Part 1. The G_{p}-fields over \mathbf{C}.

The G_{p}-fields.

§1. Let L be a discrete field, on which the group $G_{p}=P S L_{2}\left(k_{p}\right)$ acts effectively and continuously as a group of field-automorphisms; namely, each $g_{p} \in G_{p}$ gives a field automorphism $x \mapsto g_{\mathfrak{p}}(x)$ of L, and the induced map $G_{\mathfrak{p}} \rightarrow$ Aut L is an injective homomorphism;

$$
\begin{align*}
& \left(g_{\mathfrak{p}} h_{\mathfrak{p}}\right)(x)=g_{\mathfrak{p}}\left(h_{p}(x)\right) \quad \forall g_{\mathfrak{p}}, h_{\mathfrak{p}} \in G_{p}, x \in L ; \tag{1}\\
& g_{p}(x)=x(\forall x \in L) \leftrightarrow g_{\mathfrak{p}}=1 .
\end{align*}
$$

Since L is a discrete field, the continuity of the actions of G_{p} amounts to saying that, for each $x \in L$, its stabilizer in G_{p} is open. For each open compact subgroup V of G_{p}, put

$$
\begin{equation*}
L_{V}=\{x \in L \mid v(x)=x, \forall v \in V\} . \tag{2}
\end{equation*}
$$

Since open compact subgroups form a basis of neighborhoods of the identity of $G_{\mathfrak{p}}$, we get $L=\bigcup_{V} L_{V}$. Moreover, it follows that for each $V, L / L_{V}$ is separably algebraic, V is the group of all automorphisms of L / L_{V}, and the topology of V induced by that of G_{p} coincides with the Krull topology of $V=\operatorname{Aut}\left(L / L_{V}\right)$. In fact, let $x \in L$, and let V^{\prime} be its stabilizer in G_{p}. Then since V^{\prime} is open, we have $\left(V: V^{\prime} \cap V\right)<\infty$. Put $V=\sum_{i=1}^{d} \sigma_{i}\left(V \cap V^{\prime}\right)$. Then $\sigma_{1}(x), \cdots, \sigma_{d}(x)$ are mutually distinct, and their elementary symmetric functions are all contained in L_{V}; hence L / L_{V} is separably algebraic. Now consider $\operatorname{Aut}\left(L / L_{V}\right)$ as equipped with the Krull topology. Then the injection $\varphi: V \rightarrow \operatorname{Aut}\left(L / L_{V}\right)$ is continuous, since the action of G_{p} on L is so; hence $\varphi(V)$ is also compact. On the other hand, $\varphi(V)$ is dense in $\operatorname{Aut}\left(L / L_{V}\right)$, since for any $\sigma \in \operatorname{Aut}\left(L / L_{V}\right)$, we have $\sigma(x)=\sigma_{i}(x)$ for some $i\left(\sigma_{i}\right.$ being as above, for this x). Therefore, $\varphi(V)=\operatorname{Aut}\left(L / L_{V}\right)$, and φ is bicontinuous (since V is compact).

Let k be the fixed field of G_{p};

$$
\begin{equation*}
k=\left\{x \in L \mid g_{p}(x)=x \forall g_{\mathfrak{p}} \in G_{p}\right\} . \tag{3}
\end{equation*}
$$

We shall call L a one-dimensional G_{p}-field over k, or simply, a G_{p}-field over k, if (L1) $\operatorname{dim}_{k} L=1$, and if for every open compact subgroup V of G_{p}, the condition:
(L2) L_{V} is finitely generated over k, and almost all prime divisors of L_{V} over k are unramified in L;
is satisfied. We note that since L / L_{V} is algebraic, (L1) implies $\operatorname{dim}_{k} L_{V}=1$; hence L_{V} is an algebraic function field of one variable over k, in the sense that L_{V} / k is finitely generated and is of dimension one. By a prime divisor of L_{V} over k, we mean an equivalence class
of non-trivial discrete valuations of L_{V} over k or equivalently, an equivalence class of nontrivial places of L_{V} over k. Since open compact subgroups of G_{p} are commensurable with each other, the condition (L2) is satisfied for all V if it is satisfied for one V.

The subfield k of L given by (3) will be called the constant field of L. Two G_{p} fields L, L^{\prime} with the common constant field k are called isomorphic if there exists an isomorphism of the field L onto L^{\prime} which is trivial on k and which commutes with the actions of all elements of G_{p}.

§2.

Example. Let p be a prime number, and put

$$
\begin{equation*}
\Delta^{(n)}=\left\{x \in S L_{2}(\mathbf{Z}) \mid x \equiv \pm 1\left(\bmod p^{n}\right)\right\} / \pm 1 \quad(n \geq 0) \tag{4}
\end{equation*}
$$

Consider $\Delta^{(n)}$ as fuchsian groups acting on the complex upper half plane \mathfrak{G}, and let L_{n} ($n \geq 0$) be the field of automorphic functions with respect to $\Delta^{(n)}$. Put $L=\bigcup_{n=0}^{\infty} L_{n}$. Define the action of the group $P S L_{2}\left(\mathbf{Q}_{p}\right)$ on L in the following manner. As in Chapter 1, §2 (Example), put $\mathbf{Z}^{(p)}=\bigcup_{n=0}^{\infty} p^{-n} \mathbf{Z}, \Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$, and consider Γ as a discrete subgroup of $G=G_{\mathbf{R}} \times G_{p}$, with $G_{\mathbf{R}}=P S L_{2}(\mathbf{R})$ and $G_{p}=P S L_{2}\left(\mathbf{Q}_{p}\right)$. Then, $\Gamma_{p} \cong \Gamma_{\mathbf{R}} \subset G_{\mathbf{R}}$ acts on L as

$$
\begin{equation*}
\Gamma_{p} \ni \gamma_{p}: L \ni f(z) \mapsto \gamma_{p}(f(z))=f\left(\gamma_{\mathbf{R}}^{-1} \cdot z\right) \in L \tag{5}
\end{equation*}
$$

where $\gamma_{\mathbf{R}}$ is the element of $\Gamma_{\mathbf{R}}$ which corresponds to γ_{p}. Now, we lift the action of Γ_{p} to that of G_{p}; namely, for each $f(z) \in L_{n}$ and $g_{p} \in G_{p}$, put $g_{p}(f(z))=\gamma_{p}(f(z))$ with any $\gamma_{p} \in \Gamma_{p} \cap g_{p} U_{p}^{(n)}$, where

$$
\begin{equation*}
U_{p}^{(n)}=\left\{x \in S L_{2}\left(\mathbf{Z}_{p}\right) \mid x \equiv \pm 1\left(\bmod p^{n}\right)\right\} / \pm 1 \quad(n \geq 0) . \tag{6}
\end{equation*}
$$

Then, this defines an action of G_{p} on L, which is effective and continuous. By noting that L_{n} is the fixed field of $U_{p}^{(n)}(n \geq 0)$, we see immediately that L is a $P S L_{2}\left(\mathbf{Q}_{p}\right)$-field over the complex number field \mathbf{C}.

We shall show later ($\S 5-\S 9$) that all $G_{\mathfrak{p}}$-fields over \mathbf{C} are obtained in this manner from discrete subgroups Γ of $G=G_{\mathrm{R}} \times G_{\mathrm{p}}$ such that $\Gamma_{\mathrm{R}}, \Gamma_{\mathrm{p}}$ are dense in $G_{\mathrm{R}}, G_{\mathrm{p}}$ respectively and G / Γ have finite invariant volumes.
83.

Proposition 1. Let L be a G_{p}-field over k. Then k is algebraically closed in L.
Proor. In fact, let $x \in L$ be algebraic over k. Then for any $g_{p} \in G_{p}, g_{p}(x)$ is conjugate to x over k. This shows that the stabilizer of x in G_{p} is of finite index in G_{p}. But if H is a subgroup of G_{p} of finite index, then $N=\bigcap_{g_{p} \in G_{p}} g_{p}^{-1} H g_{p}$ is a normal subgroup of G_{p} with finite index; hence by the simplicity of the group $G_{p}=P S L_{2}\left(k_{p}\right)$ we get $N=G_{p}$; and hence $H=G_{p}$. Therefore, the stabilizer of x in G_{p} must be $G_{\mathfrak{p}}$ itself; hence $x \in k$.

Proposition 2. Let L be a G_{p}-field over k. Let L^{\prime} be a $G_{p}-$ invariant subfield of L, not contained in k. Put $k^{\prime}=L^{\prime} \cap k$. Then,
(i) L^{\prime} and k are linearly disjoint over k^{\prime}.
(ii) $\left[L: L^{\prime} \cdot k\right]<\infty$.
(iii) With the restricted action of G_{p} on L^{\prime}, L^{\prime} is a G_{p}-field over k^{\prime} 。

Proof. (i). Suppose, on the contrary, that L^{\prime} and k were not linearly disjoint over k^{\prime}. Then, there exists a set of elements $c_{1}, \cdots, c_{n} \in k$ that are linearly independent over k^{\prime}, but not over L^{\prime}. We can assume that c_{1}, \cdots, c_{n-1} are linearly independent over L^{\prime}, since otherwise, we can replace c_{1}, \cdots, c_{n} by c_{1}, \cdots, c_{n-1}. Now, c_{1}, \cdots, c_{n-1} being linearly independent over L^{\prime} and c_{1}, \cdots, c_{n} not being so, we get $c_{n}=x_{1} c_{1}+\cdots+x_{n-1} c_{n-1}$ with some $x_{1}, \cdots, x_{n-1} \in L^{\prime}$, and with, say, $x_{1} \notin k^{\prime}$. Since $x_{1} \in L^{\prime}$ and $k^{\prime}=L^{\prime} \cap k$, this implies $x_{1} \notin k$, and hence there exists some $g_{\mathfrak{p}} \in G_{\mathfrak{p}}$ for which $g_{\mathfrak{p}}\left(x_{1}\right) \neq x_{1}$. Now by $c_{n}=x_{1} c_{1}+\cdots+x_{n-1} c_{n-1}$, we get $c_{n}=g_{\mathfrak{p}}\left(x_{1}\right) c_{1}+\cdots+g_{\mathfrak{p}}\left(x_{n-1}\right) c_{n-1}$; hence

$$
\left(x_{1}-g_{p}\left(x_{1}\right)\right) c_{1}+\cdots+\left(x_{n-1}-g_{p}\left(x_{n-1}\right)\right) c_{n-1}=0
$$

Since L^{\prime} is G_{p}-invariant, all coefficients of c_{i} are contained in L^{\prime}, and $x_{1}-g_{\mathfrak{p}}\left(x_{1}\right) \neq 0$. This contradicts the assumption on linear independence of c_{1}, \cdots, c_{n-1} over L^{\prime}. Thus (i) is settled.
(ii), (iii). It is clear that $G_{\mathfrak{p}}$ acts continuously on L^{\prime}, and that the fixed field is k^{\prime}. Let Δ be the kernel of the action of G_{p} on L^{\prime}. Then, Δ is a normal subgroup of G_{p}, and since $L^{\prime} \supsetneq k^{\prime}, \Delta$ is not G_{p} itself. Hence, by the simplicity of the group $G_{p}=P S L_{2}\left(k_{\mathfrak{p}}\right)$, we get $\Delta=\{1\}$; hence the action of G_{p} on L^{\prime} is effective. By $k \subsetneq L^{\prime} k \subset L$ and by Proposition 1 , we get $\operatorname{dim}_{k} L^{\prime} k=1$, and hence by the linear disjointness of L^{\prime} and k over k^{\prime}, we get $\operatorname{dim}_{k^{\prime}} L^{\prime}=1$. Now let V be any open compact subgroup of G_{p}, and let L_{V}^{\prime} be the fixed field of $\left.V\right|_{L^{\prime}}$. It is clear that $L_{V}^{\prime}=L^{\prime} \cap L_{V}$. Moreover, the argument of $\S 1$ shows that $L^{\prime} / L_{V}^{\prime}$ is separably algebraic (hence $L_{V}^{\prime} / k^{\prime}$ is of dimension one), and that $\operatorname{Aut}\left(L^{\prime} / L_{V}^{\prime}\right)=\left.V\right|_{L^{\prime}}$. Also, since $k \subsetneq L_{V}^{\prime} \cdot k \subset L_{V}, L_{V}^{\prime} \cdot k / k$ is finitely generated and is of dimension one (by Proposition 1). Hence, by the linear disjointness of L^{\prime} and k over k^{\prime}, we see that $L_{V}^{\prime} / k^{\prime}$ is also finitely generated. Since $L_{V} / L_{V}^{\prime} \cdot k$ is finitely generated and algebraic, we get $\left[L_{V}: L_{V}^{\prime} \cdot k\right]<\infty$.

Now, put $M=L^{\prime} \cdot k$ and $M_{V}=M \cap L_{V}$. We claim that $M \cdot L_{V}=L$ and $M_{V}=L_{V}^{\prime} \cdot k$. In fact, since G_{p} acts effectively on $M=L^{\prime} \cdot k$, the subgroup of G_{p} which acts trivially on $M \cdot L_{V}$ is $\{1\}$. On the other hand, $V=\operatorname{Aut}\left(L / L_{V}\right)$ with the Krull topology (see $\S 1$), and the Galois theory is valid between compact subgroups of V and intermediate fields of L / L_{V} (Krull's Galois theory). This shows $M \cdot L_{V}=L$. Let us now check $M_{V}=L_{V}^{\prime} \cdot k$. First, every element x of $M=L^{\prime} \cdot k$ can be written in the form:

$$
x=a \sum_{i=1}^{n} c_{i} x_{i}, \quad \text { with } a \in L_{V}^{\prime} \cdot k, c_{i} \in k, x_{i} \in L^{\prime}(1 \leq i \leq n)
$$

This follows easily ${ }^{5}$ from the fact that $L^{\prime} / L_{V}^{\prime}$ is normal and separable, and that L^{\prime} and k are linearly disjoint over k^{\prime}.

Now let x be contained in M_{V}. We can assume that c_{1}, \cdots, c_{n} are linearly independent over k^{\prime}, and hence also over L^{\prime}. By $v(x)=x(v \in V)$, we get $v\left(x_{i}\right)=x_{i}(1 \leq i \leq n)$ for all $v \in V$. This shows $x_{i} \in L_{V}^{\prime}$; hence we get $x \in L_{V}^{\prime} \cdot k$. Hence $M_{V} \subset L_{V}^{\prime} \cdot k$. On the other hand, the inclusion $M_{V} \supset L_{V}^{\prime} \cdot k$ is obvious. Hence we get $M_{V}=L_{V}^{\prime} \cdot k$.

So, we get the following diagram, in which every "branch" is linearly disjoint: (M, L_{V} are linearly disjoint over M_{V} since M / M_{V} is Galois, L_{V} / M_{V} is algebraic, and since $M \cap$ $\left.L_{V}=M_{V}.\right)$

So, by $\left[L_{V}: M_{V}\right]=\left[L_{V}: L_{V}^{\prime} \cdot k\right]<\infty$, we get $[L: M]=\left[L_{V}: M_{V}\right]<\infty$. This settles (ii). Finally, since almost all prime divisors of L_{V} over k are unramified in L, and since [$L_{V}: M_{V}$] $<\infty$, it follows immediately that almost all prime divisors of M_{V} over k are unramified in L, and hence a priori in M. Thus, by the linear disjointness of L^{\prime} and k over k^{\prime}, it follows immediately that almost all prime divisors of L_{V}^{\prime} over k^{\prime} are unramified in L^{\prime}. Therefore, together with what we have proved already, we have completed the proof that L^{\prime} is a G_{p}-field over k^{\prime}.

We have also proved the following:
Corollary. The situation being as in Proposition 2, let V be an open compact subgroup of G_{p} and let $L_{V}^{\prime}=L^{\prime} \cap L_{V}$. Then $L_{V}^{\prime} \cdot k$ consists of all V-invariant elements of $L^{\prime} \cdot k$, and we have $\left[L: L^{\prime} k\right]=\left[L_{V}: L_{V}^{\prime} \cdot k\right]<\infty$.

[^0]§4. Let L be a G_{p}-field over k, and let L^{\prime} be a G_{p}-invariant subfield of L, with $L^{\prime} \not \subset k$. Put $k^{\prime}=L^{\prime} \cap k$. Such L^{\prime} will be called a G_{p}-subfield (of L) over k^{\prime}. Thus, if L^{\prime} is such, and if $k^{\prime} \subset k_{1} \subset k$, then $L^{\prime} \cdot k_{1}$ is a G_{p}-subfield over k_{1}. In particular, $L^{\prime} \cdot k$ is a G_{p}-subfield over k, and by Proposition 2, we have $\left[L: L^{\prime} k\right]<\infty$.

We shall call L^{\prime} a full G_{p}-subfield over k^{\prime}, if moreover the condition $L^{\prime} \cdot k=L$ is satisfied. Since L^{\prime} and k are linearly disjoint over k^{\prime}, it implies that L is identified with the constant field extension $L^{\prime} \otimes_{k^{\prime}} k$ of L^{\prime}. We shall call a G_{p}-field L over k irreducible if L has no G_{p}-subfields over k other than L itself, i.e., there is no proper intermediate G_{p}-invariant subfield between k and L. Thus, if L is irreducible, then all G_{p}-subfields of L are full G_{p}-subfields.

We shall prove in Part 2 of this Chapter that if L is a G_{p} field over the complex number field \mathbf{C}, then it contains a full G_{p}-subfield L_{k} over an algebraic number field k. We shall prove, moreover, that under a certain condition on L which is always satisfied if L is irreducible, such L_{k} is essentially unique, in the sense that among them there is a smallest field $L_{k_{0}}$ over k_{0} and that all other L_{k} are obtained as $L_{k}=L_{k_{0}} \cdot k, k \supset k_{0}$. In other words, all G_{p}-fields over \mathbf{C} are the constant field extensions of some G_{p}-fields over an algebraic number field of finite degree, and if the former is irreducible, then the latter is essentially unique.

This will be proved by using the one-to-one correspondence between G_{p}-fields over C and certain discrete subgroups Γ of $G=G_{\mathbf{R}} \times G_{p}$ (Theorem 1), and then by using some group theory of G_{p} and analysis of Γ (Part 2).

Analytic construction of G_{p}-fields over \mathbf{C}.

§5. Let Γ be a discrete subgroup of $G=G_{\mathbf{R}} \times G_{\mathfrak{p}}=P S L_{2}(\mathbf{R}) \times P S L_{2}\left(k_{\mathfrak{p}}\right)$ such that the projections $\Gamma_{\mathbf{R}}, \Gamma_{\mathfrak{p}}$ are dense in $G_{\mathbf{R}}, G_{\mathfrak{p}}$ respectively and that the quotient G / Γ has finite invariant volume. For each open compact subgroup V of G_{p}, put

$$
\begin{equation*}
\Gamma^{V}=\Gamma \cap\left(G_{\mathbf{R}} \times V\right) \tag{7}
\end{equation*}
$$

and let $\Gamma_{\mathbf{R}}^{V}$ be its projection to $G_{\mathbf{R}}$. By Proposition 2 (Chapter $1, \S 3$) $\Gamma_{\mathbf{R}}^{V}$ is a discrete subgroup of $G_{\mathbf{R}}$ and the quotient $G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{V}$ has finite invariant volume. Let L_{V} be the field of automorphic functions with respect to the fuchsian group $\Gamma_{\mathbf{R}}^{V}$ acting on the complex upper half plane $\mathfrak{5}$. Put $L=\bigcup_{V} L_{V}$. Then it is obvious that $\operatorname{dim}_{\mathbf{C}} L=1$, that L_{V} is finitely generated over \mathbf{C}, and that almost all prime divisors of L_{V} over \mathbf{C} are unramified in L. In fact, if $z \in \mathfrak{S}$ is not an elliptic fixed point of $\Gamma_{\mathbf{R}}^{V}$, then the prime divisor of L_{V} given by z $\left(\bmod \Gamma_{\mathbf{R}}^{V}\right)$ is unramified in L.

Now we define the action of the group G_{p} on L in the following manner. Let $g_{p} \in G_{p}$ and $f(z) \in L$. Take V such that $f(z) \in L_{V}$, and take $\gamma \in \Gamma \cap\left(G_{\mathbf{R}} \times g_{p} V\right)(\neq \phi$, since Γ_{p} is dense in $\left.G_{p}\right)$. Put $g_{p}\{f(z)\}=f\left(\gamma_{\mathbf{R}}^{-1} \cdot z\right)$. Then, it is easy to check that $g_{p}\{f(z)\}$ is
well-defined (does not depend on the choice of V or γ), that $g_{p}\{f(z)\} \in L$, and that

$$
L \ni f(z) \mapsto g_{p}\{f(z)\} \in L
$$

gives a field-automorphism of L. Moreover, $\left(h_{\mathfrak{p}} g_{\mathfrak{p}}\right)\{f(z)\}=h_{\mathfrak{p}}\left\{g_{\mathfrak{p}} f(z)\right\}$ holds for all $g_{\mathfrak{p}}, h_{\mathfrak{p}} \in$ G_{p}; hence G_{p} acts as an automorphism group on L. We see easily that L_{V} is the fixed field of V. In fact, first, it is clear that all elements of L_{V} are fixed by V. Conversely, if $f(z) \in L$ is fixed by V, then $f(z)$ is invariant by Γ_{R}^{V}; hence $f(z) \in L_{V}$. Hence L_{V} is the fixed field of V. This shows in particular, that the action of G_{p} on L is continuous. If $f(z) \in L$ is fixed by the whole group G_{p}, then we get $f\left(\gamma_{\mathbf{R}}^{-1} \cdot z\right)=f(z)$ for all $\gamma \in \Gamma$. But since $\Gamma_{\mathbf{R}}$ is dense in G_{R}, this implies $f(z) \in \mathbf{C}$. Hence the fixed field of G_{p} is \mathbf{C}. Finally, the action of G_{p} on L is effective. In fact, the kernel of the action is a normal subgroup of G_{p}; hence by the simplicity of G_{p}, it must be G_{p} itself if not $\{1\}$. But that is impossible, since the fixed field of $G_{\mathfrak{p}}$ is \mathbf{C}. Therefore, $G_{\mathfrak{p}}$ acts effectively on L. Thus, starting from Γ, we have constructed a G_{p}-field L over \mathbf{C}.
§6. Now, we shall show that conversely, given any G_{p}-field L over C, we can define Γ, and that the G_{p}-fields over \mathbf{C} (up to isomorphisms) are in one-to-one correspondence with Γ (up to conjugacy in G).

Let L be a G_{p}-field over \mathbf{C}, and let Σ be the set of all non-equivalent, non-trivial discrete valuations of L over \mathbf{C}. To give Σ more explicitly, let V_{0} be an open compact subgroup of G_{p} which has no elements $(\neq 1)$ of finite order, and let

$$
V_{0} \supset V_{1} \supset \cdots \supset V_{n} \supset \cdots
$$

be a decreasing sequence of open compact subgroups of G_{p}, such that $\bigcap_{n=0}^{\infty} V_{n}=\{1\}$. Put $L_{n}=L_{V_{n}}(n \geq 0)$, and let $\Re_{n}(n \geq 0)$ be the Riemann surface of L_{n}. Then, we get a sequence of coverings

$$
\begin{equation*}
\mathfrak{R}_{0} \stackrel{\varphi_{1}}{\leftarrow} \mathfrak{R}_{1} \stackrel{\varphi_{2}}{\leftarrow} \cdots \mathfrak{R}_{n} \stackrel{\varphi_{n+1}}{\leftarrow} \cdots . \tag{8}
\end{equation*}
$$

Let $T_{i}(1 \leq i \leq N)$ be the points on \Re_{0} that are ramified in the covering sequence (8). For each i, consider T_{i} as a discrete valuation of L_{0}, and let \mathfrak{I}_{i} be a valuation of L with $\mathfrak{T}_{i \mid L_{0}}=T_{i}$. Then, since $\operatorname{Aut}\left(L / L_{0}\right)$ has no non-trivial finite subgroup, the inertia group of \mathfrak{T}_{i} over L_{0} is infinite; hence its ramification index in L / L_{0} is infinite. Therefore, \mathfrak{I}_{i} is not a discrete valuation of L. Put

$$
\mathfrak{R}_{0}^{\prime}=\Re_{0}-\left\{T_{1}, \cdots, T_{N}\right\}, \quad \Re_{1}^{\prime}=\varphi_{1}^{-1}\left(\Re_{0}^{\prime}\right), \quad \Re_{2}^{\prime}=\varphi_{2}^{-1}\left(\Re_{1}^{\prime}\right), \cdots \text { etc. }
$$

Denoting $\varphi_{n} \mid \mathscr{x}_{n}^{\prime}$ again by φ_{n}, we get a sequence of unramified coverings

$$
\begin{equation*}
\mathfrak{R}_{0}^{\prime} \stackrel{\varphi_{1}}{\leftarrow} \mathfrak{R}_{1}^{\prime} \stackrel{\varphi_{2}}{\leftarrow} \cdots \leftarrow \Re_{n}^{\prime} \stackrel{\varphi_{n+1}}{\leftarrow} \cdots . \tag{9}
\end{equation*}
$$

It is now clear that the set Σ can be identified with the set of all sequences of points

$$
\begin{equation*}
P_{0} \stackrel{\varphi_{1}}{\leftarrow} P_{1} \stackrel{\varphi_{2}}{\leftarrow} \cdots \leftarrow P_{n} \stackrel{\varphi_{n+1}}{\leftarrow} \cdots . \tag{10}
\end{equation*}
$$

[^1]with $P_{n} \in \Re_{n}^{\prime}$ and $P_{n}=\varphi_{n+1}\left(P_{n+1}\right)$ for all $n \geq 0$. So, we shall denote the elements of Σ simply as
\[

$$
\begin{equation*}
\Sigma \ni P=\left\{P_{0} \stackrel{\varphi_{1}}{\leftarrow} P_{1} \stackrel{\varphi_{2}}{\leftarrow} \cdots\right\} . \tag{11}
\end{equation*}
$$

\]

Now we shall define a complex structure on Σ. Let $\Sigma \ni P=\left\{P_{0} \leftarrow P_{1} \leftarrow \cdots\right\}$, and let U_{0} be any simply connected neighborhood of P_{0} on $\mathfrak{R}_{0}^{\prime}$. For each $n \geq 0$, let U_{n} be the connected component of $\left(\varphi_{1} \circ \cdots \circ \varphi_{n}\right)^{-1} U_{0}$ containing P_{n};

$$
\begin{gather*}
U_{0} \leftarrow U_{1} \leftarrow \cdots \leftarrow U_{n} \leftarrow \cdots \tag{12}\\
\psi \\
\psi \\
P_{0} \leftarrow P_{1} \leftarrow \cdots
\end{gather*} \begin{aligned}
& \psi \\
& P_{n} \leftarrow \cdots
\end{aligned}
$$

Since U_{0} is simply connected, $U_{0} \leftarrow U_{n}$ is a simple covering; hence φ_{n} induces an isomorphism of U_{n} onto U_{n-1}; and each point $P_{0}^{\prime} \in U_{0}$ defines a unique element $P^{\prime}=\left\{P_{0}^{\prime} \leftarrow P_{1}^{\prime} \leftarrow \cdots\right\}$ of Σ, with $P_{n}^{\prime} \in U_{n}$ for all $n \geq 0$. Therefore, by taking such $U_{0} \cong\left\{U_{0} \leftarrow U_{1} \leftarrow \cdots\right\}$ as a coordinate neighbourhood of P, we can define a complex structure on Σ, by which Σ is a one-dimensional complex manifold.

An important point is that this complex structure of Σ is independent of the choice of the sequence $V_{0} \supset V_{1} \supset \cdots$ of open compact subgroups of G_{p}. To check this, let $V_{0}^{\prime} \supset V_{1}^{\prime} \supset \cdots$ be another sequence such that V_{0}^{\prime} is torsion-free and $\bigcap_{n=0}^{\infty} V_{n}^{\prime}=\{1\}$. Then, they are cofinal; i.e., every V_{n} contains some V_{m}^{\prime}, and vice versa. So, we get a new sequence $V_{i_{1}} \supset V_{j_{1}}^{\prime} \supset V_{i_{2}} \supset V_{j_{2}}^{\prime} \supset \cdots$, with $i_{1}<i_{2}<\cdots$ and $j_{1}<j_{2}<\cdots$. Now it is clear that the complex structure of Σ defined by the sequence $V_{0} \supset V_{1} \supset \cdots$ is equivalent to that defined by $V_{i_{1}} \supset V_{j_{1}}^{\prime} \supset V_{i_{2}} \supset V_{j_{2}}^{\prime} \supset \cdots$, and hence is also equivalent to that defined by $V_{0}^{\prime} \supset V_{1}^{\prime} \supset \cdots$.

Let σ be an automorphism of the field L over \mathbf{C}. Then, the action $\Sigma \ni P \mapsto \sigma \cdot P \in \Sigma$ is defined by

$$
v_{\sigma P}(x)=v_{P}\left(\sigma^{-1}(x)\right) \quad(x \in L),
$$

where $v_{P}, v_{\sigma P}$ are the normalized additive discrete valuations of L contained in the classes $P, \sigma P$ respectively. Now, by this action, σ leaves the complex strucure of Σ invariant. In fact, consider the sequence $\sigma\left(L_{0}\right) \subset \sigma\left(L_{1}\right) \subset \cdots$, and let n be sufficiently large. Then $\sigma\left(L_{n}\right)$ contains L_{0}; hence there is an open compact subgroup V_{n}^{\prime} of V_{0} such that $\sigma\left(L_{n}\right)=$ $L_{V_{n}^{\prime}}$. Therefore, by the above remark, the complex structure of Σ defined with respect to $\sigma\left(L_{n}\right) \subset \sigma\left(L_{n+1}\right) \subset \cdots$ is equivalent to the original one. But this implies that σ leaves the complex structure of Σ invariant. In particular, G_{p} acts on Σ as a group of automorphisms of the complex manifold Σ, and hence G_{p} also acts on the set of all connected components of Σ as a permutation group.
§7. We shall now prove that:
(i) Each open compact subgroup of G_{p} acts transitively on the set of all connected components of Σ.
(ii) Each connected component of Σ is isomorphic to the complex half plane \mathfrak{H}.

Proof of (i). Let $P=\left\{P_{0} \leftarrow P_{1} \leftarrow \cdots\right\}$ and $Q=\left\{Q_{0} \leftarrow Q_{1} \leftarrow \cdots\right\}$ be any two elements of Σ, and let Σ_{P}, Σ_{Q} be the connected components of Σ containing P, Q respectively. It is enough to prove that for each $n \geq 0$, there is an element $v \in V_{n}$ such that $v\left(\Sigma_{P}\right)=\Sigma_{Q}$. Now fix n, and let $P_{n}(t)(0 \leq t \leq 1)$ be a curve on \Re_{n}^{\prime}, with $P_{n}(0)=P_{n}$ and $P_{n}(1)=Q_{n}$. Then there is a unique (continuous) curve $P(t)(0 \leq t \leq 1)$ on Σ satisfying $P(0)=P$ and $P(t)=\left\{\cdots \leftarrow P_{n}(t) \leftarrow \cdots\right\}$ for all $t(0 \leq t \leq 1)$. Then $P(1) \in \Sigma_{P}$, and $P(1)=\left\{Q_{0} \leftarrow \cdots \leftarrow Q_{n} \leftarrow Q_{n+1}^{\prime} \leftarrow \cdots\right\}$. Since the restrictions to L_{n} of $P(1)$ and Q coincide with each other, there is an element $v \in \operatorname{Aut}\left(L / L_{n}\right)=V_{n}$ such that $Q=v(P(1))$; hence $\Sigma_{Q}=v\left(\Sigma_{P}\right)$. This settles (i).

Proof of (ii). First of all, we note that the universal covering surface $\widetilde{\Re}_{n}^{\prime}$ of $\Re_{n}^{\prime}(n \geq 0)$ is isomorphic to \mathfrak{F}. In fact, since the covering sequence (9) is unramified and non-trivial, $\widetilde{R}_{n}^{\prime}$ cannot be the Riemann sphere. Moreover, since V_{n} is nonabelian, (9) is a nonabelian covering sequence. Hence $\widetilde{\mathfrak{R}}_{n}^{\prime}$ cannot be the whole complex plane. Therefore, $\widetilde{\mathfrak{R}}_{n}^{\prime} \cong \mathfrak{H}$.

Now let Σ_{0} be an arbitrary connected component of Σ, and let $\bar{\Sigma}_{0}$ be the universal covering surface of Σ_{0}. Then, by the unramified covering $\Re_{n}^{\prime} \leftarrow \Sigma_{0} \leftarrow \widetilde{\Sigma}_{0}$, we can identify $\widetilde{R}_{n}^{\prime}$ with $\widetilde{\Sigma}_{0}$. Therefore, we get a sequence of unramified coverings :

$$
\begin{equation*}
\mathfrak{R}_{0}^{\prime} \stackrel{\varphi_{1}}{\leftarrow} \cdots \leftarrow \mathfrak{R}_{n}^{\prime} \varphi_{n+1} \ldots \leftarrow \Sigma_{0} \leftarrow \bar{\Sigma}_{0} \cong \mathfrak{S} . \tag{13}
\end{equation*}
$$

Now fix an isomorphism $\widetilde{\Sigma}_{0} \cong \mathfrak{G}$. Then we get an isomorphism Aut $\widetilde{\Sigma}_{0}=$ Aut $\mathfrak{I}=G_{\mathbf{R}}$. Let $\Delta_{n}(n \geq 0)$ be the covering group of $\Re_{n}^{\prime} \leftarrow \widetilde{\Sigma}_{0}$, considered as a subgroup of $G_{\mathbf{R}}$. Then it is a torsion-free discrete subgroup of G_{R}, and the quotient $G_{\mathbf{R}} / \Delta_{n}$ has finite invariant volume (the quotient is compact if and only if $\left\{T_{1}, \cdots, T_{N}\right\}=\phi$). It is also clear that the covering group Δ of $\Sigma_{0} \leftarrow \widetilde{\Sigma}_{0}$ is the intersection of all $\Delta_{n}(n \geq 0)$;

$$
\begin{equation*}
G_{\mathrm{R}} \supset \Delta_{0} \supset \Delta_{1} \supset \Delta_{2} \supset \cdots ; \quad \Delta=\bigcap_{n=0}^{\infty} \Delta_{n} . \tag{14}
\end{equation*}
$$

We shall identify $\mathfrak{R}_{n}^{\prime}$ with $\mathfrak{G} / \Delta_{n}$, and Σ_{0} with \mathfrak{H} / Δ.
Now put

$$
\begin{equation*}
\Gamma_{p}=\left\{g_{p} \in G_{p} \mid g_{p}\left(\Sigma_{0}\right)=\Sigma_{0}\right\} . \tag{15}
\end{equation*}
$$

Then by (i), we get $G_{p}=V \cdot \Gamma_{p}$ for any open compact subgroup V of G_{p}; hence Γ_{p} is a dense subgroup of G_{p}. On the other hand, $\Gamma_{\mathfrak{p}}$ acts on $\Sigma_{0}=\mathfrak{G} / \Delta$ as a group of automorphisms, and hence we can also consider $\Gamma_{\mathfrak{p}}$ as a subgroup of $\operatorname{Aut}(\mathfrak{H} / \Delta)$. We shall denote this subgroup of $\operatorname{Aut}(\mathfrak{H} / \Delta)$, identified with Γ_{p}, by Γ_{R};

$$
\begin{equation*}
\operatorname{Aut}(\mathfrak{G} / \Delta) \supset \Gamma_{\mathbf{R}} \underset{\text { identified }}{\cong} \Gamma_{p} \subset G_{p} . \tag{16}
\end{equation*}
$$

Let $N(\Delta)$ be the normalizer of Δ in $G_{\mathbf{R}}$. Then we have $\operatorname{Aut}(\mathscr{H} / \Delta)=N(\Delta) / \Delta$; hence we can put $\Gamma_{\mathbf{R}}=\widehat{\Gamma}_{\mathbf{R}} / \Delta$, with $\Delta \subset \widehat{\Gamma}_{\mathbf{R}} \subset N(\Delta)$. Further, put $\Gamma_{\mathrm{p}}^{n}=\Gamma_{\mathrm{p}} \cap V_{n}(n \geq 0)$, and denote by $\Gamma_{\mathbf{R}}^{n}$ the corresponding subgroup of $\Gamma_{\mathbf{R}}$. Then we have

$$
\begin{equation*}
\Gamma_{\mathbf{R}}^{n}=\Delta_{n} / \Delta \quad(n \geq 0) \tag{17}
\end{equation*}
$$

Now, we have

$$
\left(\widehat{\Gamma}_{\mathbf{R}}: \Delta_{n}\right)=\left(\Gamma_{\mathbf{R}}: \Gamma_{\mathbf{R}}^{n}\right)=\left(\Gamma_{\mathfrak{p}}: \Gamma_{p}^{n}\right)=\left(G_{\mathfrak{p}}: V_{n}\right)=\infty,
$$

and Δ_{n} is a discrete subgroup of G_{R} whose quotient is of finite invariant volume. Therefore,,$\widehat{\Gamma}_{\mathbf{R}}$ is dense in $G_{\mathbf{R}}$; hence $N(\Delta)$ is dense in $G_{\mathbf{R}}$. But since Δ is discrete in $G_{\mathrm{R}}, N(\Delta)$ is closed in $G_{\mathbf{R}}$; hence $N(\Delta)=G_{\mathbf{R}}$. Therefore, Δ is a discrete normal subgroup of $G_{\mathbf{R}}$. But G_{R} is a simple group; hence we get $\Delta=\{1\}$. Therefore $\Sigma_{0} \cong \mathfrak{y}$; which settles (ii). We have also proved that $\Gamma_{R}=\widehat{\Gamma}_{R}$ and that it is dense in G_{R};

$$
\begin{equation*}
G_{\mathbf{R}} \underset{\text { dense }}{\supset} \Gamma_{\mathbf{R}} \cong \xlongequal[\text { identified }]{\cong} \Gamma_{\mathfrak{p}} \underset{\text { dense }}{\subset} G_{\mathrm{p}} . \tag{18}
\end{equation*}
$$

§8. Now let Γ be the subgroup of $G=G_{R} \times G_{p}$ formed of all elements $\gamma_{R} \times \gamma_{p}$ such that γ_{R}, γ_{p} are corresponding elements of Γ_{R}, Γ_{p} respectively. Then the projection maps $\Gamma \rightarrow \Gamma_{R}, \Gamma \rightarrow \Gamma_{\mathfrak{p}}$ are obviously injective, and it was shown that $\Gamma_{R}, \Gamma_{\mathfrak{p}}$ are dense in G_{R}, G_{p} respectively. Moreover,

$$
\left\{\Gamma \cap\left(G_{\mathbf{R}} \times V_{n}\right)\right\}_{\mathbf{R}}=\Gamma_{\mathbf{R}}^{n}=\Delta_{n} \quad(n \geq 0)
$$

and Δ_{n} is a discrete subgroup of $G_{\mathbf{R}}$ whose quotient has finite invariant volume. Therefore by Proposition 2 of Chapter 1 ($\S 3$), Γ is a discrete subgroup of G, and the quotient G / Γ has finite invariant volume. The quotient G / Γ is compact if and only if $G_{\mathrm{R}} / \Delta_{n}$ is so; hence if and only if L / L_{n} is unramified.

Finally, it can be checked immediately that these two processes of defining L from Γ, and of defining Γ from L are the inverse of each other. We have thus proved the following Theorem.
§9.
Theorem 1. The G_{p} fields L over \mathbf{C} are in one-to-one correspondence with the discrete subgroups Γ of $G=G_{\mathbf{R}} \times G_{p}$ whose quotients G / Γ are of finite invariant volume and whose projections $\Gamma_{\mathbf{R}}, \Gamma_{p}$ are dense in $G_{\mathbf{R}}, G_{\mathrm{p}}$ respectively. Here, L are counted up to isomorphisms of $G_{p}-$ fields (§1), and Γ are counted up to conjugacy in G.

More precisely, if Γ is given, then L is obtained as the union of fields of automorphic functions with respect to $\Gamma_{\mathbf{R}}^{V}$ (§5). Conversely, if L is given, the set Σ of all non-equivalent non-trivial discrete valuations of L over \mathbf{C} can be considered as a one-dimensional complex manifold, on which G_{p} acts as an automorphism group. If V is an open compact subgroup of G_{p}, then V acts transitively on the set of all connected components of Σ. Take any connected component Σ_{0} of Σ, and let $\Gamma_{\mathfrak{p}}$ be the stabilizer of Σ_{0} in G_{p}. Then Σ_{0} is isomorphic to the complex upper half plane \mathfrak{G}, and hence $\Gamma_{\mathfrak{p}}$ can also be identified with a subgroup $\Gamma_{\mathbf{R}}$ of $G_{\mathbf{R}}=\operatorname{Aut}(\mathfrak{H})$. In this manner, by the identification $\Gamma \cong \Gamma_{\mathbf{R}} \cong \Gamma_{\mathfrak{p}}$ and by the diagonal embedding, we get the discrete subgroup Γ of $G(\S 6, \S 7, \S 8)$.

Remark 1. Let L be a G_{p}-field over \mathbf{C}, and let $\{\Gamma\}_{G}$ be the corresponding G-conjugacy class of discrete subgroups of $G=G_{\mathbf{R}} \times G_{p}$. Then, choosing one Γ from among $\{\Gamma\}_{G}$ is equivalent to choosing one connected component Σ_{0} of Σ together with an isomorphism $\Sigma_{0} \cong \mathfrak{G}$. In fact, if Γ is given, we can identify L as the union of the fields L_{V} of automorphic

[^2]functions $f(z)$ with respect to $\Gamma_{\mathbf{R}}^{V}$ (see $\S 5$), and moreover, each point $z_{0} \in \mathfrak{G}$ defines a discrete valuation $v_{z_{0}}$ of L by $v_{z_{0}}(f(z))=\operatorname{ord}_{z_{0}} f(z)$. Therefore, we can regard \mathfrak{G} as a connected component of Σ. Conversely, if L, Σ_{0}, and an isomorphism $\Sigma_{0} \cong \mathfrak{S}$ are given, then we get a discrete subgroup Γ in the above described manner (Σ_{0} defines Γ_{p} by (15), and the isomorphism $\Sigma_{0} \cong \mathfrak{y}$ defines the isomorphism $\left.\Gamma_{p}=\Gamma_{\mathbf{R}} \subset G_{\mathbf{R}}\right)$.

Remark 2. The cardinality of the set of all connected components of Σ is κ-infinity, since it is in one-to-one correspondence with G_{p} / Γ_{p}, and Γ_{p} is countable (since Γ is finitely generated; see §30).

Remark 3. The quotient G / Γ is compact if and only if L / L_{V} is unramified for some open compact subgroup V of G_{p}. When this is satisfied, Γ is torsion-free if and only if L / L_{V} is unramified for all open compact subgroups V of G_{p}.
810. Now we shall show that given Γ and the corresponding G_{p}-field L over \mathbf{C}, the subgroups Δ of $G=G_{R} \times G_{p}$ containing Γ with $(\Delta: \Gamma)<\infty$ and the G_{p}-subfields M of L over \mathbf{C} correspond naturally in a one-to-one manner. We begin by proving the following:

Proposition 3. Let L be a G_{p}-field over \mathbf{C}, and let M be a G_{p}-subfield of L over \mathbf{C}. Let P be a non-trivial discrete valuation of L over \mathbf{C}. Then P is unramified in L / M.

Proof. Suppose, on the contrary, that there exists a discrete valuation P_{0} of L over \mathbf{C} which is ramified in L / M. Since L and M are G_{p}-invariant, this implies that $g_{\mathfrak{p}}\left(P_{0}\right)$, for any $g_{\mathfrak{p}} \in G_{\mathrm{p}}$, is also ramified in L / M. Let V be a torsion-free open compact subgroup of G_{p}, and let L_{V} be the fixed field of V. Let P be any discrete valuation of L over C. Then, by the discreteness of P, the inertia group of P in L / L_{V} is a finite subgroup of $V=\operatorname{Aut}\left(L / L_{V}\right)$; hence it must be $\{1\}$. Hence P is unramified in L / L_{V}. This implies that if P is ramified in L / M, then $\left.P\right|_{L_{V}}$ must be ramified in L_{V} / M_{V}, where $M_{V}=M \cap L_{V}$. Therefore, $\left.g_{\mathfrak{p}}\left(P_{0}\right)\right|_{L_{V}}$, for every $g_{\mathfrak{p}} \in G_{\mathfrak{p}}$, must be ramified in L_{V} / M_{V}. Since [$L_{V}: M_{V}$] $<\infty$ (see Corollary of Proposition 2, §3), there are only finitely many discrete valuations (up to equivalence) of L_{V} over C, which are ramified in L_{V} / M_{V}. Therefore, the set

$$
\begin{equation*}
\left\{\left.g_{\mathfrak{p}}\left(P_{0}\right)\right|_{L_{v}} ; g_{\mathfrak{p}} \in G_{p}\right\} \tag{19}
\end{equation*}
$$

must be finite. We shall show that this is a contradiction. Let Σ_{0} be the connected component of Σ containing P_{0}, and let Γ_{p} be the stabilizer of Σ_{0} in G_{p}. We know that $\Sigma_{0} \cong \mathfrak{F}$, and that by this Γ_{p} can be identified with a subgroup $\Gamma_{\mathbf{R}}$ of Aut $\Sigma_{0} \cong$ Aut $\mathfrak{G}=G_{\mathbf{R}}$. By putting

$$
\Gamma=\left\{\gamma_{\mathbf{R}} \times \gamma_{\mathfrak{p}} \in G=G_{\mathbf{R}} \times G_{\mathfrak{p}} \mid \gamma_{\mathbf{R}}, \gamma_{p} \text { are corresponding elements of } \Gamma_{\mathbf{R}}, \Gamma_{p}\right\}
$$

L can be considered as the union of fields of automorphic functions with respect to $\Gamma_{R}^{V^{\prime}}$, for all open compact subgroups V^{\prime} of G_{p}. A discrete valuation $P^{*} \in \Sigma_{0}$ of L over \mathbf{C} is given by the corresponding point $z^{*} \in \mathfrak{G}$ as $L \ni f(z) \underset{P^{*}}{ } \operatorname{ord}_{z^{*}} f$. If $P^{*}, P^{* *} \in \Sigma_{0}$, then $\left.P^{*}\right|_{L_{V}}=\left.P^{* *}\right|_{L_{V}}$ is valid if and only if the corresponding points $z^{*}, z^{* *} \in \mathfrak{G}$ are $\Gamma_{\mathbf{R}}^{V}$-equivalent. Now, since Γ_{p} is dense in G_{p}, the set (19) is the same as the set

$$
\left\{\left.\gamma_{p}\left(P_{0}\right)\right|_{L_{v}} ; \gamma_{p} \in \Gamma_{p}\right\}
$$

Let z_{0} be the point on \mathfrak{G} corresponding to $P_{0} \in \Sigma_{0}$. Then the points corresponding to $\gamma_{\mathfrak{p}}\left(P_{0}\right)$ are $\gamma_{\mathbf{R}}\left(z_{0}\right)$; and since Γ_{R} is dense in $G_{R}, \gamma_{R}\left(z_{0}\right)\left(\gamma_{R} \in \Gamma_{R}\right)$ give infinitely many non-equivalent points modulo $\Gamma_{\mathbf{R}}^{V}$. This shows that the set (19'), and hence the set (19), is infinite. Therefore, the finiteness of the set (19) is a contradiction. Hence P_{0} must be unramified in L / M.

Now we are in the situation to prove the one-to-one correspondence between Δ and M stated at the beginning of this section. First, we shall show that Δ gives M. Let Δ be a subgroup of G containing Γ with $(\Delta: \Gamma)<\infty$. Then, it is clear that Δ is also a discrete subgroup of $G, G / \Delta$ has finite invariant volume, and that Δ_{R}, Δ_{p} are dense in G_{R}, G_{p} respectively. Therefore, for each open compact subgroup V of G_{p}, the projection $\Delta_{\mathbf{R}}^{V}$ of $\Delta^{V}=\Delta \cap\left(G_{\mathbf{R}} \times V\right)$ is a discrete subgroup of $G_{\mathbf{R}}$, and the quotient $G_{\mathbf{R}} / \Delta_{\mathbf{R}}^{V}$ has finite invariant volume. Let M_{V} be the field of automorphic functions with respect to $\Delta_{\mathbf{R}}^{V}$, and put $M=\bigcup_{V} M_{V}$. Since $\Delta_{\mathbf{R}}^{V} \supset \Gamma_{\mathbf{R}}^{V}$, we have $M_{V} \subset L_{V}$; hence $\mathbf{C} \subsetneq M \subset L$. We shall check that M is G_{p}-invariant in L, and that the restriction to M of the action of G_{p} on L gives the G_{p}-field M corresponding to Δ. To check this, let $f(z) \in M$ and $g_{p} \in G_{p}$. Take V such that $f(z) \in M_{V}$. By definition, $g_{p}\{f(z)\}=f\left(\gamma_{\mathbf{R}}^{-1} \cdot z\right)$ with $\gamma \in \Gamma \cap\left(G_{\mathbf{R}} \times g_{\mathfrak{p}} V\right)$; hence $g_{p}\{f(z)\}$ is an automorphic function with respect to $\gamma_{\mathbf{R}} \Delta_{\mathbf{R}}^{V} \gamma_{\mathbf{R}}^{-1}=\Delta_{\mathbf{R}}^{V^{\prime}}$, with $V^{\prime}=\gamma_{p} V \gamma_{p}^{-1}$. Hence $g_{p}\{f(z)\} \in M_{V^{\prime}} \subset M$, which shows the G_{p}-invariance of M. Since γ is also in $\Delta \cap\left(G_{\mathbf{R}} \times g_{\mathrm{p}} V\right)$, our second assertion is obvious (see also §5). Thus we have shown that Δ gives M. We note that

$$
(\Delta: \Gamma)=\left(\Delta^{V}: \Gamma^{V}\right)=\left[L_{V}: M_{V}\right]=[L: M]
$$

holds for each V. In fact, the first equality is an immediate consequence of $\Delta_{\mathfrak{p}}=\Delta_{\mathfrak{p}}^{V} \cdot \Gamma_{\mathfrak{p}}$ (since $\Gamma_{\mathfrak{p}}$ is dense in G_{p}), the second is obvious, and the last equality follows from the corollary of Proposition 2 (§3).

Conversely, let M be a G_{p}-subfield of L over \mathbf{C}; i.e., M is G_{p}-invariant and $\mathbf{C} \subsetneq M \subset L$. Then by $\S 3,[L: M]<\infty$, and M is also a G_{p}-field over C. Let Σ (resp. Σ^{\prime}) be the space of all non-equivalent non-trivial discrete valuations of L (resp. M) over \mathbf{C}. They are one dimensional complex manifolds, of which each connected component is isomorphic to \mathfrak{H}. Consider the restriction map

$$
\begin{equation*}
\varphi: \Sigma \rightarrow \Sigma^{\prime} \tag{20}
\end{equation*}
$$

Then it is clear that φ is holomorphic, and by Proposition 3, φ is unramified and gives an [$L: M$]-fold map of Σ onto Σ^{\prime}. In fact, φ induces an $[L: M]$-fold map $\widetilde{\varphi}$ of the set $C(\Sigma)$ of all connected components of Σ onto the set $C\left(\Sigma^{\prime}\right)$ of all connected components of Σ^{\prime}; and
if $\Sigma_{0} \in C(\Sigma), \Sigma_{0}^{\prime} \in C\left(\Sigma^{\prime}\right)$ and $\Sigma_{0}^{\prime}=\widetilde{\varphi}\left(\Sigma_{0}\right)$, then φ gives an isomorphism of Σ_{0} onto Σ_{0}^{\prime}. connected components of $\Sigma \quad$ connected components of Σ^{\prime}

These can be checked immediately by recalling the definition of the complex structure of Σ. We also note that the actions of G_{p} on Σ and on Σ^{\prime} are consistent with the map φ. Now let Σ_{1} be any connected component of Σ, and let $\Sigma_{i}(1 \leq i \leq m, m=[L: M])$ be the connected components of Σ such that $\varphi\left(\Sigma_{i}\right)=\varphi\left(\Sigma_{1}\right)$. Put

$$
\begin{cases}\Gamma_{\mathfrak{p}}=\left\{g_{\mathfrak{p}} \in G_{\mathfrak{p}} \mid g_{p}\left(\Sigma_{1}\right)=\Sigma_{1}\right\} \tag{22}\\ \Delta_{\mathfrak{p}}= & \left\{g_{\mathfrak{p}} \in G_{\mathfrak{p}} \mid g_{\mathfrak{p}}\left(\Sigma_{1}\right)=\Sigma_{i} \text { for some } i(1 \leq i \leq m)\right\}\end{cases}
$$

Then Δ_{p} can be identified with

$$
\begin{equation*}
\Delta_{\mathfrak{p}}=\left\{g_{p} \in G_{p}\left|\Sigma^{\prime}\right| g_{p}\left(\varphi\left(\Sigma_{1}\right)\right)=\varphi\left(\Sigma_{1}\right)\right\} . \tag{23}
\end{equation*}
$$

Therefore, $\Gamma_{p} \cong \Gamma_{R} \subset \operatorname{Aut}\left(\Sigma_{1}\right) \cong G_{R}$, and $\Delta_{p} \cong \Delta_{R} \subset \operatorname{Aut}\left(\varphi\left(\Sigma_{1}\right)\right) \cong G_{R}$. Define Γ, Δ by these identifications and by the diagonal embeddings into $G=G_{R} \times G_{p}$. Then, it can be checked immediately that $\Delta \supset \Gamma,(\Delta: \Gamma)<\infty$, that M is the G_{p}-field corresponding to Δ, and that Δ and M correspond in a one-to-one manner in such a way that the Galois theory holds between them.

So, we have proved the following Theorem.
Theorem 2. Let L be a G_{p}-field over \mathbf{C}, and let Γ be the corresponding discrete subgroup of G. Then, the G_{p}-subfields M such that $\mathbf{C} \subseteq M \subset L$ and groups Δ such that $\Gamma \subset \Delta \subset G$ with $(\Delta: \Gamma)<\infty$ correspond naturally in a one-to-one manner satisfying the Galois theory (in particular, we have $[L: M]=(\Delta: \Gamma)$). Moreover, the group Δ is the discrete subgroup of G which corresponds to M in the sense of Theorem 1.

We shall call Γ maximal if there is no such Δ other than Γ itself. Thus we obtain the following:

Corollary 1. The G_{p}-field L over \mathbf{C} is irreducible if and only if the corresponding group Γ is maximal.

Corollary $2 .{ }^{8}$ Let L be a G_{p}-field over C. Then, L contains an irreducible G_{p}-subfield over \mathbf{C}.

[^3]Proof. Let Γ be the discrete subgroup of G corresponding to L. Let Δ be any subgroup of G containing Γ with $(\Delta: \Gamma)<\infty$. Let V be any fixed open compact subgroup of G_{p}, and put $\Gamma^{V}=\Gamma \cap\left(G_{\mathrm{R}} \times V\right), \Delta^{V}=\Delta \cap\left(G_{\mathrm{R}} \times V\right)$. Then since $\Gamma_{p} \cdot \Delta_{\mathfrak{p}}^{V}=\Delta_{\mathfrak{p}}$, we have $(\Delta: \Gamma)=\left(\Delta^{V}: \Gamma^{V}\right)=\left(\Delta_{\mathbf{R}}^{V}: \Gamma_{\mathbf{R}}^{V}\right)$. But $\Gamma_{\mathbf{R}}^{V}$ is a discrete subgroup of $G_{\mathbf{R}}$ and the quotient $G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{V}$ has finite invariant volume. Hence the index $\left(\Delta_{\mathbf{R}}^{V}: \Gamma_{\mathbf{R}}^{V}\right)$ is bounded. It follows then that the index $(\Delta: \Gamma)$ is also bounded. Therefore, among all Δ, there is a maximal one. Now, our Corollary is a direct consequence of Theorem 2.

The above argument also shows the following:
Corollary 3. If there is an open compact subgroup V of G_{p} such that $\Gamma_{\mathbf{R}}^{V}$ is a maximal fuchsian group, then the G_{p} field over \mathbf{C} which corresponds to Γ is irreducible.

The full automorphism group of L over C.

§11. Let L be a G_{p}-field over \mathbf{C}, and let Aut $_{\mathbf{C}} L$ be the group of all automorphisms of the (abstract) field L which are trivial on \mathbf{C}. Then G_{p} can be considered as a subgroup of Aut L, and in general, may not coincide with the whole group Aut L. However, we can prove that G_{p} is of finite index in Aut L. This fact will be basic for our later studies.

Theorem 3. Let L be a G_{p}-field over \mathbf{C}, and let $\mathrm{Aut}_{\mathbf{c}} L$ be the group of all automorphisms of the abstract field L which are trivial on \mathbf{C}. Then G_{p} is a subgroup of $A u t_{C} L$ with finite index.

For the proof, we need some preliminaries ($\S 12, \S 13)$.
§12. Let Γ be the discrete subgroup of G which corresponds to L. Let $V_{1} \supset V_{2} \supset$ $\cdots \supset V_{n} \supset \cdots$ be any descending sequence of open compact subgroups of $G_{\mathfrak{p}}$ satisfying $\bigcap_{n=1}^{\infty} V_{n}=\{1\}$. Put $\Gamma^{n}=\Gamma \cap\left(G_{\mathrm{R}} \times V_{n}\right)(n \geq 1)$. Then we get a descending sequence $\Gamma_{\mathbf{R}}^{1} \supset \Gamma_{\mathbf{R}}^{2} \supset \cdots \supset \Gamma_{\mathbf{R}}^{n} \supset \cdots$ of discrete subgroups of $G_{\mathbf{R}}$ whose quotient spaces have finite invariant volumes. Now let Γ^{\prime} be the subgroup of G_{R} formed of all elements $x \in G_{\mathrm{R}}$ such that for any $n \geq 1$, there exists some $m \geq 1$ for which the inclusions $x^{-1} \Gamma_{\mathbf{R}}^{n} x \supset \Gamma_{\mathbf{R}}^{m}$ and $x \Gamma_{\mathbf{R}}^{n} x^{-1} \supset \Gamma_{\mathbf{R}}^{m}$ hold;

$$
\begin{equation*}
\Gamma^{\prime}=\left\{x \in G_{\mathbf{R}} \mid \forall n, \exists m ; x^{-1} \Gamma_{\mathbf{R}}^{n} x \supset \Gamma_{\mathbf{R}}^{m}, x \Gamma_{\mathbf{R}}^{n} x^{-1} \supset \Gamma_{\mathbf{R}}^{m}\right\} . \tag{24}
\end{equation*}
$$

It is obvious that Γ^{\prime} contains Γ_{R};

$$
\begin{equation*}
G_{\mathbf{R}} \supset \Gamma^{\prime} \supset \Gamma_{\mathbf{R}} \supset \Gamma_{\mathbf{R}}^{1} \supset \Gamma_{\mathbf{R}}^{2} \supset \cdots ; \bigcap_{n=1}^{\infty} \Gamma_{\mathbf{R}}^{n}=\{1\} . \tag{25}
\end{equation*}
$$

Now Γ_{p} carries a topology induced by that of G_{p}, and by the identification of Γ_{R} with Γ_{p}, we shall consider Γ_{R} as a topological group (\mathfrak{p}-adic topology; not the real topology). So, the subgroups $\Gamma_{\mathbf{R}}^{n}(n \geq 1)$ form a basis of neighborhoods of 1 . By the definition of Γ^{\prime}, we see that $\Gamma_{\mathbf{R}}^{n}(n \geq 1)$ satisfies the axioms for a basis of neighborhoods of 1 for Γ^{\prime}, and
hence by taking $\Gamma_{\mathbf{R}}^{n}(n \geq 1)$ as a basis of neighborhoods $1, \Gamma^{\prime}$ becomes a topological group which contains $\Gamma_{\mathbf{R}}$ as an open subgroup. Take completions with respect to this topology, and let $\widetilde{\Gamma}^{\prime}$ be the completion of Γ^{\prime}.

$$
\begin{array}{cccc}
\Gamma^{\prime} \supset \Gamma_{\mathbf{R}} \supset \Gamma_{\mathbf{R}}^{1} \supset & \cdots & \supset \Gamma_{\mathbf{R}}^{n} \supset & \cdots \tag{26}\\
\downarrow & \downarrow & \downarrow & \\
\Gamma^{\prime} \supset G_{p} \supset V_{1} \supset & \cdots & \supset V_{n} \supset & \cdots
\end{array}
$$

Thus $\widetilde{\Gamma}^{\prime}$ contains G_{p} as an open subgroup. Now we claim the following:
Proposition 4. The group Aut L is canonically isomorphic to $\widetilde{\Gamma}^{\prime}$.
Proof. We can identify L with the union of the fields of automorphic functions L_{n} with respect to $\Gamma_{\mathrm{R}}^{n} ; L=\bigcup_{n=1}^{\infty} L_{n}$. Now by the following action, the group Γ^{\prime} acts on L as an automorphism group over \mathbf{C} :

$$
\begin{equation*}
\Gamma^{\prime} \ni x: L \ni f(z) \mapsto f\left(x^{-1} \cdot z\right) \in L . \tag{27}
\end{equation*}
$$

(It follows immediately from the definition of Γ^{\prime} that $f\left(x^{-1} \cdot z\right) \in L$). As in $\S 5$ where we defined the action of G_{p} on L, we can also lift the action of $\Gamma^{\prime}($ on $L)$ to that of $\widetilde{\Gamma}^{\prime}$ on L. Namely, for each $\tilde{x} \in \widetilde{\Gamma^{\prime}}$ and $f(z) \in L$, take n such that $f(z) \in L_{n}$, take $x \in \Gamma^{\prime} \cap \tilde{x} V_{n}$ (where Γ^{\prime}, V_{n} are considered as subgroups of $\left.\widetilde{\Gamma}^{\prime}\right)$, and put $\tilde{x}\{f(z)\}=f\left(x^{-1} \cdot z\right)$. Then,

$$
\widetilde{\Gamma}^{\prime} \ni \tilde{x}: L \ni f(z) \mapsto \tilde{x}\{f(z)\} \in L
$$

defines an action of $\widetilde{\Gamma}$ on L. It is clear that its restriction to $G_{\mathfrak{p}}$ coincides with the original action. We shall show that this action is effective. Suppose that $\tilde{x} \in \bar{\Gamma}^{\prime}$ acts trivially on L. Then for any $n \geq 1$ and for any $x \in \Gamma^{\prime} \cap \tilde{x} V_{n}$, we get $f\left(x^{-1} \cdot z\right)=f(z)$ for all $f(z) \in L_{n}$. Fix any $z=z_{0} \in \mathfrak{H}$. Then since $f\left(x^{-1} \cdot z_{0}\right)=f\left(z_{0}\right)$ holds for all $f(z) \in L_{n}$, there exists $\delta \in \Gamma_{\mathbf{R}}^{n}$ such that $x^{-1} \cdot z_{0}=\delta \cdot z_{0}$. If z_{0} is not an elliptic fixed point of $\Gamma_{\mathbf{R}}^{n}$, then δ is uniquely determined by z_{0}. Consider δ as a $\Gamma_{\mathbf{R}}^{n}$-valued function of z_{0} defined on $\mathfrak{H}-E$, where E is the discrete subset of \mathfrak{H} formed of all elliptic fixed points of $\Gamma_{\mathbf{R}}^{n}$. Since $x^{-1} \cdot z_{0}$ is a continuous function of z_{0}, δ must also be continuous. But $\Gamma_{\mathbf{R}}^{n}$ is discrete. Therefore, δ must be a constant on $\mathfrak{H}-E$. So, put $\delta=\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^{n}$. Then, $x \cdot \gamma_{\mathbf{R}}$ stabilizes all points of $\mathfrak{H}-E$; hence $x=\left(\gamma_{\mathbf{R}}\right)^{-1} \in \Gamma_{\mathbf{R}}^{n}$; hence $\tilde{x} \in V_{n}$. Since n is arbitrary, we get $\tilde{x}=1$. Therefore, the action of $\widetilde{\Gamma^{\prime}}$ on L is effective. Thus we get

$$
\begin{equation*}
\widetilde{\Gamma}^{\prime} \subset \operatorname{Aut}_{\mathbf{c}} L \tag{28}
\end{equation*}
$$

Now we shall show that they are in fact equal. First, each point z^{*} on \mathfrak{S} gives a discrete valuation of L by $f(z) \mapsto \operatorname{ord}_{z^{*}} f(z)$; and in this manner, \mathfrak{S} can be considered as a connected component of Σ. Let this be denoted by Σ_{0}. We have seen (§6) that Aut L acts on Σ, leaving the complex structure of Σ invariant. Hence, if σ is any element of $\operatorname{Aut}_{\mathbf{c}} L$, then $\sigma\left(\Sigma_{0}\right)$ is another connected component of Σ. Since G_{p} acts transitively on the set of all connected component of Σ, we get $\sigma\left(\Sigma_{0}\right)=g_{\mathfrak{p}}\left(\Sigma_{0}\right)$ with some $g_{\mathfrak{p}} \in G_{\mathfrak{p}}$. Put $g_{\mathfrak{p}}^{-1} \cdot \sigma=\sigma_{0}$. Then, $\sigma_{0}\left(\Sigma_{0}\right)=\Sigma_{0}$; hence σ_{0} induces an automorphism of $\Sigma_{0} \cong \mathfrak{F}$. So, we can consider σ_{0} also as an element of $G_{R}=\operatorname{Aut}(\mathfrak{H}) \cong \operatorname{Aut} \Sigma_{0}$. By the definition of the action of Aut L on Σ, we have $\sigma_{0}\{f(z)\}=f\left(\sigma_{0}^{-1} \cdot z\right)$ for any $f(z) \in L(z$ is a variable on $\mathfrak{G})$. Hence we have $f\left(\sigma_{0}^{-1} \cdot z\right) \in L$ for any $f(z) \in L$. Now let $n \geq 1$, and let $f_{1}(z), \cdots, f_{N}(z)$ be a generator
of L_{n} over \mathbf{C}. Then $f_{i}\left(\sigma_{0}^{-1} \cdot z\right) \in L$ for all i. Take m for which L_{m} contains $f_{i}\left(\sigma_{0}^{-1} \cdot z\right)$ for all $i(1 \leq i \leq N)$. Then $f(z) \in L_{n}$ implies $f\left(\sigma_{0}^{-1} \cdot z\right) \in L_{m}$. Since $\left\{f\left(\sigma_{0}^{-1} \cdot z\right) \mid f(z) \in L_{n}\right\}$ is the field of automorphic functions with respect to $\sigma_{0} \Gamma_{\mathbf{R}}^{n} \sigma_{0}^{-1}$, we get $\sigma_{0} \Gamma_{\mathbf{R}}^{n} \sigma_{0}^{-1} \supset \Gamma_{\mathbf{R}}^{m}$. By applying the same argument for σ_{0}^{-1} instead of σ_{0}, we get $\sigma_{0}^{-1} \Gamma_{\mathbf{R}}^{n} \sigma_{0} \supset \Gamma_{\mathbf{R}}^{m^{\prime}}$ for some $m^{\prime} \geq 0$. Therefore,

$$
\sigma_{0} \Gamma_{\mathbf{R}}^{n} \sigma_{0}^{-1} \cap \sigma_{0}^{-1} \Gamma_{\mathbf{R}}^{n} \sigma_{0} \supset \Gamma_{\mathbf{R}}^{l} \text { holds for } l=\operatorname{Max}\left(m, m^{\prime}\right)
$$

This implies $\sigma_{0} \in \Gamma^{\prime}$; hence $\sigma \in G_{p} \cdot \Gamma^{\prime}=\widetilde{\Gamma^{\prime}}$; hence we get Aut $\mathbf{t}_{\mathbf{C}} L \subset \widetilde{\Gamma^{\prime}}$.
§13. Now, by (26) and by Proposition 4, we have

$$
\begin{equation*}
\left(\operatorname{Aut}_{\mathbf{C}} L: G_{\mathfrak{p}}\right)=\left(\Gamma^{\prime}: \Gamma_{\mathbf{R}}\right) \tag{29}
\end{equation*}
$$

hence our problem is to prove the finiteness of ($\Gamma^{\prime}: \Gamma_{\mathrm{R}}$). For this purpose, we need a lemma on local automorphisms of the group $P L_{2}\left(k_{p}\right)$. Here, by a local automorphism of a topological group X, we mean any isomorphism σ of an open subgroup U_{1} of X onto another open subgroup U_{2} of X; and if σ^{\prime} is another local automorphism of $X ; \sigma^{\prime}$: $U_{1}^{\prime} \cong U_{2}^{\prime}$, then σ and σ^{\prime} are called equivalent if they coincide on some open subgroup $U_{1}^{\prime \prime} \subset U_{1} \cap U_{1}^{\prime}$. To distinguish from local automorphisms, we use the terminology "global automorphisms" for usual (topological) automorphisms of X. Of course, every global automorphism of X defines an equivalence class of local automorphisms.

Lemma 1.

(i) Every local automorphism of $P L_{2}\left(k_{p}\right)$ is equivalent to a global automorphism of $P L_{2}\left(k_{p}\right)$.
(ii) Every global automorphism of $P L_{2}\left(k_{p}\right)$ is a product of an inner automorphism and an automorphism of $P L_{2}\left(k_{p}\right)$ obtained by a field automorphism of k_{p} over \mathbf{Q}_{p}.
(iii) Every global automorphism of $G_{p}=P S L_{2}\left(k_{p}\right)$ is induced from that of $P L_{2}\left(k_{p}\right)$.

The proof is given in Supplement $\S 4$. It is a direct consequence of Dynkin's theory of normed Lie algebras [8].

Remark 1. (ii) implies that the group of all global automorphisms of $P L_{2}\left(k_{p}\right)$ is isomorphic to the semi-direct product of $P L_{2}\left(k_{\mathrm{p}}\right)$ and Aut $\mathbf{Q}_{p} k_{\mathrm{p}}$, where $\mathrm{Aut}_{\mathbf{Q}_{p}} k_{\mathrm{p}}$ is the group of all automorphisms of the field k_{p} over \mathbf{Q}_{p}, which acts on $P L_{\mathbf{2}}\left(k_{\mathrm{p}}\right)$ in a natural manner;

$$
\begin{equation*}
\text { Aut } P L_{2}\left(k_{\mathfrak{p}}\right) \cong P L_{2}\left(k_{\mathfrak{p}}\right) \cdot \text { Aut }_{\mathbf{Q}_{p}} k_{\mathfrak{p}} \quad(\text { semi-direct }) . \tag{30}
\end{equation*}
$$

This also shows that distinct global automorphisms of $P L_{2}\left(k_{p}\right)$ give distinct (equivalence) classes of local automorphisms of $P L_{2}\left(k_{p}\right)$. Hence, if we denote by Aut' X the group of all equivalence classes of local automorphisms of a topological group X, then we get

$$
\begin{equation*}
\operatorname{Aut}^{\prime} G_{p}=\operatorname{Aut}^{\prime} P L_{2}\left(k_{p}\right) \cong P L_{2}\left(k_{\mathfrak{p}}\right) \cdot \operatorname{Aut}_{\mathbf{Q}_{p}} k_{\mathfrak{p}}, \tag{31}
\end{equation*}
$$

where $G_{p}=P S L_{2}\left(k_{p}\right)$.

Remark 2. The automorphism $x \mapsto^{t} x^{-1}$ of $P L_{2}\left(k_{p}\right)$ is an inner automorphism. In fact, we have ${ }^{t} x^{-1}=b^{-1} x b$ for any $x \in P L_{2}\left(k_{p}\right)$ with $b=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. But for $P L_{n}\left(k_{p}\right)$ with $n>2$, $x \mapsto^{t} x^{-1}$ is not inner.

814.

Proof of Theorem 3. As a descending sequence $V_{1} \supset V_{2} \supset \cdots$ of open compact subgroups of G_{p} with $\bigcap_{n=1}^{\infty} V_{n}=\{1\}$, we shall take

$$
\left\{\begin{array}{l}
V_{1}=P S L_{2}\left(O_{\mathfrak{p}}\right) \tag{32}\\
V_{n}=\left\{x \in V_{1} \mid x \equiv 1\left(\operatorname{modp}^{n-1}\right)\right\} \quad(n>1)
\end{array}\right.
$$

Now, since G_{p} is an open subgroup of $\widetilde{\Gamma}^{\prime}$, an inner automorphism of $\widetilde{\mathrm{T}^{\prime}}$ induces a local automorphism of $G_{\mathfrak{p}}$. Thus we get a homomorphism $\widetilde{\varphi}$ of $\widetilde{\Gamma}^{\prime}$ into the group Aut' G_{p} of all equivalence classes of local automorphisms of G_{p};

$$
\begin{equation*}
\widetilde{\varphi}: \widetilde{\Gamma}^{\prime} \rightarrow \text { Aut }^{\prime} G_{\mathfrak{p}} \tag{33}
\end{equation*}
$$

By (31), we can identify Aut' $G_{\mathfrak{p}}$ with $P L_{2}\left(k_{\mathfrak{p}}\right) \cdot A u t_{Q_{p}} k_{p}$, and hence by the restriction of $\bar{\varphi}$ to Γ^{\prime}, we get a homomorphism:

$$
\begin{equation*}
\varphi: \Gamma^{\prime} \rightarrow P L_{2}\left(k_{\mathrm{p}}\right) \cdot \mathrm{Aut}_{\mathrm{Q}_{p}} k_{\mathrm{p}} . \tag{34}
\end{equation*}
$$

Consider the subgroup $Y=P S L_{2}\left(k_{\mathfrak{p}}\right) P L_{2}\left(O_{p}\right) \cdot$ Aut $_{\mathbf{Q}_{p}} k_{\mathfrak{p}}$ of $P L_{2}\left(k_{\mathfrak{p}}\right) \cdot$ Aut $_{\mathbf{Q}_{p}} k_{\mathrm{p}}$. It is of index two. Let $\Gamma^{\prime \prime}$ be the inverse image of Y by φ. Since $\varphi\left(\Gamma_{R}\right)$ is contained in $G_{p}=P S L_{2}\left(k_{p}\right)$, $\Gamma^{\prime \prime}$ contains Γ_{R}, and we get

$$
\begin{equation*}
\Gamma^{\prime} \supset \Gamma^{\prime \prime} \supset \Gamma_{\mathbf{R}}, \quad\left(\Gamma^{\prime}: \Gamma^{\prime \prime}\right) \leq 2 \tag{35}
\end{equation*}
$$

So, to prove $\left(\Gamma^{\prime}: \Gamma_{R}\right)<\infty$, it suffices to prove ($\Gamma^{\prime \prime}: \Gamma_{R}$) $<\infty$.
For this purpose, let $x \in \Gamma^{\prime \prime}$. Then there exist $n_{0} \geq 1, g_{p} \in G_{p}=P S L_{2}\left(k_{p}\right), w_{p} \in$ $P L_{2}\left(O_{p}\right)$, and $\sigma \in$ Aut $_{Q_{p}} k_{p}$ acting on $P L_{2}\left(k_{p}\right)$, such that $x^{-1} v x=g_{p}^{-1} w_{p}^{-1} v^{\sigma} w_{p} g_{p}$ for all $v \in$ $V_{n_{0}}$. Take $\gamma \in \Gamma_{\mathrm{R}} \cap V_{1} g_{\mathrm{p}}$, and put $\gamma=v_{1} g_{p}$ with $v_{1} \in V_{1}$. Since $P L_{2}\left(O_{p}\right) \cdot$ Aut $\mathbf{Q}_{p} k_{p}$ normalizes all $V_{n}(n \geq 1)$, we have $w_{p}^{-1} v^{\sigma} w_{p} \in V_{n_{0}}$ for all $v \in V_{n_{0}}$; hence $g_{p} x^{-1}=v_{1}^{-1} \gamma x^{-1}$ normalizes all V_{n} for $n \geq n_{0}$. Since v_{1} also normalizes all V_{n}, it follows that γx^{-1} normalizes V_{n} for all $n \geq n_{0}$. But since $\gamma x^{-1} \in \Gamma^{\prime \prime} \subset \Gamma^{\prime}$, it normalizes $\Gamma^{\prime} \cap V_{n}=\Gamma_{\mathbf{R}} \cap V_{n}=\Gamma_{\mathbf{R}}^{n}$ for all $n \geq n_{0}$. So, if we put

$$
\begin{equation*}
H^{m}=\left\{x \in G_{\mathbf{R}} \mid x^{-1} \Gamma_{\mathbf{R}}^{n} x=\Gamma_{\mathbf{R}}^{n} \text { for all } n \geq m\right\} \quad(m \geq 1) \tag{36}
\end{equation*}
$$

this implies that $\gamma x^{-1} \in H^{n_{0}}$; hence every element of $\Gamma^{\prime \prime}$ is contained in $H^{n_{0}} \cdot \Gamma_{\mathbf{R}}$ for some $n_{0} \geq 1$.

Now, since $\Gamma_{\mathbf{R}}^{1}$ normalizes all $\Gamma_{\mathbf{R}}^{n}(n \geq 1)$, we get

$$
\begin{equation*}
\cdots \supset H^{2} \supset H^{1} \supset \Gamma_{\mathbf{R}}^{1} \supset \Gamma_{\mathbf{R}}^{2} \supset \cdots \tag{37}
\end{equation*}
$$

But, in general, if Δ is a discrete subgroup of G_{R} whose quotient space has finite invariant volume, then its normalizer $N(\Delta)$ in $G_{\mathbf{R}}$ satisfies $(N(\Delta): \Delta)<\infty$; and there exist only finitely many subgroups Δ^{\prime} of G_{R} such that $\Delta^{\prime} \supset \Delta$ and $\left(\Delta^{\prime}: \Delta\right)<\infty$.

Apply this to $\Delta=\Gamma_{\mathbf{R}}^{m}$. Since $H^{m} \subset N\left(\Gamma_{\mathbf{R}}^{m}\right)$, we get $\left(H^{m}: \Gamma_{\mathbf{R}}^{1}\right) \leq\left(H^{m}: \Gamma_{\mathbf{R}}^{m}\right)<\infty$, and hence we also get $H^{m}=H^{m+1}=\cdots$ for sufficiently large m. Now put $H=\bigcup_{n=1}^{\infty} H^{n}$. Then $\left(H: \Gamma_{\mathbf{R}}^{1}\right)<\infty$, and by what we have shown we have $\Gamma^{\prime \prime} \subset H^{n_{0}} \Gamma_{\mathbf{R}}$ for some n_{0}, and hence $\Gamma^{\prime \prime} \subset H \cdot \Gamma_{\mathbf{R}}$. Put $H=\sum_{i=1}^{t} M_{i} \Gamma_{\mathbf{R}}^{1}$ with $M_{i} \in H(1 \leq i \leq t)$. Then we get $\Gamma^{\prime \prime} \subset H \cdot \Gamma_{\mathbf{R}}=\sum_{i=1}^{t} M_{i} \Gamma_{\mathrm{R}} ;$ hence $\left(\Gamma^{\prime \prime}: \Gamma_{\mathbf{R}}\right) \leqq\left(H: \Gamma_{\mathbf{R}}^{1}\right)<\infty$.

So, we have also proved:

Corollary 1. We have

$$
\begin{equation*}
\left(\operatorname{Aut}_{\mathbf{C}} L: G_{\mathfrak{p}}\right)=\left(\Gamma^{\prime}: \Gamma_{\mathbf{R}}\right) \leq 2\left(H: \Gamma_{\mathbf{R}}^{1}\right), \tag{38}
\end{equation*}
$$

where Γ^{\prime} is given by (24), $\Gamma_{\mathbf{R}}^{n}=\left[\Gamma \cap\left(G_{\mathbf{R}} \times V_{n}\right)\right]_{\mathbf{R}}(n \geq 1)$, with V_{n} defined by (32), and H is the subgroup of all elements of G_{R} which normalize $\Gamma_{\mathbf{R}}^{n}$ for all sufficiently large n.

§15. Some direct consequences of Theorem 3.

Corollary 2. The group G_{p} is a characteristic subgroup of $\operatorname{Aut}_{\mathbf{C}} L$.

Proof. Since G_{p} is a simple group (as an abstract group), it is enough to show that if a group A contains a subgroup B with $(A: B)<\infty$ and if B is an infinite simple group, then B is invariant by every automorphism of A. Let σ be any automorphism of A. Then $B \cap B^{\sigma}$ is of finite index in B. Therefore, $\bigcap_{x \in B} x^{-1}\left(B \cap B^{\sigma}\right) x$ is a normal subgroup of B with finite index. But B is infinite and simple. Therefore, $\bigcap_{x \in B} x^{-1}\left(B \cap B^{\sigma}\right) x=B$; hence $B \cap B^{\sigma}=B$; hence $B^{\sigma} \supset B$. Since $(A: B)=\left(A^{\sigma}: B^{\sigma}\right)=\left(A: B^{\sigma}\right)$, we get $B^{\sigma}=B$.

Corollary 3. Let 3 be the centralizer of G_{p} in $\mathrm{Aut}_{\mathbf{c}}$ L. Then
(i) 3 is finite.
(ii) 3 reduces to $\{1\}$ if and only if L contains no G_{p}-subfield M over \mathbf{C} such that L / M is normal. In particular, if L is irreducible, then $3=\{1\}$.

Proof. (i) Since G_{p} has no center, we get $3 \cap G_{p}=\{1\}$; hence by $\left(\right.$ Aut $\left._{C} L: G_{p}\right)<\infty$, we get the finiteness of 3 .
(ii) If $3 \neq\{1\}$, let M be the fixed field of 3 in L. Since 3 centralizes G_{p}, M is G_{p} invariant. Also it is clear that L / M is normal and $[L: M]=(3: 1) \neq 1$. Conversely, let $M(\neq L)$ be a G_{p}-subfield of L over \mathbf{C} such that L / M is normal, and put $3^{\prime}=\operatorname{Aut}(L / M) \neq$ $\{1\}$. Then for each $g_{\mathfrak{p}} \in G_{p}$, the fixed field of $g_{\mathfrak{p}}^{-1} 3^{\prime} g_{\mathfrak{p}}$ is $g_{p}^{-1}(M)=M$. Hence $g_{p}^{-1} 3^{\prime} g_{\mathfrak{p}}=3^{\prime}$; hence G_{p} normalizes 3^{\prime}. Let X be the centralizer of 3^{\prime} in G_{p}. Then X is a normal subgroup of G_{p} with finite index (since 3^{\prime} is finite). But G_{p} is a simple group. Therefore, $X=G_{p}$; hence G_{p} centralizes 3^{\prime}; hence 3 contains $3^{\prime} \neq\{1\}$. Therefore, $3 \neq\{1\}$.

Corollary 4. Let $N(\Gamma)$ be the normalizer of Γ in G. Then
(i) $(N(\Gamma): \Gamma)<\infty$;
(ii) $N(\Gamma)=\Gamma$ holds if and only if L contains no G_{p}-subfield $M \neq L$ over \mathbf{C} such that L / M is normal.
 injective. In fact, let $\delta=\delta_{\mathbf{R}} \times \delta_{\mathfrak{p}} \in N(\Gamma)$ with, say, $\delta_{\mathbf{R}}=1$. Let $\gamma=\gamma_{R} \times \gamma_{\mathfrak{p}} \in \Gamma$. Then $\delta^{-1} \gamma \delta=\gamma_{\mathrm{R}} \times \delta_{p}^{-1} \gamma_{\mathrm{p}} \delta_{\mathrm{p}} \in \Gamma$. But by the injectivity of $\Gamma \rightarrow \Gamma_{\mathrm{R}}$, we get $\delta_{p}^{-1} \gamma_{p} \delta_{p}=\gamma_{p}$. Therefore, δ_{p} commutes with all elements of Γ_{p}; hence $\delta_{p}=1$.

Now, it is clear that $N(\Gamma)_{\mathbf{R}} \subset \Gamma^{\prime}$, where Γ^{\prime} is as in $\S 12$. Hence $(N(\Gamma): \Gamma)=\left(N(\Gamma)_{\mathbf{R}}\right.$: $\left.\Gamma_{R}\right)<\infty$; which settles (i). Now (ii) is a direct consequence of (i) and Theorem 2.
816. A G_{p}-field L over \mathbf{C} will be called quasi-irreducible if L contains no G_{p} subfields $M \neq L$ over \mathbf{C} such that L / M is normal. By Corollary $3, L$ is quasi-irreducible if and only if the centralizer of G_{p} in Aut $c_{c} L$ is trivial, and by Corollary 4 , if and only if $N(\Gamma)=\Gamma$. In particular, if L is irreducible or if $G_{p}=$ Aut $_{\mathbf{C}} L$, then L is quasi-irreducible. Quasi-irreducible G_{p}-fields over \mathbf{C} play central roles in Part 2 of this Chapter.

$\$ 17$.

Example. Let L be the G_{p}-field over \mathbf{C} which corresponds to $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$ (see §2). Here, $G_{p}=G_{p}=P S L_{2}\left(\mathbf{Q}_{p}\right)$. Since $\Gamma_{R}^{1}=P S L_{2}(\mathbf{Z})$ is a maximal fuchsian group, we get $H=\Gamma_{\mathrm{R}}^{1}$; hence by (38) we get (Aut $\left.L: G_{p}\right)=\left(\Gamma^{\prime}: \Gamma_{\mathbf{R}}\right) \leq 2$. But if we put

$$
\begin{equation*}
\Gamma^{*}=\left\{x \in G L_{2}\left(\mathbf{Z}^{(p)}\right) \mid \text { det } x=\text { powers of } p\right\} / \pm\{\text { powers of } p\} \tag{39}
\end{equation*}
$$

then Γ^{*} can be considered as a subgroup of G_{R} with $\Gamma^{*} \supset \Gamma_{R},\left(\Gamma^{*}: \Gamma_{\mathbf{R}}\right)=2$, and it is clear that $\Gamma^{*} \subset \Gamma^{\prime}$. Therefore, we get $\Gamma^{\prime}=\Gamma^{*}$. Therefore, Aut $L=\widetilde{\Gamma}^{*}$, where $\widetilde{\Gamma}^{*}$ is the p-adic completion of Γ^{*} given by

$$
\begin{equation*}
\widetilde{\Gamma}^{*}=\left\{x \in G L_{2}\left(\mathbf{Q}_{p}\right) \mid \operatorname{det} x=\text { powers of } p\right\} / \pm\{\text { powers of } p\} . \tag{40}
\end{equation*}
$$

Since $\Gamma_{\mathbf{R}}^{1}=P S L_{2}(\mathbf{Z})$ is maximal, L is irreducible by Corollary 3 of Theorem 2.

[^0]: ${ }^{5}$ First, express x in the form $\sum_{i=1}^{n} c_{i} x_{i} / \sum_{i=1}^{n} d_{i} x_{i}$, with $c_{i}, d_{i} \in k, x_{i} \in L^{\prime}(1 \leq i \leq n)$, and then consider the norm over $L_{V}^{\prime} \cdot k$ of the denominator.

[^1]: ${ }^{6}$ It is well-known, and easy to prove, that such V_{0} exists.

[^2]: ${ }^{7}$ See Supplement §1.

[^3]: ${ }^{8}$ We can prove further that L contains only finitely many G_{p}-subfields over \mathbf{C} (see Supplement §3 (Corollary 2)).

