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7. Notes.

General.

At present there seems to be no systematic formal introduction
to geometric group theory as such, though the key ideas with many
interesting examples are described in de la Harpe’s book [Harp]. The
fundamental notions are also described in [BriH]. Earlier, more tra-
ditional treatments of combinatorial group theory are [MagKS] and
[LS]. A list of open problems in geometric group theory can be found
in [Bes3].

The theory of non-positively curved spaces grew out of work
of Aleksandrov, Toponogov, Busemann and more recently, Gromov.
The standard introductory text is [BriH].

7.0. Section 0:

An overview of basic “small cancellation” theory can be found
in Strebel’s appendix to [GhH]. The paper [ScW] was influential in
the introduction of topological ideas into group theory. The works
of Stallings and Dunwoody were influential in introducing methods
from 3-manifold theory – see the notes on Section 3. Thurston gave
an outline of his geometrisation programme in [Th].

7.1. Section 1:

The basic material of most of this section is standard. More
detailed aceounts ean be found in [MagKS] and [LS]. One important
result that illustrates the power of combinatorial methods is Higman’s
embedding theorem [Hi] (see also [LS]).

A geometrical picture of the Heisenberg group is described in
[GhH].

A brief survey of the Andews-Curtis conjecture can be found in
[BuM].

7.2. Section 2:

Again, much of this material can be found in [MagKS], [LS] and
other introductory texts.
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7.3. Section 3:

The significance of quasi-isometries, in particular, a version of
the key result, Theorem 3.6, was known to Efremovich, Schwarz amd
Milnor in the 1960s. The subject was developed through work of
Gromov, see for example [Gro2] and [Gro3]. A more general version
of Proposition 3.1 is proven in [Gro4]. A proof of Theorem 3.6 (some-
times called the “Schwarz-Milnor Lemma”) along the hnes given here
can be found in [BriH] $.$

The statement that a group quasi-isometric to $Z$ is virtually $Z$

is an immediate consequenoe of the result of Hopf [Ho] that a two-
ended finitely generated group is virtually $Z$ – at least given the
relatively simple fact that the property of being “two-ended” is quasi-
isometry invariant. Here “two-ended” can be taken to mean that the
complement of any sufficiently large finite subgraph of the Cayley
graph has exactly two unbounded components.

A proof of the Borsuk-Ulm theorem can be found in many texts
on topoloy, for example [Ar].

Gromov’s theorem on groups of polynomial growth is given in
[Grol]. It uses the solution to Hilbert’s fifth problem by Montgomery
and Zippin [MonZ]. The “Gromov-Hausdorff” limit argument used
in [Grol] can be conveniently expressed in terms of asymptotic cones
[Gro3], which have, in themselves become an important tool in geo-
metric group theory, see for example [Dr]. While there are variations
on the theme, this seems to be essentially the only proof known.
A quite different approach to deal spccifically with virtually abelian
groups has been given by Shalom [Sha].

The results of Stalings [St] and Dunwoody [Du] relating to
group sphttings are good examples of the adaptation of ideas from
3-manifolds.

Alonso gives an account of the quasi-isometry invariance of iso-
perimetric inqualities, and Shapiro’s observation conserming the in-
varians of the word problem, in [Alo].

7.4. Section 4:

Just about any introductory text on topoloy will have an ac-
count of fundamental groups, covering spaces etc. Our “nice” spaces
can al be given the stucture of a simplicial complex. A deeper sys-



7. Notes 91

tematic treatment of such complexes is given in [Sp].

A combinatorial proof of Theorem 4.1 can be found in [LS].

7.5. Section 5:

Introductory texts on hyperbolic geometry include [Iv] and [An],
and a general introduction is also included in [Bea]. The book [W]
gives an overview of this subject in connection with Thurston’s pro-
gramme. See also [CanFKP]. The foundational principles of non-
euclidean geometry with many historical references can be found in
[Gre].

An account of Poincar\’e’s thcorem for tcsscllations in dimension
2 is given in [Bea].

Perelman’s account of geometrisation is given in [Pel,Pe2]. $A$

commentary can be found in [KlL], and a survey in [Mor].

With regards to the characterisation of virtual surface groups, a
seminal pieoe ofwork was Mess’s paper on the Seifert conjecture [Me].
This used earlier work of Tukia [Tul], but left open the particular

and difficult case of a virtual triangle group. This was resolved in
subsequent and independent work of Gabai [Gaba] and Casson and
Jungreis [CasJ]. To take care of the “euclidean” case, Mess relies on
the theorem of Varopoulos [V] that a group with a recurrent random
walk is virtually $Z^{n}$ for $n=0,1,2$ . This in turn relies on Gromov’s
result of polynomial growth (see notes on Section 3). An argument
that bypasses this, and gives some other characterisations of virtual
surface groups, can be found in [Bow5]. Some of the results therein
have sinoe been generalised by Kleiner.

For introductions to Teichm\"uller theory see [Ab] or [ImT].

The Mostow rigity theorem [Mo] tells us that any finite-volume
hyperbohc structure on a 3-manifold is unique. The “stable trace
field” of such a manifold $ M=H^{3}/\Gamma$ is the field generated by the
squares of traces of elements of $\Gamma\subseteq PSL(2, C)$ . A consequence of
Mostow rigidity and a little algebraic geometry is that such a field is a
finite extention of the rationals. It turns out to be a commensurability
invariant [Re]. It is not hard to find explicit examples of closed hyper-
bolic 3-manifolds with different stable trace fields. There is a major
project of enumerating small volume hyperbohc 3-manifolds and com-
puting their stable trace fields and other invariants, see [CouGHN].
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7.6. Section 6:

Gromov introduced the notion of a hyperbohc group in [Gro2].

Several expositions of various aspects of this work appeared in the few
years that folowed: see [GhH], [CooDP], [Sho] or [Bowl]. Since then,
the subject has developed in many different directions, though there
seems to have been no new systematic general introduction to the
subject. Some aspects of hyperbohc groups are discussed in [BriH]
and in [Harp].

An introduction to complex hyperbohc geometry can be found
in [Go]. Complex hyperbolic $n$-space has $2n$ real dimensions, and its
boundary is homeomorphic to the $(2n-1)$-sphere. However, more
refined invariants show that it is not quasi-isometric to $H^{2n}.$

The notion of an $R$-tree was introduced by Morgan and Shalen
[MorS], in order to prove oertain compactness results that formed
part of Thurston’s work on hyperbolic 3-manifolds. A more geomet-
ric approaeh to their constmction was described by Bestvina [Bel].
The subject was then developed by Rips, and elaborations and gener-
alisations of that work ean be found in [GaboLP] and [BeF]. $R$-trees
have now become a central tool in geometric group theory. Surveys
can be found in [Pau,Bes2] and a general introduction in [Chi]. A
key point is that the asymptotic eone (see notes on Section 3) of a
hyperbolic space is an $R$-tree (see for example [Dr]). A typical $R$-tree
can be a quite comphcated object. For example, we note that for any
cardinal $c\geq 2$ there is a unique complete $R$-tree with every point of
valenoe $c$ [DyP].

A discussion of spanming trees that approximate distances in a
hyperbolic space is given in [Gro2], and some elaborations are de-
scribed in [Bowl], including a constmction of logarithmic spanning
trees.

Proposition 6.17 is a generahsation of the eorrespondming lemma
for hyperbolie spaoe which is a standard ingredient for the argu-
ment proving Mostow rigidity (see notes on Section 5). The proof
we present here is based on that given in [Sho].

7.6.1. Subgroups of hyperbolic groups.
The fact that the stable length of an infinite-order element is

positive can be found, for example, in [GhH]. In fact, it turns out
that they are umiformly rational [Gro2,Del]. For a general group, the
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stable length of an infinite order element is positive if and only if the
cyclic group it generates is quasi-isometrically embedded. There are
many examples for which this fails, for example, the centre of the
Heisenberg group.

An example of a hyperbolic group with a finitely generated sub-
group that is not finitely presented is given in [BowM], and is based
on a related example in [Kap-mP].

7.6.2. Finiteness conditions.
An account of the Rips complex can be found in [GhH].
Gromov outlined a proof that a subquadratic isoperimetric in-

equality implies hyperbolicity in [Gro2], and this argument was elab-
orated upon in [CooDP]. Other arguments are given in [O,Pap,Bow2].
Examples of non-hyperbohc groups with more exotic isoperimetric in-
equalities (or “Dehn fUnctions”) are given in [Bri,BraB] and [SaBR].
This subject has expanded in many directions since.

Automatic structures provide a link with the theory of formal
languages. The standard introductory text is [ECHLPT]. Cannon’s
argument, which can now be interpreted as a proof that a hyperbolic
group is automatic, appeared in [Can].

7.6.3. Boundaries.
A general survey of boundaries of hyperbolic groups is [Kap-iB].

A seminal article on the subject was [BesM].
Convergence groups were introduced in the context of Kleinian

group by Gehring and Martin [GeM]. A general discussion, applicable
to the boundaries of hyperbohc groups is given in [Tu2]. The topolog-
ical characterisation of a hyperbolic group as a umiform convergence
group is given in [Bow4].

The fact that any compact metrisable (topological) spaoe can be
reahsed as the boundary of a proper hyperbohc spaoe can be seen
as follows. First embed the spaoe in the unit sphere of a separable
Hilbert space. We can view this sphere as the boundary of a Klein
model for an infinite dimensional hyperbolic gcometry. We take the
euchdean convex hull of our set, which is also the hyperbolic convex
hull. We use the fact that the convex hull of a compact subset of
a Banach spaoe is compact. Thus the convex hull gives us a proper
hyperbolic space compactified by our original set. This set is then
also the Gromov boundary. Delails are left to the reader familiar
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with the Klein model of hyperbohc space.
A discussion of “generic” properties of hyperbolic groups is given

in [Cha]. This uses the notion of a “geodesic flow” (see below).

7.6.4. Other directions.
The JSJ splitting was introduced by Sela [Sel]. It is another

example of a construction inspired by 3-manifold theory, in particu-
lar, work of Waldhausen, Johannson [Jo] Jaco and Shalen [JaS]. An
account for hyperbolic groups, via boundaries, is given in [Bow3].
There are a number of generalisations, for example, [RiS,DuS,H$1_{1}$P].

An account of the geodesic flow on a hyperbolic group is given

in [Mine], and connections with the Baum-Connes conjecture can be
found in [MineY]. For earlier work on the Novikov conjecture for
hyperbolic groups, see [ConM] and [KasS]. (The former requires a
version of the geodesic flow.)

Sela’s work on the Tarski problem appears in a series of articles,
starting with [Se2]. It makes much use of the JSJ splittling in con-
structing “Mahnin-Razborov” trees. He characterises groups with
the same first order theory as free groups as “limit groups” Such
groups were shown to be relatively hyperbolic in [Da] (see also [Ali]).

Accounts of relatively hyperbolic groups can be found in [Fa], [Sz]

and [Bow8]. $A$ topological characterisation in terms of convergence
groups is given in [Y]. Many results about hyperbolic groups have
now been generalised to relatively hyperbolic groups.

Harvey introduced the curve complex in [Harv]. It was shown
to be hyperbohc in [MasM] (see also [Bow6,Ham]). This fact was
central to the proof of Thurston’s ending lamination conjecture given
in [Mins,BroCM], and has wider implications for Teichm\"uller theory
and mapping class groups. This is a particularly active area at the
moment. See [Bow7] for a survey of some of this material.


