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DPN surfaces of elliptic type

3.1. Fundamental chambers of $W^{(2,4)}(S)$ for elliptic type

The most important property of lattices $S$ of elliptic type is that the sub-
group $W^{(2)}(S)\subset O(S)$ has finite index. We remark that this is parallel to
Lemma 1.4, and is an important step to prove that $\log$ del Pezzo surfaces of
index $\leq 2$ are equivalent to DPN surfaces of elliptic type.

This finiteness was first observed and used for classification of hyper-
bolic lattices $M$ with finite index $[O(M) : W^{(2)}(M)]$ in [Nik79], [Nik83].

We repeat arguments of [Nik79], [Nik83]. Let us take a general pair $(X, \theta)$

with $(S_{X})_{+}=S$ . Then $S_{X}=S$ , and the involution $\theta$ of $X$ is unique by
the condition that it is identical on $S_{X}=S$ and is $-1$ on the orthogonal
complement to $S_{X}$ in $H^{2}(X, \mathbb{Z})$ . Thus, Aut $X=$ Aut $(X, \theta)$ . By Global
ToIelli Theorem for K3 (see [PS-Sh71]), the action of Aut $X$ on $S_{X}$ gives
that Aut $X$ and $O(S_{X})/W^{(2)}(S_{X})$ are isomorphic up to finite groups. In
particular, they are finite simultaneously. Thus, $[O(S) : W^{(2)}(S)]$ is finite,

if and only if Aut $(X, \theta)$ is finite. If $(X, \theta)$ has elliptic type, then Aut $(X, \theta)$

preserves $X^{\theta}$ and its component $C_{g}$ with $(C_{g})^{2}>0$ . Since $S_{X}$ is hyper-
bolic, it follows that the action of Aut $(X, \theta)$ in $S_{X}$ is finite. But it is known
for K3 (see [PS-Sh71]) that the kemel of this action is also finite. It follows
that Aut $(X, \theta)$ and $[O(S) : W^{(2)}(S)]$ are finite. See more details on the
results we used about K3 in Section 2.2.

Since $O(S)$ is arithmetic, $W^{(2)}(S)$ has a fundamental chamber $\mathcal{M}^{(2)}$ in
$\mathcal{L}(S)$ of finite volume and with a finite number of faces (e.g. see [Vin85]).

Since $W^{(2)}(S)\subset W^{(2,4)}(S)\subset O(S)$ , the same is valid for $W^{(2,4)}(S)$ .
Let $\mathcal{M}^{(2,4)}\subset \mathcal{L}(S)$ be a fundamental chamber of $W^{(2,4)}(S)$ , and

$\Gamma(P(\mathcal{M}^{(2,4)}))$ its Dynkin diagram (see [Vin85]). Vertices correspond-
ing to different elements $f_{1},$ $f_{2}\in P(\mathcal{M}^{(2,4)})$ are not connected by any
edge, if $f_{1}\cdot f_{2}=0$ . They are connected by a simple edge of the weight $m$

50



3.1. FUNDAMENTAL CHAMBERS OF $W^{(2,4)}(S)$ FOR ELLIPTIC TYPE 51

(equivalently, by $m-2 $simple edges, if$ m>2 $is small), if

$\frac{2f_{1}\cdot f_{2}}{\sqrt{f_{1}^{2}f_{2}^{2}}}=2\cos\frac{\pi}{m}, m\in N.$

They are connected by a thick edge, if

$\frac{2f_{1}\cdot f_{2}}{\sqrt{f_{1}^{2}f_{2}^{2}}}=2.$

They are connected by a broken edge of the weight $t$ , if

$\frac{2f_{1}\cdot f_{2}}{\sqrt{f_{1}^{2}f_{2}^{2}}}=t>2.$

Moreover, a vertex corresponding to $f\in P^{(4)}(\mathcal{M}^{(2,4)})$ is black. It is trans-
parent, if $f\in P^{(2)}(\mathcal{M}^{(2,4)})$ . It is double transparent, if $f\in P(X)_{+I}(i.$

$e$ . it corresponds to the class of a rational component of $X^{\theta}$ ), otherwise, it
is simple transparent. Of course, here we assume that $\mathcal{M}^{(2,4)}\subset \mathcal{M}(X)_{+}$

for a K3 surface with involution $(X, \theta)$ and $(S_{X})_{+}=S.$

Classification of DPN surfaces of elliptic type is based on the purely
arithmetic calculations of the fundamental chambers $\mathcal{M}^{(2,4)}$ (equivalently,
of the graphs $\Gamma(P(\mathcal{M}^{(2,4)}))$ of the reflection groups $W^{(2,4)}(S)$ of the lattices
$S$ of elliptic type. Since $S$ is $2$-elementaly and even, $W^{(2,4)}(S)=W(S)$ is
the full reflection group of the lattice $S$ , and any root $f\in S$ has $f^{2}=-2$

$or-4$ . We have

Theorem 3.1. 2-elementary even hyperbolic lattices $S$ ofelliptic type have

fundamental chambers $\mathcal{M}^{(2,4)}$ for their reflection gmups $W^{(2,4)}(S)$ (it is the
full reflection gmup of $S$), equivalently the correspondingDynkin diagrams
$\Gamma(P(\mathcal{M}^{(2,4)}))$ , which are given in Table 1 below, where the lattice $S$ is

defined by its invariants $(r, a, \delta)$ (equivalently, $(k, g, \delta)$), see Section 2.3.
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TABLE 1. Fundamental chambers $\mathcal{M}^{(2,4)}$ of reflection
groups $W^{(2,4)}(S)$ for 2-elementaly even hyperbolic lattices
$S$ of elliptic type.
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Proof. When $S$ is unimodular $(i.e. a=0)$ or $r=a$ (then $S(1/2)$ is uni-
modular), i. e. for cases 1–11, 40, 50, these calculations were done by
Vnberg [Vin72]. In all other cases they can be done using Vinberg’s algo-
rithm for calculation of the fundamental chamber of a hyperbolic reflection
group. See [Vin72] and also [Vin85]. These technical calculations take too

much space and will be presented in Appendix, Section A.4.1.
To describe elements of $P(X)_{+I}$ ( $i.$ $e$ . double transparem vertices), we

use the results of Section 2.6 and the fact that their number $k$ is known by
Section 2.3. $\square $

Remark 3.2. Using diagrams of Theorem 3.1, one can easily find the class
in $S$ of the component $C_{g}$ of $X^{\theta}$ as an element $C_{g}\in S$ such that $C_{g}\cdot x=0,$

if $x$ corresponds to a black or a double transparent vertex, and $C_{g}\cdot x=2-s$

if $x$ corresponds to a simple transparent vertex which has $s$ edges to double

transparent vertices.
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3.2. Root invariants, and subsystems of roots in
$\Delta^{(4)}(M^{(2)})$ for elliptic case

We use the notation and results of Section 2.4.1. Let $\mathcal{M}^{(2)}\supset \mathcal{M}^{(2,4)}$ be
the fundamental chamber of $W^{(2)}(S)$ containing $\mathcal{M}^{(2,4)}$ . Dynkin diagram
of $P^{(4)}(\mathcal{M}^{(2,4)})$ ( $i.$ $e$ . black vertices) consists of components of types $A,$ $D$

or $E$ (see Table 1). Thus, the group $W^{(4)}(\mathcal{M}^{(2)})$ generated by reflections
in all elements of $P^{(4)}(\mathcal{M}^{(2,4)})$ is a finite Weyl group. It has to be finite
because $W^{(4)}(\mathcal{M}^{(2)})(\mathcal{M}^{(2,4)})=\mathcal{M}^{(2)}$ has finite volume, and $\mathcal{M}^{(2,4)}$ is the
fundamental chamber for the action of $W^{(4)}(\mathcal{M}^{(2)})$ in $\mathcal{M}^{(2)}$ . Thus,

$\Delta^{(4)}(\mathcal{M}^{(2)})=W^{(4)}(\mathcal{M}^{(2)})P^{(4)}(\mathcal{M}^{(2,4)})$

is a finite root system of the corresponding type with the negative definite
root sublattice

$R(2)=[P^{(4)}(\mathcal{M}^{(2,4)})]\subset S.$

Let $(X, \theta)$ be a K3 surface with a non-symplectic involution, and
$(S_{X})_{+}=S$ . Let $\Delta_{+}^{(4)}\subset\triangle(4)(S)$ be the subset defined by $(X, \theta)$ which

is invaniant with respect to $W_{+}^{(2,4)}$ (we remind that it is generated by reflec-

tions in $\triangle^{(2)}(S)$ and $\triangle_{+}^{(4)}$ ). By Theorem 2.4, $\Delta_{+}^{(4)}=W^{(2)}(S)\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$

where $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})=\triangle_{+}^{(4)}\cap\Delta^{(4)}(\mathcal{M}^{(2)})$ is a root subsystem in $\triangle(4)(\mathcal{M}^{(2)})$ .
Let

(64) $K^{+}(2)=[\Delta_{+}^{(4)}(\mathcal{M}^{(2)})]\subset R(2)\subset S$

be its negative definite root sublattice in $S$ , and

(65) $Q=\frac{1}{2}K^{+}(2)/K^{+}(2) , \xi^{+}:q_{K(2)}+|Q\rightarrow q_{S}$

a homomorphism such that $\xi^{+}(x/2+K^{+}(2))=x/2+S,$ $x\in K^{+}(2)$ .
We obtain a pair $(K^{+}(2), \xi^{+})$ which is similar to a root invariant, and it is
equivalent to the root invariant for elliptic type.

Proposition 3.3. Let $(X, \theta)$ be a $K3$ surface with a non-symplectic involu-
tion ofelliptic type, and $S=(S_{X})_{+}.$

In this case, the root invariant $R(X, \theta)$ is equivalent to the root sub-

system $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})\subset\triangle^{(4)}(\mathcal{M}^{(2)})$ , considered up to the action of $O(S)$
$(i.$ $e$. two mot subsystems $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})\subset\triangle^{(4)}(\mathcal{M}^{(2)})$ and $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})’\subset$

$\Delta^{(4)}(\mathcal{M}^{(2)})$ are equivalent, $lf\triangle_{+}^{(4)}(\mathcal{M}^{(2)})’=\phi(\triangle_{+}^{(4)}(\mathcal{M}^{(2)}))$ for some $\phi\in$

$O(S))$ :
The mot invariant $R(X, \theta)\cong(K^{+}(2), \xi^{+})$ is defined by (64) and (65).

The fundamental chamber $\mathcal{M}(X)_{+}$ is defined by the mot subsystem
$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})\subset\Delta^{(4)}(\mathcal{M}^{(2)})$ (up to above equivalence), by Theorem 2.4.
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Moreover, $P^{(4)}(\mathcal{M}(X)_{+})$ coincides with a basis of the mot subsystem
$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ .

Proof. Let $E_{i},$ $i\in I$ , be all non-singular rational curves on $X$ such that
$E_{i}\cdot\theta(E_{i})=0,$ $i.$ $e.$

cl$(E)+$ cl $(\theta(E))=\delta\in P^{(4)}(\mathcal{M}(X)_{+})=P^{(4)}(X)_{+}=P(X)_{+III}.$

Since $E_{i}\cdot C_{g}=0$ and $C_{g}^{2}=2g-2>0$ , the curves $E_{i},$ $i\in I$ , generate in
$S_{X}$ a negative definite sublattice. Thus, their components define a Dynkin
diagram $\Gamma$ which consists of several connected components $A_{n},$ $D_{m}$ or $E_{k}.$

The involution $\theta$ acts on these diagrams and corresponding curves without
fixed points. Thus it necessarily changes connected components of $\Gamma$ . Let
$\Gamma=r_{1}u\Gamma_{2}$ where $\theta(\Gamma_{1})=\Gamma_{2}$ , and $I=I_{1}uI_{2}$ the corresponding subdi-
vision of vertices of $\Gamma$ . Then

$\delta_{i}^{+}=c1(E_{i})+c1(\theta(E_{i})), i\in I_{1},$

and
$\delta_{i}^{-}=c1(E_{i})-c1(\theta(E_{i})), i\in I_{1}$

give bases of root systems $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ and $\triangle_{-}^{(4)}=\triangle^{(4)}(K(2))$ respectively.
The map

$\delta_{i}^{-}=c1(E_{i})-c1(\theta(E_{i}))\mapsto\delta_{i}^{+}=c1(E_{i})+c1(\theta(E_{i})), i\in I_{1},$

defines an isomorphism $\triangle_{-}^{(4)}\cong\Delta_{+}^{(4)}(\mathcal{M}^{(2)})$ of root systems, since it evi-
dently preserves the intersection pairing. The homomorphism $\xi$ of the root
invariant $R(X, \theta)=(K(2), \xi)$ of the pair $(X, \theta)$ then goes to $(K^{+}(2), \xi^{+})$ .

In the opposite direction, the root invariant $R(X, \theta)$ defines $\triangle_{+}^{(4)}$ and
$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})=\triangle^{(4)}(\mathcal{M}^{(2)})\cap\triangle_{+}^{(4)}.$

The last statement follows from Section 2.4.1. $\square $

By Proposition 3.3, in the elliptic case instead of root invariants one can
consider root subsystems $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$

$($in $\triangle^{(4)}(\mathcal{M}^{(2)}))$ . We say that a root

subsystem $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ “is contained” (respectively “is primitively con-
tained”) in a root subsystem $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})’$ , if $\phi(\triangle_{+}^{(4)}(\mathcal{M}^{(2)}))\subset\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’$

(respectively $[\phi(\triangle_{+}^{(4)}(\mathcal{M}^{(2)}))]\subset[\triangle_{+}^{(4)}(\mathcal{M}^{(2)})’]$ is a plimitive embedding of
lattices) for some $\phi\in O(S)$ . By Corollary 2.11, we obtain

Proposition 3.4. $Ifa$ mot subsystem $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ in $\triangle^{(4)}(\mathcal{M}^{(2)})$ corresponds
to a $K3$ surface with non-symplectic involution $(X, \theta)$ , then any primi-

tive mot subsystem in $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ corresponds to a $K3$ surface with non-
symplectic involution.

Thus, it is enough to describe extremal pairs $(X, \theta)$ such that their

mot subsystems $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})$ in $\triangle^{(4)}(\mathcal{M}^{(2)})$ are not contained as primitive
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mot subsystems ofstrictly smaller $mnk$ in a mot subsystem $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’$ in
$\Delta^{(4)}(\mathcal{M}^{(2)})$ corresponding to anotherpair $(X\prime, \theta^{l})$ .

3.3. Classification of non-symplectic involutions $(X, \theta)$ of
elliptic type of K3 surfaces

We have

Theorem 3.5. Let $(X, \theta)$ and $(X\prime, \theta’)$ be two non-symplectic involutions of
elliptic type of$K3$ surfaces.

Then thefollowing three conditions are equivalent:
(i) Their main invariants $(r, a, \delta)$ $(equivalently, (k, g, \delta)$) coincide, and

their root invariants are isomorphic.
(ii) Their main invariants $(r, a, \delta)$ coincide, and the mot subsystems

$\Delta_{+}^{(4)}(\mathcal{M}^{(2)})$ are equivalent.
(iii) Dynkin diagrams $\Gamma(P(X)_{+})$ and $\Gamma(P(X’)_{+})$ of their exceptional

curves are isomorphic, and additionally the genem $g$ are equal, $\iota f$ these
diagrams are empty. The diagram $\Gamma(P(X)_{+})$ is empty $\iota f$and only ifeither
$(r, a, \delta)=(1,1,1)$ $($then $g=10)$ , or $(r, a, \delta)=(2,2,0)$ (then $g=9$) and
the mot invariant is $zem$ . The corresponding $DPN$ surfaces are $\mathbb{P}^{2}$ or $\mathbb{F}_{0}$

respectively.

Proof. By Sections 3.2 and 2.5, the conditions (i) and (ii) are equivalent,
and they imply (iii).

Let us show that (iii) implies (i).

Assume that $r=$ rk $S\geq 3.$

First, let us show that $S$ is generated by $\triangle^{(2)}(S)$ , if $r=$ rk $S\geq 3$ . If
$r\geq a+2$ , then it is easy to see that either $S\cong U\oplus T$ or $S\cong U(2)\oplus T$ where
$T$ is orthogonal sum of $A_{1},$ $D_{2m},$ $E_{7},$ $E_{8}$ (one can get all possible invariants
$(r, a, \delta)$ of $S$ taking these orthogonal sums). We have $U=[c_{1}, c_{2}]$ where
$c_{1}^{2}=c_{2}^{2}=0$ and $c_{1}\cdot c_{2}=1$ (the same for $U(2)$ , only $c_{1}\cdot c_{2}=2$). Then $S$ is
generated by elements with square-2 which are

$\Delta^{(2)}(T)\cup(c_{1}\oplus\Delta^{(2)}(T))\cup(c_{2}\oplus\Delta^{(2)}(T))$ .

If $r=a$ then $S\cong\langle 2\rangle\oplus tA_{1}$ . Let $h,$ $e_{1},$
$\ldots,$

$e_{t}$ be the corresponding orthogo-
nal basis of $S$ where $h^{2}=2$ and $e_{i}^{2}=-2,$ $i=1,$

$\ldots,$

$t$ . Then $S$ is generated
by elements with square $(-2)$ which are $e_{1},$

$\ldots,$
$e_{t}$ and $h-e_{1}-e_{2}.$

Now, let us show that $P(X)_{+}$ generates $S$ . Indeed, every element of
$\triangle^{(2)}(S)\cup\triangle_{+}^{(4)}$ can be obtained by composition of reflections in elements
of $P(X)_{+}$ from some element of $P(X)_{+}$ . It follows, that it is an integral
linear combination of elements of $P(X)_{+}$ . Since we can get in this way all
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elements of $\triangle^{(2)}(S)$ and they generate $S$ , it follows that $P(X)_{+}$ generates
$S.$

It follows that the lattice $S$ with its elements $P(X)_{+}$ is defined by the
Dynkin diagram $\Gamma(P(X)_{+})$ . From $S$ , we can find invariants $(r, a, \delta)$ of $S,$

and they define invariants $(k, g, \delta)$ .
Let $K^{+}(2)\subset S$ be a sublattice generated by $P^{(4)}(X)_{+}(i.$ $e$ . by the

black vertices), and $\xi^{+}:Q=(1/2)K^{+}(2)/K^{+}(2)\rightarrow q_{S}$ the homomor-
phism with $\xi^{+}(x/2+K^{+}(2))=x/2+S$ . By Proposition 3.3, the pair
$(K^{+}(2), \xi^{+})$ coincides with the root invariant $R(X, \theta)$ .

Now assume that $r=$ rk $S=1,2$ for the pair $(X, \theta)$ . Then $S\cong\langle 2\rangle,$

$U(2),$ $U$ or $\langle 2\rangle\oplus\langle-2\rangle.$

In the first two cases $\triangle^{(2)}(S)=\emptyset$ and then $ P^{(2)}(X)_{+}=\emptyset$ . In the last
two cases $\Delta^{(2)}(S)$ and $P^{(2)}(X)_{+}$ are not empty.

Thus, only the first two cases give an empty diagram $P^{(2)}(X)_{+}$ . This
distinguishes these two cases from all others. In the case $ S=\langle 2\rangle$ , the
invariant $g=10$ , and the root invariant is always zero because $S$ has no
elements with square-4. Thus, in this case, the diagram $P(X)_{+}$ is always
empty. This case gives $Y=X/\{1, \theta\}\cong \mathbb{P}^{2}$ . In the case $S=U(2)$ , the
diagram $P^{(2)}(X)_{+}$ is empty, but $ P^{(4)}(X)_{+}=\emptyset$ , if the root invariant is zero,
and $P^{(4)}(X)_{+}$ consists of one black vertex, if the root invariant is not zero
(see Table 1 for this case). First case gives $Y=\mathbb{F}_{0}$ . Second case gives
$Y=\mathbb{F}_{2}$ . In both these cases $g=9$ . Thus difference between two cases
when the diagram is empty $(\mathbb{P}^{2}$ or $\mathbb{F}_{1})$ is in genus: $g=10$ for the first case,
and $g=9$ for the second.

The difference of $S=U(2)$ with a non-empty diagram $\Gamma(P(X)_{+})$ from
all other cases is that this diagram consists of only one black vertex. All
cases with rk $S\geq 3$ must have at least 3 different vertices to generate $S.$

In cases $S=U$ and $ S=\langle 2\rangle\oplus\langle-2\rangle$ , the diagram $\Gamma(P(X)_{+})$ also consists
of one vertex, but it is respectively double transparent and simple transpar-
ent (see Table 1). Moreover, this consideration also shows the difference
between cases $S=U$ and $ S=\langle 2\rangle\oplus\langle-2\rangle$ and with all other cases. $\square $

Theorem 3.5 shows that to classify pairs $(X, \theta)$ of elliptic type, we can
use any of the following invariants: either the root invariant, or the root
subsystem (together with the main invariants$ (k, g, \delta)$ or $(r, a, \delta)$ ), or the
Dynkin diagram of exceptional curves.

It seems that the most natural and geometric is the classification by the
Dynkin diagram. Using this diagram, on the one hand, it easy to calculate
all other invariants. On the other hand, considering the corresponding DPN
surface, we get the Gram diagram of all exceptional curves on it and all
possibilities to get the DPN surface by blow-ups from relatively minimal
rational surfaces.
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However, the statements (i) and (ii) ofTheorem 3.5 are also very impor-
tant since they give a simple way to find out if two pairs $(X, \theta)$ and $(X\prime, \theta’)$

(equivalently, the corresponding DPN surfaces) have isomorphic Dynkin di-
agrams of exceptional curves. Moreover, the classification in terms of root
invariants and root subsystems is much more compact, since the full Gram
diagram of exceptional curves can be very large (e.g. recall the classical
non-singular del Pezzo surface corresponding to $E_{8}$ ).

We have the following

Theorem 3.6 (Classification Theorem in the extremal case of elliptic type).
$AK3$ surface with a non-symplectic involution $(X, \theta)$ ofelliptic type is ex-
tremal, $\iota f$and only $\iota f$ the number of its exceptional curves with the square
$(-4),$ $i.$

$e.$ $\# P^{(4)}(X)_{+}$ , is equal to $\# P^{(4)}(\mathcal{M}^{(2,4)})$ (see Theorem 3.1) where
$\mathcal{M}^{(2,4)}$ is a fundamental chamber of $W^{(2,4)}(S),$ $S=(S_{X})_{+}$ . Equivalently,
numbers ofblack vertices ofDynkin diagrams $\Gamma(P(X)_{+})$ and $\Gamma(P(\mathcal{M}^{(2,4)}))$

with the same invariants $(r, a, \delta)$ are equal.
Moreover, the diagram $\Gamma(P(X)_{+})$ is isomorphic to ($i.$

$e$. coincides with)
$\Gamma(P(\mathcal{M}^{(2,4)}))$ (see Table 1) in all cases ofTheorem 3.1 except cases 7, 8, 9,

10 and20 ofTable 1. In the lastfive cases, allpossible diagrams $\Gamma(P(X)_{+})$

are given in Table 2. All diagrams of Tables 1 and 2 correspond to some
extremal standard $K3$pairs $(X, \theta)$ .

Proof. It requires long considerations and calculations and will be given in
Section 3.4 below. $\square $

Now let us consider a description of non-extremal pairs $(X, \theta)$ . The
worst way to describe them is using full diagrams $\Gamma(P(X)_{+})$ , since the
number of non-extremal pairs $(X, \theta)$ is very large and diagrams $\Gamma(P(X)_{+})$

can be huge. It is better to describe them using Proposition 3.4 and Theo-

rem 3.5, by primitive root subsystems $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’$ in the root subsystems
$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})\subset\triangle^{(4)}(\mathcal{M}^{(2)})$ of extremal pairs $(\tilde{X},\tilde{\theta})$ .

Let us choose $\mathcal{M}^{(2)}$ in such a way that $\mathcal{M}^{(2)}\supset \mathcal{M}(\tilde{X})_{+}$ . By Sec-

tion 2.4.1, then $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})=\triangle^{(4)}([P^{(4)}(\tilde{X})_{+}])$ is the subsystem of roots

with the basis $P^{(4)}(\tilde{X})_{+}$ , i. e. $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})=\triangle^{(4)}([P^{(4)}(\tilde{X})_{+}])$ is the

set of all elements with the square $(-4)$ in the sublattice $[P^{(4)}(\tilde{X})_{+}]$ gen-
erated by $P^{(4)}(\tilde{X})_{+}$ in $S=(S_{\tilde{X}})_{+}$ . Equivalently, $\triangle^{(4)}([P^{(4)}(\tilde{X})_{+}])=$

$W_{+}^{(4)}(\tilde{X})(P^{(4)}(\tilde{X})_{+})$ , where $ W_{+}^{(4)}(\tilde{X})\sim$ is the finite Weyl group generated

by reflections in all elements of $P^{(4)}(X)_{+}.$

Replacing a primitive root subsystem $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})’\subset\triangle^{(4)}([P^{(4)}(\tilde{X})_{+}])$

for a non-extremal pair $(X, \theta)$ by an equivalent root subsystem
$\phi(\triangle_{+}^{(4)}(\mathcal{M}^{(2)})’),$ $\phi\in W_{+}^{(4)}(\tilde{X})$ , we can assume (by primitivity) that a basis
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of $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’$ is a part of the basis $P^{(4)}(\tilde{X})_{+}$ of the root system
$\triangle^{(4)}([P^{(4)}(\tilde{X})_{+}])$ . Thus, we can assume that the root subsystem $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’$

is defined by a subdiagram

$D\subset\Gamma(P^{(4)}(\tilde{X})_{+})$

where $\Gamma(P^{(4)}(\tilde{X})_{+})$ is the subdiagram of the full diagram $\Gamma(P(\tilde{X})_{+})$ gen-
erated by all its black vertices. The $D$ is a basis of $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’.$

By Propositions 2.2, 2.3 and Theorem 2.4, the subdiagram
$D\subset\Gamma(P^{(4)}(\tilde{X})_{+})$ defines the full Dynkin diagram $\Gamma(P(X)_{+})$ of the pair
$(X, \theta)$ with the root subsystem $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})’$ : We have

(66) $P^{(2)}(X)_{+}=\{f\in W_{+}^{(4)}(\tilde{X})(P^{(2)}(\tilde{X})_{+})|f\cdot D\geq 0\}.$

The subdiagram of $\Gamma(P(X)_{+})$ defined by all its black vertices coincides
with $D$ . It is called Du Val part of $\Gamma(P(X)_{+})$ , and it is denoted by
Duv $\Gamma(P(X)_{+})$ . Thus,

Duv $\Gamma(P(X)_{+})=D\subset$ Duv $\Gamma(P(\tilde{X})_{+})$ .

Double transparent vertices of $\Gamma(P(X)_{+})$ are identified with double trans-

parent vertices of $\Gamma(P(\tilde{X})_{+})$ (see Section 2.6), and single transparent ver-
tices of $P(X)_{+}$ which are connected by two edges with double transpar-

ent vertices of $\Gamma(P(X)_{+})$ are identified with such vertices of $\Gamma(P(\tilde{X})_{+})$ .
Indeed, they are orthogonal to the set $P^{(4)}(\tilde{X})_{+}$ which defines the reflec-

tion group $W_{+}^{(4)}(\tilde{X})$ as the group generated by reflections in all elements

of $P^{(4)}(\tilde{X})_{+}$ . Thus, the group $W_{+}^{(4)}(\tilde{X})$ acts identically on all these ver-
tices, and all of them satisfy (66). All double transparent vertices and all
single transparent vertices connected by two edges with double transparent
vertices of $\Gamma(P(X)_{+})$ define the logarithmic part of $\Gamma(P(X)_{+})$ , and it is
denoted by ${\rm Log}\Gamma(P(X)_{+})$ .

Thus, we have

${\rm Log}\Gamma(P(X)_{+})={\rm Log}\Gamma(P(\tilde{X})_{+})$ ,

logarithmic parts of $X$ and $\tilde{X}$ are identified. Moreover, the Du Val part
Duv $\Gamma(P(X)_{+})$ and the logarithmic part ${\rm Log}\Gamma(P(X)_{+})$ are disjoint in
$\Gamma(P(X)_{+})$ because they are orthogonal to each other. Thus, the logarithmic
part of $\Gamma(P(X)_{+})$ is stable, it is the same for all pairs $(X, \theta)$ with the same
main invariants $(r, a, \delta)$ . On the Du Val part of $\Gamma(P(X)_{+})$ we have only a
restriction: it is a subdiagram ofDu Val part of one of extremal pairs $(X, \tilde{\theta})$

described in Theorems 3.1 and 3.6 (with the same main invariants $(r, a, \delta)$ ).

All vertices of $\Gamma(P(X)_{+})$ which do not belong to Duv $\Gamma(P(X)_{+})\cup$

${\rm Log}\Gamma(P(X)_{+})$ define a subdiagram Var $\Gamma(P(X)_{+})$ which is called the
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varying part of $\Gamma(P(X)_{+})$ . By (66), we have

Var $P(X)_{+}=\{f\in W_{+}^{(4)}(\tilde{X})(VarP(\tilde{X})_{+})|f\cdot D\geq 0\}$

(we skip $\Gamma$ when we consider only vertices). It describes Var $\Gamma(P(X)_{+})$ by
the intersection pairing in $S.$

Of course, two Dynkin subdiagrams $D\subset\Gamma(P^{(4)}(\tilde{X})_{+})$ and $ D’\subset$

$\Gamma(P^{(4)}(\tilde{X}’)_{+})$ , with isomorphic Dynkin diagrams $D\cong D’$ , of two extremal

pairs $(\tilde{X},\tilde{\theta})$ and $(\tilde{X}’,\tilde{\theta’})$ with the same main invariants can give isomorphic
Dynkin diagrams $\Gamma(P(X)_{+})$ and $\Gamma(P(X’)_{+})$ for defining by them K3 pairs
$(X, \theta)$ and $(X\prime, \theta’)$ . To have that, it is necessary and sufficient that root
invariants $([D],\xi^{+})$ and $([D’], (\xi’)^{+})$ defined by them are isomorphic. We
remind that they can be obtained by restriction on $[D]$ and $[D’]$ of the root

invariants of pairs $(\tilde{X},\tilde{\theta})$ and $(\tilde{X}’,\tilde{\theta’})$ respectively, and they can be easily
computed. We remind that to have $([D],\xi^{+})$ and $([D’], (\xi’)^{+})$ isomorphic,
there must exist an isomorphism $\gamma$ : $[D]\rightarrow[D’]$ of the root lattices and an
automorphism $\overline{\phi}\in O(q_{S})$ of the discriminant quadratic form of the lattice
$S$ which send $\xi^{+}$ for $(\xi’)^{+}$ . Section 2.5 gives the $veIy$ simple and effective
method for that. Thus, we have a very simple and effective method to find
out when different subdiagrams $D$ above give K3 pairs with isomorphic
diagrams.

Note that we have used all equivalent conditions (i), (ii) and (iii) of
Theorem 3.5 which shows their importance. Finally, we get

Theorem 3.7 (Classification Theorem in the non-extremal, i. e. arbitrary,
case of elliptic type). Dynkin diagrams $\Gamma(P(X)_{+})$ ofexceptional curves of
non-extremal (i. e. arbitmry) non-symplectic involutions $(X, \theta)$ ofelliptic
type of$K3$ surfaces are described by arbitrary (without restrictions) Dynkin
subdiagrams $ D\subset$ Duv $\Gamma(P(\tilde{X})_{+})$ ofextremal pairs $(\tilde{X},\tilde{\theta})$ (see Theorem
3.6) with the same main invariants $(r, a, \delta)$ (equivalently $(k, g, \delta)$). More-
over,

Duv $\Gamma(P(X)_{+})=D,$ ${\rm Log}\Gamma(P(X)_{+})={\rm Log}\Gamma(P(\tilde{X})_{+})$ ,

and they are disjoint to each other,

Var $P(X)_{+}=\{f\in W_{+}^{(4)}(\tilde{X})(VarP(\tilde{X})_{+})|f\cdot D\geq 0\}$

where the gmup $W_{+}^{(4)}(\tilde{X})$ is genemted by reflections in all elements of
Duv $\Gamma(P(\tilde{X})_{+})=P^{(4)}(\tilde{X})_{+}.$

Dynkin subdiagrams $ D\subset$ Duv $\Gamma(P(\tilde{X})_{+}),$ $ D’\subset$ Duv $\Gamma(P(\tilde{X’})_{+})$

(with the same main invariants) give $K3$ pairs $(X, \theta),$ $(X’, \theta’)$ with iso-
morphic Dynkin diagrams $\Gamma(P(X)_{+})\cong\Gamma(P(X’)_{+}),$ $\iota f$ and only $\iota f$ the
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mot invariants $([D], \xi^{+}),$ $([D’], (\xi’)^{+})$ defined by $ D\subset$ Duv $\Gamma(P(\tilde{X})_{+})$ ,

$ D’\subset$ Duv $\Gamma(P(X’)_{+})$ are isomorphic.
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TABLE 2. Diagrams $\Gamma(P(X)_{+})$ of extremal K3 surfaces
$(X, \theta)$ of elliptic type which are different from Table 1

(In (a) we repeat the corresponding case of Table 1)
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3.4. Proof of Classification Theorem 3.6

Let $(X, \theta)$ be a non-symplectic involution of elliptic type of a K3 surface,

with the main invariants $(r, a, \delta)$ , and $(X, \theta)$ is an extremal pair.
By Theorem 3.5, the $\Gamma(P(X)_{+})$ is defined by the root subsystem

$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})\subset\Delta^{(4)}(\mathcal{M}^{(2)})$ corresponding to $(X, \theta)$ where $\mathcal{M}^{(2)}$ is a fun-
damental chamber of $W^{(2)}(S)$ , and $S=(S_{X})_{+}$ has the invariants $(r, a, \delta)$ .
We can assume that $\mathcal{M}^{(2)}\supset \mathcal{M}(X)_{+}\supset \mathcal{M}^{(2,4)}$ where $\mathcal{M}^{(2,4)}$ is a funda-
mental chamber of $W^{(2,4)}(S)$ defined by a choice of a basis $P^{(4)}(\mathcal{M}^{(2,4)})$ of
the root system $\Delta^{(4)}(\mathcal{M}^{(2)})$ (see Section 2.4.1).

Let $\Gamma(P^{(4)}(\mathcal{M}^{(2,4)}))$ be the Dynkin diagram of the root system
$\triangle^{(4)}(\mathcal{M}^{(2)})$ and $W^{(4)}(\mathcal{M}^{(2)})$ the Weyl group of the root system
$\triangle^{(4)}(\mathcal{M}^{(2)})$ . We use the description of root subsystems $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})\subset$

$\triangle(4)(\mathcal{M}^{(2)})$ given below.

3.4.1

Let $T\subset R$ be a root subsystem of a root system $R$ and all components of $R$

have types $A,$ $D$ or $E$ . We consider two particular cases of root subsystems.
Let $B$ be a basis of $R$ . Let $T\subset R$ be a primitive root subsystem. Then

$T$ can be replaced by an equivalent root subsystem $\phi(T),$ $\phi\in W(R)$ , such
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that a part of the basis $B$ gives a basis of $T$ (see [Bou68]). Thus (up to
equivalence defined by the Weyl group $W(R))$ , primitive root subsystems
$T\subset R$ can be described by Dynkin subdiagrams $\Gamma\subset\Gamma(B)$ .

Now let $T\subset R$ be a root subsystem of a finite index. Let $R_{i}$ be a
component of $R$ . Let $r_{j},$ $j\in J$ , be a basis of $R_{i}$ . Let $r_{\max}=\sum_{j\in J}k_{j}r_{j}$ be
the maximal root of $R_{i}$ corresponding to this basis. Dynkin diagram of the
set of roots

$\{r_{j}|j\in J\}\cup\{-r_{\max}\}$

is an extended Dynkin diagram of the Dynkin diagram $\Gamma(\{r_{j}|j\in J\})$ . Let
us replace the component $R_{i}$ of the root system $R$ by the root subsystem
$R_{i}’\subset R_{i}$ having by its basis the set $(\{r_{j}|j\in J\}\cup\{-r_{\max}\})-\{r_{t}\}$ where
$t\in J$ is some fixed element. We get a root subsystem $R’\subset R$ of finite
index $k_{t}$ . It can be shown [Dyn57] that iterations of this procedure give any
root subsystem of finite index of $R$ up to the action of $W(R)$ .

Description of an arbitrary root subsystem $T\subset R$ can be reduced to
these two particular cases, moreover it can be done in two ways.

Firstly, any root subsystem $T\subset R$ is a subsystem of finite index $ T\subset$

$T_{pr}$ where $T_{pr}\subset R$ is a primitive root subsystem generated by $T.$

Secondly, any root subsystem $T\subset R$ can be considered as a primitive
root subsystem $T\subset R_{1}$ where $R_{1}\subset R$ is root subsystem of finite index.
One can take $R_{1}$ generated by $T$ and by any $u=$ rk $R-$ rk $T$ roots $r_{1},$

$\ldots,$
$r_{u}$

such that rk $[T, r_{1}, \ldots, r_{u}]=$ rk $R.$

3.4.2

Here we show that the root subsystems $\triangle_{+}(\mathcal{M}^{(2)})$ which coincide with the
full root systems $\triangle^{(4)}(\mathcal{M}^{(2)})$ can be realized by K3 pairs $(X, \theta)$ . Obviously,
they are extremal. For them $\mathcal{M}(X)_{+}=\mathcal{M}^{(2,4)}$ , and the Dynkin diagrams
$\Gamma(P(X)_{+})=\Gamma(P(\mathcal{M}^{(2,4)}))$ coincide. All these diagrams are described
in Table 1 of Theorem 3.1. It is natural to call such pairs $(X, \theta)$ super-
extremal. Thus, a non-symplectic involution $(X, \theta)$ of elliptic type of K3
(equivalently, the corresponding DPN pair$ (Y, C)$ or DPN surface) is called
super-extremal, if for the corresponding root subsystem $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})\subset$

$\triangle(4)(\mathcal{M}^{(2)})$ we have $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})=\triangle^{(4)}(\mathcal{M}^{(2)})$ (equivalently, $\triangle_{+}^{(4)}=$

$\triangle^{(4)}(S))$ . We have

Proposition 3.8. For anypossible elliptic triplet ofmain invariants $(r, a, \delta)$

there exists a super-extremal, $i.$
$e.$

$\Gamma(P(X)_{+})=\Gamma(P(\mathcal{M}^{(2,4)}))$ ,

and standard (see Section 2. 7) $K3$pair $(X, \theta)$ .
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See the description oftheirgraphs $\Gamma(P(X)_{+})=\Gamma(P(\mathcal{M}^{(2,4)}))$ in Table
1 ofTheorem 3.1.

Proof. Let us consider an elliptic triplet of main invariants $(r, a, \delta)$ and the
corresponding Dynkin diagram $\Gamma(P(\mathcal{M}^{(2,4)}))$ which is described in Theo-
rem 3.1. Denote $K^{+}(2)=[P^{(4)}(\mathcal{M}^{(2,4)})]$ , i. e. it is the sublattice generated
by all black vertices of $\Gamma(P(\mathcal{M}^{(2,4)}))$ . Consider the corresponding root
invariant $(K^{+}(2), \xi^{+})$ , see (64) and (65). Consider $H=Ker\xi^{+}$ . By Propo-
sitions 3.3 and 2.9, there exists a super-extremal standard pair $(X, \theta)$ , if the
inequalities

$r+$ rk $K^{+}+l(\mathfrak{A}_{(K)_{p}}+)<22$ for all prime $p>2,$

$r+a+2l(H)<22$

are valid together with Conditions 1 and 2 from Section 2.7.
By trivial inspection of all cases in Table 1, we can see that first inequal-

ity is valid. To prove second inequality, it is enough to show that $l(H)\leq 1$

since $r+a\leq 18$ in elliptic case. The inequality $l(H)\leq 1$ can be proved by
direct calculation of $l(H)$ in all cases of Table 1 of Theorem 3.1.1. These
calculations are simplified by the general statement.

Lemma 3.9. In elliptic super-extremal case,

$l(H)=\# P^{(4)}(\mathcal{M}^{(2,4)})-l(\mathfrak{A}_{S}^{(1)})$

where $\mathfrak{A}_{S}^{(1)}\subset \mathfrak{A}s$ is the subgmup generated by all elements $x\in \mathfrak{U}s$ such
that $q_{S}(x)=1mod 2$ . Moreover, we have:

If $\delta=0$ then $l(\mathfrak{U}_{S}^{(1)})=a$ except $(a=2$ and $signS=2-r\equiv$ Omod8 $)$ .

In the last case $l(\mathfrak{A}_{S}^{(1)})=a-1.$

If$\delta=1$ , then $l(\mathfrak{U}_{S}^{(1)})=a$ -lexcept cases $(a=2$ and $signS\equiv 0$ mod8$)$,

$(a=3$ and $signS\equiv\pm 1$ mod8$)$, and $(a=4$ and $signS\equiv 0$ mod8$)$ . $In$

these cases $l(\mathfrak{A}_{S}^{(1)})=a-2.$

Proof. We know (see Section 2.4.1) that $\triangle^{(4)}(S)=W^{(2)}(S)(\Delta^{(4)}(\mathcal{M}^{(2,4)}))$ .
The group $W^{(2)}(S)$ acts identically on $\mathfrak{A}s$ . Therefore,

${\rm Im}\xi^{+}=[\{\xi^{+}(f/2+K^{+}(2))|f\in\triangle^{(4)}(\mathcal{M}^{(2,4)})\}]=$

$[\{f/2+S|f\in\Delta^{(4)}(S)\}=\mathfrak{U}_{S}^{(1)}.$

In the last equality, we use Lemma 2.6. For $Q=(K^{+}(2)/2)/K^{+}(2)$ , we
have $l(Q)=$ rk $K^{+}=\# P^{(4)}(\mathcal{M}^{(2,4)})$ . Thus, $l(H)=l(Q)-l(\mathfrak{A}_{S}^{(1)})=$

$\# P^{(4)}(\mathcal{M}^{(2,4)})-l(\mathfrak{A}_{S}^{(1)})$ .
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The remaining statements of Lemma can be proved by direct calcula-
tions using a decomposition of a 2-elementaly non-degenerate finite qua-
dratic form as sum of elementary ones: $q_{\pm 1}^{(2)}(2),$ $u_{+}^{(2)}(2)$ and $v_{+}^{(2)}(2)$ (in nota-
tion of [Nik80b]) . See Appendix, Section A.1.3. $\square $

One can easily check Condition 2 of Section 2.7.
To check Condition 1 of Section 2.7, note that if the lattice $K_{H}^{+}(2)$ has

elements with the square $(-2)$ , then the sublattice $[P^{(4)}(\mathcal{M}^{(2,4)})]_{pr}$ of $S$ also
has elements with the square $(-2)$ . Let us show that this is not the case.

Let us consider the subspace

$\gamma=\bigcap_{(f\in P(4)\mathcal{M}^{(2,4)})}\mathcal{H}_{f}$

of $\mathcal{L}(S)$ which is orthogonal to $[P^{(4)}(\mathcal{M}^{(2,4)})]$ (equivalently, we consider the
corresponding face $\gamma\cap \mathcal{M}^{(2,4)}$ of $\mathcal{M}^{(2,4)}$ ). If the sublattice $[P^{(4)}(\mathcal{M}^{(2,4)})]_{pr}\subset$

$S$ has elements with square $(-2)$ , then some hyperplanes $\mathcal{H}_{e},$ $e\in\Delta^{(2)}(S)$ ,

also contain $\gamma$ and give reflections from $W^{(2,4)}(S)$ . On the other hand (e.g.

see [Vin85] $)$ , all hyperplanes of reflections from $W^{(2,4)}(S)$ containing $\gamma$

must be obtained from the hyperplanes $\mathcal{H}_{f},$ $f\in P^{(4)}(\mathcal{M}^{(2,4)})$ , by the group
generated by reflections in $P^{(4)}(\mathcal{M}^{(2,4)})$ . All these hyperplanes are then
also orthogonal to elements with square $(-4)$ from $S$ . They cannot be or-
thogonal to elements with square $(-2)$ from $S$ too.

This finishes the proof of Proposition 3.8.

3.4.3

Let us prove Theorem 3.6 in all cases except 7–10 and 20 of Table
1. These cases ( $i.$

$e$ . different from 7 – 10 and 20 of Table 1) are
characterized by the property that Dynkin diagram $\Gamma(P^{(4)}(\mathcal{M}^{(2,4)}))$ con-
sists of components of type $A$ only. By Section 3.4.1, any root subsystem
$\Delta_{+}^{(4)}(\mathcal{M}^{(2)})\subset\triangle^{(4)}(\mathcal{M}^{(2)})$ is then primitive. In particular, any root subsys-

tem $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})\subset\Delta^{(4)}(\mathcal{M}^{(2)})$ of finite index is $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})=\Delta^{(4)}(\mathcal{M}^{(2)})$ .
By Proposition 3.8, we then obtain

Proposition 3.10. For any elliptic triplet $(r, a, \delta)$ ofmain invariants which
is d\iota fferentfrom $(6,6,1),$ $(7,7,1),$ $(8,8,1),$ $(9,9,1)$ and $(10,8,1)$, any extremal
$K3$ pair $(X, \theta)$ is super-extremal, $i.$ $e.$ $\Gamma(P(X)_{+})=\Gamma(P(\mathcal{M}^{(2,4)}))$ (see

their description in Table 1 ofTheorem 3.1).

Above, we have proved that the primitive sublattice $[P^{(4)}(\mathcal{M}^{(2,4)})]_{pr}$ in
$S$ generated by $P^{(4)}(\mathcal{M}^{(2,4)})$ has no elements with square-2. The lattice
$[P^{(4)}(\mathcal{M}^{(2,4)})]$ coincides with the root lattice $[\Delta^{(4)}(\mathcal{M}^{(2)})]$ . Thus, its prim-
itive sublattice $[\Delta^{(4)}(\mathcal{M}^{(2)})]_{pr}$ in $S$ also has no elements with square-2.
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This fact is very important. Using (64) and (65), we can define the root

invariant $(K^{+}(2), \xi^{+})$ for any root subsystem $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})\subset\Delta^{(4)}(\mathcal{M}^{(2)})$ .
Like for root subsystems of K3 pairs $(X, \theta)$ , we then have

Lemma 3.11. Root subsystems $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})\subset\Delta^{(4)}(\mathcal{M}^{(2)})$ and $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’$

$\subset\triangle^{(4)}(\mathcal{M}^{(2)})$ are $O(S)$ equivalent, $\iota f$and only $\iota f$ their mot invariants are
isomorphic.

Proof. Assume that the root invariants are isomorphic. Since $\pm 1$ and the
group $W^{(2)}(S)$ act identically on the discriminant form $q_{S}$ , there exists an
automorphism $\phi\in O(S)$ such that $\phi(\Delta^{(4)}(\mathcal{M}^{(2)}))=\Delta^{(4)}(\mathcal{M}^{(2)})$ and,

identifying by $\phi$ the root subsystem $\triangle_{+}^{(4)}(\mathcal{M}^{(2)})\subset\Delta^{(4)}(\mathcal{M}^{(2)})$ with

$\phi(\Delta_{+}^{(4)}(\mathcal{M}^{(2)}))\subset\Delta^{(4)}(\mathcal{M}^{(2)})$ , we have the following. There exists an

isomorphism $\alpha$ : $\Delta_{+}^{(4)}(\mathcal{M}^{(2)})\cong\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’$ of root systems such that

$\alpha(f)/2+S=f/2+S$ for any $f\in\Delta_{+}^{(4)}(\mathcal{M}^{(2)})$ . Equivalently, $(\alpha(f)+$

$f)/2\in S.$

Assume that $\alpha(f)\neq\pm f$ . Then, since $\alpha(f)$ and $f$ are two elements of a
finite root system $\Delta^{(2)}(\mathcal{M}^{(2)})$ which is a sum of $A_{n},$ $D_{m},$ $E_{k}$ , it follows that
either $\alpha(f)\cdot f=\pm 2$ , or $\alpha(f)\cdot f=0$ . First case gives $f\cdot(\alpha(f)+f)/2\equiv 1$

$mod 2$ which is impossible because $f\in S$ is a root. Second case gives that
$\beta=(\alpha(f)+f)/2$ has $\beta^{2}=-2$ which is impossible because $[\Delta^{(4)}(\mathcal{M}^{(2)})]_{pr}$

has no elements with square $-2$ . Thus, $\alpha(f)=\pm f$ . It follows that
$\Delta_{+}^{(4)}(\mathcal{M}^{(2)})=\Delta_{+}^{(4)}(\mathcal{M}^{(2)})’$ are identically the same root subsystems of
$\triangle_{+}^{(4)}(\mathcal{M}^{(2)})$ . $\square $

3.4.4

Now let us consider cases 7–10 and 20 of Table 1. In these cases, the root
system $R=\Delta^{(4)}(\mathcal{M}^{(2)})$ is $D_{5}$ in the case 7, $E_{6}$ in the case 8, $E_{7}$ in the case
9, $E_{8}$ in the case 10, and $D_{8}$ in the case 20.

We have

Lemma 3.12. If $R$ is a mot system ofone of types $D_{5},$ $E_{6},$ $E_{7},$ $E_{8}$ or $D_{8},$

then its mot subsystem $T\subset R$ offinite index is determined by the isomor-
phism type ofthe mot system $T$ itself, up to the action of$W(R)$ . Moreover,

the type of $T$ can be the following and only the following which is given
in Table ofLemma 3.12 below (we identify the type with the isomorphism
class ofthe corresponding mot lattice).

Moreover, in the corresponding cases labelled by $N=7,8,9,10$ and 20

ofTable 1 the above statement is equivalent to thefact that the mot invariant

ofthe corresponding mot subsystem $T\subset R=\Delta^{(4)}(\mathcal{M}^{(2)})$ offinite index is

defined by its type. The mot invariants $(T, \xi^{+})$ for them are given below by
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showing the kernel $H=Ker\xi^{+}$ and the invariants $\alpha$ and $\overline{a},$ $\iota f\alpha=0$ (we

use Proposition 2.8).

Table ofLemma 3.12

The mot invariantsfor $T\subset R$ ofLemma 3.12:

$7a$, D.$5\subset D_{5}$ : with the basis in $T$

$H=$ Omod $T,$ $\overline{a}=(f_{4}+f_{5})/2mod H$ (since $\overline{a}$ is defined, the invariant
$\alpha=0)$ .

$7b,$ $A_{3}\oplus A_{1}\subset D_{5}$ : with the basis (in $T$)

$H=[(f_{1}+f_{2}+f_{3}+f_{5})/2]mod T,$ $\overline{a}=(f_{3}+f_{5})/2mod H.$

$8a,$ $E_{6}\subset E_{6}$ : Then $H=$ Omod $T$ and $\alpha=1$ (it follows that $\alpha=1$

and $\overline{a}$ is not defined for all cases $ 8a\rightarrow$ below).
$8b,$ $A_{1}\oplus A_{5}\subset E_{6}$ : with the basis

$H=[(f_{1}+f_{2}+f_{4}+f_{6})/2]mod T$ and $\alpha=1.$

$8c,$ $3A_{2}\subset E_{6}$ : Then $H=0$ mod Tand $\alpha=1.$

$9a,$ $E_{7}\subset E_{7}$ : with the basis
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$H=0mod T$ andd $=(f_{2}+f_{5}+f_{7})/2mod T.$

$9b,$ $A_{7}\subset E_{7}$ : with the basis

$H=0mod T$ and $\overline{a}=(f_{3}+f_{5}+f_{7})/2mod H.$

$9d,$ $2A_{3}\oplus A_{1}\subset E_{7}$ : with the basis

$H=[(f_{1}+f_{3}+f_{4}+f_{6})/2]mod T$ and $\overline{a}=(f_{1}+f_{3}+f_{7})/2mod H.$

$9e,$ $D_{6}\oplus A_{1}\subset E_{7}$ : with the basis

$H=[(f_{1}+f_{2}+f_{4}+f_{6})/2]mod T$ and $\overline{a}=(f_{1}+f_{6}+f_{7})/2mod H.$

$9f,$ $D_{4}\oplus 3A_{1}\subset E_{7}$ : with the basis

$H=[(f_{1}+f_{2}+f_{4}+f_{6})/2, (f_{2}+f_{3}+f_{6}+f_{7})/2]mod T$ and $\overline{a}=$

$(f_{1}+f_{2}+f_{3})/2mod H.$

$9g,$ $7A_{1}\subset E_{7}$ : with the basis $f_{v},$ $v\in \mathbb{P}^{2}(F_{2})$ where $\mathbb{P}^{2}(F_{2})$ is the

projective plane over the field $F_{2}$ with two elements, the group $H$ is gen-

erated by $(\sum_{v\in P^{2}(F_{2})-l}f_{v})/2$ where $l$ is any line in $\mathbb{P}^{2}(F_{2})$ . The element

$\overline{a}=(\sum_{v\in l}f_{v})/2$ where $l$ is any line in $\mathbb{P}^{2}(F_{2})$ .
$10a,$ $E_{8}\subset E_{8}$ : Then $H=$ Omod $T$ and $\alpha=1$ (it follows that $\alpha=1$

and the element $\overline{a}$ is not defined for all cases $10a-0$).
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$10b,$ $A_{8}\subset E_{8}$ : Then $H=$ Omod $T$ and $\alpha=1.$

$10c,$ $A_{7}\oplus A_{1}\subset E_{8}$ : with the basis

$H=[(f_{2}+f_{4}+f_{6}+f_{8})/2]mod T$ and $\alpha=1.$

$10d,$ $A_{5}\oplus A_{2}\oplus A_{1}\subset E_{8}$ : with the basis

$H=[(f_{1}+f_{4}+f_{6}+f_{8})/2]mod T$ and $\alpha=1.$

$10e,$ $2A_{4}\subset E_{8}$ : Then $H=0mod Tand\alpha=1.$

$10f,$ $D_{8}\subset E_{8}$ : with the basis

$H=[(f_{1}+f_{3}+f_{5}+f_{7})/2]mod T$ and $\alpha=1.$

$10g,$ $D_{5}\oplus A_{3}\subset E_{8}$ : with the basis

$H=[(f_{1}+f_{3}+f_{7}+f_{8})/2]mod T$ and $\alpha=1.$

$10h,$ $E_{6}\oplus A_{2}\subset E_{8}$ : Then $H=0$ and $\alpha=1.$

$10i,$ $E_{7}\oplus A_{1}\subset E_{8}$ : with the basis

$H=[(f_{1}+f_{2}+f_{4}+f_{8})/2]mod T$ and $\alpha=1.$

$10j,$ $D_{6}\oplus 2A_{1}\subset E_{8}$ : with the basis

$H=[(f_{1}+f_{3}+f_{5}+f_{7})/2, (f_{2}+f_{3}+f_{5}+f_{8})/2]mod T$ and $\alpha=1.$

$10k,$ $2D_{4}\subset E_{8}$ : with the basis
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$H=[(f_{1}+f_{2}+f_{5}+f_{6})/2, (f_{2}+f_{3}+f_{6}+f_{7})/2]mod T$ and $\alpha=1.$

101, $2A_{3}\oplus 2A_{1}\subset E_{8}$ : with the basis

$H=[(f_{1}+f_{3}+f_{7}+f_{8})/2, (f_{4}+f_{6}+f_{7}+f_{8})/2]mod T$ and $\alpha=1.$

$10m,$ $4A_{2}\subset E_{8}$ : Then $H=0mod T$ and $\alpha=1.$

$10n,$ $D_{4}\oplus 4A_{1}\subset E_{8}$ :

$H=[(f_{1}+f_{2}+f_{5}+f_{6})/2, (f_{2}+f_{3}+f_{6}+f_{7})/2, (f_{5}+f_{6}+f_{7}+f_{8})/2]$

$mod T$ and $\alpha=1.$

100, $8A_{1}\subset E_{8}$ : with the basis $f_{v},$ $v\in V$ and $V$ has the stmcture of 3-
dimensional affine space over $F_{2}$ , the group $H$ is generated by $(\sum_{v\in\pi}f_{v})/2$

where $\pi\subset V$ is any 2-dimensional affine subspace in $V$ . The invariant
$\alpha=1.$

$20a,$ $D_{8}\subset D_{8}$ : with the basis $f_{1},$

$\ldots,$
$f_{8}$ shown below

$H=[(f_{1}+f_{3}+f_{5}+f_{7})/2]mod T,$ $\overline{a}=(f_{7}+f_{8})/2mod H.$

$20b,$ $D_{6}\oplus 2A_{1}\subset D_{8}$ : with the basis

$H=[(f_{1}+f_{3}+f_{5}+f_{7})/2, (f_{2}+f_{3}+f_{5}+f_{8})/2]mod T$ and $\overline{a}=(f_{7}+f_{8})/2$

$mod H.$

$20c,$ $D_{5}\oplus A_{3}:w$ith the basis
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$H=[(f_{1}+f_{3}+f_{7}+f_{8})/2]mod T$ and $\overline{a}=(f_{7}+f_{8})/2mod H.$

$20d,$ $2D_{4}\subset D_{8}$ : with the basis

$H=[(f_{1}+f_{2}+f_{5}+f_{6})/2, (f_{2}+f_{3}+f_{6}+f_{7})/2]mod T$ and $\overline{a}=(f_{6}+f_{7})/2$

$mod H.$

$20e,$ $2A_{3}\oplus 2A_{1}\subset D_{8}$ : with the basis

$H=[(f_{1}+f_{3}+f_{7}+f_{8})/2, (f_{4}+f_{6}+f_{7}+f_{8})/2]mod T$ and $\overline{a}=(f_{7}+f_{8})/2$

$mod H.$

$H=[(f_{1}+f_{2}+f_{5}+f_{6})/2, (f_{2}+f_{3}+f_{6}+f_{7})/2, (f_{5}+f_{6}+f_{7}+f_{8})/2]$

$mod T$ and $\overline{a}=(f_{7}+f_{8})/2mod H.$

$20g,$ $8A_{1}\subset D_{8}$ : with the basis $f_{v},$ $v\in V$ and $V$ has the stmcture of 3-
dimensional affine space over $F_{2}$ , the group $H$ is generated by $(\sum_{v\in\pi}f_{v})/2$

where $\pi\subset V$ is any 2-dimensional affine subspace in $V$ . The element
$\overline{a}=(f_{v1}+f_{v}2)/2mod H$ where $v_{1}v_{2}$ is a fixed non-zero vector in $V$ . This
stmcture can be seen in Figure 4 below.

Proof of Lemma 3.12. Let us consider cases $N=7,8,9,10$ and 20
of the main invariants $S$ in Table 1. By Lemma 2.5, the canonical homo-
morphism $O(S)\rightarrow O(q_{S})$ is epimorphic. Since $\pm 1$ acts identically on the
2-elementary form $q_{S}$ , it follows that $O’(S)\rightarrow O(q_{S})$ is epimorphic. The
group $O’(S)$ is the semi-direct product of $W^{(2,4)}(S)$ and the automorphism
group of the diagram $\Gamma(P(\mathcal{M}^{(2,4)}))$ . The last group is trivial in all these

cases. Thus $W^{(2,4)}(S)\rightarrow O(q_{S})$ is epimorphic. The group $W^{(2,4)}(S)$ is the
semi-direct product of $W^{(2)}(S)$ and the symmetly group $W^{(4)}(\mathcal{M}^{(2)})$ of the
fundamental chamber $\mathcal{M}^{(2)}$ . The group $W^{(2)}(S)$ acts identically on $O(q_{S})$ .
It follows that the corresponding homomorphism $W^{(4)}(\mathcal{M}^{(4)})\rightarrow 0(q_{S})$ is
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epimorphic. Here $W^{(4)}(\mathcal{M}^{(2)})$ is exactly the Weyl group of the root system
$R$ defined by black vertices of the diagram $\Gamma(P(\mathcal{M}^{(2,4)}))$ .

$N=7$ : Then $q_{S}\cong q_{1}^{(2)}(2)\oplus q_{-1}^{(2)}(2)\oplus u_{+}^{(2)}(2)\oplus v_{+}^{(2)}(2)$ (we use notation
of [Nik80b]), and $R=D_{5}$ . By direct calculation (using Lemma 2.7), we get
$\# O(q_{S})=5\cdot 3\cdot 2^{7}$ . It is known [Bou68], that $\# W(D_{5})=5\cdot 3\cdot 2^{7}$ . Thus
we get the canonical isomorphism $W(D_{5})\cong O(q_{S})$ . By Lemma 3.11, it
follows that any two root subsystems $T_{1}\subset D_{5}$ and $T_{2}\subset D_{5}$ are conjugate
by $W(D_{5})$ , if and only if their root invariants $(T_{1}, \xi_{1}^{+})$ and $(T_{2}, \xi_{2}^{+})$ are
isomorphic.

In all other cases considerations are the same.
$N=8$ : Then $q_{S}\cong q_{-1}^{(2)}(2)\oplus v_{+}^{(2)}(2)\oplus 2u_{+}^{(2)}(2)$ and $R=E_{6}$ . We have

$\# O(q_{S})=\# W(E_{6})=5\cdot 3^{4}\cdot 2^{7}$ . It follows, $W(E_{6})\cong O(q_{S})$ .
$N=9$ : Then $q_{S}\cong 2q_{1}^{(2)}(2)\oplus 3u_{+}^{(2)}(2)$ and $R=E_{7}$ . We have $\# O(q_{S})=$

$\# W(E_{7})=7\cdot 5\cdot 3^{4}\cdot 2^{10}$ . It follows, $W(E_{7})\cong O(q_{S})$ .
$N=10$ : Then $q_{S}\cong q_{1}^{(2)}(2)\oplus 4u_{+}^{(2)}(2)$ and $R=E_{8}$ . We have $\# O(q_{S})=$

$7\cdot 5^{2}\cdot 3^{5}\cdot 2^{13}$ and $\# W(E_{8})=7\cdot 5^{2}\cdot 3^{5}\cdot 2^{14}$ . It follows that the homomorphism
$W(E_{8})\rightarrow O(q_{S})$ is epimorphic and has the kemel $\pm 1.$

$N=20$ : Then $q_{S}\cong q_{1}^{(2)}(2)\oplus q_{-1}^{(2)}(2)\oplus 3u_{+}^{(2)}(2)$ and $R=D_{8}$ . We have
$\# O(q_{S})=7\cdot 5\cdot 3^{2}\cdot 2^{13}$ and $\# W(E_{8})=7\cdot 5\cdot 3^{2}\cdot 2^{14}$ . It follows that the
homomolphism $W(D_{8})\rightarrow O(q_{S})$ is epimorphic and has the kemel $\pm 1.$

Any root subsystem $T\subset R$ of finite index can be obtained by the pro-
cedure described in Section 3.4.1. In each case $N=7,8,9,10$ and 20
of $R$, applying this procedure, it is $veIy$ easy to find all root subsystems
$T\subset R$ of finite index and calculate their root invariants. One can see that it
is plescribed by the type of the root system $T$ itself. We leave these routine
calculations to a reader. They are presented above and will be also very
important for further considerations.

This finishes the proof of Lemma 3.12.

Remark 3.13. As in the proof above, using the homomorphism $W^{(4)}(\mathcal{M}^{(2)})$

$\rightarrow O(q_{S})$ , one can give the direct proof of the important Lemma 2.5 in all
elliptic cases of main invariants. Indeed, it is easy to study its kemel and
calculate orders of the groups. This proof uses calculations of $W^{(2,4)}(S)$

and $O(S)$ of Theorem 3.5.

Consider a root subsystem $T\subset R$ of Lemma 3.12. By Theorem 2.4, the

root subsystem $T\subset R$ defines a subset $\triangle_{+}^{(4)}(S)\subset\Delta^{(4)}(S)$ , the correspond-

ing reflection group $W_{+}^{(2,4)}$ , and Dynkin diagram $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ of its fun-

damental chamber $\mathcal{M}_{+}^{(2,4)}$ . Direct calculation of these diagrams using The-

orem 2.4 gives diagrams of Table 2 of Theorem 3.6 (where $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$

is replaced by $\Gamma(P(X)_{+}))$ in all cases $7a,$ $b;8a-c;9a-f;10a-m$ ;
$20a-d$ . In the remaining cases $9g;10n,$ $0;20e-g$ we get diagrams



3.4. PROOF OF CLASSIFICATION THEOREM 79

$\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ which we describe below. Details of these calculations are
presented in Appendix, Sections A.4.2-A.4.6.

In the Case $9g$, it is better to describe $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ indirectly. Its black
vertices correspond to all points of $\mathbb{P}^{2}(F_{2})$ which is the projective plane
over the field $F_{2}$ with two elements. Its transparent vertices correspond
to all lines in $\mathbb{P}^{2}(F_{2})$ . Both sets have seven elements. Black vertices are
disjoint; transparent vertices are also disjoint; a black vertex is connected
with a transparent vertex by the double edge, if the corresponding point
belongs to the corresponding line, otherwise, they are disjoint.

In the Case $10n$, the diagram $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ is given below in Figure 1.
Since it is quite complicated, we divide it in three subdiagrams shown. The
first one shows all its edges connecting black and transparent vertices. The
second one shows the edge connecting the transparent vertices numerated
by 1 and 2. The third one shows edges connecting transparent vertices 3
–12. Each edge of $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ is shown in one of these diagrams. All
other our similar descriptions of diagrams as unions of their subdiagrams
have the same meaning. In particular, we have used it in some diagrams of
Table 2.

In the Case 100, we describe the diagram $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ indirectly. Its
black vertices $f_{v},$ $v\in V$ , correspond to all points of a three-dimensional
affine space $V$ over $F_{2}$ . Its transparent vertices are of two types. Vertices
$e_{v}$ of the first type also correspond to all points $v\in V$ . Vertices $e_{\pi}$ of
the second type correspond to all (affine) planes $\pi\subset V$ (there are 14 of
them). Black vertices $f_{v}$ are disjoint. $A$ black vertex $f_{v}$ is connected with
a transparent vertex $e_{v’}$ , if and only if $v=v’$ ; the edge has the weight $\sqrt{8}.$

A black vertex $f_{v}$ is connected with a transparent vertex $e_{\pi}$ , if and only if
$ v\in\pi$ ; the edge is double. Transparent vertices $e_{v},$ $e_{v’}$ are connected by a
thick edge. $A$ transparent vertex $e_{v}$ is connected with a transparent vertex
$e_{\pi}$ , if and only if $ v\not\in\pi$ ; the edge is thick. Transparent vertices $e_{\pi},$ $e_{\pi’}$ are
connected by edge, if and only if $\pi\Vert\pi’$ ; the edge is thick.

In Cases $20e,$ $20f$and $20g$ diagrams $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ are shown in figures
2-4 below.

We remark that a calculation of $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ in cases 7a,b, 8a-c,
9a-g and 10a-0 can be obtained from results of [BBD84] where (in

our notation) the dual diagram of all exceptional curves on the quotient
$Y=X/\{1, \theta\}$ is calculated using completely different method (under the
assumption that $Y$ does exist). By Section 2.5, both diagrams can be easily
obtained from one another (compare with Section 3.5 below). Therefore,

we explain our method of calculation of $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ in more details than
it has done in Section 2.4.1 only in the Case 20 (i. e. cases 20a-g) .
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FIGURE 1. The diagram $10n$

FIGURE 2. The diagram $20e$
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FIGURE 3. The diagram $20f$

FIGURE 4. The diagram $20g$

In the Case 20, the lattice $S$ has invariants $(r, a, \delta)=(10,8,1)$ , and
we can take in $S\otimes \mathbb{Q}$ an orthogonal basis $h,$ $\alpha,$ $v_{1},$

$\ldots,$
$v_{8}$ with $h^{2}=2,$

$\alpha^{2}=v_{1}^{2}=\cdots=v_{8}^{2}=-2$ . As $P(\mathcal{M}^{(2,4)})$ , we can take

(67)

$P^{(4)}(\mathcal{M}^{(2,4)})=\{f_{1}=v_{1}-v_{2},$ $f_{2}=v_{2}-v_{3},$ $f_{3}=v_{3}-v_{4},$ $f_{4}=v_{4}-v_{5},$

$f_{5}=v_{5}-v_{6}, f_{6}=v_{6}-v_{7}, f_{7}=v_{7}-v_{8}, f_{8}=v_{7}+v_{8}\},$

and

$P^{(2)}(\mathcal{M}^{(2,4)})=\{\alpha, b=\frac{h}{2}-\frac{\alpha}{2}-v_{1}, c=h-\frac{1}{2}(v_{1}+v_{2}+\cdots+v_{8})\}.$

These elements have Dynkin diagram
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of the case $20a$, and they generate and define $S.$

By Section 2.4.1, the set $P^{(2)}(\mathcal{M}^{(2)})$ , where $\mathcal{M}^{(2)}\supset \mathcal{M}^{(2,4)}$ , is

$W^{(4)}(\mathcal{M}^{(2)})(\{\alpha, b, c\})$

where $W^{(4)}(\mathcal{M}^{(2)})$ is generated by reflections in $f_{1},$

$\ldots,$
$f_{8}$ . It follows that

$P(\mathcal{M}^{(2)})=P^{(2)}(\mathcal{M}^{(2)})=\{\alpha;b_{\pm i};c_{i_{1}\ldots i_{k}}\}$

where
$b_{\pm i}=\frac{h}{2}-\frac{\alpha}{2}\pm v_{i}, i=1,2, \ldots, 8$ ;

$c_{i_{1}\ldots i_{k}}=h+\frac{1}{2}(v_{1}+v_{2}+\cdots+v_{8})-v_{i_{1}}-\cdots-v_{i_{k}},$

where $1\leq i_{1}<i_{2}<\cdots<i_{k}\leq 8$ and $ k\equiv$ Omod2. Here all $b_{\pm i}$ give the
$W^{(4)}(\mathcal{M}^{(2)})$ -orbit of $b$, and all $c_{i_{1}\ldots i_{k}}$ give the $W^{(4)}(\mathcal{M}^{(2)})$ -orbit of $c.$

Elements $f_{1},$

$\ldots,$
$f_{8}$ give a basis of the root system $R$ of type $D_{8}$ . If

$T\subset R$ is its subsystem of rank $m$ , and $t_{1},$

$\ldots,$
$t_{m}$ a basis of $T$ , then the fun-

damental chamber $\mathcal{M}_{+}^{(2,4)}\subset \mathcal{M}^{(2)}$ defined by $T$ and by its basis $t_{1},$

$\ldots,$
$t_{m}$

has $P(\mathcal{M}_{+}^{(2,4)})=P^{(4)}(\mathcal{M}_{+}^{(2,4)})\cup P^{(2)}(\mathcal{M}_{+}^{(2,4)})$ where

$P^{(4)}(\mathcal{M}_{+}^{(2,4)})=\{t_{1}, \ldots, t_{m}\},$

(68) $P^{(2)}(\mathcal{M}_{+}^{(2,4)})=\{\alpha\}\cup\{b_{\pm i}|b_{\pm i}\cdot t_{s}\geq 0,1\leq s\leq m\}$

$\cup\{c_{i_{1}\ldots i_{k}}|c_{i_{1}\ldots i_{k}}\cdot t_{s}\geq 0,1\leq s\leq m\}.$

This describes $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ completely.
For example, assume that $T\subset R$ has the type $2A_{1}\oplus D_{6}$ with the basis

$f_{1},$ $f_{9}=-v_{1}-v_{2},$ $f_{3}$ , . . ., $f_{8}$ . Then we get (after simple calculations)

$P^{(2)}(\mathcal{M}_{+}^{(2,4)})=\{\alpha, b_{+2}, b_{-3}, c_{345678}, c_{134567}\},$

and $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ is

This gives Case $20b$ of Table 2.
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Exactly the same calculations of $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ can be done in all cases
$20a-g$ , and cases $7a,b-10a-0$ of Table of Lemma 3.12 as well. See
Appendix, Sections A.4.$2-A.4.6.$

3.4.5

Here we prove

Proposition 3.14. Cases $9g,$ $10n,0$ and 20 $e-g$ ofmot subsystems $T\subset R$

ofLemma 3.12 do not correspond to non-symplectic involutions $(X, \theta)$ of
$K3$ (in chamcteristic $0$ and even in chamcteristic $\geq 3$).

Proof. Assume that a root subsystem $T\subset R$ corresponds to a K3 pair
$(X, \theta)$ . Then the corresponding Dynkin diagram $\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ given in
Section 3.4.4 coincides with Dynkin diagram $\Gamma(P(X)_{+})$ of exceptional
curves of the pair $(X, \theta)$ . It follows the dual diagram of exceptional curves
$\Gamma(P(Y))$ on the corresponding DPN surface $Y=X/\{1, \theta\}$ (see Section
2.4). Using this diagram, it is easy to find a sequence of exceptional curves
$E_{1},$

$\ldots,$
$E_{k}$ on $Y$ where $k=r-1$ such that their contraction gives a mor-

phism $\sigma$ : $Y\rightarrow \mathbb{P}^{2}$ . Then other $(different from E_{1}, \ldots, E_{k})$ exceptional
curves on $Y$ corresponding to Du Val and logarithmic part of $\Gamma(P(Y))$ give
a configuration of rational curves on $\mathbb{P}^{2}w$hich cannot exist in characteristic
$0$ and even in characteristic $\geq 3$ (but it exists in characteristic 2). In cases
$9g;10n,0;20e,f$we get Fano’s configuration of seven lines of the finite pro-
jective plane over $F_{2}$ which can exist only in characteristic 2. In the case
$9g$ one should contract exceptional curves corresponding to all transparent
vertices. In the case $10n$ – corresponding to vertices 1, $f,$ $3-8$ . In the
case 100 – corresponding to vertices $e_{\pi}$ where $\pi$ contains a fixed point
$0\in V$ and $e_{0}$ ; then curves corresponding to $f_{v},$ $v\neq 0$ , give Fano’s configu-
ration. In cases $20e,f-$ corresponding to vertices 1–9. In the case $20g-$
corresponding to veltices 1–9, then we get a conic (corresponding to the
double transparent vertex) and four its tangent lines (corresponding to black
vertices different from 5–8) passing through one point. It is possible only
in characteristic 2. $\square $

Another purely arithmetic proof of Proposition 3.14 (over $\mathbb{C}$) can be
obtained using Proposition 2.10. This proof is more complicated, but it can
also be done. Here we preferred shorter and geometric considerations (if

diagrams have calculated). $\square $

3.4.6

Here we prove
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Proposition 3.15. Cases $7a,b;8a-c,$ $9a-f\cdot 10a-m$ and $20a-d$ of Ta-
ble 2 of Theorem 3.6 correspond to standard extremal non-symplectic $K3$

involutions $(X, \theta)$ .

Proof. Let us calculate root invariants $(K^{+}(2), \xi^{+})$ corresponding to these

cases.
Consider the sequence of embeddings of lattices

$K^{+}(2)=[T]\subset[R]\subset S.$

It defines the homomorphism

$\xi^{+}:Q=\frac{1}{2}K^{+}(2)/K^{+}(2)\rightarrow S^{*}/S\subset\frac{1}{2}S/S$

with the kemel $H$ . It can be decomposed as

(69) $\xi^{+}:Q\rightarrow^{\xi^{+}\tilde{}}\frac{1}{2}[R]/[R]\rightarrow^{\xi_{R}^{+}}S^{*}/S\subset\frac{1}{2}S/S.$

Let $H_{R}=Ker\xi_{R}^{+}$ . Then $H=(\tilde{\xi}^{+})^{-1}(H_{R})$ . As we know (from our con-
siderations in the super-extremal case), $H_{R}=0$ in cases 7, 8, 9, 10. In the
case 20, the $H_{R}=\mathbb{Z}/2\mathbb{Z}$ is

$H_{R}=[\frac{1}{2}(f_{1}+f_{3}+f_{5}+f_{7})+R]/[R]$

(see Section 3.4.4 about this case). Thus, $H$ can be identified with $H=$

$(\frac{1}{2}[T]\cap[R])/[T]$ in cases 7, 8, 9, 10, and with

$H=(\frac{1}{2}[T]\cap[\frac{1}{2}(f_{1}+f_{3}+f_{5}+f_{7})+R])/[T]$

in the case 20.
Further details of this calculations in all cases $N=7,8,9,10$ and 20 are

presented in Lemma 3.12.
From these calculations, we get values of $l(H)$ given in Table 2 of The-

orem 3.6.
As in Section 3.4.2, using Proposition 2.9, one can prove that all these

cases when

(70) $r+a+2l(H)<22$

correspond to standard extremal non-symplectic K3 involutions $(X, \theta)$ . The-
refore, we only need to consider cases when the inequality (70) fails. There
are exactly five such cases: $10j,k,1$ and $20b,d$ . Further we consider these
cases only.

Below we use some notations and results from [Nik80b] about lattices
and their discriminant forms. They are all presented in Appendix, Sections
A. 1, $A$ .2.
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In cases $10j,k,1$ the discriminant form of $S$ is $q_{S}=q_{1}^{(2)}(2)\oplus 4u_{+}^{(2)}(2)$ .
Here, the generator of the first summand $q_{1}^{(2)}(2)$ gives the characteristic

element $a_{q_{S}}$ of the $q_{S}$ , and the second summand $4u_{+}^{(2)}(2)$ gives the image of
$\xi_{R}^{+}$ from (69), by Lemma 3.9. Thus, the image of $\xi^{+}$ belongs to $4u_{+}^{(2)}(2)$ .
The discriminant form of the lattice $M$ (from 2.7) is obtained as follows.
Let

$\Gamma_{\xi}+\subset Q\oplus \mathfrak{U}s\subset \mathfrak{U}_{K+}(2)\oplus \mathfrak{A}s$

be the graph of the homomorphism $\xi^{+}$ in $\mathfrak{U}_{K}+(2)\oplus \mathfrak{A}s$ . Then

(71) $q_{M}=(q_{K+(2)}\oplus q_{S}|(\Gamma_{\xi+})_{q_{K+}}^{\perp})/\Gamma_{\xi}+(2)^{\oplus qs}$

(here $\Gamma_{\xi}+$ is an isotropic subgroup).Therefore, $q_{M}\cong q_{1}^{(2)}(2)\oplus q’$ since the

image of $\xi^{+}$ belongs to the orthogonal complement of the summand $q_{1}^{(2)}(2)$ .
Considerations in the proof of Proposition 2.9 show that

(72) $rk$ $M+l(\mathfrak{U}_{M_{2}})\leq 22$

since $r+a+2l(H)=22$ in cases $10j,k,1$ . It is easy to see that

rk $M+l(\mathfrak{U}_{M_{p}})<22$

for all prime $p>2$ . Then, by Theorem 1.12.2 in $[Nik80b]$ (see Appen-
dix, Theorem A.5), there exists a primitive embedding $M\subset L_{K3}$ when
either the inequality (72) is strict or $q_{M_{2}}\cong q_{\pm 1}^{(2)}(2)\oplus q’$ , if it gives the equal-
ity. Thus, it always does exist. It follows that all cases $10j,k,1$ correspond
to standard extremal non-symplectic K3 involutions $(X, \theta)$ by Proposition
2.10 (where we used fundamental Global Torelli Theorem [PS-Sh71] and
$su\dot{\eta}$ectivity of Torelli map [Ku177] for K3).

In cases $20b,d$ , the proof is exactly the same, but it is more difficult to

prove that $q_{M_{2}}\cong q_{\theta}^{(2)}(2)\oplus q’$ where $\theta=\pm 1$ . In these cases

$q_{S}=3u_{+}^{(2)}(2)\oplus q_{1}^{(2)}(2)\oplus q_{-1}^{(2)}(2)$ .

If $\alpha_{1}$ and $\alpha_{2}$ are generators ofthe summands $q_{1}^{(2)}(2)$ and $q_{-1}^{(2)}(2)$ respectively,
then $\alpha_{q_{S}}=\alpha_{1}+\alpha_{2}$ is the characteristic element of $q_{S}$ , and the image

of $\xi^{+}$ belongs to $3u_{+}^{(2)}(2)\oplus[\alpha_{qs}]$ . In these cases, the lattice $K_{H}^{+}(2)$ (see

Section 2.7) is isomorphic to $E_{8}(2)$ . For example, this is valid because the
subgroups $H$ are the same in cases $10j$ and $20b$ , and in cases $10k$ and $20d,$

besides, in cases $10j$ and $10k$ we have $E_{8}/K^{+}\cong H$ . It follows that

$q_{K_{H}^{+}(2)(2)}=(q_{K+}|(H)_{q_{K(2)}}^{\perp}+)/H\cong q_{E_{8}(2)}\cong 4u_{+}^{(2)}(2)$ .

We set $\overline{\Gamma}_{\xi}+=\Gamma_{\xi}+/H$ . By (71)

$q_{M}=(q+\oplus q_{S}|(\overline{\Gamma}_{\xi+})_{q_{K_{H}^{+}(2)^{\oplus q_{S}}}}^{\perp})/\overline{\Gamma}_{\xi}+.$
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We have $q_{K_{H}^{+}(2)}\oplus q_{S}=7u_{+}^{(2)}(2)\oplus q_{1}^{(2)}(2)\oplus q_{-1}^{(2)}(2)$ . Since $u_{+}^{(2)}(2)$ takes

values in $\mathbb{Z}/2\mathbb{Z}$ , the element $\alpha_{qs}$ (more exactly,$ 0\oplus\alpha_{q_{S}}$ ) is the characteristic

element of $q_{K_{H}^{+}(2)}\oplus q_{S}$ again. Moreover, $\alpha_{q_{S}}\not\in\overline{\Gamma}_{\xi}+$ since $\Gamma_{\xi}+$ is the graph

of a homomorphism with the kemel $H$ . Therefore $(\overline{\Gamma}_{\xi+})_{q_{K_{H}^{+}(2)}\oplus qs}^{\perp}$ contains

$v$ which is not orthogonal to $\alpha_{q_{S}}$ . Then

$(q_{K_{H}^{+}(2)}\oplus q_{S})(v)=\pm\frac{1}{2} mod 2$

and
$[v mod \overline{\Gamma}_{\xi+}]\cong q_{\theta}^{(2)}(2), \theta=\pm 1,$

is the orthogonal summand of $q_{M_{2}}$ we were looking for. $\square $

Remark 3.16. We can give another proof of Proposition 3.15 which uses
Theorem 1.5 and considerations which are inverse to the proof of the pre-
vious Proposition 3.14. Indeed, by Theorem 1.5, it is enough to prove exis-
tence of rational surfaces with Picard number $r$ and configuration of rational
curves defined by Dynkin diagram ofTable 2 ofTheorem 3.6 (assuming that
these Dynkin diagrams correspond to K3 pairs $(X, \theta)$ and considering the
quotient by $\theta$). One can prove existence of these rational surfaces consid-
ering appropriate sequences of blow-ups of appropriate relatively minimal
rational surfaces $\mathbb{P}^{2},$ $\mathbb{F}_{0},$ $\mathbb{F}_{1},$ $\mathbb{F}_{2},$ $\mathbb{F}_{3}$ or $\mathbb{F}_{4}$ with appropriate configurations of
rational curves defined by Dynkin diagrams of Table 2 of Theorem 3.6 (see

the proof of Proposition 3.14). This proof does not use Global Torelli The-
orem and surjectivity of Torelli map for K3. This gives a hope that results
of Chapter 2 and Chapter 3 can be generalized to characteristic $p>0$ . Un-
fortunately, we have proved Theorem 1.5 in characteristic $0$ only. Thus, we
preferred the proof of Proposition 3.15 which is independent of the results
of Chapter 1.

3.4.7

To finish the proof of Theorem 3.6, we need to prove only

Proposition 3.17. Let $(X, \theta)$ be a non-symplectic involution of $K3$ which
corresponds to one ofcases 7–10 or 20 ofTable 1 ofTheorem 3.1 and a
mot subsystem $T\subset R=\Delta^{(4)}(\mathcal{M}^{(2)})$ .

If $(X, \theta)$ is extremal, then rk $T=$ rk $R.$

Proof. We can assume (see Section 3.4.1) that $T$ has a basis which gives a
part of a basis of a root subsystem $\tilde{T}\subset R=\triangle^{(4)}(\mathcal{M}^{(2)})$ of the same rank

rk $\tilde{T}=$ rk $R$ . Then $\tilde{T}\subset R$ is one of root subsystems of Lemma 3.12. If

the root subsystem $\tilde{T}\subset R$ corresponds to a non-symplectic involution of
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K3, i. e. $\tilde{T}$ gives cases $7a-b,$ $8a\rightarrow,$ $9a-f,$ $10a-m$ and $20a-d$ , then $T$

is extremal, only if $T=\tilde{T}$ (by definition). Then rk $T=$ rk $\tilde{T}=$ rk $R$ as
we want. Thus, it is enough to consider $\tilde{T}$ of cases $9g,$ $10n-0,20e-g$ and
$T\subset T$ to be a primitive root subsystem of a strictly smaller rank.

Below we consider all these cases. The following is very important. In
Lemma 3.12 we calculated root invariants of root subsystems $T\subset R$ of
finite index. Restricting the root invariant of $\tilde{T}$ on a root subsystem $T\subset\tilde{T},$

we get the root invariant of $T\subset R$ . In considerations below, we always
consider $T\subset R$ together with its root invaniant. Two root subsystems of
$R$ are considered to be the same, if and only if they are isomorphic root
systems together with their root invariants: then they give equivalent root
subsystems (even with respect to the finite Weyl group $W^{(4)}(\mathcal{M}^{(2)})$ , see the
proof of Lemma 3.12) and isomorphic diagrams.

Case $9g$. Then $\tilde{T}=7A_{1}$ , and $T=kA_{1},$ $k\leq 6$ , is its root subsystem
(it is always primitive). It is easy to see that the same root subsystem $T$ can
be obtained as a primitive root subsystem $T\subset D_{4}\oplus 3A_{1}$ . Then $T$ is not
extremal because $D_{4}\bigoplus_{\sim}3A_{1}$ corresponds to K3.

Case $10n$ . Then $T=D_{4}\oplus 4A_{1}$ and $T\subset\tilde{T}$ is a primitive root subsystem
of the rank $\leq 7$ . It is easy to see that the same root subsystem can be
obtained as a primitive root subsystem $T$ of $D_{6}\oplus 2A_{1}$ or $D_{4}\oplus D_{4}$ (then it is
not extremal because $D_{6}\oplus 2A_{1}$ and $D_{4}\oplus D_{4}$ correspond to K3) in all cases
except when $T=7A_{1}.$

Let us consider the last case $T=7A_{1}$ and show (as in Section 3.4.5)

that it does not correspond to K3. As in Section 3.4.4, one can calculate

Dynkin diagram $\Gamma=\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ . See Appendix, Section A.4.5, Case
$7A_{1}\subset E_{8}$ . It is similar to the case 100 (see Section 3.4.4), but it is more
complicated. We describe it indirectly. One can relate with this diagram a
3-dimensional linear vector space $V$ over $F_{2}.$

Black vertices $f_{v}$ of $\Gamma$ correspond to $v\in V-\{O\}$ (there are seven of
them). Its transparent vertices (all of them are simple) are
$e_{v},$

$v\in V-\{O\};e_{0}^{(+)},$ $e_{0}^{(-)}$ ;
$e_{\pi},$

$\pi\subset V$ is any affine hyperspace in $V$ which does not contain $0$ ;
$e_{\pi}^{(+)},$ $e_{\pi}^{(-)},$ $\pi\subset V$ is any hyperspace $(0\in\pi)$ of $V.$

Edges which connect $f_{v},$
$e_{v},$

$e_{0}^{(+)},$
$e_{\pi},$

$e_{\pi}^{(+)}$ are the same as for the di-

agram 100 (forget about $(+)$ ). The same is valid for $f_{v},$ $e_{v},$
$e_{0}^{(-)},$

$e_{\pi},$

$e_{\pi}^{(-)}$

(forget about (-)). Vertices $e_{0}^{(+)}$ and $e_{0}^{(-)}$ are connected by the broken edge

of the weight 6. VeItices $e_{0}^{(+)}$ and $e$

)
$(and e_{0}^{(-)}, e_{\pi}^{(+)} as well)$ are connected

by the broken edge of the weight 4. This gives all edges of $\Gamma.$

Assume that $\Gamma$ corresponds to a K3 pair $(X, \theta)$ . Consider the corre-
sponding DPN surface and contract exceptional curves corresponding to
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$e_{\pi}^{(+)}$ and $e_{0}^{(+)}$ . Then exceptional curves of $f_{v},$ $v\in V-\{O\}$ , give Fano’s
configuration on $\mathbb{P}^{2}$ which exists only in characteristic 2. We get a contra-
diction.

Case 100. This is similar to the previous case.
Case $20e$. Then $\tilde{T}=2A_{3}\oplus 2A_{1}$ and $T$ is its primitive root subsystem of

the rank $\leq 7$ . It is easy to see that the same root subsystem can be obtained
as a primitive root subsystem of $D_{6}\oplus 2A_{1}$ or $D_{5}\oplus A_{3}$ (and it is not then
extremal because $D_{6}\oplus 2A_{1}$ and $D_{5}\oplus A_{3}$ correspond to K3) in all cases
except $T=A_{3}\oplus 4A_{1}.$

Let us consider the last case $T=A_{3}\oplus 4A_{1}$ and show (as in Section
3.4.5) that it does not correspond to K3. As in Section 3.4.4, one can cal-

culate Dynkin diagram $\Gamma=\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ . See Appendix, Section A.4.6,

Case $4A_{1}\oplus A_{3}\subset D_{8}$ . It has exactly one transparent double vertex $\alpha$ and
eight simple transparent vertices $c_{v},$ $v\in V(K)$ , where $V(K)$ is the set
of vertices of a 3-dimensional cube $K$ with distinguished two opposite 2-
dimensional faces $\beta,$ $\beta’\in\gamma(K)$ where $\gamma(K)$ is the set of a112-dimensional
faces of $K$ . Black vertices of $\Gamma$ are $f_{\gamma},$ $\gamma\in\gamma(K)$ , and one more black
vertex $f_{0}$ . Simple transparent vertices of $\Gamma$ which are connected by a simple
edge with $\alpha$ are either $b_{\overline{\gamma}},$ $\overline{\gamma}\in\gamma(K)$ , where $\gamma(K)$ is the set ofpairs of oppo-
site 2-dimensional faces of $K$ , or $b_{t},$ $t\in V(K)$ . Here $V(K)$ consists of two
elements corresponding to a choice of one vertex from each pair of opposite
vemces of $K$ in such a way that neither of three of them are contained in a
2-dimensional face $\gamma\in\gamma(K)$ (they define a regular tetrahedron with edges
which are diagonals of 2-dimensional faces of $K$).

Let us describe edges of $\Gamma$ different from above. Thick edges connect
$c_{v}$ corresponding to opposite vertices $v\in V(K)$ , vertices $b_{t_{1}}$ and $b_{t_{2}}$ where
$\{t_{1}, t_{2}\}=V(K)$ , vertices $b_{t}$ and $c_{v}$ where $v\in t$ . Simple edges connect $f_{0}$

with $f_{\beta}$ and $f_{\beta’}$ . Double simple edges connect $c_{v}$ with $f_{\gamma}$ , if $ v\in\gamma$ , and $b_{\overline{\gamma}}$

with $f_{\gamma}$ , if $\gamma\in\overline{\gamma}-\{\beta, \beta’\}$ , and the vertex-with $f_{0}.$

Assume that $\Gamma$ corresponds to a K3 pair $(X, \theta)$ . On its DPN surface, let
us contract exceptional curves corresponding to $c_{v},$ $v\in t;b_{\overline{\gamma}},$

$\overline{\gamma}\in\overline{\gamma(K)}$ ;
$f_{0}$ and $b_{t’},$ $t’\neq t$ (here $t\in V(K)$ is fixed). Then curves corresponding to
$f_{v},$ $v\in V(K)$ , and the vertex $\alpha$ define Fano’s configuration of lines in $\mathbb{P}^{2}$

which can exist only in characteristic 2.
Cases $20fg$. In these cases, $\tilde{T}=D_{4}\oplus 4A_{1}$ or $\tilde{T}=8A_{1}$ . As for

analogous cases $10n,0$ , everything is reduced to prove that $T=7A_{1}$ does
not correspond to a K3 pair $(X, \theta)$ .

In this case, $\Gamma=\Gamma(P(\mathcal{M}_{+}^{(2,4)}))$ is as follows. See Appendix, Section
A.4.6, Case $7A_{1}\subset D_{8}$ . Let $I=\{1,2,3,4\}$ and $J=\{1,2\}$ . The $\Gamma$ has:
exactly one double transparent vertex $\alpha$ ; black vertices $f_{ij},$ $i\in I,$ $j\in J,$
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and $(i,j)\neq(4,2)$ ; simple transparent vertices $b_{i},$ $i=1,2,3$ , and $b_{4(+)},$ $b_{4(-)}$

which are connected by a simple edge with $\alpha$ ; simple transparent vertices
$c_{j_{1}j_{2}j_{3}j_{4}}$ where $j_{1},j_{2},j_{3}\in J,$ $j_{4}\in\{1, -2, +2\}$ and $j_{1}+j_{2}+j_{3}+j_{4}\equiv 0$

$mod 2$ which are disjoint to $\alpha.$

Edges of $\Gamma$ which are different from above, are as follows.
Double edges connect $b_{i}$ with $f_{ij}$ , if $i=1,2,3$ , and $b_{4(+)},$ $b_{4(-)}$ with $f_{41},$

and $c_{j_{1}j_{2}j_{3}j_{4}}$ with $f_{1j_{1}},$ $f_{2j_{2}},$ $f_{3j_{3}}$ , and $c_{j_{1}j_{2}j_{3}1}$ with $f_{41}.$

Thick edges connect $b_{4(\pm)}$ with $c_{j_{1}j_{2}j_{3}(\mp 2)}$ , and $c_{j_{1}j_{2}j_{3}j_{4}}$ with $c_{j_{1}’j_{2}’j_{3}’j_{4}’}$ , if
$j_{1}\neq j_{1}’,$ $j_{2}\neq j_{2}’,$ $j_{3}\neq j_{3}’,$ $|j_{4}|\neq|j_{4}’|$ , and $c_{j_{1}j_{2}j_{3}(+2)}$ with $c_{j_{1}’j_{2}’j_{3}’(-2)}$ , if
$(j_{1},j_{2}, j_{3})\neq(j_{1}’,j_{2}’,j_{3}’)$ .

Assume that $\Gamma$ corresponds to a K3 pair $(X, \theta)$ . On its DPN surface,

let us contract exceptional curves corresponding to $b_{1},$ $b_{2},$ $b_{3},$ $b_{4(+)},$ $f_{11},$ $f_{21},$

$f_{31},$ $f_{41},$
$c_{222(+2)}$ . The curve corresponding to $\alpha$ gives a conic in $\mathbb{P}^{2}$ . Curves

corresponding to $f_{12},$ $f_{22},$ $f_{32}$ give lines touching to the conic and having a
common point. This is possible in characteristic 2 only.

This finishes the proof of Theorem 3.6 $\square $

3.5. Classification of DPN surfaces of elliptic type

Each non-symplectic involution of elliptic type $(X, \theta)$ of K3 gives rise to

the right DPN pair $(Y, C)$ where

(73) $Y=X/\{1, \theta\}, C=\pi(X^{\theta})\in|-2K_{Y}|,$

$\pi$ : $X\rightarrow Y$ the quotient morphism; and vice versa. From Theorems 3.6,

3.7, we then get classification of right DPN pairs $(Y, C)$ and DPN surfaces
$Y$ of elliptic type. See Chapter 2 and especially Sections 2.1 and 2.8. It is
obtained by the reformulation of Theorems 3.6 and 3.7 and by redrawing of

the diagrams. But, for readers’ convenience, we do it below.

Theorem 3.18 (Classification Theorem for right DPN surfaces of elliptic

type in the extremal case). $A$ right $DPN$ surface $Y$ of elliptic type is ex-
tremal ifand only if the number of its exceptional curves with the square
$(-2)$ is maximalfor thefixed main invariants $(r, a, \delta)$ (equivalently, $(k,$ $g,$

$\delta))$ . (It is equal to the number ofblack vertices in the diagram $\Gamma$ ofTable 3
below.)

Moreover, the dual diagram $\Gamma(Y)$ ofall exceptional curves on extremal
$Y$ is isomorphic to one of diagrams $\Gamma$ given in Table 3. V\iota ce versa any
diagram $\Gamma$ of Table 3 corresponds to some of the $Y$ (the $Y$ can be even
taken standard).

In the diagrams $\Gamma$, simple transparent vertices correspond to curves

of the lst kind (i. e. to non-singular mtional irreducible curves with the
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square $(-1))$, double transparent vertices correspond to non-singular ra-
tional irreducible curves with the square $(-4)$ , black vertices correspond to
non-singularmtional irreducible curves with the square $(-2)$ , a $m$-multiple
edge (or an edge with the weight $m$ when $m$ is large) means the intersection
index $m$ for the corresponding curves. Any exceptional curve on $Y$ is one

ofthese curves.

For a not necessarily extremal right DPN surface $Y$ of elliptic type the
dual diagram $\Gamma(Y)$ of all exceptional curves on $Y$ also consists of simple
transparent, double transparent and black vertices which have exactly the
same meaning as in Theorem 3.18 above. All black vertices of $\Gamma(Y)$ de-
fine the $DuVal$part Duv $\Gamma(Y)$ of $\Gamma(Y)$ . All double transparent vertices of
$\Gamma(Y)$ , and all simple transparent vertices of $\Gamma(Y)$ which are connected by
two edges with double transparent vertices of $\Gamma(Y)$ (there are always two
of these double transparent vertices) define the logarithmic part ${\rm Log}\Gamma(Y)$

of $\Gamma(Y)$ . The rest of vertices (different from vertices of Duv $\Gamma(Y)$ and
${\rm Log}\Gamma(Y))$ define the varying part Var $\Gamma(Y)$ of $\Gamma(Y)$ . In Theorem below
we identify vertices of $\Gamma(Y)$ with elements of Picard lattice Pic $Y$ , then
weights of edges are equal to the corresponding intersection pairing in this
lattice which makes sense to the descriptions of the graphs Var $\Gamma(Y)$ and
$\Gamma(Y)$ .

Theorem 3.19 (Classification Theorem for right DPN surfaces in the non-ex-
tremal, i. e. arbitrary, case of elliptic type). Dual diagrams $\Gamma(Y)$ ofall ex-
ceptional curves ofnot necessarily extremal right $DPN$ surfaces $Y$ ofellip-
tic type are described by arbitrary (without any restrictions) subdiagrams
$ D\subset$ Duv $\Gamma$ of extremal $DPN$ surfaces described in Theorem 3.18 above
with the same main invariants $(r, a, \delta)$ (equivalently$ (k, g, \delta)$).

Moreover, Duv $\Gamma(Y)=D,$ ${\rm Log}\Gamma(Y)={\rm Log}\Gamma$, and these subdiagrams
are disjoint to each other;

Var $\Gamma(Y)=\{f\in W$ (Var $\Gamma)|f\cdot D\geq 0\}$

where $W$ is the subgmup ofautomorphisms ofthe Picard lattice ofthe ex-
tremal $DPN$ surface (the Picard lattice is defined by the diagram $\Gamma$), gener-
ated by reflections in elements with square $-2$ corresponding to all vertices

ofDuv $\Gamma.$

Two such subdiagrams $ D\subset$ Duv $\Gamma$ and $ D’\subset$ Duv $\Gamma’$ (with the same
main invariants) give $DPN$ surfaces $Y$ and $Y’$ with isomorphic diagrams
$\Gamma(Y)\cong\Gamma(Y’),$ ifand only ifthey have isomorphic mot invariants $([D], \xi^{+})$

and $([D’], (\xi’)^{+})$ (see Theorem 3.7).

To calculate the mot invariant $([D], \xi^{+})$ ofa $DPN$ surface, one has to
go backfrom the graph $\Gamma$ ofTable 3 to the corresponding graph ofTables 1
or 2.
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From our point of view, classification above by graphs of exceptional
curves is the best classification of DPN surfaces $Y$ . It shows a sequence
(actually all sequences) of-l curves which should be contracted to get the
corresponding relatively minimal rational surface $\overline{Y}$ isomorphic to $\mathbb{P}^{2}$ or $\mathbb{F}_{n},$

$n\leq 4$ (see Section 3.6 and Table 4 below). Images of exceptional curves
on $Y$ which are not contracted then give some configuration of rational
curves on $\overline{Y}$ which should exist to get the DPN surface $Y$ back from $\overline{Y}$

by the corresponding sequence of blow ups. Here the following inverse
statement is very important because it shows that any surface $Y’$ obtained
by a similar” sequence of blow ups of $\overline{Y}$ which are related with a similar”
configuration of rational curves on $\overline{Y}$ will be also a DPN surface with the
graph $\Gamma(Y’)$ of exceptional curves which is isomorphic to $\Gamma(Y)$ . Here is
the exact statement.

Theorem 3.20. Let $Y$ be a right DPNsurface ofelliptic type, and the set of
exceptional curves on $Y$ is not empty (i. e. $Y$ is differentfrom $\mathbb{P}^{2}$ and $\mathbb{F}_{0}$).
Let $Y’$ be a non-singular rational surface such that

1$)$ the Picard number of $Y’$ is equal to the Picard number of $Y.$

2$)$ there exists a set $E_{1},$
$\ldots,$

$E_{m}$ of non-singular irreducible rotional
exceptional curves on $Y’$ such that their dual graph is isomorphic to the
dual graph $\Gamma(Y)$ ofexceptional curves on $Y.$

Then $Y’$ is also a $DPN$ surface and $E_{1},$
$\ldots,$

$E_{m}$ are all exceptional
curves on $Y’$ (ofcourse, then$ \Gamma(Y’)\cong\Gamma(Y)$).

Proof. Let $r$ be the Picard number of $Y$ and $Y’$ . If $r=2$ , then obviously
$Y\cong Y’\cong \mathbb{F}_{n},$ $n>0$ . Further we assume that $r\geq 3$ . We denote by $S_{Y}$ and
$S_{Y’}$ the Picard lattices of $Y$ and $Y’$ respectively. Like for K3 surfaces we
shall consider the light cones $V(Y)\subset S_{Y}\otimes \mathbb{R},$ $V(Y’)\subset S_{Y’}\otimes \mathbb{R}$ (of ele-
ments with positive square) and their halves $V^{+}(Y)$ and $V^{+}(Y’)$ containing
polarizations.

Let $D_{1},$
$\ldots,$

$D_{m}$ are all exceptional curves on $Y$ (corresponding to ver-
tices of $\Gamma(Y))$ . Their number is finite and they generate $S_{Y}$ since $r\geq 3$ . We
claim that Kleiman-Mo\iota i cone $\overline{NE}(Y)=\mathbb{R}^{+}D_{1}+\cdots+\mathbb{R}^{+}D_{m}$ is generated
by $D_{1},$ $\ldots D_{m}$ . This is equivalent to

(74) $\overline{V^{+}(Y)}\subset \mathbb{R}^{+}D_{1}+\cdots+\mathbb{R}^{+}D_{m}$

since $D_{j}$ are all exceptional curves on $Y$ and $V^{+}(Y)\subset NE(Y)$ by Riemann-
Roch Theorem on $Y$ . The condition (74) is equivalent to the embedding of
dual cones

(75) $(\mathbb{R}^{+}D_{1}+\cdots+\mathbb{R}^{+}D_{m})^{*}\subset\overline{V^{+}(Y)}$

because the light cone $V^{+}(Y)$ is self-dual. By considering the correspond-
ing K3 double cover $\pi$ : $X\rightarrow Y$ , the embedding (75) is equivalent to the
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embedding

(76) $(\mathbb{R}^{+}\pi^{*}(D_{1})+\cdots+\mathbb{R}^{+}\pi^{*}(D_{m}))^{*}\subset\overline{V^{+}(S)}$

which is equivalent to finiteness of volume of $\mathcal{M}(X)_{+}\subset \mathcal{L}(S)$ which we
know.

The equivalent conditions (74) and (75) are numerical. Thus, similar
conditions

(77) $V^{+}(Y’)\subset \mathbb{R}^{+}E_{1}+\cdots+\mathbb{R}^{+}E_{m}$

and

(78) $(\mathbb{R}^{+}E_{1}+\cdots+\mathbb{R}^{+}E_{m})^{*}\subset V^{+}(Y’)$

are valid for $Y’$ . This shows that $E_{1},$ $\ldots E_{m}$ are the only exceptional curves
on $Y’$ . Indeed, if $E$ is any other irreducible curve $E$ on $Y’$ satisfying $ E\cdot E_{i}\geq$

$0$ , then $E^{2}\geq 0$ by (78) and the curve $E$ is not exceptional. Thus, $\Gamma(Y’)$ and
$\Gamma(Y)$ are isomorphic. In the same way as for $Y$ above, we then get from
(77) or (78) that the $Kleiman-Mo\dot{n}$ cone $\overline{NE}(Y’)=\mathbb{R}^{+}E_{1}+\cdots+\mathbb{R}^{+}E_{m}$

is generated by $E_{1},$
$\ldots,$

$E_{m}.$

Let us show that $Y’$ is a DPN surface. Definitions of Du Val, loga-
rithmic parts of $\Gamma(Y)$ were purely numerical. Since $\Gamma(Y’)$ and $\Gamma(Y)$ are
isomorphic, we can use similar notions for $Y’.$

In Section 4.1 we shall prove (without using Theorem 3.20) that there
exists a contraction $p$ : $Y\rightarrow Z$ of Du Val and logarithmic parts of ex-
ceptional curves of $Y$ which gives the right resolution of singularities of a
$\log$ del Pezzo surface $Z$ of index $\leq 2$ . (Remark that by Lemma 1.4 it also
gives another proof of the above statements about Kleiman-Mori cone and
exceptional curves on $Y$ and $Y’.$ ) Thus, the element $p^{*}(-2K_{Z})\in S_{Y}$ is
defined. It equals $to-2K_{Y}$ minus sum of all exceptional curves on $Y$ with
square-4. Thus, similar element can be defined for $Y’$ . Let us denote it by
$R.\in S_{Y’}$ . In Section 1.4, we had proved (for any $\log$ del Pezzo surface $Z$ of
index $\leq 2$) that the linear system $p^{*}(-2K_{Z})$ contains a non-singular curve.
The proof was purely numerical and only used the fact $that-2K_{Y}-\sum E_{i}$

is big and nef. The same proof for $Y’$ gives that $R$ contains a non-singular
curve. It follows that $Y’$ is a right DPN surface of elliptic type. $\square $
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TABLE 3. Dual diagrams $\Gamma$ of all exceptional curves of ex-
tremal right DPN surfaces of elliptic type
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3.6. Application: On classification of plane sextics with
simple singularities

Let $Y$ be a right DPN surface of elliptic type which were classified in The-
orems 3.18, 3.19 and 3.20. Let $\Gamma(Y)$ be the dual diagram of all excep-
tional curves on $Y$ . By definition of right DPN surfaces, there exists a
non-singular curve

(79) $C=C_{g}+E_{a1}+\cdots+E_{a_{k}}\in|-2K_{Y}|$
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where $E_{a_{1}},$
$\ldots,$

$E_{a_{k}}$ are exceptional curves with square $(-4)$ corresponding
to all double transparent vertices $a_{1},$

$\ldots,$
$a_{k}$ of $\Gamma(Y)$ and $g>1$ the genus of

the irreducible non-singular curve $C_{g}$ . Here $(k, g, \delta)$ (equivalent to$ (r, a, \delta)$ )

are the main invariants of $Y.$

We denote by $E_{v}$ the exceptional curve on $Y$ corresponding to a vertex
$v\in V(\Gamma(Y))$ . If $v$ is black, then $C\cdot E_{v}=C_{g}\cdot E_{v}=0$ . If $v$ is simple
transparent, then $C\cdot E_{v}=2.$

If $v$ is simple transparent and $v$ is not connected by any edge with double
transparent vertices of $\Gamma(Y)(i. e. E_{v}\cdot E_{a_{i}}=0, i=1, \ldots, k)$ then $C_{g}\cdot E_{v}=$

$2$ . This intersection index can be obtained in two $w$ays:

(80) $C_{g}$ intersects $E_{v}$ transversally in two points;

(81) $C_{g}$ simply touches $E_{v}$ in one point.

$(For example, in Case 47 of Table 3 we have two such vertices v.)$

Up to this ambiguity, we know (from the diagram $\Gamma(Y)$ ) how compo-
nents of $C$ intersect exceptional curves. Which of possibilities (80) or (81)
does take place is defined by the generalized root invariant which we don’t
consider in this work.

Let $t_{1},$

$\ldots,$
$t_{r-1}\in V(\Gamma(Y))$ be a sequence of vertices such that the

contraction of exceptional curves $E_{t_{1}},$

$\ldots,$
$E_{t_{r-1}}$ gives a morphism $\sigma$ : $ Y\rightarrow$

$\mathbb{P}^{2}$ which is a sequence of contractions of curves of the lst kind. By Section
2.1, the image $D=\sigma(C)\subset \mathbb{P}^{2}$ is then a sextic (it belongs to $|-2K_{\mathbb{P}^{2}}|$ ) with
simple singularities. What components and what singulanities the curve $D$

does have is defined by the subgraph $\Gamma(t_{1}, \ldots, t_{r-1})$ generated by vertices
$t_{1},$

$\ldots,$
$t_{r-1}$ in $\Gamma(Y)$ . We formalize that below.

Let

$\tilde{D}=C_{g}+\sum_{v_{i}\in\{a_{1},\ldots,a_{k}\}-\{t_{1},\ldots,t_{r-1}\}}E_{v}i$

be the curve of components of $C$ which are not contracted by $\sigma$ . Then
$\sigma$ : $\tilde{D}\rightarrow D$ is the normalization of $D$ . In pictures, we denote $\tilde{D}$ (or
$D)$ by the symbol $\otimes$ and evidently denote the intersection of this curve
and its local branches at the corresponding singular point with the compo-
nents $E_{t_{j}}$ which are contracted to this point. For connected components of
$\Gamma(t_{1}, \ldots, t_{r-1})$ we then have possibilities presented in Table 4 below de-
pending on types of the corresponding singular points of $D.$

By Table 4, the ambiguity (80) or (81) takes place only for singularities
of the types $A_{2k-1}$ or $A_{2k}$ . Thus, we have to introduce the notation $\mathfrak{U}_{2k-1}$

for the singularity of the type $A_{2k-1}$ or $A_{2k}$ of the component $\sigma(C_{g})$ of $D$

of the geometric genus $g>1.$

In the right column ofTable 4, we denote by $\mathcal{A}_{n},$ $\mathcal{D}_{n},$ $\mathcal{E}_{n}$ connected com-
ponents of graphs $\Gamma(t_{1}, \ldots, t_{r-1})$ corresponding to singularities $A_{n},$ $D_{n}$ and



102 3. DPN SURFACES OF ELLIPTIC TYPE

$E_{n}$ of the curve $D$ respectively. Obviously, finding of all possible contrac-
tions $\sigma$ : $Y\rightarrow \mathbb{P}^{2}$ reduces to enumeration of all subgraphs $\Gamma\subset\Gamma(Y)$

with the connected components $\mathcal{A}_{n},$ $\mathcal{D}_{n},$ $\mathcal{E}_{n}$ and with the common number
$r-1$ of vertices. $A$ choice of such a subgraph $\Gamma\subset\Gamma(Y)$ defines the sextic
$D$ with the corresponding irreducible components and simple singularities,
and the related configuration of rational curves

(82) $\sigma(E_{v}), v\in V(\Gamma(Y))-(\{a_{1}, \ldots, a_{k}\}\cup\{t_{1}, \ldots, t_{r-1}\})$ ,

which one can call the exceptional curves of a sextic $D$ with simple singu-
lanities.

Thus, the classification in Theorems 3.18 and 3.19 of DPN surfaces of
elliptic type implies a quite delicate classification of sextics $D$ having an ir-
reducible component of the geometric genus $g\geq 2$ . For this classification,
we correspond to a sextic $D\subset \mathbb{P}^{2}$ a subgraph $\Gamma\subset\Gamma(Y)$ up to isomor-
phisms of graphs $\Gamma(Y)$ which send the subgraphs $\Gamma$ to one another. The
analogous classification can be repeated to classify curves with simple sin-
gularities in $|-2K_{F_{n}}|,$ $n=0,$ $\ldots,$

$4$ . One should only replace $r-1$ by
$r-2$ . We also note that a choice of different subgraphs $\Gamma\subset\Gamma(Y)$ for the
same curve $C$ defines birational transformations of the corresponding ratio-
nal surfaces $(\mathbb{P}^{2}$ or $\mathbb{F}_{n})$ which transform the curves $D$ to one another. Thus,
the graph $\Gamma(Y)$ itself classifies the corresponding curves $D$ up to some their
birational equivalence.

A complete.enumeration of all cases has no principal difficulties, and
it is only related to a long enumeration using Theorem 3.19 of all possible
diagrams $\Gamma(Y)$ and their subdiagrams $\Gamma$ . Unfortunately, it seems, number of
cases is enormous. But the complete enumeration can be important in some
problems of real algebraic geometry and singularity theory. For example,
it could be important for classification of irreducible quartics in $\mathbb{P}^{3}$ with
double rational singulanities by the method of projection from a singular
point. To remove the ambiguity (80) or (81), one has to perform similar (to
ours) classification of generalized root invaniants.
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TABLE 4. Correspondence between connected components

of $\Gamma$ and singularities of $D=\sigma(\tilde{D})$ .
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