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‘Part 3A. The canonical S-operator and the canonical class of linear
differential equations of second order on algebraic function field
L of one variable over C, and their algebraic characterizations
when L is “arithmetic”.

The S -operators.

§37. The symbol (,£). Let L be any field, let D(L) be a one-dimensional vector
space over L, and let d : L — D(L) be a map satisfying d(x + y) = dx + dy, d(xy) =
xdy + ydx for all x, y € L. For each positive integer 4, denote by D"(L) the tensor product
D(L) ® --- ® D(L) (h copies) over L (so that dim; D*(L) = 1), and call the elements of
D*(L) differentials of degree h (in L). Put D(L)* = D(L) \ {0}. Then if £ is any fixed
element of D(L)*, the elements of D"(L) are expressed uniquely in the form a- &* (a € L).
Here, &' will always denote £ ® --- ® £ (h copies). For any & € D(L)* and n € D(L),
the number a € L with n = a£ will be denoted by 5/£. Finally, we shall denote by £ the
constant field, i.e., kK = {x € L|dx = 0}. It is clear that k is a subfield of L.

Now for each £, € D(L)*, an element (, £) of D?(L) is defined in the following way.
Put w = ﬂ/f, Wip1 = dw,-/f (l > 1) Then

DEFINTTION .
_ 2w1w3 - 3LU§ 2
(n, &) = Tf :

In particular, if x, y € L\, then we have
dy\ (& dy\?
2(#) () -3(2)
du\2
(2)
where %, = (;";)i (i = 1). Thus (n, &) is, so to speak, the “algebraic Schwarzian deriv-

ative”. The following Proposition is classically well-known for the analytic Schwarzian
derivative.

(76) (dy, dx) = (dx)’,

ProposiTioN 7. (i) For any &,n,¢ € D(L)*, we have

) .8 —(&,8) = (mé).
(ii) Let n € D(L)* and x € L\k. Then (n,dx) = 0 if and only if n is of the form n = dx,

with x; = %, ZZ) € GLy(k 20

20Here, the same notation d is used for the map d : L — D(L) and for the (2, 2)-element of the matrix
(Z z) I hope that this will not confuse the readers.
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COROLLARY . We have

%) {o:, £=0

& m=—né)
Jor any £,n € D(L)*.
The Corollary follows immediately from (i) by putting { = np = £, and £ = 1.

Proor. (i) is obtained by a straightforward computation.

(i) Put n = zdx (z € L), so that (5,dx) = 0 is equivalent to () 2zz,, = 3(z,)%,
where the suffix x denotes the effect of the derivation d%. First, let ch(L) = 2. Then
(ndx) =0 z, =0 & z € k < n = dx, with x; = ax,a € k*. On the other
hand, d(g;;g) (ad - be)(cx + dy2dx, and since ch(L) = 2, all square elements of L are
contained in k. This settles the case of ch(L) = 2. Now let ch(L) # 2 and put z = y'.
Then the equation () is equivalent to (b) > = 2yy,.. By applying dix on (b), we obtain
2yysxx = 0; hence y,,, = 0; hence y is a quadratic polynomial of x over k. From this
follows easily that the general solution of (b) is y = a(bx + c)? (@, b,c € k). Therefore,
(n, dx) = 0 if and only if z is of the form a™!(bx + ¢)~2; which settles (ii). o

§38 The § -operators. Let the no’;anons be asin §37. Amap S : D(L)* - DZ(L)
will be called an S -operator (on L) if

(79) S{n) = 8¢ =, &)

holds for all £,y € D(L)*. Thus by Proposition 7 (i), if { is any fixed element of D(L)*, the
map S, defined by S,(£) = (£, {) gives an S-operator (an inner S-operator), and it is clear
that all other S'-operators are given by S(¢) = §;(¢€)+C, where C is an arbitrary constant in
D?*(L). In general, not all S-operators are inner (or equivalently, not all elements of D?*(L)
are of the form (Z, ") (£, ¢’ € D(L)X)), and as is shown later, a certain outer S -operator
plays a central role in our problems.

The canonical S-operator on algebraic function field of one variable over C, and its
algebraic characterization in ample (arithmetic) cases.

§39. The canonical S-operator on the field of automorphic functions. Let X be
any Riemann surface, compact or open. Let Ly be the field of meromorphic functions
on X, and let D(Ly) be the space of all meromorphic differential forms on X (of degree’
one), considered as a vector space over Ly. Letd : Ly — D(Lx) be th_e ordinary dif-
ferentiation. Then the sympol (5, &) for this situation is essentially 2! the same as the
classical Schwarzian derivative. If o is any automorphism of X, then o acts on D" (L x) as
w — o7 = w oo, and it is clear that (,£)7 = (”, £7).

Uie,uptoa slight modification of the definition.
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Nowlet9={reC|ImTt > 0} ‘We consider T as a function on $;
(80) TE Lg.

Put Gr = PSL,(R) = Aut($) (by the usual action; see Chap.1, §3). Let o € Ggr and f(7) €
Lg with f(7) # 0. Then since 77 is a linear fractional transform of , Proposition 7 shows
that (f(7)dr, dt)” = ((f(r)dr)?, dr) = {(f(1)dr)", dr); hence if f(7)dr is invariant by o,
so is (f(r)dr, dr). |

Let A be a fuchsian group, i.e., a discrete subgroup of Gg with ﬁnite-volume quo-
tient. Let (A\$)" denote the compact Riemann surface obtained by compactification and
normalization of the quotient A\$, so that L(x\s)- is nothing but the field of automorphic
functions with respect to A. Consider L gy and D"(La gy) as a subfield and a subspace
of Lg and D"(Lg) respectively. Then f(7)(d7)" € D"(Lg) belongs to D*(L g ) if and only
if f(7) is a meromorphic automorphic form of weight 24 with respect to A. Now consider
the inner §S'-operator

(81) D(Lg)* 3 f(r)dr — (f(r)dr, dr) € D*(L3)

on Lg. We shall show that (81) induces an (outer) ** S-operator on Ly by restriction.
It is enough to check that if f(7)dr € D(Lgy)*, then (f(7)dr,dr) € D*(Lagy). Put
(f(r)dr,dr) = ¢(1)(dr)®. Then (1) = Z&Qﬁ}((%;é&)i, where ’ denotes the derivative
with respect to 7. Since f(r)dr is A-invariant, {f(7)dTt, dt) is also A-invariant; hence

©(67) = @(t)(cT + d)* holds for all § = z z,) € A. Moreover, by a simple estimation of

lo(7)] as each cusp of A, it follows easily that <p(‘f) is a meromorphic automorphic form
of weight 4 with respect to A. Therefore (f()dr, dr) belongs to D*(L(s\gy). So we have
proved:

ProposITION 8. Let A be a fuchsian group. Then if f(T)dr € D(Lgy)*, we have
(f(r)dr,dr) € D*(Lin\sy). In other words, the inner S-operator f(t)dr — (f(7)dr,dr)
on Lg induces an outer S-operator on Ly\gy.

As we have seen above, this is equivalent to the classically known fact that if f(7)isa
2 I ()2
(meromorphic) automorphic form of weight 2, then o(7) = 2L f((?)f () is a (meromor-
phic) automorphic form of weight 4. | ’ ‘

DerFmntrioN . This special S- operator on Ly will be called the canonical S -operator
on L), and denoted by S. '

Remark 1. Let o € Gg, A’ = o~ 'Ac, and put L = Liagy, L' = Langy. Lete,
be the isomorphism L — L’ defines by f(r) — f(o7), and let ¢, (A > 1) be the map
DA(L) — D*(L’) induced by ¢,. Then, : ‘

‘2 - ’ ' a0 8% =8% oyyy.
ThlS follows 1mmed1ately by usmg Proposmon 7 (11)

22That this is outer on L(s\g)- is obvious by Proposition 7 (ii).
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REMARK 2. Let A’ be a subgroup of A with finite index. Then La\g)» C L(a\g)', and
the restriction of §4° to D(La\gy)* gives S2. This is obvious by the definition of S2.

§40. The canonical S-operator on algebraic function field over C (First formula-
tion).
[1]. In this section, {L, e} will denote the following pair:
o L is afinitely generated one-dimensional algebraic function field over C (C: the field
of complex numbers);
o e=e(P)isaf(l,2,3,...;oo}-valued function defined on the set of all prime divisors
P of L, and satisfies:
(i) e(P) = 1 for almost all P,
(ii) the quantity

1
(83) V{L,e}=29—2+§};(1—-zﬁs)

is positive, g being the genus of L.

Then, as is well-known, {L, e} are in one-to-one correspondence with the fuchsian
groups A, where {L, e} are counted up to isomorphisms2 and A, up to conjugacy in Gg;
(84) (L, e} — A.

Starting from A, this correspondence is defined as follows: Take L to be the field of
automorphic functions Lis\g)y. (So, the prime divisors of L \g) are identified with the
points on (A\$)".) Define the function e = e, by

oo --- PisacuspofA,

P is an elliptic fixed point

85 P)=ie
(85) es(P) 0 of A of order gy > 1,

1 ... otherwise.

\

Then A — {L(a gy, ea} defines the above one-to-one correspondence.

Remark 1. The automorphism group of {L\g),ea} is naturally identified with
N(A)/A, where N(A) is the normalizer of A in Gg.

REMARK 2. As is well-known,

1 dxd
(86) ViLaorreal = 5 T (r = x+yi).
T Jag

ExampLE . Let g = 0; e(P) = 2, n, oo for three P and = 1 for all other P, where n > 3.
Then v{L, e} = % - % > 0, and A is the Hecke’s group generated by ((1) /11") and (_01 (1)),
where A, = 2cosZ. If n = 3, A = PSLy(Z); and in general, A is commensurable with
PSLy(Z) if and only if n = 3,4, 6, co.

23(], e} ~ {L', ¢’} if there exists an isomorphism ¢ : L ~ L’, identical on C, satisfying e(P) = ¢’ («(P)) for
all P. '
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[2]. Now let {L, e} be given. Let {c~' Ao | o € GRr} be the corresponding Ggr-conjugacy
class of fuchsian groups, and take a representative A. Let ¢, be any isomorphism ¢, :
{L,e} = {La\gyea). Let S be the canonical S-operator on Lgy and put S¥%¢ = (33 o
S2 o 151, where 145 (h > 1) is the map D*(L) — D*(L(a\g)) induced by ¢, :

Sile)
DLy — D¥L)
87) ytal 1 taz (commutative).
SA
D(LgyY< — D*(Lavsy)

Then by the Remark 1 of §39 and Remark 1 of §40, S'“# is well-defined by {L, e} and
is independent of the choice of representative A of {c7'Ac |0 € Gr). By this, it is also
clear that S“¢ commutes with every automorphism & of (L, e}; i.e., SL¢ = g51SLelg,,
where ¢, is defined from € in the same manner as above.

DermNtTION . We shall call this special S-operator S on L the canonical S-operator
attached to {L, e}.

[3]. Thus, the notion of S -operators on algebraic function field L is algebraic, and the
canonical S -operator S'“° is one of them defined analytically. Since all S-operators on
L are of the form S (&) = (£,¢) + C, where { is any fixed element of D(L)* and C is an
arbitrary constant in D?*(L), S-operators are determined by its special value C = §({).
Thus, we meet an interesting problem to find out (an algebraic formula for) S(¢),
when {L, e} and ¢ are explicitly given algebraically. However, for the general {L, e}, this
problem seems to be quite difficult! For example, to my best knowledge, the following is
an open problem:

ProBLEM . Let L = C(x,y), y* = (x —@;)---(x — @n), where n > Sand @y, --- , @,
are distinct (hence g > 2). Let e(P) = 1 for all P, and let § = SL be the canonical
S -operator attached to {L, e}. Then, what is S (dx)?

For the special types of {L, e} however, there are some principles for determining (or
characterizing) S~ algebraically. In fact, there are two such principles, of which the
second is more important:

[4] The first principle. This is based on the following Propositions 9, 10:
ProposrTiON 9. Let £ € D(L)* and put §\-¥/(¢) = —4B. Let P be any prime divisor of
L. Then,

@@ ordpB > -2; |
(ii) Put e = e(P), n = ordp&; let t be a prime element of P (in the completion of L at P),
and put

(88) §=CIn(l+clt+"‘)dt, c#0, c,c,---€C.

24The definition of ordp w for w € D*(L), w # 0 is obvious; if w € L or € D(L), ordp w is the ordinary
“order” of w at P; and for w = a¢” (a € L, £ € D(L)*), ordpw = ordpa + h ordpé.
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Then we have
) p={B+Bupr Ny,

with

°0) { = %{(n + 1)2 ;} - atany P,
1=

incl -~ ife(P) = 1.

The proof may be obtained directly, but an indirect proof will be given in §42 [5].
There, it is also shown that if S is any S-operator on L and if we put §(¢) = —48, then (i)
(ii) hold for all £ if and only if they hold for one £ (thus, (i) (ii) are conditions on S). The
meaning of these conditions will also become clear there. |

DerintTioN . {L’, €'} is called an admissible extension of {L, e} if
(1) L’ is a finite extension of L, and
(ii) e(P) = €’'(P)e(P’/P) holds for all prime divisors P’ of L’, where P is the restnctlon
of P’ to L, and e(P’/P) is the ramification index of P’ /P.

It is»clear that if A is the fuchsian group corresponding to {L, e}, then the admissible
extensions of {L, e} are those pairs {L’, ¢’} that correspond to the subgroups A’ of A with
finite indices. From this, and from the definition of S %!, we obtain 1mmed1ately

PROPOSITION 10 Let {L', €'} be an admissible extension of {L,e). Then S is the
restriction of S') to D(L)*, and S'¥'¥) is the unique S -operator on L’ with this property.

The second point is obvious since S -operator is determined by its special value.

Now, Proposition 9 determines S up to (39— 3 + ¥ p.(p)>1 1)- dimensional subspace
of D*(L). In fact, fix £ and put 8, = B+u (u: a variable in D?(L)). Then 3, also satisfies the
conditions (1) (ii) of Proposition 9 if and only if 4 is a multiple of [],(,; P'. Therefore,
if we put W = (¢) (the divisor of £), the dimension of y is given by &(W 2 [T >, P') =
3g -3+ Xaps1 1.

Remark 3. This number 3g — 3 + 3. p).1 1 is equal to the dimension of the connected
moduli variety of {L, e}. But we do not know why.

So, Proposition 9 determines S'** uniquely only when3g —3 + Y p>11 = 0; ie,
only when g = 0 and ¥, p),; 1 = 3 (called the triangular case).? In this case, we can
determine S'. easily by a direct application of Proposition'9. We have:

PropostTioN 11. Let L = C(x) (the rational function field), and let e(P) = 1 except at
three points P. We may assume that these three points are given by x = 0, 1, oo (mod P)
respectively. Call them Py, Py, P.,, andput e(P;) = ¢; (i = 0, 1, 00) (so that L = L.l ” +L = <D
Then the canonical S -operator S'1° is given by

ax® +bx +c

e €D,

25If g = 1 and e(P) = 1 for all P, then {L, €} does not satisfy the condition (ii) of §40.

o1 Shel(g) = (£, dx) +
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where

(92) a=

Now, call the two {L, e} and {L', &’} commensurable if they have a common admissible
extension. (Clearly, this is equivalent to the commensurability of the corresponding fuch-
sian groups.) Then by Propositions 10, 11, we conclude that if {L, e} is commensurable
with the triangular pair, then S'L¢ is determined algebraically.

[S] The second principle. This is based on the following very simple fact:

ProrosrTioN 12. Consider the followingk situation:

{L,e} |
admissible { /\ } admissible
(93) {L1,e1} {L2, e}
C=L()L:
Then S = S'9 is the unique S -operator on {L, e} satisfying
(94) S{(D(L;y*y c D*(Ly)

fori=1,2 (both).

That §'2 satisfies (94) is an immediate consequence of Proposition 10. To see how
the uniqueness follows, let S’ = §&¢ + C (C € D*(L)) be another S -operator satisfying
(94). Then C must be contained in D?*(L;) N D*(L,). But by the Corollary of Lemma 14
given in §42, we have D"(L;)ND*(L;) = {0} (h > 1). Hence C = 0; hence the uniqueness!

CoroLLARY . The situation being as in Proposition 12, let &1,&, be any element of
D(L,)*,D(L,)* respectively. Then (£, &,) has a unique decomposition of the form

w1 € DX(Ly),

95) | (61,6) = w1 — wy; {wz e DX(Ly).

Moreover, these wi, w, are given by w, = SL4(£)), w, = SE(E).

That (95) holds for w; = S™9(¢&;) (i = 1,2) is obvious. Uniqueness is an immediate
consequence of D*(L;) N D*(Ly) = {0}. ‘

The importance of this simple principle lies on the fact that if {L, e} is such that the
corresponding fuchsian group A is arithmetically defined, or more generally, if the com-
mensurability group of A in Gy is dense in G, then {L, e} is always commensurable with.
a situation (93). Call such a commensurability family of {L, e} ample or arithmetic. Then,
we conclude by Proposition 12 that S'-¢ can be characterized algebraically if {L, e} be-
longs to an ample (arithmetic) commensurability family. Now we shall proceed to obtain
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a better formulation of this than Proposition 12: for although Proposition 12 is conve-
nient for the understanding of this principle in the simplest form, it is not convenient for
applications or generalizations.

RemARK 4. By a result of KaZzdan [19], the commensurability group of the Hecke’s
group A = A, for n # 3,4,6, is A itself, hence the commensurability family of the
triangular {L, e} with e(P;) = 2,n,00 (n # 3,4, 6, c0) is not ample.

§41. The canonical S-operator on algebraic function field over C (second formu-
lation), and its algebraic characterization in ample (arithmetic) cases.

[1]. In this section, L will denote any one-dimensional extension of C not assumed to
be finitely generated over C, but assumed to satisfy the following conditions (L1), (L2):
(L1) Let L, be the set of all finitely generated extensions Ly/C contained in L such that

L/L, is normally algebraic. Then Ly is non-empty.
(L2) For each Ly € L, and a prime divisor Py of Ly, denote by ey(P,) the ramification
index of Py in L/Ly. Then ey(Po) = 1 for almost all Py, and the quantity

1
(96) V(Lo) = 290 — 2 + ; (1 -

is positive; in short, {L,, e,} satisfies the conditions (i) (ii) of §40.

) (go : the genus of L)

ReMARk 1. For any Ly, L, € Lo, we have
97) V(LoLg) = V(Lo)[LoLy : Lol = V(Lo)[LoLg : Lg)

by Hurwitz’ formula; hence the condition (L2) is satisfied for all Ly € L, if it is satisfied
for one L.

[2]. Now consider L, as an ordered set by the inclusion relation >. Thenif Lo, L) € Lo
with Ly ¢ L{ (Lo: smaller than L}), we have V(Lg) = [%f—mV(L(’,) by (97); but on the
other hand, it is well-known (and easily checked) that V{L,, o} > % for any pair {Lo, e}
satisfying (i) (ii) of §40. Therefore, the ordered set £, is inductive (i.e., any linearly
ordered subset contains a minimal element). Hence Ly contains at least one minimal
element.

DerFmnrrioN . We shall call L “simple” if L, contains only one minimal element, and
“ample” (or “arithmetic”) if otherwise.

Remark 2. If L/C is finitely generated, i.e., if L € Ly, then L is simple. If fact, since
V(L) > 0, the genus of L is greater than one; hence Autc L is finite. Therefore, the fixed
field of Autc L is the unique minimal element of £y; hence L is simple.

ProrosrmioN 13. (i) If L is simple and Ly is the unique minimal element of Ly, then
(98) Lo ={LolLoo c Ly c L, [Lo : Loo] < o0}.
(ii) If L is ample and Ly, L; are two distinct minimal elements, then
99) LonLy=C.
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Proor. (i) is obvious. (ii) If Lo N Lj # C, then Ly N Lj € Lo, which is a contradiction.
O

[3]. Now let Autc L be the group of all automorphisms of the field L over C. Topolo-
gize Autc L by taking Aut;, L (Lo € Lo) as basis of neighborhoods of identity. Then the
induced topology of Aut;, L coincides with the Krull topology; hence Autc L is locally
compact. It is clear that a closed subgroup of Autc L is non-compact if and only if its
fixed field is C.

ProposrioN 14. (i) If L is simple, and Ly is the unique minimal element of Ly, then
(100) Autc L = Auty L (= compact).
(ii) IfL is ample, Autc L is non-compact, and its fixed field is C.

Proor. (i) Let o € Autc L. Then L is also a minimal element of Lo; hence Lg, = Log.
Moreover, it is clear that eg(Pg,) = eoo(Poo), Where Py is any prime divisor of Lo and
eqo is the ramification index in L/Ly,. Therefore, there is a homomorphism Autc L —
Aut{Lqg, ego} With the kernel Autz,, L. But Aut{L, eg} is finite by Remark 1 §40; hence
(Autc L : Autgy, L) is finite. Therefore, if L{, is the fixed field of Autc L, then Ly, € Lo
and L, C Loo; hence Ly, = Loo; hence Autc L = Auty,, L.

(ii) is obvious by Proposition 13 (ii). o

ExampLE . Let L be a G,-field over C (see §1). Then L satisfies (L1), (L2), and L is
ample.

[4]. Now with these preparations, we shall define the canonical S -operator on L,and
characterize it algebraically when L is ample. First, we must define D(L) and d. Let
Lo € L, and let D(Ly) be the space of all differentials of Lo/C in the usual sense (in the
theory of algebraic functions of one variable). Let dy : Ly — D(Lo) be the differentiation.
Then if L) € Lo with Lo c L, there is a natural injection D(Lo) ¢ D(L;) compatible with
the differentiation. Now, D(L) and d are defined to be the injective limits of D(Lo) and dj.

Now take any Ly € Ly and let § L%} be the canonical S -operator attached to {Lo, eo}.
For each £ € D(L)* put SLo(¢) = SEoek(£)) + (£, &), where & is any element of D(Lg)*.
Then since S Lo} is an S-operator on Lo, this expression is independent of &, and since,
& > (& &) is an S-operator on L, S™ is also an S-operator on L. Moreover, S™ is
independent of L,. In fact, if L] € Ly, then LoL; € Lo; hence it is enough to check
§to = §Io when L, c L. But this is an immediate consequence of Remark 2 (§39) and
the definition of Sfo%!}, Since S is independent of L,, we shall denote it by

(101) St
and call it the canonical S -operator on L.

Remark 3. Thus the restriction of S to each Ly (Lo € Lo) is nothing but S e},
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[S]. Now we shall define the action of Autc L on the set of all S-operators on L by
S°(£) = §(& ') (o € Autc L). Then we have:

TueoreM 9. (i) The canonical S-operator S* is invariant by Autc L.
(ii) If L is ample, St is the unique Autc L-invariant S-operator on L. More strongly,
if ® is any closed non-compact subgroup of Autc L, S is already characterized by
®-invariance.

[6]. For this proof, we need the following lemma, which will be proved in §42.

Lemma 14. Let ® be any closed non-compact subgroup of Autc L, and let h > 1. Then
the only ®-invariant element of D*(L) is 0.

[7]. Proof of Theorem 9. (i) Let L, € L, and put ¥V = Aut L. Let & be any fixed
element of D(Ly)* and let £ € D(L)*. Then by definition, SX(¢) = § ol (£,) + (£, &). So,
for any o € ¥, we have (S£)7(&£) = S Loal(£0)+(£77, &) = S Loeod(£)+(£, £5) = SL(E).
Hence S% is V-invariant. If L is simple, take L, to be the unique minimal element of L,.
Then ¥ = Autc L; hence S* is Autc L-invariant. Now let L be ample, and let G, be the
subgroup of Autc L generated by all groups of the form Auty, L (L € Ly). Then S* is G-
invariant, and moreover, G, is open (hence also closed) and non-compact (by Proposition
13 (ii)). Hence by Lemma 14, the only G,-invariant element of D?*(L) is 0. Suppose that
S’ is another Go-invariant S-operator on L, and put S’ — S = C (C: a constant in D*(L)).
Then C must also be G- invariant, hence C = 0; hence S’ = S%. Therefore, S is the
unique Gy-invariant S-operator . On the other hand, since any element of Autc L leaves
the set £, invariant (as a whole), G, is a normal subgroup of Autc L. Therefore, for any
o € Autc L, (SL)7 is again Go-invariant; hence (SY)” = S%. Therefore, S* is Autc L-
invariant. This settles (i). .

(if) Suppose that S’ is a d-invariant S-operator , and put S — S’ = C (C: a constant in
D?(L)). Then C is ®-invariant; hence by Lemma 14, C = 0; hence S’ = SZ. This settles
(ii). m]

§42. Proof of Lemma 14, and its Corollary. Let L be as in §41. For each open
compact subgroup ¥ of Autc L let Ly denote its fixed field in L, and for each prime
divisor P of Ly let ey(P) denote its ramification index in L/Ly (so that Ly € Ly, and
{Ly, ey} satisfies the conditions (i), (ii) of §40). Assume now that L is ample. Then there .
exists a discrete subgroup I" of G = Gz x Autc L with finite volume quotient, unique up
to conjugacy in G, satisfying the following conditions: , |

(i) The projection of I" to each component of G is injective, and its image is dense in
that component;

(ii) For each open compact subgroup ¥ of Autc L, put A = projg{l" N (Gz x V), so that
A is a fuchsian group depending on V. Put {L,, €}} = {La\gy, ea}?® and L’ = |J, L},.
Then there is an isomorphism ¢ : L — L’ such that (a): ¢|;, gives an isomorphism of

26See §40 for the symbol {L(a\g)', €a}.
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{Ly, ey} onto {L}, e} for each V, and that (b): foreachy = yr Xy € I', the action of

v on L corresponds to the action f(1) — f(yrT) of yr on L’ (by 0).
This can be proved exactly in the same manner as Theorem 1 (Part 1). Now let @ be any
closed non-compact subgroup of Autc L, let 4 > 1, and let w be a ®-invariant differential
in L of degree h. Since w € D*(Ly) for some V, w is also invariant by ¥; hence we may
further assume that @ contains V. Put G = Gg x®, I’ = I'n G, and let 'z be the projection
of I to Gr. Then since @ is non-compact, (® : ¥) = oo; hence (I'r : A) = oo; hence I'g is
dense in Gr. Now put «(w) = f(7)(dr)"; T being as in §39. Then since w is ®-invariant,
f(7) is a meromorphic function on $ and satisfies

(102) - AER) e = s

cT +

for all yg = (Z Z) € I'r. But since I'y is dense in Gr, (102) holds for all (g cbi) € Ggr.

In particular, we have f(r + 1) = f(r) for all A € R; hence f(7) is a function of Im (7).
But since f(r) is meromorphic, this implies that /(7) must be a constant. But then, since
h > 1, it is clear by (102) that f(7) = 0; hence w = 0. This proves Lemma 14. ]

As a Corollary of Lemma 14, we shall prove the following assertion, which is used in
§40, §43:

COROLLARY . Let {L,e},{L,, e}, {L,, e;} be as in Proposition.12. Then
(103) DMLy N D"(Ly) = {0} (h=1).

Proor. Rewrite {L,e} = {Lo, ey} (we shall use the notation L for some other field).
Let Ao be the fuchsian group corresponding to {Ly, e}, and for each subgroup A’ c A
with finite index, let {L’, ¢’} denote the corresponding admissible extension of {L, ey}. Put
L = |, L', where A’ runs over all subgroups of A, with finite indices. Then clearly for
each prime divisor P, of Ly, its ramification index in L/L, divides ey(Py); but moreover,
it is well-known (and easily proved?’) that the ramification index coincides with ey(Py).
Therefore, L satisfies the conditions (L.1) (L2) of §41. Put V; = Aut;, L (i = 1,2), and let
® be the subgroup of Autc L generated by V; and V. Then @ is open (hence also closed),
and since L; N L, = C, ® is non-compact. Now let w € D*(L;) N D*(L,). Then w is
®-invariant; hence by Lemma 14, w = 0. O

273ee Supplement §5.
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The canonical class of linear differential equations of second order on algebraic
function fields over C, and its algebraic characterization in ample (arithmetic)
cases.

§43. The first formulation.

[1]. Let {L, e} be as in §40. Let £ € D(L)* and let D, denote the derivation of L defined
by L >y — % € L. By a (differential) equation ® = [£; 4, B] (4, B € L), we will mean
the following linear differential equation:

(104) (D} +4-D;+Bu=0.

Let 7 € D(L)* and put w; = n/£, winy = dwi/ (i > 1), so that D; = w;Dy, D? =
w?D? + w,D,; hence the equation © may be rewritten as:

(1049 {(Dz, + 4D, + B)u =0, with

A = Awl" + wzwfz, B, = Bwl‘z.

We shall always identify two such equations (consider as different expressions of the same
equation);

(105) [¢.4, B] = [1; Aw;' + waw;?, Bwi®] (£, € D(LY).

Since By -* = B-£* and 4, - n— A - ¢ = dlogw,, the quantities B - £2, Resp(4£) - ordp £,
A - £ (mod dlog L) are independent of the expressions of ®.

Let ©® = [£;4,B] and C € L*. By VC-1@, we shall mean the equation obtained by
substituting # by VCu in (104)2® Thus, by definition,

’ D(C)
_A+—5—C R

106 :4,B] = VC-1[¢,4', B
(106) [ 4, B] (£ ]@{B’=B+D§(CC)A+

20DX(0)-DO)P
4C? :

The two equations ©, @’ are called equivalent (or belong to the same class) if ® =
VC-10 holds for some C € L. It is clear that this is an equivalence relation.

[2].

PropoSITION 15. Let S be an S-operator on L, let ¢ € D(LY*, and put S(£) = —4B; - £*
(B; = Bg € L). Then the class of the equation [£;0, B;] depends only on S, and is
independent of £.

Proor. It is enough to check
(107) [7:0,B,] = /&£ 0,B;) (€. € DIL)).

285, “the solutions of YVC-1®” are VC-1-times “the solutions of ©.” Clearly we have @’ = VC-10 <
® = VCO', \C,C30 = VCi(VC20),and VCO =@ & C e C*.
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By (105), we have [7;0, B,] = [¢;—%, B,w}]. Therefore, if we put C = w = /¢,
then VC-[7;0, B,] = [£; 4, B'], with 4’ = —22 + 20 = 0, and

, w, wy\  2wiws —wl
(108) 5= B (—w_n) T
- B w2 + 2w1w3 - 3w§'
N1 4w% ’
hence 4B’ - &2 = 4B, - * + (n, &) = =S () + (, &) = —=S(£); hence B’ = B;. o

DermrTioN . In the situation of Proposition 15, the class of [£;0, B;] will be called
the S-class (corresponding to the S-operator S), and will be denoted by &5. If &l is
the canonical S-operator attached to {L, e}, then K5 will be called the canonical class
attached to {L, e} and denoted by K{L, e}.

By the following proposition, a class R is an S-class (for some S) if and only if it
contains an equation of the form [£;0, B] (€ € D(L)*, B € L).

PropPoSITION 16. Let & be any class containing an equation of the form © = [£;0, B]
(B € L). Then there exists a unique S-operator S (on L) such that & = R5. Moreover, if
® and S are as above, we have B = Bf, ; and for each ®' € RS, there exists a differential
n € D(LY*, unique up to constant multiple, such that ® = [n,0, Bﬁ ). Thus, there are two
bijections:

(109) S-operators e S-classes,

byS < 85, and

(110) equations in 8% «— the canonical divisors ®on L,
(S :fixed) :

by [n; 0, B,] & the divisor (1) of n.

DermiTioN . We shall call W7 = () the divisor of the equation ® = [1;0, B,]. Itis
clear by (107) that the divisor of VC®' is (C) - W".

Proor. Let ® = [£;0, B, and let S be the §-operator defined by S(n) = (n,£) - 4B- £
(7: a variable in D*(L)). Then B = Bg; hence & = K5. Suppose that S’ is another S-
operator with & = K. Then [£;0, B ] € &; hence [£; 0,B{1= VCI£; 0, Bj] with some
C e L*. But by (106), this implies D(C) = 0 (hence C € C*); hence B} = Bj; hence
S'(€) = S(£); hence S’ = S. That B’ = Bg follows exactly in the same manner. Finally,
let @ € &5, and put @ = VCO (C € L¥). Putyy = C - £ Then by (107), we obtain
® =[n;0,B;]. | o

Remark 1. Thus, if [£; 4, B] is the equation in &° whose divisor is (17), then 4 =
-2,B= B,w?.

297 e., the divisors of non-zero differentials (of degree one).
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[3]. Let A be the fuchsian group corresponding to {L,e}, and identify {L,e} with
{La\sy»ea) (see §40). Let S = §'-4 be the canonical S-operator , and put £ = f(r)dr.
Then B; = y(—’?%{gﬂfﬁ hence the equation [£; 0, B,] takes the form:

' 2 ) 3 2
a1 D= f(f)f4(fr()r)4 rar,
As is well-known (and can be checked directly), the general solution of (111) is
(112) u = (ar + b)\/f(7) (a,be C).3°

[4]. Local properties of the equations in the canonical class. Now let & = R{L, e}
be the canonical class, and let © be the equation in & having a given divisor W = [I p PYP),
Then © has the following properties:

(®-1) O is fuchsian; i.e., regular at each prime divisor P of L.
(®-2) At each P, the exponents of ® are given by

1 1 1 1
(113) 2{1+w(P)+ (P)} {1+w(P) —(?)}

thus if e(P) = 1 or oo, the difference of exponents is integral; but: | |
(©-3) Unless e(P) = oo, the local solutions of ® at P do not involve logarithms.

These follow immediately from the above [3] and from the following Lemma 15.

Lemma 15. Let X be any Riemann surface, X’ its finite covering, P’ a point on X’, P
the point of X lying below P’, and let e be the ramification index of P’'/P. Let w be a
non-zero differential of degree h (h > 1) on X. Then the order ordp w of w (considered
as a differential on X’) at P’ is given by

(114) ordp w = e(ordp w + h) — h.
Proor oF LEMMa 15. Immediate by using the local coordinates. : m]

[5]. Notes. Now a question arises “to what extent is the equation ® € K{L, e} char-
acterized by (@-1) (©-2) (8-3)?” The following is to answer this question. Roughly, the
result we obtain is parallel to the result in [4], [5] of §40. All statements given below can
be proved directly; so their proofs are omitted.

DeriNtTION . Let ® = [£; 4, B] be any equation (in any class). Then @ is called ad-
missible with respect to {L, e} if © satisfies (@-1) (®-2) (®-3) with some canonical divisor
W = [1p PP,

If © is such, W is unique. So, we shall call W the divisor of ©.

ProposrTioN 17. Let ® be admissible w.r.t. {L, e}, and let W be its divisor. Let C € L"
Then \C® is also admissible w.rt. {L, e}, and its divisor is O -w.

Thus, we may speak of “admissible classes.”

30Thus, the ratios of the two independent solutions of [£;0,B;] are v = arth. 2%) € GLy(C). The

T+
differential equation having v as the general solution is, of course, (db, £) = —SLe(g),
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ProrosrTioN 18. Let ® = [£; 4, B). Then (®-1), (©-2), (©-3) are equivalent to the
Sfollowing (©-1)’, (©-2)’, (©-3)’ respectively. ‘
(©-1): ordp(A4 - &) > ~1,0rdp(B - £2) > -2 at each P.
(®-2)’: Lett be a prime element of P, put e = e(P), w = w(P), n = ordp ¢, and

'3 =ct'(l+ct+---)dt, c#0, cj,¢3,---€C,
(115) A-f =(gt-0-+al+a2t+...)dt’ ao,al,‘...ec’
B-& =(B+Y%+by+--)(@d); bobr,--€C.
Then,
. G=h—uw .
(116)
{ =%[w+1)2—l}.
(©-3)’: We have
(117) b= quler—a) - ife=1

CoROLLARY . Let 85 be an S-class and let ¢ € D(L)*. Put S(£) = 4B = —4B§ - &%, so
that [£;0, Bi] € 5. Then & is admissible with respect to (L, e} if and only if 8 satisfies
the conditions (i) (ii) of Proposition 9.

RemARrk 2. Since R{L, e} is admissible, this proves Proposition 9. Moreover, this
shows that the conditions (i) (ii) of Proposition 9 are independent of £.

ReMARK 3. As can be seen easily from Proposition 18, admissible classes and S-
classes are independent notions; i.e., there is no implication between them;

Admissible
S-operators.
(118) '

(39 =3+ ) 1)-dimensional.
e(P)>1
Thus, even if we restrict ourselves to S-classes, the conditions (®- 1) (©-2), (O- 3) do

not characterize the canonical class. In fact, there is still (3g — 3 + 3.(p)>1 1)-dimensional
freedom.

[6]. Now we shall give some results parallel to those of §40 [5]. Let ® be an equation
on L, and let L’ be a finite extension of L. Consider @ as an equation on L’. Then this
© will be called the extension of ® to L'. 1t is clear that the extension of @ induces the
extension of the class of ®.
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ProposiTION 19. Let © be an admissible equation with respect to {L, e}, and let {L’, €’}
be an admissible extension of (L, e}. Then, the extension ® of ® to L’ is also admissible
with respect to {L’, €’}). Moreover, if (£) (€ € D(L)X) is the divisor of ©, then the divisor
of @' is (£)r. Finally, the induced extension map of classes:

the admissible classesmmw;he admissible classes

(119) wrt. {L,e) - wrt. (L, )
is injective.
Use Proposition 18 to check this.

ProrosrTioN 20. Let R{L, e} be the canonical class attached to {L, e}, and let {L', e’} be
an admissible extension of {L, e}. Then the extension of R{L, e} to {L’, €'} is the canonical
class attached to {L',€'}.

This is obvious by Proposition 10.
Now we shall prove:

ProposritioN 21. Consider the situation (93) of Proposition 12. Suppose that there are
admissible classes R, &, with respect to {L,, e;}, {L,, e;} (respectively), such that their
extensions to L are equal. Then such &), &, are unique and are the canonical classes
attached to {L,, e}, {L,, e;} (respectively).

Proor. Let | be the extensions to L of &; and of &,. Let &£ € D(L,)*, n € D(Ly)*.
Let ® = [£; A, B] be the equation in & whose divisor is ();. Put w; = n/é, wi, = dw;/é
(i>1),andput®, = , /w{‘@ = [&; A1, B1], so that

Wy wy 2wws - w?
120 Ay=A+—, B, =B+ A+ .
(120) =4+ Bi=B+t o
Since the divisor of @, is (£);, ®; must coincide with the extension to L of the equation in
R, whose divisor is (£);,. Therefore, 4, B, € L,. On the other hand, ® can be expressed
as @ = [T]; Az, Bz] with

’

W,
121 Ay=—+—=, By=
(121) 2=t B

Sl

and since the divisor of © is (7)., we have 4,, B; € L, by the same reason as above. Now,
by (120), (121), we obtain

(122) Ay -E=4; -
hence 4, - £ = 4, - n € D'(L,) n D'(L,). But by the Corollary of Lemma 14 (§42),
(123) DML)nD*Ly) = (0} (h=1);

hence A4, - £ = A, - n = 0; hence
(124) Al = Az =0.
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Now by (120), (121) and (124), we obtain B - £ =B -1+ %(n,f); hence if we put
@ = —4B, - £, B = —4B, - 1%, then we obtain :

(125) Em=a-p; acDL),BeD (L)

Hence by the Corollary of Proposition 12, we obtain @ = S¥(g) = Shalg),g =
S (ny = S¥2al(n), But since @ = [£;0, B;] and © = [1; 0, B], this implies that Rl and
K, are the canonical classes attached to {L;, e;} and {L,, e,} respectively. O

§44. The second formulation.

[1]. Now let the notations be as in §41, so that L is any one-dimensional extension of
C satisfying (L1), (L2) of §41. For such an L, we can define the equations @ = [£; 4, B]
(& € D(L)*; A, B € L) and the classes { VCo|C e L"} exactly in the same manner as in the
previous section. Moreover, Propositions 15, 16 are also valid in this case (however, we
must replace the right side of (110) by D(L)*/C*, since we have not defined “the divisor
of differential in L.”) Thus, we have a one-to-one correspondence:

(126) S-operators on L «— § ~classes &5 on L.

DerntTioN . Let S = SE be the canonical S-operator on L. Then the corresponding
S -class 85 will be called the canonical class on K, and denoted by K{L}.

Now Aute L acts on the set of all equations, and hence also on the set of all classes,
by

(127) AutcL30: ©=[§A4,B] » 07 =[£7;47,B°].
Then if S is any S-operator on L, it follows immediately from the definition of K5 that

(8%5) = K6 (o € Autc L). Therefore, we obtain immediately from Theorem 9 the
following:

TueoreM 9. (i) The canonical class K{L} is invariant by Autc L. (ii) If L is ample,
R{L} is the unique Autc L-invariant S -class on L. More strongly, if ® is any closed non-
compact subgroup of Autc L, R{L} is already characterized by ®-invariance.

Remark . In the above (ii), the assumption “S-class” cannot be dropped. In fact,
we can prove in the case of G-fields that the Autc L-invariant classes are finite in num-
ber, but may not be unique.3! Also, we can prove in G-field cases that if we call
{C“ "®|Cel*, ne Z} the weaker class, then the Autc L-invariant weaker class is unique.

31However, they can be obtained from the canonical class by a simple “twist,” and are not important.
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