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Part 3B. Unique existence of an invariant $S$ -operator on
“arithmetic” algebraic fimctim fields (including $G_{\mathfrak{p}}-$fields)

over any field of characteristic zero.

Unique existence of invariant $S$-operator on ample (arithmenc) $L/k$

\S 45.
[1]. In \S 41 (Part 3A), we considered the algebraic function fields $L/C$ satisfying (Ll),

(L2), and proved Theorem 9 for such fields. In particular, we proved that if $L$ is am-
ple, then there exists a unique $AukL$-invariant $S$ -operator $mL$ . Our pulpose here is to
generalize this result to the cases where the constant field $k$ of $L$ is an arbitrary field of
characteristic zero (instead ofC). First, we must define the fields $L/k$ This is completely
parallel to the definitim of $L/C$ (\S 41); namely, our object will be the followming field $L/k$:

DEFINITION. $k$ is any field of characteristic $0$, and $L$ is any one-dimensional extension
of $k$ not assumed to be finitely generated over $k$, but assumed to satisfy:

$(L0)_{k}k$ is algebraically closed in $L$ ;
$(L1)_{k}$ Let $\mathcal{L}_{0}$ be the set of all finitely generated extensions $L_{0}/k$ contained in $L$ such

that $L/L_{0}$ is normally algebraic. Then $\mathcal{L}0$ is non-empty;
$(L2)_{k}$ For each $L_{0}\in \mathcal{L}_{0}$ and a prime divisor $P_{0}$ of $L_{0}/k$, denote by $e_{0}(P_{0})$ the ramifica-
tim index of $P_{0}$ in $L/L_{0}$ . Then $e_{0}(P_{0})=1$ for almost all $P_{0}$ , and the quantity

(128) $V(L_{0})=2g_{0}-2+\sum_{P_{0}}(1-\frac{1}{e_{0}(P_{0})}\rangle\deg P_{0}$

is positive, where $g_{0}$ is the genus of $L_{0}/k$

REMARK 1. Remark 1 of\S 41 is also vahd here.

REMARK2. If$k=C$ , this coincides with the definition of $L/C$ of \S 41.

[2]. The arguments of [2] [3] of \S 41 are also apphcable to this general case; so, all
definitions and results of [2] [3] \S 41 are directly carried over to this case ifwe only replace
$C$ by $k$ In particular, 2 always contains a minimmal element (with respect to $\subset$), and $L$ is
called simple if it is unique, and ample (or arithmetic) if it is not unique. Moreover, $L$ is
ample if and only if $Aut_{k}L$ is non-compact. The definitions of $D(L)$ and $d$ : $L\rightarrow D(L)$

are also exactly parallel to the case of$k=C$ ([4] \S 41).

REMARK 3. There is one point where we need a slight modffication ofour argument: In
[3] \S 41, we used the finiteness of $Aut\{L_{0},e_{0}\}$ (to prove Proposition 14), and reduced this
finiteness proof to the well-known finiteness of $ N(\Delta)/\Delta$, where $\Delta$ is the fuchsian group
corresponding to $\{L_{0},e_{0}\}$ , and $N(\Delta)$ is its normalizer in $G_{R}$ . For the general case, the
finiteness of $Aut\{L_{0},e_{0}\}$ is proved in the following way: First, if the genus $g_{0}$ of $L_{0}$ is



CHAPTER 2. 3B. UNIQUE EXISTENCE OF AN INVmANT $S$ -OPERATOR 127

greater than one, then $Aut_{k}L_{0}$ is finite; hence there is no problem. On the other hand, if
$g_{0}=1$ resp. $0$ , then, by $V(L_{0})>0$ , we have $\sum_{e(P)>1}\deg P\geq 1$ resp. $\geq 3$ . But if $g_{0}=1$

resp. $0$ , the group ofautomorphisms of $L_{0}$ that leave one (resp. three) prime divisors fixed
is finite; hence the finiteness $ofAut\{L_{0},e_{0}\}$ follows.

[3]. Now the group $Aut_{k}L$ acts on the set ofall $S$ -operators on $L$ by $S\rightarrow S^{\sigma};S^{\sigma}\langle\xi\rangle=$

$S\langle\xi^{\sigma^{-1}}\rangle^{\sigma}(\sigma\in Aut_{k}L)$ . Our main purpose is to prove the following theorem:

THEOREM 10. Let $L/k$ be as above, $k$ being anyfield ofcharacteristic $0$ . Suppose that
$L$ is ample. Then there exists a unique $Aut_{k}L$-invariant $S$ -opemtor on L. More strongly, if
$\Phi$ is any closed non-compact subgroup of $Aut_{k}L_{J}$ then there, exists a unique $\Phi$-invariant
$S$ -opemtor on $L.$

COROLLARY 1. Let $L$ be a $G_{\mathfrak{p}}$-field over anyfield $k$ ofcharacteristic $0$. Then there is a
unique $G_{\mathfrak{p}}$-invariant $S$ -opemtor on $L$, and it is moreover $Aut_{k}L$-invariant.

DEFINITION. In the situation of Theorem 10, we shall call the unique $Aut_{k}L$-invariant
$S$ -operator the invariant $S$-operator on $L/k.$

REMARK 4. If $L$ is simple, there are also $Aut_{k}L$-invariant $S$ -operators (in fact, $S\langle\xi\rangle=$

$\langle\xi,\zeta\rangle+C$ give such operators, where $\zeta\in D(L_{00})^{\times},$ $C\in D^{2}(L_{00});L_{00}$ being the minimal
element of $\mathcal{L}_{0}$), but they are not at all unique.

REMARK 5. Theorem 10 is equivalent to the following assertion $(\#)$ :
$(\#)$ Let $L/k$ and $\Phi$ be as in Theorem 10, and let $\zeta\in D(L)^{\times}$ . Then there is a unique

element $C\in D^{2}(L)$ such that

(129) $\langle\zeta,\zeta^{\sigma}\rangle=C-C^{\sigma}$

for all $\sigma\in\Phi.$

In fact, if we put $S\langle\xi\rangle=\langle\xi,$ $\zeta\rangle+C$, then $S$ is $\sigma-$ invariant if and only if $C$ satisfies
(129). Since $\sigma\rightarrow\langle\zeta,\zeta^{\sigma}\rangle$ is a cocycle, the existence of such $C$ is a consequence of
$H^{1}(\Phi,D^{2}(L))=0$ . However, it tums out that the last cohomology group does not vanish
generally (even if we consider continuous cocycles only). So, this method cannot be
applied.

[4]. As in \S 41, the uniqueness proof for Theorem 10 is immediately reduced to the
following lemma:

LEMMA $14_{k}$ . Let $\Phi$ be any closednon-compact subgmup of$Aut_{k}L$, and let $h\geq 1$ . Then
the only $\Phi$-invariant element of$D^{h}(L)$ is $0.$

In the following, we shall prove Lemma $14_{k}$ and Theorem 10, by reducing them to the
case of $k=C.$
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Proofs of Lemma $14_{k}$ and Theorem 10.

\S 46. Let $k$ be any field of characteristic $0$, and let $L/k$ be ample. Our purpose is to

prove Lemma $14_{k}$ and Theorem 10 for such general $L/k$ These proofs are reduced to the

case of $k=C$ (i.e., to Lemma 14 and Theorem 9 (\S 41)) by using the following Lemmas
16, 17:

[1]. First, let $K$ be any overfield of $k$, and let $L_{K}$ be the quotient field of $L\otimes K$. Then
$L_{K}/K$ also satisfies $(L0)_{k},$ $(L1)_{k},$ $(L2)_{k}$ of \S 45 (where $k$ is replaced by $K$), and $Aut_{k}L$ is
regarded as an open subgroup $ofAut_{K}L_{K}$ in a natural manner. Therefore, $ifL/k$ is ample,

so is $L_{K}/K.$

LEMMA 16. Let $K$ be algebmically closed Then ifLemma $14_{k}$ and Theorem 10 are
both validfor $L_{K}/K$, they are also validfor $L/k$

PROOR (i) Let $\Phi$ be any closed non-compact subgroup of $Aut_{k}L$ and let $\omega\in D^{h}(L)$

$(h\geq 1)$ be $\Phi$-invariant. Consider $\omega$ as an element of $\mathscr{O}(L_{K})$ and $\Phi$ as a subgroup of
$Aut_{K}L_{K}$ . Then since $Aut_{k}L$ is open in $Aut_{K}L_{K},$ $\Phi$ is also closed (and non-compact) as a
subgoup $ofAut_{K}L_{K}$ , and $\omega$ is $\Phi$-invariant. Hence $\omega=0$ by Lemma $14_{k}$ for $L_{K}/K.$

(ii) Let $\Phi$ be as in (i). Then by our assumptim (Theorem 10 for $L_{K}/K$), there is a
unique $\Phi$-invariant $S$ -operator on $L_{K}$ ; hmce by Remark 5 (\S 45), there exists a unique
element $C\in D^{2}(L_{K})$ such that

(130) $\langle\zeta,\zeta^{\sigma}\rangle=C-C^{\sigma} (\forall\sigma\in\Phi)$ ,

where $\zeta$ is any fixed element of $D(L_{K})^{\times}$ . Now take $\zeta$ from $D(L)^{\times}$ . Then we claim that
$C\in D^{2}(L)$ , which, by virtue of Remark 5 (\S 45), would settle our lemma. To prove
$C\in D^{2}(L)$ , let $\rho$ be any element $ofAut_{k}K$, and let $\tilde{\rho}$ be the mique element $ofAut_{L}L_{K}$ that

coincides with $\rho mK$ . Then $\tilde{\rho}$ commutes with all elements of $\Phi$ . Moreover, the fixed field
ofthe group $\{\tilde{p}|\rho\in Aut_{k}K\}$ is $L$ . This is checked exactly in the same manner as Lemma 2
(Part 2), by noting that the fixed field $ofAut_{k}K$ is $k$ (since $K$ is algebraically closed), and
that the fixed field of $Aut_{k}L$ is also $k$ (since $L/k$ is ample). Now apply $\tilde{\rho}$ on both sides of
(130). Then since $\langle\zeta,$ $\zeta^{\sigma}\rangle\in D^{2}(L)$ are $\tilde{\rho}$-invariant, we obtain $\langle\zeta,\zeta^{\sigma}\rangle=C^{\tilde{\rho}}-C^{\sigma\tilde{\rho}}=C^{\overline{\rho}}-C^{-}n$

$(\sigma\in\Phi)$ ; hence by the uniqueness of $C$, we obtain $C^{\tilde{\rho}}=C$ for all $\rho$ . Let $\xi\in D(L)^{\times}$ and
put $C=ae^{2}(a\in L_{K})$ . $\Pi end=a$ for all $\rho$; hence $a\in L$ by our above remark. Hence
$C\in D^{2}(L)$ , which settles our lemma. $\square $

COROILARY. If$\dim_{Q}k\leq\aleph$, then Lemma $14_{k}$ and Theorem 10 are validfor $L/k$

PROOF Since $\dim_{Q}k\leq\aleph$, we can embed $k$ into $C$ ; hence by Lemma 16, we can reduce

Lemma $14_{k}$ and Theorem 10 to the case of $k=C.$ $\square $

[2].

LEMMA 17. Let $k$ be algebmically closed Then $L$ contains an $Aut_{k}L$-invariant subfield
$L’$ such that $L’.k=L$ and that $d\dot{m}_{Q}k\leq\aleph_{0}$, where $k=L’\cap k$

The proof ofthis lemma will be given in the next section (\S 47).
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REMARK. In the situation ofLemma 17, we see easily that $L’$ and $k$ are linearly disjoint

over $k’$ , and that $L’/k’$ also satisfies the conditions $(L0)_{k},$ $(L1)_{k},$ $(L2)_{k}$ of \S 45. (Consult the

proof ofProposition 2 (Part 1). $)$

[3]. Completing the proofs of Lemma $14_{k}$ and Theorem 10, assuming Lemma

17. To prove Lemma $14_{k}$ and Theorem 10 for $L/k$, we may assume that $k$ is algebraically

closed (by Lemma 16). So, $L$ contains an $Aut_{k}L$-invariant subfield $L’$ such that $L’.k=L$

and that $\dim k’\leq\aleph_{0}$ , where $k’=L’\cap k$ (by Lemma 17). Let $\Phi$ be any closed non-compact

subgroup of $Aut_{k}L$ , and let $\omega\in \mathscr{O}(L)(h\geq 1)$ be $\Phi$-invariant. Take a finitely generated

extension $k’’$ of $k’$ such that $\omega\in D^{h}(L’’)$ , where $L’’=L’.k’’$ . Since $L’$ is $Aut_{k}L$-invariant,
$L’’$ is also $Aut_{k}L$-invariant, and since $L’’.k=L,$ $Aut_{k}L$ acts effectively on $L’’$ . On the other

hand, $Aut_{k’’}L’’$ can be regarded as a subgroup of $Aut_{k}L$ in a natural manner. Therefore,

$Aut_{k’’}L’’=Aut_{k}L$ ; hence $\Phi|_{L’’}$ is a closed non-compact subgroup of $Aut_{k^{r/}}L’’$ . But since
$\dim_{Q}k’’\leq\aleph_{0}<\aleph$ , Lemma $14_{k}$ is valid for $L’’/k’’$ (by ffie Corollary ofLemma 16); hence
$\omega=0$ . This proves Lemma $14_{k}$ for $L/k.$

Now we shall prove Theorem 10 for $L/k$ In the same manner as above, we shall

identify: $Aut_{\mu}L’=Aut_{k}L$ . Since $\dim_{Q}k\leq\aleph_{0}$ , Theorem 10 is valid for $L’/k’$ ; hence

there exists a unique element $C$ in $D^{2}(L’)$ such that $\langle\zeta,$ $\zeta^{\sigma}\rangle=C-C^{\sigma}$ holds for all $\sigma\in\Phi,$

where $\zeta$ is any fixed element of $D(L’)^{\times}$ (by Remark 5, \S 45). Moreover, $C$ is unique $in$

$D^{2}(L)$ by Lemma $14_{k}$ for $L/k$. But then, by Remark 5 (\S 45) again, Theorem 10 is valid

for $L/k.$
$\square $

\S 47. In this section, we shall give a proof of Lemma 17. For this proof, we need

several preliminary considerations.

[1]. Let $k$ be any field of characteristic $0$ , and let $L/k$ be ample. Put $G=Aut_{k}L$ , and

let $\mathfrak{B}$ be the set of all open compact subgroups of $G$ . Then Lo and $\mathfrak{B}$ are in a natural

one-to-one correspondence:

(131)

Since 2 is inductive with respect to $\supset,$

$\mathfrak{B}$ is also inductive with respect to $\subset$ ; hence each

element of $\mathfrak{B}$ is contained in a maximal element of $\mathfrak{B}.$

DEFINITION. We denote by $G_{0}$ the subgroup of $G$ generated by all open compact sub-

groups $V$ of $G.$

It is clear that $G_{0}$ is an open non-compact nomal subgroup of $G.$

PROPOSm$ON$ 22. Let $V\in \mathfrak{B}$ and let $ N(V\gamma$ be its nomalizer in G. Then $N(V)\in \mathfrak{B}.$

PROOF Let $L_{V}$ be the fixed field of $V$, and let $\sigma\in N(V)$ . Then $L_{V}^{\sigma}$ is the fixed field

of $\sigma^{-1}V\sigma=V$; hence $L_{V}^{\sigma}=L_{V}$ . Therefore, $\sigma$ induces an automorphism $\overline{\sigma}$ of $\{L_{V},e_{V}\}$

($e_{V}(P)$ is the ramffication index of $P$ in $LlL_{V}$ , where $P$ is any prime divisor of $L_{V}$). But

the group of automorphisms of $\{L_{V}, e_{V}\}$ is finite (Remark 3, \S 45). Hence the kemel of the
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homomorphism $N(V)\rightarrow Aut\{L_{V},e_{V}\}$ induced by $\sigma\rightarrow\overline{\sigma}$ is of finite index in $N(V)$ . But
this kemel is clearly $V$. Hence $(N(V) : V)<\infty$ ; hence $N(V)\in \mathfrak{B}.$ $\square $

COROLLARY 1. Every compact subgroup of $G$ is contained in some open compact sub-
group of $G.$

PROOF. Let $K$ be any compact subgroup of $G$, and let $V$ be any element of $\mathfrak{B}$ . Put
$V_{0}=\bigcap_{k\in K}(k^{-1}Vk)$ . Then since $(K : V\cap K)<\infty,$ $V_{0}$ is opm; hence $V_{0}\in \mathfrak{B}$ . Moreover, $K$

nomalizes $V_{0}$ ; hence $K\subset N(V_{0})$ . But $N(V_{0})\in \mathfrak{B}$ by Proposition 22. $\square $

COROLLARY 2. Let $\mathfrak{Z}$ be the centralizer of$G_{0}$ in G. Then $\mathfrak{Z}$ is compact, and is contained
in $G_{0}.$

PROOF. Let $V\in \mathfrak{B}$ . Then $\mathfrak{Z}$ cenffalizes $V$; hence $\mathfrak{Z}\subset N(V)$ . But $\mathfrak{Z}$ is closed, md $N(V)$

is compact by Proposition 22. Therefore, $\mathfrak{Z}$ is compact. Since $N(V)\in \mathfrak{B},$

$N(V7\subset G_{0};\square $

hence $\mathfrak{Z}\subset G_{0}.$

Now we shall prove the following proposition by applyming the above Corollary 2.

PROPOSITION 23. Assume that $k$ is algebraically closed and let $k’$ be a given alge-
braically closed subfield of $k$ Suppose that $L$ contains a $G_{0}$-invariant subfield $L’$ with
$L’.k=L$ and $L’\cap k=k$ . Then such $L’$ is unique, and is moreover $G$-invariant.

PROOR Let $\mathfrak{Z}$ be the centralizer of $G_{0}$ in $G$ . Then by Corollary 2 ofProposition 22, $\mathfrak{Z}$ is
contained in $G_{0}$ ; hence $L’$ is $\mathfrak{Z}$-invariant. Moreover, by the same corollary, $\mathfrak{Z}$ is compact.
Hence if $L_{\mathfrak{Z}}’$ denotes the fixed field of $\mathfrak{Z}|_{L’}$ in $L’$ , then $L’/L_{\mathfrak{Z}}’$ is algebraic (in fact, nomally
algebraic with the Galois group $\mathfrak{Z}|_{L’})$ .

(132)

We shall show that $L_{\mathfrak{Z}}’$ is independent of the choice of $L’$ . First, note that since
$Aut_{L’}L=id_{L’}\otimes Aut_{k’}k$, and since the fixed field of $Aut_{k}k$ is $k$ (by the algebraic closed-
ness of $k$), we see that the fixed field of $Aut_{L’}L$ is $L’$ . Therefore, if we denote by $\tilde{\mathfrak{Z}}’$ the
subgroup $ofAu\uparrow,$ $L$ generated by $\mathfrak{Z}$ and $Aut_{L’}L$ , then $L_{\mathfrak{Z}}’$ is nothing but the fixed field of $\tilde{\mathfrak{Z}}’$

in $L$ . We shall show that $\tilde{\mathfrak{Z}}’$ coincides with the centralizer of $G_{0}$ in Aut $L$, which would
prove the independence of $L_{\mathfrak{Z}}’mL’$ . Let $\tilde{\mathfrak{Z}}$ denote the centralizer of $G_{0}$ in Aut, $L$ . Then
it is clear that $\mathfrak{Z},Aut_{L’}L\subset\tilde{\mathfrak{Z}}$ ; hence $\tilde{\mathfrak{Z}}’\subset\tilde{\mathfrak{Z}}$ . On the other hand, let $\sigma\in\tilde{\mathfrak{Z}}$ . Then since $k^{\sigma}$

is the fixed field of $\sigma^{-1}G_{0}\sigma=G_{0}$ , we have $k^{\sigma}=k$ (from this follows that $\mathfrak{Z}$ is nomal in
$\tilde{\mathfrak{Z}})$ . Let. $\rho$ be the unique element of $Aut_{L’}L$ that coincides with $\sigma mk$. Thm $\sigma\cdot\rho^{-1}\in \mathfrak{Z}$ ;
hence $\tilde{\mathfrak{Z}}\subset \mathfrak{Z}\cdot Aut_{L’}L=\tilde{\mathfrak{Z}}’$ . Hence $\tilde{\mathfrak{Z}}’=\tilde{\mathfrak{Z}}$ . Therefore, the field $L_{\mathfrak{Z}}’$ is independent of the
choice of $L’.$
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Now let $\mathcal{L}’$ be the setofall $L’$ satisfying the conditions ofProposition 23 (for the given
$k’)$ . Then since $G_{0}$ is normal in $G,$ $L’\in \mathcal{L}’$ implies $L^{\prime g}\epsilon \mathcal{L}’$ for any $g\in G$ . Therefore, the
composite $L^{*}$ of all $L’\in \mathcal{L}’$ is $G$-invariant. Moreover, since $L_{\mathfrak{Z}}’$ is common for all $L’\in \mathcal{L}’,$

and since $L’/L_{\mathfrak{Z}}’$ are algebraic, we conclude that $L^{*}/L_{\mathfrak{Z}}’$ is algebraic. Now put $L^{*}\cap k=k^{*}.$

Then the elements of $k^{*}$ are algebraic over $L_{\mathfrak{Z}}’$ and hence over $L’$ . But $L’$ and $k$ are linearly
disjoint over ld (this can be proved exactly in the same manner as Proposition 2 of Part 1,

since the fixed field of $G_{0}$ is $k$). Therefore, the elements of $k^{*}$ are algebraic over 1 But
since $k$ is algebraically closed by assumption, we conclude $k^{*}=k$ ; hence $L^{*}\cap k=k.$

But then $L^{*}$ and $k$ are linearly disjoint over $k’$ :

(133)

Therefore, $L^{*}=L’$ ; hence $L’$ is unique, and is $G$-invariant. $\square $

[2]. We shall also need the following proposition:

PROPOSITION 24. The cardinality ofthe set .1 is countable.

To prove this, we need the following Lemma 18:–. Let $L_{0}$ be any finitely generated
algebraic fimction field of dimension one over $k$, and let $e_{0}=e_{0}(P_{0})$ be a $\{$ 1, 2, $\ldots$ ; $\infty\}-$

valued function defined on the set of all prime divisors $P_{0}$ of $L_{0}/k$, such that $e_{0}(P_{0})=1$

for almost all $P_{0}$ and that $V\{L_{0}, e_{0}\}_{def}=.$
$2g_{0}-2+\sum_{P_{0}}(1-\frac{1}{e_{0}(P_{0})})\deg P_{0}>0,$ $g_{0}$ being the

genus of $L_{0}$ . Then a finite extension $L_{\acute{0}}$ of $L_{0}$ is called an admissible extension with respect
to $\{L_{0}, e_{0}\}$ if for each $P_{0}$ and its factor $P_{0}’$ in $L_{0}’$ , the ramification index of $P_{0}’/P_{0}$ divides
$e_{0}(P_{0})$ . $(In this case, ifwe$ define $e_{\acute{0}}(P_{0}’)$ as the quotient of $e_{0}(P_{0})$ by the ramffication index
of $P_{0}’/P_{0}$ , then {$L_{0}’,$ e\’o} may be called an admissible extension of $\{L_{0}, e_{0}\}.)$ On the other
hand, a subfield $L_{0}^{*}$ of $L_{0}$ with $[L_{0} : L_{0}^{*}]<\infty$ is called an admissible subfield with respect
to $\{L_{0}, e_{0}\}$ if for each prime divisor $P_{0}^{*}$ of $L_{0}^{*}$ and its prime factor $P_{0}$ in $L_{0}$ , the product of
$e_{0}(P_{0})$ and the ramffication index of $P_{0}/P_{0}^{*}$ depends only on $P_{0}^{*}$ . (In this case, ifwe define
$e_{0}^{*}(P_{0}^{*})$ to be this product, we may call $\{L_{0}^{*},e_{0}^{*}\}$ an admissible subfield of $\{L_{0}, e_{0}\}$ . Thus
the former is an admissible subfield of the latter if and only if the latter is an admissible
extension of the former.)

REMARK. The notations being as above, we have

(134) $\left\{\begin{array}{l}V\{L_{\acute{0}},e_{\acute{0}}\}=V\{L_{0}, e_{0}\}\times[L_{\acute{0}} : L_{0}.k]\\V\{L_{0},e_{0}\}=V\{L_{0}^{*},e_{0}^{*}\}\times[L_{0} : L_{0}^{*}]\end{array}\right.$

by Hurwitz fomula, where denotes the algebraic closure of $k$ in L\’o.
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LEMMA 18. Let $\{L_{0},e_{0}\}$ be given, and suppose that $k$ is algebraically closed Then (i)

there exist onlyfinitely marry admissible subfields of $L_{0}$ with respect to $\{L_{0},e_{0}\}$; (ii) for
given $n$, there exist onlyfinitely many admissible extensions of$L_{0}$ ofdegree $n$ with respect

to $\{L_{0},e_{0}\}.$

PROOF OF LEMMA 18. Firstwe note ffiatffiis is awell-hown factwhen $k=$ C. In fact, if
$\Delta$ is the fuchsian group corresponding to $\{L_{0},e_{0}\}$ (see \S 40), then the admissible extensions
ofdegree $n$ with respect to $\{L_{0},e_{0}\}$ correspond to the subgroups of $\Delta$ with index $n$, and the
admissible subfields with respect to $\{L_{0}, e_{0}\}$ correspond to the fuchsian groups containing
$\Delta$ . But as is well-known, they are finite in number. Hence the case $k=C$ is settled. The
general case is easily reduced to the $k=C$ case. In fact, suppose that there are infinitely
many admissible subfields with respect to $\{L_{0},e_{0}\}$ . Take any countable subset from the

set of all such subfields, and call them $L_{i}(i=1,2, \ldots)$ . Let $X_{i}(i\geq 0)$ be any complete
non-singular model of $L_{i}$ , and let $f$ be the rational map $f$ : $X_{0}\rightarrow X_{i}$ defined by the
inclusion $L_{i}\subset L_{0}$ . For each $i$, let $k_{i}\subset k$ be a finitely generated extension of $Q$ over which
$X_{0},X_{i}$ and $f$ are defined, and over which all ramifying prime divisors of $X_{0}$ $(w.r.t. f)$ and
all prime divisors $P_{0}$ of $X_{0}$ with $e_{0}(P_{0})>1$ are rational. Let $k$ be the composite of $k_{i}$ for

all $i\geq 1$ , so that $\dim_{Q}k’\leq\aleph_{0}$ . Then by embedding $k’$ into $C$ , we can immediately reduce
our assertion (i) to the case of $k=$ C. $A$ similar reductim is also valid for the assertion
(ii). $\square $

PROOF OF PROPOSITION 24. It is enoug to prove this proposition when $k$ is algebraically
closed. Let $L_{0}$ be any element of Lo, and let $e_{0}$ be as in the condition $(L2)_{k}$ (\S 45). Then
all finite extensions of $L_{0}$ contained in $L$ are admissible extensions with respect to $\{L_{0}, e_{0}\}$ ;

hence by Lemma 18, they are countable. Call them $\{L_{j}, e_{i}\}(i\geq 0)$ . Let $L_{\acute{0}}$ be any other
element of 2 . Then $L_{0}’.L_{0}=L_{i}$ for some $i$, and $L_{0}’$ is an admissible subfield of $L_{i}$ with
respect to $\{L_{t}, e_{i}\}$ ; but by Lemma 18, each $\{L_{i},e_{i}\}$ contains only finitely many admissible
subfields. Therefore, $\mathcal{L}0$ is countable. $\square $

[3]. Proof of Lemma 17. Now having Propositions 23, 24 on hand, we can prove
Lemma 17 easily. Since 2 is countable, we may denote the elements of $\mathcal{L}_{0}$ as $L_{i}(i=$

$1,2,3,$ $\ldots)$ . For each $i$, let $X_{i}$ be a complete non-singular model of $L_{i}/k$, and for each $i,j$

with $L_{j}\subset L_{i}$ , let $f_{ij}$ : $X_{i}\rightarrow X_{j}$ be the induced rational map. Since $\Delta$ is countable, there
exists a subfield of $k$ such that $\dim_{Q}k\leq\aleph_{0}$ and that all $X_{i}$ , all $f_{j}$, and all covering
groups of $f_{\dot{j}}$ (whenever $f_{j}$ is a Galois covering) are defined over $k$ . We may assume
fUrther that $k$ is algebraically closed. Let $L_{i}’$ be the field of $k$-rational ftmctions on $X_{i},$

so that $L_{j}’\subset L_{i}’$ naturally whenever $L_{j}\subset L_{i}$ , and let $L_{i}’/L_{\dot{j}}’$ is a Galois extensim whenever
$L_{i}/L_{j}$ is so. Let $L’$ be the unim of all $L_{i}’$ (with respect to these inclusions). Then it is clear
that $L’$ is a $G_{0}$-invariant subfield of $L$ such that $L’.k=L$ and that $L’\cap k=k’$ . Therefore, by
Proposition 23, $L’$ is moreover $G$-invariant. This proves Lemma 17, and hence completes

the proofs ofLemma $14_{k}$ and Theorem 10 for the general $L/k$
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Some corollaries and applications of Theorem 10.

\S 48.
[1]. The following corollary is an immediate consequence ofTheorem 10.

COROLLARY $2$ Let $L/k$ be ample, and let $\Phi$ be an open non-compact subgroup of
$Aut_{k}$ L. Let $L’$ be a $\Phi$-irwariant subfield of$L$ satisfying $L’k=L$ andput $k’=L’\cap k$, so that
$L’/k’$ is also ample. Let $S$ resp. $S’$ be the invariant $S$ -operators on $L/k$ resp. $L’/k’$ . Then

(135) $ S\langle\xi\rangle=S’\langle\xi’\rangle+\langle\xi,\xi’\rangle$

holdsfor all $\xi\in D(L)^{\times}and\xi’\in D(L’)^{\times}.$

PROOF Fix any $\xi’\in D(L’)^{\times}$ , and put $ S_{1}\langle\xi\rangle=S’\langle\xi’\rangle+\langle\xi,\xi’\rangle$ , so that $S_{1}$ is an $S$ -operator

on $L$ . Let $\sigma\in\Phi$ . Then $S_{1}^{\sigma}\langle\xi\rangle=\{S’\langle\xi’\rangle\}^{\sigma}+\langle\xi,\xi^{\prime\sigma}\rangle=S’\langle\xi^{\prime\sigma}\rangle+\langle\xi,\xi^{\prime\sigma}\rangle=S’\langle\xi’\rangle+\langle\xi^{\prime\sigma},\xi’\rangle+$

$\langle\xi,\xi^{\prime\sigma}\rangle=S’\langle\xi’\rangle+\langle\xi,\xi’\rangle=S_{1}\langle\xi\rangle$ . Therefore, $S_{1}$ is $\Phi$-invariant. Therefore, by Theorem
10, $S_{1}$ must be the unique $Aut_{k}L$-invariant $S$ -operator $mL/k$ $\square $

EXAMPLE. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$ , and let $S$ be the canonical (hence the invariant)

$S$ -operator on $L/$C. By Theorem 4 (Part 2), $L$ contains a full $G_{\mathfrak{p}}$-subfield $L_{k}$ over an
algebraic number field $k$ of finite degree. Therefore, $S\langle\xi\rangle=S’\langle\xi’\rangle+\langle\xi,\xi’\rangle(\xi\in D(L)^{\times},$

$\xi’\in D(L_{k})^{\times})$ , where $S’$ is the invariant $S$ -operator $mL_{k}/k$ Therefore, in a sense, $S$ is
“defined over an algebraic number field.”

[2]. Now consider any field $k$ (of characteristic $0$) and a pair $\{L_{0}, e_{0}\}/k$, where $L_{0}$ is
a finitely generated algebraic function field of dimension one over $k$, and $e_{0}=e_{0}(P_{0})$ is

a $\{$ 1, 2, $\ldots$ ; $\infty\}$-valued function defined on the set of all prime divisors of $L_{0}/k$ such that
$e_{0}(P_{0})=1$ for almost all $P_{0}$ and that $V\{L_{0},e_{0}\}>0$ (see [2] of \S 47). For each overfield
$K$ of $k$, we denote by $\{L_{0}.K, e_{0}\}/K$ the constant field extension of $\{L_{0}, e_{0}\}/k$. We shall say
that $\{L_{0}, e_{0}\}/k$ is mple” if there exists a normally algebraic extensim $L$ of $L_{0}$ such that

(a) $k$ is algebraically closed in $L$ ;

(b) for each $P_{0},$ $e_{0}(P_{0})$ coincides with the ramffication index of $P_{0}$ in $L/L_{0}$ ;

(c) $L/k$ is ample (in the sense of \S 45 [2]).

Now let $k$ be a subfield of $C$ and consider any $\{L_{0}, e_{0}\}/k$, so that $\{L_{0}C, e_{0}\}/C$ satisfies the

conditions of \S 40. Let $S$ be the canonical $S$ -operator attached to $\{L_{0}C, e_{0}\}$ (see \S 40). We

shall say that $S$ is $k$-mtional if $S\langle D(L_{0})^{\times}\rangle\subset D^{2}(L_{0})$ . Then the following is a criterion for

the $k$-rationality of $S$ :

CRITERION. $S$ is $k$-rational ifthere exists afamily $\{K_{\lambda}\}_{\lambda}$ ofintermediatefields of$C/k$
such that $\bigcap_{\lambda}K_{\lambda}=k$ and that $\{L_{0}K_{\lambda}, e_{0}\}/K_{\lambda}$ are amplefor all $\lambda.$

$32_{As}$ is seen in the proof, the condition $L’.k=L$ may be replaced by a weaker condition $L’\not\subset k$
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PROOF. Let $\xi\in D(L_{0})^{\times}$ and put $S\langle\xi\rangle=ag^{2}(a\in L_{0}C)$ . It is enoug to prove $a\in L_{0}.$

For each $\lambda$, let $L_{\lambda}$ be an extensim of $L_{0}k_{\lambda}$ showing the amplitude of $\{L_{0}K_{\lambda},e_{0}\}/K_{\lambda}.$

(136)

By the definition of the canonical $S$ -operator on the ample field (\S 41), the restriction
of the canonical $S$ -operator of $L_{\lambda}C/C$ to $L_{0}C$ is nothing but $S$ . Moreover, by applying
Corollary 2 (of Theorem 10) to the “parallellogram”

(137)

we conclude that $a\in L_{\lambda}$ ; hence $a\in L_{0}.K_{\lambda}$ . But since $\bigcap_{\lambda}K_{\lambda}=k$ by assumption, we have
$\bigcap_{\lambda}L_{0}K_{\lambda}=L_{0}$ ; hence $a\in L_{0}.$ $\square $

[3]. Now we shall conclude Part $3B$ by an application to the canonical $S$ -operators on
Shimura curves.

Let $F$ be a totally real algebraic number field, considered as a subfield ofR. Put $[F$ :
$Q]=n$ , and let $\mathfrak{p}_{\infty 1},$ $\cdots,$ $\mathfrak{p}_{\infty n}$ be the infinite pnime divisors of $F$, and let $\mathfrak{p}_{\infty 1}$ correspond
to the given inclusion $ F\subset$ R. Let $\mathfrak{c}$ be any integral ideal of $F$, and let $C(F, c)$ denote the
strahl-classfield of $F$ modulo $c\prod_{i=1}^{n}\mathfrak{p}_{\infty i}$ . Let $B$ be a quatemion algebra over $F$ in which
$\mathfrak{p}_{\infty 1}$ is unramified and all other $\mathfrak{p}_{\infty i}(2\leq i\leq n)$ are ramffied. Let $\mathfrak{o}$ be a maximal order of
$B$, and let $\Delta=\Delta(c)$ be the group ofunits in $\mathfrak{o}$ which is congruent 1 modulo $c\mathfrak{o}$ and whose
reduced norm over $F$ is totally positive. Then by the isomorphism $B\otimes_{F}R\simeq M_{2}(R),$ $\Delta$ is
considered as a fuchsian group. Let $\{L_{C},e\}=\{L_{c}^{c}, e^{C}\}$ be the pair corresponding to $\Delta$ (see

\S 40), so that $L_{C}$ may be regarded as the field of automorphic functions with respect to $\Delta.$

Now by Shimura [32], $L_{C}$ has a nice model $V$ over $k=C(F, c)$ (which is characterized
arithmetically up to biregular isomorphisms over $k$). Let $L=L^{C}$ be the field of $k$-rational
fimctions $mV$ (so that $L_{C}=L.C$). Then it is easy to checkffiat $e=e^{\mathfrak{c}}$ is actually a fimction
of the prime divisors of $L/K$ . We shall check, by using the results of [32], that $\{L,e\}/k$

satisfies the above criterion for the $k$-rationality of the canonical $S$ -operator attached to
$\{L_{C},e\}.$

For this purpose, let $\mathfrak{p}$ be any finite prime divisor of $F$ such that $\mathfrak{p}$

$\dagger$ $cD(B/F)$, where
$D(B/F)$ is the discriminmt of $B/F$ . Put $\tilde{k}^{p}=\bigcup_{n=0}^{\infty}C(F, c\mathfrak{p}^{n})$ and $\tilde{L}^{\mathfrak{p}}=\bigcup_{n--0}^{\infty}L^{c\mathfrak{p}^{n}}$ . Here,
for each $n\geq 0$ , we identify $L^{c\mathfrak{p}^{n}}$ with a subfield of $L^{c\mathfrak{p}^{n+1}}$ in a natural manner. Let $F_{\mathfrak{p}}$ be
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the $\mathfrak{p}$-adic completim of $F$ and put $G_{\mathfrak{p}}=PSL_{2}(F_{\mathfrak{p}})$ . Then by the results of [32], it can
be easily checked that $\tilde{L}^{\mathfrak{p}}/kp$ is a $G_{\mathfrak{p}}$-field (hence ample), and that $\tilde{L}^{\mathfrak{p}}/L^{C}.\tilde{k}^{\mathfrak{p}}$ is normally
algebraic. Moreover, we can check easily (by using Supplement \S 6) that the extension
$\tilde{L}^{\mathfrak{p}}/L^{C}.\tilde{k}^{\mathfrak{p}}$ satisfies the above conditions (b) of $[$2 $]$ Hence $\{L^{C}.\tilde{k}^{\mathfrak{p}}, e^{c}\}/\tilde{k}^{\mathfrak{p}}$ is ample. But in
$C(F, c\mathfrak{p}^{n})/C(F, \mathfrak{c})$ , all prime factors of $\mathfrak{p}$ in $C(F, \mathfrak{c})$ are totally ramffied and all other finite
prime divisors of $C(F, c)$ are unramified; hence $\bigcap_{\mathfrak{p}}\tilde{\mu}=k$. But this implies that $\{L,e\}/k$

satisfies the assumptions of our criterion. Hence we may summarize this result as:

COROLLARY 3. The canonical $S$ -opemtor attached to the Shimura’s model $V/C(F, \mathfrak{c})$ of
automorphicfunctionfield of $\Delta(c)$ is rational over $C(F, \mathfrak{c})$ .

Here, we treated only the principal congmence subgroups $\Delta(\mathfrak{c})$ . Results for other con-
gmence subgroups can be obtained easily from this by using Proposition 10 (and [32]).

33That it satisfies the condition (a) of [2] is clear.
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