Part 3B. Unique existence of an invariant S-operator on "arithmetic" algebraic function fields (including G_p -fields) over any field of characteristic zero.

Unique existence of invariant S-operator on ample (arithmetic) L/k.

§45.

[1]. In §41 (Part 3A), we considered the algebraic function fields L/\mathbb{C} satisfying (L1), (L2), and proved Theorem 9 for such fields. In particular, we proved that if L is ample, then there exists a unique Aut_C L-invariant S-operator on L. Our purpose here is to generalize this result to the cases where the constant field k of L is an arbitrary field of characteristic zero (instead of C). First, we must define the fields L/k. This is completely parallel to the definition of L/\mathbb{C} (§41); namely, our object will be the following field L/k:

DEFINITION. k is any field of characteristic 0, and L is any one-dimensional extension of k not assumed to be finitely generated over k, but assumed to satisfy:

- $(L0)_k$ k is algebraically closed in L;
- $(L1)_k$ Let \mathcal{L}_0 be the set of all finitely generated extensions L_0/k contained in L such that L/L_0 is normally algebraic. Then \mathcal{L}_0 is non-empty;
- $(L2)_k$ For each $L_0 \in \mathcal{L}_0$ and a prime divisor P_0 of L_0/k , denote by $e_0(P_0)$ the ramification index of P_0 in L/L_0 . Then $e_0(P_0) = 1$ for almost all P_0 , and the quantity

(128)
$$V(L_0) = 2g_0 - 2 + \sum_{P_0} \left(1 - \frac{1}{e_0(P_0)}\right) \deg P_0$$

is positive, where g_0 is the genus of L_0/k .

REMARK 1. Remark 1 of §41 is also valid here.

REMARK 2. If k = C, this coincides with the definition of L/C of §41.

[2]. The arguments of [2] [3] of §41 are also applicable to this general case; so, all definitions and results of [2] [3] §41 are directly carried over to this case if we only replace C by k. In particular, \mathcal{L}_0 always contains a minimal element (with respect to \subset), and L is called *simple* if it is unique, and *ample* (or *arithmetic*) if it is not unique. Moreover, L is ample if and only if Aut_k L is non-compact. The definitions of D(L) and $d: L \to D(L)$ are also exactly parallel to the case of $k = \mathbb{C}$ ([4] §41).

REMARK 3. There is one point where we need a slight modification of our argument: In [3] §41, we used the finiteness of Aut{ L_0, e_0 } (to prove Proposition 14), and reduced this finiteness proof to the well-known finiteness of $N(\Delta)/\Delta$, where Δ is the fuchsian group corresponding to { L_0, e_0 }, and $N(\Delta)$ is its normalizer in G_R . For the general case, the finiteness of Aut{ L_0, e_0 } is proved in the following way: First, if the genus g_0 of L_0 is greater than one, then $\operatorname{Aut}_k L_0$ is finite; hence there is no problem. On the other hand, if $g_0 = 1$ resp. 0, then, by $V(L_0) > 0$, we have $\sum_{e(P)>1} \deg P \ge 1$ resp. ≥ 3 . But if $g_0 = 1$ resp. 0, the group of automorphisms of L_0 that leave one (resp. three) prime divisors fixed is finite; hence the finiteness of $\operatorname{Aut}\{L_0, e_0\}$ follows.

[3]. Now the group $\operatorname{Aut}_k L$ acts on the set of all S-operators on L by $S \to S^{\sigma}$; $S^{\sigma} \langle \xi \rangle = S \langle \xi^{\sigma^{-1}} \rangle^{\sigma}$ ($\sigma \in \operatorname{Aut}_k L$). Our main purpose is to prove the following theorem:

THEOREM 10. Let L/k be as above, k being any field of characteristic 0. Suppose that L is ample. Then there exists a unique $\operatorname{Aut}_k L$ -invariant S-operator on L. More strongly, if Φ is any closed non-compact subgroup of $\operatorname{Aut}_k L$, then there exists a unique Φ - invariant S-operator on L.

COROLLARY 1. Let L be a G_p -field over any field k of characteristic 0. Then there is a unique G_p -invariant S-operator on L, and it is moreover $Aut_k L$ -invariant.

DEFINITION. In the situation of Theorem 10, we shall call the unique $\operatorname{Aut}_k L$ -invariant S-operator the invariant S-operator on L/k.

REMARK 4. If L is simple, there are also Aut_k L-invariant S-operators (in fact, $S\langle\xi\rangle = \langle\xi,\zeta\rangle + C$ give such operators, where $\zeta \in D(L_{00})^{\times}$, $C \in D^2(L_{00})$; L_{00} being the minimal element of \mathcal{L}_0), but they are not at all unique.

REMARK 5. Theorem 10 is equivalent to the following assertion (\sharp) :

- (#) Let L/k and Φ be as in Theorem 10, and let $\zeta \in D(L)^{\times}$. Then there is a unique element $C \in D^2(L)$ such that
- (129) $\langle \zeta, \zeta^{\sigma} \rangle = C C^{\sigma}$

for all $\sigma \in \Phi$.

In fact, if we put $S\langle\xi\rangle = \langle\xi,\zeta\rangle + C$, then S is σ - invariant if and only if C satisfies (129). Since $\sigma \to \langle\zeta,\zeta^{\sigma}\rangle$ is a cocycle, the existence of such C is a consequence of $H^1(\Phi, D^2(L)) = 0$. However, it turns out that the last cohomology group does not vanish generally (even if we consider continuous cocycles only). So, this method cannot be applied.

[4]. As in §41, the uniqueness proof for Theorem 10 is immediately reduced to the following lemma:

LEMMA 14_k. Let Φ be any closed non-compact subgroup of Aut_k L, and let $h \ge 1$. Then the only Φ -invariant element of $D^h(L)$ is 0.

In the following, we shall prove Lemma 14_k and Theorem 10, by reducing them to the case of $k = \mathbb{C}$.

Proofs of Lemma 14_k and Theorem 10.

§46. Let k be any field of characteristic 0, and let L/k be ample. Our purpose is to prove Lemma 14_k and Theorem 10 for such general L/k. These proofs are reduced to the case of $k = \mathbb{C}$ (i.e., to Lemma 14 and Theorem 9 (§41)) by using the following Lemmas 16, 17:

[1]. First, let K be any overfield of k, and let L_K be the quotient field of $L \otimes K$. Then L_K/K also satisfies $(L0)_k$, $(L1)_k$, $(L2)_k$ of §45 (where k is replaced by K), and $\operatorname{Aut}_k L$ is regarded as an open subgroup of $\operatorname{Aut}_K L_K$ in a natural manner. Therefore, if L/k is ample, so is L_K/K .

LEMMA 16. Let K be algebraically closed. Then if Lemma 14_k and Theorem 10 are both valid for L_K/K , they are also valid for L/k.

PROOF. (i) Let Φ be any closed non-compact subgroup of Aut_k L and let $\omega \in D^h(L)$ ($h \ge 1$) be Φ -invariant. Consider ω as an element of $D^h(L_K)$ and Φ as a subgroup of Aut_K L_K . Then since Aut_k L is open in Aut_K L_K , Φ is also closed (and non-compact) as a subgroup of Aut_K L_K , and ω is Φ -invariant. Hence $\omega = 0$ by Lemma 14_k for L_K/K .

(ii) Let Φ be as in (i). Then by our assumption (Theorem 10 for L_K/K), there is a unique Φ -invariant S-operator on L_K ; hence by Remark 5 (§45), there exists a unique element $C \in D^2(L_K)$ such that

(130)
$$\langle \zeta, \zeta^{\sigma} \rangle = C - C^{\sigma} \quad (\forall \sigma \in \Phi),$$

where ζ is any fixed element of $D(L_K)^{\times}$. Now take ζ from $D(L)^{\times}$. Then we claim that $C \in D^2(L)$, which, by virtue of Remark 5 (§45), would settle our lemma. To prove $C \in D^2(L)$, let ρ be any element of Aut_k K, and let $\tilde{\rho}$ be the unique element of Aut_L L_K that coincides with ρ on K. Then $\tilde{\rho}$ commutes with all elements of Φ . Moreover, the fixed field of the group $\{\tilde{\rho} | \rho \in \operatorname{Aut}_k K\}$ is L. This is checked exactly in the same manner as Lemma 2 (Part 2), by noting that the fixed field of Aut_k K is k (since K is algebraically closed), and that the fixed field of Aut_k L is also k (since L/k is ample). Now apply $\tilde{\rho}$ on both sides of (130). Then since $\langle \zeta, \zeta^{\sigma} \rangle \in D^2(L)$ are $\tilde{\rho}$ -invariant, we obtain $\langle \zeta, \zeta^{\sigma} \rangle = C^{\tilde{\rho}} - C^{\tilde{\rho}\sigma}$ ($\sigma \in \Phi$); hence by the uniqueness of C, we obtain $C^{\tilde{\rho}} = C$ for all ρ . Let $\xi \in D(L)^{\times}$ and put $C = a\xi^2(a \in L_K)$. Then $a^{\tilde{\rho}} = a$ for all ρ ; hence $a \in L$ by our above remark. Hence $C \in D^2(L)$, which settles our lemma.

COROLLARY. If dim₀ $k \leq \aleph$, then Lemma 14_k and Theorem 10 are valid for L/k.

PROOF. Since dim_Q $k \le \aleph$, we can embed k into C; hence by Lemma 16, we can reduce Lemma 14_k and Theorem 10 to the case of k = C.

[2].

LEMMA 17. Let k be algebraically closed. Then L contains an Aut_k L-invariant subfield L' such that L'.k = L and that dim_Q $k' \leq \aleph_0$, where $k' = L' \cap k$.

The proof of this lemma will be given in the next section (§47).

CHAPTER 2. 3B. UNIQUE EXISTENCE OF AN INVARIANT S-OPERATOR

REMARK. In the situation of Lemma 17, we see easily that L' and k are linearly disjoint over k', and that L'/k' also satisfies the conditions $(L0)_k$, $(L1)_k$, $(L2)_k$ of §45. (Consult the proof of Proposition 2 (Part 1).)

[3]. Completing the proofs of Lemma 14_k and Theorem 10, assuming Lemma 17. To prove Lemma 14_k and Theorem 10 for L/k, we may assume that k is algebraically closed (by Lemma 16). So, L contains an Aut_k L-invariant subfield L' such that L'.k = L and that dim $k' \leq \aleph_0$, where $k' = L' \cap k$ (by Lemma 17). Let Φ be any closed non-compact subgroup of Aut_k L, and let $\omega \in D^h(L)$ ($h \ge 1$) be Φ -invariant. Take a finitely generated extension k'' of k' such that $\omega \in D^h(L')$, where L'' = L'.k''. Since L' is Aut_k L-invariant, L'' is also Aut_k L-invariant, and since L''.k = L, Aut_k L acts effectively on L''. On the other hand, Aut_{k''} L'' can be regarded as a subgroup of Aut_k L in a natural manner. Therefore, Aut_{k''} L'' = Aut_k L; hence $\Phi|_{L''}$ is a closed non-compact subgroup of Aut_{k''} L''. But since dim_Q $k'' \le \aleph_0 < \aleph$, Lemma 14_k is valid for L''/k'' (by the Corollary of Lemma 16); hence $\omega = 0$. This proves Lemma 14_k for L/k.

Now we shall prove Theorem 10 for L/k. In the same manner as above, we shall identify: $\operatorname{Aut}_{k'} L' = \operatorname{Aut}_k L$. Since $\dim_Q k' \leq \aleph_0$, Theorem 10 is valid for L'/k'; hence there exists a unique element C in $D^2(L')$ such that $\langle \zeta, \zeta^{\sigma} \rangle = C - C^{\sigma}$ holds for all $\sigma \in \Phi$, where ζ is any fixed element of $D(L')^{\times}$ (by Remark 5, §45). Moreover, C is unique *in* $D^2(L)$ by Lemma 14_k for L/k. But then, by Remark 5 (§45) again, Theorem 10 is valid for L/k.

§47. In this section, we shall give a proof of Lemma 17. For this proof, we need several preliminary considerations.

[1]. Let k be any field of characteristic 0, and let L/k be ample. Put $G = \operatorname{Aut}_k L$, and let \mathfrak{V} be the set of all open compact subgroups of G. Then \mathcal{L}_0 and \mathfrak{V} are in a natural one-to-one correspondence:

$\mathcal{L}_0 \ni L_V$	$\underset{1:1}{\longleftrightarrow}$	$V\in\mathfrak{V}$
:		•
the fixed field of V		$\operatorname{Aut}_{L_{\mathcal{V}}} L.$

Since \mathcal{L}_0 is inductive with respect to \supset , \mathfrak{V} is also inductive with respect to \subset ; hence each element of \mathfrak{V} is contained in a maximal element of \mathfrak{V} .

DEFINITION. We denote by G_0 the subgroup of G generated by all open compact subgroups V of G.

It is clear that G_0 is an open non-compact normal subgroup of G.

(131)

PROPOSITION 22. Let $V \in \mathfrak{V}$ and let N(V) be its normalizer in G. Then $N(V) \in \mathfrak{V}$.

PROOF. Let L_V be the fixed field of V, and let $\sigma \in N(V)$. Then L_V^{σ} is the fixed field of $\sigma^{-1}V\sigma = V$; hence $L_V^{\sigma} = L_V$. Therefore, σ induces an automorphism $\overline{\sigma}$ of $\{L_V, e_V\}$ $(e_V(P)$ is the ramification index of P in L/L_V , where P is any prime divisor of L_V). But the group of automorphisms of $\{L_V, e_V\}$ is finite (Remark 3, §45). Hence the kernel of the homomorphism $N(V) \to \operatorname{Aut}\{L_V, e_V\}$ induced by $\sigma \to \overline{\sigma}$ is of finite index in N(V). But this kernel is clearly V. Hence $(N(V) : V) < \infty$; hence $N(V) \in \mathfrak{B}$.

COROLLARY 1. Every compact subgroup of G is contained in some open compact subgroup of G.

PROOF. Let K be any compact subgroup of G, and let V be any element of \mathfrak{V} . Put $V_0 = \bigcap_{k \in K} (k^{-1}Vk)$. Then since $(K : V \cap K) < \infty$, V_0 is open; hence $V_0 \in \mathfrak{V}$. Moreover, K normalizes V_0 ; hence $K \subset N(V_0)$. But $N(V_0) \in \mathfrak{V}$ by Proposition 22.

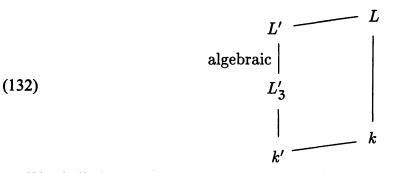
COROLLARY 2. Let 3 be the centralizer of G_0 in G. Then 3 is compact, and is contained in G_0 .

PROOF. Let $V \in \mathfrak{V}$. Then 3 centralizes V; hence $\mathfrak{Z} \subset N(V)$. But 3 is closed, and N(V) is compact by Proposition 22. Therefore, 3 is compact. Since $N(V) \in \mathfrak{V}$, $N(V) \subset G_0$; hence $\mathfrak{Z} \subset G_0$.

Now we shall prove the following proposition by applying the above Corollary 2.

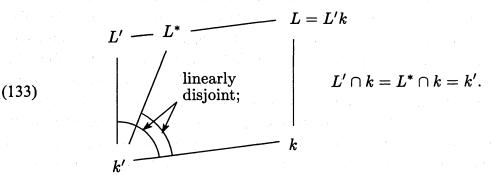
PROPOSITION 23. Assume that k is algebraically closed, and let k' be a given algebraically closed subfield of k. Suppose that L contains a G_0 -invariant subfield L' with L'.k = L and $L' \cap k = k'$. Then such L' is unique, and is moreover G-invariant.

PROOF. Let 3 be the centralizer of G_0 in G. Then by Corollary 2 of Proposition 22, 3 is contained in G_0 ; hence L' is 3-invariant. Moreover, by the same corollary, 3 is compact. Hence if L'_3 denotes the fixed field of $3|_{L'}$ in L', then L'/L'_3 is algebraic (in fact, normally algebraic with the Galois group $3|_{L'}$).



We shall show that L'_3 is independent of the choice of L'. First, note that since $\operatorname{Aut}_{L'} L = \operatorname{id}_{L'} \otimes \operatorname{Aut}_{k'} k$, and since the fixed field of $\operatorname{Aut}_{k'} k$ is k' (by the algebraic closedness of k), we see that the fixed field of $\operatorname{Aut}_{L'} L$ is L'. Therefore, if we denote by $\tilde{3}$ ' the subgroup of $\operatorname{Aut}_{k'} L$ generated by \mathfrak{Z} and $\operatorname{Aut}_{L'} L$, then L'_3 is nothing but the fixed field of $\tilde{\mathfrak{Z}}'$ in L. We shall show that $\tilde{\mathfrak{Z}}'$ coincides with the centralizer of G_0 in $\operatorname{Aut}_{k'} L$, which would prove the independence of L'_3 on L'. Let $\tilde{\mathfrak{Z}}$ denote the centralizer of G_0 in $\operatorname{Aut}_{k'} L$. Then it is clear that \mathfrak{Z} , $\operatorname{Aut}_{L'} L \subset \tilde{\mathfrak{Z}}$; hence $\tilde{\mathfrak{Z}}' \subset \tilde{\mathfrak{Z}}$. On the other hand, let $\sigma \in \tilde{\mathfrak{Z}}$. Then since k^{σ} is the fixed field of $\sigma^{-1}G_0\sigma = G_0$, we have $k^{\sigma} = k$ (from this follows that \mathfrak{Z} is normal in $\tilde{\mathfrak{Z}}$). Let ρ be the unique element of $\operatorname{Aut}_{L'} L$ that coincides with σ on k. Then $\sigma \cdot \rho^{-1} \in \mathfrak{Z}$; hence $\tilde{\mathfrak{Z}} \subset \mathfrak{Z} \cdot \operatorname{Aut}_{L'} L = \tilde{\mathfrak{Z}}'$. Hence $\tilde{\mathfrak{Z}}' = \tilde{\mathfrak{Z}}$. Therefore, the field L'_3 is independent of the choice of L'.

Now let \mathcal{L}' be the set of all L' satisfying the conditions of Proposition 23 (for the given k'). Then since G_0 is normal in G, $L' \in \mathcal{L}'$ implies $L'^g \in \mathcal{L}'$ for any $g \in G$. Therefore, the composite L^* of all $L' \in \mathcal{L}'$ is G-invariant. Moreover, since L'_3 is common for all $L' \in \mathcal{L}'$, and since L'/L'_3 are algebraic, we conclude that L^*/L'_3 is algebraic. Now put $L^* \cap k = k^*$. Then the elements of k^* are algebraic over L'_3 and hence over L'. But L' and k are linearly disjoint over k' (this can be proved exactly in the same manner as Proposition 2 of Part 1, since the fixed field of G_0 is k). Therefore, the elements of k^* are algebraic over k'. But since k' is algebraically closed by assumption, we conclude $k^* = k'$; hence $L^* \cap k = k'$. But then L^* and k are linearly disjoint over k':



Therefore, $L^* = L'$; hence L' is unique, and is G-invariant.

[2]. We shall also need the following proposition:

PROPOSITION 24. The cardinality of the set \mathcal{L}_0 is countable.

To prove this, we need the following Lemma 18:—. Let L_0 be any finitely generated algebraic function field of dimension one over k, and let $e_0 = e_0(P_0)$ be a $\{1, 2, \ldots; \infty\}$ valued function defined on the set of all prime divisors P_0 of L_0/k , such that $e_0(P_0) = 1$ for almost all P_0 and that $V\{L_0, e_0\} = 2g_0 - 2 + \sum_{P_0} \left(1 - \frac{1}{e_0(P_0)}\right) \deg P_0 > 0$, g_0 being the genus of L_0 . Then a finite extension L'_0 of L_0 is called an *admissible extension* with respect to $\{L_0, e_0\}$ if for each P_0 and its factor P'_0 in L'_0 , the ramification index of P'_0/P_0 divides $e_0(P_0)$. (In this case, if we define $e'_0(P'_0)$ as the quotient of $e_0(P_0)$ by the ramification index of P'_0/P_0 , then $\{L'_0, e'_0\}$ may be called an admissible extension of $\{L_0, e_0\}$.) On the other hand, a subfield L_0^* of L_0 with $[L_0 : L_0^*] < \infty$ is called an admissible subfield with respect to $\{L_0, e_0\}$ if for each prime divisor P_0^* of L_0^* and its prime factor P_0 in L_0 , the product of $e_0(P_0)$ and the ramification index of P_0/P_0^* depends only on P_0^* . (In this case, if we define $e_0^*(P_0^*)$ to be this product, we may call $\{L_0^*, e_0^*\}$ an admissible subfield of $\{L_0, e_0\}$. Thus the former is an admissible subfield of the latter if and only if the latter is an admissible extension of the former.)

REMARK. The notations being as above, we have

(134) $\begin{cases} V\{L'_0, e'_0\} = V\{L_0, e_0\} \times [L'_0 : L_0.k'] \\ V\{L_0, e_0\} = V\{L^*_0, e^*_0\} \times [L_0 : L^*_0] \end{cases}$

by Hurwitz formula, where k' denotes the algebraic closure of k in L'_0 .

LEMMA 18. Let $\{L_0, e_0\}$ be given, and suppose that k is algebraically closed. Then (i) there exist only finitely many admissible subfields of L_0 with respect to $\{L_0, e_0\}$; (ii) for given n, there exist only finitely many admissible extensions of L_0 of degree n with respect to $\{L_0, e_0\}$.

PROOF OF LEMMA 18. First we note that this is a well-known fact when k = C. In fact, if Δ is the fuchsian group corresponding to $\{L_0, e_0\}$ (see §40), then the admissible extensions of degree n with respect to $\{L_0, e_0\}$ correspond to the subgroups of Δ with index n, and the admissible subfields with respect to $\{L_0, e_0\}$ correspond to the fuchsian groups containing Δ . But as is well-known, they are finite in number. Hence the case k = C is settled. The general case is easily reduced to the k = C case. In fact, suppose that there are infinitely many admissible subfields with respect to $\{L_0, e_0\}$. Take any countable subset from the set of all such subfields, and call them L_i (i = 1, 2, ...). Let X_i $(i \ge 0)$ be any complete non-singular model of L_i , and let f_i be the rational map $f_i : X_0 \to X_i$ defined by the inclusion $L_i \subset L_0$. For each i, let $k_i \subset k$ be a finitely generated extension of **Q** over which X_0, X_i and f_i are defined, and over which all ramifying prime divisors of X_0 (w.r.t. f_i) and all prime divisors P_0 of X_0 with $e_0(P_0) > 1$ are rational. Let k' be the composite of k_i for all $i \ge 1$, so that dim_Q $k' \le \aleph_0$. Then by embedding k' into C, we can immediately reduce our assertion (i) to the case of k = C. A similar reduction is also valid for the assertion (ii).

PROOF OF PROPOSITION 24. It is enough to prove this proposition when k is algebraically closed. Let L_0 be any element of \mathcal{L}_0 , and let e_0 be as in the condition $(L2)_k$ (§45). Then all finite extensions of L_0 contained in L are admissible extensions with respect to $\{L_0, e_0\}$; hence by Lemma 18, they are countable. Call them $\{L_i, e_i\}$ $(i \ge 0)$. Let L'_0 be any other element of \mathcal{L}_0 . Then $L'_0.L_0 = L_i$ for some i, and L'_0 is an admissible subfield of L_i with respect to $\{L_i, e_i\}$; but by Lemma 18, each $\{L_i, e_i\}$ contains only finitely many admissible subfields. Therefore, \mathcal{L}_0 is countable.

[3]. Proof of Lemma 17. Now having Propositions 23, 24 on hand, we can prove Lemma 17 easily. Since \mathcal{L}_0 is countable, we may denote the elements of \mathcal{L}_0 as L_i (i = 1, 2, 3, ...). For each *i*, let X_i be a complete non-singular model of L_i/k , and for each *i*, *j* with $L_j \subset L_i$, let $f_{ij} : X_i \to X_j$ be the induced rational map. Since \mathcal{L}_0 is countable, there exists a subfield k' of k such that $\dim_Q k' \leq \aleph_0$ and that all X_i , all f_{ij} , and all covering groups of f_{ij} (whenever f_{ij} is a Galois covering) are defined over k'. We may assume further that k' is algebraically closed. Let L'_i be the field of k'-rational functions on X_i , so that $L'_j \subset L'_i$ naturally whenever $L_j \subset L_i$, and let L'_i/L'_j is a Galois extension whenever L_i/L_j is so. Let L' be the union of all L'_i (with respect to these inclusions). Then it is clear that L' is a G_0 -invariant subfield of L such that L'.k = L and that $L' \cap k = k'$. Therefore, by Proposition 23, L' is moreover G-invariant. This proves Lemma 17, and hence completes the proofs of Lemma 14_k and Theorem 10 for the general L/k.

Some corollaries and applications of Theorem 10.

§48.

[1]. The following corollary is an immediate consequence of Theorem 10.

COROLLARY 2.³² Let L/k be ample, and let Φ be an open non-compact subgroup of Aut_k L. Let L' be a Φ -invariant subfield of L satisfying L'k = L and put $k' = L' \cap k$, so that L'/k' is also ample. Let S resp. S' be the invariant S-operators on L/k resp. L'/k'. Then

(135)
$$S\langle\xi\rangle = S'\langle\xi'\rangle + \langle\xi,\xi'\rangle$$

holds for all $\xi \in D(L)^{\times}$ and $\xi' \in D(L')^{\times}$.

PROOF. Fix any $\xi' \in D(L')^{\times}$, and put $S_1\langle\xi\rangle = S'\langle\xi'\rangle + \langle\xi,\xi'\rangle$, so that S_1 is an S-operator on L. Let $\sigma \in \Phi$. Then $S_1^{\sigma}\langle\xi\rangle = \{S'\langle\xi'\rangle\}^{\sigma} + \langle\xi,\xi'^{\sigma}\rangle = S'\langle\xi'^{\sigma}\rangle + \langle\xi,\xi'^{\sigma}\rangle = S'\langle\xi'\rangle + \langle\xi,\xi'^{\sigma},\xi'\rangle + \langle\xi,\xi'^{\sigma}\rangle = S'\langle\xi'\rangle + \langle\xi,\xi'\rangle = S_1\langle\xi\rangle$. Therefore, S_1 is Φ -invariant. Therefore, by Theorem 10, S_1 must be the unique Aut_k L-invariant S-operator on L/k.

EXAMPLE. Let L be a G_p -field over C, and let S be the canonical (hence the invariant) S-operator on L/C. By Theorem 4 (Part 2), L contains a full G_p -subfield L_k over an algebraic number field k of finite degree. Therefore, $S\langle\xi\rangle = S'\langle\xi'\rangle + \langle\xi,\xi'\rangle$ ($\xi \in D(L)^{\times}$, $\xi' \in D(L_k)^{\times}$), where S' is the invariant S-operator on L_k/k . Therefore, in a sense, S is "defined over an algebraic number field."

[2]. Now consider any field k (of characteristic 0) and a pair $\{L_0, e_0\}/k$, where L_0 is a finitely generated algebraic function field of dimension one over k, and $e_0 = e_0(P_0)$ is a $\{1, 2, ...; \infty\}$ -valued function defined on the set of all prime divisors of L_0/k such that $e_0(P_0) = 1$ for almost all P_0 and that $V\{L_0, e_0\} > 0$ (see [2] of §47). For each overfield K of k, we denote by $\{L_0.K, e_0\}/K$ the constant field extension of $\{L_0, e_0\}/k$. We shall say that $\{L_0, e_0\}/k$ is "ample" if there exists a normally algebraic extension L of L_0 such that

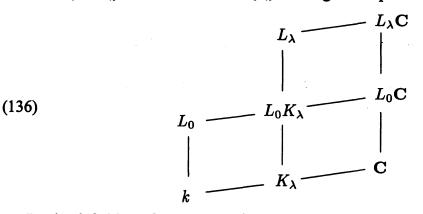
- (a) k is algebraically closed in L;
- (b) for each P_0 , $e_0(P_0)$ coincides with the ramification index of P_0 in L/L_0 ;
- (c) L/k is ample (in the sense of §45 [2]).

Now let k be a subfield of C and consider any $\{L_0, e_0\}/k$, so that $\{L_0C, e_0\}/C$ satisfies the conditions of §40. Let S be the canonical S-operator attached to $\{L_0C, e_0\}$ (see §40). We shall say that S is k-rational if $S\langle D(L_0)^{\times}\rangle \subset D^2(L_0)$. Then the following is a criterion for the k-rationality of S:

CRITERION . S is k-rational if there exists a family $\{K_{\lambda}\}_{\lambda}$ of intermediate fields of \mathbb{C}/k such that $\bigcap_{\lambda} K_{\lambda} = k$ and that $\{L_0 K_{\lambda}, e_0\}/K_{\lambda}$ are ample for all λ .

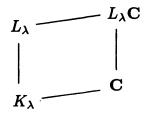
³²As is seen in the proof, the condition L'.k = L may be replaced by a weaker condition $L' \not\subset k$.

PROOF. Let $\xi \in D(L_0)^{\times}$ and put $S\langle \xi \rangle = a\xi^2$ ($a \in L_0\mathbb{C}$). It is enough to prove $a \in L_0$. For each λ , let L_{λ} be an extension of L_0k_{λ} showing the amplitude of $\{L_0K_{\lambda}, e_0\}/K_{\lambda}$.



By the definition of the canonical S-operator on the ample field (§41), the restriction of the canonical S-operator of $L_{\lambda}C/C$ to $L_{0}C$ is nothing but S. Moreover, by applying Corollary 2 (of Theorem 10) to the "parallellogram"

(137)



we conclude that $a \in L_{\lambda}$; hence $a \in L_0.K_{\lambda}$. But since $\bigcap_{\lambda} K_{\lambda} = k$ by assumption, we have $\bigcap_{\lambda} L_0 K_{\lambda} = L_0$; hence $a \in L_0$.

[3]. Now we shall conclude Part 3B by an application to the canonical S-operators on Shimura curves.

Let F be a totally real algebraic number field, considered as a subfield of **R**. Put $[F : \mathbf{Q}] = n$, and let $\mathfrak{p}_{\infty 1}, \dots, \mathfrak{p}_{\infty n}$ be the infinite prime divisors of F, and let $\mathfrak{p}_{\infty 1}$ correspond to the given inclusion $F \subset \mathbf{R}$. Let c be any integral ideal of F, and let C(F, c) denote the strahl-classfield of F modulo $c \prod_{i=1}^{n} \mathfrak{p}_{\infty i}$. Let B be a quaternion algebra over F in which $\mathfrak{p}_{\infty 1}$ is unramified and all other $\mathfrak{p}_{\infty i}$ ($2 \le i \le n$) are ramified. Let o be a maximal order of B, and let $\Delta = \Delta(c)$ be the group of units in o which is congruent 1 modulo co and whose reduced norm over F is totally positive. Then by the isomorphism $B \otimes_F \mathbf{R} \simeq M_2(\mathbf{R}), \Delta$ is considered as a fuchsian group. Let $\{L_{\mathbf{C}}, e\} = \{L_{\mathbf{C}}^c, e^c\}$ be the pair corresponding to Δ (see §40), so that $L_{\mathbf{C}}$ may be regarded as the field of automorphic functions with respect to Δ . Now by Shimura [32], $L_{\mathbf{C}}$ has a nice model V over k = C(F, c) (which is characterized arithmetically up to biregular isomorphisms over k). Let $L = L^c$ be the field of k-rational functions on V (so that $L_{\mathbf{C}} = L.\mathbf{C}$). Then it is easy to check that $e = e^c$ is actually a function of the prime divisors of L/K. We shall check, by using the results of [32], that $\{L, e\}/k$ satisfies the above criterion for the k-rationality of the canonical S-operator attached to $\{L_{\mathbf{C}}, e\}$.

For this purpose, let p be any finite prime divisor of F such that $p \nmid cD(B/F)$, where D(B/F) is the discriminant of B/F. Put $\tilde{k}^p = \bigcup_{n=0}^{\infty} C(F, cp^n)$ and $\tilde{L}^p = \bigcup_{n=0}^{\infty} L^{cp^n}$. Here, for each $n \ge 0$, we identify L^{cp^n} with a subfield of $L^{cp^{n+1}}$ in a natural manner. Let F_p be

the p-adic completion of F and put $G_p = PSL_2(F_p)$. Then by the results of [32], it can be easily checked that \tilde{L}^p/\tilde{k}^p is a G_p -field (hence ample), and that $\tilde{L}^p/L^c.\tilde{k}^p$ is normally algebraic. Moreover, we can check easily (by using Supplement §6) that the extension $\tilde{L}^p/L^c.\tilde{k}^p$ satisfies the above conditions (b) of [2].³³ Hence $\{L^c.\tilde{k}^p, e^c\}/\tilde{k}^p$ is ample. But in $C(F, cp^n)/C(F, c)$, all prime factors of p in C(F, c) are totally ramified and all other finite prime divisors of C(F, c) are unramified; hence $\bigcap_p \tilde{k}^p = k$. But this implies that $\{L, e\}/k$ satisfies the assumptions of our criterion. Hence we may summarize this result as:

COROLLARY 3. The canonical S-operator attached to the Shimura's model $V/C(F, \mathfrak{c})$ of automorphic function field of $\Delta(\mathfrak{c})$ is rational over $C(F, \mathfrak{c})$.

Here, we treated only the principal congruence subgroups $\Delta(c)$. Results for other congruence subgroups can be obtained easily from this by using Proposition 10 (and [32]).

³³That it satisfies the condition (a) of [2] is clear.