CHAPTER 1

Part 1. The group Γ and its ζ-function.

In Part 1 of this chapter, we shall define the ζ-function

$$
\zeta_{\Gamma}(u)=\prod_{P}\left(1-u^{\operatorname{deg} P}\right)^{-1}
$$

of Γ, and prove that

$$
\begin{align*}
\zeta_{\Gamma}(u) & =\frac{\prod_{i=1}^{g}\left(1-\pi_{i} u\right)\left(1-\pi_{i}^{\prime} u\right)}{(1-u)\left(1-q^{2} u\right)} \times(1-u)^{(q-1)(g-1)} ; \tag{20}\\
q & =N \mathfrak{p}, g \geq 2, \pi_{i} \pi_{i}^{\prime}=q^{2}(1 \leq i \leq g)
\end{align*}
$$

holds, if G / Γ is compact and Γ is torsion-free. We shall also prove the inequality; $\left|\pi_{i}\right|,\left|\pi_{i}^{\prime}\right| \leq$ $q^{2}, \pi_{i}, \pi_{i}^{\prime} \neq 1, q^{2}$, by applying Lemma 10 (M.Kuga), $\S 21$. These results, particularly the existence of the factor $(1-u)^{(q-1)(g-1)}$, give a starting point of our problems described in the introduction. Our formula (20) is, modulo some group theory of $P L_{2}\left(k_{p}\right)$, a consequence of Eichler-Selberg trace formula for the Hecke operators in the space of certain automorphic forms of weight 2. However, the proof, starting at Eichler-Selberg formula and ending at (20), is by no means simple, mainly because we do not have a simple proof of Lemma 3 (§13). ${ }^{1}$ Finally, we point out that there is also a difference in the standpoint; Eichler-Selberg's left side of the formula comes to the right side of ours; (20). For us, the subject is the set of "elliptic Γ-conjugacy classes", and not the Hecke operator.

We shall begin with the definition of the group Γ.

Discrete subgroup Γ.

§1. Let

$$
\begin{equation*}
G=P S L_{2}(\mathbf{R}) \times P S L_{2}\left(k_{p}\right) \tag{1}
\end{equation*}
$$

be considered as a topological group, and for each subset S of G, we denote by $S_{\mathbf{R}}$ resp. S_{p} the set-theoretical projections of S to R-component (i.e. the first component) resp.

[^0]k_{p}-component (i.e. the second component) of G. In particular, we have
\[

$$
\begin{equation*}
G_{\mathbf{R}}=P S L_{2}(\mathbf{R}), \quad G_{p}=P S L_{2}\left(k_{p}\right) \tag{2}
\end{equation*}
$$

\]

and for any element x of G, x_{R} resp. x_{p} denote the \mathbf{R}-component resp. the k_{p}-component of x;

$$
\begin{equation*}
x=x_{\mathrm{R}} \times x_{\mathrm{p}} . \tag{3}
\end{equation*}
$$

§2. The subject of our study is a discrete subgroup Γ of $G=G_{\mathbf{R}} \times G_{p}$, for which $\Gamma_{\mathbf{R}}$ and Γ_{p} are dense in G_{R} and G_{p} respectively. So, throughout the following, Γ will always denote such a discrete subgroup of G.

Example. Let p be a prime number, and let $\mathbf{Z}^{(p)}$ be the ring of rational numbers whose denominators are powers of p;

$$
\begin{equation*}
\mathbf{Z}^{(p)}=\left\{a / p^{n} \mid a, n \in \mathbf{Z}\right\} \tag{4}
\end{equation*}
$$

Put

$$
\begin{equation*}
\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)=S L_{2}\left(Z^{(p)}\right) / \pm I . \tag{5}
\end{equation*}
$$

Let \mathbf{Q}_{p} be the p-adic number field. Then, by the injections $\mathbf{Z}^{(p)} \rightarrow \mathbf{R}, \rightarrow \mathbf{Q}_{p}$, the group Γ can be regarded as a subgroup of $G=P S L_{2}(\mathbf{R}) \times P S L_{2}\left(\mathbf{Q}_{p}\right)$. It is discrete in G, since if $\gamma=\gamma_{\mathbf{R}} \times \gamma_{p} \in \Gamma$, and if γ_{p} is contained in $P S L_{2}\left(\mathbf{Z}_{p}\right)\left(\mathbf{Z}_{p}\right.$: the ring of p-adic integers), which is a neighborhood of the identity of $P S L_{2}\left(\mathbf{Q}_{p}\right)$, then γ_{R} is contained in $P S L_{2}(\mathbf{Z})$, which is discrete in $P S L_{2}(\mathbf{R})$. It is a simple exercise, in arithmetic of algebraic groups, to check that $\Gamma_{\mathrm{R}}, \Gamma_{p}$ are dense in G_{R}, G_{p} respectively.

Now, for this particular Γ, the projection maps $\Gamma \rightarrow \Gamma_{\mathbf{R}}, \rightarrow \Gamma_{\mathfrak{p}}$ are injective, and the quotient G / Γ has a finite invariant volume. The former is true in general, as the following proposition shows; as for the latter, we do not know whether it is true in general, but, curious as it may look, we think that it is quite possible.

Proposition 1. Let Γ be a discrete subgroup of G, for which Γ_{R}, Γ_{p} are dense in G_{R}, G_{p} respectively. Then the projection maps $\Gamma \rightarrow \Gamma_{\mathrm{R}}, \rightarrow \Gamma_{\mathfrak{p}}$ are injective.

Proof. Let Δ be the kernel of the projection $\Gamma \rightarrow \Gamma_{R}$.

$$
\begin{equation*}
\Delta=\left\{\gamma=\gamma_{\mathbf{R}} \times \gamma_{\mathbf{p}} \in \Gamma \mid \gamma_{\mathbf{R}}=1\right\} \tag{6}
\end{equation*}
$$

So $\Delta_{\mathfrak{p}} \cong \Delta$ is discrete in G_{p}, and normal in Γ_{p}; hence normal in G_{p}, the closure of Γ_{p}. So, Δ_{p} is a discrete normal subgroup of G_{p}. On the other hand. it is well-known that if K is any infinite field, then the group $P S L_{2}(K)=S L_{2}(K) / \pm 1$ is simple (as an abstract group). So, G_{p} is simple, and hence $\Delta_{p}=\{I\}$; hence $\Delta=\{I\}$. The injectivity of $\Gamma \rightarrow \Gamma_{p}$ follows exactly in the same manner, by using the simplicity of G_{R}.

So, we can identify the three canonically isomorphic groups:

$$
\Gamma_{R} \cong \Gamma \cong \Gamma_{p}
$$

Proposition 2. Let Γ be a subgroup of G such that the projection maps $\Gamma \rightarrow \Gamma_{R}, \rightarrow \Gamma_{p}$ are injective, and that Γ_{R}, Γ_{p}, are dense in G_{R}, G_{p} respectively. Let U_{p} be an open compact subgroup of G_{p}, and let $\Gamma_{\mathbf{R}}^{0}$ be the projection to \mathbf{R}-component of $\Gamma^{0}=\Gamma \cap\left(G_{\mathbf{R}} \times U_{p}\right)$. Then, (i) Γ is discrete in G if and only if $\Gamma_{\mathbf{R}}^{0}$ is discrete in $G_{\mathbf{R}}$. Moreover, if (i) is satisfied, then, (ii) the quotient G / Γ is compact (resp. has a finite invariant volume) if and only if $G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{0}$ is compact (resp. has a finite invariant volume).

Proof. The first assertion (i) is immediate. The "if" part is because U_{p} is open, and the "only if" part is because U_{p} is compact. As for (ii), if $G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{0}$ is compact (resp. has a finite invariant volume), then, there is a subspace K_{R} of G_{R} which is compact (resp. has a finite invariant volume) such that $G_{\mathbf{R}}=K_{\mathbf{R}} \cdot \Gamma_{\mathbf{R}}^{0}$. Since we have $G_{p}=U_{\mathfrak{p}} \cdot \Gamma_{\mathfrak{p}}$, it follows immediately that $G=\left(K_{\mathbf{R}} \times U_{p}\right) \cdot \Gamma$; which proves the "only if" part. Conversely, if $G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{0}$ is non-compact (resp. has an infinite volume), then there is an open subset $F_{\mathbf{R}}$ of $G_{\mathbf{R}}$ such that the restriction to $F_{\mathbf{R}}$ of the natural map $\varphi_{R}: G_{\mathbf{R}} \rightarrow G_{\mathbf{R}} / \Gamma_{\mathbf{R}}^{0}$ is injective, and that $F_{\mathbf{R}}$ is non-compact (resp. has an arbitrarily large volume). Put $F=F_{\mathbf{R}} \times U_{p}$. Then, the restriction to F of the natural map $\varphi: G \rightarrow G / \Gamma$ is injective, and F is non-compact (resp. has an arbitrarily large volume) ; which proves the "if" part of (ii).
§3. Now, $G_{\mathbf{R}}=P S L_{2}(\mathbf{R})$ acts on the complex upper half plane $\mathfrak{G}=\{z \in \mathbf{C} \mid \operatorname{Im} z>0\}$ as:

$$
G_{\mathbf{R}} \ni g_{\mathbf{R}}=\left(\begin{array}{ll}
a & b \tag{7}\\
c & d
\end{array}\right): \quad \mathfrak{H} \ni z \mapsto g_{\mathbf{R}} \cdot z=\frac{a z+b}{c z+d} \in \mathfrak{H} .
$$

As is well-known, $G_{\mathbf{R}}$ acts transitively on \mathfrak{G}, and is identified with the group Aut(\mathfrak{H}) of all automorphisms of the complex Riemann surface \mathfrak{H}. Since Γ is identified with its projection $\Gamma_{\mathbf{R}} \subset G_{\mathbf{R}}, \Gamma$ also acts on \mathfrak{H}. Two points $z, z^{\prime} \in \mathfrak{G}$ will be called equivalent (or, more precisely, Γ-equivalent), if there is an element $\gamma \in \Gamma$ such that $\gamma_{\mathbf{R}} \cdot z=z^{\prime}$. We note that, since Γ_{R} is dense in G_{R}, each equivalence class $\Gamma_{\mathrm{R}} \cdot z$ is also dense on \mathfrak{H}. A point $z \in \mathfrak{H}$ will be called a Γ-fixed point, if its stabilizer in Γ is infinite. For each $z \in \mathfrak{H}$, we put

$$
\left\{\begin{array}{l}
G_{z, \mathbf{R}}=\left\{g_{\mathbf{R}} \in G_{\mathbf{R}} \mid g_{\mathbf{R}} \cdot z=z\right\} \cong \mathbf{R} / \mathbf{Z} \tag{8}\\
\Gamma_{z, \mathbf{R}}=\Gamma_{\mathbf{R}} \cap G_{z, \mathbf{R}}=\left\{\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}} \mid \gamma_{\mathbf{R}} \cdot z=z\right\} .
\end{array}\right.
$$

Let $\Gamma_{z}, \Gamma_{z, p}$ be the subgroup of $\Gamma, \Gamma_{\mathrm{p}}$ respectively which correspond to $\Gamma_{z, \mathrm{R}}$ by the canonical isomorphism: $\Gamma_{z, \mathrm{R}} \cong \Gamma_{z} \cong \Gamma_{z, p}$.

$$
\left\{\begin{align*}
\Gamma_{z} & =\left\{\gamma \in \Gamma \mid \gamma_{\mathbf{R}} \cdot z=z\right\} \tag{9}\\
\Gamma_{z, p} & =\left\{\gamma_{\mathfrak{p}} \in \Gamma_{\mathfrak{p}} \mid \gamma \in \Gamma_{z}\right\}=\left\{\gamma_{\mathfrak{p}} \in \Gamma_{\mathfrak{p}} \mid \gamma_{\mathbf{R}} \cdot z=z\right\} .
\end{align*}\right.
$$

So, $z \in \mathfrak{G}$ is a Γ-fixed point if and only if $\Gamma_{z, \mathrm{R}} \cong \Gamma_{z} \cong \Gamma_{z, \mathrm{p}}$ are infinite. Let
$\wp(\Gamma)$
be the set of all Γ-equivalence classes of all Γ-fixed points on \mathfrak{H}. We shall see later, that $\wp(\Gamma)$ is analogous, in various sense, to the set of all prime divisors of an algebraic function field of one variable over the finite field $\mathbf{F}_{q^{2}}$, where $q=N \mathfrak{p}$.

An element $g_{R} \in G_{R}, g_{R} \neq 1$ will be called elliptic if it has a fixed point on $\mathfrak{5}$. So, g_{R} is elliptic if and only if g_{R} has imaginary eigenvalues, and hence if and only if $\left|\operatorname{tr} g_{R}\right|<2$.

If g_{R} is elliptic, then the fixed point $z \in \mathfrak{G}$ of g_{R} (i.e. z such that $g_{\mathrm{R}} \cdot z=z$) is unique, and the centralizer of $g_{\mathbf{R}}$ in $G_{\mathbf{R}}$ coincides with $G_{\mathbf{z}, \mathbf{R}}$. We shall call an element γ of Γ elliptic, if $\gamma_{\mathbf{R}}$ is elliptic. Thus $\gamma \in \Gamma$ is elliptic if and only if $\gamma \neq 1$, and $\gamma \in \Gamma_{z}$ for some (unique) $z \in \mathfrak{H}$. In this case, by the preceding remark, it is clear that the centralizer of γ in Γ is Γ_{z}.

To show that $\varphi(\Gamma)$ is non-empty, we note the following. Let g_{p} be any element of G_{p} of finite order n. Then the eigenvalues of $g_{\mathfrak{p}}$ are contained in some quadratic extension of k_{p}, and are primitive n-th or $2 n$-th root of unity. Since there exist at most finitely many quadratic extensions of k_{p}, and since each such field contains at most finitely many roots of unity, we see that n must be bounded. Since $\Gamma_{p} \cong \Gamma$ is a subgroup of G_{p}, this shows that there are only finitely many possibilities of orders n of elements γ of Γ. Therefore, the set

$$
S=\left\{\left|\operatorname{tr} \gamma_{\mathbf{R}}\right| ; \gamma \in \Gamma, \gamma \text { is of finite order } \neq 1\right\}
$$

is finite. Put $G^{\prime}=\left\{g_{\mathrm{R}} \in G_{\mathrm{R}}| | \operatorname{tr} g_{\mathrm{R}} \mid<2\right\}$. Then G^{\prime} is open, and contains S, which is finite; and hence $G^{\prime}-S$ is again an open subset of $G_{\mathbf{R}}$. Since $\Gamma_{\mathbf{R}}$ is dense in $G_{\mathbf{R}}$, there exists an element $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}} \cap\left(G^{\prime}-S\right)$. Then $\gamma_{\mathbf{R}}$ has a fixed point $z \in \mathfrak{G}$, and $\Gamma_{z, \mathbf{R}}$ is infinite, since it contains $\gamma_{\mathbf{R}}$. So, $\wp(\Gamma)$ is non-empty.

§4.

Proposition 3. Let $z \in \mathfrak{H}$, and let Γ_{z} be infinite. Then, $\Gamma_{z, p}$ is a discrete abelian subgroup of G_{p}. Moreover, if we put

$$
T_{\mathfrak{p}}=\left\{\left.\left(\begin{array}{cc}
t_{p} & 0 \\
0 & t_{\mathfrak{p}}^{-1}
\end{array}\right) \right\rvert\, t_{\mathfrak{p}} \in k_{\mathfrak{p}}^{\times}\right\} /\{ \pm 1\} \subset G_{p}
$$

then there is an element $x_{p} \in G_{p}$ such that $x_{p}^{-1} \Gamma_{z, p} x_{p} \subset T_{p}$.
Proof. We have $\Gamma_{z, \mathbf{R}} \cong \Gamma_{z} \cong \Gamma_{z, p}$ canonically, and $\Gamma_{z, R}$ is a subgroup of $G_{z, \mathbf{R}} \cong \mathbf{R} / \mathbf{Z}$ which is compact abelian. Therefore, Γ_{z} is abelian. Since $\Gamma_{z} \subset \Gamma$ is discrete in G, and since $\Gamma_{z, \mathrm{R}}$ is an infinite subgroup of a compact subgroup of G_{R}, we see immediately that $\Gamma_{z, p}$ must be discrete in G_{p}.

Now let $\gamma \in \Gamma_{z}$ be of infinite order, and let $\pm\left\{\lambda_{p}, \lambda_{p}^{-1}\right\}$ be the eigenvalues of γ_{p}.
We shall show that $\lambda_{p}^{-1} \neq \lambda_{p}$ and that $\lambda_{p} \in k_{p}$. In fact, if $\lambda_{p}^{-1}=\lambda_{p}$, then we can assume that $\lambda_{p}^{-1}=\lambda_{p}=1$, and hence $\gamma_{p}=x_{p}^{-1}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) x_{p}$ with some $x_{p} \in G L_{2}\left(k_{p}\right)$. If p is the characteristic of the residue field O / \mathfrak{p}, then $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}1 & p^{n} \\ 0 & 1\end{array}\right)=1$; hence $\lim _{n \rightarrow \infty} \gamma_{p}^{p^{n}}=$ 1 , which contradicts the discreteness of $\Gamma_{z, p}$ in G_{p}. Therefore, $\lambda_{p}^{-1}, \lambda_{p}$ must be distinct. Suppose now that $\lambda_{p}^{-1} \neq \lambda_{p}$, but $\lambda_{p} \notin k_{p}$. Put $K_{p}=k_{p}\left(\lambda_{p}\right)$. Then, since $\lambda_{p}^{-1}, \lambda_{p}$ are conjugate of each other over k_{p}, we have $\lambda_{p} \in K_{p}^{1}=\left\{x \in K_{p} \mid N_{K_{p} / k_{p}}(x)=1\right\}$. Since $K_{\mathfrak{p}}^{1}$ is a subgroup of the group of units of $K_{\mathfrak{p}}, K_{p}^{1}$ is compact. Now if we ignore the sign and consider γ_{p} as an element of $S L_{2}\left(k_{p}\right)$ (choose either one of two), there is a unique isomorphism φ over k_{p} of K_{p} into $M_{2}\left(k_{p}\right)$ which sends λ_{p} to γ_{p}. So, γ_{p} is contained in a compact subgroup $\varphi\left(K_{\mathfrak{p}}^{1}\right)$ of $G_{\mathfrak{p}}$. Since $\gamma_{\mathfrak{p}}$ is of infinite order by assumption, this also contradicts the discreteness of $\Gamma_{z, p}$ in G_{p}. So we have shown that $\lambda_{p}^{-1} \neq \lambda_{p}$ and that $\lambda_{p} \in k_{p}$.

Take $\tilde{x}_{\mathfrak{p}} \in G L_{2}\left(k_{\mathfrak{p}}\right)$ such that $\tilde{x}_{\mathfrak{p}}^{-1} \gamma_{\mathfrak{p}} \tilde{x}_{\mathfrak{p}}= \pm\left(\begin{array}{cc}\lambda_{\mathfrak{p}} & 0 \\ 0 & \lambda_{p}^{-1}\end{array}\right)$. By putting $x_{\mathfrak{p}}=\tilde{x}_{\mathfrak{p}}\left(\begin{array}{cc}1 & 0 \\ 0 & \operatorname{det} \tilde{x}_{\mathfrak{p}}^{-1}\end{array}\right)$, we get $x_{\mathfrak{p}}^{-1} \gamma_{\mathfrak{p}} x_{\mathfrak{p}}= \pm\left(\begin{array}{cc}\lambda_{\mathfrak{p}} & 0 \\ 0 & \lambda_{\mathfrak{p}}^{-1}\end{array}\right)$ with $x_{\mathfrak{p}} \in G_{\mathfrak{p}}$. If $\gamma_{\mathfrak{p}}^{\prime}$ is any element of $\Gamma_{z, \mathfrak{p}}$, it commutes with γ_{p}, and hence $x_{p}^{-1} \gamma_{\mathfrak{p}}^{\prime} x_{\mathfrak{p}}$ is of the form $\pm\left(\begin{array}{cc}\lambda_{\mathfrak{p}}^{\prime} & 0 \\ 0 & \lambda_{\mathfrak{p}}^{\prime-1}\end{array}\right)$ with some $\lambda_{\mathfrak{p}}^{\prime} \in k_{p}^{\times}$. So, we get $x_{\mathfrak{p}}^{-1} \Gamma_{\mathfrak{p}} x_{\mathfrak{p}} \subset T_{\mathfrak{p}}$, which proves our Proposition.

Corollary. Let Γ_{z} be of infinite order. Then,

$$
\Gamma_{z} \cong(\text { a finite cyclic group }) \times(\text { infinite cyclic group }) .
$$

If $\gamma \in \Gamma_{z}$ is of infinite order, then the eigenvalues $\pm\left\{\lambda_{p}, \lambda_{p}^{-1}\right\}$ of γ_{p} are contained in k_{p}, and not contained in $\mathcal{U}_{p}, \mathcal{U}_{p}$ being the group of \mathfrak{p}-adic units of k_{p}.

Proof. Take $x_{\mathfrak{p}} \in G_{\mathfrak{p}}$ such that $x_{\mathfrak{p}}^{-1} \Gamma_{z, p} x_{\mathfrak{p}} \subset T_{\mathfrak{p}}$. For each $\gamma \in \Gamma_{z}$, put $x_{\mathfrak{p}}^{-1} \gamma_{\mathfrak{p}} x_{\mathfrak{p}}=$ $\pm\left(\begin{array}{cc}t_{\mathrm{p}} & 0 \\ 0 & t_{\mathrm{p}}^{-1}\end{array}\right)$, and put $t_{\mathrm{p}}=\varphi\left(\gamma_{\mathrm{p}}\right)$. Then φ gives an isomorphism of Γ_{z} into $k_{\mathrm{p}}^{\times} / \pm 1$, and since $\Gamma_{z, \mathfrak{p}}$ is discrete in $G_{\mathfrak{p}}, \varphi\left(\Gamma_{z}\right)$ is discrete in $k_{\mathfrak{p}}^{\times} / \pm 1$. So, $\varphi\left(\Gamma_{z}\right) \cap \mathcal{U}_{\mathrm{p}} / \pm 1$ must be finite, and $\varphi\left(\Gamma_{z}\right)$ is the direct product of $\varphi\left(\Gamma_{z}\right) \cap \mathcal{U}_{p} / \pm 1$ and an infinite cyclic subgroup.
§5. Let $P \in \wp(\Gamma)$, and let $z \in \mathfrak{G}$ be a Γ-fixed point contained in the class P. By Proposition 3, the set of eigenvalues $\pm \lambda_{p}^{ \pm 1}$ of all elements γ_{p} of $\Gamma_{z, p}$ forms a discrete subgroup $\varphi\left(\Gamma_{z}\right)$ of $k_{p}^{\times} / \pm 1$. Let ord $_{p}$ be the normalized additive valuation of k_{p}, and put

$$
\begin{equation*}
\operatorname{ord}_{p} \varphi_{p}\left(\Gamma_{z}\right)=\left\{\operatorname{ord}_{p}\left(\lambda_{p}^{ \pm 1}\right) \mid \gamma_{\mathfrak{p}} \in \Gamma_{z, p}\right\} \tag{11}
\end{equation*}
$$

Then, this is an infinite subgroup of \mathbf{Z}, and hence is of the form $a \cdot \mathbf{Z}$ with some positive integer a. If z is replaced by a Γ-equivalent point $z^{\prime}=\gamma_{\mathbf{R}}^{\prime} \cdot z\left(\gamma^{\prime} \in \Gamma\right)$, then $\Gamma_{z^{\prime}}=\gamma^{\prime} \cdot \Gamma_{z} \cdot \gamma^{\prime-1}$, and hence we have $\varphi\left(\Gamma_{z^{\prime}}\right)=\varphi\left(\Gamma_{z}\right)$. So, this positive integer a is determined uniquely by P. We shall call this number a, the degree of P, and denote it by

$$
\begin{equation*}
\operatorname{deg} P \tag{12}
\end{equation*}
$$

It is clear that if $\gamma \in \Gamma_{z}$ is such that, together with some finite group, γ generates Γ_{z}, and if $\pm\left\{\lambda_{p}, \lambda_{p}^{-1}\right\}$ are the eigenvalues of γ_{p}, then

$$
\begin{equation*}
\operatorname{deg} P=\left|\operatorname{ord}_{\mathfrak{p}}\left(\lambda_{\mathfrak{p}}\right)\right| \tag{13}
\end{equation*}
$$

The ζ function of Γ.

§6. We shall define the ζ function $\zeta_{\Gamma}(u)$ of Γ to be the following formal infinite product;

$$
\begin{equation*}
\zeta_{\Gamma}(u)=\prod_{P \in p(\Gamma)}\left(1-u^{\operatorname{deg} P}\right)^{-1} \tag{14}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\zeta_{\Gamma}(u)=\exp \sum_{m=1}^{\infty} \frac{N_{m}}{m} u^{m} \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
N_{m}=\sum_{\substack{P \in \in \in(\mathbb{I}) \\ \operatorname{deg} P m}} \operatorname{deg} P \quad(m \geq 1) . \tag{16}
\end{equation*}
$$

That N_{m} are finite will be shown later.
§7. Example. ${ }^{2}$ Let $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$ (see §2). Then, we can compute $\zeta_{\Gamma}(u)$ directly, by using a full knowledge of complex multiplication theory. Thus, let $J(z)=$ $12^{3} g_{2}(z)^{3} /\left[g_{2}(z)^{3}-27 g_{3}(z)^{2}\right]$ be the elliptic modular function, and let p be a divisor of p in the algebraic closure $\overline{\mathbf{Q}}$ of the field of rational numbers \mathbf{Q}. We consider $\overline{\mathbf{Q}}$ as a subfield of the complex number field \mathbf{C}, and we denote by O the ring of all algebraic integers of $\overline{\mathbf{Q}}$. Moreover, we denote by \mathbf{F}_{p} the finite field with p elements, and by $\overline{\mathbf{F}}_{p}$ its algebraic closure. We fix an isomorphism $O / \mathfrak{p} \cong \overline{\mathbf{F}}_{p}$ and identify them. Let S be the subset of $\overline{\mathbf{F}}_{p}$ formed of all $\bar{j} \in \overline{\mathbf{F}}_{p}$ such that the elliptic curve with modulus \bar{j} has no points of order p, or equivalently, the elliptic curve with modulus \bar{j} has Hasse invariant 0 . Then, it is well-known that S is finite, and that S is contained in $\mathbf{F}_{p^{2}}$. The number of elements of S is given by

$$
\begin{align*}
H=1(p=2,3), \quad H & =\frac{p-1}{12}, \frac{p+7}{12}, \frac{p+5}{12}, \frac{p+13}{12} \tag{17}\\
& (p \equiv 1,5,7,11(\bmod 12) \text { respectively }) .
\end{align*}
$$

We shall call two elements $x, y \in \overline{\mathbf{F}}_{p}$ equivalent, and denote it by $x \sim y$, if x, y are conjugate of each other over $\mathbf{F}_{p^{2}}$. So, the number of distinct y with $y \sim x$ (x : given) is equal to the degree of x over $F_{p^{2}}$, which will be called the degree of the equivalence class. Since $S \subset \mathbf{F}_{p^{2}}$, we can consider S also as a subset of $\overline{\mathbf{F}}_{p} / \sim$.

Now, for each $P \in \wp(\Gamma)$, let z_{P} be a Γ-fixed point contained in the class P, and let $J\left(z_{P}\right)$ be the value of J at $z=z_{P}$. Then, by using complex multiplication theory, we can check that $J\left(z_{P}\right) \in O$, and that the map \mathcal{J} of $\wp(\Gamma)$ into $\overline{\mathbf{F}}_{p} / \sim$ defined by

$$
\begin{equation*}
\mathcal{J}: \wp(\Gamma) \ni P \mapsto J\left(z_{P}\right) \quad \bmod \mathfrak{p} \in \overline{\mathbf{F}}_{p} / \sim \tag{18}
\end{equation*}
$$

is well-defined (the congruence relation!), injective, and degree preserving. Moreover, the image of \mathcal{J} coincides with $\overline{\mathbf{F}}_{p} / \sim-S$. Thus, \mathcal{J} gives a degree-preserving one-to-one correspondence between $\varphi(\Gamma)$ and $\overline{\mathbf{F}}_{p} / \sim-S$. Since a straightforward computation shows that

$$
\prod_{\bar{x} \in \mathbb{F}_{p} / \sim-S}\left(1-u^{\operatorname{deg} \tilde{x}}\right)^{-1}=\frac{1}{(1-u)\left(1-p^{2} u\right)} \times(1-u)^{1+H},
$$

[^1]we get
\[

$$
\begin{equation*}
\zeta_{\Gamma}(u)=\frac{1}{(1-u)\left(1-p^{2} u\right)} \times(1-u)^{1+H} \tag{19}
\end{equation*}
$$

\]

where H is given by (17).
§8. Now let us compute $\zeta_{\Gamma}(u)$ for more general Γ. We shall restrict ourselves to the case where Γ is torsion-free (i.e. Γ has no elements of finite order) and where the quotient G / Γ is compact. Our purpose is to prove the following theorem.

Theorem 1. Let Γ be a torsion-free discrete subgroup of G with compact quotient, and with dense images of projections $\Gamma_{\mathbf{R}}, \Gamma_{\mathfrak{p}}$ in G_{R}, G_{p} respectively. Then we have;

$$
\begin{equation*}
\zeta_{\Gamma}(u)=\frac{\prod_{i=1}^{g}\left(1-\pi_{i} u\right)\left(1-\pi_{i}^{\prime} u\right)}{(1-u)\left(1-q^{2} u\right)} \times(1-u)^{(q-1)(g-1)} \tag{20}
\end{equation*}
$$

where $q=N \mathfrak{p}$, and g is the genus of $\Gamma_{\mathbf{R}}^{0} \backslash \mathfrak{G}$, with $\Gamma^{0}=\Gamma \cap\left(G_{\mathbf{R}} \times U_{\mathfrak{p}}\right), U_{\mathfrak{p}}=P S L_{2}\left(O_{\mathfrak{p}}\right)$. The numbers $\pi_{i}, \pi_{i}^{\prime}(1 \leq i \leq g)$ are algebraic integers satisfying $\pi_{i} \pi_{i}^{\prime}=q^{2}(1 \leq i \leq g)$.

Remark. Since $\Gamma_{\mathbf{R}}^{0}$ is a torsion-free discrete subgroup of $G_{\mathbf{R}}$ with compact quotient (see $\S 2$, Proposition 2), we have $g \geq 2$. The formula (20) is equivalent to saying that N_{m} defined by (16) is finite and is given by:

$$
N_{m}=q^{2 m}+1-\sum_{i=1}^{g}\left(\pi_{i}^{m}+\pi_{i}^{\prime m}\right)-(q-1)(g-1) \quad(m \geq 1)
$$

This formula for $\zeta_{\Gamma}(u)$ is one of the starting point of our study of Γ.

Lemmas for the proof of Theorem 1.

§9. The proof of Theorem 1 is based on three basic lemmas; Lemmas 1,2 and 3. We shall begin by describing Lemma 1 .

Let Δ be a torsion-free discrete subgroup of $G_{\mathbf{R}}=P S L_{2}(\mathbf{R})$ with compact quotient, and let $\tilde{\Delta}$ be a subgroup of G_{R} containing Δ such that, for any $\gamma \in \tilde{\Delta}$, the subgroups $\Delta, \gamma \Delta \gamma^{-1}$ of $\tilde{\Delta}$ are commensurable with each other. Let $\mathcal{H}(\tilde{\Delta}, \Delta)$ be the Hecke ring ${ }^{3}$ defined with respect to $\tilde{\Delta}$ and Δ. For each double coset $\Delta \gamma \Delta \in \mathcal{H}(\tilde{\Delta}, \Delta)$, we put

$$
\begin{equation*}
d(\Delta \gamma \Delta)=\left(\Delta: \gamma^{-1} \Delta \gamma \cap \Delta\right)=|\Delta \backslash \Delta \gamma \Delta| \tag{21}
\end{equation*}
$$

and define $d(X)$ for arbitrary $X \in \mathcal{H}(\tilde{\Delta}, \Delta)$ by (21) and by linearity. Thus $\mathcal{H}(\tilde{\Delta}, \Delta) \ni X \mapsto$ $d(X)$ gives a linear representation of the ring $\mathcal{H}(\tilde{\Delta}, \Delta)$.

On the other hand, let \mathfrak{M}_{k} be the space of all holomorphic automorphic forms of weight $k(k=2,4,6, \cdots)$ with respect to Δ. For each $\Delta \gamma \Delta \in \mathcal{H}(\tilde{\Delta}, \Delta)$, put $\Delta \gamma \Delta=\sum_{i=1}^{d} \Delta \gamma_{i}(d=$

[^2]$d(\Delta y \Delta))$, and let $\rho_{k}(\Delta \gamma \Delta)$ be the Hecke operator; i.e. the linear endomorphism of \mathfrak{M}_{k} defined by:
\[

$$
\begin{equation*}
\rho_{k}(\Delta y \Delta): \mathfrak{M}_{k} \ni f(z) \mapsto \sum_{i=1}^{d} f\left(\frac{a_{i} z+b_{i}}{c_{i} z+d_{i}}\right)\left(c_{i} z+d_{i}\right)^{-k} \in \mathfrak{M}_{k}, \tag{22}
\end{equation*}
$$

\]

where $\gamma_{i}= \pm\left(\begin{array}{cc}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right)(1 \leq i \leq d)$. This is independent of the choice of representatives $\gamma_{1}, \cdots, \gamma_{d}$. Define $\rho_{k}(X)$ for arbitrary $X \in \mathcal{H}(\tilde{\Delta}, \Delta)$ by (22) and by linearity. Then, it is also easy to check (and is well-known) that ρ_{k} gives an representation of the ring $\mathcal{H}(\tilde{\Delta}, \Delta)$ in the ring of all linear endomorphisms of \mathfrak{M}_{k}. Now, by Petersson,

$$
(f, g)=\int_{\Delta \backslash 5} f(z) \overline{g(z)} y^{k-2} d x d y \quad(z=x+i y)
$$

gives a positive hermitian form on \mathfrak{M}_{k}, and the adjoint of $\rho_{k}(\Delta \gamma \Delta)$ with respect to this hermitian form is $\rho_{k}\left(\Delta \gamma^{-1} \Delta\right)$. Therefore, if $\Delta \gamma^{-1} \Delta=\Delta \gamma \Delta$ is satisfied for all $\gamma \in \tilde{\Delta}$, then the Hecke operators $\rho_{k}(\Delta \gamma \Delta)$ are all hermitian. Moreover, $\Delta \gamma^{-1} \Delta=\Delta \gamma \Delta(\forall \gamma \in \tilde{\Delta})$ implies the commutativity of the ring $\mathcal{H}(\tilde{\Delta}, \Delta)$. Therefore, under this condition, ρ_{k} is a direct sum of real linear representations of $\mathcal{H}(\tilde{\Delta}, \Delta)$.

Recall now that an element $g_{\mathbf{R}} \in G_{\mathbf{R}}$ is called elliptic if it has a fixed point on $\mathfrak{5}$. It is clear that if $g_{\mathbf{R}} \in \Delta \gamma \Delta(\gamma \in \tilde{\Delta})$ is elliptic, and if $\delta \in \Delta$, then $\delta^{-1} g_{\mathbf{R}} \delta$ is also elliptic and contained in $\Delta \gamma \Delta$. Let $A(\Delta \gamma \Delta)$ be the number of all elliptic Δ-conjugacy classes contained in $\Delta y \Delta$. Then, if $\Delta \gamma \Delta \neq \Delta$, Eichler-Selberg's trace formula for the Hecke operators asserts that ${ }^{4}$:

$$
\begin{equation*}
A(\Delta y \Delta)=d(\Delta \gamma \Delta)+d\left(\Delta \gamma^{-1} \Delta\right)-\operatorname{tr} \rho_{2}(\Delta y \Delta)-\operatorname{tr} \rho_{2}\left(\Delta \gamma^{-1} \Delta\right) . \tag{}
\end{equation*}
$$

(cf. Eichler [12]). As a summary (for $k=2$), we get:
Lemma 1. Let $\Delta, \tilde{\Delta}$ be as in the beginning of $\S 9$, and assume that we have $\Delta \gamma^{-1} \Delta=$ $\Delta \gamma \Delta$ for all $\gamma \in \tilde{\Delta}$. Let $\rho=\rho_{2}$ be the representation (22) of $\mathcal{H}(\tilde{\Delta}, \Delta)$; the Hecke operators in the space of automorphic forms of weight 2 with respect to Δ. Then, ρ is a direct sum of g linear real representations $\chi_{1}, \cdots, \chi_{g}$, where g is the genus of $\Delta \mid \mathfrak{5}$. Moreover, if $\gamma \in \tilde{\Delta}, \gamma \notin \Delta$, then the number $A(\Delta y \Delta)$ of elliptic Δ-conjugacy classes contained in $\Delta \gamma \Delta$ is given by

$$
\begin{equation*}
A(\Delta y \Delta)=2(d(\Delta y \Delta)-\operatorname{tr} \rho(\Delta y \Delta)), \tag{23}
\end{equation*}
$$

where $d(\Delta y \Delta)$ is defined by (21).
We remark that, in Eichler-Selberg, tr $\rho(\Delta y \Delta)$ comes on the left side; while in our point-view, $A(\Delta y \Delta)$ is "wanted" and comes on the left side.

[^3]§10. The second basic lemma is concerned with the Hecke ring $\mathcal{H}\left(G_{p}, U_{p}\right)$, where $G_{\mathfrak{p}}=P S L_{2}\left(k_{p}\right)$ and
\[

$$
\begin{equation*}
U_{\mathfrak{p}}=P S L_{2}\left(O_{\mathfrak{p}}\right)=S L_{2}\left(O_{p}\right) / \pm 1 \tag{24}
\end{equation*}
$$

\]

It is clear that $\mathcal{H}\left(G_{p}, U_{\mathfrak{p}}\right)$ is defined, since $g_{\mathfrak{p}}^{-1} U_{p} g_{\mathfrak{p}}$ and $U_{\mathfrak{p}}$, for any $g_{\mathfrak{p}} \in G_{p}$, are commensurable with each other. Let p be a prime element of k_{p} (i.e. $p O_{p}=\mathfrak{p}$). Then, by elementary divisor theory, it is well-known that

$$
Y_{l}=U_{\mathfrak{p}}\left(\begin{array}{cc}
p^{l} & 0 \tag{25}\\
0 & p^{-l}
\end{array}\right) U_{\mathfrak{p}} \quad(l=0,1,2, \cdots)
$$

gives all distinct $U_{\mathfrak{p}}$ double cosets contained in $G_{\mathfrak{p}}$, and that we have

$$
\begin{equation*}
Y_{l}^{-1}=Y_{l} \quad(l=0,1,2, \cdots) ; Y_{0}=U_{p} \tag{26}
\end{equation*}
$$

Lemma 2. We have

$$
\begin{equation*}
\left|Y_{0} \backslash Y_{l}\right|=q^{2 l}+q^{2 l-1}(l \geq 1) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{l=0}^{\infty} Y_{l} u^{l}=\frac{(1-u)(1+q u)}{1-\left(Y_{1}-q+1\right) u+q^{2} u^{2}} \tag{28}
\end{equation*}
$$

where the second formula implies the identity between two power series of u with coefficients in $\mathcal{H}\left(G_{\mathfrak{p}}, U_{\mathfrak{p}}\right)$.

The proof of Lemma 2 will be given later, in $\S 17$.
Now, let Γ be a discrete subgroup of $G=G_{\mathbf{R}} \times G_{\mathfrak{p}}$ such that $\Gamma_{\mathbf{R}}$ and Γ_{p} are dense in $G_{\mathbf{R}}$ and G_{p} respectively. For each $l=0,1,2, \cdots$, we put

$$
\begin{equation*}
\Gamma^{l}=\left\{\gamma \in \Gamma \mid \gamma_{\mathfrak{p}} \in Y_{l}\right\} \tag{29}
\end{equation*}
$$

In particular, $\Gamma^{0}=\Gamma \cap\left(G_{\mathbf{R}} \times U_{\mathfrak{p}}\right)$ forms a subgroup of Γ; and for any $\gamma \in \Gamma, \gamma^{-1} \Gamma^{0} \gamma$ and Γ^{0} are commensurable with each other. It is obvious that we have $\Gamma^{0} \cdot \Gamma^{l} \cdot \Gamma^{0}=\Gamma^{l}$ for each $l \geq 0$, because $Y_{0} Y_{l} Y_{0}=Y_{l}(l \geq 0)$ holds; and moreover, each Γ^{l} consists of a single Γ^{0}-double-coset. In fact, let $\gamma, \gamma^{\prime} \in \Gamma^{l}$. Then $\gamma_{p}, \gamma_{p}^{\prime} \in Y_{l}=U_{p}\left(\begin{array}{cc}p^{l} & 0 \\ 0 & p^{-l}\end{array}\right) U_{p}$; hence there exist $u_{p}, u_{p}^{\prime} \in Y_{0}=U_{\mathfrak{p}}$ such that $\gamma_{p}^{\prime}=u_{\mathfrak{p}} \gamma_{p} u_{p}^{\prime}$. Recall that Γ_{p} is dense in G_{p}, and take $\delta_{\mathfrak{p}} \in \Gamma_{p}^{0}$ which is sufficiently near $u_{\mathfrak{p}}$. Then $\delta_{p}^{\prime}=\gamma_{p}^{\prime-1} \delta_{\mathfrak{p}} \gamma_{\mathfrak{p}}$ is sufficiently near $u_{\mathfrak{p}}^{\prime-1}$ and hence is contained in U_{p}. On the other hand, $\delta_{\mathfrak{p}}^{\prime}$ is in Γ_{p}; hence we have $\delta_{p} \gamma_{p} \delta_{p}^{\prime-1}=\gamma_{p}^{\prime}$ with $\delta_{\mathfrak{p}}, \delta_{\mathfrak{p}}^{\prime} \in \Gamma_{\mathfrak{p}}^{0}$. Therefore, each Γ^{l} consists of a single Γ^{0}-double coset. Now, since we have $U_{\mathfrak{p}} \Gamma_{\mathfrak{p}}=G_{\mathfrak{p}}$ and $U_{\mathfrak{p}} \cap \Gamma_{\mathfrak{p}}=\Gamma_{\mathfrak{p}}^{0}$, it is now clear that the projection $\Gamma \rightarrow \Gamma_{\mathfrak{p}} \subset G_{\mathfrak{p}}$ induces a canonical isomorphism of $\mathcal{H}\left(\Gamma, \Gamma^{0}\right)$ and $\mathcal{H}\left(G_{p}, U_{\mathfrak{p}}\right)$, which sends to Γ^{l} to $Y_{l}(l \geq 0)$. So, by Lemma 2, we get:

Lemma 2^{\prime}. We have

$$
\begin{equation*}
\left|\Gamma^{0}\right| \Gamma^{l} \mid=q^{2 l}+q^{2 l-1} \quad(l \geq 1) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{l=0}^{\infty} \Gamma^{l} u^{l}=\frac{(1-u)(1+q u)}{1-\left(\Gamma^{1}-q+1\right) u+q^{2} u^{2}} \tag{31}
\end{equation*}
$$

where the second formula implies the identity between two power series of u with coeffcients in $\mathcal{H}\left(\Gamma, \Gamma^{0}\right)$. Moreover, each Γ^{l} is self-inverse (and hence $\mathcal{H}\left(\Gamma, \Gamma^{0}\right)$ is commutative).
811. Before stating the third lemma, we need some alternative definition of $\zeta_{\Gamma}(u)$, which is simple in our case where Γ is torsion-free. Now, Γ being assumed torsion-free, each $\Gamma_{z} \neq\{1\}$ is isomorphic to the infinite cyclic group. We recall that $\gamma \in \Gamma$ is called elliptic if γ_{R} is elliptic, and hence equivalently, if $\gamma \neq 1$ and $\gamma \in \Gamma_{z}$ for some z. Such z is unique; hence we may write $\gamma=\gamma_{z}$. An elliptic element $\gamma \in \Gamma$ will be called primitive, if $\gamma=\gamma_{z}$ generates Γ_{z}. Thus it is clear that an elliptic element can be expressed uniquely as a positive integral power of a primitive elliptic element of Γ. If $\gamma=\gamma_{z}$ is elliptic, and if $\delta \in \Gamma$, then $\delta \gamma \delta^{-1}$ is elliptic, being contained in $\Gamma_{\delta_{\mathbf{R}}}$. If moreover γ is primitive, then $\delta \gamma \delta^{-1}$ is also primitive, since it generates $\Gamma_{\delta_{\mathbf{R}} z}=\delta \Gamma_{z} \delta^{-1}$. So, we shall call a Γ-conjugacy class $\{\gamma\}_{\Gamma}$ elliptic, if γ is so, and primitive, if γ is moreover primitive. Since Γ is torsion-free, it is clear by Proposition 3 (§4) that, if γ is elliptic, then the eigenvalues $\pm\left\{\lambda_{p}, \lambda_{p}^{-1}\right\}$ of γ_{p} are contained in k_{p}, and are not in \mathcal{U}_{p}.

Propostrion 4. Let $\{\gamma\}_{\Gamma}$ be an elliptic Γ-conjugacy class. Then, $\{\gamma\}_{\Gamma} \neq\left\{\gamma^{-1}\right\}_{\Gamma}$.
Proof. It is enough to show that $\gamma_{\mathbf{R}}^{-1}$ and $\gamma_{\mathbf{R}}$ are not conjugate in $G_{\mathbf{R}}$. Suppose, on the contrary, that we had $\gamma_{\mathbf{R}}^{-1}=g_{\mathbf{R}} \cdot \gamma_{\mathbf{R}} \cdot g_{\mathbf{R}}^{-1}$ with some $g_{\mathbf{R}} \in G_{\mathbf{R}}$. Let z be the fixed point of $\gamma_{\mathbf{R}}, \gamma_{\mathbf{R}}^{-1}$. Then $\gamma_{\mathbf{R}}^{-1}\left(g_{\mathbf{R}} \cdot z\right)=g_{\mathbf{R}} \cdot \gamma_{\mathbf{R}} \cdot z=g_{\mathbf{R}} \cdot z$; hence $g_{\mathbf{R}} \cdot z$ is also fixed by $\gamma_{\mathbf{R}}^{-1}$. Therefore we have $g_{\mathrm{R}} \cdot z=z$; hence $g_{\mathrm{R}} \in G_{z, \mathrm{R}}$. Since $G_{z, \mathrm{R}}$ is abelian, this implies $g_{\mathrm{R}} \gamma_{\mathrm{R}} g_{\mathrm{R}}^{-1}=\gamma_{\mathrm{R}}$, hence $\gamma_{\mathbf{R}}^{-1}=\gamma_{\mathbf{R}}$. But this is a contradiction, since $\gamma_{\mathbf{R}} \neq 1$ and, by assumption, Γ has no elements of finite order.

Proposition 5. $\wp(\Gamma)$ is in one-to-one correspondence with the set of all mutually inverse pairs $\left\{\gamma^{ \pm 1}\right\}_{\Gamma}$ of primitive elliptic Γ-conjugacy classes.

Proof. This is immediate, if we recall the definitions of $\varphi(\Gamma)(\S 3)$ and of primitive elliptic Γ-conjugacy classes. The one-to-one correspondence is defined as follows. Take any $P \in \wp(\Gamma)$ and a Γ-fixed point $z \in \mathfrak{S}$ contained in the Γ-equivalence class P. Then Γ_{z} is the infinite cyclic group. Let γ, γ^{-1} be its generators. Then $P \mapsto\left\{\gamma^{ \pm 1}\right\}_{\Gamma}$ gives the desired one-to-one correspondence.
812. Let $\{\gamma\}_{\Gamma}$ be any elliptic Γ-conjugacy class, and let $\pm\left\{\lambda_{p}, \lambda_{p}^{-1}\right\}$ be the eigenvalues of γ_{p}. We know that $\lambda_{p}, \lambda_{p}^{-1}$ are in k_{p} and not in \mathcal{U}_{p}. Put

$$
\begin{equation*}
\operatorname{deg}\{\gamma\}_{\Gamma}=\left|\operatorname{ord}_{p} \lambda_{p}\right| . \tag{32}
\end{equation*}
$$

It is clear that this is a well-defined positive integer, and that for any $r \in \mathbf{Z}$, we have $\operatorname{deg}\left\{\gamma^{r}\right\}_{\Gamma}=|r| \operatorname{deg}\{\gamma\}_{\Gamma}$. Moreover, if a pair $\left\{\gamma^{ \pm 1}\right\}_{\Gamma}$ of mutually inverse primitive elliptic
conjugacy classes corresponds to $P \in \wp(\Gamma)$, then, $\operatorname{deg} P=\operatorname{deg}\{\gamma\}_{\Gamma}$ holds. (Recall the definition of $\operatorname{deg} P$ for $P \in \wp(\Gamma)$).

$$
\begin{equation*}
\wp(\Gamma) \ni P \leftrightarrow\left\{\gamma^{ \pm 1}\right\}_{\Gamma}: \text { primitive elliptic } \Rightarrow \operatorname{deg} P=\operatorname{deg}\{\gamma\}_{\Gamma} . \tag{33}
\end{equation*}
$$

So, our ζ function $\zeta_{\Gamma}(u)$ can also be defined as

$$
\begin{equation*}
\zeta_{\Gamma}(u)=\prod_{\left\langle\left.\gamma^{+1}\right|_{\Gamma}\right.}\left(1-u^{\operatorname{deg}\left(\gamma^{+1} l_{\Gamma}\right.}\right)^{-1}, \tag{34}
\end{equation*}
$$

where $\left\{\gamma^{ \pm 1}\right\}_{\Gamma}$ runs over all pairs of mutually inverse primitive elliptic Γ-conjugacy classes. We shall need the following alternative definition of $\operatorname{deg}\{\gamma)_{\Gamma}$;

Proposition 6. For each $\gamma \in \Gamma^{l}$, we put $l(\gamma)=l$. Let $\{\gamma\}_{\Gamma}$ be an elliptic Γ-conjugacy class. Then we have:

$$
\begin{equation*}
\operatorname{deg}\{\gamma\}_{\Gamma}=\operatorname{Min}_{x \in(\gamma \mid \Gamma} l(x) . \tag{35}
\end{equation*}
$$

Proof. Since γ is elliptic (and γ is of infinite order, since Γ is assumed torsion-free), by Proposition 3, there is an element $g_{\mathfrak{p}} \in G_{p}$ such that $g_{\mathfrak{p}}^{-1} \gamma_{p} g_{\mathfrak{p}}=\left(\begin{array}{cc}\lambda_{p} & 0 \\ 0 & \lambda_{p}^{-1}\end{array}\right)$ with $\lambda_{p} \in k_{p}$; and we have $\operatorname{deg}\{\gamma\}_{\Gamma}=\left|\operatorname{ord}_{p}\left(\lambda_{p}\right)\right|$. Put $d=\operatorname{deg}\{\gamma\}_{\Gamma}$. Then, $g_{\mathfrak{p}}^{-1} \gamma_{p} g_{\mathfrak{p}}=\left(\begin{array}{cc}\lambda_{\mathfrak{p}} & 0 \\ 0 & \lambda_{\mathfrak{p}}^{-l}\end{array}\right) \in$ $U_{\mathfrak{p}}\left(\begin{array}{cc}p^{d} & 0 \\ 0 & p^{-d}\end{array}\right) U_{\mathfrak{p}}=Y_{d} ;$ where $U_{\mathfrak{p}}=P S L\left(O_{\mathfrak{p}}\right)$ and p is a prime element of $k_{\mathfrak{p}}$. Let $\delta_{\mathfrak{p}} \in \Gamma_{\mathfrak{p}}$ be sufficiently near $g_{\mathfrak{p}}$. Then $\delta_{\mathfrak{p}}^{-1} \gamma_{p} \delta_{\mathfrak{p}} \in Y_{d}$. So, if $\delta \in \Gamma$ corresponds to $\delta_{\mathfrak{p}}$, we have $l\left(\delta^{-1} \gamma \delta\right)=d$; hence we have $d \geq \operatorname{Min}_{x \in\{\gamma \mid \mathrm{r}} l(x)$. Now let γ^{\prime} be any element of $\{\gamma\}_{\mathrm{r}}$, and put $\gamma_{\mathfrak{p}}^{\prime}= \pm\left(\begin{array}{cc}a_{\mathfrak{p}} & b_{\mathfrak{p}} \\ c_{\mathfrak{p}} & d_{\mathfrak{p}}\end{array}\right) \in G_{\mathfrak{p}}$. Put $l^{\prime}=l\left(\gamma^{\prime}\right)$; hence $\gamma_{\mathfrak{p}}^{\prime} \in Y_{l^{\prime}}$. This implies that the entries of $p^{l^{\prime}}\left(\begin{array}{ll}a_{\mathfrak{p}} & b_{\mathfrak{p}} \\ c_{p} & d_{\mathfrak{p}}\end{array}\right)$ are integers. Therefore, its eigenvalues $\pm\left\{p^{l^{\prime}} \lambda_{p}, p^{l^{\prime}} \lambda_{\mathfrak{p}}^{-1}\right\}$, must also be integers; which implies $l^{\prime} \geq\left|\operatorname{ord}_{p} \lambda_{\mathrm{p}}\right|=d$; hence we get $d \leq \operatorname{Min}_{x \in(\gamma) \mathrm{r}} l(x)$.
813. Now, the third lemma is on a relation between Γ - and Γ^{0}-conjugacy classes. By Proposition 6, if $\{\gamma\}_{\Gamma}$ is elliptic, then $\{\gamma\}_{\Gamma} \cap \Gamma^{l}=\phi$ for $l<\operatorname{deg}\{\gamma\}_{\Gamma}$. We have:

Lemma 3. Let $\{\gamma\}_{\Gamma}$ be a primitive elliptic Γ-conjugacy class, put $d=\operatorname{deg}\{\gamma\}_{\Gamma}$, and let $r \geq 1$. Then, (i) $\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{d r}$ consists of exactly d distinct Γ^{0}-conjugacy classes. (ii) If $k \geq 1$, then $\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{d r+k}$ consists of exactly dq $q^{k-1}(q-1)$ distinct Γ^{0}-conjugacy classes.

The proof, which requires some preliminary studies on the structure of $P L_{2}\left(k_{p}\right)$, will be given later, in §19. ${ }^{5}$

Corollary. Let $A_{m}(m \geq 1)$ be the one-half of the number of elliptic Γ^{0}-conjugacy classes contained in Γ^{m}, and let $N_{m}(m \geq 1)$ be, as in §6(16), the sum of all $\operatorname{deg} P$ for all

[^4]$P \in \wp(\Gamma)$ with $\operatorname{deg} P \mid m:$
\[

$$
\begin{aligned}
& A_{m}=\frac{1}{2} \#\left\{\text { elliptic } \Gamma^{0} \text {-conjugacy classes in } \Gamma^{m}\right\} \\
& N_{m}=\sum_{\substack{P \in \varphi()_{2}, \operatorname{deP} P m}} \operatorname{deg} P .
\end{aligned}
$$
\]

Then, they are both finite, and we have:

$$
\begin{align*}
& A_{m}=N_{m}+(q-1) \sum_{k=1}^{m-1} q^{k-1} N_{m-k} \quad(m \geq 1) \tag{36}\\
& N_{m}=A_{m}-(q-1) \sum_{k=1}^{m-1} A_{m-k} \quad(m \geq 1) \tag{37}
\end{align*}
$$

Proof. The finiteness of A_{m} is a special case of Lemma 1, applied to $\tilde{\Delta}=\Gamma_{\mathbf{R}}, \Delta=\Gamma_{\mathbf{R}}^{0}$. To show the finiteness of N_{m}, it is enough to show that there are at most finitely many elliptic Γ-conjugacy classes $\{\gamma\}_{\Gamma}$ with a given degree d. But, by Proposition 6, such $\{\gamma\}_{\Gamma}$ intersects Γ^{d} and the intersection $\{\gamma\}_{\Gamma} \cap \Gamma^{d}$ is a union of (several) elliptic Γ^{0}-conjugacy classes. Therefore, the finiteness of N_{m} follows immediately from that of A_{d} for $d \mid m$.

Now, (36) is a direct consequence of Proposition 6 and Lemma 3. In fact, each elliptic Γ^{0}-conjugacy class contained in Γ^{m} defines an elliptic Γ-conjugacy class, which can be written as $\left\{\gamma^{r}\right\}_{\Gamma}$, where $\{\gamma\}_{\Gamma}$ is primitive and $r \geq 1$. If we put $d=\operatorname{deg}\{\gamma\}_{\Gamma}$, then, by Proposition 6, we have $r d \leq m$. So, fix $k(0 \leq k \leq m-1)$, and for each $d \mid m-k$, consider all primitive elliptic Γ-conjugacy classes $\{\gamma\}_{\Gamma}$ of degree d. Put $r d=m-k$. Then, $\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{m}=\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{r d+k}$ consists of $d(k=0)$ or $d q^{k-1}(q-1)(k>0)$ distinct Γ^{0}-conjugacy classes (Lemma 3). Therefore, we have:

$$
\begin{aligned}
& 2 A_{m}=\sum_{k=0}^{m-1} \sum_{d \mid m-k} \#\{\{\gamma\} \mathrm{r} ; \text { primitive, elliptic, degree } d\} \times \begin{cases}d & \cdots k=0, \\
d q^{k-1}(q-1) & \cdots k>0 .\end{cases} \\
& =\sum_{k=0}^{m-1} \sum_{\substack{\text { (r|rip primithe ellipic } \\
\text { degry }}} \operatorname{deg}\{\gamma\}_{\Gamma} \times \begin{cases}1 & \cdots k=0, \\
q^{k-1}(q-1) & \cdots k>0 .\end{cases}
\end{aligned}
$$

So, by Proposition 5 and (33), we get

$$
A_{m}=N_{m}+(q-1) \sum_{k=1}^{m-1} q^{k-1} N_{m-k},
$$

which settles (36). Now, (37) is a formal consequence of (36). In fact, it can be checked directly, by substituting (36) on the right side of (37).

The proof of Theorem 1 assuming Lemmas 2, 3.

§14. We have

$$
\begin{equation*}
N_{m}=A_{m}-(q-1) \sum_{k=1}^{m-1} A_{m-k} \tag{37}
\end{equation*}
$$

Apply Lemma 1 for $\tilde{\Delta}=\Gamma_{\mathbf{R}}, \Delta=\Gamma_{\mathbf{R}}^{0}$. Since we can identify $\mathcal{H}\left(\Gamma, \Gamma^{0}\right)$ with $\mathcal{H}\left(\Gamma_{\mathbf{R}}, \Gamma_{\mathbf{R}}^{0}\right)$, we consider d, ρ as representations of $\mathcal{H}\left(\Gamma, \Gamma^{0}\right)$. Since, by (30), we have $d\left(\Gamma^{m}\right)=\left|\Gamma^{0} \backslash \Gamma^{m}\right|=$ $q^{2 m}+q^{2 m-1}$, we get

$$
\begin{equation*}
A_{m}=q^{2 m}+q^{2 m-1}-\operatorname{tr} \rho\left(\Gamma^{m}\right) \quad(m \geqq 1) . \tag{38}
\end{equation*}
$$

By substituting (38) in (37), we get

$$
\begin{equation*}
N_{m}=q^{2 m}+q-\operatorname{tr} \rho\left\{\Gamma^{m}-(q-1) \sum_{k=1}^{m-1} \Gamma^{m-k}\right\} . \tag{39}
\end{equation*}
$$

Since $\operatorname{tr} \rho(I)=g$, the genus of $\Gamma_{\mathbf{R}}^{0} \backslash \mathfrak{H}$, we get

$$
\begin{equation*}
N_{m}=q^{2 m}+1-(q-1)(g-1)-\operatorname{tr} \rho\left\{\Gamma^{m}-(q-1) \sum_{k=1}^{m} \Gamma^{m-k}\right\} . \tag{40}
\end{equation*}
$$

On the other hand, by (31) (Lemma 2^{\prime}) we get

$$
\begin{equation*}
\frac{1-q u}{1-u} \sum_{m=0}^{\infty} \Gamma^{m} u^{m}=\frac{1-q^{2} u^{2}}{1-\left(\Gamma^{1}-q+1\right) u+q^{2} u^{2}} \tag{41}
\end{equation*}
$$

and by a simple computation, we see that the left side of (41) is equal to

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left\{\Gamma^{m}-(q-1) \sum_{k=1}^{m} \Gamma^{m-k}\right\} u^{m} \tag{42}
\end{equation*}
$$

Put

$$
\begin{equation*}
1-\left(\Gamma^{1}-q+1\right) u+q^{2} u^{2}=(1-\pi u)\left(1-\pi^{\prime} u\right) \tag{43}
\end{equation*}
$$

formally, with $\pi \pi^{\prime}=\pi^{\prime} \pi=q^{2}$. Then,

$$
\begin{align*}
\frac{1}{(1-\pi u)\left(1-\pi^{\prime} u\right)} & =\sum_{m=0}^{\infty}\left(\pi^{m}+\pi^{m-1} \pi^{\prime}+\cdots+\pi^{\prime m}\right) u^{m} \tag{44}\\
& =1+\sum_{m=1}^{\infty}\left(\pi^{m}+\pi^{\prime m}\right) u^{m}+q^{2} u^{2} \frac{1}{(1-\pi u)\left(1-\pi^{\prime} u\right)}
\end{align*}
$$

hence we get

$$
\begin{equation*}
\frac{1-q^{2} u^{2}}{(1-\pi u)\left(1-\pi^{\prime} u\right)}=1+\sum_{m=1}^{\infty}\left(\pi^{m}+\pi^{m}\right) u^{m} . \tag{45}
\end{equation*}
$$

Therefore, by (41), we get

$$
\begin{equation*}
\Gamma^{m}-(q-1) \sum_{k=1}^{m} \Gamma^{m-k}=\pi^{m}+\pi^{\prime m} \quad(m \geq 1) \tag{46}
\end{equation*}
$$

This is a formal computation, but this shows that if $\mathcal{\chi}$ is a linear representation of the ring $\mathcal{H}\left(\Gamma, \Gamma^{0}\right)$, and if we put

$$
1-\left(\chi\left(\Gamma^{1}\right)-q+1\right) u+q^{2} u^{2}=(1-\pi u)\left(1-\pi^{\prime} u\right)
$$

then

$$
\begin{equation*}
\chi\left(\Gamma^{m}\right)-(q-1) \sum_{k=1}^{m} \chi\left(\Gamma^{m-k}\right)=\pi^{m}+\pi^{\prime m} \quad(m \geq 1) \tag{47}
\end{equation*}
$$

holds. Now, by Lemma $1, \rho$ is a direct sum of g linear representations:

$$
\rho=\chi_{1} \oplus \cdots \oplus \chi_{g}
$$

so, by putting

$$
\begin{equation*}
1-\left(\chi_{i}\left(\Gamma^{1}\right)-q+1\right) u+q^{2} u^{2}=\left(1-\pi_{i} u\right)\left(1-\pi_{i}^{\prime} u\right) \quad\left(1 \leq i \leq g, \pi_{i} \pi_{i}^{\prime}=q^{2}\right) \tag{48}
\end{equation*}
$$

we get

$$
\begin{equation*}
\chi_{i}\left(\Gamma^{m}\right)-(q-1) \sum_{k=1}^{m} \chi_{i}\left(\Gamma^{m-k}\right)=\pi_{i}^{m}+\pi_{i}^{\prime m} \quad(1 \leq i \leq g, m \geq 1) . \tag{49}
\end{equation*}
$$

So, by summing over $i(1 \leq i \leq g)$, we obtain:

$$
\begin{equation*}
\operatorname{tr} \rho\left\{\Gamma^{m}-(q-1) \sum_{k=1}^{m} \Gamma^{m-k}\right\}=\sum_{i=1}^{g}\left(\pi_{i}^{m}+\pi_{i}^{\prime m}\right) \tag{50}
\end{equation*}
$$

and hence, by (40), we get

$$
\begin{equation*}
N_{m}=q^{2 m}+1-(q-1)(g-1)-\sum_{i=1}^{g}\left(\pi_{i}^{m}+\pi_{i}^{\prime m}\right) \quad(m \geq 1) \tag{51}
\end{equation*}
$$

and hence we get

$$
\begin{equation*}
\zeta_{\Gamma}(u)=\exp \sum_{m=1}^{\infty} \frac{N_{m}}{m} u^{m}=\frac{\prod_{i=1}^{g}\left(1-\pi_{i} u\right)\left(1-\pi_{i}^{\prime} u\right)}{(1-u)\left(1-q^{2} u\right)} \times(1-u)^{(q-1)(g-1)} \tag{52}
\end{equation*}
$$

Since (48) are the eigenvalues of $1-\left(\rho\left(\Gamma^{1}\right)-q+1\right) u+q^{2} u^{2}$, we have

$$
\begin{equation*}
\zeta_{\Gamma}(u)=\frac{\operatorname{det}\left\{1-\left(\rho\left(\Gamma^{1}\right)-q+1\right) u+q^{2} u^{2}\right\}}{(1-u)\left(1-q^{2} u\right)} \times(1-u)^{(q-1)(g-1)} . \tag{53}
\end{equation*}
$$

That $\pi_{i}, \pi_{i}^{\prime}(1 \leq i \leq g)$ are algebraic integers follows immediately from (51) (for $m=$ $1, \cdots, 2 g$).

So, we have also shown:
A supplement to Theorem 1. The numerator of the main factor of $\zeta_{\Gamma}(u)$ is given by:

$$
\begin{equation*}
\prod_{i=1}^{g}\left(1-\pi_{i} u\right)\left(l-\pi_{i}^{\prime} u\right)=\operatorname{det}\left\{1-\left(\rho\left(\Gamma^{1}\right)-q+1\right) u+q^{2} u^{2}\right\} . \tag{54}
\end{equation*}
$$

Proofs of Lemmas 2, 3.

§15. Put

$$
\begin{equation*}
X=P L_{2}\left(k_{p}\right)=G L_{2}\left(k_{p}\right) / k_{p}^{\times} . \tag{55}
\end{equation*}
$$

Then, for any element $x \in X$, we can take its representative $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \bmod k_{p}^{x}$ such that a, b, c, d are all contained in O_{p}, but not all are in \mathfrak{p}. Put $(a d-b c) O_{p}=\mathfrak{p}^{l(x)}$. Then, $l(x)$ is a non-negative integer, well-defined by x. We shall call it the length of x. It is clear that we have

$$
\begin{align*}
l\left(x_{1} x_{2} \cdots x_{n}\right) & \leq l\left(x_{1}\right)+\cdots+l\left(x_{n}\right) \tag{56}\\
& \equiv l\left(x_{1}\right)+\cdots+l\left(x_{n}\right) \quad(\bmod 2),
\end{align*}
$$

for any $x_{1}, \cdots, x_{n} \in X$. Put

$$
\begin{equation*}
X_{l}=\{x \in X \mid l(x)=l\} . \tag{57}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
X_{0}=P L_{2}\left(O_{\mathfrak{p}}\right)=G L_{2}\left(O_{\mathfrak{p}}\right) / \mathcal{U}_{\mathfrak{p}} \tag{58}
\end{equation*}
$$

is an open compact subgroup of X; and it is well-known by elementary divisor theory, that each X_{l} consists of a single X_{0}-double-coset;

$$
X_{l}=X_{0}\left(\begin{array}{cc}
p^{l} & 0 \tag{59}\\
0 & 1
\end{array}\right) X_{0}, \text { where } p \text { is any prime element of } k_{\mathrm{p}}
$$

Since X_{0} is open compact, for any $x \in X$, the subgroups $x^{-1} X_{0} x$ and X_{0} are commensurable with each other, hence $\left|X_{0} \backslash X_{l}\right|$ for each $l \geq 0$ is finite, and the Hecke ring $\mathcal{H}\left(X, X_{0}\right)$ can be defined. Moreover, since $l\left(x^{-1}\right)=l(x)$ for each $x \in X$, each X_{l} is self-inverse, and hence $\mathcal{H}\left(X, X_{0}\right)$ is commutative. Now, the following lemma is a very well-known one:

Lemma 4. Let p be a prime element of k_{p}, and let $l \geq 1$. Then the following set of matrices mod k_{p}^{\times}forms a set of representatives of $X_{0} \backslash X_{l}$;

$$
\left\{\left(\begin{array}{cc}
p^{m} & \alpha \tag{60}\\
0 & p^{n}
\end{array}\right) ; \begin{array}{c}
\alpha: n \geq 0, m+n=l \\
\\
\\
\text { If } m, n \text { are both }>0, \text { then } \alpha \neq 0(\bmod \mathfrak{p})
\end{array}\right\}
$$

In particular, we have

$$
X_{1}=X_{0}\left(\begin{array}{ll}
p & 0 \tag{61}\\
0 & 1
\end{array}\right)+\sum_{\alpha \bmod p} X_{0}\left(\begin{array}{ll}
1 & \alpha \\
0 & p
\end{array}\right) \quad \text { (disjoint) }
$$

hence we have $\left|X_{0} \backslash X_{1}\right|=1+q$.
§16. Now we shall prove the following two equivalent lemmas; Lemmas 5, 5'.
Lemma 5. Put $X_{1}=\sum_{i=0}^{q} X_{0} \pi_{i}$ (disjoint). Then,
(i) For each $i(0 \leq i \leq q)$, there exists a unique suffix $j(0 \leq j \leq q)$ such that $\pi_{j} \pi_{i} \in X_{0}$. We shall put $j=\rho(i)(0 \leq i \leq q)$.
(ii) Any element $x \in X_{l}(l \geq 0)$ can be expressed uniquely in the form:

$$
\begin{equation*}
x=u \pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{l}}, \text { with } u \in X_{0}, i_{n} \neq \rho\left(i_{n+1}\right)(1 \leq \forall n \leq l-1) . \tag{62}
\end{equation*}
$$

Conversely, an element $x \in X$ of the form (62) is contained in X_{l}. In short, we have

$$
\begin{equation*}
X_{l}=\sum^{\prime} X_{0} \pi_{i_{1}} \cdots \pi_{i_{l}} \tag{63}
\end{equation*}
$$

where the disjoint union Σ^{\prime} is over all $\left\{i_{1}, \cdots, i_{l}\right\}$ such that $i_{n} \neq \rho\left(i_{n+1}\right)$ for all $n(1 \leq n \leq$ l).

We note that (i) is trivial, since $j=\rho(i)$ is uniquely determined by $X_{0} \pi_{j}=X_{0} \pi_{i}^{-1}$. This is merely for a better understanding of (ii).

Lemma 5^{\prime}. As elements of $\mathcal{H}\left(X, X_{0}\right)$, we have

$$
\begin{align*}
X_{1}^{2} & =X_{2}+(q+1) X_{0} \tag{64}\\
X_{1} X_{l} & =X_{l} X_{1}=X_{l+1}+q X_{l-1} \quad(l \geq 2) . \tag{65}
\end{align*}
$$

This Lemma 5^{\prime} is more or less well-known. We shall prove Lemma 5 (ii) and Lemma 5^{\prime} in the following order;

Lemma 5 (ii) for a particular $\pi_{0}, \cdots, \pi_{q} \Rightarrow$ Lemma $5^{\prime} \Rightarrow$ Lemma 5 (ii) for any π_{0}, \cdots, π_{q}.
Proof. Let p be a prime element of k_{p}, and let $\alpha_{1}=0, \alpha_{2}, \cdots, \alpha_{q}$ be a set of representatives of $O_{p} \bmod p$. Put

$$
\pi_{0}=\left(\begin{array}{ll}
p & 0 \tag{66}\\
0 & 1
\end{array}\right), \pi_{i}=\left(\begin{array}{cc}
1 & \alpha_{i} \\
0 & p
\end{array}\right) \quad(1 \leq i \leq q)
$$

By (61), we have $X_{1}=\sum_{i=0}^{q} X_{0} \pi_{i}$ (disjoint). Since

$$
\pi_{0} \pi_{i}=\left(\begin{array}{cc}
p & p \alpha_{i} \\
0 & p
\end{array}\right) \equiv\left(\begin{array}{cc}
1 & \alpha_{i} \\
0 & 1
\end{array}\right) \quad\left(\bmod k_{p}^{\times}\right)
$$

we have $\pi_{0} \pi_{i} \in X_{0}$ for $1 \leq i \leq q$, and hence $\rho(i)=0(1 \leq i \leq q)$. Since

$$
\pi_{1} \pi_{0}=\left(\begin{array}{ll}
p & 0 \\
0 & p
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\bmod k_{p}^{\times}\right)
$$

we have $\pi_{1} \pi_{0} \in X_{0}$; hence $\rho(0)=1$. So, to show Lemma 5 (ii), it is enough to show that:

$$
\begin{equation*}
X_{l}=\sum_{s=0}^{l} \sum_{\substack{c_{1}, \cdots, l_{1}, s^{21,} \\ i_{1-3}>1 i f s 0}} X_{0} \pi_{i_{1}} \cdots \pi_{i_{l-s}} \pi_{0}^{s} \quad \text { (disjoint). } \tag{67}
\end{equation*}
$$

But we have

$$
\pi_{i_{1}} \cdots \pi_{i_{l-s}} \pi_{0}^{s}=\left(\begin{array}{cc}
p^{s} & \alpha_{i_{l-s}}+\alpha_{i_{l-s-1}} p+\cdots+\alpha_{i_{1}} p^{l-s-1} \\
0 & p^{l-s}
\end{array}\right)
$$

Hence, (67) follows immediately from Lemma 4. So, Lemma 5 (ii) is proved for the particular π_{0}, \cdots, π_{q} given by (66). This also shows $\left|X_{0} \backslash X_{l}\right|=q^{l}+q^{l-1}(l \geq 1)$.

Now let us prove Lemma 5^{\prime}. Let π_{0}, \cdots, π_{q} be as in (66). Then we have $X_{1}=$ $\sum_{i=0}^{q} X_{0} \pi_{i}$; hence $X_{1}^{2}=\sum_{i, j} X_{0} \pi_{j} \pi_{i}$, multiplicity being taken into account. Hence

$$
X_{1}^{2}=\sum_{i, j} X_{j \neq \rho(i)} \pi_{j} \pi_{i}+\sum_{i, j} X_{j=\rho(i)} \pi_{j} \pi_{i}=X_{2}+\sum_{j=\rho(i)} X_{0}=X_{2}+(q+1) X_{0} .
$$

By Lemma 5 (ii) for these π_{0}, \cdots, π_{q}, we have $X_{l}=\sum_{i_{n} \neq \rho\left(i_{n+1}\right), \forall n} X_{0} \pi_{i_{1}} \cdots \pi_{i_{l}}$. So,

$$
\begin{aligned}
& X_{1} X_{l}=\sum_{i=0}^{q} \sum_{i_{n} \neq \rho\left(i_{n+1}\right)} X_{0} \pi_{i} \pi_{i_{1}} \cdots \pi_{i_{l}} \\
& =\sum_{\substack{i_{n} \neq p\left(f_{n+1}\right), i \neq\left(i_{1}\right)}} X_{0} \pi_{i} \pi_{i_{1}} \cdots \pi_{i_{l}}+\sum_{\substack{\left.i_{n} \neq p\left(i_{n+1}\right), i=p i_{1}\right)}} X_{0} \pi_{i} \pi_{i_{1}} \cdots \pi_{i_{l}} \\
& =X_{l+1}+\sum_{\substack{i_{n} \neq p\left(i_{n+1}\right) . \\
\text { snn } \\
1 \leq l-1}} X_{0} \pi_{i_{2}} \cdots \pi_{i_{l}} \\
& =X_{l+1}+\sum_{\substack{i_{1} \neq p\left(i_{2}\right)}} \sum_{\substack{i_{n} \neq\left\{\left(i_{n+1}\right) . \\
2 n s \leq-1\right.}} X_{0} \pi_{i_{2}} \cdots \pi_{i_{l}} \\
& =X_{l+1}+q X_{l-1} \quad(\geq 2) .
\end{aligned}
$$

Since $\mathcal{H}\left(X, X_{0}\right)$ is commutative, we have $X_{l} X_{1}=X_{1} X_{l}=X_{l+1}+q X_{l-1}$; hence Lemma 5^{\prime} is proved.

Finally, let us prove Lemma 5 (ii) for an arbitrary set $\pi_{0}, \pi_{1}, \cdots, \pi_{q}$ of representatives of $X_{0} \backslash X_{1} ; X_{1}=\sum_{i=0}^{q} X_{0} \pi_{i}$. By (65), we obtain

$$
\begin{equation*}
X_{1}^{l}=X_{l}+c X_{l-2}+c^{\prime} X_{l-4}+\cdots \quad(l \geq 1) \tag{68}
\end{equation*}
$$

where c, c^{\prime}, \cdots are non-negative integers. In fact, it is trivial for $l=1$; so, assume that (68) is true for some $l \geq 1$, and multiply X_{1} on both sides. Then from (65) follows directly that (68) is also true for $l+1$. Now, the expression of X_{1}^{l} by the formal sum of left X_{0}-cosets, multiplicities being taken into account, will be

$$
\begin{equation*}
\sum X_{0} \pi_{i_{1}} \cdots \pi_{i_{l}}=\sum^{\prime} X_{0} \pi_{i_{1}} \cdots \pi_{i_{l}}+\text { lower length terms } \tag{69}
\end{equation*}
$$

where the first formal sum \sum is over all $0 \leq i_{1}, \cdots, i_{l} \leq q$, and the second one, Σ^{\prime}, is over all $0 \leq i_{1}, \cdots, i_{l} \leq q$, with $i_{n} \neq \rho\left(i_{n+1}\right)$ for all $n(1 \leq n \leq l-1)$. On the other hand, the number of terms under Σ^{\prime} in (69) is $q^{l}+q^{l-1}$, which is equal to $\left|X_{0} \backslash X_{l}\right|$. Thus, by comparing (68) and (69), we see that all left X_{0} cosets under Σ^{\prime} in (69) must be mutually distinct, elements of such left X_{0} cosets have length l, and that

$$
X_{l}=\sum^{\prime} X_{0} \pi_{i_{1}} \cdots \pi_{i_{l}} \quad \text { (disjoint) }
$$

which proves Lemma 5 (ii).
Corollary 1. We have

$$
\begin{equation*}
\left|X_{0} \backslash X_{l}\right|=\left|X_{l}\right| X_{0} \mid=q^{l}+q^{l-1} \quad \text { for } l \geq 1 . \tag{70}
\end{equation*}
$$

Remark. Since $X_{l}^{-1}=X_{l}$, we have $\left|X_{l} / X_{0}\right|=\left|X_{0} \backslash X_{l}\right|$.

Corollary 2. We have

$$
\begin{equation*}
\sum_{l=0}^{\infty} X_{l} u^{l}=\frac{1-u^{2}}{1-X_{1} u+q u^{2}} \tag{71}
\end{equation*}
$$

as an identity between two formal power series of u with coefficients in $\mathcal{H}\left(X, X_{0}\right)$.
Proor. That $\left(1-X_{1} u+q u^{2}\right) \sum_{l=0}^{\infty} X_{l} u^{l}=1-u^{2}$ follows directly from Lemma 5^{\prime}.
§17. The proof of Lemma 2. Put

$$
X^{\prime}=\{x \in X \mid l(x) \equiv 0(\bmod 2)\}
$$

$$
\begin{equation*}
=\bigcup_{l=0}^{\infty} X_{2 l} \tag{72}
\end{equation*}
$$

Then, X^{\prime} forms a subgroup of X with index 2. It is easy to see that if $X \ni x \mapsto$ $\operatorname{det} x \in k_{p}^{\times} / k_{p}^{\times 2}$ is the homomorphism of X onto $k_{p}^{x} / k_{p}^{\times 2}$ induced from the determinant map: $G L_{2}\left(k_{p}\right) \ni x \mapsto \operatorname{det} x \in k_{p}^{\times}$, then we
 have

$$
\begin{align*}
X^{\prime} & =\left\{x \in X \mid \operatorname{det} x \in k_{p}^{\times 2} \mathcal{U}_{p} / k_{\mathrm{p}}^{\times^{2}}\right\} \\
& =\left\{x \in X \mid \operatorname{ord}_{p}(\operatorname{det} x) \equiv 0 \quad(\bmod 2)\right\} \tag{73}\\
& =P L_{2}\left(O_{p}\right) \cdot P S L_{2}\left(k_{\mathfrak{p}}\right)=X_{0} \cdot G_{\mathfrak{p}} .
\end{align*}
$$

On the other hand, (71) gives rise to

$$
2 \sum_{l=0}^{\infty} X_{2 l} u^{2 l}=\sum_{l=0}^{\infty} X_{l} u^{l}+\sum_{l=0}^{\infty} X_{l}(-u)^{l}=\frac{2\left(1-u^{2}\right)\left(1+q u^{2}\right)}{\left(1+q u^{2}\right)^{2}-X_{1}^{2} u^{2}}
$$

hence we get

$$
\begin{equation*}
\sum_{l=0}^{\infty} X_{2 l} u^{l}=\frac{(1-u)(1+q u)}{1-\left(X_{2}-q+1\right) u+q^{2} u^{2}} \tag{74}
\end{equation*}
$$

So, to prove Lemma 2 , it is enough to show that $\mathcal{H}\left(G_{\mathrm{p}}, U_{\mathfrak{p}}\right)$ and $\mathcal{H}\left(X^{\prime}, X_{0}\right)$ are canonically isomorphic, i.e. there is an isomorphism which maps Y_{l} on $X_{2 l}(l \geq 1)$. To see this, we remark that, in general, if $G_{1} \supset G_{2}, H_{1}$ are three groups such that $G_{1}=G_{2} H_{1}$; $x^{-1} G_{2} x \sim G_{2}$ (\sim commensurability, $\forall x \in G_{1}$), $x^{-1} H_{2} x \sim H_{2}\left(\forall x \in H_{1} ; H_{2}=H_{1} \cap G_{2}\right)$, and that $G_{2} h_{1} G_{2} \cap H_{1}=H_{2} h_{1} H_{2}\left(\forall h_{1} \in H_{1}\right)$, then the two Hecke rings $\mathcal{H}\left(G_{1}, G_{2}\right), \mathcal{H}\left(H_{1}, H_{2}\right)$ defined with respect to (say) left coset decompositions are canonically isomorphic; i.e., $H_{2} h_{1} H_{2} \in \mathcal{H}\left(H_{1}, H_{2}\right)$ corresponds to $G_{2} h_{1} G_{2} \in \mathcal{H}\left(G_{1}, G_{2}\right)$. This follows immediately from the definition of the Hecke rings. Thus, to show that $\mathcal{H}\left(G_{p}, U_{p}\right)$ and $\mathcal{H}\left(X^{\lambda}, X_{0}\right)$ are isomorphic by $Y_{l} \mapsto X_{2 l}(l \geq 0)$, it is enough to check $X_{2 l} \cap G_{p}=Y_{l}(l \geq 0)$, since we know that Y_{l} is a single U_{p} double coset. But $Y_{l}=U_{\mathfrak{p}}\left(\begin{array}{cc}p^{l} & 0 \\ 0 & p^{-l}\end{array}\right) U_{p}$ consists of all elements $g_{\mathfrak{p}} \in G_{p}=P S L_{2}\left(k_{p}\right)$ with elementary divisors p^{-l}, p^{l}; i.e., all elements $g_{p} \in G_{p} \cap X_{2 l}$; hence the Lemma 2 is proved.
§18. For the proof of Lemma 3, we need some more lemmas, which are direct consequences of Lemma 5^{6}.

Let $x_{1}, \cdots, x_{n} \in X=P L_{2}\left(k_{p}\right)$. We shall say that the product $x_{1} \cdots x_{n}$ is free, if

$$
\begin{equation*}
l\left(x_{1} \cdots x_{n}\right)=l\left(x_{1}\right)+\cdots+l\left(x_{n}\right) \tag{75}
\end{equation*}
$$

holds.
Lemma 6. Let $x, y, z \in X, y \notin X_{0}$. If the two products $x \cdot y, y \cdot z$ are free, then the product $x \cdot y \cdot z$ is also free.

Proof. Let π_{0}, \cdots, π_{q} be as in Lemma 5, and factorize $z=u \pi_{\lambda_{1}} \cdots \pi_{\lambda_{l}}, y u=u^{\prime} \pi_{\mu_{1}} \cdots \pi_{\mu_{m}}$, $x u^{\prime}=u^{\prime \prime} \pi_{\nu_{1}} \cdots \pi_{\nu_{n}}$, where $u, u^{\prime}, u^{\prime \prime} \in X_{0}, l=l(z), m=l(y)>0, n=l(x)$ (see Lemma 5). By assumption, $y \cdot z, x \cdot y$ are free products; hence $\pi_{\mu_{m}} \pi_{\lambda_{1}} \notin X_{0}, \pi_{\nu_{n}} \pi_{\mu_{1}} \notin X_{0}$. Therefore, by Lemma 5, xyz $=u^{\prime \prime} \pi_{v_{1}} \cdots \pi_{\nu_{n}} \pi_{\mu_{1}} \cdots \pi_{\mu_{m}} \pi_{\lambda_{1}} \cdots \pi_{\lambda_{l}}$ has length $l+m+n$.

Lemma 7. Let $x \cdot y$ be a free product, and let $x y=u \pi_{i_{1}} \cdots \pi_{i_{l}}$ be the factorization (62) of $x y$. Then, $x=u \pi_{i_{1}} \cdots \pi_{i_{m}} u^{\prime-1}, y=u^{\prime} \pi_{i_{m+1}} \cdots \pi_{i_{l}}$ with some $u^{\prime} \in X_{0}$, and with $m=l(x)$.

Proof. Let $y=u^{\prime} \pi_{j_{m+1}} \cdots \pi_{j_{l}}$ be the factorization (62) for y. Since the factorization of $x y$ can be obtained by factorizations of x and y, and then by carrying the elements of X_{0} to the left (no influence to y-side!), we see directly by the uniqueness of factorization (62) for $x y$ that $j_{m+1}=i_{m+1}, \cdots, j_{l}=i_{l}$, and hence $y=u^{\prime} \pi_{i_{m+1}} \cdots \pi_{i_{l}}$ for some $u^{\prime} \in X_{0}$.

Lemma 8. Let $x, y \in X$, and put $l(x y)=l(x)+l(y)-2 d$. Then $d \leqq l(x), l(y)$; and if $x=x^{\prime \prime} \cdot x^{\prime}, y=y^{\prime} \cdot y^{\prime \prime}$ are free products with $d \leqq l\left(x^{\prime}\right), l\left(y^{\prime}\right)$, then $l\left(x^{\prime} y^{\prime}\right)=l\left(x^{\prime}\right)+l\left(y^{\prime}\right)-2 d$.

Proof. The first assertion is clear. ${ }^{7}$ Let

$$
x=u \pi_{i_{1}} \cdots \pi_{i_{l}}, \quad y=u^{\prime} \pi_{j_{1}} \cdots \pi_{j_{m}}
$$

be the factorizations (62) for x, y. By Lemma 7,

$$
x^{\prime}=u^{\prime \prime} \pi_{i_{s}} \cdots \pi_{i_{i}}, \quad y^{\prime}=u^{\prime} \pi_{j_{1}} \cdots \pi_{j_{t}} u^{\prime \prime \prime}
$$

with $u^{\prime \prime}, u^{\prime \prime \prime} \in X_{0}, l\left(x^{\prime}\right)=l-s+1 \geq d, l\left(y^{\prime}\right)=t \geq d$. It is enough to prove that

$$
l\left(\pi_{i_{s}} \cdots \pi_{i l} u^{\prime} \pi_{j_{1}} \cdots \pi_{j_{t}}\right)=(l-s+1)+t-2 d .
$$

This can be seen easily from the process of obtaining the factorization (62) for $x y$ from that of x and y given above.

Lemma 9. Let x_{1}, \cdots, x_{n} be any elements of X and put

$$
l\left(x_{i} x_{i+1}\right)=l\left(x_{i}\right)+l\left(x_{i+1}\right)-2 d_{i} \quad(1 \leq i \leq n-1) .
$$

If $l\left(x_{i+1}\right)>d_{i}+d_{i+1}$ holds ${ }^{8}$ for all $i(1 \leq i \leq n-2)$, then

$$
\begin{equation*}
l\left(x_{1} \cdots x_{n}\right)=l\left(x_{1}\right)+\cdots+l\left(x_{n}\right)-2\left(d_{1}+\cdots+d_{n-1}\right) . \tag{76}
\end{equation*}
$$

[^5]

PRoof. Factorize each x_{i} into free product $x_{i}=a_{i} b_{i} c_{i}$ with $l\left(a_{i}\right)=d_{i-1}, l\left(b_{i}\right)=l\left(x_{i}\right)-$ $d_{i}-d_{i-1}>0, l\left(c_{i}\right)=d_{i}$ (here we understand $a_{1}=c_{n}=1$). Lemma 8 shows that $c_{i} a_{i+1} \in$ $X_{0}(1 \leq i \leq n-1)$, and that $l\left(b_{i} c_{i} a_{i+1} b_{i+1}\right)=l\left(b_{i}\right)+l\left(b_{i+1}\right)$, and hence the products $\left(b_{i} c_{i} a_{i+1}\right) \cdot b_{i+1}$, and hence also the product $\left(b_{i} c_{i} a_{i+1}\right) \cdot\left(b_{i+1} c_{i+1} a_{i+2}\right)$ are free. Now our lemma follows directly from Lemma 6.

Corollary . Let $x_{1}, \cdots, x_{n} \in X$ with $l\left(x_{2}\right), \cdots, l\left(x_{n-1}\right)>0$. Then, if the products $x_{1} \cdot x_{2}, \cdots, x_{n-1} \cdot x_{n}$ are all free, the product $x_{1} \cdots x_{n}$ is also free.
§19. The proof of Lemma 3. Recall the definitions;

$$
\Gamma^{l}=\left\{\gamma \in \Gamma \left\lvert\, \gamma_{p} \in Y_{l}=U_{\mathfrak{p}}\left(\begin{array}{cc}
p^{l} & 0 \\
0 & p^{-l}
\end{array}\right) U_{p}\right.\right\} \quad(l \geqq 0),
$$

where $U_{p}=P S L_{2}\left(O_{p}\right)$, and p is a prime element of k_{p}. When $\gamma \in \Gamma$ belongs to Γ^{l}, we put $l=l(\gamma)$. To avoid unnecessary suffices, we shall not make distinction between Γ and $\Gamma_{\mathfrak{p}}$; and consider Γ as a (dense) subgroup of $G_{\mathfrak{p}}$. Also, we consider $G_{\mathfrak{p}}=P S L_{2}\left(k_{\mathfrak{p}}\right)$ as a subgroup of $X=P L_{2}\left(k_{p}\right)$. We note here, that the definitions of the functions $l(x)$ are different on G_{p} and on X; in fact, we have $Y_{l}=G_{p} \cap X_{2 l}$. We shall use the symbol $l(x)$ exclusively in the sense that $l(x)=l$ for $x \in Y_{l}$. We shall further put $L(x)=l$ for $x \in X_{l}$. Thus, we have

$$
\begin{equation*}
l(x)=2 L(x) \quad \text { for } x \in G_{p} . \tag{77}
\end{equation*}
$$

The product $\gamma_{1} \gamma_{2} \cdots \gamma_{n}$ of $\gamma_{1}, \cdots, \gamma_{n} \in \Gamma$ is called free, if $l\left(\gamma_{1} \cdots \gamma_{n}\right)=l\left(\gamma_{1}\right)+\cdots+l\left(\gamma_{n}\right)$ holds. We shall show that any element $\gamma \in \Gamma$ with $l(\gamma)=l(l=1,2, \cdots)$ is a free product of elements of Γ^{1};

$$
\begin{equation*}
\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{l} ; \quad \gamma_{1}, \cdots, \gamma_{l} \in \Gamma^{1} \tag{78}
\end{equation*}
$$

In fact, it is trivial for $l=1$. Assume that it is true for $l(\gamma) \leqq l-1$, and prove it for $l(\gamma)=l$. By Lemma 5, we can put $\gamma=x_{1} x_{2} \cdots x_{2 l}$ with $x_{1}, \cdots, x_{2 l} \in X_{1}$. Since $P L_{2}\left(O_{p}\right) \Gamma_{p}=$ $P L_{2}\left(O_{p}\right) \cdot G_{p}=X^{\prime}$, there is an element $\gamma_{l} \in \Gamma$ contained in $P L_{2}\left(O_{p}\right) x_{2 l-1} x_{2 l}$. Then we have $l\left(\gamma_{l}\right)=1, l\left(\gamma \gamma_{l}^{-1}\right)=l-1$, and hence by the induction assumption, we have $\gamma \gamma_{l}^{-1}=$ $\gamma_{1} \cdots \gamma_{l-1}$ with $\gamma_{1}, \cdots, \gamma_{l-1} \in \Gamma^{1}$; hence we get $\gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{l}$.

Now let $\{\gamma\}_{\Gamma}$ be a primitive elliptic Γ-conjugacy class of degree d. By Proposition 6 , we can assume, without loss of generality, that $l(\gamma)=d$. Put $\gamma=\gamma_{1} \cdots \gamma_{d}$ with γ_{1}, $\cdots, \gamma_{d} \in \Gamma^{1}$. Then the products $\gamma_{1} \cdot \gamma_{2}, \cdots, \gamma_{d-1} \cdot \gamma_{d}$ are free; but moreover, the product $\gamma_{d} \cdot \gamma_{1}$ must also be free. In fact, if not, then $l\left(\gamma_{1}^{-1} \gamma \gamma_{1}\right)=l\left(\gamma_{2} \cdots \gamma_{d} \gamma_{1}\right)<d$, which is a contradiction, since by Lemma 6, we have $d=\operatorname{Min}_{x \in(\gamma \mid \mathrm{I}} l(x)$. Therefore, the products $\gamma \cdot \gamma$, $\gamma \cdot \gamma \cdot \gamma, \cdots$ etc. are also free, and we have $l\left(\gamma^{r}\right)=|r| l(\gamma)=|r| d$ for any $r \in \mathbf{Z}$. Another remark is that, if $\gamma_{1}^{-1}=u_{1} \pi_{a} \pi_{b}, \gamma_{d}=u_{2} \pi_{e} \pi_{f}$ are the factorizations (62) of $\gamma_{1}^{-1}, \gamma_{d}$, then,
since $\gamma_{d} \cdot \gamma_{1}$ is a free product, we have $\pi_{b} \neq \pi_{f}$. On the other hand, if $x=u \pi_{i_{1}} \cdots \pi_{i_{l}}$ is the factorization for $x \in \Gamma$, then the product $x \cdot \gamma_{1}$ is free if and only if $\pi_{i l} \neq \pi_{b} ; \gamma_{d} \cdot x^{-1}$ is free if and only if $\pi_{i_{l}} \neq \pi_{f}$. In particular, it shows that at least one of the two products $x \cdot \gamma_{1}, \gamma_{d} \cdot x^{-1}$ must be free. Since $\gamma_{i} \cdot \gamma_{i+1}$ is a free product for any i, where the index is considered $\bmod d$, we see that the above remark is also valid, if we replace γ_{d}, γ_{1} by γ_{i}, γ_{i+1} respectively.

Now the proof of Lemma 3 requires a separate treatment for the cases k : even or k : odd.

The case k is even. Let S be a set of representatives of $\Gamma^{0} \backslash \Gamma^{k / 2}$. If $k=0$, then we simply put $S=\{I\}$. If $k>0$, then we have $|S|=q^{k-1}(q+1)$. In this case, for each i $(\bmod d)$, let S_{i} be a subset of S formed of all $x \in S$ such that $x \cdot \gamma_{i}$ and $\gamma_{i-1} \cdot x^{-1}$ are free products. Then, by the previous remark, S_{i} consists of $q^{k-1}(q-1)$ elements (see Lemma 5). If $k=0$, we simply put $S_{i}=S=\{I\}(1 \leq i \leq d)$. We shall prove that the following set of $d q^{k-1}(q-1)(k>0)$ or $d(k=0)$ elements of Γ forms a set of representatives of all Γ^{0}-conjugacy classes contained in $\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{d r+k}$;

$$
\left\{\begin{array}{cl}
y_{1}\left(\gamma_{1} \gamma_{2} \cdots \gamma_{d}\right)^{r} y_{1}^{-1} ; & y_{1} \in S_{1} \tag{79}\\
y_{2}\left(\gamma_{2} \gamma_{3} \cdots \gamma_{1}\right)^{r} y_{2}^{-1} ; & y_{2} \in S_{2} \\
\vdots & \vdots \\
y_{d}\left(\gamma_{d} \gamma_{1} \cdots \gamma_{d-1}\right)^{r} y_{d}^{-1} ; & y_{d} \in S_{d}
\end{array}\right.
$$

Since the products $y_{i} \cdot \gamma_{i}, \gamma_{i-1} \cdot y_{i}^{-1}$ are free, the product $y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} y_{i}^{-1}=y_{i} \cdot \gamma_{i} \cdots \cdots \gamma_{i-1} \cdot y_{i}^{-1}$ is free (corollary of Lemma 9); hence they are contained in $\Gamma^{d r+k}$. On the other hand, since

$$
\left(\gamma_{i} \gamma_{i+1} \cdots \gamma_{i-1}\right)^{r}=\left(\gamma_{1} \cdots \gamma_{i-1}\right)^{-1} \gamma^{r}\left(\gamma_{1} \cdots \gamma_{i-1}\right)
$$

they are contained in $\left\{\gamma^{r}\right\}_{\Gamma}$.
First, let us prove that the distinct members of (79) are not Γ^{0}-conjugate with each other. Suppose that

$$
y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} y_{i}^{-1}=u y_{j}^{\prime}\left(\gamma_{j} \cdots \gamma_{j-1}\right)^{r} y_{j}^{\prime-1} u^{-1}
$$

holds with $u \in \Gamma^{0}, 1 \leq j \leq i \leq d$, and $y_{i} \in S_{i}, y_{j}^{\prime} \in S_{j}$. Then, this implies that $y_{i}^{-1} u y_{j}^{\prime}\left(\gamma_{j} \gamma_{j+1} \cdots \gamma_{i-1}\right)$ commutes with $\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r}$. Since $\gamma_{i} \cdots \gamma_{i-1}$ is primitive (it is Γ conjugate to γ), its centralizer in Γ is the free cyclic group generated by itself. Hence, we get

$$
y_{i}^{-1} u y_{j}^{\prime}\left(\gamma_{j} \gamma_{j+1} \cdots \gamma_{i-1}\right)=\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{s}
$$

with some $s \in \mathbf{Z}$; hence we get

$$
\begin{equation*}
u y_{j}^{\prime}\left(\gamma_{j} \gamma_{j+1} \cdots \gamma_{i-1}\right)=y_{i}\left(\gamma_{i} \gamma_{i+1} \cdots \gamma_{i-1}\right)^{s} \quad(s \in \mathbf{Z}) \tag{80}
\end{equation*}
$$

But the products $y_{j}{ }^{\prime} \cdot \gamma_{j}, y_{i} \cdot \gamma_{i}, y_{i} \cdot \gamma_{i-1}^{-1}$ (appears, if $s<0$) are all free; hence by taking l () of both sides, we get $\frac{k}{2}+i-j=\frac{k}{2}+|s| \cdot d$; hence $i-j=|s| d$; hence $i=j, s=0$. So, by (80), we get $u y_{i}^{\prime}=y_{i}$, hence, by the definition of S, we get $y_{j}^{\prime}=y_{i}^{\prime}=y_{i}, u=1$.

Now, we shall show that any element of $\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{d r+k}$ is Γ^{0}-conjugate to a member of (79). Take any $z \in\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{d r+k}$, and put

$$
\begin{equation*}
z=x\left(y_{i} \gamma_{i+1} \cdots \gamma_{i-1}\right)^{r} x^{-1}, \quad x \in \Gamma, \quad(1 \leq i \leq d) . \tag{81}
\end{equation*}
$$

We can assume, without loss of generality, that, among all expressions of the form (81) (where i can vary), we have chosen our particular (81) so that $l(x)$ is taken as small as possible. Now, by the previous remark, at least one of the two products $x \cdot \gamma_{i}, \gamma_{i-1} \cdot x^{-1}$ must be free. We shall show that the both must be free. In fact, if not, and say $x \cdot \gamma_{i}$ is free but $\gamma_{i-1} \cdot x^{-1}$ is not, then we have either $L\left(\gamma_{i-1} \cdot x^{-1}\right)=L(x)$ or $=L(x)-2$ (by (56) and Lemma 8). But if $L\left(\gamma_{i-1} \cdot x^{-1}\right)=L(x)$, then, by Lemma 9 applied to the product

$$
\left\{x\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r-1} \gamma_{i} \cdots \gamma_{i-2}\right\} \cdot \gamma_{i-1} \cdot x^{-1}
$$

we get $L(z)=2 d r+2 L(x)-2$; hence $k=L(x)-1=2 l(x)-1$, which is a contradiction, since k is even. On the other hand, if $L\left(\gamma_{i-1} \cdot x^{-1}\right)=L(x)-2$, then if we put $y=x \cdot \gamma_{i-1}^{-1}$, then $l(y)=l\left(x \cdot \gamma_{i-1}^{-1}\right)=l(x)-1<l(x)$, and

$$
z=z\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} x^{-1}=y\left(\gamma_{i-1} \gamma_{i} \cdots \gamma_{i-2}\right) y^{-1}
$$

with $l(y)<l(x)$; which is a contradiction to our assumption on the expression (81) of z. Exactly in the same manner, we can show that an assumption that $x \cdot \gamma_{i}$ is not free leads to a contradiction.

Therefore, the both of the products $x \cdot \gamma_{i}, \gamma_{i-1} \cdot x^{-1}$ must be free. So, by the corollary of Lemma 9, the product $z=x \cdot \gamma_{i} \cdot \cdots \cdot \gamma_{i-1} \cdot x^{-1}$ is free, hence $d r+k=l(z)=2 l(x)+r l(\gamma)=$ $2 l(x)+r d$; hence $2 l(x)=k$, hence $x \in \Gamma^{k / 2}$. Since the products $x \cdot \gamma_{i}, \gamma_{i-1} \cdot x^{-1}$ are both free, we have $x=u y_{i}$ with $u \in \Gamma^{0}, y_{i} \in S_{i}$; hence $z=u y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} y_{i}^{-1} u^{-1}$, and hence z is Γ^{0}-conjugate to $y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} y_{i}^{-1}, y_{i} \in S_{i}$.

The case k is odd. Let S^{\prime} be a set of representatives of $\Gamma^{0} \backslash \Gamma^{(k+1) / 2}$, and let $\dot{S}_{i}^{\prime}(1 \leq$ $i \leq d)$ be a subset of S^{\prime} formed of all $x \in S^{\prime}$ such that $l\left(x \cdot \gamma_{i}\right)=l(x)$. If $\gamma_{i}^{-1}=u_{i} \pi_{a} \pi_{b}$ is the factorization (62) of γ_{i}^{-1}, and $x=u \pi_{i_{1}} \cdots \pi_{i_{k+1}}$ is that of x, then, the condition $l\left(x \cdot \gamma_{i}\right)=l(x)$ is equivalent to $\pi_{i_{k+1}}=\pi_{b}, \pi_{i_{k}} \neq \pi_{a}$. So, by consulting Lemma 5 , we see directly that the cardinality of S^{\prime} is $(q-1) q^{k-1}$. Now, we shall show that the following set of $d q^{k-1}(q-1)$ elements of Γ forms a set of representatives of all Γ^{0}-conjugacy classes contained in $\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{d r+k}$;

$$
\left\{\begin{array}{cl}
y_{1}\left(\gamma_{1} \cdots \gamma_{d}\right)^{r} y_{1}^{-1} & y_{1} \in S_{1}^{\prime} \tag{82}\\
\vdots & \vdots \\
y_{d}\left(\gamma_{d} \cdots \gamma_{d-1}\right)^{r} y_{d}^{-1} & y_{d} \in S_{d}^{\prime}
\end{array}\right.
$$

Since $l\left(y_{i} \gamma_{i}\right)=l\left(y_{i}\right)$, and since $\gamma_{i-1} \cdot y_{i}^{-1}$ is free (recall that at least one of $y_{i} \cdot \gamma_{i}, \gamma_{i-1} \cdot y_{i}^{-1}$ must be free), Lemma 9 shows that

$$
l\left(y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} y_{i}^{-1}\right)=2 l\left(y_{i}\right)+d r-1=d r+k ;
$$

hence $y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} y_{i}^{-1} \in \Gamma^{d r+k} \cap\left\{\gamma^{r}\right\}_{\Gamma}$.
Let us show that the distinct members of (82) are not Γ^{0}-conjugate with each other. If

$$
y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} y_{i}^{-1}=u y_{j}^{\prime}\left(\gamma_{j} \cdots \gamma_{j-1}\right)^{r} y_{j}^{\prime-1} u^{-1}
$$

with $u \in \Gamma^{0}, 1 \leq j \leq i \leq d, y_{i} \in S_{i}^{\prime}, y_{j}^{\prime} \in S_{j}^{\prime}$, then, by the same argument as in k : even case, we get

$$
\begin{equation*}
u y_{j}^{\prime}\left(\gamma_{j} \gamma_{j+1} \cdots \gamma_{i-1}\right)=y_{i}\left(\gamma_{i} \gamma_{i+1} \cdots \gamma_{i-1}\right)^{s} \quad(s \in \mathbf{Z}) \tag{83}
\end{equation*}
$$

We shall show that $j=i$. Suppose on the contrary that we had $j<i$. Then, we have $l\left(u y_{j}^{\prime}\left(\gamma_{j} \gamma_{j+1} \cdots \gamma_{i-1}\right)\right)=l\left(y_{j}^{\prime}\right)+(i-j)-1$ (by Lemma 9). So, we get, by (83),

$$
\frac{k+1}{2}+i-j-1= \begin{cases}\frac{k+1}{2}+s d-1 & \text { if } s>0 \tag{84}\\ \frac{k+1}{2}+|s| \cdot d & \text { if } s<0\left(\because y_{i} \cdot \gamma_{i-1}^{-1} \text { is free }\right) \\ \frac{k+1}{2} & \text { if } s=0\end{cases}
$$

If $s \neq 0$, (84) implies $i-j \geq d$, which is a contradiction. If $s=0$, then we get $i=j+1$, and hence by (83), we get $u y_{j}^{\prime} \gamma_{j}=y_{i}$; hence $u y_{j}^{\prime} \gamma_{j} \gamma_{j+1}=y_{i} \gamma_{i}$. But we have $l\left(y_{i} \gamma_{i}\right)=l\left(y_{i}\right)=\frac{k+1}{2}$, while

$$
l\left(u y_{j}^{\prime} \gamma_{j} \gamma_{j+1}\right)=l\left(y_{j}^{\prime}\right)+l\left(\gamma_{j}\right)+l\left(\gamma_{j+1}\right)-1=\frac{k+1}{2}+1
$$

since $l\left(y_{j}^{\prime} \gamma_{j}\right)=l\left(y_{j}^{\prime}\right)$ and since the product $\gamma_{j} \cdot \gamma_{j+1}$ is free (use Lemma 9). So, we get a contradiction $l\left(u y_{j}^{\prime} \gamma_{j} \gamma_{j+1}\right) \neq l\left(y_{i} \gamma_{i}\right)$. Therefore we get $j=i$. So, by (83), we get

$$
\begin{equation*}
u y_{j}^{\prime}=y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{s} ; \quad j=i \tag{85}
\end{equation*}
$$

hence

$$
\frac{k+1}{2}= \begin{cases}\frac{k+1}{2}+s d-1 & (\text { if } s>0) \\ \frac{k+1}{2}+|s| d & (\text { if } s<0)\end{cases}
$$

But these are obviously contradictions; hence we get $s=0$. Therefore $u y_{j}^{\prime}=y_{i} \in S_{i}^{\prime}=S_{j}^{\prime}$. Therefore $u=1, y_{i}=y_{j}^{\prime}$.

Finally, to show that any element $z \in\left\{\gamma^{r}\right\}_{\Gamma} \cap \Gamma^{d r+k}$ is Γ^{0}-conjugate to a member of (82), put

$$
\begin{equation*}
z=x\left(\gamma_{i} \gamma_{i+1} \cdots \gamma_{i-1}\right)^{r} x^{-1}, \quad x \in \Gamma, \quad(1 \leq i \leq d) . \tag{86}
\end{equation*}
$$

As in the k : even case, we assume that among all expressions of the form (86) (where i can vary), we have chosen our particular expression (86) so that $l(x)$ is taken as small as possible. Now, at least one of the two products $x \cdot \gamma_{i}, \gamma_{i-1} \cdot x^{-1}$ must be free. We see that, in this case, both cannot be free. In fact, if it were so, we would have $d r+k=l(z)=2 l(x)+d r$, hence $2 l(x)=k$; which is a contradiction, since k is odd. So, one of the two products $x \cdot \gamma_{i}$, $\gamma_{i-1} \cdot x^{-1}$ is free and the other is not. If $\gamma_{i-1} \cdot x^{-1}$ is free and $x \cdot \gamma_{i}$ is not, then either $l\left(x \cdot \gamma_{i}\right)=l(x)$ or $=l(x)-1$. But if $l\left(x \cdot \gamma_{i}\right)=l(x)-1$, then, if we put $y=x \cdot \gamma_{i}$, then $l(y)=l(x)-1$ and we have $z=y\left(\gamma_{i+1} \cdots \gamma_{i}\right)^{r} y^{-1}$; which is a contradiction to our assumption. Therefore, $l\left(x \cdot \gamma_{i}\right)=l(x)$; hence, by Lemma $9, l(z)=2 l(x)+d r-1$; hence $l(x)=\frac{k+1}{2}$. Since $l\left(x \cdot \gamma_{i}\right)=l(x)$, we have $x=u y_{i}$ with $u \in \Gamma^{0}, y_{i} \in S_{i}^{\prime}$; hence $z=u y_{i}\left(\gamma_{i} \cdots \gamma_{i-1}\right)^{r} y_{i}^{-1} u^{-1}$. If, on the other hand, $x \cdot \gamma_{i}$ is free but $\gamma_{i-1} \cdot x^{-1}$ is not, again we get $l\left(\gamma_{i-1} \cdot x^{-1}\right)=l\left(x^{-1}\right)=l(x)$. Put $y_{i-1}^{\prime}=x \cdot \gamma_{i-1}^{-1}$. Then, $z=y_{i-1}^{\prime}\left(\gamma_{i-1} \gamma_{i} \cdots \gamma_{i-2}\right)^{r} y_{i-1}^{\prime}{ }^{-1}$, and we have $l\left(y_{i-1}^{\prime}\right)=l(x)=\frac{k+1}{2}, l\left(y_{i-1}^{\prime} \gamma_{i-1}\right)=l(x)=l\left(y_{i-1}^{\prime}\right)$; hence we have $y_{i-1}^{\prime}=u y_{i-1}$ with $u \in \Gamma^{0}, y_{i-1} \in S_{i-1}^{\prime}$; and we have $z=u y_{i-1}\left(\gamma_{i-1} \gamma_{i} \cdots \gamma_{i-2}\right)^{r} y_{i-1}^{-1} u^{-1}$; which proves our Lemma 3 completely.

Regular cycles on $\Gamma_{\mathbf{R}}^{0} \backslash \mathfrak{H}$.

§20. The situations being as in Theorem 1, let $P \in \wp(\Gamma), \operatorname{deg} P=d$; and let $\left\{\gamma^{ \pm 1}\right\}_{\Gamma}$ be the pair of mutually inverse primitive elliptic Γ-conjugacy class that corresponds to P. By Lemma 3, $\{\gamma\}_{\Gamma} \cap \Gamma^{d}$ consists of d distinct Γ^{0}-conjugacy classes. Put

$$
\begin{equation*}
\{\gamma\}_{\Gamma} \cap \Gamma^{d}=\left\{\gamma_{1}\right\}_{\Gamma^{\circ}} \cup \cdots \cup\left\{\gamma_{d}\right\}_{\Gamma^{\circ}} ; \tag{87}
\end{equation*}
$$

and let $z_{1}, \cdots, z_{d} \in \mathfrak{H}$ be the fixed points of $\left(\gamma_{1}\right)_{\mathbf{R}}, \cdots,\left(\gamma_{d}\right)_{\mathbf{R}}$ respectively. Then, as a set of points on $\Gamma_{\mathbf{R}}^{0} \backslash \mathfrak{H}, z_{1}, \cdots, z_{d}$ are well-defined, and are distinct. So, to each $P \in \wp(\Gamma)$ with $\operatorname{deg} P=d$, we can correspond a set $\tilde{z}_{1}, \cdots, \tilde{z}_{d}$ of d distinct points on $\Gamma_{\mathrm{R}}^{0} \backslash \mathfrak{G}$. We call this $\left\{\tilde{z}_{1}, \cdots, \tilde{z}_{d}\right\}$ the regular cycle on $\Gamma_{\mathbf{R}}^{0} \backslash \mathfrak{H}$ which corresponds to $P \in \wp(\Gamma)$.

Estimation of the roots of $\zeta_{\Gamma}(u)$.

§21. Now we are going to give some estimation of the absolute values of the roots $\pi_{i}, \pi_{i}^{\prime}(1 \leq i \leq g)$ of $\zeta_{\Gamma}(u)$. It is a direct consequence of the following lemma by M. Kuga.

Lemma $10\left(\mathrm{Kuga}^{9}\right)$. Let Δ be a discrete subgroup of $G_{\mathbf{R}}=P S L_{2}(\mathbf{R})$ with compact quotient, and let $\gamma \in G_{\mathrm{R}}$ be such that $\Delta, \gamma^{-1} \Delta \gamma$ are commensurable with each other, that $\Delta \gamma^{-1} \Delta=\Delta \gamma \Delta$, and that Δ and γ generate a dense subgroup of $G_{\mathbf{R}}$. Put

$$
\Delta \gamma \Delta=\sum_{i=1}^{d} \Delta \gamma_{i} \quad\left(d=\left(\Delta: \Delta \cap \gamma^{-1} \Delta \gamma\right)\right)
$$

and let $f(z) \not \equiv 0$ be a holomorphic automorphic form of weight $k(k=2,4,6, \cdots)$ with respect to Δ, which is an eigenfunction of the following Hecke operator with an eigenvalue λ;

$$
\begin{equation*}
\sum_{i=1}^{d} f\left(\gamma_{i} z\right) j\left(\gamma_{i}, z\right)=\lambda \cdot f(z) \tag{88}
\end{equation*}
$$

where, in general, we put $j(g, z)=\left(c_{R} z+d_{R}\right)^{-k}$ for $g= \pm\left(\begin{array}{ll}a_{R} & b_{R} \\ c_{R} & d_{R}\end{array}\right) \in G_{\mathbf{R}}$. Then, we have

$$
\begin{equation*}
|\lambda|<d . \tag{89}
\end{equation*}
$$

Proof. Let F be the continuous function on G_{R} defined by

$$
\begin{equation*}
F(g)=f(g \sqrt{-1}) \cdot j(g, \sqrt{-1}) \quad\left(g \in G_{\mathrm{R}}\right) . \tag{90}
\end{equation*}
$$

Since $f(z)$ is an automorphic form of weight k with respect to Δ, we have

$$
\begin{aligned}
F(\delta \cdot g) & =f(\delta g \sqrt{-1}) j(\delta g, \sqrt{-1})=f(g \sqrt{-1}) j(\delta, g \sqrt{-1})^{-1} j(\delta g, \sqrt{-1}) \\
& =f(g \sqrt{-1}) j(g, \sqrt{-1})=F(g)
\end{aligned}
$$

[^6]for any $\delta \in \Delta$. So, F is Δ-invariant from the left. Therefore, $|F|$, being a continuous function on the compact quotient $\Delta \backslash G_{\mathrm{R}}$, achieves the maximum value M
\[

$$
\begin{equation*}
M=\operatorname{Max}_{g \in G_{\mathbf{R}}}|F(g)| \tag{91}
\end{equation*}
$$

\]

Let D be the set of all elements $g \in G_{\mathrm{R}}$ such that $|F(g)|=M$. Then, obviously, D is Δ-invariant from the left; $D=\Delta \cdot D$. Now, (88) implies

$$
\begin{equation*}
\sum_{i=1}^{d} F\left(\gamma_{i} g\right)=\lambda \cdot F(g) \quad\left(g \in G_{\mathrm{R}}\right) \tag{92}
\end{equation*}
$$

So, if $g \in D$, we get $|\lambda| \cdot M \leq \sum_{i=1}^{d}\left|F\left(\gamma_{i} g\right)\right| \leq M d$; hence we get $|\lambda| \leq d$. Now, let us show that $|\lambda| \neq d$. Suppose, on the contrary, that we had $|\lambda|=d$. Then, in the above inequality, we must have $\left|F\left(\gamma_{i} g\right)\right|=M$ for all $i(1 \leq i \leq d)$. So, we have $|F(\xi g)|=M$ for any $g \in D$ and $\xi \in \bigcup_{i=1}^{d} \Delta \gamma_{i}=\Delta \gamma \Delta$. By $\Delta \gamma^{-1} \Delta=\Delta \gamma \Delta$, we also have $\left|F\left(\xi^{-1} g\right)\right|=M$. So, if we denote by Δ^{\prime}, the subgroup of G_{R} formed of all elements $g \in G_{\mathrm{R}}$ such that $g D=D$, then Δ^{\prime} contains Δ and γ. So, by our assumption, Δ^{\prime} is dense in G_{R}; which implies that D is dense in $G_{\mathbf{R}}$. But since F is continuous, D is closed. Therefore $D=G_{\mathbf{R}}$; and hence we get

$$
\begin{equation*}
|F(g)| \equiv M \quad \text { for } g \in G_{\mathbf{R}} \tag{93}
\end{equation*}
$$

Now let us show that (93) is impossible. If $g=\left(\begin{array}{cc}\sqrt{a} & \sqrt{a}^{-1} b \\ 0 & \sqrt{a}^{-1}\end{array}\right)$, with $a, b \in \mathbf{R}, a>0$, then $F(g)=f(a \sqrt{-1}+b) a^{k / 2}$. Therefore, by (93), we get

$$
\begin{equation*}
|f(z)|=M(\operatorname{Im} z)^{-k / 2} \quad \text { on } \mathfrak{H} \tag{94}
\end{equation*}
$$

Thus, $\operatorname{Re}(\log f(z))$ depends only on the imaginary part of z, and hence the derivative of $\sqrt{-1} \log f(z)$ is always real; hence $\frac{d}{d z} \log f(z)$ must be a constant, and we get $f(z)=$ $A e^{B z}$ with some constants A, B. But then (94) would be impossible. So, $|\lambda|=d$ is a contradiction; and we get $|\lambda|<d$.
§22. To make it possible to apply Lemma 10 to our group, we need verify the following simple lemma.

Lemma 11. The subgroup $U_{p}=P S L_{2}\left(O_{p}\right)$ is maximal in $G_{p}=P S L_{2}\left(k_{p}\right)$.
Proof. Let H be a subgroup of G_{p} with $H \supsetneq U_{\mathfrak{p}}$. Let $x \in H$, $\notin U_{p}$. Then

$$
H \supset U_{p} x U_{p}=U_{\mathfrak{p}}\left(\begin{array}{cc}
p^{l} & 0 \\
0 & p^{-l}
\end{array}\right) U_{\mathfrak{p}}=Y_{l} \quad(l>0)
$$

p being a prime element of k_{p}. Since $\left(\begin{array}{cc}p^{l} & 0 \\ 0 & p^{-l}\end{array}\right),\left(\begin{array}{cc}p^{l} & p^{l-1} \\ 0 & p^{-l}\end{array}\right) \in Y_{l} \subset H$, we get

$$
\left(\begin{array}{cc}
1 & p^{-1} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
p^{-l} & 0 \\
0 & p^{l}
\end{array}\right)\left(\begin{array}{cc}
p^{l} & p^{l-1} \\
0 & p^{-l}
\end{array}\right) \in H
$$

Hence, $H \supset U_{p}\left(\begin{array}{cc}1 & p^{-1} \\ 0 & 1\end{array}\right) U_{p} \ni\left(\begin{array}{cc}p & 0 \\ 0 & p^{-1}\end{array}\right)$. Hence, H contains $\left(\begin{array}{cc}p & 0 \\ 0 & p^{-1}\end{array}\right)^{l}$ for all $l \geq 0$; hence all $U_{p}\left(\begin{array}{cc}p^{l} & 0 \\ 0 & p^{-l}\end{array}\right) U_{p}$; hence G_{p}. Hence we get $H=G_{p}$.

Corollary. The subgroup Γ^{0} is maximal in Γ. If $\gamma \in \Gamma, \notin \Gamma^{0}$, then Γ_{R}^{0} and γ_{R} generate a dense subgroup of G_{R}.

Proof. In fact, Γ_{R}^{0} and γ_{R} generate Γ_{R}.
§23. Now we shall prove:
Theorem 2. The notations being as in Theorem 1, we have

$$
\begin{equation*}
\left|\pi_{i}\right|,\left|\pi_{i}^{\prime}\right| \leq q^{2} \tag{95}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{i}, \pi_{i}^{\prime} \neq 1, q^{2} \tag{96}
\end{equation*}
$$

Proor. Recall that we have $\rho=\chi_{1} \oplus \cdots \oplus \chi_{g}$ and

$$
\begin{equation*}
\chi_{i}\left(\Gamma^{m}\right)-(q-1) \sum_{k=1}^{m} \chi_{i}\left(\Gamma^{m-k}\right)=\pi_{i}^{m}+\pi_{i}^{m} \quad(1 \leq i \leq g, m \geq 1) \tag{49}
\end{equation*}
$$

where ρ is as defined in $\S 9$ for $\Delta=\Gamma_{R}^{0}, \tilde{\Delta}=\Gamma_{\mathbf{R}}$ (see also $\S 14$). By the corollary of Lemma 11, we can apply Lemma 10 for $\Delta=\Gamma_{\mathbf{R}}^{0}$ and for any $\gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}}, \notin \Gamma_{\mathbf{R}}^{0}$, and we get

$$
\begin{equation*}
\left|\chi_{i}\left(\Gamma^{m}\right)\right|<q^{2 m}+q^{2 m-1} \quad(1 \leq i \leq g, m \geq 1) \tag{97}
\end{equation*}
$$

First, let us prove (95). Suppose that we had $\left|\pi_{i}\right|=q^{a}, a>2$. Then, by $\pi_{i} \pi_{i}^{\prime}=q^{2}$, we get $\left|\pi_{i}^{\prime}\right|<1$. By (49), we get

$$
\begin{aligned}
\left|\pi_{i}^{m}+\pi_{i}^{\prime m}\right| & \leq q^{2 m}+q^{2 m-1}+(q-1)\left\{q^{2 m-2}+q^{2 m-3}+\cdots+1\right\} \\
& =q^{2 m}+2 q^{2 m-1}-1=O\left(q^{2 m}\right)
\end{aligned}
$$

But this is impossible for $\left|\pi_{i}\right|=q^{a}(a>2)$ and $\left|\pi_{i}^{\prime}\right|<1$. Hence, we get $\left|\pi_{i}\right| \leq q^{2}$. In the same manner, we get $\left|\pi_{i}^{\prime}\right| \leq q^{2}$.

To prove (96), suppose, on the contrary, that we had $\pi_{i}, \pi_{i}^{\prime}=1, q^{2}$. Then, by (49), we get

$$
\begin{equation*}
\sigma_{m}-q \sigma_{m-1}=q^{2 m}+1 ; \quad \sigma_{m}=\sum_{l=0}^{m} \chi_{i}\left(\Gamma^{l}\right) \quad(m \geq 1) \tag{98}
\end{equation*}
$$

But this implies $\sigma_{m}=q^{2 m}+q^{2 m-1}+\cdots+1(m \geq 1)$; hence $\sigma_{m}-\sigma_{m-1}=q^{2 m}+q^{2 m-1}$ ($m \geq 1$). But this implies $\chi_{i}(\Gamma)=q^{2 m}+q^{2 m-1}$, which is a contradiction to (97). So, we cannot have $\pi_{i}, \pi_{i}^{\prime}=1, q^{2}$.

So far, Theorem 2, (95) (96) are the only estimation for the absolute values of $\pi_{i}, \pi_{i}^{\prime}$ which we could prove. Some application of Theorem 2 will be given later.

Concluding remarks on Chapter 1, Part 1.

§24.

Remark 1. All our results in this Chapter (Part 1) are valid also in the case where $\boldsymbol{k}_{\mathrm{p}}$ is the field of power series over a finite field \mathbf{F}_{q}. However, we do not know whether Γ exists at all in such a case.

Remark 2. In the computation of $\zeta_{\Gamma}(u)$, we assumed that Γ is torsion-free and G / Γ is compact. Among them, the former can be dropped easily, and we get a similar result. We plan to give its description in Part 2 of Chapter 1. Also, we are planning to give there a computation of " L-functions" attached to Γ, which has an interesting application to an analogue of "Tschebotarev's density Theorem" for the law of decomposition of elements of $\wp(\Gamma)$ in $\wp\left(\Gamma^{\prime}\right)$, where Γ^{\prime} is a subgroup of finite index in Γ.

[^0]: ${ }^{1}$ We can also prove (20) (for $\mathfrak{p} \nmid 2$) by using the spectral decomposition of $L^{2}(G / \Gamma)$.

[^1]: ${ }^{2}$ See Chapter 5 for the proof.

[^2]: ${ }^{3}$ Defined with respect to the left Δ-cosets.

[^3]: ${ }^{4}$ This can also be proved by Lefschetz' fixed point Theorem.

[^4]: ${ }^{5}$ An alternative and easier proof is given in Part $2, \S 30$, in the proof of Corollary of Theorem 4.

[^5]: ${ }^{6}$ They are given in Y . Ihara [16].
 ${ }^{7}$ Since $x=x y \cdot y^{-1}$, we have $l(x) \leq l(x y)+l(y)$; thus we get $l(x y) \geq|l(x)-l(y)|$.
 ${ }^{8}$ Where we put $d_{n}=0$.

[^6]: ${ }^{9}$ Cf. M.Kuga [21]. The formulation and the method for proof are not exactly the same.

