CHAPTER 2

Introduction to Part 1 and Part 2.

Chapter 2 consists of two parts, Part 1 ($\S1-\S17$) and Part 2 ($\S18-\S36$). The subject here is what we call a " G_p -field", where $G_p = PSL_2(k_p)$. The definition is as follows. A field L is called a G_p -field over a subfield k if dim_k L = 1 and if G_p acts effectively on L as a group of field automorphisms over k, fulfilling the following conditions ¹:

- (i) For each open compact subgroup $V \subset G_p$, its fixed field L_V is finitely generated over k, and L/L_V is normally and separably algebraic. Moreover, V is topologically isomorphic to the Krull's Galois group of L/L_V .
- (ii) Almost all prime divisors of L_V over k are unramified in L.
- (iii) The fixed field of G_{p} is k. (k is called the constant field of L.)

The motivation for the study of such a field is this:

— If Γ is a discrete subgroup of $G = G_{\mathbf{R}} \times G_{\mathbf{p}}$ with finite-volume-quotient such that the projections $\Gamma_{\mathbf{R}}$, $\Gamma_{\mathbf{p}}$ are dense in $G_{\mathbf{R}}$, $G_{\mathbf{p}}$ respectively, then Γ defines a $G_{\mathbf{p}}$ -field L over the complex number field **C**, and conversely (Theorem 1, §9). Thus Γ and L (over **C**) are equivalent notions. Moreover, it seems that the study of $G_{\mathbf{p}}$ -fields over algebraic number fields ² is crucial for the solution of our problems. Thus we meet our first problem: "Is every $G_{\mathbf{p}}$ -field L over **C** a constant field extension of a $G_{\mathbf{p}}$ -field L_0 over an algebraic number field?" This problem is solved affirmatively in Part 2 (Theorem 4, §18). The readers note, however, that this would not be remarkable enough without "essential uniqueness" of L_0 , which is guaranteed by Theorems 5, 6, 7 (§18, §32, §33) under a certain condition on L. Namely, by Theorem 5, under a condition on L which is always satisfied if Γ is maximal (see §10), there is a unique ³ $G_{\mathbf{p}}$ -field L_{k_0} over an algebraic number field k_0 such that

- (i) L is a constant field extension of L_{k_0} , and
- (ii) if L is a constant field extension of another G_p -field L_k over a field $k \subset \mathbb{C}$, then k contains k_0 and $L_k = L_{k_0} \cdot k$.

Thus if Γ is maximal, then Γ defines a unique G_p -field L_{k_0} over an algebraic number field k_0 . Theorems 6, 7 are some variations of Theorem 5.

¹See also §1. We do not assume that G_p is the full automorphism group of L over k.

²By an algebraic number field, we always mean a *finite* extension of the field of rationals Q.

 $^{{}^{3}}L_{k_{0}}$ is unique not only up to isomorphisms, but also as a G_{p} -invariant subfield of L.

In the last two sections (§35, §36), we shall prove that under a certain condition on Γ (to which no counterexample is known), the field k_0 contains the field F defined by $F = \mathbf{Q}((\operatorname{tr} \gamma_{\mathbf{R}})^2 | \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}})$ (Theorem 8, §36). The idea of the proof is

- (i) to consider the $\Gamma_{\mathbf{R}}$ -fixed points (on \mathfrak{H}) and the rotation arguments of the stabilizers in algebraic terms, and
- (ii) to prove that F is generated over Q only by $(tr \gamma_R)^2$ of elliptic elements γ_R of Γ_R .

The proof of (ii) is given in Chapter 3 (§11). A further study of the relations between k_0 , F, and $\mathbf{Q}((\operatorname{tr} \gamma_p)^2 | \gamma_p \in \Gamma_p)$ will be left to the next stage of this chapter.

Part 1 is rather a preliminary to Part 2. In Theorem 1 (§9), the one-to-one correspondence $\Gamma \leftrightarrow L$ (over C) is established. In Theorem 2 (§10), some "Galois theory" between Γ and L is proved.⁴ In particular, it is shown that L is irreducible (see §10) if and only if Γ is maximal. In Theorem 3 (§11), it is proved that G_p is of finite index in Aut_C L, a fact needed in Part 2.

A large part of Part 2 is devoted to the proof of Theorem 4 (i.e., $\$21 \sim \31). Two basic lemmas for this proof are :

- (i) $G_{\mathfrak{p}}$ is a certain free product with amalgamation (Lemma 7, §28), and
- (ii) homomorphisms of $\Gamma_{\mathbf{R}}$ into $G_{\mathbf{R}}$ satisfying some conditions are induced by inner automorphisms of $G'_{\mathbf{R}} = PL_2(\mathbf{R})$ (Lemma 8, §29).

As an example of G_p -fields, we shall treat the G_p -field L over \mathbb{C} that corresponds to the group $\Gamma = PSL_2(\mathbb{Z}^{(p)})$ (see §2). This field is treated in connection with Theorems 1, 3 and 5, in §2, §17 and §34, respectively.

Although the " G_p -field" can be defined for any locally compact, non-compact, and totally disconnected group G_p , our main results after §11 are essentially based on the particular structure of the group $G_p = PSL_2(k_p)$ (see Lemmas 1, 4 and 6). Moreover, the only examples of G_p -fields that we know at present are those for $G_p \supset PSL_2(k_p)$ with $(G_p : PSL_2(k_p)) < \infty$; and for such G_p , we can obtain results similar to ours immediately from our results (e.g., by using Proposition 4 (§12) and Theorem 6 (§32)). Therefore, we shall assume throughout the chapter that G_p is the group $PSL_2(k_p)$.

⁴In Piatetski-Shapiro and Shafarevich [24] (in Russian), it seems that a certain transcendental Galois theory is developed, which seems quite interesting. However, the results (resp. ideas) are different (resp. independent).