = gjg)so(as +ﬁ|s, 1),
Xp(3) = —15%,5() -

Then, by Shimura [30] (§4), we have the following propos1tions:

ProrosrTiON 4. For each o € PSLy(Z), we have xop5(3) = x.5(03) (in particular,
X.8(03) = Xo8(3) if o = £1 (mod n)). Moreover, the field C(j(3); x.5(3) | @, € Z/nZ)
coincides with the field of modular functions of level n.

ProposiTION 5. The notations being as above, we have

(34) kn = k(x,5(3) | @, 8 € Z/nZ)."

Moreover, there is an isomorphism v : E j;(n) = (Z/nZ)?, unique up to +1, such that for
any a,f € Z[nZ with (a,B) # (0,0), x,5(3) coincides with the x-coordinate of the point
Y a,B) of Ej5.

Proposition 4 is rather well-known, and is easily proved. Here, we shall reproduce the
proof of Proposition 5 (in our notations). Put

3/2
= 20)” 2o

Then we have y'(u, 3)* = 4x'(u, 3)* — t(3)x’' (4, 3) — 1(3), with 1(3) = %%;. Hence if we put
{x(u, ) = —ExXw) -
yw,3) = mwf(u 3) + 35%'(4,3) + 5,

then we see that x = x(u,3), y = y(u,3) satisfy (24) for j = j(3). Now put
K = CnQUR); x,53) | @.B € Z/nZ), so that K is finitely generated over Q, and

(35) 23 = 20w, 1)y = (

(36)

Ughimura used this to prove Theorem A for F = Q.
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QUB3); x.5(3) | @, B € Z/nZ) is of dimension one over K (by Proposition 4). Letz € $ be
such that j(z) is transcendental over K. Then

(37 U@ Xap@)ag > U(2); Xep(2))es

is a specialization over C and hence also over K. By comparing the dimensions of
both sides over X, we see that (37) is a generic specialization over K, and hence also
over Q. Therefore, there is an isomorphism o of Q(j(3); x.5(3) | @.8 € Z/nZ) onto
QUi(2); x.5(2) | @, B € Z/nZ), sending j(3) to j(z) and x,4(3) to x,45(2) for all @, 8. But, on
the other hand, x(u, z), y(u, z) are generators of elliptic functions on C/[z, 1], and they sat-
isfy (24) with j = j(z); hence we can identify E ) with C/[z, 1] by (x(¥,2), y(u,2)) & u.
Moreover, there is an isomorphism ¢, : E;)(n) = (Z/nZ)* given by az + 8 & (,p).
Therefore, x,5(z) = x(az + B;z) is nothing but the x-coordinate of i;!(a,8). This fact
pulled back by o gives Proposition 5. 0

The group I™* and the extension K/%.

Throughout the following, p is a fixed prime number, and p is a fixed prime factor of
- p in the algebraic closure Q* of Q. The residue field of Q* mod p will be identified, once
and for all, with the algebraic closure F; of F,. Sometimes p is considered as a place
Q- F;,lz and sometimes identified with its kernel, i.e., the maximal ideal of the ring of
all p-integers in Q?. By », we always denote a positive integer not divisible by p.

§15. The place p. Let j(3) be the elliptic modular function, abbreviated simply as j;
Jj = Jj@®). Put

(39%) k= Q0

and for each n £ 0 (mod p), consider the Shimura’s modular function field, i.e.,

(39 kn = kjn = k(xop | @, B € Z/nZ),
where x,5 = x,5(3) are as in §14. Put
(40) M= | ] K,

n#0 mod p

which is an infinite Galois extension of k. Let G be the Galois group of M{k} over k. Then
by Theorem A, G is isomorphic to the group

(41) {[—[ GLZ(Z,)} /+1,

I#p

120f course, some elements of Q* go to infinity by p, but we shall always write in this way.
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the isomorphism depending on the “n-adic” coordinate system (injective system for all
n # 0 (mod p)) on E;. Take the coordinate system defined by Proposition 5, and by the
corresponding isomorphism, identify G with the group (41); thus

(“2) | G= {ﬂ GLz(ZI)} /£1,

I#p

(43) 0(Xap) = X(opes for o €G;, a,B€Z/nL.

On the other hand, let j be a variable over F,, put
(44) k=TF,(),
and for each n # 0 (mod p), consider the Igusa’s modular function field, i.c.,
45) kn=k;, (see§ll,(23)).
Put
(46) - Mi= | k.

n20 mod p

which is an infinite Galois extension of k. Let G be the Galois group of M{k} over k.
Let X be an “n-adic” coordinate system (injective system for all » # 0 (mod p)) on Ej5,
and let g5 be the corresponding “n-adic” representation of G. Then by Theorem A, G is
isomorphic by ¢5 to

(47) {E e[ ]or.@

I¥p

detEeﬁ}/:tl,

where TT denotes the subgroup of [],. » L} topologically generated by the diagonal p. (As
is easily seen, the group II is topologically isomorphic to the group ¥, Z;, the direct sum
being taken over all prime numbers / including p.) An important remark is that by a
change of our n-adic coordinate system X, ¢5 is changed by an inner automorphism of the

group
{]_[ GLz(Zl)} /%1,

I#p

which may be an oufer automorphism of the group (47). Thus @y is not unique even up
to inner automorphisms of G. But, on the other hand, some important automorphisms of
M{k}/k, such as the Frobenius substitutions of prime divisors, are well-defined up to inner
automorphisms of G; hence to describe them definitively by the group (47), we need to
find and fix a “special” coordinate system I, which must be well-defined up to G.

Thus, we shall proceed to define such a “special” G-class of 13 For this purpose, we
need the following proposition, which is an easy consequence of Theorem A.

13As the readers will see, this class is not “absolutely well-defined”, but depends on the special choice
of p. At any rate, once p is fixed, it is well-defined.
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ProvosrTioN 6. There exists a place
(48) 9 : Mk} - Mk},
unique up to G, such that
(1) @ coincides with p on M{k} N Q* = Uz0 (mod p) Q(&n)

(i) p(j) = J.
Moreover, if p is such a place, then we have
(49) o(k,) = k.

ProOF. Put Q' = U,z0 (mod p) Q(¢n)- Let o’ be the unique place of Q’(j) that coin-

cides with p on Q’ and that sends j to j; hence g’ corresponds to the following discrete
valuation'* ¥ of Q'(j):

(50) (o2 D)=m for g0, H) € O, ¢ PO
where O’ is the ring of p-integers in Q’. Let p be any extension of ’ to a place of M{k}.
Then it follows directly from Proposition 3 that p(k,) D k,. But by Theorem A, [k, :
K] = [k : k(Zw)), where , = p({,). Therefore, p(k,) = »; hence p[M{k}] = M{k);
hence g is a desired place.

On the other hand, if g, is another place satisfying (i), (ii), then p; = p on Q'());
hence there is some oo € G(M{k}/Q'())) with p; = p°. So, it is enough to show that
the decomposition group of p in M{k}/Q’()) is the full Galois group of this extension;
or equivalently, that the decomposition group of g in k,/k(¢,) is the full Galois group
for all n # 0 (mod p). But this is in fact so, since by Theorem A, the relative degree
[0(ks) : 9(k(£a))] = [kn = k(£,)] 18 equal to [k, = k()] O

We have also proved:

CoroOLLARY 1. g corresponds to a discrete valuation of M{k} having p as a prime
element; g is unramified and remains trige in M{k}/Q'(j), where Q' = Upnz0 (mod p) Q({n):
and also in k, [k(¢y,) for all n £ 0 (mod p).

By Propositions 3, 6, it is clear that:
COROLLARY 2. k, = E@aﬁ | @, B € Z/nZ), where Xop = 9(Xop).

Now we shall define the special (G-)class of £ on E;. Take any p satisfying Propo-
sition 6, and let £ = T, be the unique (up to +1) coordinate system on E; by which X4
corresponds to (a, ) for all o, 8. Then by Proposition 6, any change of %, by a different
choice of p is merely a change by an action of an element of G; hence the G-class of Z, is
well-defined. Now fix any p once and for all, and identify G with the group (47) by =,
thus, we have

I#p

(51) G= {a"e I_IGLZ(ZI) detEeﬁ}/il,

14Note that p is unramified in Q’, and hence p is a prime element of Q' N p.
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(52) T(%ap) = Xopys; for c€G; a,peZ/nZ.

Obviously, the natural injection of the right side of (51) into the right of (42) corresponds
to the injection G — G defined by the natural identification of G with the decomposition
group of p in M{k}/k.

Now let

(53) |

be the subfield of M{k} that corresponds to the subgroup +I1/ + 1 of G. This is the field
in which we are most interested. We have the following figure;

[ - ST TT VPRI { ........ +I0/+1
(54) Fp(g) o {T1SL2(Z1)}/ 1
/ _— i#p
Fpa(j) - {7 € G|det 7 € 12}
/ /
E — Fp (5) ................... (—;'
Here, [7 is “parallellogram”; i.e.,
(55) KB =F(), K F() = M.

Thus, the Galois groups of R/, &/F .k, are given by

G(R/K) = {7 € 11y GLo(Z)) | det7 eI} / T,
(56) GR/F:E) = {5—' € [y GLa(Zy) | detT € ﬁz} /+10,

15
= {MTip SLAZp)} / £ 1.
Remark . Since the subgroup +IT/ + 1 is invariant by the inner automorphisms of

{H,ﬁ, GLz(ZI)} [ £ 1, the field & is absolutely well-defined (in particular, it does not
depend on the choice of p).

§16. Now the groups

57 I* = {yeGL(ZP)| detye m)/«1I,
I = SL(Z?)/ 1,

1dentify.



CHAPTER 5.2. NON-ABELIAN CLASSFIELDS ATTACHED TO SUBGROUPS OF I' = PSLy(Z®) 179

are going to play the central roles! Here, as in §1, II is the infinite cyclic subgroup of Q*
generated by p, and . Z® =1-Z. By (56), I can be regarded as a (dense) subgroup of the
Galois group G(8/k) by the diagonal embedding

I > G&R/k) = {E e[ |6Lz)| detT e ﬁ'}/ +11,
I#p

and we haveI' = I NG(K /sz—k). Thus, I'* acts, on one hand, on $) as a group of analytic
transformations, and on the other hand, on R as a (dense subgroup of the) Galois group.

We note here that the finite extensions K of k in & and subgroups T of T* with
finite indices correspond in a one-to-one manner. In fact, each K corresponds to an
open subgroup Gx = G(R/K) of G(R/k) by the Galois theory, and by the congruence
subgroup property of the group S L,(Z®) (proved by Mennicke [23]), Gx and Ty = Gx N
I correspond in a one-to-one manner. Since I"* is dense in G(R/k), K is nothing but the
fixed field of I'y in K.

K - . ( K: the fixed field of T}, )
(58) 11 K> I'y =T NGK/K).
finite extensions - subgroups of I'*
of kin & of finite indices.

A fundamental theorem.

Throughout the following, g is a fixed place M{k} — M({k} satisfying Proposition 6.
We shall denote as X = p(x) (for x € M{k}), = p(x) (for x € Q%).

§17. Let y be any place ¢ : M{k} — Q?, which is an identity on M{k} N Q‘i_:
Unz0 (mod py) Q(&n) = Q’. We are going to attach to each such y, a unique place ¢ :
pu

Mk} - F7, which is an identity on F}, and for which the following diagram (59) is
“almost commutative”, i.e., it is commutative on a certain subring ®, of M{k} defined
below;

[

M) > Mk
(59) ¥yl Ly
e 5 R

namely, we shall prove the following:



180

ProposiTioN 7. Let  be any place Mk} — Q® identity on Mk} N Q‘l =
Unso uoa ) Q) =, Q- Let o, be the subring of Q(j) given by

o ={%2| 90). h)) € OL. JWT) # 0} -+ P # e

(60) _
={58 ] g, h(j) € O}, deg = degg 2 degh) -0 = e,

where (O is the ring of p-integers in Q'. Let O, be the integral closure of o, in M{k).
Then for each , there exists a unique place  : M{k} — F, such that the diagram (59) is
commutative on ®,. Moreover, this  is an identity on F2.

ReMaRk . The last assertion of Proposition 7 is obvious.

DerFiNtTioN . Put § = $UQ U {ico}, and let z € $ be such that j(z) is either algebraic or
infinite (e.g., if z is a I*-fixed point, j(z) is an algebraic integer; if z € QU {ico}, j(z) = ).
Then z defines a place ¢ = ¥, : M{k} — Q2 by the substitution M{k} > F(3) — F(2)
(which is obviously identical on Q’); hence we obtain, by the above proposition, a place
v, M{k) > F?, and hence by its restriction to R, a place & — Fj,, which we denote by

(61) B,
(Thus, the restriction of B, to & is given by j jG) = j(z) mod p.)

Now, since I'* acts on &, it also acts on the set of all places of &; namely, for each
y € I'* and a place P of K], define yP by

(62) yB = Boy.

Then it is clear that y’(yB) = (¥'y)® holds for all v,y € I'*, and that in this manner, I'*
also acts on the set of all equivalence classes of places of K. Recall that the two places
are called equivalent if they have the same valuation rings; hence if P, P, are two places
! — F;, they are equivalent if and only if there is some automorphism o of F;, (not of
R) such that B, = o o PB,. To express the equivalence of two places, we shall use the
notation:

(63) B, =P, (equivalence of two places).
Now our fundamental theorem is as follows:

THEOREM 2. Let z € $ be such that j(2) is algebraic and p-integral. Let y € I"*. Then
¥z is also such a point of §, and we have

(64) YB: = By

REMARK . (64) is trivial if y € PSL,(Z), but highly non-trivial if y ¢ PSLy(Z). In
fact, then, it is essentially based on the Kronecker’s congruence relation (modernized by
Shimura).
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§18. Lemmas. To prove Proposition 7, we need the following two lemmas.
Lemma 1. p N Oy = pO,.

Lemma 2. Put ﬁ,, ={d|be ®y}. Then 6«// is the integral closure in Mik) of the
valuation ring v (C F(j)), attached to the place j = y(j) of F ;G) which is identical on
F.

p

ProoF oF LEMMA 1. Put o = o,, ® = @,. Then it is clear that o and hence also ®
are contained in the valuation ring of p. Hence the inclusion p@® c p N O is obvious.
Conversely, let £ € p N ©. Since & € p, and p is a prime element of p, == p~'£& is
p-integral. But since p remains trige in M{k}/Q’()), n is integral over the valuation ring
of p’ = p N Q'(j). Let " + ™! + --- + a,, = 0 be the irreducible equation for n over
Q’(j). Then all g, belong to the valuation ring of g’; hence are of the forms a, = ’;8;,
a.(N, h(j) € O[j], 9.(j) ¢ pO’[j] (see (50)). But then, the irreducible equation for &
over Q'(j) is &™ + pa1&™! + --- + p™a, = 0, and £ is integral over o. Therefore, p“a, € o
for all v. Putting these together, we obtain immediately by the definition of o = o, that
a, € o for all v; hence 5 is also integral over o; hence n € ©; therefore, £ € p®. Therefore,
PO D p N O; hence the proof is completed. m]

Proor oF LEmma 2. Again, put o = 0,, ® = ©,. Let v’ be the integral closure of v in
Mk}, and puto = {b| b € o). Then it is clear that © = v; hence it follows immediately that
©® c vi. Now to prove the converse, letsZ € v', and let Em + Elg_fm_l +-.--+a, = 0be the
irreducible equation for £ over F;, (7). Then since £ is integral over v, all @, are contained
in v. Now take any a, € o such that the residue class of @, mod g coincides with a,,
and consider the equation (f) : X + ;. X™! + --- + a,, = 0. Then since its reduction
mod p is irreducible, it is irreducible over o; hence also over Q'(j). Let £ be any root
of (). Then Q’(j, £)/Q’(j) is unramified with the residue field F;G ). But on the other
hand, since M{k}/Q’() is unramified with the residue field M{k} > F3(j, £), there is some
intermediate field &’ of M{k}/Q’(j) with the residue field F;G £). Now since unramified
extensions are in one-to-one correspondence with the separable extensions of the residue
field, we may assume that & € k’ and that the residue class of £ is £. But since a, € o for
all v, £ is contained in @; hence E € @. Therefore, v C ©®, which completes the proof. O

§19. Proof of Proposition 7. Put y, = p o y (the composite place). Then , is finite
on o = o,; hence is also finite on ® = ®,. Then y, induces a ring homomorphism Y5 of ®
into F3. On the other hand, let i, be the place of M{k} given by @. Then y,, is also finite

on ©, and hence induces a ring homomorphism wg of © into M{k}. Now, by Lemma 1,
we have Kery$ = ©® N p = p®, and hence

(65) Kery) c Kerys.
Therefore, there is a unique homomorphism Eo of ® = y9(®) into F? such that EO oYy =

y). Extend this ring homomorphism _J/O of ® to a place ¢ of M{k}. Then by its definition,
it is clear that i satisfies the condition of Proposition 7; hence the existence.
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To prove the uniqueness, let y be any place of M{k} satisfying the condition of Propo-
sition 7. It is obvious that y must coincide with i on ®. But by Lemma 2, © is the integral
closure of the valuation ring o of F;G’) attached to the place 7 — ¥(j) (identical on F;) of
F,()), and this place is nothing but the restriction of y and ¥ to F;(j). Therefore, y and
¥ must be equivalent, i.e., they must be equal up to an automorphism of F},. But since y
and ¢ must be identical on F}, (as follows immediately), we have y = y, which proves the
uniqueness. o

§20. A lemma for the proof of Theorem 2. Consider the subring O'[j, j!,(j -
12%)71] of Q’(j). It is easy to see that this ring is nothing but the intersection of the
valuation rings O, of v, where v runs over all discrete valuations of Q’(j) such that
v(j) = v(j - 123) = v(b) = 0 for all p-units b € Q. In particular, v(n) = 0 forall n 0
(mod p) for such v. But by §12 and Proposition 4, x,4 are 7-finite for any extensions v of
such v; hence all x,4 are integral over O,; hence the elementary symmetric functions of all
conjugates of x,s over Q’(;) are contained in N, 0, = O'[j, j~*, (j - 123)7!]; hence

(66) X,p are integral over O'[f, j~!, (j — 12%)71] for all (a, B) # (0, 0).
Actually, we can prove more; namely,
LEMMA 3. x,p are integral over O’[(j — 123)71],

Proor. With (66) on hand, it is enough to prove the existence of two places ¥, ¥iw
of M{k} such that y,(j) = 0, ¥i(j) = oo, and that y,,(X.g), Yics(¥4s) are finite for all
a,B. Define ¥, by M(k) > F(3) » F(w), w = (-1 + ¥=3). Then y,() = j(w) = 0,
92(w) = 0; hence x/,(w) = 0; hence ¥, (¥o5) = Xop(w) = —7; for all @, B. On the other
hand, define Y by M(k) > F(3) = F(ioo). Then yin(j) = j(ico) = oo, gy(iod) = X,

: . 2
9:(20) = K. lim, o ploz + Az 1) = -5 (@ # 0), = (3) {5 - S @ =082 0)
Hence

0 ca# 0,
©67) Yieo(Xap) =
g _(Ts%;r-ﬂTz' ---a=0,,6-‘#0.
Since ¥, (xqp), Yieo(X4p) are all finite, we obtain our lemma. ‘ o

Remark . Note that we have actually proved that for «, 8 € Z/nZ, (a, ) # (0,0),
(68) X,z are integral over Z[n!, (j - 12°)1].

CoRroLLARY . In the situation of Proposition 7, if y(j) # 12* (mod p), then all x,z are
contained in ©,.

§21_. Proof of Theorem 2. First, we note the following. As noted in §15, the Galois
group G can be considered as a subgroup of G in a natural manner, and hence the (dense)
subgroup:

(69) T ={yeGL(Z®)| dety e T}/ + 1
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of G acts both on M{k} and on M{k} in a natural manner. Namely, y € T acts as yX,s =
X(agyy (00 M{K}), ¥Xop = ¥(op,, (0n M{k}). On the other hand, if y is moreover contained in
the subgroup PS Ly(Z) of T, then vy acts on Mk} in another way; namely, as y : M{k} >
F(3) — F(y3) € M{k}. But by the definition of x,5 = X,5(3), it follows immediately that
Xy (3) = Xop(y3) for all (o, B) and all y € PS L,(Z); hence the above two ways of actions
of PS L,(Z) on M{k} are the same. Now, (64) for y € PS L,(Z) is a trivial consequence of
this (in fact, we have the equality y - B, = P, instead of the equivalence = for such a y,
and the “restriction to K” is not essential here).

For the general case, i.e., for y € I'* with y ¢ PS L,(Z), this argument does not apply.
(For such y, (64) is the strongest result; = cannot be replaced by =, and the restriction to
R is essential.) But since it is enough to prove (64) for the generators of I, it is enough

to prove it for one element y € I'* of the form y = (g Z) witha,b,c,d € Z,ad — bc = p.

Sometimes, this element y = f- Z) will be considered as an element of ™.

(@) The case j(z) # 0, 12* (mod p). For the sake of later necessity, let us only assume
ad—bc = p" (n21),and put 2’ = yz, jo = j(2), j, = j(Z). Let E = E;;, be identified with
the complex torus C/[z, 1] by the elliptic functions x(, z), y(u, z) (see (36)). Thus, for
each n £ 0 (mod p), oz + B & (a,p) gives an “n-adic” coordinate system on E, and the
x-coordinate of az+p is nothing but x,4(z). Define E’ = E; = C/[2’, 1] and its coordinate
system in the same manner. Then, there is an isogeny ¢ : £/ — E which transforms the
n-adic coordlnates as (o’, ') — (’B')y; in fact, the linear map u +— (cz+d)u of C induces
such ¢.

Now jj is an algebraic integer with j, # 0,123 (mod p) by assumption; hence as
is well-known, its p-power transform j0 has the same properties. Hence, E, E” and ¢ €
Hom(E’, E) have good reductions E, E ,». Now let » = 1. Then since v(p) = v((,o) )2

we have either v,(p) = 1 or = p. In the first case, we have jo = jop, E=E’ , and

Vp — —-;l/p
ou =+u?forallw e E; ; whereas in the second case, we have /. Jo = ](') ,E=E ~,and

oW = £(pu')!/? (The Kronecker’s congruence relation modernized by Shimura; see [30]
§3). Moreover, if the n-adic coordinates of E, E are taken to be the reductions mod p of
those of E, E’, then ¢ induces the same transformation of n-adic coordinates as ¢; hence
¢ induces (', 8') — (o/B")y. Therefore, by looking at the X-coordinates of »-th division
points (which are finite by §12), and denoting always by ~ the residue classes mod p, we
obtain ,

(70) X(@pw(2) = Xop (vz)’  (the first case),
= xp(a'ﬁ')()'z)l/p (the second case).

Now the rest follows almost formally. In fact, let y, be the place of M{k} defined by
F(@3) — F(z). Then since j(z) # 0,123, all Xqp are contained in ®,, (Corollary of Lemma
3). Hence ,(Rap) = Xop(z2) for all (@,8) # (0,0). Therefore, ,,(Fop) = Xa5(y2), and
(W, © V)Fap) = m Now let p be the Frobenius automorphism b +— 57 of F;. In
the first case of (70), put y; = p™' oy, 0y, x2 = ¥,,. Then by (70) and by j, = 77,
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we have y1(j) = x2(j) and x1(X.5) = x2(¥.p) for all (e, 8) # (0,0). Moreover, since the
restriction of 'y to F, coincides with p (because ad—bc = p), x1 and y; are identities on F,
Since y1, x; coincide on F“G) there is an automorphism & of M{k} over F® G) such that
X1 = x200. But then, xg7(y2) = x,4(yz) for all & B; which, by §12, implies & = 1 (as an
automorphism). Therefore, y; = y3; i€, po wyz =y,0y; hencey-B, =po B,.=P,.. In
the second case of (70), we obtain, in the same manner, the equality p~' oy, = ¥,0(p™'y);
hence by the restriction to & (and now by considering y as an element of I'* instead of
T*), we obtainy - B, = p! o B,. = B,,. This settles the proof of the case ji(z) # 0, 12
(mod p).

(I) The case j(z) = 12° (mod p)'% p # 2. Let x'(4,3), ' (4, 3), and x, ; = x/,4(3) be as

: —_ ’ — ’ —_— . e1—e
in §14, and put ¢; = X0.1/20 €2 = Xy)1/20 €3 = Xy 05 A = Zi—ef Then we have k, = k(1),

j= 28%(11%23; (as well-known)’, and e; (i = 1,2,3) are contained in k;. Let E7 be the

elliptic curve

(71) = EE - 1)(E- A),

with the neutral element (£,7) = (oo, 00). Then E} is defined over k;, and its absolute in-
variant is j. In general, (71) is an elliptic curve as long as A # 0, 1, co and the characteristic
is not 2. Therefore, if v is any discrete valuation of &, such that v(2) = v(2) = v(1-1) =0,
then we obtain an elliptic curve E> by passing to the residue class (which is a good reduc-
tion of E - Put

= X 3) - e()
o = -a6)

R AT
13) = 3 o) - ez(a))w’

and for each @, B, put £45 = £4s(3) = &(e3+B;3) = 2. (In particular, £,/ = A, &1, 12 =
0, £1/20 = 1.) Then, (£(»; 3), 7(u; 3)) satisfies (71) for any u € C; hence for eachz € $, E; )
is naturally identified with the complex torus C/[z, 1] by (£, ) = (£&(u; 3), 7(u; 3)) < u, and
£.p(2) is nothing but the £-coordinate of the point az + 8.

Now the proof goes parallel to the cases of j(z) # 0, 12} (mod p) by using E instead
of E;. The following are the points to be specifically noted here.

(i) Instead of Lemma 3, we have:

(73) &.p are integral over O'[j].

In fact, by the argument parallel to that of §20, we see that £,5 are integral over
O'[A, 171, (A - 1)71] (since 2 is a p-unit, by p # 2). But A,47!, (2 — 1)! are integral

16Actually, this proof (of IT) also covers all cases of I for p # 2, and III also covers all cases of I for
p # 3. In this sense, (I) is unnecessary. However, (I) deals with the typical cases for all characteristics, and
the proof requires no specific technical cares. So we preferred to give (I) with a full proof, and to give (ID),
(III) with only remarks on what should be added and what specific cares should be taken.

17In particular, by the substitution of special values, we have the following correspondences: j = o &
2=0,1,00 j=122 & 21=1/2,2,-1; j=06 1= -w,-w? where w = §(-1 = V=3).
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over O'[3] as can be seen directly from the equation (1 — A + A2)} — 282%(1 - 2)* = 0;
hence (73). ‘
(ii) Since it is enough to prove (64) for one generator y of I'* over PS L,(Z), we may

puty = (g (1)) But then, ¥ = 1 (mod 2); hence vy acts trivially on k;; hence leaves e,, e;

invariant; hence we have

x;ﬁ - e yx;ﬂ —-e
Yop = 7( p— ) eyt Eapyy-
(111) Here, the automorphisms of E S are not necessarily {+1}. Hence we only
have
Do=Ag,E = E” G =eu”®, - the case v,(p) = 1,
(74)

1 —_— —1/p __, —
/10_1’0 /P’ E =E ’ P, G =8(pu)1/P "'thCC&SCVs(—)=p,

with the corresponding notations and with some automorphlsm & of E . However, 1, =
1/2 or 2 or —1 by assumption (since j, = 123), and A = /10 ; hence /10 . On
the other hand, if (a,8) = (0,1/2),(1/2,1/2), or (1/2,0), then ;—‘aﬁ(z) = 1,0, or 1, and
§aﬁ(yz) = /10,0 or 1 respectively; hence &,5(z) = £,5(yz) € F,. Butby y = 1 (mod 2)
we have (a, 8)y = (a,B) for such «,. Hence we have .g-‘(a,;),,(z) = £5(yz) = faﬁ(yz)
hence by applying (74) for the second division points %’ of E~, we see that & leaves all
such division points invariant; hence by Proposition 1 (i1), we conclude e= 1.

(II) The case j(z) = 0 (mod p)'®; p # 3. As in the Examples in §13, let 4 be any
root of

3 93))3
5) FRIE Sy
w -1

so that y € k3, and k3 = k(u, w) where w = 2(—l + V=3). Put k, = k(u), and let E) be an
elliptic curve over k; given by the projective coordinates as

(76) X+ Y +28 =3uXYZ (cf. Igusa [14]),

with the neutral element (X, ¥, Z) = (-1, 1, 0). Then E;, has the absolute invariant j, and in
general, (76) is an elliptic curve as long as 4> # 1 and the characteristic is not 3. Therefore,
if v is any discrete valuation of k; with v(3) = v(i® — 1) = 0, then we obtain an elliptic
curve E_ over the residue field by a good reduction of E;. Now put{ = 5 +Y+ Tt Then £ is
of order two on E;, (as a rational function), and £ = oo only at its origin. Since E;, and E;

are defined over k’ and E;, = E;, we can identify the two fields £3(£) (= ky(E;, )% (w1th the
notations of §11) and Kk, (x) (= K,(E;)"), x being the function on E; giving the x-coordmate
(see the argument in the proof of Proposition 2, noting that j, u are transcendental over Q,
and hence that E?, E; have no automorphisms other than +1). Hence £ can be considered
as a rational (and moreover linear) function f(x) of x over k;. Put £(u;3) = f(x(4;3)),

£,5(3) = (a3 + B;3). Then foreachz € §, E ) can be naturally identified with the

185¢e the footnote given w.r.t. (the beginning of) (II). Note that 123 = 0 (mod p) for p = 2, 3; hence (I)
(ID) (IID) cover all cases.
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complex torus C/[z, 1] (up to +) by &(u; z) < u, and £,4(2) is the £-coordinate of the point
az+ . Now the proof will be completed if we look at the proof in (I), remarks in (II), and
if we further note the following:

(1) &.p are integral over O’[j]; (this can be proved in the same manner as in (II)).

(ii) Take (f) (1)) as y. Then there exists a solution y of (75) that is invariant by y. (In

fact, for each solution y of (75), the automorphism p # 1 of k3 /k(u) is of order two
and satisfies detp = —1. Moreover, the involutions p € G(k;/k) = GLy(Z/3Z) with
detp = —1 are all conjugate with each other. Hence each such involution p fixes
some solution . Hence if p = —1 (mod 3), there exists some g which is invariant

byy = ( 0 (1)) (mod 3). If, on the other hand, p = 1 (mod 3), y acts trivially on

ks; hence there is no problem.) Take such y. Then by the relation between £ and x,
we conclude y&,5 = £4p)y-

(iii) In Igusa [14], p.456, the (X, ¥, Z) coordinates of third division points of E/, are given.
From this, we obtain the values of £,5 for the third division points; they are 0,
;ﬁ, #—l;, ;T]wf Among them, the first two are invariant by y, and the latter two are
not. Hence the first two are the values of £y 1/, £1/3,0, and the latter two are of &3 /35
&173,-1/3. On the other hand, the values of y for j = 0 are y = 0, -2, —2w, —20?
by (75). These, together with Proposition 1 (iii), give all the necessary tools for the
proof that a certain automorphism of E‘;o must be +1 (see (II) (iii)).

Decomposition of ordinary prime divisors of & in &.

§22. Prime divisors of k. Let B° be a prime divisor, i.e., an equivalence class of
non-trivial places, of ¥ = FPG). Then P is determined by P(5) (the residue class of j
mod B°), and by this, the set of all B is in one-to-one correspondence with F}/ ~ U{co).
Here, ~ denotes the conjugacy of elements of F}, over F,. We shall call

PO : infinite, if P°() = oo;
77 : supersingular, if B°(j) is supersingular;

: ordinary, if otherwise.

(See §4 for the definition of supersingularity of elements of F7). Recall that the set of all
supersingular elements of F;, is finite, contained in F ., and is self-conjugate over F,.
Now we are going to determine the law of decomposition of ° in &/%. First, we
shall deal with the case where PB° is an ordinary prime divisor. This is the case where our
fundamental theorems (Theorems 1, 2) are directly applied. Roughly speaking, such P°
has an extension (to &) of the form B, (z € $; see §17), and the decomposition group of
. (in K/k) is the topological closure (in G(R/)) of the stabilizer I'; of z in I**. Moreover,
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the Frobenius automorphism of B, is given by the “positive generator” of I';. Thus, our
first task is to define the positive generator of ;.

§23. Positive elements of I';. Let z be a I'*-fixed point and let I'; be its stabilizer, so
that by the definition of I'*-fixed point, I} is infinite. Lety e I}, y = Z z € My(Z),
(a,b,c,d) = 1. Put D = Degy (see §3). Let Q be the imaginary quadratic field generated
by z (so, (%) = 1; see §3), and let Oy be the order of the lattice [z, 1]; f being the

conductor. Put f = fp* with f; # 0 (mod p), and (Z Zf)( ) = ﬂ(‘lz), sothatmr = cz+d €

z

1
Oy, m & pOy. Let O; be the maximal order of Q.

LemMA 4. We have 7O, = p*pP with a prime factor p, of p in Q, where k and D are
as above.

Proor. Put 70y = p*pP (K, D’ > 0), and my = ap™ . Then 7 € Oy, but 7y ¢ Oy
(In fact, if D’ > 0, i.e., mp = 0 (mod p,), then 7y € O,z would imply a contradiction
Mo € pOy; and if D’ = 0, then my is a root of unity and hence [1,719] = O,;; hence
o € Opy,). Therefore, m € Oy, v but € O v1; hence k' > k. On the other hand, 7 € pOy;
hence ¢ p**'Oy; hence k' = k. That D’ = D follows immediately from the definition of
Deg Y. . . . ]

In particular, if we put ad — bc = p”, then n = D + 2k.

Dermtrion . With respect to a fixed prime divisor p of p in Q?, we shall call y € T
(with Degy > 0) positive if p; coincides with the restriction of p to Q.

By the definition of positivity and by §3, there exists an injective homomorphism ¢ of
I'; into Qj, sending each y € I'; to a ratio of the eigenvalues of y,, such that y is positive
if and only if ord, ¢(y) > 0. Let E = E; be the torsion subgroup of I';. An element
Yo € I'; will be called a positive generator of I'; mod E, if y, is positive and generates
I'; mod E. Thus, if y, is such an element, elements y of I"; are expressed uniquely in the
form y = eyg with e € E, m € Z. 1t is clear then that Degy = |m|D, and that v is positive
if and only if m > 0. Thus, v is a positive generator of I, mod E if and only if m = 1. It
is also clear that if y is positive and § € I'*, then 516 (€ I';;) is also positive. Hence we
may speak of positive elliptic [*-conjugacy classes (w.r.t. p, of course).

§24.

TueoreM 3. Let z be a I'*-fixed point, let T} be its stabilizer in I*, and let E} be the
torsion subgroup of T,. Let vy be a positive generator of ', mod E;. Then,
(i) the decomposition group of B, in Rk is the topological closure of T in G(R 1k);
(ii) the inertia group of B, in ] |k is E:;
(iii) the Frobenius substitution is given by .

Before proving this, we shall give some of its direct corollaries.
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CoroLLARY 1. Let z, 2’ be I"*-fixed points. Then B, = B, ifand only if 2’ = z.

ProoF (or CoroLLARY 1). Letz’ # z. If they are not I'™*-conjugate with each other, then
by Theorem 1 (§5), j(z’) and j(z) are not conjugate over F,; hence the restrictions to k of
B, and P, are already distinct. On the other hand, if z’ = 6z # z with some § € I'*, then §
does not centralize I';; hence § is not contained in the topological closure of I'; in G(& /E);
hence by Theorem 3 (i), 6B, # B,; but by Theorem 2, B, = §B,; hence Py, # B.. o

Let
(78) p(k)

be the set of all ordinary prime divisors of k, and for each finite extension X of  contained
in &, let

(79) p(K)

be the set of all prime divisors of K which lie above p(k). Let I’y be the subgroup of I'"
corresponding to X (see §16). Then we have:

COROLLARY 2. Let z,Z be I'*-fixed points. Then the restrictions B,|x, B.|x are con-
tained in 9(K), and they are equal '° if and only if z,Z’ are T'y-equivalent.

Proor. B, sends J to j(z), and j(z) is finite and not supersingular by Theorem 1; hence
.|x, etc. are contained in p(K). Moreover, by Theorem 1, our statement is true for K = k.
Now suppose that z, 2’ are I'y-equivalent, and put z’ = yz (y € I'y). Then by Theorem 2,
P, =y - P;; hence Po|x = B.lx. Conversely, if B |x = B.lx, then a priori B,z = Bk
hence z’ = yz with some y € I'*. But then, yB,|x = B.|x; hence y € G(R/K)X, where X is
the decomposition group of P,. But by Theorem 3, X is the topological closure of '] in
G(8/k); hence y € G(R/K)T:. Puty = y'y,, withy; €%,y € GR/K) NI = I'x. Then
Z' = yz = y'z; hence 2’ and z are I'y-equivalent. O

As in Part 1, let p(I'y) be the set of I'y-equivalence classes of all I'*-fixed points
(or equivalently, I'y-fixed points). Then by Corollary 2, z — 9PB.|x gives a one-to-one
correspondence Jx : (') — 9(K), and by the definition of Jk, the diagram

p@) 3 (#n B Bk € p(K)
(80) ! l ! l

o) 3 i L Ble € k)

is commutative, a fact announced in §10. In particular, the law of decomposition of prime
divisors of p(k) in X is completely described by the corresponding elements of p(I'™*) (e.g.,
if E; = {1}, it is described as in Conjecture 3, in the General Introduction).

ReMark . That Tk is Degree-preserving follows easily. Define the Degree of each
element of p(I'y) (resp. p(K)) in the same manner as in the definition of the Degree of

1955 prime divisors of K; thus if we regard PB.lx, P |x as places of K, then we should say “equivalent”
instead of “equal”.
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elements of p(I'*) (§3) (resp. p(k); §5, §22)2° Let v be a positive generator of I'; modulo
the torsion subgroup E}, and let f be the smallest positive integer such that y/-& € I'y with
some € € E;. Puty; = y/¢. Thenitis clear that y, is a generator of (I'y), (modulo E;NI);
hence Deg{z}r; = f - Deg{z}r-, and y; generates (topologically) the decomposition group
of B, in ]/K (modulo the inertia). Since y and f are positive, this shows that y; gives a
Frobenius substitution of B, in &/K; hence

Deg (B:lx) = f - Deg(B.lr) = f - Deg{zlr- = Deglz)ry

by Theorem 1, i.e., T is Degree-preserving.

(In the case where the constant field of X is F 2, or equivalently I'y, = I ¢ PSL,(Z®),
we may define degree = %(Degree) of elements of p(I'y), which corresponds to the de-
grees of prime divisors of K over F,.. Of course, with these definitions, Jk is also degree-
preserving.)

§25. Proof of Theorem 3.

(D) The case j(z) # 0,123 (mod p). In this case, z is not I*-equivalent to i = V-1 or
w=1 ( 1+ V=3 ) 21: hence I'? is infinite cyclic; hence E} = {1} Now by the Corollary
of Propos1t10n 3 and the Remark in §12 (applied for k = k, v : j — j(z)), (//z is unramified
in all k,,; hence also in & (see §17 for y,). This settles (ii).

Now vy being as in Theorem 3, put D = Degy. Then j(z) is of degree D over F,
(see Part 1), and hence the residue field of k with respect to P, is F,o. By Theorem 2,
we have 6B, = B, for all § € I'; hence the topological closure of I'; is contained in
the decomposition group of B.. On the other hand, the decomposition group is generated
topologically by the Frobenius substitution; hence it is enough to show that y gives the
Frobenius substitution of 3.

Now keep all the notations in §21, §23. Then since yz = z, we have E’ = E, and ¢ is
a complex multiplication of E induced by the linear map u — mu of C. Moreover, Oy is
the ring of endomorphisms of E, & = cz + d € Oy, and 70, = p*pD where p; = p N Q(2)
(since y is positive w.r.t. p). Now by M. Deuring [4] [7], the endomorphism ring of E is
naturally identified with Oy, (by reduction mod p). But we have 70y, = p*p} = pj’a"kp .
with p; = p; N Oy, P}, = P; N Oy, p1p; = p. Moreover, is nothing but , considered
as an element of O;. Therefore, v,(@) = p* and v(F) = pP**; hence $ % = +(p*u)”” holds
for all % € E (see the argument in §21). Therefore,

(81) @ = Tran@

holds fdr all @, B. Therefore by an argument similar to that in §21, we obtain y, = p™2 o
x: © (p7*y); hence B, oy = pP o P,. Therefore, y is the Frobenius substitution of P, in
R/

20Thus, the Degree of the prime divisor of p(X) is its degree over Fp.
21By Theorem 1.
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(IT) The case j(z) = 12* (mod p). Since z is a ["*-fixed point, j(z) = 122 = j{i) (i =
v~1) is not supersingular; hence z is I'*-equivalent to i (Theorem 1), and p is decomposed
completely in Q(3); hence p = 1 (mod 4) (in particular, p # 2, 3). Since z is I"*-equivalent
to #, I'; is conjugate to I'; in I'*; hence E; is of order 2. By Theorem 2, the topological
closure of I'* in G(R/%) is contained in the decomposition group of P,, and since the
automorphism group of F}, has no torsion (since it is isomorphic to D 1 Zy), E; must act
trivially on the residue field of B; hence E; is contained in the inertia group of B,. Now,
consider the subfield k, = k(1) = F,() of R, 1 being as in §21 (II). Then in M{k}/%,,
all discrete valuations v of &, with »(2) = v(1 - 1) = 0 are unramified (this is rather
well-known, and can be seen by an argument exactly parallel to that in the proof of the
Corollary of Proposition 3, by using the elliptic curve 52 = £(£ — 1)(£ — ) and its good
reductions). On the other hand, the decomposition of P° = P.l; in k; is of the form
PO = (POPAOP)2, where PO, PP, P send 1 to 2, 3,—1 respectively. Therefore, the
ramification index of P, in K/k is 2. Therefore, by what we have seen, the inertia group
of B, in K/k is E;. Moreover, the above decomposition of PB° shows that the relative
degrees of B are 1; hence the decomposition group of B, in G(K/Z) is the direct product
of its intersection with G(R/k;) and E:. In particular, there is a positive generator y of
I'; mod E; such thaty = 1 (mod 2). Now it is enough to prove that y gives a Frobenius
substitution. But this proof can be obtained exactly in the same manner as in the case of
J(@)# 0,123 (mod p), by applying the results of §21 (II) instead of §21 .

(IIT) The case j(z) = O (mod p).In this case, z is I"-equivalent to w =
$(-1+ v=3),p = 1 (mod 3) (in particular, p # 2,3), and E; is of order 3. Con-
sider k; = k(z, @), p being as in §21 (I[). Then k3 C K, and the decomposition of
PB° = B,| in &3 is of the form P = (POPAOPOP@D) where PO (i = 1,2, 3, 4) send i
to 0, -2, ~2w, —2w? respectively. Note that @ € F,, since p = 1 (mod 3). Now our proof
proceeds exactly in the same manner as above, by using the results of §21 (III).

This completes the proof of Theorem 3. m]

Decomposition of supersingular prime divisors of & in K.

§26. Now we are going to study the law of decomposition in & /k of supersingular
prime divisors B of k (see §22 for its definition). Recall that if ° is supersingular, then
P is of degree either one or two, i.c., either P°(k) = F, or = Fpa.

THEOREM 4. Let B° be a supersingular prime divisor of k, and let B be any extension
of B° 10 K. Then the residue field of & mod B is F 2,

(82) BR) = Fpa.

CoROLLARY . Let PO be as above. Then,

(@) if B° is of degree two, it is unramified and is decomposed completely in R;'
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(i) if B° is of degree one, then P° remains inert (“tréige”) in the quadratic constant
field extension szE butin & /szE the decomposition group of B coincides with the
inertia group.

Proor oF THE CoroLLARY. (ii) follows trivially from Theorem 4. As for (i), we need
only check that B° is unramified. Put B°(j) = j,. Then since B is of degree two, Jj, is
of degree two over F,; hence, in particular, }0 # 0,123, Now the unramifiedness follows
directly from the Corollary of Proposition 3 and Remark in §12. m]

_Remark 1. Put B°(j) = Jj,. Then, according to Igusa [14], the inertia group of B in
R /k is isomorphic to

(@ {1} s Jo #0,12%

(b) cyclic group of order 2 e Jo=123, p#2,3;2
(c) cyclic group of order 3 o fo =0, p#2,3;

(d) S3(symmetric group) - Jo=0=12%, p=3;
(e) Uy(alternating group) e Jo=0=12% p=2.

On the other hand, P is unramified in K /%, (p # 2) and also in & Jks (p #3).

Remark 2. Let K be any finite extension of k contained in &, so that X is an algebraic
function field whose (exact) constant field is either F,, or F .. Call a prime divisor B of K
supersingular if it lies above a supersingular prime divisor B° of &, and suppose now that
the constant field of X is F,.. Then by Theorem 4, all supersingular P of K are of degree
one over F,:, and moreover, if weputn = [K : Fj2 - k] and

1 - PBO() £ 0,123,

2 PG =123, p#2,3,
(83) e=143 PG =0, p#2,3,

6 - PB(G)=0=12% p=3,

12 PN =0=12%, p=2,

then the number of P lying above PO is at least equal to n/e. Therefore, by the roughest
estimation, the number of prime divisors of K of degree one is at least equal to 5. On the
other hand, let M be the smallest positive integer for which K has a non-singular model

over F . in the projective space P. Then, since the number of F ,.-rational points of P¥
2M+2_1

is %’%’-’-, the number of prime divisors of K of degree one is at most equal to %-T‘
Therefore, we have p**2 > 1 + Z(p? - 1), which implies lim,_,., M = oo; thus,
the smallest dimension of the projective space in which K has

84 -
84 a non-singular model over F . tends to infinity as [K : k] — oo.

225 = 123 (resp. j, = 0) is supersingular if and only if p # 1 (mod 4) (resp. p # 1 (mod 3)).
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As an example, let N £ 0 (mod p), put

(85) T'(N) = {'y € SL,(ZP) |y = +1(mod N)] [ £1,

and let Ky be the subfield of & corresponding to I'(N) (so that Ky O Fj2). Thenif N > 1,
!/Ky is unramified; hence by a simple computation, the number of supersingular prime
divisors of Ky is Z(p — 1), where n = [Ky : Fp - k] = (PSLy(ZP) : T(N)) = 6
(N=2),= N% sz(l - 7‘,) (N > 2); hence p**2 > 1 + Z(p - 1)(p* - 1). For example,
for (p,N) = (2,9) or (3,11), we have M > 3, and for (p, N) = (2, 13) or (3,23), we have
M2>4.

§27. Proof of Theorem 4. Put B(j) = j,.

(I) The case 70 # 0,122, Let B be an extension of P to Unzo (mod p) }'(E]{n)). Since
jo # 0,123, B gives a good reduction E; — E;, and hence induces an isomorphism
E5(n) = E; (n) for each n # 0 (mod p). On the other hand, we know that there is an
isomorphism E;(n) = (Z/nZ)* (unique up to +1) such that for any (e, ), X,z is the x-
coordinate of the point of E(n) which corresponds to (e, 8) (see §15). Thus the above
two isomorphisms induce the isomorphism E; (n) = (Z/ nZ)?, where the x-coordinate of
the point of E; (n) corresponding to (, B) is the residue class of X,; mod B, which we
denote by Xoz. So, Xo4 are finite, and X, = Xy, if and only if (@, ) = +(a’, 8') (see §12).

Now we claim that
(86) @ =+pi; foriek;,.

In fact, since j, is supersingular, % — p - % is purely inseparable of degree p?; hence
TR (pml/p2 is an automorphism of E; , which is +1 since Jo # 0,123 (Proposition 1);
hence (86). Hence 'J'c'g(a 5= ()_cfiﬁ)i’2 holds for all @, 8. Now let o~ be a Frobenius substitution

of P over F2k. Then Xy, 5, = z?,ﬂ”z; hence X0, = Xoop for all e, 8. Therefore, (e, f)o =
+p(a, B) holds for all @, 8; which implies o = +p € +11; hence g = 1. But this implies
PB(K) = F2; hence settles the proof for this case.

(D) The case j, = 123, p # 2. Since B sends A to either 2, 1, or -1, the residue
field of F 2k, = Fp2(2) is F,.. Now by using the elliptic curve of §21 (II), we obtain,
exactly in the same manner as above, that the relative degree of P in & /szB is one; i.e.,
PR) = BF k) = Fye.

(IIT) The case j, = 0, p # 3. Since P sends 7 to either 0, —2, 2w, or —2&> (where
w = }(~1+ V=3)), the residue field of F,2k; = F,2(f) is F,2. Thus we obtain the theorem
for this case by using the elliptic curve of §21 (III). Since 123 = 0 if p = 2 or 3, this
completes the proof of Theorem 4. O
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Decomposition of the infinite prime divisor of kin 8.

§28. Now it only remains to study the law of decomposition in & of the infinite prime
divisor B° of k (see §22 for its definition). Let z € Q U {ico} be a cusp of PS Ly(Z), let .
be the place of M{k} defined by F(3) — F(z), and let i, be the place of M{k} associated
to i, by Proposition 7. Let P, be the restriction of ¥, to &. Then P.Iz = P; hence it is

enough to find out the inertia and the decomposition groups of P, in & /k. The result is as
follows:

Tueorem 5.2 Let z be a cusp of PS Ly(Z). Then,

(1) we have 7
@87 YB.=P,,, foranyyel™;
(i1) Put
(88) {H0 = {y €™ | yz = z, y : parabolic} U {1},
H ={yel|yz=2z}.

Then the inertia and the decomposition groups of B, in R/k are the topological
closures in G(]/k) of H® and of H respectively.

ReMARK . In particular, when z = ico, the groups H°, H are given by

1 Z®
0 1

p" b
0 p
Proor.

(@) The proof of (ii) for z = ico. Put y = Yo, ¥ = Yy, a0d B = Pjo. Put y = ((l) i)

By Proposition 7, if o, is the second ring of (60) and if ©, is its integral closure in M{k},
then ¥ is the unique place of M{k} that sends F(3) to F(ico) for all F(3) € ®,. But since
y € PSLy(Z), we have y(F(3)) = F(y3), and since y(ioo) = ico, we see that the place y oy
(of M{k}) also sends F(3) to F(ico) for all F(3) € ®,. Therefore, W = o y; hence y is
contained in the inertia group of . This proves that the inertia group of P contains the

topological closure of H, i.e., [T, (1 ZI).

H°

b

H

mnelZ,be Z(P)}/I'I.

0 1
Conversely, let o € G(M{k}/k) be such that o = 1 on F}, and that x(,g),-(ic0) = Xep(i0)
1
0

for all @, 8. We claim that such ¢ is contained in I'[,,;,,( le) To see this, put o =

114, 01, With o = (‘c” Z’) € GLy(Z)). Since o = 1 on F%, we have detoy = 1 (! # p).
1 1

But by (67), we have x,4(ic0) = 0 (@ # 0), = —(2sinnB)2 (@ = 0,8 # 0); hence by
23See the Corollary below, for the Frobenius substitution.
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0 1
Now if o is an element of the inertia group of ¥, we have ¥ o 0(X,5) = ¥(,p); but since
Xa5 € O, (by the Corollary of Lemma 3), we have y o 0(Xa) = X(apo(ico), E(Eap) =
xqg(ico); hence o satisfies the above conditions. Therefore, the inertia group of y is

X(ap)r(100) = Xog(ico) (for all @, B), we obtain ¢; = 0, (d)); = +1; hence o € Ilip (1 Z’).

contained in [T;,, ((1) le ); hence together with what we héve shown already, we conclude

that the inertia group of P in &/% is [Tisp (1 le)

Since the decomposition group is generated by a Frobenius substitution modulo the
inertia group, it is now enough to show that ((1) g) gives a Frobenius substitution. Put

Y =ployo ((1) fv))’ p being the Frobenius automorphism of F%. Then y’ = i on F&(j);
hence there is an automorphism o € G (M{E} /F;;) such that ' = y o 0. But ¥ and

Y o o send Xqp tO xa'pﬂ(iw)l/p = Xqp(io0) and x(.p)(ic0) respectively; hence x,g(ic0) =
Xepyr(ioo); hence by the above argument, o~ is contained in the inertia group of y; hence
¥ =y; hence g o ((1) 2) = p o y; hence ((1) g) gives a Frobenius substitution for i and
hence also for P. This settles (I). '

(I) The proof of (i). Note first that yB, = P,, holds if y € PS L,(Z). Note, moreover,
that since PSLy(Z) acts transitively on the set of all cusps of PSL,(Z), it is enough to
prove (87) only for the case z = ico. Thus, let z = ico, put yz = §z with 6 € PSL,(Z),
and put y = &y;. Then vy, is upper triangular, and hence by (I), it is contained in the
decomposition group of B;... Therefore, ¥Biw, = 571 Biww = 6Bico = Bsico) = B(ico); hence
(10) is settled.

(IIT) The proof of (ii) for the general z. Putz = (i) (6 € PSLy(Z)). Then
PB: = Psio) = Pio; hence the inertia (resp. the decomposition) group of P, is the

transform by 6 of the inertia (resp. the decomposition) group of ‘-B;m This settles (III),
and hence completes the proof of Theorem 5. m]

We have also proved:

CoroLLARY . The inertia and the decomposition groups of B, are:
the inertia group = {((1) 113) B € [1ip Zz} ,
(89) {

the decomposition group = {(g 'ﬁ) a,6€ll, Be [Tiep ZI} / +1I.

Moreover, a Frobenius substitution is given by ((1) g)
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Reformulation in terms of non-abelian classfields;
Main Theorems (I"*-1) ~ (I"*-3), and Conjecture I'*.

Now we shall summarize our above results in terms of “non-abelian classfield the-
ory”.2* In this formulation, elliptic curves are completely eliminated. Throughout §29 ~
§31, p is a fixed prime factor of p in Q*.

§29. Definition of classfields. As before, put
I ={y e GLy(ZW) | dety e IT}/ 11,

and let p(I'™) be the set of all I'*-equivalence classes of all I'*-fixed points z on $ (so
that, by definition, I'; is infinite for such z; see §1 ~ §2). On the other hand, put now
K = pG'), J being a variable over F,, and let p(K*) be the set of all ordinary prime
divisors (cf. §22) of K*, so that p(K*) is naturally identified with F}, — S/ ~, where §
(c F}2) is the set of all supersingular elements and ~ denotes the conjugacy over F), (see
§4, §5). In Part 1 (Theorem 1), we have proved that z — j(z) mod p induces a degree-
preserving bijection 7 : p(I'"") — p(K*). Since J* depends on the choice of p, we shall
denote J* = J; when necessary.

Now let I” be any normal subgroup of I'* with finite index. A finite Galois extension
K’ over K* will be called a I’ -classfield (over K*), or a classfield attached to T’ (over K*),
if the following condition (}}) is satisfied:

(#) An ordinary prime divisor B° of K* is decomposed completely in K’ if
and only if ', is contained in I"; where z(€ 9) is a representative of the I"*-
equivalence class 7, ;‘1 (P°), and T denotes its stabilizer in T™.

Here, note that if we take another representative z; of 7, ;"1(‘130), then z; = 6z with
some § € I'*; hence I'; = 6T;67!; hence the above condition does not depend on the
choice of z. The dependency of this condition on the choice of p (which is of quite a
subtle nature) will be studied in §32 (Proposition 13).

§30. Main theorems (I"*-1) ~ (I'*-3).
Mam THeEOREM (I*-1). For each I, a I"-classfield exists, and is unique.

Proor. By Mennicke [23], the group S L,(Z®), and hence also the group I'*, have con-
gruence subgroup property. Therefore, by (56), the Galois group G(& k) (k = F,,G) = K*)
is naturally identified with the completion of I'"* with respect to “subgroups with finite
indices topology”. Therefore, subgroups of I'* with finite indices are in one-to-one corre-
spondence with finite extensions of ¥ = K* contained in &. Let K’ be the extension of K*
corresponding to I"". Then it is clear by Theorem 3 that K’ is a I’-classfield. Uniqueness
is an immediate consequence of Cebotarev’s density theorem. a

24We shall formulate this only for the group I'". Similar (and related) results for subgroups 'y of I™* with
finite indices are obtained if we use Jx (§24) instead of J*. The fields &, & are common for all I'x.
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MAIN Tueorem (I'*-2). Let & be the composite of all T"-classfields, where I runs
over all normal subgroups of T* with finite indices’>. Then there is a dense injection
1 : T* = G(R/K*) satisfying the following conditions?S

(i) ¢ induces an isomorphism of the completion of I'* with respect to “subgroups with
finite indices topology” and G(RK*); hence subgroups of I'* with finite indices and
finite extensions of K* contained in & correspond in a one-to-one manner. Moreover,

if I” is any normal subgroup of I'* with finite index, then the corresponding finite
extension of K* is nothing but the I''-classfield.

(ii) Let B° be any ordinary prime divisor of K*, let z be a representative of J, ;"(‘Bo),
and let T, be the stabilizer of z inT"*. Let E; be the torsion subgroup of ", and let vy
be a positive generator of T'; mod E; with respect to p (see §23). Then B° has an
extension B, to ] whose inertia group is ((E}) and whose Frobenius substitution is
u(y) (mod «(E7)).

(iii) Let P° be the infinite prime divisor of K* (cf. §22). Then B° has an extension P;,, to

R whose inertia group is generated by 1 (((1) i)) and whose Frobenius substitution
L . 10
(modulo the inertia group) is given by 1 0 p)f

Proor. Immediate from our results above (esp. Theorems 3, 5). S

Some supplementary remarks to this theorem are given in §32 (esp. Propositions 9,
13). '

Now, our third main theorem and our main conjecture on I'* are concerned with a
characterization of the field & defined in Main Theorem (I'"*-2):

MAaN THEOREM (I™*-3). Let & be as in Main Theorem (I'*-2), and let R be another field
defined below. Then we have

(90) KcK
ConrecTure I'*. With the same notations as above, we have
KR=R"

The definition of & and proof of Main Theorem (I"*-3). The field Ris easily defined
if p # 2,3. Namely, in this case, R is the union of all separable algebraic extensions K’
over K* (finite or infinite) satisfying the following conditions (i) ~ (iii). Here, for any
prime divisor P° of K*, we put B°() = j,.
@) If jo # 0,123, 0o, then B° is unramified in K';

25Since this & obviously coincides with the former & (by the above proof of Main Theorem (I'*-1)),
there is no fear of confusion.

26We can also check that ¢ is characterized by (i) and (ii) up to inner automorphisms of G(R/K*). But
we shall not give this proof here.

27Some remarks and numerical evidences for this conjecture are given in §33.
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(i) If j, = 0,123, oo, then B° is at most tamely ramified in K’ with the ramification index
dividing 3,2, oo respectively?®
(iii) If j, is supersingular?® then B° is decomposed “almost completely” in K'; namely,
inF 2K’ [F2K*, the relative degree of B° is equal to one.

It is clear that if K’ satisfies (i) ~ (iii), then all conjugates of K’ over K* and all
intermediate fields of K’/K* also satisfy (i) ~ (iii). Moreover, it is easy to see that if
K’, K" both satisfy (i) ~ (iii), then so does the composite field K - K””3° Therefore, R is
nothing but the maximum (Galois) extension of K* satisfying (i) ~ (iii). Now by Theorems
3, 4, 5, the field K satisfies all (i) ~ (iii); hence & c K. In particular, the fields F,2(2) and
F 2(12) which are finite Galois extensions of K* = p(/) defined by the equations:

—_ 3
oy I CE S S - {(E2)
{,1(1—/1)} g -1

respectively, are contained in R (since by §13, they are szﬁz and szE respectively).
Since the ramification indices of P° with j, = 0 or 123 in these two fields are 3 or 2
respectively, the prime factors of such B in R are unramified in R/ Fp () and in §/sz(ﬁ).
By this, we obtain the following alternative definitions of § Jor p # 2,3, which also serve
as the definition of ] for p = 2, or 3. Here, we call a prime divisor of sz(}f) or of
F,2(11) ordinary resp. supersingular resp. infinite when its restriction to K* is ordinary
resp. supersingular resp. infinite.

If p # 2 (resp. p # 3) and K; = F2(2) (resp. K; = F2(@), R is the composite of all
separable algebraic extensions K’ over K, satisfying the following:

(i)’ ordinary or supersingular prime divisors of K, are unramified in K';
(i)’ infinite prime divisors of K, are at most tamely ramified in K’;
(iii)’ supersingular prime divisors of K, are decomposed completely in K'.

Note that the conditions (i)’ ~ (iii)’ are “hereditary” with respect to taking composite
fields, conjugate fields over K* (not only over K;), and subfields (containing K, ); hence
Ris nothing but the maximum separable algebraic extension of K satisfying (i)’ ~ (ii1)’,
and R is a Galois extension of K*. By (iii)’, the constant field of R is Fp.

Now, by Theorems 3, 4, 5 and by Remark 1 in §26, we see immediately that & ]
holds for all p including 2 or 3.

Remark 1. By Deuring [4], j, is supersingular if and only if it is a zero of a certain
polynomial f;(x); hence supersingularity can be defined without using elliptic curves.

ReMARrk 2. Let us determine infinite and supersingular prime divisors of K; = sza)
or F,2(11) more explicitly. Let I, S, be the set of all 2o such that the prime divisor B° of

2., if j, = oo, there is no condition on the ramification index (except that the ramification must be
tame).

29We may define supersingularity without using elliptic curves; see Remark 1 below..

305ee Supplement §5.
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Fp (2) with B°(2) = A, is infinite or supersingular respectively. Then
1, ={0,1,00}, |

5, = {Io R the elliptic curve Y2 = X(X - 1)(X — Ao) }

(92) ] is supersingular

2
| ={ioeF; :ioisazefoofﬁ(x)=2§=o(r.] x"],”
1

where r = ”T'l. Moreover, by F, Q) c ], we see easily that

-1
(93) SiCFp 18i=5;
for example, if p = 3, then S, = {-1}.

In the same manner, /, and S, (defined similarly) are given as follows:

L, ={lw,e’,x), w=}(-1+V=3),
the ellipti X+ +2=3p,XYZ
O (S, ={meRy| U WIeTHVeS TS =
(in projective coordinates) is supersingular

= {ﬁo € F, | iy is a zero of j,](x)} ,

where £,(x) is a certain polynomial of x of degree p — 1. Moreover,
(95) S,CFp, |SJd=p-1;
for example, if p = 2, then S, = {0}.

Supplements to Main Theorems and to Conjecture I"*.

Here, we shall give some supplementary results and remarks to §29 ~ §30.

§31. Some equivalence relations in p(I'*) and in p(K*).

(I) Equivalence relations in o(I"™*). We shall introduce the following two equivalence
relations ~ and = in p(I'™*). Let P = P, € p(T"*) (z € H), and put Q = Q(2), so that Q is an
imaginary quadratic field with (2) = 1 (see §8). Consider the ZP-lattice a = Z® + Z®z,
and let O be its Z®P-order; i.e., O = {x € Q| xa c a). Then the lattice class 3 of a
and hence also the order O are well-defined by P. Denote by Cp resp. Op the lattice
class of a resp. the order O. Then it is easy to see (cf. §8) that P > Cjp gives a one-to-
one correspondence between p(I'*) and the set of all Z®-lattice classes in (all) imaginary
quadratic fields Q with (%) = 1. In another words, this is a one-to-one correspondence

3See Igusa [13].
32Two lattices aj, a2 belong to the same class if and only if a; = pa, with some p € Q.
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between p(I™) and the (set-theoretic) union of the group G, where Gy is the group of all
proper ** O-ideal classes, and O runs over all Z®-orders in all Q;

Z©®)-lattice classes in all
p(T) > P v Cp € { imaginary quadratic fields Q
(96) ' with (g) =1

TI—)CPELOJGO.

Now, the first equivalence relation ~ in p(I™) is defined by
(C2)) P~.P'<-d—f-)01==0}>',
while the second, stronger relation ~ is defined by

{(i) Op =Op (;-t 0),

(98) P~P «—
() CrC;l € {Go}*;

def.

where {Go}? is the subgroup of G, formed of all square elements (of Gop).

ReMark 1. If one desires to formulate these in terms of Z-orders only, then he may do
it as follows; instead of (96), one has:

) P 3 P = CP €|_JGoy/lpol.
. ~

where O, runs over all Z-orders in all Q such that (9) = 1 and that the conductor of O,
is not divisible by p, Gy, is the group of all proper Oop-ideal classes, {po} is the cyclic
subgroup of Gy, generated by the (Op-ideal) class of po = p N O, and c§?> denotes the
unique element of (Jg, Go,/{Po} such that Cﬁf) ®z ZW) = Cp. (Note that {p,} does not
depend on the choice of a prime factor of p in Q.) Since Gy, is a finite group, each ~-
class (hence a priori ~-class) consists of a finite number of elements of p(I'*). Finally,
Deg P is nothing but the order of the group {p}.

ProposITION 8. Let X be the completion of T* with respect to all subgroups with finite

indices, so that
X= {x e ﬂ GLy(Z)

I#p

hueﬁyiﬁ

where 11 is the topological closure of I1 in ] 1p Ul Put
X= ﬂ GLy(Z) / + 11,
I#p ’
so thatT™ S X c X. Let P,, P, be two elements of p(I'*) not equal to P; or P,, (i = V-1,
ense

w= %(—1 + V-3)), and let y resp. v be the positive generator of T; resp. I',, (w.r.t. p;

337®)1attice a is a proper O-ideal if and only if the order of a coincides with O.
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see §23). Then ‘
@) h=(YIr e P, =P,
(i) x={yYlx e P.=Pp,
(i) (Vx=lx ¢<— P:.~P..
Moreover, P, ~ P, implies Deg P, = Deg P,.

Proor. Put a = [z,1]ze, @’ = [Z, 1120, and let O resp. O be the ZP-orders of a
resp. a’. For each prime number / # p, a quadratic field Q, and a Z®)-lattice a, we put
Q= Q8¢ Qand a; = a ®z» Z,;. For each a € Q (or Q;), a will denote its conjugation
over Q (or Q).

(i) Trivial.

(iii) —: Let Y € GLy(Z®) be any representative of y modulo +I1. Then from {y')z =
{y)z follows easily that there is a representative ¥ € GLy(Z®?) of y, and x = (x)), €

ITixp GL2(Z;) such that 7 = x~'7x. Put 7(?) = n(f) 7 (z; ) =7 (Zl' ) Then since 7 and
y' are conjugate, we have {r,7} = {7, 7}, and since y, y’ are positive (w.r.t. p), we have

ord, r > ord, 7 and ord, =’ > ord, 7’. Therefore, 7’ = x. Put Q = Q(n) (= Q(z) = Q(2)).

Then, in Q,;, we have two equalities 7(7) = n(f) and yx; (zll) = tx; (zll), hence we have

X (zl’) = q (i) with some ; € Q;. But since x; € GLy(Z,), this implies a; = oya;; hence

O, = O, for all ] # p; which implies O’ = O, i.e., P, ~ P,.
(ii) —: In this case, we can assume that detx € II. But since II = ﬁz U pﬁz, we

can assume further that detx = p” (n = 0 or 1). Now, from x; (zl) = q (T) follows

b (zll zl) = (CZIZ ac;_llz); hence by taking the determinants, we obtain p"% = N(a;). Put
c= p”iz:%'. Then ¢ € Q, and locally, c is a norm of an element of Q. In fact, c = N(a))
for I # p, and c is also a norm at p and oo since (%) =landc>0(byImz Imz > 0).
Therefore* ¢ = N(e) with some o € Q. Now since N(a;a™') = 1, we can choose
B € (I # p) such that aja™! = BB, ! holds for all / # p and that 8,0, = O, holds for
almost all /. Let b be the unique proper O-ideal such that b, = 8,0, for all / # p. Then

by x; (zl’) = o (i), we obtain a) = (cabb '), for all I # p; hence @’ = abb ; hence

a’a”! = aN(b)™! - b2. Since N(b) = bb is a principal O-ideal?* this implies P, ~ P,.

(iii) «: An essential point in this proof is the fact that all proper O-ideals a are locally
principal (i.e., a; = ;0 (a; € ;) holds for each / # p). This fact is proved in [17],
p.272. Now by assumption, we have O’ = O. Let O, be the maximal Z-order of Q = Q(z)
(= Q(2')), and put Oy = O N O,. Further, put po = p N Oy, and let d be the smallest

Masis well-known, this “Normensatz” holds for all cyclic extensions.

35In fact, we have bb = bO, where b = (O : b) (this “group index” is well-defined naturally even if
b ¢ O). This is checked easily by using the fact that every proper O-ideal is locally principal (see (iii) «:
below). ‘
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positive integer such that p¢ is principal (Op-ideal). Put p? = 70,. Then it is easily seen
that Deg P, = Deg P, = d (this settles the last point of Prop. 8), and that there exist

B e T 8

the other hand, since both a, a’ are proper O-ideals, the above remark shows that a; = o;q;

(a; € ) for each [ # p. Therefore, q; (i) =X (zll) holds with some x; € GL,(Z;). Hence

Gy’ x;Y) (i) = n(i); hence y = x;y’x;! for all / # p; hence {y}z = {¥'}z-
(ii) «: In this case, we have a’ = abb o with some @ € Q and some pfoper O-ideal
b. Put b; = B0, (I # p), so that we can take a; = aﬁlﬁl_ 1. Since ; (i) = X (zl')’ we

obtain det(x;) = N(@)ZZ% = N(a) (2 1]z : [2 : 1]2)** = N(@) (2, 1]ze : [2' 2 1]zw) X
p" = N(@)N(a)N(a’) ! p” = p" with some positive integer n (independent of /). Hence
Yix ={y'}x

This completes the proof of Proposition 8. a

ExampLE . Let p = 2. Then the table of Op for all P € p(I'*) with Deg P < 7 is given
as follows. Here, the multiplicity indicates the number of P having the same Op (i.e.,
the cardinality of the corresponding ~-class), and each block indicates the ~-class. Thus,
when the discriminant of Op is —431 or —503, the three elements of p(I'*) belonging to
the corresponding ~-class are also ~-equivalent, but all other P (with degP < 7) form
single ~-classes.

Deg P (-1)x (Discriminant’’of Oy)
1 7
2 15
3 23 31
4 32.7] 39 55
119
(100) 5 47 79 103 (oo 127
231 255
6 52.7132.15{32.23 | 87 I 247 553
287 | 391 | 431 503 | 511
7 7”70 7n 151 | 223 431 | 463 | 487 | 503
287 [ 391 | 431 503 | 511

Remark 2. By Proposition 8, we can give examples of elements of I'* which are not
conjugate in I™* but are conjugate in all finite factor groups of I'*3® For example, let p = 2
and take three P with

Op = [1, %(1 + \/-431)]

36«Generalized group index”. It is clear how to define (a : a’) when a ? o', since they are commensu-
rable,

371 e., —f2 - d, where —d is the discriminant of the quadratic field Q, and f is the conductor of Op (taken
f#0 (mod p)).

38By Mennicke [23], all non-trivial factor groups of I'™* are finite.

z®)
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Then they are P,, P, P with z = (1 + V-431),2 = }(1 + V-431) and 2" = }(1 -
V—431); and we have = = 1(9 + V—431). Here the sign + depends on p. Take p such that
it is (say) +. Then by putting n(:) = y(i), n(zl') =9y (7{), n( 1 ) =y (le ), we obtain
three elements y,y’,9” of I which are not conjugate in I'* but are conjugate in X (and
hence in all finite factor groups of I'*). They are:

5 -108 5 -36 4 36
o L6 ES)
This is an example for small p (p = 2) but large Degree (Deg P, = 7). An example of

Degree one is obtained e.g., from the case p = 59; namely, for this p, the following three
elements have the same properties in I'* as above;

7 <12\ (7T -6\ (5 -6
(102) (2 ! ) (4 ) (4 )
For these, 7 = 6 + V-23, and z,2,z” are given by 1(1 + V=23), }(1 + ¥-23) and
i(-l + V—-23) respectively.

ReMARK 3. Let Gg) be the subgroup of Gy formed of all proper O-ideal classes that
contain an ideal of norm 1. Then Gg) D {Go}? (since a? and a/a belong to the same class),
and they are equal if O is maximal. However, in general, they are different subgroups of
Go.

Remark 4. In Proposition 8, if we replace I, X,X by I' = PSL,(Z®),
{ [Tip S Lz(Z,)}/ +1, and { [Tisp GLZ(ZI)}/ + 1 respectively, then we should add the fol-
lowing condition (b) to the right sides of (ii) and (iii),

(b) ord, ([z,1]z : [, 1]z) is even.
As above, ( : ) denotes the generalized group index.

(IT) Equivalence relations in p(X*). Let p(K*) be the set of all ordinary prime di-
visors of K*. By the bijection J; : p(I"") — p(K*), we shall map the two equivalence
relations ~ and = of p(I"™*) onto p(K*). Thus, for P, P’ € p(K*), we define

BB — J7 B ~ T (@),
PP — T ®B) = T ().

We shall show in §32 that these two relations ~ and ~ of p(X™*) do not depend on the
p
choice of p.

(103)

§32. Effect of changing p. Now we shall study the effect of changing the prime
factor p of p in Q®. First, we shall check the following two assertions.

PropostTiON 9. The field & of Main Theorem (I'*-2) is independent of the choice of v.



CHAPTER 5.2. NON-ABELIAN CLASSFIELDS ATTACHED TO SUBGROUPS OF T = PS L,(Z®) 203

ProposrTioN 10. The two equivalence relations ~ and ~ of p(K*) are independent of
P P
the choice of p.

Proor or ProposrrioN 9. By the proof of Main Theorem (I"™*-1), it is clear that the field
R of Main Theorem (I"*-1) must coincide with the “old” field & of §15, which was inde-
pendent of the choice of p (see the Remark in §15). - m]

Proor oF Proposrrion 10. Put P, = J:7'(B), so that B(j) = j(z) mod p. Let O be
the order of [z, 1]z», let O; be the maximal Z-order of Q = Q(2), and put Oy = O N O,
(so that O = Oy ®z ZP). Then since O = End (C/[z, 1]) ®z Z®, it follows immediately
from Deuring [4] that End(EmG)) = Oy, Where Eq:) is an elliptic curve with the absolute
invariant (7). Therefore,

(104) ‘B : ‘.B' > End(Ei?G)) = End(Em,Gj).

But this implies that ~ does not depend on p.
P

On the other hand, by Main Theorem (I™*-2) and Proposition 8, if we denote by { 3—%(-‘-

the Frobenius substitution of P in & /K* (thus it is a G(R/K*)-conjugacy class)>® we have

K]/K* ] /K“}
105 =~ P = .
109 vro— {5}
Therefore, by Proposition 9, ~ does not depend on p. a
p

In view of Proposition 10, we shall simply denote ~, ~ instead of ~, ~. Thus, for each
P P
p, J, induces the bijections p(I™)/ ~— p(K*)/ ~ and p(I'™*)/ =— p(K*)/ =.

ProrosrtioN 11. The induced bijection p(I'*)/ ~— p(K*)/ ~ is independent of p.
Proor. This is clear by the proof of Proposition 10. a

On the other hand, the bijection p(I'*)/~— p(K*)/=~ actually depends on p. To
see how it depends, let F be the maximum (2,2, ---)-type abelian extension of Q in
which p is decomposed completely. Then F is contained in Q' = Upnzo (mod p) Q&)
(4» : primitive n-th root of unity), and the canonical isomorphism G(Q’/Q) = []., Ui
induces the isomorphism G(F/Q) = (H,#, U;) / (H,#, U,z) -TI. On the other hand, if
X and X are as in Proposition 8, then the determinant map induces an isomorphism
X/X- (center of ;Y—) = (H Ip U;) / (H Ip UIZ) -TI. Therefore, there is a natural isomorphism

(106) X/X - (center of X) = G(F/Q).
Now, for each o € G(Q*/Q), identify J ;”_1 with the map z — j(z)” mod p, and let X, be

any element of X whose residue class mod {X . (centcr of X’)} corresponds to o by the
above isomorphism (106). Then we have the following:

P1f PB(j) = 123 or 0, the inertia group is non-trivial, and hence {%—} is not a single G(&/K*)-conjugacy
class. But such P are not sors equivalent to any other element; hence there is no problem.
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ProposITION 12. The notations being as above, let P, be any element of p(I"*) not
equal to P; or P, and let 'y be the positive generator of I', with respect to p. Let o be any
element of G(Q*/Q), put 7, ;,'IJ »(P:) = Py, and let ¥’ be the positive generator of T,
with respect to p°.*° Then

(107) e = {775,
Proor. This is a simple exercise in (abelian) classfield theory. m)

CoRrOLLARY . Ifo = 10onF, then T, ;,"J , leaves each =~-class invariant.
Therefore!! we have proved the following:

ProposiTioN 13. In Main Theorem (I'*-2), if p is replaced by v” (o € G(Q?*/Q)), then
it is enough to replace 1 by 1 o Inn(x,,) to keep the validity of this theorem, where Inn(x,,)
denotes the inner automorphism induced by X, and t is the isomorphism X = G(&/K")
induced by 1. Therefore, if I is a normal subgroup of I"* with finite index, then the I"'-
classfield wrt. pis theT* N X! f""f(,-classﬁeld w.r.t. p°, where f"’ denotes the closure of
I in X. In particular, if T is a characteristic subgroup of X (e.g., if I is a principal
congruence subgroup), then the definition of "' -classfield is independent of p.

ReMARK 1. It can be immediately checked that this change of ; also keeps the vahdlty
of assertion (iii) of Main Theorem (I"*-2).

REMARK 2. Since X/X - (center of 5() is of (2,2, - - - )-type, one needs not worry about
the sign of the power indices of o or X,

§33. Here, we shall give some remarks and numerical evidences for Conjecture I"*.

ReMaRrk . For each N > 1 with N 2 0 (mod p), let I'(NV) be the principal congruence
subgroup of I'* of level N;

(108) T(N) = {y € SLy(ZP) | y = +1 (mod N)} / = 1.

Let Ky be the I'(V)-classfield over K*. Call a prime divisor P of Ky supersingular when
its restriction to K* is so. Let Ky be the maximum Galois extension of Ky such that

(i) Ky/Ky is unramified,
(ii) all supersingular prime divisors of Ky are decomposed completely in Ky.
Then

(109) Conjecture I'* is valid if and only if Ky = Ky holds forall N.

To prove (109), we need the following result of Mennicke [23]: ['(N) is the smallest
normal subgroup of T = PS L,(ZP)) containing ((1) ):r) From this, it follows directly that
Ky is the maximum Galois extension of K* such that (i) Ky c &, (ii) the ramification

40gince P, ~ P, by Proposition 11, P, # P, P,
41gee also the Remarks 1, 2 below.
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index in Ky/K* of the infinite prime divisor of K* divides N. Moreover, the last ramifi-
cation index in Ky/K* is exactly equal to N (by Main Theorem (I'*-2)). Hence it follows
immediately that Ky is the maximum Galois extension of K* such that (1) Kyc R (11) the
ramification index in Ky/K* of the infinite prime divisor of K* divides N. Moreover, it is
clear that & = Uwn Ky; hence (109).

For N < 5, the genus of K is zero; hence Ky = Ky (N < 5). So, the first non-trivial
example of Ky = Ky ? is the case of N = 6, where the genus of Ky is one. Now Kg has
exactly 6(p — 1) supersingular prime divisors, and is of degree one over F,2. Choose any
one as an origin, and let E be the corresponding elliptic curve (model of K¢). Let A be
the group of all F.-rational points on E, and let A be the subgroup of A generated by all
supersingular points on E (i.e., those points on E whose corresponding prime divisors of
K are supersingular). Then it is easy to see that K is an abelian extension of K¢ with the
Galois group isomorphic to A/ A, and hence K¢ = K¢ holds if and only zf A = A. However,
the author has not tried to check this — it seems too laborious a work for large p.

Some numerical evidences. Another way of giving numerical evidences for Conjec-
ture I is to take a finite extension K; of K* in K and to see whether

110 RNdg, =KNAg?

where A K d denotes the maximum abelian extension of K;. Since we know one inclusion
KNdg, C RN Ag,, it is enough to compute and compare the degrees of both fields over K.
By the abelian class field theory, it is easily shown that the degree of |n Ak, over K is
finite, and the degree can be computed if we know all supersingular prime divisors of K;.
On the other hand, if T'; is the subgroup of I'* that corresponds to K, then the degree of
KN Ak, over K; is nothing but (I'; : [I'1, I'1]). Since the group I'; has congruence subgroup
property, this group index can be computed easily. Now we shall show the following:

ProrosiTiON 14. If K| = szG), then (110) holds, but almost trivially.

Proor. It can be easily checked that

RNdx, =804x, = Fa(\J-125,0) - p#2.3,
(111) = Fa(\ji-12) e p=3,
= Fp %/j) .. p=2.
(In this case, supersingular prime divisors do not play essential roles. The ramification

condition already determines fn4 x, up to constant field extensions.) A non-trivial ex-
ample comes from the case K; = F,2(2), as follows. o

ProrosrrioN 15. Let p # 2 and K = sz(_/i). Put

i

A

{(xy)esF’< ><F>< (xy)ﬁr—x&r y’fﬂﬂ=l}

(112) ) A = the subgroup of F:z X F;2 generated multiplicatively
by all elements of the form (%, ﬁ) where a, b

{ run over all supersingular Ao.



206

Then
() AcA,
(ii) the Galois group G (§ N Ag, /K,) is isomorphic to F" X F" /A, and the fixed field of
A/Ais & N Ag,;
(iil) the field ] N A, is given explicitly as:

43
(113) RN Ay, —sz[‘/—_ 2V —,1(1 ]

In particular, (110) holds for K, = sz(i) if and only if A = A.

KN Ay, {1}
| “ I

(114) KN Ay, =sz[{ff'i,‘/'a—1,,’/§1(1~1) ] AlA

| |
K =E() - (FxF)B

CoRrOLLARY . Let S be the set of all supersingular elements Ao (see Remark 2 §30),
andleta € S ;. Then —a,a — 1 are 8-th powers, and** 1 3a(1 — a) is a 3rd power in F .

Now by Proposition 15, we can check the validity of (110) for various p by the direct
computation of A, after the preparation of making S,’s table.** For example ifp =3,
then S, = {-1}; hence A = {1} = A. If p = 5, then §; = {~w, —w?}; hence A =

{(1,1), (w, ®?), (v*,w)} = A. In the same manner, we can check (110) (for K; = sz(/l))
for all p < 41.

2 P = 3, the equality (or element).should be taken away.

A 3 p = 3, this equality (or element) should be taken away.

44Only for p#3

451t is convenient to use Deuring’s table of supersingular j, to make the table of S ,.
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