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Part 1. The $G_{\mathfrak{p}}$-fields over C.

The $G_{\mathfrak{p}}-$fields.

\S 1. Let $L$ be a discrete field, on which the group $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ acts effectively

and continuously as a group of field-automorphisms; namely, each $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ gives a field
automorphism $x\mapsto g_{\mathfrak{p}}(x)$ of $L$, and the induced map $G_{\mathfrak{p}}\rightarrow AutL$ is an injective homo-

morphism;

$(g_{\mathfrak{p}}h_{\mathfrak{p}})(x)=g_{\mathfrak{p}}(h_{\mathfrak{p}}(x)) \forall g_{\mathfrak{p}},h_{\mathfrak{p}}\in G_{\mathfrak{p}}, x\in L$ ;
(1)

$g_{\mathfrak{p}}(x)=x(\forall x\in L)\leftrightarrow g_{\mathfrak{p}}=1.$

Since $L$ is a discrete field, the continuity of the actions of $G_{\mathfrak{p}}$ amounts to saying that, for

each $x\in L$ , its stabilizer in $G_{\mathfrak{p}}$ is open. For each open compact subgroup $V$ of $G_{\mathfrak{p}}$ , put

(2) $L_{V}=\{x\in L|v(x)=x, \forall v\in V\}.$

Since open compact subgroups form a basis of neighborhoods of the identity of $G_{\mathfrak{p}}$ , we
get $L=\bigcup_{V}L_{V}$ . Moreover, it follows that for each $V,$ $L/L_{V}$ is separably algebraic, $V$ is
the group of all automorphisms of $L/L_{V}$ , and the topology of $V$ induced by that of $G_{\mathfrak{p}}$

coincides with the Kmll topology of $V=Aut(L/L_{V})$ . In fact, let $x\in L$ , and let $V’$ be its
stabilizer in $G_{\mathfrak{p}}$ . Then since $V’$ is open, we have $(V: V’\cap V)<\infty$ . Put $V=\sum_{i=1}^{d}\sigma_{i}(V\cap V’)$ .
Then $\sigma_{1}(x),$ $\cdots,\sigma_{d}(x)$ are mutually distinct, and their elementary symmetric functions
are all contained in $L_{V}$ ; hence $L/L_{V}$ is separably algebraic. Now consider $Aut(L/L_{V})$ as
equipped with the Krull topology. Then the injection $\varphi$ : $V\rightarrow Aut(L/L_{V})$ is continuous,

since the action of $G_{\mathfrak{p}}$ on $L$ is so; hence $\varphi(V)$ is also compact. On the other hand, $\varphi(V)$ is

dense in $Aut(L/L_{V})$ , since for any $\sigma\in Aut(L/L_{V})$ , we have $\sigma(x)=\sigma_{i}(x)$ for some $i(\sigma_{i}$

being as above, for this $x$). Therefore, $\varphi(V)=Aut(L/L_{V})$ , and $\varphi$ is bicontinuous (since $V$

is compact).

Let $k$ be the fixed field of $G_{\mathfrak{p}}$ ;

(3) $k=\{x\in L|g_{p}(x)=x\forall g_{\mathfrak{p}}\in G_{\mathfrak{p}}\}.$

We shall call $L$ $a$ one-dimensional $G_{\mathfrak{p}}$ -Beld over $k$, or simply, a $G_{\mathfrak{p}}$ -Beld over $k$, if

(Ll) $\dim_{k}L=1,$

and if for every open compact subgroup $V$ of $G_{\mathfrak{p}}$ , the condition:

(L2) $L_{V}$ is finitely generated over $k$, and almost all prime divisors of$L_{V}$ over $k$ are unram-
ified in $L$;

is satisfied. We note that since $L/L_{V}$ is algebraic, (Ll) implies $\dim_{k}L_{V}=1$ ; hence $L_{V}$ is an
algebraic function field of one variable over $k$, in the sense that $L_{V}/k$ is finitely generated

and is of dimension one. By a prime divisor of $L_{V}$ over $k$, we mean an equivalence class
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ofnon-trivial discrete valuations of $L_{V}$ over $k$ or equivalently, an equivalence class ofnon-
trivial places of $L_{V}$ over $k$. Since open compact subgroups of $G_{\mathfrak{p}}$ are commensurable with
each other, the condition (L2) is satisfied for all $V$ if it is satisfied for one $V.$

The subfield $k$ of $L$ given by (3) will be called the constant field of $L$ . Two $G_{\mathfrak{p}}$-

fields $L,$ $L’$ with the common constant field $k$ are called isomorphic if there exists an
isomorphism of the field $L$ onto $L’$ which is trivial on $k$ and which commutes with the
actions of all elements of $G_{\mathfrak{p}}.$

\S 2.

EXAMPLE. Let $p$ be a prime number, and put

(4) $\Delta^{(n)}=\{x\in SL_{2}(Z)|x\equiv\pm 1(modp^{n})\}/\pm 1 (n\geq 0)$ .

Consider $\Delta^{(n)}$ as fuchsian groups acting on the complex upper half plane $\mathfrak{H}$, and let $L_{n}$

$(n\geq 0)$ be the field of automorphic functions with respect to $\Delta^{(n)}$ . Put $L=\bigcup_{n=0}^{\infty}L_{n}.$

Define the action of the group $PSL_{2}(Q_{p})$ on $L$ in the following manner. As in Chapter
1, \S 2 (Example), put $Z^{Cp)}=\bigcup_{n=0}^{\infty}p^{-n}Z,$ $\Gamma=PSL_{2}(Z^{(p)})$ , and consider $\Gamma$ as a discrete
subgroup of $G=G_{R}\times G_{p}$ , with $G_{R}=PSL_{2}(R)$ and $G_{p}=PSL_{2}(Q_{p})$ . Then, $\Gamma_{p}\cong\Gamma_{R}\subset G_{R}$

acts on $L$ as

(5) $\Gamma_{p}\ni\gamma_{p}:L\ni f(z)\mapsto\gamma_{p}(f(z))=f(\gamma_{R}^{-1}\cdot z)\in L,$

where $\gamma_{R}$ is the element of $\Gamma_{R}$ which corresponds to $\gamma_{p}$ . Now, we lift the action of $\Gamma_{p}$ to

that of $G_{p}$ ; namely, for each $f(z)\in L_{n}$ and $g_{p}\in G_{p}$ , put $g_{p}(f(z))=\gamma_{p}(f(z))$ with any
$\gamma_{p}\in\Gamma_{p}\cap g_{p}U_{p}^{(n)}$ , where

(6) $U_{p}^{\langle n)}=\{x\in SL_{2}(Z_{p})|x\equiv\pm 1(modp^{n})\}/\pm 1 (n\geq 0)$ .

Then, this defines an action of $G_{p}$ on $L$ , which is effective and continuous. By noting that
$L_{n}$ is the fixed field of $U_{p}^{(n)}(n\geq 0)$ , we see immediately that $L$ is a $PSL_{2}(Q_{p})$-field over
the complex number field C.

We shall show later (\S 5-\S 9) that all $G_{\mathfrak{p}}$-fields over $C$ are obtained in this manner from
discrete sub$\Psi^{oups\Gamma}$ of $G=G_{R}\times G_{\mathfrak{p}}$ such that $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ are dense in $G_{R},$ $G_{\mathfrak{p}}$ respectively
and $ G/\Gamma$ have fimite invariant volumes.

\S 3.

PROPOSITION 1. Let $L$ be a $G_{p}$-field over $k$ Then $k$ is algebraically closed $inL\sim.$

PROOF. In fact, let $x\in L$ be algebraic over $k$. Then for any $g_{\mathfrak{p}}\in G_{\mathfrak{p}},$ $g_{\mathfrak{p}}(x)$ is conjugate
to $x$ over $k$. This shows that the stabilizer of $x$ in $G_{\mathfrak{p}}$ is offinite index in $G_{\mathfrak{p}}$ . But if $H$ is a
subgroup of $G_{\nu}$ offinite index, then $N=\bigcap_{g,eG},$ $g_{\mathfrak{p}}^{-1}Hg_{\mathfrak{p}}$ is a normal subgroup of $G_{\mathfrak{p}}$ with
fimite index; hence by the simplicity of the group $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ we get $N=G_{\mathfrak{p}}$ ;a.nd

hmce $H=G_{p}$ . Therefore, the stabilizer of $x$ in $G_{\mathfrak{p}}$ must be $G_{\mathfrak{p}}$ itself; hence $x\in k.$ $\square $
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PROPOSITION 2. Let $L$ be a $G_{\mathfrak{p}}$-field over $k$ Let $L’$ be a $G_{\mathfrak{p}}$-

invariant subfield of $L$, not contained in $k$ Put $k’=L’\cap k$

Then,
$-L’k$(i) $L$’andk are linearly disjoint over $k’.$ $L’$

(ii) $[L:L’\cdot k]<\infty.$

(iii) $Wth$ the restrictedaction of $G_{\mathfrak{p}}$ on $L’,$ $L’$ is a $G_{\mathfrak{p}}$-field over
$k’.$

PROOR (i). Suppose, on the contrary, that $L’$ and $k$ were not linearly disjoint over $k’.$

Then, there exists a set of elements $c_{1},$ $\cdots,c_{n}\in k$ that are linearly independent over $k’,$

but not over $L’$ . We can assume that $c_{1},$ $\cdots$ , $c_{n-1}$ are linearly independent over $L’$ , since
otherwise, we can replace $c_{1},$ $\cdots,$ $c_{n}$ by $c_{1},$ $\cdots,$ $c_{n-1}$ . Now, $c_{1},$ $\cdots$ , $c_{n-1}$ being linearly
independent over $L’$ and $c_{1},$ $\cdots$ , $c_{n}$ not being so, we get $c_{n}=x_{1}c_{1}+\cdots+x_{n-1}c_{n-1}$ with
some $x_{1},$ $\cdots,$ $x_{n-1}\in L’$ , and with, say, $x_{1}\not\in k’$ . Since $x_{1}\in L’$ and $k’=L’\cap k$, this
implies $x_{1}\not\in k$, and hence there exists some $g_{p}\in G_{\mathfrak{p}}$ for which $g_{\mathfrak{p}}(x_{1})\neq x_{1}$ . Now by
$c_{n}=x_{1}c_{1}+\cdots+x_{n-1}c_{n-1}$ , we get $c_{n}=g_{\mathfrak{p}}(x_{1})c_{1}+\cdots+g_{\mathfrak{p}}(x_{n-1})c_{n-1}$ ; hence

$(x_{1}-g_{\mathfrak{p}}(x_{1}))c_{1}+\cdots+(x_{n-1}-g_{\mathfrak{p}}(x_{n-1}))c_{n-1}=0.$

Since $L’$ is $G_{\mathfrak{p}}$ -invariant, all coefficients of $c_{i}$ are contained in $L’$ , and $x_{1}-g_{p}(x_{1})\neq 0.$

This contradicts the assumption on linear independence of $c_{1},$ $\cdots,$ $c_{n-1}$ over $L’$ . Thus (i)

is settled.
(ii), (iii). It is clear that $G_{\mathfrak{p}}$ acts continuously on $L’$ , and that the fixed field is $k’$ . Let

$\Delta$ be the kemel of the action of $G_{p}$ on $L’$ . Then, $\Delta$ is a normal subgroup of $G_{\mathfrak{p}}$ , and since
$L’\supsetneq k’,$ $\Delta$ is not $G_{\mathfrak{p}}$ itself. Hence, by the simplicity ofthe group $G_{\mathfrak{p}}=PSL_{2}(k_{p})$ , we get
$\Delta=\{1\}$ ; hence the action of $G_{\mathfrak{p}}$ on $L’$ is effective. By $k\subsetneq L’k\subset L$ and by Proposition
1, we get $\dim_{k}L’k=1$ , and hence by the linear disjointness of $L’$ and $k$ over $k’$ , we get
$\dim_{k’}L’=1$ . Now let $V$ be any open compact subgroup of $G_{\mathfrak{p}}$ , and let $L_{V}’$ be the fixed field
of $V|_{L’}$ . It is clear that $L_{V}’=L’\cap L_{V}$ . Moreover, the argument of \S 1 shows that $L’/L_{V}’$ is
separably algebraic (hence $L_{V}’/k’$ is of dimension one), and that $Aut(L’/L_{V}’)=V|_{L’}$ . Also,
since $k\subsetneq L_{V}’\cdot k\subset L_{V},$ $L_{V}’\cdot k/k$ is finitely generated and is ofdimension one (by Proposition
1 $)$ . Hence, by the linear disjointness of $L’$ and $k$ over $k’$ , we see that $L_{V}’/k’$ is also finitely
generated. Since $L_{V}/L_{V}’\cdot k$ is finitely generated and algebraic, we get $[L_{V}:L_{V}’\cdot k]<\infty.$

Now, put $M=L’\cdot k$ and $M_{V}=M\cap L_{V}$ . We claim that $M\cdot L_{V}=L$ and $M_{V}=L_{V}’\cdot k$

In fact, since $G_{p}$ acts effectively on $M=L’\cdot k$, the subgroup of $G_{\mathfrak{p}}$ which acts trivially on
M. $L_{V}$ is {1}. On the other hand, $V=Aut(L/L_{V})$ with ffie Kmll topology (see \S 1), and the
Galois theory is valid between compact subgroups of $V$ and intermediate fields of $L/L_{V}$

(Krull’s Galois theory). This shows $M\cdot L_{V}=L$ . Let us now check $M_{V}=L_{V}’\cdot k$ First,

every element $x$ of $M=L’\cdot k$ can be written in the form:

$x=a\sum_{i\overline{-}1}^{n}c_{t}x_{i}$ , with $a\in L_{V}’\cdot k,$ $c_{i}\in k,$ $x_{i}\in L’(1\leq i\leq n)$ .
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This follows easily 5 from the fact that $L’/L_{V}’$ is normal and separable, and that $L’$ and $k$

are linearly disjoint over $k’.$

Now let $x$ be contained in $M_{V}$ . We can assume that $c_{1},$ $\cdots$ , $c_{n}$ are linearly independent
over $k’$ , and hence also over $L’$ . By $v(x)=x(v\in V)$, we get $v(x_{i})=x_{i}(1\leq i\leq n)$ for all
$v\in V$. This shows $x_{i}\in L_{V}’$ ; hence we get $x\in L_{V}’\cdot k$ Hence $M_{V}\subset L_{V}’\cdot k$ On the other
hand, the inclusion $M_{V}\supset L_{V}’\cdot k$ is obvious. Hence we get $M_{V}=L_{\acute{v}}\cdot k.$

So, we get the following diagram, in which every branch” is linearly disjoint: $(M,L_{V}$

are linearly disjoint over $M_{V}$ since $M/M_{V}$ is Galois, $L_{V}/M_{V}$ is algebraic, and since $ M\cap$

$L_{V}=M_{V}.)$

So, by $[L_{V}:M_{V}]=[L_{V} : L_{V}’\cdot k]<\infty$ , we get $[L:M]=[L_{V}:M_{V}]<\infty$ . This settles
(ii). Finally, since almost all prime divisors of $L_{V}$ over $k$ are unramified in $L$ , and since
$[L_{V} : M_{V}]<\infty$ , it follows immediately that almost all prime divisors of $M_{V}$ over $k$ are
unramified in $L$ , and hence a priori in $M$. Thus, by the linear disjointness of $L’$ and $k$ over
$k’$ , it follows immediately that almost all prime divisors of $L_{V}’$ over are unrmified in $L’.$

Therefore, together with what we have proved already, we have completed the proof that
$L’$ is a $G_{\mathfrak{p}}$-field over $k’.$ $\square $

We have also proved the following:

COROLLARY. The situation being as in Proposition 2, let $V$ be an open compact sub-
group of $G_{\mathfrak{p}}$ and let $L_{V}’=L’\cap L_{V}$. Then $L_{V}’\cdot k$ consists ofall $V$-invariant elements of$L’\cdot k$

andwe have $[L:L’k]=[L_{V}:L_{V}’\cdot k]<\infty.$

5First, express $x$ in the fom $\sum_{i=1}^{n}c_{i}x_{i}/\sum_{i=1}^{n}d_{t}x_{i}$ , with $c_{i},$ $d_{i}\in hx_{i}\in L’(1\leq i\leq n)$ , and then consider

the norm over $L_{V}’\cdot k$ ofthe denominator.
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\S 4. Let $L$ be a $G_{\mathfrak{p}}$-field over $k$, and let $L’$ be a $G_{\mathfrak{p}}$-invariant subfield of $L$ , with $L’\not\subset k.$

Put $k’=L’\cap k$ Such $L’$ will be called a $G_{\mathfrak{p}}$ -subfield $(ofL)$ over $k’$ . Thus, if $L’$ is such,

and if $k’\subset k_{1}\subset k$, then $L’\cdot k_{1}$ is a $G_{\mathfrak{p}}$-subfield over $k_{1}$ . In particular, $L’\cdot k$ is a $G_{\mathfrak{p}}$-subfield

over $k$, and by Proposition 2, we have $[L : L’k]<\infty.$

We shall call $L’$ a full $G_{\mathfrak{p}}$ -subfield over $k’$ , ifmoreover the
condition $L’\cdot k=L$ is satisfied. Since $L’$ and $k$ are linearly

$L$

disjoint over $k’$ , it implies that $L$ is identified with the constant

field extension $L’\otimes_{k’}k$ of $L’$ . We shall call a $G_{\mathfrak{p}}$-field $L$ over $k$ ir-
$-L’k$reducible $ifL$ has no $G_{\mathfrak{p}}$-subfields overk other ffian $L$ itself, i.e., $L’$

there is no proper intermediate $G_{\mathfrak{p}}$-invariant subfield between $k$

and $L$ . Thus, if $L$ is irreducible, then all $G_{\mathfrak{p}}$-subfields of $L$ are
full $G_{\mathfrak{p}}$-subfields.

$k^{\prime-}k$

We shall prove in Part 2 of this Chapter that if $L$ is a $G_{\mathfrak{p}^{-}}$

field over the complex number field $C$ , then it contains a full
$G_{\mathfrak{p}}$-subfield $L_{k}$ over an algebraic $n$umber field $k$ We shall prove, moreover, that under a
certain condition on $L$ which is always satisfied if $L$ is irreducible, such $L_{k}$ is essentially
unique, in the sense that among them there is a smallest field $L_{k\mathfrak{v}}$ over $k_{0}$ and that all other
$L_{k}$ are obtained as $L_{k}=L_{k_{0}}\cdot k,$ $k\supset k_{0}$ . In other words, all $G_{\mathfrak{p}}$-fields over $C$ are the constant
field extensions of some $G_{\mathfrak{p}}$-fields over an algebraic nunber field of finite degree, and if

the former is irreducible, then the latter is essentially unique.
This will be proved by using the one-to-one correspondence between $G_{\mathfrak{p}}$-fields over

$C$ and certain discrete subgroups $\Gamma$ of $G=G_{R}\times G_{\mathfrak{p}}$ (Theorem 1), and then by using some
group theory of $G_{\mathfrak{p}}$ and analysis of $\Gamma$ (Part 2).

Analytic construction of $G_{\mathfrak{p}}$-fields over C.

\S 5. Let $\Gamma$ be a discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}=PSL_{2}(R)\times PSL_{2}(k_{\mathfrak{p}})$ such that
the projections $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ are dense in $G_{R},$ $G_{\mathfrak{p}}$ respectively and that the quotient $ G/\Gamma$ has finite
invariant volume. For each open compact subgroup $V$ of $G_{\mathfrak{p}}$ , put

(7) $\Gamma^{V}=\Gamma\cap(G_{R}\times V)$ ,

and let $\Gamma_{R}^{V}$ be its projection to $G_{R}$ . By Proposition 2 (Chapter 1, \S 3) $\Gamma_{R}^{V}$ is a discrete
subgroup of $G_{R}$ and the quotient $G_{R}/\Gamma_{R}^{V}$ has finite invariant volume. Let $L_{V}$ be the field
of automorphic functions with respect to the fuchsian group $\Gamma_{R}^{V}$ acting on the complex

upper halfplane $\mathfrak{H}$ . Put $L=\bigcup_{V}L_{V}$ . Then it is obvious ffiat $\dim_{C}L=1$ , that $L_{V}$ is finitely
generated over $C$ , and that almost all prune divisors of $L_{V}$ over $C$ are unramified in $L$ . In
fact, if $z\in \mathfrak{H}$ is not an elliptic fixed point of $\Gamma_{R}^{V}$ , then the prune divisor of $L_{V}$ given by $z$

$(mod \Gamma_{R}^{V})$ is unramffied in $L.$

Now we define the action of the group $G_{\mathfrak{p}}$ on $L$ in the following manner. Let $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$

and $f(z)\in L$ . Take $V$ such that $f(z)\in L_{V}$, and take $\gamma\in\Gamma\cap(G_{R}\times g_{\mathfrak{p}}V)(\neq\phi$, since
$\Gamma_{\mathfrak{p}}$ is dense in $G_{\mathfrak{p}}$). Put $g_{\mathfrak{p}}\{f(z)\}=f(\gamma_{R}^{-1}\cdot z)$ . Then, it is easy to check that $g_{\mathfrak{p}}\{f(z)\}$ is
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well-defined (does not depend on the choice of $V$ or $\gamma$), that $g_{\mathfrak{p}}\{f(z)\}\in L$, and that

$L\ni f(z)\mapsto g_{\mathfrak{p}}\{f(z)\}\in L$

gives a field-automorphism of $L$ . Moreover, $(h_{\mathfrak{p}}g_{\mathfrak{p}})\{f(z)\}=h_{\mathfrak{p}}\{g_{\mathfrak{p}}f(z)\}$ holds for all $ g_{\mathfrak{p}},h_{\mathfrak{p}}\in$

$G_{\mathfrak{p}}$ ; hence $G_{\mathfrak{p}}$ acts as an automorphism group on $L$ . We see easily that $L_{V}$ is the fixed field
of $V$. In fact, first, it is clear that all elements of $L_{V}$ are fixed by $V$. Conversely, if$f(z)\in L$

is fixed by $V$, then $f(z)$ is invariant by $\Gamma_{R}^{V}$ ; hence $f(z)\in L_{V}$ . Hence $L_{V}$ is the fixed field
of $V$. This shows in particular, that the action of $G_{\mathfrak{p}}$ on $L$ is continuous. If $f(z)\in L$ is
fixed by the whole group $G_{\mathfrak{p}}$ , then we get $f(\gamma_{R}^{-1}\cdot z)=f(z)$ for all $\gamma\in\Gamma$ . But since $\Gamma_{R}$ is
dense in $G_{R}$ , this implies $ f(z)\in$ C. Hence the fixed field of $G_{\mathfrak{p}}$ is C. Finally, the action
of $G_{\mathfrak{p}}$ on $L$ is effective. In fact, the kemel of the action is a normal subgroup of $G_{\mathfrak{p}}$ ; hence
by the simplicity of $G_{\mathfrak{p}}$ , it must be $G_{p}$ itself if not {1}. But that is impossible, since the
fixed field of $G_{\mathfrak{p}}$ is C. Therefore, $G_{\mathfrak{p}}$ acts effectively on $L$ . Thus, starting from $\Gamma$, we have
constructed a $G_{\mathfrak{p}}$-field $L$ over C.

\S 6. Now, we shall show that conversely, given any $G_{\mathfrak{p}}$-field $L$ over $C$ , we can define
$\Gamma$, and that the $G_{\mathfrak{p}}$-fields over $C$ (up to isomorphisms) are in one-to-one correspondence
with $\Gamma$ (up to conjugacy in $G$).

Let $L$ be a $G_{\mathfrak{p}}$-field over $C$ , and let $\Sigma$ be the set of all non-equivalent, non-trivial
discrete valuations of $L$ over C. To give $\Sigma$ more explicitly, let $V_{0}$ be an open compact
subgroup of $G_{\mathfrak{p}}$ which has no elements $(\neq 1)$ offinite $order^{6}$ and let

$ V_{0}\supset V_{1}\supset\cdots\supset V_{n}\supset\cdots$

be a decreasing sequence of open compact subgroups of $G_{\mathfrak{p}}$ , such that $\bigcap_{n=0}^{\infty}V_{n}=\{1\}$ . Put
$L_{n}=L_{V_{n}}(n\geq 0)$ , and let $\Re_{n}(n\geq 0)$ be the Riemam surface of $L_{n}$ . Then, we get a
sequence of coverings

(8) $\Re_{0}\leftarrow\Re_{1}\varphi_{1}\leftarrow\varphi_{2}\ldots\leftarrow\Re_{n^{\leftarrow}}^{\varphi_{n+1}}\ldots$

Let $T_{i}(1\leq i\leq N)$ be the points on $\Re_{0}$ that are ramified in the covering sequence (8).

For each $i$, consider $T_{f}$ as a discrete valuation of $L_{0}$ , and let $\mathfrak{T}_{i}$ be a valuation of $L$ with
$\mathfrak{T}_{i}|_{L_{0}}=T_{i}$ . Then, since $Aut(L/L_{0})$ has no non-trivial finite subgroup, the inertia group of
$\mathfrak{T}_{i}$ over $L_{0}$ is infinite; hence its ramification index in $L/L_{0}$ is infinite. Therefore, $\mathfrak{T}_{f}$ is not
a discrete valuation of $L$ . Put

$\Re_{\acute{0}}=\Re_{0}-\{T_{1}, \cdots , T_{N}\},$ $\Re_{1}’=\varphi_{1}^{-1}(\Re_{\acute{0}})$ , $\Re_{2}’=\varphi_{2}^{-1}(\Re_{1}’),$ $\cdots$ etc.

Denoting $\varphi_{n}|_{\Re_{n}’}$ again by $\varphi_{n}$ , we get a sequence ofunramified coverings

(9) $\Re_{0}’\leftarrow\Re_{1}’\varphi_{1}\leftarrow\varphi_{2}\ldots\leftarrow\Re_{n}’\leftarrow\varphi_{n+1}\ldots$

It is now clear that the set $\Sigma$ can be identified with the set of all sequences ofpoints

(10) $ P_{0}\leftarrow P_{1}\varphi_{1}\leftarrow\varphi_{2}\ldots\leftarrow P_{n^{\leftarrow}}^{\varphi_{n+1}}\cdots$

$6_{It}$ is well-known, and easy to prove, that such $V_{0}$ exists.
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with $P_{n}\in\Re_{n}’$ and $P_{n}=\varphi_{n+1}(P_{n+1})$ for all $n\geq 0$ . So, we shall denote the elements of $\Sigma$

simply as

(11) $\Sigma\ni P=\{P_{0}\leftarrow P_{1}\varphi_{1}\leftarrow\cdots\}\varphi_{2}.$

Now we shall define a complex stmcture on $\Sigma$ . Let $\Sigma\ni P=\{P_{0}\leftarrow P_{1}\leftarrow\cdots\}$ , and let
$U_{0}$ be any simply connected neighborhood of $P_{0}$ on $\Re_{0}’$ . For each $n\geq 0$ , let $U_{n}$ be the
connected component of $(\varphi_{1}0\cdots 0\varphi_{n})^{-1}U_{0}$ containing $P_{n}$ ;

(12)

Since $U_{0}$ is simply connected, $U_{0}\leftarrow U_{n}$ is a simple covering; hence $\varphi_{n}$ induces an
isomorphism of $U_{n}$ onto $U_{n-1}$ ; and each point $P_{0}’\in U_{0}$ defines a unique element
$P’=\{P_{\acute{0}}\leftarrow P_{1}’\leftarrow\cdots\}$ of $\Sigma$ , with $P_{n}’\in U_{n}$ for all $n\geq 0$ . Therefore, by taking such
$U_{0}\cong\{U_{0}\leftarrow U_{1}\leftarrow\cdots\}$ as a coordinate neighbourhood of $P$, we can define a complex
structure on $\Sigma$ , by which $\Sigma$ is a one-dimensional complex manifold.

An important point is that this complex structure of $\Sigma$ is independent of the choice
of the sequence $ V_{0}\supset V_{1}\supset\cdots$ of open compact subgroups of $G_{\mathfrak{p}}$ . To check this,
let $ V_{0}’\supset V_{1}’\supset\cdots$ be another sequence such that $V_{0}’$ is torsion-free and $\bigcap_{n=0}^{\infty}V_{n}’=\{1\}.$

Then, they are cofinal; i.e., every $V_{n}$ contains some $V_{m}’$ , and vice versa. So, we get a new
sequence $ V_{i_{1}}\supset V_{j_{1}}’\supset V_{i_{2}}\supset V_{j_{2}}’\supset\cdots$ , with $ j_{1}<i_{2}<\cdots$ and $ j_{1}<j_{2}<\cdots$ . Now it is
clear that the complex stmcture of $\Sigma$ defined by the sequence $ V_{0}\supset V_{1}\supset\cdots$ is equivalent
to that defined by $ V_{i_{1}}\supset V_{j_{1}}’\supset V_{i_{2}}\supset V_{j_{2}}’\supset\cdots$ , and hence is also equivalent to that defined
by $V_{0}’\supset V_{1}’\supset\cdots.$

Let $\sigma$ be an automorphism ofthe field $L$ over C. Then, the action $\Sigma\ni P\mapsto\sigma\cdot P\in\Sigma$

is defined by

$v_{\sigma P}(x)=v_{P}(\sigma^{-1}(x)) (x\in L)$ ,

where $v_{P},$ $v_{\sigma P}$ are the normalized additive discrete valuations of $L$ contained in the classes
$P,$ $\sigma P$ respectively. Now, by this action, $\sigma$ leaves the complex strucure of $\Sigma$ invariant. In
fact, consider the sequence $\sigma(L_{0})\subset\sigma(L_{1})\subset\cdots$ , and let $n$ be sufficiently large. Then
$\sigma(L_{n})$ contains $L_{0}$ ; hence there is an open compact subgroup $V_{n}’$ of $V_{0}$ such that $\sigma(L_{n})=$

$L_{V_{n}’}$ . Therefore, by the above remark, the complex structure of $\Sigma$ defined with respect to
$\sigma(L_{n})\subset\sigma(L_{n+1})\subset\cdots$ is equivalent to the original one. But this implies that $\sigma$ leaves the
complex structure of $\Sigma$ invariant. In particular, $G_{\mathfrak{p}}$ acts on $\Sigma$ as a group of automorphisms
ofthe complex manifold $\Sigma$ , and hence $G_{\mathfrak{p}}$ also acts on the set of all comected components
of $\Sigma$ as a permutation group.

\S 7. We shall now prove that:

(i) Each open compact subgroup of $G_{\mathfrak{p}}$ acts transitively on $tbe$ set ofall connected com-
ponents of $\Sigma.$

(ii) Each connected component of $\Sigma$ is isomorphic to the complex halfplane $\mathfrak{H}.$
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PROOF $0F$ (i). Let $P=\{P_{0}\leftarrow P_{1}\leftarrow\cdots\}$ and $Q=\{Q_{0}\leftarrow Q_{1}\leftarrow\cdots\}$ be any two
elements of $\Sigma$, and let $\Sigma_{P},\Sigma_{Q}$ be the connected components of $\Sigma$ containing $P,$ $Q$ respec-
tively. It is enough to prove that for each $n\geq 0$ , there is an element $v\in V_{n}$ such that
$v(\Sigma_{P})=\Sigma_{Q}$ . Now fix $n$ , and let $P_{n}(t)(0\leq t\leq 1)$ be a curve on $\Re_{n}’$ , wiffi $P_{n}(0)=P_{n}$ and
$P_{n}(1)=Q_{n}$ . Then there is a unique (conbnuous) curve $P(t)(0\leq t\leq 1)$ on $\Sigma$ satisfying

$P(O)=P$ and $P(t)=\{\cdots\leftarrow P_{n}(t)\leftarrow\cdots\}$ for all $t(0\leq t\leq 1)$ . Then $P(1)\in\Sigma_{P}$, and
$P(1)=\{Q_{0}\leftarrow\cdots\leftarrow Q_{n}\leftarrow Q_{n+1}’\leftarrow\cdots\}$ . Since ffie resffictions to $L_{n}$ of $P(1)$ and $Q$

coincide with each other, there is an element $v\in Aut(L/L_{n})=V_{n}$ such that $Q=v(P(1))$ ;

hence $\Sigma_{Q}=v(\Sigma_{P})$ . This settles (i).

PROOF $0F$ (ii). First ofall, we note that the universal covering surface $\overline{\Re}_{n}’$ of $\Re_{n}’(n\geq 0)$

is isomorphic to $\mathfrak{H}$ . In fact, since the covering sequence (9) is unramffied and non-trivial,
$\overline{\Re}_{n}’$ cannot be the Riemann sphere. Moreover, since $V_{n}$ is nonabelian, (9) is a nonabelian

covering sequence. Hence $\overline{\Re}_{n}’$ cannot be the whole complex plane. Therefore, $\overline{\Re}_{n}’\cong \mathfrak{H}.$

Now let $\Sigma_{0}$ be an arbitrary connected component of $\Sigma$, and let $\underline{\overline{\Sigma}_{0}}$ be the universal
coverin$\underline{gs}urface$ of $\Sigma_{0}$ . Then, by the unramified covering $\Re_{n}’\leftarrow\Sigma_{0}\leftarrow\Sigma_{0}$ , we can identify
$\overline{\Re}_{n}’$ with $\Sigma_{0}$ . Therefore, we get a sequence ofunramffied coverings :

(13) $\Re_{0}’\leftarrow\varphi_{1}\ldots\leftarrow\Re_{n}’\leftarrow\varphi_{n+1}\ldots\leftarrow\Sigma_{0}\leftarrow\overline{\Sigma}_{0}\cong \mathfrak{H}\cdot$

Now fix an isomorphism $\overline{\Sigma}_{0}\cong \mathfrak{H}$ . Then we get an isomorphism Aut $\overline{\Sigma}_{0}=$ Aut $\mathfrak{H}=G_{R}.$

Let $\Delta_{n}(n\geq 0)$ be the coverming group of $\Re_{n}’\leftarrow\overline{\Sigma}_{0}$ , considered as a subgroup of $G_{R}$ . Then
it is a torsion-free discrete subgroup of $G_{R}$ , and the quotient $G_{R}/\Delta_{n}$ has finite invariant
volume $(the$ quotient $is$ compact $if and only if \{T_{1}, \cdots , T_{N}\}=\phi)$ . It is also clear that the
covering group $\Delta$ of $\Sigma_{0}\leftarrow\overline{\Sigma}_{0}$ is the intersection of all $\Delta_{n}(n\geq 0)$ ;

(14) $ G_{R}\supset\Delta_{0}\supset\Delta_{1}\supset\Delta_{2}\supset\cdots$ ; $\Delta=\bigcap_{n=0}^{\infty}\Delta_{n}.$

We shall identip $\Re_{n}’$ wiffi $\mathfrak{H}/\Delta_{n}$ , and $\Sigma_{0}$ with $\mathfrak{H}/\Delta.$

Now put

(15) $\Gamma_{\mathfrak{p}}=\{g_{\mathfrak{p}}\in G_{\mathfrak{p}}|g_{p}(\Sigma_{0})=\Sigma_{0}\}.$

Then by (i), we get $G_{\mathfrak{p}}=V\cdot\Gamma_{\mathfrak{p}}$ for any open compact sub$\Psi^{oupV}$of $G_{\mathfrak{p}}$ ; hence $\Gamma_{\mathfrak{p}}$ is a dense
$sub_{\Psi}oup$ of $G_{\mathfrak{p}}$ . On ffie offier hand, $\Gamma_{\mathfrak{p}}$ acts on $\Sigma_{\mathfrak{v}}=\mathfrak{H}/\Delta$ as a group ofautomolphisms, and
hence we can also consider $\Gamma_{\mathfrak{p}}$ as a subgroup of $Aut(\mathfrak{H}/\Delta)$ . We shall denote this subgroup
of $Aut(\mathfrak{H}/\Delta)$ , identffied with $\Gamma_{\mathfrak{p}}$ , by $\Gamma_{R}$ ;

(16) $Aut(\mathfrak{H}/\Delta)\supset\Gamma_{R_{id^{\frac{\approx}{t}}med}}\Gamma_{\mathfrak{p}}en\subset G_{\mathfrak{p}}.$

Let $N(\Delta)\underline{b}e$ the normalizer of $\Delta$ in $G_{R}$ . Then we have $Aut(\mathfrak{H}/\Delta)=N(\Delta)/\Delta$ ; hence we can
put $\Gamma_{R}=\Gamma_{R}/\Delta$ , with $\Delta\subset\hat{\Gamma}_{R}\subset N(\Delta)$ . Further, put $\Gamma_{\mathfrak{p}}^{n}=\Gamma_{\mathfrak{p}}\cap V_{n}(n\geq 0)$ , and denote by $\Gamma_{R}^{n}$

the corresponding subgroup of $\Gamma_{R}$ . Then we have

(17) $\Gamma_{R}^{n}=\Delta_{n}/\Delta (n\geq 0)$ .

Now, we have
$\hat{(\Gamma}_{R}:\Delta_{n})=(\Gamma_{R}:\Gamma_{R}^{n})=(\Gamma_{\mathfrak{p}}:\Gamma_{p}^{n})=(G_{\mathfrak{p}}:V_{n})=\infty,$
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and $\Delta_{n}$ is a discrete subgroup of $G_{R}$ whose quotient is of finite invariant volume. There-
$fore^{7}\hat{\Gamma}_{R}$ is dense in $G_{R}$ ; hence $N(\Delta)$ is dense in $G_{R}$ . But since $\Delta$ is discrete in $G_{R},$ $N(\Delta)$ is

closed in $G_{R}$ ; hence $N(\Delta)=G_{R}$ . Therefore, $\Delta$ is a discrete normal subgroup of $G_{R}$ . But
$G_{R}$ is a simple group; hence we get $\Delta=\{1\}$ . Therefore $\Sigma_{0}\cong \mathfrak{H}$ ; which settles (ii). We
have also proved that $\Gamma_{R}=\overline{\Gamma}_{R}$ and ffiat it is dense in $G_{R}$ ;

(18) $G_{R}\supset\Gamma_{R}\cong\Gamma_{\mathfrak{p}}\subset G_{\mathfrak{p}}$

denseidemifieddense.

\S 8. Now let $\Gamma$ be the subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ formed of all elements $\gamma_{R}\times\gamma_{p}$ such
that $\gamma_{R},$ $\gamma_{\mathfrak{p}}$ are corresponding elements of $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ respectively. Then the projection maps
$\Gamma\rightarrow\Gamma_{R},$ $\Gamma\rightarrow\Gamma_{\mathfrak{p}}$ are obviously injective, and it was shown that $\Gamma_{R},\Gamma_{\mathfrak{p}}$ are dense in $G_{R},G_{\mathfrak{p}}$

respectively. Moreover,

$\{\Gamma\cap(G_{R}\times V_{n})\}_{R}=\Gamma_{R}^{n}=\Delta_{n} (n\geq 0)$ ,

and $\Delta_{n}$ is a discrete subgroup of $G_{R}$ whose quotient has finite invariant volume. Therefore
by Proposition 2 of Chapter 1 (\S 3), $\Gamma$ is a discrete subgroup of $G$, and the quotient $ G/\Gamma$

has finite invariant volume. The quotient $ G/\Gamma$ is compact if and only if $G_{R}/\Delta_{n}$ is so; hence
if and only if $L/L_{n}$ is unramified.

Finally, it can be checked immediately that these two processes of defining $L$ from $\Gamma,$

and of defining $\Gamma$ from $L$ are the inverse of each other. We have thus proved the following
Theorem.

\S 9.

THEOREM 1. The $G_{\mathfrak{p}}$fields $L$ over $C$ are in one-to-one correspondence with the discrete
subgroups $\Gamma$ of $G=G_{R}\times G_{\mathfrak{p}}$ whose quotients $ G/\Gamma$ are offinite invariant volume and
whose projections $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ are dense in $G_{R},$ $G_{\mathfrak{p}}$ respectively. Here, $L$ are counted up to

isomorphisms of $G_{\mathfrak{p}}$-fields (\S 1), and $\Gamma$ are counted up to conjugacy in $G.$

Moreprecisely, if $\Gamma$ is given, then $L$ is obtained as the union offields ofautomorphic

functions with respect to $\Gamma_{R}^{V}$ (\S 5). Conversely, $ifL$ is given, the $ set\Sigma$ ofall non-equivalent
non-trivial discrete valuations $ofL$ over $C$ can be considered as $a$ one-dimensional com-
plex manifold on which $G_{\mathfrak{p}}$ acts as an automorphism group. If $V$ is an open compact

subgroup of $G_{\mathfrak{p}}$, then $V$ acts transitively on the set ofall connected components of $\Sigma$ . Take
any connected component $\Sigma_{0}$ of $\Sigma$, and let $\Gamma_{\mathfrak{p}}$ be the stabilizer of $\Sigma_{0}$ in $G_{\mathfrak{p}}$ . Then $\Sigma_{0}$ is

isomorphic to the complex upper halfplane $\mathfrak{H}$, and hence $\Gamma_{\mathfrak{p}}$ can also be identified with a
subgroup $\Gamma_{R}$ of $G_{R}=Aut(\mathfrak{H})$. In this manner, by the identification $\Gamma\cong\Gamma_{R}\cong\Gamma_{\mathfrak{p}}$ and by
the diagonal embedding we get the discrete subgroup $\Gamma$ of $G$ (\S 6,\S 7,\S 8).

REMARK 1. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$ , and let $\{\Gamma\}_{G}$ be the corresponding $G$-conjugacy
class of discrete subgroups of $G=G_{R}\times G_{\mathfrak{p}}$ . Then, choosing one $\Gamma$ from among $\{\Gamma\}_{G}$ is
equivalent to choosing one connected component $\Sigma_{0}$ of $\Sigma$ together with an isomorphism
$\Sigma_{0}\cong \mathfrak{H}$ . In fact, if $\Gamma$ is given, we can identify $L$ as the union ofthe fields $L_{V}$ ofautomorphic

7See Supplement \S 1.
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fimctions $f(z)$ with respect to $\Gamma_{R}^{V}$ (see \S 5), and moreover, each point $z_{0}\in \mathfrak{H}$ defines a
discrete valuation $v_{z_{0}}$ of $L$ by $v_{z_{0}}(f(z))=ord_{z_{0}}f\langle z)$ . Therefore, we can regard $\mathfrak{H}$ as a
connected component of $\Sigma$ . Conversely, if $L,\Sigma_{0}$ , and an isomorphism $\Sigma_{0^{\underline{\simeq}}\mathfrak{H}}$ are given,
then we get a discrete subgroup $\Gamma$ in the above described manner $(\Sigma_{0}$ defines $\Gamma_{\mathfrak{p}}$ by (15),

and the isomorphism $\Sigma_{0}\cong \mathfrak{H}$ defines the isomorphism $\Gamma_{\mathfrak{p}}=\Gamma_{R}\subset G_{R}$ ).

REMARK 2. The cardinality of the set of all comected components of $\Sigma$ is $\aleph$-infinity,
since it is in one-to-one correspondence with $G_{\mathfrak{p}}/\Gamma_{\mathfrak{p}}$ , and $\Gamma_{\mathfrak{p}}$ is countable (since $\Gamma$ is fimitely
generated; see \S 30).

REMARK 3. The quotient $ G/\Gamma$ is compact if and only if $L/L_{V}$ is unramified for some
open compact subgroup $V$ of $G_{\mathfrak{p}}$ . When this is satisfied, $\Gamma$ is torsion-free if and only if
$L/L_{V}$ is unramffied for all open compact subgroups $V$ of $G_{\mathfrak{p}}.$

\S 10. Now we shall show that given $\Gamma$ and the corresponding $G_{\mathfrak{p}}$-field $L$ over $C$ , the
subgroups $\Delta$ of $G=G_{R}\times G_{\mathfrak{p}}$ containing $\Gamma$ with $(\Delta:\Gamma)<\infty$ and the $G_{\mathfrak{p}}$-subfields $M$ of $L$

over $C$ correspond naturally in a one-to-one manner. We begin by proving the following:

PROPOSITION 3. $LetL$ be a $G_{\mathfrak{p}}$-field over $C$, and let $M$ be a $G_{\mathfrak{p}}$-subfield of$L$ over C. Let
$P$ be a non-trivial discrete valuation of$L$ over C. Then $P$ is unramified in $L/M$

PROOR Suppose, on the contrary, that there exists a discrete valuation $P_{0}$ of $L$ over $C$

which is ramified in $L/M$. Since $L$ and $M$ are $G_{\mathfrak{p}}$-invariant, this implies that $g_{\mathfrak{p}}(P_{0})$ , for any
$g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ , is also ramified in $L/M$. Let $V$ be a torsion-Ree open compact subgroup of $G_{\mathfrak{p}},$

and let $L_{V}$ be the fixed field of $V$. Let $P$ be any discrete valuation of $L$ over C. Then, by the
discreteness of $P$, the inertia group of $P$ in $L/L_{V}$ is a finite subgroup of $V=Aut(L/L_{V})$ ;
hence it must be {1}. Hence $P$ is unramffied in $L/L_{V}$ . This implies that if $P$ is ramified in
$L/M$, then $P|_{L_{V}}$ must be ramffied in $L_{V}/M_{V}$, where $M_{V}=M\cap L_{V}$ . Therefore, $g_{\mathfrak{p}}(P_{0})|_{Lv},$

for every $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ , must be rmified in $L_{V}/M_{V}$ . Since $[L_{V} : M_{V}]<\infty$ (see Corollary of
Proposition 2, \S 3), there are only finitely many discrete valuations (up to equivalence) of
$L_{V}$ over $C$ , which are ramified in $L_{V}/M_{V}$ . Therefore, the set

(19) $\{g_{\mathfrak{p}}(P_{0})|_{L_{V}};g_{\mathfrak{p}}\in G_{p}\}$

must be fimite. We shall show that this is a contradiction. Let $\Sigma_{0}$ be the connected compo-
nent of $\Sigma$ containing $P_{0}$ , and let $\Gamma_{\mathfrak{p}}$ be the stabihzer of $\Sigma_{0}$ in $G_{\mathfrak{p}}$ . We Low that $\Sigma_{0}\cong \mathfrak{H}$ , and
that by this $\Gamma_{\mathfrak{p}}$ can be idenbhed with a subgroup $\Gamma_{R}$ of $Aut\Sigma_{0}\cong Aut\mathfrak{H}=G_{R}$ . By putting

$\Gamma=$ {$\gamma_{R}\times\gamma_{\mathfrak{p}}\in G=G_{\mathbb{R}}\times G_{\mathfrak{p}}|\gamma_{R},\gamma_{p}$ are corresponding elements of $\Gamma_{R},\Gamma_{\mathfrak{p}}$ },

$L$ can be considered as the union ofhelds ofautomorphic functions with respect to $\Gamma_{R}^{V’}$ , for
all open compact subgroups $V’$ of $G_{\mathfrak{p}}.$ $A$ discrete valuation $P\in\Sigma_{0}ofL$ over $C$ is given by
the corresponding point $z^{*}\in \mathfrak{H}$ as $L\ni f(z)\rightarrow ord_{z}\cdot fP^{\cdot}$ If $P,P^{*}\in\Sigma_{0}$ , then $P|_{L\gamma}=P^{\cdot}|_{L_{V}}$

is valid if and only if the correspondming points $z^{*},z^{**}\epsilon \mathfrak{H}$ are $\Gamma_{R}^{V}$-equivalent. Now, since
$\Gamma_{\mathfrak{p}}$ is dense in $G_{\mathfrak{p}}$ , fhe set (19) is the sme as the set

(19’) $\{\gamma_{\mathfrak{p}}(P_{0})|_{L_{V}};\gamma_{\mathfrak{p}}\in\Gamma_{\mathfrak{p}}\}.$
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Let $z_{0}$ be the point on $\mathfrak{H}$ corresponding to $P_{0}\in\Sigma_{0}$ . Then the points corresponding to
$\gamma_{\mathfrak{p}}(P_{0})$ are $\gamma_{R}(z_{0})$ ; and since $\Gamma_{R}$ is dense in $G_{R},$ $\gamma_{R}(z_{0})(\gamma_{R}\in\Gamma_{R})$ give infinitely many
non-equivalent points modulo $\Gamma_{R}^{V}$ . This shows that the set (19’), and hence the set (19),
is infinite. Therefore, the finiteness of the set (19) is a contradiction. Hence $P_{0}$ must be
unramffied in $L/M.$ $\square $

Now we are in the situation to prove the one-to-one correspondence between $\Delta$ and
$M$ stated at the beginning of this section. First, we shall show that $\Delta$ gives $M$. Let $\Delta$

be a subgroup of $G$ containing $\Gamma$ with $(\Delta : \Gamma)<\infty$ . Then, it is clear that $\Delta$ is also a
discrete subgroup of $G,$ $ G/\Delta$ has finite invariant volume, and that $\Delta_{R},\Delta_{\mathfrak{p}}$ are dense in
$G_{R},$ $G_{\mathfrak{p}}$ respectively. Therefore, for each open compact subgroup $V$ of $G_{\mathfrak{p}}$ , the projection
$\Delta_{R}^{V}$ of $\Delta^{V}=\Delta\cap(G_{R}\times V)$ is a discrete subgroup of $G_{R}$ , and the quotient $G_{R}/\Delta_{R}^{V}$ has finite
invariant volume. Let $M_{V}$ be the field of automorphic functions with respect to $\Delta_{R}^{V}$ , and
put $M=\bigcup_{V}M_{V}$ . Since $\Delta_{R}^{V}\supset\Gamma_{R}^{V}$ , we have $M_{V}\subset L_{V}$ ; hence $C\subsetneq M\subset L$ . We shall check
that $M$ is $G_{\mathfrak{p}}$ -invariant in $L$ , and that the restriction to $M$ of the action of $G_{\mathfrak{p}}$ on $L$ gives
the $G_{\mathfrak{p}}$ -field $M$ corresponding to $\Delta_{s}$ To check this, let $f(z)\in M$ and $g_{p}\in G_{\mathfrak{p}}$ . Take $V$

such that $f(z)\in M_{V}$ . By definition, $g_{p}\{f(z)\}=f(\gamma_{R}^{-1}\cdot z)$ with $\gamma\in\Gamma\cap(G_{R}\times g_{\mathfrak{p}}V)$ ; hence
$g_{\mathfrak{p}}\{f(z)\}$ is an automolphic fimction with respect to $\gamma_{R}\Delta_{R}^{V}\gamma_{R}^{-1}=\Delta_{R}^{V’}$ , with $V’=\gamma_{\mathfrak{p}}V\gamma_{\mathfrak{p}}^{-1}.$

Hence $g_{\mathfrak{p}}\{f(z)\}\in M_{V’}\subset M$, which shows the $G_{\mathfrak{p}}$-invariance of $M$. Since $\gamma$ is also in
$\Delta\cap(G_{R}\times g_{\mathfrak{p}}V)$ , our second assertion is obvious (see also \S 5). Thus we have shown that
$\Delta$ gives $M$. We note that

$(\Delta:\Gamma)=(\Delta^{V}:\Gamma^{V})=[L_{V}:M_{V}]=[L:M]$

holds for each $V$. In fact, the first equality is an immediate consequence of $\Delta_{\mathfrak{p}}=\Delta_{\mathfrak{p}}^{V}\cdot\Gamma_{\mathfrak{p}}$

(since $\Gamma_{\mathfrak{p}}$ is dense in $G_{\mathfrak{p}}$), the second is obvious, and the last equality follows from the
corollary ofProposition 2 (\S 3).

Conversely, let Mbe a $G_{\mathfrak{p}}$-subfield of $L$ over $C$ ; i.e., $M$ is $G_{\mathfrak{p}}$ -invariant and $C\subsetneq M\subset L.$

Then by \S 3, $[L:M\rfloor<\infty$ , and $M$ is also a $G_{\mathfrak{p}}$-field over C. Let $\Sigma(resp.\Sigma’)$ be the space
of all non-equivalent non-trivial discrete valuations of $L$ (resp. $M$) over C. They are one
dimensional complex manifolds, ofwhich each comected component is isomorphic to $\mathfrak{H}.$

Consider the restriction map

(20) $\varphi:\Sigma\rightarrow\Sigma’.$

Then it is clear that $\varphi$ is holomorphic, and by Proposition 3, $\varphi$ is unramified and gives an
$[L:M]$-fold map of $\Sigma$ onto $\Sigma’$ . In fact, $\varphi$ induces an $[L:M]$-fold map $\tilde{\varphi}$ ofthe set $C(\Sigma)$ of
all connected components of $\Sigma$ onto the set $C(\Sigma’)$ of all connected components of $\Sigma’$ ; and
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if $\Sigma_{0}\in C(\Sigma),$ $\Sigma_{\acute{0}}\in C(\Sigma’)$ and $\Sigma_{\acute{0}}=\tilde{\varphi}(\Sigma_{0})$ , then $\varphi$ gives an isomorphism of $\Sigma_{0}$ onto $\Sigma$\’o.
connected components of $\Sigma$ connected components of $\Sigma’$

(21)

$\varphi:\left\{\begin{array}{l}--\\m=[L:M].\end{array}\right.$

These can be checked immediately by recalling the definition of the complex structure
of $\Sigma$ . We also note that the actions of $G_{\mathfrak{p}}$ on $\Sigma$ and on $\Sigma’$ are consistent with the map $\varphi.$

Now let $\Sigma_{1}$ be any connected component of $\Sigma$, and let $\Sigma_{i}$ $(1\leq i\leq m, m=[L : M])$ be the
comected components of $\Sigma$ such that $\varphi(\Sigma_{i})=\varphi(\Sigma_{1})$ . Put

(22) $\left\{\begin{array}{ll}\Gamma_{\mathfrak{p}}= & \{g_{\mathfrak{p}}\in G_{\mathfrak{p}}|g_{\mathfrak{p}}(\Sigma_{1})=\Sigma_{1}\}\\\Delta_{\mathfrak{p}}= & \{g_{\mathfrak{p}}\in G_{\mathfrak{p}}|g_{\mathfrak{p}}(\Sigma_{1})=\Sigma_{i} for some i(1\leq i\leq m)\}.\end{array}\right.$

Then $\Delta_{\mathfrak{p}}$ can be identified with

(23) $\Delta_{\mathfrak{p}}=\{g_{\mathfrak{p}}\in G_{\mathfrak{p}}|_{\Sigma’}|g_{\mathfrak{p}}(\varphi(\Sigma_{1}))=\varphi(\Sigma_{1})\}.$

Therefore, $\Gamma_{\mathfrak{p}}\cong\Gamma_{R}\subset Aut(\Sigma_{1})\cong G_{R}$ , and $\Delta_{\mathfrak{p}}\cong\Delta_{R}\subset Aut(\varphi(\Sigma_{1}))\cong G_{R}$ . Define $\Gamma,$ $A$ by
these identifications and by the diagonal embeddings into $G=G_{R}\times G_{\mathfrak{p}}$ . Then, it can be
checked immediately that $\Delta\supset\Gamma,$ $(\Delta:\Gamma)<\infty$ , that $M$ is the $G_{\mathfrak{p}}$-field corresponding to $\Delta,$

and that $\Delta$ and $M$ correspond in a one-to-one mamer in such a way that the Galois theory
holds between them.

So, we have proved the following Theorem.

THEOREM 2. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$, and let $\Gamma$ be the corresponding discrete sub-
group ofG. Then, the $G_{\mathfrak{p}}$-subfields $M$ such that $C\subsetneq M\subset L$ and groups $\Delta$ such that
$\Gamma\subset\Delta\subset G$ with $(\Delta : \Gamma)<\infty$ correspond naturally in $a$ one-to-one manner satisfying the
Galois theo$ry$ $(in$ particular, we have$ [L : M]=(\Delta : \Gamma)$). Moreover, the group $\Delta$ is the
discrete subgvoup of $G$ which corresponds to $M$ in the sense ofTheorem 1.

We shall call $\Gamma$ maximal if there is no such $\Delta$ other than $\Gamma$ itself. Thus we obtain the
following:

COROU. $Y1$ . The $G_{\mathfrak{p}}$-field $L$ over $C$ is irredUcible ifand only if the corresponding
group $\Gamma$ is maximal.

COROLLARY 2.8 Let $L$ be a $G_{\mathfrak{p}}$-field over C. Then, $L$ contains an irreducible G-subfield
over C.

8We can prove further that $L$ contains only finitely many $G_{\mathfrak{p}}$-subfields over $C$ (see Supplement \S 3
(Corollary 2)$)$ .
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PROOR Let $\Gamma$ be the discrete subgroup of $G$ corresponding to $L$ . Let $\Delta$ be any subgroup
of $G$ containing $\Gamma$ with $(\Delta : \Gamma)<\infty$ . Let $V$ be any fixed open compact subgroup of $G_{\mathfrak{p}},$

and put $\Gamma^{V}=\Gamma\cap(G_{R}\times V),$ $\Delta^{V}=\Delta\cap(G_{R}\times V)$ . Then since $\Gamma_{\mathfrak{p}}\cdot\Delta_{\mathfrak{p}}^{V}=\Delta_{\mathfrak{p}}$ , we have
$(\Delta : \Gamma)=(\Delta^{V} : \Gamma^{V})=(\Delta_{R}^{V} : \Gamma_{R}^{V})$ . But $\Gamma_{R}^{V}$ is a discrete subgroup of $G_{B}$ and the quotient
$G_{R}/\Gamma_{R}^{V}$ has finite invariant volume. Hence the index $(\Delta_{R}^{V}:\Gamma_{R}^{V})$ is bounded. It follows then
that the index $(\Delta : \Gamma)$ is also bounded. Therefore, among all $\Delta$ , there is a maximal one.
Now, our Corollary is a direct consequence of Theorem 2. $\square $

The above argument also shows the following:

COROLLARY 3. Ifthere is an open compact subgroup $V$ of $G_{\mathfrak{p}}$ such that $\Gamma_{R}^{V}$ is a maximal

fuchsian group, then the $G_{\mathfrak{p}}$-field over $C$ which corresponds to $\Gamma$ is irreducible.

The full automorphism group of $L$ over C.

\S 11. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$ , and let $Aut_{C}L$ be the group of all automorphisms
ofthe (abstract) field $L$ which are trivial on C. Then $G_{\mathfrak{p}}$ can be considered as a subgroup
of $Aut_{C}L$ , and in general, may not coincide with the whole group $Aut_{\mathbb{C}}L$ . However, we
can prove that $G_{\mathfrak{p}}$ is offinite index in $AukL$ . This fact will be basic for our later studies.

THEOREM 3. Let $L$ be a $G_{\mathfrak{p}}$ -field over $C$, and let $Aut_{\mathbb{C}}L$ be the group ofall automor-

phisms of the abstractfield $L$ which are trivial on C. Then $G_{\mathfrak{p}}$ is a subgroup of $Aut_{\mathbb{C}}L$

withfinite index.

For the proof, we need some preliminaries (\S 12, \S 13).

\S 12. Let $\Gamma$ be the discrete subgroup of $G$ which corresponds to $L$ . Let $ V_{1}\supset V_{2}\supset$

$..\supset V_{n}\supset\cdots$ be any descending sequence of open compact subgroups of $G_{\mathfrak{p}}$ satisfying
$\bigcap_{n=1}^{\infty}V_{n}=\{1\}$ . Put $\Gamma^{n}=\Gamma\cap(G_{R}\times V_{n})(n\geq 1)$ . Then we get a descending sequence
$\Gamma_{R}^{1}\supset\Gamma_{R}^{2}\supset\cdots\supset\Gamma_{R}^{n}\supset\cdots$ of discrete subgroups of $G_{R}$ whose quotient spaces have finite
invariant volumes. Now let $\Gamma’$ be the subgroup of $G_{R}$ formed of all elements $x\in G_{R}$ such
that for any $n\geq 1$ , there exists some $m\geq 1$ for which the inclusions $x^{-1}\Gamma_{R}^{n}x\supset\Gamma_{R}^{m}$ and
$x\Gamma_{R}^{n}x^{-1}\supset\Gamma_{R}^{m}$ hold;

(24) $\Gamma’=\{x\in G_{R}|\forall n, \exists m;x^{-1}\Gamma_{R}^{n}x\supset\Gamma_{R}^{m}, x\Gamma_{R}^{n}x^{-1}\supset\Gamma_{R}^{m}\}.$

It is obvious that $\Gamma’$ contains $\Gamma_{R}$ ;

(25) $ G_{R}\supset\Gamma’\supset\Gamma_{R}\supset\Gamma_{R}^{1}\supset\Gamma_{R}^{2}\supset\cdots$ ; $\bigcap_{n\overline{-}1}^{\infty}\Gamma_{R}^{n}=\{1\}.$

Now $\Gamma_{\mathfrak{p}}$ carries a topology induced by that of $G_{\mathfrak{p}}$ , and by the identffication of $\Gamma_{R}$ with $\Gamma_{\mathfrak{p}},$

we shall consider $\Gamma_{R}$ as a topological group ( $\mathfrak{p}$-adic topology; not the real topology). So,

the subgroups $\Gamma_{R}^{n}(n\geq 1)$ form a basis of neighborhoods of 1. By the definition of $\Gamma’,$

we see that $\Gamma_{R}^{n}(n\geq 1)$ satisfies the axioms for a basis of neighborhoods of 1 for $\Gamma’$ , and



78

hence by taking $\Gamma_{R}^{n}(n\geq 1)$ as a basis ofneigborhoods 1, $\Gamma’$ becomes a topological group
which contains $\Gamma_{R}$ as an open subgroup. Take completions with respect to this topology,
and let $\tilde{\Gamma}’$ be the completion of $\Gamma’.$

(26)
$\Gamma’\supset\Gamma_{R}\supset\Gamma_{R}^{1}\supset \cdots \supset\Gamma_{R}^{n}\supset\downarrow$

$\cdots$

completions $\downarrow$ $\downarrow$ $\downarrow$

$\Gamma’\supset G_{\mathfrak{p}}\supset V_{1}\supset \cdots \supset V_{n}\supset$ $\cdots$

Thus $\overline{\Gamma}’$ contain$sG_{\mathfrak{p}}$ as an open subgroup. Now we claim the following:

PROPOSITION 4. The gmup $Aut_{C}L$ is canonically isomorphic to $\tilde{\Gamma}’.$

PROOF. We can identify $L$ with the union of the fields of automorphic fimctions $L_{n}$

wiffi respect to $\Gamma_{R}^{n};L=\bigcup_{n=1}^{\infty}L_{n}$ . Now by the following action, the youp $\Gamma’$ acts on $L$ as
an automorphism group over $C$ :

(27) $\Gamma’\ni x:L\ni f(z)\mapsto f(x^{-1}\cdot z)\in L.$

(It follows immediately from the definition of $\Gamma’$ that $f(x^{-1}\cdot z)\in L$). As in \S 5 where we
defined the action of $G_{\mathfrak{p}}$ on $L$, we can also lift the action of $\Gamma’$ (on $L$) to that of $\tilde{\Gamma}’$ on $L.$

Namely, for each $\tilde{x}\in\overline{\Gamma}’$ and $f(z)\in L$ , take $n$ such that $f(z)\in L_{n}$ , take $x\in\Gamma’\cap\tilde{x}V_{n}$ (where
$\Gamma’,$ $V_{n}$ are considered as subgroups $of\overline{\Gamma}’$), and put $\tilde{x}\{f(z)\}=f(x^{-1}\cdot z)$ . Then,

$\overline{\Gamma}’\ni\tilde{x}:L\ni f(z)\mapsto\tilde{x}\{f(z)\}\in L$

defines an action of $\overline{\Gamma}’$ on $L$ . It is clear that its restriction to $G_{\mathfrak{p}}$ coincides with the original
action. We shall show that this action is effective. Suppose that $\tilde{x}\in\overline{\Gamma}’$ acts trivially on $L.$

Then for any $n\geq 1$ and for any $x\in\Gamma’\cap\tilde{x}V_{n}$ , we get $f(x^{-1}\cdot z)=f(z)$ for all $f(z)\in L_{n}.$

Fix any $z=z_{0}\in \mathfrak{H}$ . Then since $f(x^{-1}\cdot z_{0})=f(z_{0})$ holds for all $f(z)\in L_{n}$ , there exists
$\delta\in\Gamma_{R}^{n}$ such that $x^{-1}\cdot z_{0}=\delta\cdot z_{0}.$ $Ifz_{0}$ is not an elliptic fixed point $of\Gamma_{R}^{n}$ , then $\delta$ is uniquely
determined by $z_{0}$ . Consider $\delta$ as a $\Gamma_{R}^{n}$-valued function of $z_{0}$ defined on $\mathfrak{H}-E$, where $E$

is the discrete subset of $\mathfrak{H}$ fonned of all elliptic fixed points of $\Gamma_{R}^{n}$ . Since $x^{-1}\cdot z_{0}$ is a
continuous function of $z_{0},$

$\delta$ must also be continuous. But $\Gamma_{R}^{n}$ is discrete. Therefore, $\delta$

must be a constant on $\mathfrak{H}-E$ . So, put $\delta=\gamma_{R}\in\Gamma_{R}^{n}$ . Then, $x\cdot\gamma_{R}$ stabilizes all points of
$\mathfrak{H}-E$ ; hence $x=()R)^{-1}\in\Gamma_{R}^{n}$ ; hence $\tilde{x}\in V_{n}$ . Since $n$ is arbitrary, we get $\tilde{x}=1$ . Therefore,
the action of $\overline{\Gamma}’$ on $L$ is effective. Thus we get

(28) $\overline{\Gamma}’\subset Aut_{C}L.$

Now we shall show that they are in fact equal. First, each point $z^{*}$ on $\mathfrak{H}$ gives a
discrete valuation of $L$ by $f(z)\mapsto ord_{z}\cdot f(z)$ ; and in this mamer, $\mathfrak{H}$ can be considered as a
comected component of $\Sigma$ . Let this be denoted by $\Sigma_{0}$ . We have seen (\S 6) that $Aut_{C}L$ acts
on $\Sigma$, leaving the complex structure of $\Sigma$ invariant. Hence, if $\sigma$ is any element of $Aut_{C}L,$

then $\sigma(\Sigma_{0})$ is another connected component of $\Sigma$ . Since $G_{\mathfrak{p}}$ acts transitively on the set of
all comected component of $\Sigma$ , we get $\sigma(\Sigma_{0})=g_{\mathfrak{p}}(\Sigma_{0})$ with some $g_{p}\in G_{\mathfrak{p}}$ . Put $g_{\mathfrak{p}}^{-1}\cdot\sigma=\sigma_{0}.$

Then, $\sigma_{0}(\Sigma_{0})=\Sigma_{0}$ ; hence $\sigma_{0}$ induces an automorphism of $\Sigma_{0}\cong \mathfrak{H}$. So, we can consider
$\sigma_{0}$ also as an element of $G_{R}=Aut(\mathfrak{H})\cong Aut\Sigma_{0}$ . By the definition of the action,of $Aut_{C}L$
on $\Sigma$, we have $\sigma_{0}\{f(z)\}=f(\sigma_{0}^{-1}\cdot z)$ for any $f(z\rangle\in L$ ($z$ is a variable on $\mathfrak{H}$). Hence we
have $f(\sigma_{0}^{-1}\cdot z)\in L$ for any $f(z)\in L$ . Now let $n\geq 1$ , and let $f_{1}(z),$ $\cdots,f_{N}(z)$ be a generator
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of $L_{n}$ over C. Then $f(\sigma_{0}^{-1}\cdot z)\in L$ for all $j$ . Take $m$ for which $L_{m}$ contains $f(\sigma_{0}^{-1}\cdot z)$ for
all $i(1\leq i\leq N)$ . Then $f(z)\in L_{n}$ implies $f(\sigma_{0}^{-1}\cdot z)\in L_{m}$ . Since $\{f(\sigma_{0}^{-1}\cdot z)|f(z)\in L_{n}\}$

is the field of automorphic functions with respect to $\sigma_{0}\Gamma_{R}^{n}\sigma_{0}^{-1}$ , we get $\sigma_{0}\Gamma_{R}^{n}\sigma_{0}^{-1}\supset\Gamma_{R}^{m}.$

By applying the same argument for $\sigma_{0}^{-1}$ instead of $\sigma_{0}$ , we get $\sigma_{0}^{-1}\Gamma_{R}^{n}\sigma_{0}\supset\Gamma_{R}^{m’}$ for some
$m’\geq 0$ . Therefore,

$\sigma_{0}\Gamma_{R}^{n}\sigma_{0}^{-1}\cap\sigma_{0}^{-1}\Gamma_{R}^{n}\sigma_{0}\supset\Gamma_{R}^{l}$ holds for $l={\rm Max}(m,m’)$ .

This implies $\sigma_{0}\in\Gamma’$ ; hence $\sigma\in G_{\mathfrak{p}}\cdot\Gamma’=\overline{\Gamma}’$ ; hence we get $Aut_{\mathbb{C}}L\subset\overline{\Gamma}’.$
$\square $

\S 13. Now, by(26) and by Proposition4, we have

(29) $(Aut_{C}L:G_{\mathfrak{p}})=(\Gamma’:\Gamma_{R})$ ;

hence our problem is to prove the finiteness of $(\Gamma’ : \Gamma_{R})$ . For this purpose, we need a
lemma on local automorphisms of the group $PL_{2}(k_{\mathfrak{p}})$ . Here, by a local automorphism
of a topological group $X$, we mean any isomorphism $\sigma$ of an open subgroup $U_{1}$ of $X$

onto another open subgroup $U_{2}$ of $X$; and if $\sigma’$ is another local automorphism of $X;\sigma’$ :
$U_{1}’\cong U_{2}’$ , then $\sigma$ and $\sigma’$ are called equivalent if they coincide on some open subgroup
$U_{1}’’\subset U_{1}\cap U_{1}’$ . To distinguish from local automorphisms, we use the terminology“global
automorphisms” for usual (topological) automorphisms of $X$. Of course, every global
automorphism of $X$ defines an equivalence class oflocal automorphisms.

LEMMA 1.

(i) Every local automorphism of $PL_{2}(k_{\mathfrak{p}})$ is equivalent to a global automorphism of
$PL_{2}(k_{\mathfrak{p}})$ .

(ii) Every global automorphism of $PL_{2}(k_{\mathfrak{p}})$ is a product ofan inner automorphism and
an automorphism of $PL_{2}(k_{\mathfrak{p}})$ obtained by afield automorphism of $k_{\mathfrak{p}}$ over $Q_{p}.$

(iii) Every global automorphism of $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ is inducedfrom that of$PL_{2}(k_{\mathfrak{p}})$ .

The proof is given in Supplement \S 4. It is a direct consequence ofDynkin’s theory of
normed Lie algebras [8].

REMARK 1. (ii) implies that the group of all global automorphisms of $PL_{2}(k_{\mathfrak{p}})$ is iso-
morphic to the semi-direct product of $PL_{2}(k_{\mathfrak{p}})$ and $Aut_{Q_{p}}k_{\mathfrak{p}}$ , where $Aut_{Q_{p}}k_{\mathfrak{p}}$ is the group
of all automorphisms ofthe field $k_{\mathfrak{p}}$ over $Q_{p}$ , which acts on $PL_{2}(k_{\mathfrak{p}})$ in a natural mamer;

(30) Aut $PL_{2}(k_{\mathfrak{p}})\cong PL_{2}(k_{\mathfrak{p}})\cdot Aut_{Q_{p}}k_{\mathfrak{p}}$ (semi-direct).

This also shows that distinct global automorphisms of $PL_{2}(k_{p})$ give distinct (equivalence)
classes of local automorphisms of $PL_{2}(k_{\mathfrak{p}})$ . Hence, if we denote by Aut’ $X$ the group of
all equivalence classes of local automorphisms of a topological group $X$, then we get

(31) Aut’ $G_{\mathfrak{p}}=Aut’PL_{2}(k_{\mathfrak{p}})\cong PL_{2}(k_{\mathfrak{p}})\cdot Aut_{Q_{p}}k_{\mathfrak{p}},$

where $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ .
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REMARK 2. The automorphism $x\mapsto t_{X}-1$ of $PL_{2}(k_{\mathfrak{p}})$ is an inner automorphism. In fact,

we have $t_{X}-1=b^{-1}xb$ for any $x\in PL_{2}(k_{\mathfrak{p}})$ with $b=(_{-1}^{0}$ $ 01\rangle$ . But for $PL_{n}(k_{\mathfrak{p}})$ with $n>2,$

$x\mapsto t_{X}-1$ is not inner.

\S 14.

PROOF OF THEOREM 3. As a descendming sequence $ V_{1}\supset V_{2}\supset\cdots$ of open compact
subgroups of $G_{\mathfrak{p}}$ with $\bigcap_{n\underline{-}1}^{\infty}V_{n}=\{1\}_{;}$ we shall take

(32) $\left\{\begin{array}{l}V_{1}= PSL_{2}(O_{\mathfrak{p}}) ,\\V_{n}= \{x\in V_{1}|x\equiv 1(mod \mathfrak{p}^{n-1})\} (n>1) .\end{array}\right.$

Now, since $G_{\mathfrak{p}}$ is an open subgroup $of\overline{\Gamma}’$ , an imler automorphism of $\Gamma’$ induces a local
automorphism of $G_{\mathfrak{p}}$ . Thus we get a homomorphism $\tilde{\varphi}$ of $\tilde{\Gamma}’$ into the group Aut’ $G_{\mathfrak{p}}$ of all
equivalence classes of local automorphisms of $G_{\mathfrak{p}}$ ;

(33) $\tilde{\varphi}:\tilde{\Gamma}’\rightarrow$ Auf $G_{\mathfrak{p}}.$

By (31), we can identify Auf $G_{\mathfrak{p}}$ with $PL_{2}(k_{\mathfrak{p}})\cdot Aut_{Q_{p}}k_{\mathfrak{p}}$ , and hence by the restriction of
$\overline{\varphi}$ to $\Gamma’$ , we get a homomorphism:

(34) $\varphi:\Gamma’\rightarrow PL_{2}(k_{\mathfrak{p}})\cdot Aut_{Q_{p}}k_{\mathfrak{p}}.$

Consider the subgroup $Y=PSL_{2}(k_{\mathfrak{p}})PL_{2}(O_{\mathfrak{p}})\cdot Aut_{Q_{p}}k_{\mathfrak{p}}$ of $PL_{2}(k_{\mathfrak{p}})\cdot Aut_{Q_{p}}k_{\mathfrak{p}}$ . It is ohndex
two. Let $\Gamma’’$ be the inverse image of $Y$ by $\varphi$ . Since $\varphi(\Gamma_{R})$ is contained in $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ ,
$\Gamma’’$ contains $\Gamma_{R}$ , and we get

(35) $\Gamma’\supset\Gamma’’\supset\Gamma_{R}, (\Gamma’:\Gamma’’)\leq 2.$

So, to prove $(\Gamma’ : \Gamma_{R})<\infty$ , it sufhces to prove $(\Gamma’’:\Gamma_{R})<\infty.$

For this pulpose, let $x\in\Gamma’’$ . Then there exist $n_{0}\geq 1,$ $g_{\mathfrak{p}}\in G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}}),$ $ w_{\mathfrak{p}}\in$

$PL_{2}(O_{\mathfrak{p}})$ , and $\sigma\in Aut_{Q_{p}}k_{\mathfrak{p}}$ acting on $PL_{2}(k_{\mathfrak{p}})$ , such that $x^{-1}vx=g_{\mathfrak{p}}^{-1}w_{\mathfrak{p}}^{-1}v^{\sigma}w_{\mathfrak{p}}g_{\mathfrak{p}}$ for all $ v\in$

$V_{n_{0}}$ . Take $\gamma\in\Gamma_{R}\cap V_{1}g_{\mathfrak{p}}$ , and put $\gamma=v_{1}g_{\mathfrak{p}}$ witb $v_{1}\in V_{1}$ . Since $PL_{2}(O_{\mathfrak{p}})\cdot Aut_{Q_{p}}k_{\mathfrak{p}}$ normalizes
all $V_{n}(n\geq 1)$ , we have $w_{\mathfrak{p}}^{-1}fw_{p}\in V_{n_{0}}$ for all $v\in V_{n_{0}}$ ; hence $g_{\mathfrak{p}}x^{-1}=v_{1}^{-1}\gamma x^{-1}$ normalizes
all $V_{n}$ for $n\geq n_{0}$ . Since $v_{1}$ also nomalizes all $V_{n}$ , it follows that $\gamma x^{-1}$ normalizes $V_{n}$ for
all $n\geq n_{0}$ . But since $\gamma x^{-1}\in\Gamma’’\subset\Gamma’$ , it normalizes $\Gamma’\cap V_{n}=\Gamma_{R}\cap V_{n}=\Gamma_{R}^{n}$ for all $n\geq n_{0}.$

So, ifwe put

(36) $H^{m}=\{x\in G_{R}|x^{-1}\Gamma_{R}^{n}x=\Gamma_{R}^{n}$ for all $n\geq m\}$ $(m\geq 1)$ ,

this imphes that $\gamma x^{-1}\in H^{I_{0}}$ ; hence every element of $\Gamma’’$ is contained in $fP^{0}\cdot\Gamma_{R}$ for some
$n_{0}\geq 1.$

Now, since $\Gamma_{R}^{1}$ normalizes all $\Gamma_{R}^{n}(n\geq 1)$ , we get

(37) $\cdots\supset H^{2}\supset H^{1}\supset\Gamma_{R}^{1}\supset\Gamma_{R}^{2}\supset\cdots$

But, in general, if $\Delta$ is a discrete subgroup of $G_{R}$ whose quotient space has hnite invariant
volume, then its normalizer $N(\Delta)$ in $G_{R}$ satishes $(N(\Delta) : \Delta)<\infty$ ; and there exist only
hmitely many subgroups $\Delta’$ of $G_{R}$ such that $\Delta’\supset\Delta$ and $(\Delta’ : \Delta)<\infty.$
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Apply this to $\Delta=\Gamma_{R}^{m}$ . Since $H^{m}\subset N(\Gamma_{R}^{m})$ , we get $(H^{m} : \Gamma_{R}^{1})\leq(H^{m} : \Gamma_{R}^{m})<\infty$ , and
hence we also get $ H^{m}=H^{m+1}=\cdots$ for sufficiently large $m$ . Now put $H=\bigcup_{n=1}^{\infty}H^{n}.$

Then $(H : \Gamma_{R}^{1})<\infty$ , and by what we have shown we have $\Gamma’’\subset H^{n_{0}}\Gamma_{R}$ for some $n_{0},$

and hence $\Gamma’’\subset H.$ $\Gamma_{R}$ . Put $H=\sum_{i=1}^{t}M_{i}\Gamma_{R}^{1}$ with $M_{i}\in H(1\leq i\leq t)$ . Then we
$get\square $

$\Gamma’’\subset H\cdot\Gamma_{R}=\Sigma_{i=1}^{t}M_{i}\Gamma_{R}$ ; hence $(\Gamma’’ : \Gamma_{R})\leqq(H:\Gamma_{R}^{1})<\infty.$

So, we have also proved:

COROLLARY 1. We have

(38) $(Aut_{C}L: G_{\mathfrak{p}})=(\Gamma’ : \Gamma_{R})\leq 2(H:\Gamma_{R}^{1})$ ,

where $\Gamma’$ is given by (24), $\Gamma_{R}^{n}=[\Gamma\cap(G_{R}\times V_{n})]_{R}(n\geq 1)$, with $V_{n}$ defined by (32) and $H$

is the subgroup ofall elements of $G_{R}$ which nomalize $\Gamma_{R}^{n}$for all sufficiently large $n.$

\S 15. Some direct consequences of Theorem 3.

COROLLARY 2. The group $G_{\mathfrak{p}}$ is a characteristic subgroup of $Aut_{\mathbb{C}}L.$

PROOR Since $G_{\mathfrak{p}}$ is a simple group (as an abstract group), it is enough to show that if
a group $A$ contains a subgroup $B$ with $(A : B)<\infty$ and if $B$ is an infinite simple group,
then $B$ is invariant by every automorphism of $A$ . Let $\sigma$ be any automorphism of $A$ . Then
$B\cap B^{\sigma}$ is of finite index in $B$ . Therefore, $\bigcap_{x\in B}x^{-1}(B\cap B^{\sigma})x$ is a normal subgroup of $B$

with finite index. But $B$ is infinite and simple. Therefore, $\bigcap_{x\in B}x^{-1}(B\cap B^{\sigma})x=B$ ; hence
$B\cap B^{\sigma}=B$; hence $B^{\sigma}\supset B$ . Since $(A : B)=(A^{\sigma} : B^{\sigma})=(A : B^{\sigma})$ , we get $B^{\sigma}=B.$ $\square $

$CoRO1\perp ARY3$ . Let $\mathfrak{Z}$ be the centralizer of $G_{\mathfrak{p}}$ in $Aut_{\mathbb{C}}$ L. Then

(i) $\mathfrak{Z}$ isfinite.
(ii) $\mathfrak{Z}$ reduces to {1} fand only $ifL$ contains no $G_{\mathfrak{p}}$-subfield $M$ over $C$ such that $L/M$ is

normal. Inparticular, $ifL$ is irreducible, then $\mathfrak{Z}=\{1\}.$

PROOR (i) Since $G_{\mathfrak{p}}$ has no center, we get $\mathfrak{Z}\cap G_{\mathfrak{p}}=\{1\}$ ; hence by $(Aut_{C}L : G_{\mathfrak{p}})<\infty,$

we get the finiteness of $\mathfrak{Z}.$

(ii) If $\mathfrak{Z}\neq\{1\}$ , let $M$ be the fixed field of $\mathfrak{Z}$ in $L$ . Since $\mathfrak{Z}$ centralizes $G_{\mathfrak{p}},$ $M$ is $G_{\mathfrak{p}^{-}}$

invariant. Also it is clear ffiat $L/M$ is normal and $[L : M]=$ $(\mathfrak{Z} : 1)\neq 1$ . Conversely, let
$M(\neq L)$ be a $G_{\mathfrak{p}}$-subfield of $L$ over $C$ such that $L/M$ is normal, and put $\mathfrak{Z}’=Aut(L/M)\neq$

$\{1\}$ . Then for each $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ , the fixed field of $g_{\mathfrak{p}}^{-1}\mathfrak{Z}’g_{\mathfrak{p}}$ is $g_{\mathfrak{p}}^{-1}(M)=M$. Hence $g_{\mathfrak{p}}^{-1}\mathfrak{Z}’g_{\mathfrak{p}}=\mathfrak{Z}’$ ;

hence $G_{\mathfrak{p}}$ normalizes $\mathfrak{Z}’$ . Let $X$be the centralizer of $\mathfrak{Z}’$ in $G_{\mathfrak{p}}$ . Then $X$ is a normal subgroup
of $G_{\mathfrak{p}}$ with finite index (since $\mathfrak{Z}’$ is finite). But $G_{\mathfrak{p}}$ is a simple group. Therefore, $X=G_{\mathfrak{p}}$ ;

hence $G_{\mathfrak{p}}$ centralizes $\mathfrak{Z}’$ ; hence $\mathfrak{Z}$ contains $\mathfrak{Z}’\neq\{1\}$ . Therefore, $\mathfrak{Z}\neq\{1\}.$ $\square $

COROLLARY 4. Let $N(\Gamma)$ be the normalizer of $\Gamma$ in G. Then

(i) $(N(\Gamma):\Gamma)<\infty$;

(ii) $ N(\Gamma)=\Gamma$ holds ifand only $ifL$ contains no $G_{\mathfrak{p}}$-subfield $M\neq L$ over $C$ such that $L/M$

is normal.
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PROOR First, we claim that the projections $N(\Gamma)\rightarrow N(\Gamma)_{R}$ and $N(\Gamma)\rightarrow N(\Gamma)_{\mathfrak{p}}$ are
injective. In fact, let $\delta=\delta_{R}\times\delta_{\mathfrak{p}}\in N(\Gamma)$ with, say, $\delta_{R}=1$ . Let $\gamma=\gamma_{R}\times\gamma_{\mathfrak{p}}\in\Gamma.$

Then $\delta^{-1}\gamma\delta=\gamma_{R}\times\delta_{\mathfrak{p}}^{-1}\gamma_{\mathfrak{p}}\delta_{\mathfrak{p}}\in\Gamma$ . But by the injectivity of $\Gamma\rightarrow\Gamma_{R}$ , we get $\delta_{\mathfrak{p}}^{-1}\gamma_{\mathfrak{p}}\delta_{\mathfrak{p}}=\gamma_{\mathfrak{p}}.$

Therefore, $\delta_{\mathfrak{p}}$ commutes with all elements of $\Gamma_{\mathfrak{p}}$ ; hence $\delta_{\mathfrak{p}}=1.$

Now, it is clear that $N(\Gamma)_{R}\subset\Gamma’$ , where $\Gamma’$ is as in \S 12. Hence $(N(\Gamma) : \Gamma)=(N(\Gamma)_{R}$ :
$\Gamma_{R})<\infty$ ; which settles (i). Now (ii) is a direct consequence of (i) and Theorem 2. $\square $

\S 16. $AG_{\mathfrak{p}}$-field $L$ over $C$ will be called quasi-irreducible if $L$ contain$s$ no $G_{\mathfrak{p}^{-}}$

subfields $M\neq L$ over $C$ such that $L/M$ is normal. By Corollary 3, $L$ is quasi-irreducible
if and only if the centralizer of $G_{\mathfrak{p}}$ in $Aut_{C}L$ is trivial, and by Corollary 4, if and only if
$ N(\Gamma)=\Gamma$ . In particular, if $L$ is irreducible or if $G_{\mathfrak{p}}=Aut_{C}L$ , then $L$ is quasi-irreducible.
Quasi-irreducible $G_{\mathfrak{p}}$-fields over $C$ play central roles in Part 2 of this Chapter.

\S 17.

EXAMPLE. Let $L$ be the $G_{\mathfrak{p}}$-field over $C$ which corresponds to $\Gamma=PSL_{2}(Z^{(p)})$ (see

\S 2). Here, $G_{\mathfrak{p}}=G_{p}=PSL_{2}(Q_{p})$ . Since $\Gamma_{R}^{1}=PSL_{2}(Z)$ is a maximal fuchsian group, we
get $H=\Gamma_{R}^{1}$ ; hence by (38) we get $(AukL : G_{p})=(\Gamma’ : \Gamma_{R})\leq 2$ . But ifwe put

(39) $\Gamma^{\cdot}=\{x\in GL_{2}(Z^{(p)})|\det x=$ powers of $ p\}/\pm$ { powers of $p$},

then $\Gamma^{*}$ can be considered as a subgroup of $G_{R}$ with $\Gamma^{*}\supset\Gamma_{R},$ $(\Gamma^{*}:\Gamma_{R})=2$ , and it is clear
that $\Gamma^{*}\subset\Gamma’$ . Therefore, we get $\Gamma’=\Gamma^{*}$ . Therefore, $Aut_{\mathbb{C}}L=\overline{\Gamma}\cdot$ , where $\overline{\Gamma}^{*}$ is the $p$-adic
completion of $\Gamma^{*}$ given by

(40) $\overline{\Gamma}^{*}=\{x\in GL_{2}(Q_{p})|\det x=$ powers of $ p\}/\pm$ { powers of $p$ }.

Since $\Gamma_{R}^{1}=PSL_{2}(Z)$ is maximal, $L$ is irreducible by Corollary 3 ofTheorem 2.
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