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Introduction to Part 3A and Part 3B.19

Here, we shall give only roug ideas ofproblems and results. For the precise formu-
lation of our results, see the main text.

[Indication] To approach e.g., Theorem 10 (\S 45 [3]), which is one ofour main results,
the readers are requested to read \S 37 and \S 38 for the defimition of $S$ -operators, and then
\S 41 [1]\sim [3] and \S 45 [1] [2] for the defimition ofample fields $L/k(S$ -operators and ample
fields are two main concepts introduced in this study, and are basic for our purpose. $G_{p}$-

fields are examples of ample fields.)

THE PROBLEMS. Let $\Re$ be a compact Riemann surface. Suppose that there are given
$s+t(0\leq s, t<\infty)$ distinct points $P_{1},$ $\ldots,P_{t};Q_{1},$

$\ldots,$
$Q_{s}$ on $\Re$ , and $s$ positive integers

$e_{1},$ $\ldots,e_{s}$ satisfying

(i) $2g-2+t+\sum_{i=1}^{s}(1-\frac{1}{e_{i}})>0,$

where $g$ is the genus of $\Re$ . Then, as is well-known, there is a unique simply connected
(unbounded) covering $\tilde{\Re}$ of $\Re\backslash \{P_{1}, \ldots,P_{t}\}$ , isomorphic to the complex upper halfplane
$\mathfrak{H}=\{\tau\in C|{\rm Im}\tau>0\}$ , which is unramified except at $Q_{i}$ and ramified at $Q_{i}$ with index
$e_{i}(1\leq i\leq s)$ :

(ii)

Fix an isomorphism $\overline{\Re}\simeq \mathfrak{H}$ , and consider $\tau$ as a multivalued fimction on $\Re\backslash $

$\{P_{1}, \ldots,P_{t}\}$ . Let $dx\neq 0$ be any meromorphic differential (1-form) on $\Re$ (which may
not be exact), and put $\tau_{x}=\frac{d\tau}{dx},$ $\tau_{xx\ldots x}=\frac{d}{dx}\tau_{XX\ldots X}$ $(i\geq 1)$ , so thai $\tau_{X},$ $\tau_{xx},$

$\ldots$ are

multivalued meromorphic functions on $\Re\backslash \{P_{1}, \ldots,P_{t}\}j$ . Put

(iii) $A=-\frac{2\tau_{X}\cdot\tau_{xxx}-3\tau_{xx}^{2}}{\tau_{x}^{2}}.$

Then it is well-known (classically) that $A$ is a univalent meromorphic function on $\Re.$

Moreover, if we consider $A$ as known, and (iii) as a differential equation for $\tau$, then all

the solutions of (iii) are $\frac{a\tau+b}{c\tau+d}$ , where $(_{c}^{a}db)$ are any elements of $GL_{2}(C)$ . Since Aut $\mathfrak{H}=$

$PSL_{2}(R)$, this shows that $A$ depends only on $dx$, and is independent of the isomorphism
$\overline{\Re}\simeq \mathfrak{H}$ . So, the map

(iv) $dx\mapsto A$

lbe main contents ofthese Parts are published in Additional References [16]
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is well-defined by

(v) $\dot{\Re}=\{\Re;P_{1}, \ldots,P_{t};Q_{1}, \ldots, Q_{s};e_{1}, \ldots, e_{s}\}.$

Note that the determination of the map (iv) is, in a sense, equivalent to the determination
of the uniformization (ii) of $M.$

For example, let $\Re$ be given by the algebraic function field $L=C(x,y)$ with the
equation $y^{5}=x(x-1)$ (hence $g=2$), and let $s=t=0$ . Then we can determine the map
(iv) explicitly. For example, if $dx$ is the differential of this $x,$

” then we have

(vi) $A=-\frac{24}{25}\frac{x^{2}-x+1}{x^{2}(x-1)^{2}}.$

Now our problem is, in a simplest and vaguest expression, to ”algebraize” the map
(iv). Actually, this includes several mutually related problems. Some of them are:

(A) Suppose that $\dot{\Re}$ and $dx$ are given algebraically (e.g., in terms of algebraic function
fields or algebraic curves, and their differentials). Then is it possible to characterize
the map (iv) algebraically?

(A’) Suppose that $\dot{\Re},$ $dx$ are explicitly given algebraically (e.g., by hyperelliptic equa-
tions with variable parameters). Then can we give an explicit formula for (iv)?

(B) Suppose that $\dot{\Re},$ $dx$ are given algebraically, defined over an arbitrary constant field
$k$ (instead of C). Then can we give a good algebraic definition ofthe map (iv)?

(B’) Consider the Shimura curve corresponding to a fuchsian group given by a quater-
nion algebra over a totally real algebraic number field $F$ . Let $\Re$ be its model (given
by Shimura) defined over a classfield $k$ over $F$ . Let $dx$ be rational over $k$. Then is $A$

also rational over $k$?

THE RESULTS. Roughly speaking, our results are as follows (cf. the main text for their
precise formulations):

The problem (A) Solved when $\dot{\Re}$ is“arithmetic” (or equivalently, “ample”). (Part $3A,$

\S 40, \S 41).
(A’) Solved in very special cases $(Part 3A, \S 40)$ .
(B) Solved in some sense when $\dot{\Re}$ is“arithmetic” (or ample”) and the characteristic
of $k$ is zero $(Part 3B, \S 45)$ .

(B’) Solved completely (and affimatively) $(Part 3B, \S 48)$ .
Here, we shall give a rough idea of what we mean by “arithmetic” (or “ample”).

As is well-known, $\dot{\Re}$ correspond to fuchsian groups $\Delta$ (i.e., discrete subgroups of $G_{R}=$

$PSL_{2}(R)$ with finite-volume quotients) in a one-to-one manner (cf. \S 40; $\Delta$ is the covering
group of (ii) $)$ . We shall call $\dot{\Re}$ “arithmetic” (or ”ample”) if the commensurability group
of $\Delta$ in $G_{R}$ is dense in $G_{R}$ . This notion can be easily“algebraized,” and it is in this sense
that (B) is solved in arithmetic cases (of characteristic $0$). The reason that we can solve
the problems in arithmetic cases is based on a very simple principle, which can be seen in
its most primitive form in \S 40, [5] (Proposition 12).

In Part 3A, \S 37, we shall define the symbol $\langle\xi,\eta\rangle$ , which is an “algebraization” of
the Schwarzian derivatives. In \S 38, we introduce the notion of $S$ -operators, which is
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fimdamental in our study. In \S 39, we define the canonical $S$ -operator on automorphic
fimction fields, and in \S 40, \S 41, the canonical $S$ -operator on algebraic function fields over
$C$ (in the above notations, $dx\rightarrow A(dx)^{2}$ is the canonical $S$ -operator), and its algebraic
characterization in arithmetic (ample) cases. In \S 43, \S 44, we deal with the comection
between linear differential equations of second order on $\Re$ . In part $3B$ , \S 45, we fomulate
one of our main theorems (Theorem 10) on unique existence of an invariant $S$ -operator
on ample fields $L/k$ ($k$: any field of characteristic $0$), and give the proof in \S 46, \S 47. In
\S 48, we shall give some applications ofTheorem 10 (e.g., to the canonical $S$ -operator on
Shimura curves).

REMARK. It is known classically that if $\Delta$ is a fuchsian group and if $f(\tau)$ is a mero-
morphic automolphic fonn ofweigt $k$ wiffi respect to $\Delta$ , then $\Phi(\tau)=k\cdot f(\tau)f’(\tau)-(k+$

$1)f(\tau)^{2}$ is a meromorphic automorphic fom ofweigt $2k+4$ with respect to $\Delta$ (here, ’ de-
notes the derivative w.r. $t.$ $\tau$). As is seen in \S 39, our problem of (algebraic) detemination
of the map (iv) is equivalent to the (algebraic) detemination of the map

(vii) $\varphi_{k}$ : $f(\tau)(d\tau)^{k/2}\mapsto\Phi(\tau)(d\tau)^{k+2}$

for the case of $k=2$ . We note here that the cases of $k=0$ (which is trivial since then
$\Phi(\tau)(d\tau)^{2}=-\{d(f(\tau))\}^{2})$ and $k=2$ are the only fundamental cases. In fact, ifwe know
$\varphi_{0}$ and $\varphi_{2}$ , then $\varphi_{k}$ for all other $k$ are expressed algebraically by $\varphi_{0}$ and $\varphi_{2}$ (decompose

$f(\tau)$ into the product of an automorphic function and the $\frac{1}{2}$k-th power of an automorphic
form ofweight 2).
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