Part 1. The G_p -fields over **C**.

The G_p -fields.

§1. Let L be a discrete field, on which the group $G_p = PSL_2(k_p)$ acts effectively and continuously as a group of field-automorphisms; namely, each $g_p \in G_p$ gives a field automorphism $x \mapsto g_p(x)$ of L, and the induced map $G_p \to \operatorname{Aut} L$ is an injective homomorphism;

(1)
$$(g_{\mathfrak{p}}h_{\mathfrak{p}})(x) = g_{\mathfrak{p}}(h_{\mathfrak{p}}(x)) \quad \forall g_{\mathfrak{p}}, h_{\mathfrak{p}} \in G_{\mathfrak{p}}, x \in L; \\ g_{\mathfrak{p}}(x) = x \quad (\forall x \in L) \leftrightarrow g_{\mathfrak{p}} = 1.$$

Since L is a discrete field, the continuity of the actions of G_p amounts to saying that, for each $x \in L$, its stabilizer in G_p is open. For each open compact subgroup V of G_p , put

(2)
$$L_V = \{x \in L \mid v(x) = x, \forall v \in V\}.$$

Since open compact subgroups form a basis of neighborhoods of the identity of G_p , we get $L = \bigcup_V L_V$. Moreover, it follows that for each V, L/L_V is separably algebraic, V is the group of all automorphisms of L/L_V , and the topology of V induced by that of G_p coincides with the Krull topology of $V = \operatorname{Aut}(L/L_V)$. In fact, let $x \in L$, and let V' be its stabilizer in G_p . Then since V' is open, we have $(V : V' \cap V) < \infty$. Put $V = \sum_{i=1}^d \sigma_i (V \cap V')$. Then $\sigma_1(x), \dots, \sigma_d(x)$ are mutually distinct, and their elementary symmetric functions are all contained in L_V ; hence L/L_V is separably algebraic. Now consider $\operatorname{Aut}(L/L_V)$ as equipped with the Krull topology. Then the injection $\varphi : V \to \operatorname{Aut}(L/L_V)$ is continuous, since the action of G_p on L is so; hence $\varphi(V)$ is also compact. On the other hand, $\varphi(V)$ is dense in $\operatorname{Aut}(L/L_V)$, since for any $\sigma \in \operatorname{Aut}(L/L_V)$, we have $\sigma(x) = \sigma_i(x)$ for some i (σ_i being as above, for this x). Therefore, $\varphi(V) = \operatorname{Aut}(L/L_V)$, and φ is bicontinuous (since V is compact).

Let k be the fixed field of G_{p} ;

(3)
$$k = \{x \in L \mid g_{\mathfrak{p}}(x) = x \; \forall g_{\mathfrak{p}} \in G_{\mathfrak{p}}\}.$$

We shall call L a one-dimensional G_p -field over k, or simply, a G_p -field over k, if

$$(L1) \dim_k L = 1,$$

and if for every open compact subgroup V of G_p , the condition:

(L2) L_V is finitely generated over k, and almost all prime divisors of L_V over k are unramified in L;

is satisfied. We note that since L/L_V is algebraic, (L1) implies $\dim_k L_V = 1$; hence L_V is an algebraic function field of one variable over k, in the sense that L_V/k is finitely generated and is of dimension one. By a prime divisor of L_V over k, we mean an equivalence class

of non-trivial discrete valuations of L_V over k or equivalently, an equivalence class of nontrivial places of L_V over k. Since open compact subgroups of G_p are commensurable with each other, the condition (L2) is satisfied for all V if it is satisfied for one V.

The subfield k of L given by (3) will be called the constant field of L. Two G_{p} -fields L, L' with the common constant field k are called *isomorphic* if there exists an isomorphism of the field L onto L' which is trivial on k and which commutes with the actions of all elements of G_{p} .

§2.

EXAMPLE. Let p be a prime number, and put

(4)
$$\Delta^{(n)} = \{x \in SL_2(\mathbb{Z}) \mid x \equiv \pm 1 \pmod{p^n}\} / \pm 1 \quad (n \ge 0).$$

Consider $\Delta^{(n)}$ as fuchsian groups acting on the complex upper half plane 5, and let L_n $(n \ge 0)$ be the field of automorphic functions with respect to $\Delta^{(n)}$. Put $L = \bigcup_{n=0}^{\infty} L_n$. Define the action of the group $PSL_2(\mathbb{Q}_p)$ on L in the following manner. As in Chapter 1, §2 (Example), put $\mathbb{Z}^{(p)} = \bigcup_{n=0}^{\infty} p^{-n}\mathbb{Z}$, $\Gamma = PSL_2(\mathbb{Z}^{(p)})$, and consider Γ as a discrete subgroup of $G = G_{\mathbb{R}} \times G_p$, with $G_{\mathbb{R}} = PSL_2(\mathbb{R})$ and $G_p = PSL_2(\mathbb{Q}_p)$. Then, $\Gamma_p \cong \Gamma_{\mathbb{R}} \subset G_{\mathbb{R}}$ acts on L as

(5)
$$\Gamma_p \ni \gamma_p : L \ni f(z) \mapsto \gamma_p(f(z)) = f(\gamma_{\mathbf{R}}^{-1} \cdot z) \in L,$$

where $\gamma_{\mathbf{R}}$ is the element of $\Gamma_{\mathbf{R}}$ which corresponds to γ_p . Now, we lift the action of Γ_p to that of G_p ; namely, for each $f(z) \in L_n$ and $g_p \in G_p$, put $g_p(f(z)) = \gamma_p(f(z))$ with any $\gamma_p \in \Gamma_p \cap g_p U_p^{(n)}$, where

(6)
$$U_p^{(n)} = \{x \in SL_2(\mathbb{Z}_p) \mid x \equiv \pm 1 \pmod{p^n}\} / \pm 1 \quad (n \ge 0).$$

Then, this defines an action of G_p on L, which is effective and continuous. By noting that L_n is the fixed field of $U_p^{(n)}$ $(n \ge 0)$, we see immediately that L is a $PSL_2(\mathbb{Q}_p)$ -field over the complex number field \mathbb{C} .

We shall show later (§5-§9) that all G_p -fields over **C** are obtained in this manner from discrete subgroups Γ of $G = G_{\mathbf{R}} \times G_p$ such that $\Gamma_{\mathbf{R}}$, Γ_p are dense in $G_{\mathbf{R}}$, G_p respectively and G/Γ have finite invariant volumes.

§3.

PROPOSITION 1. Let L be a G_{p} -field over k. Then k is algebraically closed in L.

PROOF. In fact, let $x \in L$ be algebraic over k. Then for any $g_p \in G_p$, $g_p(x)$ is conjugate to x over k. This shows that the stabilizer of x in G_p is of finite index in G_p . But if H is a subgroup of G_p of finite index, then $N = \bigcap_{g_p \in G_p} g_p^{-1} H g_p$ is a normal subgroup of G_p with finite index; hence by the simplicity of the group $G_p = PSL_2(k_p)$ we get $N = G_p$; and hence $H = G_p$. Therefore, the stabilizer of x in G_p must be G_p itself; hence $x \in k$. \Box **PROPOSITION 2.** Let L be a G_p -field over k. Let L' be a G_p -invariant subfield of L, not contained in k. Put $k' = L' \cap k$. Then,

- (i) L' and k are linearly disjoint over k'.
- (ii) $[L: L' \cdot k] < \infty$.
- (iii) With the restricted action of $G_{\mathfrak{p}}$ on L', L' is a $G_{\mathfrak{p}}$ -field over k'.

PROOF. (i). Suppose, on the contrary, that L' and k were not linearly disjoint over k'. Then, there exists a set of elements $c_1, \dots, c_n \in k$ that are linearly independent over k', but not over L'. We can assume that c_1, \dots, c_{n-1} are linearly independent over L', since otherwise, we can replace c_1, \dots, c_n by c_1, \dots, c_{n-1} . Now, c_1, \dots, c_{n-1} being linearly independent over L' and c_1, \dots, c_n not being so, we get $c_n = x_1c_1 + \dots + x_{n-1}c_{n-1}$ with some $x_1, \dots, x_{n-1} \in L'$, and with, say, $x_1 \notin k'$. Since $x_1 \in L'$ and $k' = L' \cap k$, this implies $x_1 \notin k$, and hence there exists some $g_p \in G_p$ for which $g_p(x_1) \neq x_1$. Now by $c_n = x_1c_1 + \dots + x_{n-1}c_{n-1}$, we get $c_n = g_p(x_1)c_1 + \dots + g_p(x_{n-1})c_{n-1}$; hence

$$(x_1 - g_p(x_1))c_1 + \cdots + (x_{n-1} - g_p(x_{n-1}))c_{n-1} = 0.$$

Since L' is G_p -invariant, all coefficients of c_i are contained in L', and $x_1 - g_p(x_1) \neq 0$. This contradicts the assumption on linear independence of c_1, \dots, c_{n-1} over L'. Thus (i) is settled.

(ii), (iii). It is clear that G_p acts continuously on L', and that the fixed field is k'. Let Δ be the kernel of the action of G_p on L'. Then, Δ is a normal subgroup of G_p , and since $L' \supseteq k'$, Δ is not G_p itself. Hence, by the simplicity of the group $G_p = PSL_2(k_p)$, we get $\Delta = \{1\}$; hence the action of G_p on L' is effective. By $k \subseteq L'k \subset L$ and by Proposition 1, we get dim_k L'k = 1, and hence by the linear disjointness of L' and k over k', we get dim_{k'} L' = 1. Now let V be any open compact subgroup of G_p , and let L'_V be the fixed field of $V|_{L'}$. It is clear that $L'_V = L' \cap L_V$. Moreover, the argument of §1 shows that L'/L'_V is separably algebraic (hence L'_V/k' is of dimension one), and that $\operatorname{Aut}(L'/L'_V) = V|_{L'}$. Also, since $k \subseteq L'_V \cdot k \subset L_V, L'_V \cdot k/k$ is finitely generated and is of dimension one (by Proposition 1). Hence, by the linear disjointness of L' and k over k', we get [$L_V : L'_V \cdot k$] < ∞ .

Now, put $M = L' \cdot k$ and $M_V = M \cap L_V$. We claim that $M \cdot L_V = L$ and $M_V = L'_V \cdot k$. In fact, since G_p acts effectively on $M = L' \cdot k$, the subgroup of G_p which acts trivially on $M \cdot L_V$ is {1}. On the other hand, $V = \operatorname{Aut}(L/L_V)$ with the Krull topology (see §1), and the Galois theory is valid between compact subgroups of V and intermediate fields of L/L_V (Krull's Galois theory). This shows $M \cdot L_V = L$. Let us now check $M_V = L'_V \cdot k$. First, every element x of $M = L' \cdot k$ can be written in the form:

$$x = a \sum_{i=1}^{n} c_i x_i, \quad \text{with } a \in L'_V \cdot k, \ c_i \in k, \ x_i \in L' \ (1 \le i \le n).$$

Ľ

This follows easily 5 from the fact that L'/L'_V is normal and separable, and that L' and k are linearly disjoint over k'.

Now let x be contained in M_V . We can assume that c_1, \dots, c_n are linearly independent over k', and hence also over L'. By v(x) = x ($v \in V$), we get $v(x_i) = x_i$ ($1 \le i \le n$) for all $v \in V$. This shows $x_i \in L'_V$; hence we get $x \in L'_V \cdot k$. Hence $M_V \subset L'_V \cdot k$. On the other hand, the inclusion $M_V \supset L'_V \cdot k$ is obvious. Hence we get $M_V = L'_V \cdot k$.

So, we get the following diagram, in which every "branch" is linearly disjoint: (M, L_V) are linearly disjoint over M_V since M/M_V is Galois, L_V/M_V is algebraic, and since $M \cap L_V = M_V$.)

So, by $[L_V : M_V] = [L_V : L'_V \cdot k] < \infty$, we get $[L : M] = [L_V : M_V] < \infty$. This settles (ii). Finally, since almost all prime divisors of L_V over k are unramified in L, and since $[L_V : M_V] < \infty$, it follows immediately that almost all prime divisors of M_V over k are unramified in L, and hence a priori in M. Thus, by the linear disjointness of L' and k over k', it follows immediately that almost all prime divisors of L'_V over k' are unramified in L'. Therefore, together with what we have proved already, we have completed the proof that L' is a G_p -field over k'.

We have also proved the following:

COROLLARY. The situation being as in Proposition 2, let V be an open compact subgroup of $G_{\mathfrak{p}}$ and let $L'_V = L' \cap L_V$. Then $L'_V \cdot k$ consists of all V-invariant elements of $L' \cdot k$, and we have $[L : L'k] = [L_V : L'_V \cdot k] < \infty$.

⁵First, express x in the form $\sum_{i=1}^{n} c_i x_i / \sum_{i=1}^{n} d_i x_i$, with c_i , $d_i \in k$, $x_i \in L'$ $(1 \le i \le n)$, and then consider the norm over $L'_V \cdot k$ of the denominator.

§4. Let L be a G_p -field over k, and let L' be a G_p -invariant subfield of L, with $L' \not\subset k$. Put $k' = L' \cap k$. Such L' will be called a G_p -subfield (of L) over k'. Thus, if L' is such, and if $k' \subset k_1 \subset k$, then $L' \cdot k_1$ is a G_p -subfield over k_1 . In particular, $L' \cdot k$ is a G_p -subfield over k, and by Proposition 2, we have $[L : L'k] < \infty$.

We shall call L' a full G_p -subfield over k', if moreover the condition $L' \cdot k = L$ is satisfied. Since L' and k are linearly disjoint over k', it implies that L is identified with the constant field extension $L' \otimes_{k'} k$ of L'. We shall call a G_p -field L over k irreducible if L has no G_p -subfields over k other than L itself, i.e., there is no proper intermediate G_p -invariant subfield between k and L. Thus, if L is irreducible, then all G_p -subfields of L are full G_p -subfields.

We shall prove in Part 2 of this Chapter that if L is a G_{p} -field over the complex number field C, then it contains a full

 G_p -subfield L_k over an algebraic number field k. We shall prove, moreover, that under a certain condition on L which is always satisfied if L is irreducible, such L_k is essentially unique, in the sense that among them there is a smallest field L_{k_0} over k_0 and that all other L_k are obtained as $L_k = L_{k_0} \cdot k$, $k \supset k_0$. In other words, all G_p -fields over C are the constant field extensions of some G_p -fields over an algebraic number field of finite degree, and if the former is irreducible, then the latter is essentially unique.

This will be proved by using the one-to-one correspondence between G_p -fields over **C** and certain discrete subgroups Γ of $G = G_{\mathbf{R}} \times G_p$ (Theorem 1), and then by using some group theory of G_p and analysis of Γ (Part 2).

Analytic construction of G_{p} -fields over C.

§5. Let Γ be a discrete subgroup of $G = G_{\mathbf{R}} \times G_{\mathfrak{p}} = PSL_2(\mathbf{R}) \times PSL_2(k_{\mathfrak{p}})$ such that the projections $\Gamma_{\mathbf{R}}$, $\Gamma_{\mathfrak{p}}$ are dense in $G_{\mathbf{R}}$, $G_{\mathfrak{p}}$ respectively and that the quotient G/Γ has finite invariant volume. For each open compact subgroup V of $G_{\mathfrak{p}}$, put

(7)
$$\Gamma^{V} = \Gamma \cap (G_{\mathbf{R}} \times V),$$

and let $\Gamma_{\mathbf{R}}^{V}$ be its projection to $G_{\mathbf{R}}$. By Proposition 2 (Chapter 1, §3) $\Gamma_{\mathbf{R}}^{V}$ is a discrete subgroup of $G_{\mathbf{R}}$ and the quotient $G_{\mathbf{R}}/\Gamma_{\mathbf{R}}^{V}$ has finite invariant volume. Let L_{V} be the field of automorphic functions with respect to the fuchsian group $\Gamma_{\mathbf{R}}^{V}$ acting on the complex upper half plane \mathfrak{H} . Put $L = \bigcup_{V} L_{V}$. Then it is obvious that dim_C L = 1, that L_{V} is finitely generated over C, and that almost all prime divisors of L_{V} over C are unramified in L. In fact, if $z \in \mathfrak{H}$ is not an elliptic fixed point of $\Gamma_{\mathbf{R}}^{V}$, then the prime divisor of L_{V} given by z (mod $\Gamma_{\mathbf{P}}^{V}$) is unramified in L.

Now we define the action of the group G_p on L in the following manner. Let $g_p \in G_p$ and $f(z) \in L$. Take V such that $f(z) \in L_V$, and take $\gamma \in \Gamma \cap (G_{\mathbb{R}} \times g_p V) \ (\neq \phi, \text{ since } \Gamma_p \text{ is dense in } G_p)$. Put $g_p\{f(z)\} = f(\gamma_{\mathbb{R}}^{-1} \cdot z)$. Then, it is easy to check that $g_p\{f(z)\}$ is well-defined (does not depend on the choice of V or γ), that $g_{\mathfrak{p}}\{f(z)\} \in L$, and that

$$L \ni f(z) \mapsto g_{\mathfrak{p}}\{f(z)\} \in L$$

gives a field-automorphism of L. Moreover, $(h_pg_p)\{f(z)\} = h_p\{g_pf(z)\}$ holds for all $g_p, h_p \in G_p$; hence G_p acts as an automorphism group on L. We see easily that L_V is the fixed field of V. In fact, first, it is clear that all elements of L_V are fixed by V. Conversely, if $f(z) \in L$ is fixed by V, then f(z) is invariant by Γ_R^V ; hence $f(z) \in L_V$. Hence L_V is the fixed field of V. This shows in particular, that the action of G_p on L is continuous. If $f(z) \in L$ is fixed by the whole group G_p , then we get $f(\gamma_R^{-1} \cdot z) = f(z)$ for all $\gamma \in \Gamma$. But since Γ_R is dense in G_R , this implies $f(z) \in \mathbb{C}$. Hence the fixed field of G_p is C. Finally, the action of G_p on L is effective. In fact, the kernel of the action is a normal subgroup of G_p ; hence by the simplicity of G_p , it must be G_p itself if not $\{1\}$. But that is impossible, since the fixed field of G_p is C. Therefore, G_p acts effectively on L. Thus, starting from Γ , we have constructed a G_p -field L over C.

§6. Now, we shall show that conversely, given any G_p -field L over \mathbb{C} , we can define Γ , and that the G_p -fields over \mathbb{C} (up to isomorphisms) are in one-to-one correspondence with Γ (up to conjugacy in G).

Let L be a G_p -field over C, and let Σ be the set of all non-equivalent, non-trivial discrete valuations of L over C. To give Σ more explicitly, let V_0 be an open compact subgroup of G_p which has no elements ($\neq 1$) of finite order⁶, and let

$$V_0 \supset V_1 \supset \cdots \supset V_n \supset \cdots$$

be a decreasing sequence of open compact subgroups of G_p , such that $\bigcap_{n=0}^{\infty} V_n = \{1\}$. Put $L_n = L_{V_n}$ $(n \ge 0)$, and let \Re_n $(n \ge 0)$ be the Riemann surface of L_n . Then, we get a sequence of coverings

(8)
$$\Re_0 \stackrel{\varphi_1}{\leftarrow} \Re_1 \stackrel{\varphi_2}{\leftarrow} \cdots \leftarrow \Re_n \stackrel{\varphi_{n+1}}{\leftarrow} \cdots$$

Let T_i $(1 \le i \le N)$ be the points on \Re_0 that are ramified in the covering sequence (8). For each *i*, consider T_i as a discrete valuation of L_0 , and let \mathfrak{T}_i be a valuation of *L* with $\mathfrak{T}_i|_{L_0} = T_i$. Then, since $\operatorname{Aut}(L/L_0)$ has no non-trivial finite subgroup, the inertia group of \mathfrak{T}_i over L_0 is infinite; hence its ramification index in L/L_0 is infinite. Therefore, \mathfrak{T}_i is not a discrete valuation of *L*. Put

$$\mathfrak{R}'_0 = \mathfrak{R}_0 - \{T_1, \cdots, T_N\}, \quad \mathfrak{R}'_1 = \varphi_1^{-1}(\mathfrak{R}'_0), \quad \mathfrak{R}'_2 = \varphi_2^{-1}(\mathfrak{R}'_1), \cdots \text{etc.}$$

Denoting $\varphi_n|_{\mathfrak{R}'_n}$ again by φ_n , we get a sequence of unramified coverings

(9)
$$\Re'_0 \stackrel{\varphi_1}{\leftarrow} \Re'_1 \stackrel{\varphi_2}{\leftarrow} \cdots \leftarrow \Re'_n \stackrel{\varphi_{n+1}}{\leftarrow} \cdots$$

It is now clear that the set Σ can be identified with the set of all sequences of points

(10)
$$P_0 \stackrel{\varphi_1}{\leftarrow} P_1 \stackrel{\varphi_2}{\leftarrow} \cdots \leftarrow P_n \stackrel{\varphi_{n+1}}{\leftarrow} \cdots$$

⁶It is well-known, and easy to prove, that such V_0 exists.

with $P_n \in \mathfrak{R}'_n$ and $P_n = \varphi_{n+1}(P_{n+1})$ for all $n \ge 0$. So, we shall denote the elements of Σ simply as

(11)
$$\Sigma \ni P = \{P_0 \stackrel{\varphi_1}{\leftarrow} P_1 \stackrel{\varphi_2}{\leftarrow} \cdots\}.$$

Now we shall define a complex structure on Σ . Let $\Sigma \ni P = \{P_0 \leftarrow P_1 \leftarrow \cdots\}$, and let U_0 be any simply connected neighborhood of P_0 on \Re'_0 . For each $n \ge 0$, let U_n be the connected component of $(\varphi_1 \circ \cdots \circ \varphi_n)^{-1} U_0$ containing P_n ;

(12)
$$U_0 \leftarrow U_1 \leftarrow \cdots \leftarrow U_n \leftarrow \cdots \\ \psi \quad \psi \quad \psi \quad \psi \\ P_0 \leftarrow P_1 \leftarrow \cdots \leftarrow P_n \leftarrow \cdots .$$

Since U_0 is simply connected, $U_0 \leftarrow U_n$ is a simple covering; hence φ_n induces an isomorphism of U_n onto U_{n-1} ; and each point $P'_0 \in U_0$ defines a unique element $P' = \{P'_0 \leftarrow P'_1 \leftarrow \cdots\}$ of Σ , with $P'_n \in U_n$ for all $n \ge 0$. Therefore, by taking such $U_0 \cong \{U_0 \leftarrow U_1 \leftarrow \cdots\}$ as a coordinate neighbourhood of P, we can define a complex structure on Σ , by which Σ is a one-dimensional complex manifold.

An important point is that this complex structure of Σ is independent of the choice of the sequence $V_0 \supset V_1 \supset \cdots$ of open compact subgroups of G_p . To check this, let $V'_0 \supset V'_1 \supset \cdots$ be another sequence such that V'_0 is torsion-free and $\bigcap_{n=0}^{\infty} V'_n = \{1\}$. Then, they are cofinal; i.e., every V_n contains some V'_m , and vice versa. So, we get a new sequence $V_{i_1} \supset V'_{j_1} \supset V_{i_2} \supset V'_{j_2} \supset \cdots$, with $i_1 < i_2 < \cdots$ and $j_1 < j_2 < \cdots$. Now it is clear that the complex structure of Σ defined by the sequence $V_0 \supset V_1 \supset \cdots$ is equivalent to that defined by $V_{i_1} \supset V'_{j_1} \supset V_{i_2} \supset V'_{j_2} \supset \cdots$, and hence is also equivalent to that defined by $V'_0 \supset V'_1 \supset \cdots$.

Let σ be an automorphism of the field *L* over **C**. Then, the action $\Sigma \ni P \mapsto \sigma \cdot P \in \Sigma$ is defined by

$$v_{\sigma P}(x) = v_P(\sigma^{-1}(x)) \quad (x \in L),$$

where v_P , $v_{\sigma P}$ are the normalized additive discrete valuations of L contained in the classes $P, \sigma P$ respectively. Now, by this action, σ leaves the complex strucure of Σ invariant. In fact, consider the sequence $\sigma(L_0) \subset \sigma(L_1) \subset \cdots$, and let n be sufficiently large. Then $\sigma(L_n)$ contains L_0 ; hence there is an open compact subgroup V'_n of V_0 such that $\sigma(L_n) = L_{V'_n}$. Therefore, by the above remark, the complex structure of Σ defined with respect to $\sigma(L_n) \subset \sigma(L_{n+1}) \subset \cdots$ is equivalent to the original one. But this implies that σ leaves the complex structure of Σ invariant. In particular, G_p acts on Σ as a group of automorphisms of the complex manifold Σ , and hence G_p also acts on the set of all connected components of Σ as a permutation group.

§7. We shall now prove that:

- (i) Each open compact subgroup of $G_{\mathfrak{p}}$ acts transitively on the set of all connected components of Σ .
- (ii) Each connected component of Σ is isomorphic to the complex half plane \mathfrak{H} .

PROOF OF (i). Let $P = \{P_0 \leftarrow P_1 \leftarrow \cdots\}$ and $Q = \{Q_0 \leftarrow Q_1 \leftarrow \cdots\}$ be any two elements of Σ , and let Σ_P, Σ_Q be the connected components of Σ containing P, Q respectively. It is enough to prove that for each $n \ge 0$, there is an element $v \in V_n$ such that $v(\Sigma_P) = \Sigma_Q$. Now fix n, and let $P_n(t)$ ($0 \le t \le 1$) be a curve on \Re'_n , with $P_n(0) = P_n$ and $P_n(1) = Q_n$. Then there is a unique (continuous) curve P(t) ($0 \le t \le 1$) on Σ satisfying P(0) = P and $P(t) = \{\cdots \leftarrow P_n(t) \leftarrow \cdots\}$ for all t ($0 \le t \le 1$). Then $P(1) \in \Sigma_P$, and $P(1) = \{Q_0 \leftarrow \cdots \leftarrow Q_n \leftarrow Q'_{n+1} \leftarrow \cdots\}$. Since the restrictions to L_n of P(1) and Qcoincide with each other, there is an element $v \in \operatorname{Aut}(L/L_n) = V_n$ such that Q = v(P(1)); hence $\Sigma_Q = v(\Sigma_P)$. This settles (i).

PROOF OF (ii). First of all, we note that the universal covering surface \mathfrak{R}'_n of \mathfrak{R}'_n $(n \ge 0)$ is isomorphic to \mathfrak{H} . In fact, since the covering sequence (9) is unramified and non-trivial, $\widetilde{\mathfrak{R}}'_n$ cannot be the Riemann sphere. Moreover, since V_n is nonabelian, (9) is a nonabelian covering sequence. Hence $\widetilde{\mathfrak{R}}'_n$ cannot be the whole complex plane. Therefore, $\widetilde{\mathfrak{R}}'_n \cong \mathfrak{H}$.

Now let Σ_0 be an arbitrary connected component of Σ , and let $\widetilde{\Sigma}_0$ be the universal covering surface of Σ_0 . Then, by the unramified covering $\Re'_n \leftarrow \Sigma_0 \leftarrow \widetilde{\Sigma}_0$, we can identify $\widetilde{\Re}'_n$ with $\widetilde{\Sigma}_0$. Therefore, we get a sequence of unramified coverings :

(13)
$$\mathfrak{R}'_{0} \stackrel{\varphi_{1}}{\leftarrow} \cdots \leftarrow \mathfrak{R}'_{n} \stackrel{\varphi_{n+1}}{\leftarrow} \cdots \leftarrow \Sigma_{0} \leftarrow \widetilde{\Sigma}_{0} \cong \mathfrak{H}.$$

Now fix an isomorphism $\widetilde{\Sigma}_0 \cong \mathfrak{H}$. Then we get an isomorphism $\operatorname{Aut} \widetilde{\Sigma}_0 = \operatorname{Aut} \mathfrak{H} = G_{\mathbb{R}}$. Let $\Delta_n \ (n \ge 0)$ be the covering group of $\mathfrak{R}'_n \leftarrow \widetilde{\Sigma}_0$, considered as a subgroup of $G_{\mathbb{R}}$. Then it is a torsion-free discrete subgroup of $G_{\mathbb{R}}$, and the quotient $G_{\mathbb{R}}/\Delta_n$ has finite invariant volume (the quotient is compact if and only if $\{T_1, \dots, T_N\} = \phi$). It is also clear that the covering group Δ of $\Sigma_0 \leftarrow \widetilde{\Sigma}_0$ is the intersection of all $\Delta_n \ (n \ge 0)$;

(14)
$$G_{\mathbf{R}} \supset \Delta_0 \supset \Delta_1 \supset \Delta_2 \supset \cdots; \quad \Delta = \bigcap_{n=0}^{\infty} \Delta_n$$

We shall identify \mathfrak{R}'_n with \mathfrak{H}/Δ_n , and Σ_0 with \mathfrak{H}/Δ .

Now put

(15)
$$\Gamma_{\mathfrak{p}} = \{g_{\mathfrak{p}} \in G_{\mathfrak{p}} \mid g_{\mathfrak{p}}(\Sigma_0) = \Sigma_0\}.$$

Then by (i), we get $G_{\mathfrak{p}} = V \cdot \Gamma_{\mathfrak{p}}$ for any open compact subgroup V of $G_{\mathfrak{p}}$; hence $\Gamma_{\mathfrak{p}}$ is a dense subgroup of $G_{\mathfrak{p}}$. On the other hand, $\Gamma_{\mathfrak{p}}$ acts on $\Sigma_0 = \mathfrak{H}/\Delta$ as a group of automorphisms, and hence we can also consider $\Gamma_{\mathfrak{p}}$ as a subgroup of Aut (\mathfrak{H}/Δ) . We shall denote this subgroup of Aut (\mathfrak{H}/Δ) , identified with $\Gamma_{\mathfrak{p}}$, by $\Gamma_{\mathbf{R}}$;

(16)
$$\operatorname{Aut}(\mathfrak{H}/\Delta) \supset \Gamma_{\mathbb{R}} \cong \prod_{\text{identified}} \Gamma_{\mathfrak{p}} \subset G_{\mathfrak{p}}.$$

Let $N(\Delta)$ be the normalizer of Δ in $G_{\mathbf{R}}$. Then we have $\operatorname{Aut}(\mathfrak{H}/\Delta) = N(\Delta)/\Delta$; hence we can put $\Gamma_{\mathbf{R}} = \widehat{\Gamma}_{\mathbf{R}}/\Delta$, with $\Delta \subset \widehat{\Gamma}_{\mathbf{R}} \subset N(\Delta)$. Further, put $\Gamma_{\mathfrak{p}}^n = \Gamma_{\mathfrak{p}} \cap V_n$ $(n \ge 0)$, and denote by $\Gamma_{\mathbf{R}}^n$ the corresponding subgroup of $\Gamma_{\mathbf{R}}$. Then we have

(17)
$$\Gamma_{\mathbf{R}}^{n} = \Delta_{n} / \Delta \quad (n \ge 0).$$

Now, we have

$$(\Gamma_{\mathbf{R}}:\Delta_n)=(\Gamma_{\mathbf{R}}:\Gamma_{\mathbf{R}}^n)=(\Gamma_{\mathfrak{p}}:\Gamma_{\mathfrak{p}}^n)=(G_{\mathfrak{p}}:V_n)=\infty,$$

and Δ_n is a discrete subgroup of $G_{\mathbf{R}}$ whose quotient is of finite invariant volume. Therefore, $\widehat{\Gamma}_{\mathbf{R}}$ is dense in $G_{\mathbf{R}}$; hence $N(\Delta)$ is dense in $G_{\mathbf{R}}$. But since Δ is discrete in $G_{\mathbf{R}}$, $N(\Delta)$ is closed in $G_{\mathbf{R}}$; hence $N(\Delta) = G_{\mathbf{R}}$. Therefore, Δ is a discrete normal subgroup of $G_{\mathbf{R}}$. But $G_{\mathbf{R}}$ is a simple group; hence we get $\Delta = \{1\}$. Therefore $\Sigma_0 \cong \mathfrak{H}$; which settles (ii). We have also proved that $\Gamma_{\mathbf{R}} = \widehat{\Gamma}_{\mathbf{R}}$ and that it is dense in $G_{\mathbf{R}}$;

(18)
$$G_{\mathbf{R}} \underset{\text{dense}}{\supset} \Gamma_{\mathbf{R}} \underset{\text{identified}}{\cong} \Gamma_{\mathfrak{p}} \underset{\text{dense}}{\subset} G_{\mathfrak{p}}.$$

§8. Now let Γ be the subgroup of $G = G_{\mathbb{R}} \times G_{\mathfrak{p}}$ formed of all elements $\gamma_{\mathbb{R}} \times \gamma_{\mathfrak{p}}$ such that $\gamma_{\mathbb{R}}$, $\gamma_{\mathfrak{p}}$ are corresponding elements of $\Gamma_{\mathbb{R}}$, $\Gamma_{\mathfrak{p}}$ respectively. Then the projection maps $\Gamma \to \Gamma_{\mathbb{R}}$, $\Gamma \to \Gamma_{\mathfrak{p}}$ are obviously injective, and it was shown that $\Gamma_{\mathbb{R}}$, $\Gamma_{\mathfrak{p}}$ are dense in $G_{\mathbb{R}}$, $G_{\mathfrak{p}}$ respectively. Moreover,

$$\{\Gamma \cap (G_{\mathbf{R}} \times V_n)\}_{\mathbf{R}} = \Gamma_{\mathbf{R}}^n = \Delta_n \quad (n \ge 0),$$

and Δ_n is a discrete subgroup of $G_{\mathbf{R}}$ whose quotient has finite invariant volume. Therefore by Proposition 2 of Chapter 1 (§3), Γ is a discrete subgroup of G, and the quotient G/Γ has finite invariant volume. The quotient G/Γ is compact if and only if $G_{\mathbf{R}}/\Delta_n$ is so; hence if and only if L/L_n is unramified.

Finally, it can be checked immediately that these two processes of defining L from Γ , and of defining Γ from L are the inverse of each other. We have thus proved the following Theorem.

§9.

THEOREM 1. The G_p fields L over \mathbb{C} are in one-to-one correspondence with the discrete subgroups Γ of $G = G_{\mathbb{R}} \times G_p$ whose quotients G/Γ are of finite invariant volume and whose projections $\Gamma_{\mathbb{R}}, \Gamma_p$ are dense in $G_{\mathbb{R}}, G_p$ respectively. Here, L are counted up to isomorphisms of G_p -fields (§1), and Γ are counted up to conjugacy in G.

More precisely, if Γ is given, then L is obtained as the union of fields of automorphic functions with respect to $\Gamma_{\mathbf{R}}^{V}$ (§5). Conversely, if L is given, the set Σ of all non-equivalent non-trivial discrete valuations of L over \mathbb{C} can be considered as a one-dimensional complex manifold, on which $G_{\mathfrak{p}}$ acts as an automorphism group. If V is an open compact subgroup of $G_{\mathfrak{p}}$, then V acts transitively on the set of all connected components of Σ . Take any connected component Σ_0 of Σ , and let $\Gamma_{\mathfrak{p}}$ be the stabilizer of Σ_0 in $G_{\mathfrak{p}}$. Then Σ_0 is isomorphic to the complex upper half plane \mathfrak{H} , and hence $\Gamma_{\mathfrak{p}}$ can also be identified with a subgroup $\Gamma_{\mathbf{R}}$ of $G_{\mathbf{R}} = \operatorname{Aut}(\mathfrak{H})$. In this manner, by the identification $\Gamma \cong \Gamma_{\mathbf{R}} \cong \Gamma_{\mathfrak{p}}$ and by the diagonal embedding, we get the discrete subgroup Γ of G (§6,§7,§8).

REMARK 1. Let L be a G_p -field over C, and let $\{\Gamma\}_G$ be the corresponding G-conjugacy class of discrete subgroups of $G = G_R \times G_p$. Then, choosing one Γ from among $\{\Gamma\}_G$ is equivalent to choosing one connected component Σ_0 of Σ together with an isomorphism $\Sigma_0 \cong \mathfrak{H}$. In fact, if Γ is given, we can identify L as the union of the fields L_V of automorphic

⁷See Supplement §1.

functions f(z) with respect to $\Gamma_{\mathbf{R}}^{\nu}$ (see §5), and moreover, each point $z_0 \in \mathfrak{H}$ defines a discrete valuation v_{z_0} of L by $v_{z_0}(f(z)) = \operatorname{ord}_{z_0} f(z)$. Therefore, we can regard \mathfrak{H} as a connected component of Σ . Conversely, if L, Σ_0 , and an isomorphism $\Sigma_0 \cong \mathfrak{H}$ are given, then we get a discrete subgroup Γ in the above described manner (Σ_0 defines $\Gamma_{\mathfrak{p}}$ by (15), and the isomorphism $\Sigma_0 \cong \mathfrak{H}$ defines the isomorphism $\Gamma_{\mathfrak{p}} = \Gamma_{\mathbf{R}} \subset G_{\mathbf{R}}$).

REMARK 2. The cardinality of the set of all connected components of Σ is \aleph -infinity, since it is in one-to-one correspondence with $G_{\mathfrak{p}}/\Gamma_{\mathfrak{p}}$, and $\Gamma_{\mathfrak{p}}$ is countable (since Γ is finitely generated; see §30).

REMARK 3. The quotient G/Γ is compact if and only if L/L_V is unramified for some open compact subgroup V of G_p . When this is satisfied, Γ is torsion-free if and only if L/L_V is unramified for all open compact subgroups V of G_p .

§10. Now we shall show that given Γ and the corresponding G_p -field L over \mathbb{C} , the subgroups Δ of $G = G_{\mathbb{R}} \times G_p$ containing Γ with $(\Delta : \Gamma) < \infty$ and the G_p -subfields M of L over \mathbb{C} correspond naturally in a one-to-one manner. We begin by proving the following:

PROPOSITION 3. Let L be a $G_{\mathfrak{p}}$ -field over C, and let M be a $G_{\mathfrak{p}}$ -subfield of L over C. Let P be a non-trivial discrete valuation of L over C. Then P is unramified in L/M.

PROOF. Suppose, on the contrary, that there exists a discrete valuation P_0 of L over \mathbb{C} which is ramified in L/M. Since L and M are G_p -invariant, this implies that $g_p(P_0)$, for any $g_p \in G_p$, is also ramified in L/M. Let V be a torsion-free open compact subgroup of G_p , and let L_V be the fixed field of V. Let P be any discrete valuation of L over \mathbb{C} . Then, by the discreteness of P, the inertia group of P in L/L_V is a finite subgroup of $V = \operatorname{Aut}(L/L_V)$; hence it must be $\{1\}$. Hence P is unramified in L/L_V . This implies that if P is ramified in L/M, then $P|_{L_V}$ must be ramified in L_V/M_V , where $M_V = M \cap L_V$. Therefore, $g_p(P_0)|_{L_V}$, for every $g_p \in G_p$, must be ramified in L_V/M_V . Since $[L_V : M_V] < \infty$ (see Corollary of Proposition 2, §3), there are only finitely many discrete valuations (up to equivalence) of L_V over \mathbb{C} , which are ramified in L_V/M_V . Therefore, the set

$$\{g_{\mathfrak{p}}(P_0)|_{L_{\mathcal{V}}}; g_{\mathfrak{p}} \in G_{\mathfrak{p}}\}$$

must be finite. We shall show that this is a contradiction. Let Σ_0 be the connected component of Σ containing P_0 , and let Γ_p be the stabilizer of Σ_0 in G_p . We know that $\Sigma_0 \cong \mathfrak{H}$, and that by this Γ_p can be identified with a subgroup Γ_R of Aut $\Sigma_0 \cong Aut \mathfrak{H} = G_R$. By putting

 $\Gamma = \{\gamma_{\mathbf{R}} \times \gamma_{\mathfrak{p}} \in G = G_{\mathbf{R}} \times G_{\mathfrak{p}} \mid \gamma_{\mathbf{R}}, \gamma_{p} \text{ are corresponding elements of } \Gamma_{\mathbf{R}}, \Gamma_{\mathfrak{p}}\},\$

L can be considered as the union of fields of automorphic functions with respect to $\Gamma_{\mathbf{R}}^{V'}$, for all open compact subgroups V' of $G_{\mathbf{p}}$. A discrete valuation $P^* \in \Sigma_0$ of L over C is given by the corresponding point $z^* \in \mathfrak{H}$ as $L \ni f(z) \xrightarrow{P^*} \operatorname{ord}_{z^*} f$. If $P^*, P^{**} \in \Sigma_0$, then $P^*|_{L_V} = P^{**}|_{L_V}$ is valid if and only if the corresponding points $z^*, z^{**} \in \mathfrak{H}$ are $\Gamma_{\mathbf{R}}^V$ -equivalent. Now, since $\Gamma_{\mathbf{p}}$ is dense in $G_{\mathbf{p}}$, the set (19) is the same as the set

(19')
$$\{\gamma_{\mathfrak{p}}(P_0)|_{L_{\mathcal{V}}}; \gamma_{\mathfrak{p}} \in \Gamma_{\mathfrak{p}}\}.$$

Let z_0 be the point on \mathfrak{H} corresponding to $P_0 \in \Sigma_0$. Then the points corresponding to $\gamma_{\mathfrak{p}}(P_0)$ are $\gamma_{\mathfrak{R}}(z_0)$; and since $\Gamma_{\mathfrak{R}}$ is dense in $G_{\mathfrak{R}}$, $\gamma_{\mathfrak{R}}(z_0)$ ($\gamma_{\mathfrak{R}} \in \Gamma_{\mathfrak{R}}$) give infinitely many non-equivalent points modulo $\Gamma_{\mathfrak{R}}^{\nu}$. This shows that the set (19'), and hence the set (19), is infinite. Therefore, the finiteness of the set (19) is a contradiction. Hence P_0 must be unramified in L/M.

Now we are in the situation to prove the one-to-one correspondence between Δ and M stated at the beginning of this section. First, we shall show that Δ gives M. Let Δ be a subgroup of G containing Γ with $(\Delta : \Gamma) < \infty$. Then, it is clear that Δ is also a discrete subgroup of G, G/Δ has finite invariant volume, and that $\Delta_{\mathbf{R}}, \Delta_{\mathbf{p}}$ are dense in $G_{\mathbf{R}}, G_{\mathbf{p}}$ respectively. Therefore, for each open compact subgroup V of $G_{\mathbf{p}}$, the projection $\Delta_{\mathbf{R}}^{V}$ of $\Delta^{V} = \Delta \cap (G_{\mathbf{R}} \times V)$ is a discrete subgroup of $G_{\mathbf{R}}$, and the quotient $G_{\mathbf{R}}/\Delta_{\mathbf{R}}^{P}$ has finite invariant volume. Let M_{V} be the field of automorphic functions with respect to $\Delta_{\mathbf{R}}^{V}$, and put $M = \bigcup_{V} M_{V}$. Since $\Delta_{\mathbf{R}}^{V} \supset \Gamma_{\mathbf{R}}^{V}$, we have $M_{V} \subset L_{V}$; hence $\mathbf{C} \subseteq M \subset L$. We shall check that M is $G_{\mathbf{p}}$ -invariant in L, and that the restriction to M of the action of $G_{\mathbf{p}}$ on L gives the $G_{\mathbf{p}}$ -field M corresponding to Δ . To check this, let $f(z) \in M$ and $g_{\mathbf{p}} \in G_{\mathbf{p}}$. Take V such that $f(z) \in M_{V}$. By definition, $g_{\mathbf{p}}\{f(z)\} = f(\gamma_{\mathbf{R}}^{-1} \cdot z)$ with $\gamma \in \Gamma \cap (G_{\mathbf{R}} \times g_{\mathbf{p}}V)$; hence $g_{\mathbf{p}}\{f(z)\} \in M_{V'} \subset M$, which shows the $G_{\mathbf{p}}$ -invariance of M. Since γ is also in $\Delta \cap (G_{\mathbf{R}} \times g_{\mathbf{p}}V)$, our second assertion is obvious (see also §5). Thus we have shown that Δ gives M. We note that

$$(\Delta:\Gamma) = (\Delta^V:\Gamma^V) = [L_V:M_V] = [L:M]$$

holds for each V. In fact, the first equality is an immediate consequence of $\Delta_{\mathfrak{p}} = \Delta_{\mathfrak{p}}^{V} \cdot \Gamma_{\mathfrak{p}}$ (since $\Gamma_{\mathfrak{p}}$ is dense in $G_{\mathfrak{p}}$), the second is obvious, and the last equality follows from the corollary of Proposition 2 (§3).

Conversely, let M be a G_p -subfield of L over \mathbb{C} ; i.e., M is G_p -invariant and $\mathbb{C} \subseteq M \subset L$. Then by §3, $[L:M] < \infty$, and M is also a G_p -field over \mathbb{C} . Let Σ (resp. Σ') be the space of all non-equivalent non-trivial discrete valuations of L (resp.M) over \mathbb{C} . They are one dimensional complex manifolds, of which each connected component is isomorphic to \mathfrak{H} . Consider the restriction map

(20)
$$\varphi: \Sigma \to \Sigma'.$$

Then it is clear that φ is holomorphic, and by Proposition 3, φ is unramified and gives an [L: M]-fold map of Σ onto Σ' . In fact, φ induces an [L: M]-fold map $\tilde{\varphi}$ of the set $C(\Sigma)$ of all connected components of Σ onto the set $C(\Sigma')$ of all connected components of Σ' ; and

if $\Sigma_0 \in C(\Sigma)$, $\Sigma'_0 \in C(\Sigma')$ and $\Sigma'_0 = \widetilde{\varphi}(\Sigma_0)$, then φ gives an isomorphism of Σ_0 onto Σ'_0 . connected components of Σ connected components of Σ'

These can be checked immediately by recalling the definition of the complex structure of Σ . We also note that the actions of G_p on Σ and on Σ' are consistent with the map φ . Now let Σ_1 be any connected component of Σ , and let Σ_i $(1 \le i \le m, m = [L : M])$ be the connected components of Σ such that $\varphi(\Sigma_i) = \varphi(\Sigma_1)$. Put

(22)
$$\begin{cases} \Gamma_{\mathfrak{p}} = \{g_{\mathfrak{p}} \in G_{\mathfrak{p}} \mid g_{\mathfrak{p}}(\Sigma_{1}) = \Sigma_{1}\} \\ \Delta_{\mathfrak{p}} = \{g_{\mathfrak{p}} \in G_{\mathfrak{p}} \mid g_{\mathfrak{p}}(\Sigma_{1}) = \Sigma_{i} \text{ for some } i \ (1 \le i \le m)\}. \end{cases}$$

Then Δ_p can be identified with

(23)
$$\Delta_{\mathfrak{p}} = \{g_{\mathfrak{p}} \in G_{\mathfrak{p}}|_{\Sigma'} \mid g_{\mathfrak{p}}(\varphi(\Sigma_1)) = \varphi(\Sigma_1)\}.$$

Therefore, $\Gamma_{\mathfrak{p}} \cong \Gamma_{\mathbf{R}} \subset \operatorname{Aut}(\Sigma_1) \cong G_{\mathbf{R}}$, and $\Delta_{\mathfrak{p}} \cong \Delta_{\mathbf{R}} \subset \operatorname{Aut}(\varphi(\Sigma_1)) \cong G_{\mathbf{R}}$. Define Γ, Δ by these identifications and by the diagonal embeddings into $G = G_{\mathbf{R}} \times G_{\mathfrak{p}}$. Then, it can be checked immediately that $\Delta \supset \Gamma$, $(\Delta : \Gamma) < \infty$, that M is the $G_{\mathfrak{p}}$ -field corresponding to Δ , and that Δ and M correspond in a one-to-one manner in such a way that the Galois theory holds between them.

So, we have proved the following Theorem.

THEOREM 2. Let L be a $G_{\mathfrak{p}}$ -field over \mathbb{C} , and let Γ be the corresponding discrete subgroup of G. Then, the $G_{\mathfrak{p}}$ -subfields M such that $\mathbb{C} \subseteq M \subset L$ and groups Δ such that $\Gamma \subset \Delta \subset G$ with $(\Delta : \Gamma) < \infty$ correspond naturally in a one-to-one manner satisfying the Galois theory (in particular, we have $[L : M] = (\Delta : \Gamma)$). Moreover, the group Δ is the discrete subgroup of G which corresponds to M in the sense of Theorem 1.

We shall call Γ maximal if there is no such Δ other than Γ itself. Thus we obtain the following:

COROLLARY 1. The $G_{\mathfrak{p}}$ -field L over C is irreducible if and only if the corresponding group Γ is maximal.

COROLLARY 2.⁸ Let L be a G_p -field over C. Then, L contains an irreducible G_p -subfield over C.

⁸We can prove further that L contains only finitely many G_p -subfields over C (see Supplement §3 (Corollary 2)).

PROOF. Let Γ be the discrete subgroup of G corresponding to L. Let Δ be any subgroup of G containing Γ with $(\Delta : \Gamma) < \infty$. Let V be any fixed open compact subgroup of G_p , and put $\Gamma^V = \Gamma \cap (G_{\mathbb{R}} \times V)$, $\Delta^V = \Delta \cap (G_{\mathbb{R}} \times V)$. Then since $\Gamma_p \cdot \Delta_p^V = \Delta_p$, we have $(\Delta : \Gamma) = (\Delta^V : \Gamma^V) = (\Delta_{\mathbb{R}}^V : \Gamma_{\mathbb{R}}^V)$. But $\Gamma_{\mathbb{R}}^V$ is a discrete subgroup of $G_{\mathbb{R}}$ and the quotient $G_{\mathbb{R}}/\Gamma_{\mathbb{R}}^V$ has finite invariant volume. Hence the index $(\Delta_{\mathbb{R}}^V : \Gamma_{\mathbb{R}}^V)$ is bounded. It follows then that the index $(\Delta : \Gamma)$ is also bounded. Therefore, among all Δ , there is a maximal one. Now, our Corollary is a direct consequence of Theorem 2.

The above argument also shows the following:

COROLLARY 3. If there is an open compact subgroup V of $G_{\mathfrak{p}}$ such that $\Gamma_{\mathbf{R}}^{V}$ is a maximal fuchsian group, then the $G_{\mathfrak{p}}$ -field over C which corresponds to Γ is irreducible.

The full automorphism group of L over C.

§11. Let L be a G_p -field over C, and let $\operatorname{Aut}_C L$ be the group of all automorphisms of the (abstract) field L which are trivial on C. Then G_p can be considered as a subgroup of $\operatorname{Aut}_C L$, and in general, may not coincide with the whole group $\operatorname{Aut}_C L$. However, we can prove that G_p is of finite index in $\operatorname{Aut}_C L$. This fact will be basic for our later studies.

THEOREM 3. Let L be a G_p -field over C, and let $\operatorname{Aut}_{\mathbb{C}} L$ be the group of all automorphisms of the abstract field L which are trivial on C. Then G_p is a subgroup of $\operatorname{Aut}_{\mathbb{C}} L$ with finite index.

For the proof, we need some preliminaries ($\S12$, $\S13$).

§12. Let Γ be the discrete subgroup of G which corresponds to L. Let $V_1 \supset V_2 \supset \cdots \supset V_n \supset \cdots$ be any descending sequence of open compact subgroups of G_p satisfying $\bigcap_{n=1}^{\infty} V_n = \{1\}$. Put $\Gamma^n = \Gamma \cap (G_{\mathbb{R}} \times V_n)$ $(n \ge 1)$. Then we get a descending sequence $\Gamma_{\mathbb{R}}^1 \supset \Gamma_{\mathbb{R}}^2 \supset \cdots \supset \Gamma_{\mathbb{R}}^n \supset \cdots$ of discrete subgroups of $G_{\mathbb{R}}$ whose quotient spaces have finite invariant volumes. Now let Γ' be the subgroup of $G_{\mathbb{R}}$ formed of all elements $x \in G_{\mathbb{R}}$ such that for any $n \ge 1$, there exists some $m \ge 1$ for which the inclusions $x^{-1}\Gamma_{\mathbb{R}}^n x \supset \Gamma_{\mathbb{R}}^m$ and $x\Gamma_{\mathbb{R}}^n x^{-1} \supset \Gamma_{\mathbb{R}}^m$ hold;

(24)
$$\Gamma' = \{ x \in G_{\mathbf{R}} \mid \forall n, \exists m; \ x^{-1} \Gamma_{\mathbf{R}}^{n} x \supset \Gamma_{\mathbf{R}}^{m}, \ x \Gamma_{\mathbf{R}}^{n} x^{-1} \supset \Gamma_{\mathbf{R}}^{m} \}.$$

It is obvious that Γ' contains $\Gamma_{\mathbf{R}}$;

(25)
$$G_{\mathbf{R}} \supset \Gamma' \supset \Gamma_{\mathbf{R}} \supset \Gamma_{\mathbf{R}}^1 \supset \Gamma_{\mathbf{R}}^2 \supset \cdots; \qquad \bigcap_{n=1}^{\infty} \Gamma_{\mathbf{R}}^n = \{1\}.$$

Now Γ_p carries a topology induced by that of G_p , and by the identification of Γ_R with Γ_p , we shall consider Γ_R as a topological group (p-adic topology; not the real topology). So, the subgroups Γ_R^n $(n \ge 1)$ form a basis of neighborhoods of 1. By the definition of Γ' , we see that Γ_R^n $(n \ge 1)$ satisfies the axioms for a basis of neighborhoods of 1 for Γ' , and hence by taking $\Gamma_{\mathbf{R}}^{n}$ $(n \ge 1)$ as a basis of neighborhoods 1, Γ' becomes a topological group which contains $\Gamma_{\mathbf{R}}$ as an open subgroup. Take completions with respect to this topology, and let $\overline{\Gamma'}$ be the completion of Γ' .

(26)
$$\begin{array}{ccc} \Gamma' \supset \Gamma_{\mathbf{R}} \supset \Gamma_{\mathbf{R}}^{1} \supset \cdots \supset \Gamma_{\mathbf{R}}^{n} \supset \cdots \\ \downarrow & \downarrow & \downarrow \\ \widetilde{\Gamma'} \supset G_{\mathfrak{p}} \supset V_{1} \supset \cdots \supset V_{n} \supset \cdots \end{array}$$

Thus $\widetilde{\Gamma}'$ contains $G_{\mathfrak{p}}$ as an open subgroup. Now we claim the following:

PROPOSITION 4. The group $\operatorname{Aut}_{C} L$ is canonically isomorphic to Γ' .

PROOF. We can identify L with the union of the fields of automorphic functions L_n with respect to $\Gamma_{\mathbf{R}}^n$; $L = \bigcup_{n=1}^{\infty} L_n$. Now by the following action, the group Γ' acts on L as an automorphism group over C:

(27)
$$\Gamma' \ni x : L \ni f(z) \mapsto f(x^{-1} \cdot z) \in L.$$

(It follows immediately from the definition of Γ' that $f(x^{-1} \cdot z) \in L$). As in §5 where we defined the action of G_p on L, we can also lift the action of Γ' (on L) to that of $\widetilde{\Gamma'}$ on L. Namely, for each $\tilde{x} \in \widetilde{\Gamma'}$ and $f(z) \in L$, take n such that $f(z) \in L_n$, take $x \in \Gamma' \cap \tilde{x}V_n$ (where Γ' , V_n are considered as subgroups of $\widetilde{\Gamma'}$), and put $\tilde{x}\{f(z)\} = f(x^{-1} \cdot z)$. Then,

$$\overline{\Gamma}' \ni \tilde{x} : L \ni f(z) \mapsto \tilde{x}\{f(z)\} \in L$$

defines an action of Γ' on L. It is clear that its restriction to $G_{\mathfrak{p}}$ coincides with the original action. We shall show that this action is effective. Suppose that $\tilde{x} \in \widetilde{\Gamma'}$ acts trivially on L. Then for any $n \ge 1$ and for any $x \in \Gamma' \cap \tilde{x}V_n$, we get $f(x^{-1} \cdot z) = f(z)$ for all $f(z) \in L_n$. Fix any $z = z_0 \in \mathfrak{H}$. Then since $f(x^{-1} \cdot z_0) = f(z_0)$ holds for all $f(z) \in L_n$, there exists $\delta \in \Gamma_{\mathbf{R}}^n$ such that $x^{-1} \cdot z_0 = \delta \cdot z_0$. If z_0 is not an elliptic fixed point of $\Gamma_{\mathbf{R}}^n$, then δ is uniquely determined by z_0 . Consider δ as a $\Gamma_{\mathbf{R}}^n$ -valued function of z_0 defined on $\mathfrak{H} - E$, where Eis the discrete subset of \mathfrak{H} formed of all elliptic fixed points of $\Gamma_{\mathbf{R}}^n$. Since $x^{-1} \cdot z_0$ is a continuous function of z_0 , δ must also be continuous. But $\Gamma_{\mathbf{R}}^n$ is discrete. Therefore, δ must be a constant on $\mathfrak{H} - E$. So, put $\delta = \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}^n$. Then, $x \cdot \gamma_{\mathbf{R}}$ stabilizes all points of $\mathfrak{H} - E$; hence $x = (\gamma_{\mathbf{R}})^{-1} \in \Gamma_{\mathbf{R}}^n$; hence $\tilde{x} \in V_n$. Since n is arbitrary, we get $\tilde{x} = 1$. Therefore, the action of $\overline{\Gamma'}$ on L is effective. Thus we get

(28)
$$\Gamma' \subset \operatorname{Aut}_{\mathbf{C}} L.$$

Now we shall show that they are in fact equal. First, each point z^* on \mathfrak{H} gives a discrete valuation of L by $f(z) \mapsto \operatorname{ord}_{z^*} f(z)$; and in this manner, \mathfrak{H} can be considered as a connected component of Σ . Let this be denoted by Σ_0 . We have seen (§6) that $\operatorname{Aut}_{\mathbb{C}} L$ acts on Σ , leaving the complex structure of Σ invariant. Hence, if σ is any element of $\operatorname{Aut}_{\mathbb{C}} L$, then $\sigma(\Sigma_0)$ is another connected component of Σ . Since G_p acts transitively on the set of all connected component of Σ , we get $\sigma(\Sigma_0) = g_p(\Sigma_0)$ with some $g_p \in G_p$. Put $g_p^{-1} \cdot \sigma = \sigma_0$. Then, $\sigma_0(\Sigma_0) = \Sigma_0$; hence σ_0 induces an automorphism of $\Sigma_0 \cong \mathfrak{H}$. So, we can consider σ_0 also as an element of $G_{\mathbb{R}} = \operatorname{Aut}(\mathfrak{H}) \cong \operatorname{Aut} \Sigma_0$. By the definition of the action of $\operatorname{Aut}_{\mathbb{C}} L$ on Σ , we have $\sigma_0\{f(z)\} = f(\sigma_0^{-1} \cdot z)$ for any $f(z) \in L$ (z is a variable on \mathfrak{H}). Hence we have $f(\sigma_0^{-1} \cdot z) \in L$ for any $f(z) \in L$. Now let $n \ge 1$, and let $f_1(z), \dots, f_N(z)$ be a generator

of L_n over **C**. Then $f_i(\sigma_0^{-1} \cdot z) \in L$ for all *i*. Take *m* for which L_m contains $f_i(\sigma_0^{-1} \cdot z)$ for all $i \ (1 \leq i \leq N)$. Then $f(z) \in L_n$ implies $f(\sigma_0^{-1} \cdot z) \in L_m$. Since $\{f(\sigma_0^{-1} \cdot z) | f(z) \in L_n\}$ is the field of automorphic functions with respect to $\sigma_0 \Gamma_{\mathbf{R}}^n \sigma_0^{-1}$, we get $\sigma_0 \Gamma_{\mathbf{R}}^n \sigma_0^{-1} \supset \Gamma_{\mathbf{R}}^m$. By applying the same argument for σ_0^{-1} instead of σ_0 , we get $\sigma_0^{-1} \Gamma_{\mathbf{R}}^n \sigma_0 \supset \Gamma_{\mathbf{R}}^m$ for some $m' \geq 0$. Therefore,

$$\sigma_0 \Gamma_{\mathbf{R}}^n \sigma_0^{-1} \cap \sigma_0^{-1} \Gamma_{\mathbf{R}}^n \sigma_0 \supset \Gamma_{\mathbf{R}}^l \text{ holds for } l = \operatorname{Max}(m, m').$$

This implies $\sigma_0 \in \Gamma'$; hence $\sigma \in G_p \cdot \Gamma' = \widetilde{\Gamma}'$; hence we get $\operatorname{Aut}_{\mathbb{C}} L \subset \widetilde{\Gamma}'$.

§13. Now, by (26) and by Proposition 4, we have

(29)
$$(\operatorname{Aut}_{\mathbf{C}} L : G_{\mathfrak{p}}) = (\Gamma' : \Gamma_{\mathbf{R}});$$

hence our problem is to prove the finiteness of $(\Gamma' : \Gamma_R)$. For this purpose, we need a lemma on local automorphisms of the group $PL_2(k_p)$. Here, by a local automorphism of a topological group X, we mean any isomorphism σ of an open subgroup U_1 of X onto another open subgroup U_2 of X; and if σ' is another local automorphism of X; σ' : $U'_1 \cong U'_2$, then σ and σ' are called *equivalent* if they coincide on some open subgroup $U''_1 \subset U_1 \cap U'_1$. To distinguish from local automorphisms, we use the terminology "global automorphisms" for usual (topological) automorphisms of X. Of course, every global automorphism of X defines an equivalence class of local automorphisms.

Lemma 1.

- (i) Every local automorphism of $PL_2(k_p)$ is equivalent to a global automorphism of $PL_2(k_p)$.
- (ii) Every global automorphism of $PL_2(k_p)$ is a product of an inner automorphism and an automorphism of $PL_2(k_p)$ obtained by a field automorphism of k_p over \mathbf{Q}_p .
- (iii) Every global automorphism of $G_{\mathfrak{p}} = PSL_2(k_{\mathfrak{p}})$ is induced from that of $PL_2(k_{\mathfrak{p}})$.

The proof is given in Supplement §4. It is a direct consequence of Dynkin's theory of normed Lie algebras [8].

REMARK 1. (ii) implies that the group of all global automorphisms of $PL_2(k_p)$ is isomorphic to the semi-direct product of $PL_2(k_p)$ and $\operatorname{Aut}_{\mathbf{Q}_p} k_p$, where $\operatorname{Aut}_{\mathbf{Q}_p} k_p$ is the group of all automorphisms of the field k_p over \mathbf{Q}_p , which acts on $PL_2(k_p)$ in a natural manner;

(30) Aut
$$PL_2(k_p) \cong PL_2(k_p) \cdot Aut_{O_p} k_p$$
 (semi-direct).

This also shows that distinct global automorphisms of $PL_2(k_p)$ give distinct (equivalence) classes of local automorphisms of $PL_2(k_p)$. Hence, if we denote by Aut' X the group of all equivalence classes of local automorphisms of a topological group X, then we get

(31)
$$\operatorname{Aut}' G_p = \operatorname{Aut}' PL_2(k_p) \cong PL_2(k_p) \cdot \operatorname{Aut}_{O_p} k_p,$$

where $G_{p} = PSL_{2}(k_{p})$.

§14.

PROOF OF THEOREM 3. As a descending sequence $V_1 \supset V_2 \supset \cdots$ of open compact subgroups of G_p with $\bigcap_{n=1}^{\infty} V_n = \{1\}$, we shall take

(32)
$$\begin{cases} V_1 = PSL_2(O_p), \\ V_n = \{x \in V_1 \mid x \equiv 1 \pmod{p^{n-1}}\} \quad (n > 1) \end{cases}$$

Now, since $G_{\mathfrak{p}}$ is an open subgroup of $\widetilde{\Gamma}'$, an inner automorphism of $\widetilde{\Gamma}'$ induces a local automorphism of $G_{\mathfrak{p}}$. Thus we get a homomorphism $\widetilde{\varphi}$ of $\widetilde{\Gamma}'$ into the group Aut' $G_{\mathfrak{p}}$ of all equivalence classes of local automorphisms of $G_{\mathfrak{p}}$;

(33)
$$\widetilde{\varphi}: \widetilde{\Gamma}' \to \operatorname{Aut}' G_{\mathfrak{p}}.$$

By (31), we can identify Aut' $G_{\mathfrak{p}}$ with $PL_2(k_{\mathfrak{p}}) \cdot \operatorname{Aut}_{Q_p} k_{\mathfrak{p}}$, and hence by the restriction of $\overline{\varphi}$ to Γ' , we get a homomorphism:

(34)
$$\varphi: \Gamma' \to PL_2(k_p) \cdot \operatorname{Aut}_{\mathbf{Q}_p} k_p.$$

Consider the subgroup $Y = PSL_2(k_p)PL_2(O_p) \cdot \operatorname{Aut}_{Q_p} k_p$ of $PL_2(k_p) \cdot \operatorname{Aut}_{Q_p} k_p$. It is of index two. Let Γ'' be the inverse image of Y by φ . Since $\varphi(\Gamma_R)$ is contained in $G_p = PSL_2(k_p)$, Γ'' contains Γ_R , and we get

(35)
$$\Gamma' \supset \Gamma'' \supset \Gamma_{\mathbf{R}}, \quad (\Gamma' : \Gamma'') \leq 2.$$

So, to prove $(\Gamma' : \Gamma_{\mathbf{R}}) < \infty$, it suffices to prove $(\Gamma'' : \Gamma_{\mathbf{R}}) < \infty$.

For this purpose, let $x \in \Gamma''$. Then there exist $n_0 \ge 1$, $g_p \in G_p = PSL_2(k_p)$, $w_p \in PL_2(O_p)$, and $\sigma \in \operatorname{Aut}_{Q_p} k_p$ acting on $PL_2(k_p)$, such that $x^{-1}vx = g_p^{-1}w_p^{-1}v^{\sigma}w_pg_p$ for all $v \in V_{n_0}$. Take $\gamma \in \Gamma_{\mathbb{R}} \cap V_1g_p$, and put $\gamma = v_1g_p$ with $v_1 \in V_1$. Since $PL_2(O_p)$. Aut $_{Q_p} k_p$ normalizes all V_n $(n \ge 1)$, we have $w_p^{-1}v^{\sigma}w_p \in V_{n_0}$ for all $v \in V_{n_0}$; hence $g_px^{-1} = v_1^{-1}\gamma x^{-1}$ normalizes all V_n for $n \ge n_0$. Since v_1 also normalizes all V_n , it follows that γx^{-1} normalizes V_n for all $n \ge n_0$. But since $\gamma x^{-1} \in \Gamma'' \subset \Gamma'$, it normalizes $\Gamma' \cap V_n = \Gamma_{\mathbb{R}} \cap V_n = \Gamma_{\mathbb{R}}^n$ for all $n \ge n_0$. So, if we put

(36)
$$H^m = \{x \in G_{\mathbf{R}} \mid x^{-1} \Gamma_{\mathbf{R}}^n x = \Gamma_{\mathbf{R}}^n \text{ for all } n \ge m\} \quad (m \ge 1),$$

this implies that $\gamma x^{-1} \in H^{n_0}$; hence every element of Γ'' is contained in $H^{n_0} \cdot \Gamma_{\mathbf{R}}$ for some $n_0 \geq 1$.

Now, since $\Gamma_{\mathbf{R}}^{1}$ normalizes all $\Gamma_{\mathbf{R}}^{n}$ $(n \ge 1)$, we get

$$(37) \qquad \cdots \supset H^2 \supset H^1 \supset \Gamma^1_{\mathbf{R}} \supset \Gamma^2_{\mathbf{R}} \supset \cdots$$

But, in general, if Δ is a discrete subgroup of $G_{\mathbf{R}}$ whose quotient space has finite invariant volume, then its normalizer $N(\Delta)$ in $G_{\mathbf{R}}$ satisfies $(N(\Delta) : \Delta) < \infty$; and there exist only finitely many subgroups Δ' of $G_{\mathbf{R}}$ such that $\Delta' \supset \Delta$ and $(\Delta' : \Delta) < \infty$.

Apply this to $\Delta = \Gamma_{\mathbf{R}}^m$. Since $H^m \subset N(\Gamma_{\mathbf{R}}^m)$, we get $(H^m : \Gamma_{\mathbf{R}}^1) \leq (H^m : \Gamma_{\mathbf{R}}^m) < \infty$, and hence we also get $H^m = H^{m+1} = \cdots$ for sufficiently large m. Now put $H = \bigcup_{n=1}^{\infty} H^n$. Then $(H : \Gamma_{\mathbf{R}}^1) < \infty$, and by what we have shown we have $\Gamma'' \subset H^{n_0}\Gamma_{\mathbf{R}}$ for some n_0 , and hence $\Gamma'' \subset H \cdot \Gamma_{\mathbf{R}}$. Put $H = \sum_{i=1}^t M_i \Gamma_{\mathbf{R}}^1$ with $M_i \in H$ $(1 \leq i \leq t)$. Then we get $\Gamma'' \subset H \cdot \Gamma_{\mathbf{R}} = \sum_{i=1}^t M_i \Gamma_{\mathbf{R}}$; hence $(\Gamma'' : \Gamma_{\mathbf{R}}) \leq (H : \Gamma_{\mathbf{R}}^1) < \infty$.

So, we have also proved:

COROLLARY 1. We have

(38)

$$(\operatorname{Aut}_{\mathbf{C}} L:G_{\mathbf{p}}) = (\Gamma':\Gamma_{\mathbf{R}}) \leq 2(H:\Gamma_{\mathbf{R}}^{1}),$$

where Γ' is given by (24), $\Gamma_{\mathbf{R}}^n = [\Gamma \cap (G_{\mathbf{R}} \times V_n)]_{\mathbf{R}}$ $(n \ge 1)$, with V_n defined by (32), and H is the subgroup of all elements of $G_{\mathbf{R}}$ which normalize $\Gamma_{\mathbf{R}}^n$ for all sufficiently large n.

§15. Some direct consequences of Theorem 3.

COROLLARY 2. The group $G_{\mathfrak{p}}$ is a characteristic subgroup of $\operatorname{Aut}_{\mathbb{C}} L$.

PROOF. Since G_p is a simple group (as an abstract group), it is enough to show that if a group A contains a subgroup B with $(A : B) < \infty$ and if B is an infinite simple group, then B is invariant by every automorphism of A. Let σ be any automorphism of A. Then $B \cap B^{\sigma}$ is of finite index in B. Therefore, $\bigcap_{x \in B} x^{-1}(B \cap B^{\sigma})x$ is a normal subgroup of Bwith finite index. But B is infinite and simple. Therefore, $\bigcap_{x \in B} x^{-1}(B \cap B^{\sigma})x = B$; hence $B \cap B^{\sigma} = B$; hence $B^{\sigma} \supset B$. Since $(A : B) = (A^{\sigma} : B^{\sigma}) = (A : B^{\sigma})$, we get $B^{\sigma} = B$.

COROLLARY 3. Let 3 be the centralizer of G_p in Aut_C L. Then

- (i) 3 is finite.
- (ii) 3 reduces to {1} if and only if L contains no G_p -subfield M over C such that L/M is normal. In particular, if L is irreducible, then $3 = \{1\}$.

PROOF. (i) Since G_p has no center, we get $\mathfrak{Z} \cap G_p = \{1\}$; hence by $(\operatorname{Aut}_{\mathbb{C}} L : G_p) < \infty$, we get the finiteness of \mathfrak{Z} .

(ii) If $3 \neq \{1\}$, let *M* be the fixed field of 3 in *L*. Since 3 centralizes G_p , *M* is G_p invariant. Also it is clear that L/M is normal and $[L:M] = (3:1) \neq 1$. Conversely, let $M(\neq L)$ be a G_p -subfield of *L* over **C** such that L/M is normal, and put $3' = \operatorname{Aut}(L/M) \neq$ $\{1\}$. Then for each $g_p \in G_p$, the fixed field of $g_p^{-1}3'g_p$ is $g_p^{-1}(M) = M$. Hence $g_p^{-1}3'g_p = 3'$;
hence G_p normalizes 3'. Let X be the centralizer of 3' in G_p . Then X is a normal subgroup
of G_p with finite index (since 3' is finite). But G_p is a simple group. Therefore, $X = G_p$;
hence G_p centralizes 3'; hence 3 contains 3' \neq $\{1\}$.

COROLLARY 4. Let $N(\Gamma)$ be the normalizer of Γ in G. Then

(ii) $N(\Gamma) = \Gamma$ holds if and only if L contains no G_p -subfield $M \neq L$ over \mathbb{C} such that L/M is normal.

⁽i) $(N(\Gamma) : \Gamma) < \infty$;

PROOF. First, we claim that the projections $N(\Gamma) \to N(\Gamma)_{\mathbb{R}}$ and $N(\Gamma) \to N(\Gamma)_{\mathbb{p}}$ are injective. In fact, let $\delta = \delta_{\mathbb{R}} \times \delta_{\mathbb{p}} \in N(\Gamma)$ with, say, $\delta_{\mathbb{R}} = 1$. Let $\gamma = \gamma_{\mathbb{R}} \times \gamma_{\mathbb{p}} \in \Gamma$. Then $\delta^{-1}\gamma\delta = \gamma_{\mathbb{R}} \times \delta_{\mathbb{p}}^{-1}\gamma_{\mathbb{p}}\delta_{\mathbb{p}} \in \Gamma$. But by the injectivity of $\Gamma \to \Gamma_{\mathbb{R}}$, we get $\delta_{\mathbb{p}}^{-1}\gamma_{\mathbb{p}}\delta_{\mathbb{p}} = \gamma_{\mathbb{p}}$. Therefore, $\delta_{\mathbb{p}}$ commutes with all elements of $\Gamma_{\mathbb{p}}$; hence $\delta_{\mathbb{p}} = 1$.

Now, it is clear that $N(\Gamma)_{\mathbb{R}} \subset \Gamma'$, where Γ' is as in §12. Hence $(N(\Gamma) : \Gamma) = (N(\Gamma)_{\mathbb{R}} : \Gamma_{\mathbb{R}}) < \infty$; which settles (i). Now (ii) is a direct consequence of (i) and Theorem 2.

§16. A G_p -field L over \mathbb{C} will be called *quasi-irreducible* if L contains no G_p -subfields $M \neq L$ over \mathbb{C} such that L/M is normal. By Corollary 3, L is quasi-irreducible if and only if the centralizer of G_p in Aut_C L is trivial, and by Corollary 4, if and only if $N(\Gamma) = \Gamma$. In particular, if L is irreducible or if $G_p = \operatorname{Aut}_C L$, then L is quasi-irreducible. Quasi-irreducible G_p -fields over \mathbb{C} play central roles in Part 2 of this Chapter.

§17.

EXAMPLE. Let L be the G_p -field over C which corresponds to $\Gamma = PSL_2(\mathbb{Z}^{(p)})$ (see §2). Here, $G_p = G_p = PSL_2(\mathbb{Q}_p)$. Since $\Gamma_{\mathbb{R}}^1 = PSL_2(\mathbb{Z})$ is a maximal fuchsian group, we get $H = \Gamma_{\mathbb{R}}^1$; hence by (38) we get $(\operatorname{Aut}_{\mathbb{C}} L : G_p) = (\Gamma' : \Gamma_{\mathbb{R}}) \leq 2$. But if we put

(39) $\Gamma^* = \{x \in GL_2(\mathbb{Z}^{(p)}) | \det x = \text{ powers of } p\} / \pm \{\text{ powers of } p\},\$

then Γ^* can be considered as a subgroup of $G_{\mathbb{R}}$ with $\Gamma^* \supset \Gamma_{\mathbb{R}}$, $(\Gamma^* : \Gamma_{\mathbb{R}}) = 2$, and it is clear that $\Gamma^* \subset \Gamma'$. Therefore, we get $\Gamma' = \Gamma^*$. Therefore, $\operatorname{Aut}_{\mathbb{C}} L = \widetilde{\Gamma}^*$, where $\widetilde{\Gamma}^*$ is the *p*-adic completion of Γ^* given by

(40)
$$\widetilde{\Gamma}^* = \{x \in GL_2(\mathbf{Q}_p) | \det x = \text{ powers of } p\} / \pm \{\text{ powers of } p\}.$$

Since $\Gamma_{\mathbf{R}}^1 = PSL_2(\mathbf{Z})$ is maximal, L is irreducible by Corollary 3 of Theorem 2.