7 Appendix

In this appendix, we present proofs of the propositions, which appeared in the
previous sections. However, to prove them, we often need more fundamental
results, for which we only give references. One of such results is the following
“Area formula”, which will be employed in sections 7.1 and 7.2. We refer to
9] for a proof of a more general Area formula.

Area formula

e (R, R,
ge®R"), = / Yldy < / 19(E ()] [det(DE (x))|dx
A C R™ measurable (A

We note that the Area formula is a change of variable formula when
|det(DE)| may vanish. In fact, the equality holds if |det(D¢)| > 0 and € is
injective.

7.1 Proof of Ishii’s lemma

First of all, we recall an important result by Aleksandrov. We refer to the
Appendix of [6] and [10] for a “functional analytic” proof, and to [9] for a
“measure theoretic” proof.

Lemma 7.1. (Theorem A.2 in [6]) If f : R" — R is convex, then for
a.a. ¢ € R", there is (p, X) € R" x 8™ such that

1
flx+h)= f(z)+ (p,h) + §(Xh, h) +o(|h|*) as |h| — 0.
(i.e., f is twice differentiable at a.a. v € R™.)

We next recall Jensen’s lemma, which is a version of the ABP maximum
principle in 7.2 below.

Lemma 7.2. (Lemma A.3 in [6]) Let f : R" — R be semi-convex
(i.e. x — f(x) + Co|z|* is convex for some Cy € R). Let & € R" be a strict
maximum point of f. Set f,(x) := f(z) — (p,x) for x € R" and p € R".

Then, for r > 0, there are C1, 09 > 0 such that

|FT’75| > C10" ford e (0,50],
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where

I :={z € B.(2) |3p € B; such that f,(y) < f,(z) fory € B.(2)}.

Proof. By translation, we may suppose & = 0.

For integers m, we set f™(x) = f % p1/m(z), where p1, is the mollifier.
Note that  — f™(x) + Co|x|? is convex.

Setting

e = {:B € B, }Elp € By such that fi'(y) < £ (x) fory € FT} ,

where f"(z) = f™(x)—(p, z), we claim that there are C, §y > 0, independent
of large integers m, such that

IT7s| > Cy6" for § € (0,6).

We remark that this concludes the assertion. In fact, setting A,, := U2, . I'% 5,
we have N°_; A, C I'.5. Because, for x € N°_; A,,, we can select p; € B
and my, such that limy_,.o m, = oo, and
max f)'* = f' (1),

By
Hence, sending & — oo (along a subsequence if necessary), we find p € Bs
such that maxp f; = f(z), which yields z € I',.5.

Therefore, we have

C16" < lim |Ap| = N2 A] < |T.sl.
m—0o0
Now we shall prove our claim. First of all, we notice that =z — f™(z) +

Colz|? is convex.
Since 0 is the strict maximum of f, we find 5 > 0 such that

go=f(0)— max f.

Bar/3\Bry3

Fix p € Bs,, where &g = £0/(3r). For m > 3/r, we note that
280 . —
fm(if)—@a@Sf(o)_fo%-(;o?“ﬁf(())—?o in B, \ Bas.
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On the other hand, for large m, we verify that
m -1 €0
F7(0) 2 £(0) = wylm™) > £(0) - 2,
where w; denotes the modulus of continuity of f. Hence, in view of these
observations, for any p € Bs,, if maxg_f;" = f"(x) for x € B,, then x € B,.
In other words, we see that

Bs=Df™T7) for § € (0, do).
Thanks to the Area formula, we have
|Bs| = / dy < / |detD? f™|dx < (2C0)" ||
Dfm (F?f(;) F:}&
Here, we have employed that —2CoI < D*f™ <O inI7y. O

Although we can find a proof of the next proposition in [6], we recall the
proof with a minor change for the reader’s convenience.

Proposition 7.3. (Lemma A4 in [6]) If f € C(R™), B € S™, { —

F(&) + (A/2)|€]? is convex and maxecrm{f(§) — 27(BE, &)} = f(0), then
there is an X € S™ such that

0,X)e T FO)NT*"f(0) and — N <X < B.

Proof. For any § > 0, setting f5(&) := f(£) —271(BE, &) — §|£|%, we notice
that the semi-convex fs attains its strict maximum at & = 0.

In view of Lemmas 7.1 and 7.2, there are &,q; € Bs such that & —
f5(€) + (g5, €) has a maximum at &, at which f is twice differentiable.

It is easy to see that Df(£s) — 0 (as 6 — 0) and, moreover, from the
comvexity of € = () + (AP,

— A < D*f(&) < B+ 201.

Noting (Df(&s), D?f(&s)) € J3T (&) N J*~ f(&), we conclude the assertion
by taking the limit as 6 — 0. O

We next give a “magic” property of sup-convolutions. For the reader’s
convenience, we put the proof of [6].
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Lemma 7.4. (Lemma A.5 in [6]) For v € USC(R") with supgnv < 00
and \ > 0, we set

i(6) = sup (v(a) ~ 5lo - €P).

zeR™

Forn,qe R",Y € 8", and (¢,Y) € J>"0(n), we have

2
(@.Y) € Prolnt Xg) and o) + 90 = (g +2).

2,4+

In particular, if (0,Y) € J " ©(0), then (0,Y) € 72’+v(0).

Proof. For (¢,Y) € J>T4(n), we choose y € R™ such that

o) = vly) ~ Sly P

Thus, from the definition, we see that for any z,£ € R",

()——\5—55\2 (&) < o(n)+{q,§—mn)
Y(£ —n),&—n) +o(|¢ — 1)
Iy—n\2+(q,£—n>

Y(£ —n),&—n) +o(|E —nl*).

+

:fu(

n)
1
3¢
y) -
1
+§(
Taking £ = z — y + 1 in the above, we have (¢,Y) € J>Tv(y).

To verify that y = n + A7!q, putting z =y and E = n —e(A\(n —y) + q)
for € > 0 in the above again, we have

elA(n —y) +ql* < o(e),

which yield y = n + 1q.
When (0,Y) € 72’+1§(0) we can choose (1, @k, Yx) such that limg o0 (M, (k) Gk, Yi) -

(0, TA)(O), 0, O), and (qk, Yk) J% +’U(T]k). Since (qk, Yk) J% +U(7]k + A” 1 k)

and () + (2A) 7 aqx|* = v(ngr + A7'qr), sending k — oo, we have (0,Y) €

—2,+

J7w(0). O
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Proof of Lemma 3.6. First of all, extending upper semi-continuous func-
tions u,w in Q into R” by —oo in R™\ , we shall work in R" x R" instead
of Q x Q.

By translation, we may suppose that & = g = 0, at which u(x) + w(y) —
¢(x,y) attains its maximum.

Furthermore, replacing u(x), w(y) and ¢(z,y), respectively, by

u(z) — u(0) = (Dz¢(0,0), ),  w(y) —w(0) = (Dyp(0,0),y)

and

¢(z,y) = ¢(0,0) = (D¢(0,0), z) — (Dy(0,0), ),
we may also suppose that ¢(0,0) = u(0) = w(0) = 0 and D¢(0,0) = (0,0) €
R" xR"

Since ¢(x,y) = <§ ( z ) : ( z )>+0(|m\2+|y|2), where A := D?¢(0,0) €

5% for each § > 0, we see that the mapping (z,y) — u(x) + w(y) —

1
3 <(A +nlI) ( "; ) , ( i )> attains its (strict) maximum at 0 € R*".

We will show the assertion for A+nl in place of A. Then, sending n — 0,
we can conclude the proof. Therefore, we need to prove the following:

Simplified version of Ishii’s lemma.
For upper semi-continuous functions v and w in R", we suppose that

A
u(z) + w(y) — <5 ( z ) , ( z )> < u(0) +w(0) = 0 in R" x R",
Then, for each u > 1, there are X, Y € S™ such that (0, X) € 72’+u(0),

oy I O X O 1
0,Y)e J w(0)and —(u+ ||A ( )S( )§A+—A2.
(0.Y) (0) and G+ 4D ( 5§ AR ;

Proof of the simplified version of Lemma 3.6. Since Holder’s inequality im-

D ()

for z,y,&,m € R" and pu > 0, setting A = p + || A||, we have

U(fv)—%|w—£\2+w(y)—%\y—n|2S%<(A+%A2) (g)(g»

99




Using the notation in Lemma 7.4, we denote by @ and w the sup-convolution
of u and w, respectively, with the above A > 0. Thus, we have

a(§)+w(n)§%<<A+%A2) <f])<f])> for all £,n € R".

Since 4(0) > u(0) = 0 and w(0) > w(0) = 0, the above inequality implies
u(0) = w(0) = 0.

In view of Proposition 7.3 with m = 2n, f(&,n) = a(§) + ( ) and
B = A+ p A% there is Z € S* such that (0, 7) € 72’+f(0 0)N T ~ £(0,0)
and -\ < Z < B.

Hence, from the definition of 72’i, it is easy to verify that there are X, Y €

S™ such that (0, X) € 7 a(0)n T a(0), (0,Y) € 7T (0)nT> " w(0), and

- (59)

Applying the last property in Lemma 7.4 to & and w, we see that

0,X) e 77 u(0) and (0,Y) e T w(0). O

7.2 Proof of the ABP maximum principle

First of all, we remind the readers of our strategy in this and the next sub-
sections.

We first show that the ABP maximum principle holds under f € L™(£2)N
C(€2) in Steps 1 and 2 of this subsection. Next, using this fact, we estab-
lish the existence of LP-strong solutions of “Pucci” equations in the next
subsection when f € LP(2).

Employing this existence result, in Step 3, we finally prove Proposition
6.2; the ABP maximum principle when f € L"(Q).

ABP maximum principle for f € L™(Q) N C(§2) (Section 7.2)
4

Existence of LP-strong solutions of Pucci equations (Section 7.3)

¢
ABP maximum principle for f € L™(Q) (Section 7.2)
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Proof of Proposition 6.2. We give a proof in [5] for the subsolution asser-
tion of Proposition 6.2.

By scaling, we may suppose that diam(2) < 1.

Setting

ro = maxu — maxu’,
Q a9

we may also suppose that rq > 0 since otherwise, the conclusion is obvious.
We first introduce the following notation: For u : 2 — R and r > 0,

I, :={z € Q|3p € B, such that u(y) < u(z) + (p,y — z) for y € Q} .

Recalling the upper contact set in section 6.2, we note that

=Jr.

r>0

Step 1: u € C?(Q) N C(Q). We first claim that for » € (0,r),

i) B, = Du(l,),
{ (Ez; D < O( 121 T, (7.1)

To show (i), for p € B,, we take 2 € Q such that u(z) — (p,z) =
max, q(u(r) — (p,x)). Since u(zr) —u(2) < r < 1y for x € Q, taking the
maximum over €2, we have & € ). Hence, we see p = Du(z), which concludes

(i)

For x € T',., Taylor’s formula yields

uly) = u(zx) + (Du(z),y — =) + %<DQU(x)(y — ),y —x) +o(ly — =)

Hence, we have 0 > (D?u(x)(y — ) y — x) + o(|ly — x|?), which shows (i1).
Now, we introduce functions g,(p) := (|p|*/"~V + /{"/(”_1))1_“ for k > 0.
We shall simply write g for g,.
Thus, for r € (0,79), we see that

/ 9(p)dp < /g<Du<x>>|det<D2u<x>>|dx
Du(T') r

- / (| Dul™ @1 4 =DV | det D2u () | dar

I
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Recalling (7.1), we utilize |detD?u| < (—trace(D?*u)/n)" in T, to find
C > 0 such that

/ g(p)dp < C/ (|Du|"/("_1) +/{"/("_1))1_”(—trace(DQu))"d:B. (7.2)

T T

Thus, since (p|Du|+ f7)" < g(Du) (" +x~"(fT)") by Holder’s inequality,

e [ swa=c [ (u ¥ (f,:) )d:c. (73)

On the other hand, since (|p|" + £™)~! < g(p), we have

log (<£)n + 1) < C/B mdp < C/ g9(p)dp-

T

Hence, noting I',, C Q*[u] for r € (0,70), by (7.3), we have

()
r<k {exp {C/F[u,mmm[u} <u + ( - dx 1 . (7.4)

When || f*|| Lrrpoino+ ) = 0, then sending x — 0, we get a contradiction.
Thus, we may suppose that || f¥| 1 rpojno+)) > 0.

Setting k= || fT|erruanor) and r = 79/2, we can find C' > 0,
independent of u, such that 7o < C|| f*|| tn(rju,0no+ [w)-

Remark. We note that we do not need to suppose f to be continuous in
Step 1 while we need it in the next step.

Step 2: u € C(Q) and f € L"(Q) N C(Q). First of all, because of f €
C(£2), we remark that u is a “standard” viscosity subsolution of

P~ (D*u) — p|Du| < f in Q" [u].

(See Proposition 2.9 in [5].)
Let u® be the sup-convolution of u for € > 0;

(o) = sup fut - 2

yeQ

Note that u® is semi-convex and thus, twice differentiable a.e. in R".
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We claim that for small € > 0, u® is a viscosity subsolution of
P~ (D*uf) — pu|Duf| < f¢ in Q, (7.5)

where f2(z) == sup{f*(y) | |z — y| < 2Jullpe@e)?} and Q. = {v €
QF[u] | dist(z, 027 [u]) > 2(||ul|z=@)e)*?}. Indeed, for z € Q. and (¢, X) €
J?Tuf(z), choosing & € Q such that uf(x) = u(2) — (2¢) 7t — 2|2, we easily
verify that |g| = e 2 — 2| < 24/[Jul|r)/e. Thus, by Lemma 7.4, we see
that (¢, X) € J>Tu(z + eq). Hence, we have

P(X) — plal < fT(z +eq) < f(a).
We note that for small € > 0, we may suppose that

r® = maxu® — rggx(us)J’ > 0. (7.6)

Here, we list some properties on upper contact sets: For small § > 0, we
set

Q° .= {x € Q| dist(z,00) > 6}.

Lemma 7.5. Let vs € C (ﬁé) and v € C(Q) satisfy that vs — v uniformly
on any compact sets in {2 asd — 0. Assume that 7 := maxg v—maxgo vt > 0.
Then, for r € (0,7), we have the following properties:

( (1) T,[v,Q)is a compact set in QF[v],

(2) limsup T, [vs, Q°] C T [v, Y,
6—0
(3) for small o > 0, there is §,such that Up<ses, Uy[vs, Q0] C T2,

where I := {z € Q | dist(z,T,[v,Q]) < a},
(4) xp € % — 2 € Q as k — oo, then, li]gn inf vs, (zx) < v(x).
—00

Proof of Lemma 7.5. To show (1), we first need to observe that for r €
(0,7), dist(I';[v, 2], 062) > 0. Suppose the contrary; if there is z;, € I';[v, Q]
such that 7, € Q — & € 09, then there is p, € B, such that v(y) <
v(zg) + (pr,y — xp) for y € Q2. Hence, sending k — 0o, we have

maxv — maxv’t <7 <7,
a 50

which is a contradiction. Thus, we can find a compact set K C 2 such that
I v,Q C K.
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Moreover, if v(z) < 0 for z € I';[v, 2], then we get a contradiction:

7 <maxv <71 <T.
Q

Next, choose € limsupy_, [,[vs,Q°]. Then, for any k > 1, there are
o € (0,1/k) and py € B, such that

vs,, (y) < ws, (z) + (pr,y —x) fory e Q%

We may suppose p; — p for some p € B, taking a subsequence if necessary.
Sending k — oo in the above, we see that x € I';[v, (2].

If (3) does not hold, then there are ag > 0, § € (0,1/k) and =) €
L, [vs,, Q%] \f;ﬁ‘o. We may suppose again that lim_,.. 2 = @ for some & € ).
When & € 99, since there is py € B, such that vs, (y) < vs, (z1) + (P, y — 1)
for y € 2, we have 7 < 7, which is a contradiction. Thus, we may suppose
that Z € Q and, then # € T',[v,Q]. Thus, there is ky > 1 such that z;, € [%
for k > ko, which is a contradiction. O

~ For ¢ >0, we set uj := u®* ps, where ps is the standard mollifier. We set
Ie? =T, [u5, Q] for r € (0,75), where 7§ := maxg_u§—maxaq, (uj)". Notice
that for small § > 0, r§ > 0.

In view of the argument to derive (7.2) in Step 1, we have

/ g(p)dp < C[ , (| Dug|™/ =1 + /{"/("_1))1_n (—trace(D*u$))"dx
'r ry

for small r» > 0.

Also, by the same argument for (i7) in (7.1), we can show that D?u§(z)
O in fi"s. Furthermore, from the definition of u®, we verify that —e~'/
D?*u5(z) in Q..

Hence, sending 6 — 0 with Lemma 7.5 (3), we have

<
<

/ g(p)dp < C/ (| Dus|™/ (=1 +/{"/("_1))1_n(—trace(D2ua))"dx
T FT[uE7Q5]

cof (e (£) )
I [uf, Q] K

Therefore, sending ¢ — 0 (again with Lemma 7.5 (3)), we obtain (7.4), which
implies the conclusion.
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Remark. Using the ABP maximum principle in Step 2 (i.e. f € C(Q)), we
can give a proof of Proposition 6.3, which will be seen in section 7.3. Thus,
in Step 3 below, we will use Proposition 6.3.

Step 3: u € C(Q) and f € L"(Q). Let fi € C(Q) be nonnegative func-
tions such that || fr — f*||Ln) — 0 as k — oo.
In view of Proposition 6.3, we choose ¢y € C(Q) N W2™(Q) such that

loc
PH(D?*¢y) + p|Doi| = fr. — fT a.e. in Q,
o =0 on 99,
[PrllLeo@) < Cllfe — fF

Setting wy, 1= u + ¢r — || k|| (), We easily verify that wy, is an L"-viscosity
subsolution of

Ln(Q)-

P_(D2wk) - /J,‘Dwk‘ S fk in Q.

Note that QF [wg] C QF[u].
Thus, by Step 2, we have

maxx wy < maxwy + Cll(fi) [l o aioe+u)-

Therefore, sending k& — oo with Lemma 7.5 (2), we finish the proof. O

7.3 Proof of existence results for Pucci equations

We shall solve Pucci equations under the Dirichlet condition in €2. For sim-
plicity of statemants, we shall treat the case when 2 is a ball though we will
need the existence result in smooth domains later. To extend the result for
general () with smooth boundary, we only need to modify the function v* in
the argument below.

For 4> 0 and f € LP(B;) with p > n,

P~(D*u) — p|Dul > f in By, (7.7)
uw=0 on 0B, '
and
PH(D?*u) + p|Dul < f in By, (7.8)
uw=0 on J0B;. ’

Note that the first estimate of (7.10) is valid by Proposition 6.2 when the
inhomogeneous term is continuous.
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Sketch of proof. We only show the assertion for (7.8).

Step 1: f € C*(B;). We shall consider the case when f € C*®(B,).

Set Syp = {A :=(A;;) € S*| M < A< AI}. We can choose a countable
set Sy := {A" := (Af;) € Saa}p2, such that Sy = Sya.

Noting that p|g| = max{(b,q) | b € 0B,} for ¢ € R", we choose By :=
{b* € 0B, }32, such that By = B,.

According to Evans’ result in 1983, we can find classical solutions u¥ €
C(Q) NCQ) of

{ nax {—trace(A*D?u) + (v*, Du)} = f in By,

..... N (7.9)
u=0 on 0B;.

Moreover, we find o = o(e) € (0,1), C. > 0 (for each € € (0,1)) and C; > 0,
which are independent of N > 1, such that

™z sy < Cillfllensy  and [[u”lczes, ) < Ce. (7.10)

Note that the first estimate of (7.10) is valid by Proposition 6.2 when the
inhomogeneous term is continuous.

More precisely, by the classical comparison principle, Proposition 3.3, we
have

u™ <u' in Bi. (7.11)

Furthermore, we can construct a subsoluion of (7.9) for any N > 1 in
the following manner: Fix z € dB;. Set v*(x) := a(e P*=22" — ¢=8) where
a, 3 > 0 (independent of z € 0B;) will be chosen later. We first note that
v*(z) = 0 and v*(z) < 0 for z € B;.

Setting L*w(z) := —trace(A*D*w(x)) + (b*, Dw(x)), we verify that

LFv*(x) < 2afe Ple=2%(An — 26|z — 222 + plo — 22|)
< 2aBe P (An — 26\ + 3p).

Thus, fixing 8 := (An+3u+1)/(2)), we have L*v*(z) < —2aBe~%. Hence,
taking o > 0 large enough so that 2a8e™ > || f|| o (,), We have

_mzaxNLkvz(a:) < f(x) in Bj.
Now, putting V' (z) := sup,cyp, v* (), in view of Theorem 4.2, we see that
V' is a viscosity subsolution of

k _ < 3
k:rll,lg.}.{.,NL u(z) — f(x) <0 in By.
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Moreover, it is easy to check that V*(z) = 0 for x € dB;. Thus, by Proposi-
tion 3.3 again, we obtain that

V <u" in B (7.12)

Therefore, in view of (7.10)-(7.12), we can choose a sequence Nj and
u € C%*(By) such that limy_,o, Ny = 00,

(u™e, DuMe, D?*uNv) — (u, Du, D*u) uniformly in B;_.

for each € € (0,1), and
V<u<u' in B. (7.13)

We note that (7.13) implies that u* = u, on 0B;.
By virtue of the stability result (Proposition 4.8), we see that u is a
viscosity solution of

PH(D?u) + p|Du| — f =0 in B

since supys{—trace(A*X) + (¥, p)} = P*(X) + plp|. Hence, Theorem 3.9
yields u € C(By).

Therefore, by Proposition 2.3, we see that u € C(B;) N C*(B,) is a
classical solution of (7.8).

Step 2: f € LP(B;). (Lemma 3.1 in [5]) Choose f; € C*(B;) such that
1 fe = fllzr@) — 0 as k — oo.

Let uj, € C(B;) N C?%(B;) be a classical solution of

PH(D*u) + p|Du| — fr, =0 in B,

such that uj, = 0 on dB,. Proposition 6.2 implies that —C'|| f, || Lr(5,) < up <
Cllfi Nzeesyy in By

We first claim that {u;}?2, is a Cauchy sequence in L*(Bj). Indeed,
since (1) and (4) of Proposition 3.2 imply that

P=(D?(uj — ug)) — p|D(u; — uy)]

PH(D?u;) + P~ (=D>uy) + p| Duy| — p| Dy
fi— fu

PH(D?*uy) — PH(D*ug) + p|D(u; — ug)|
PH(D*(uj — ug)) + p|D(u; — ug)l,

INIA A
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using Proposition 6.2 when the inhomogeneous term is continuous, we
have

max [u; — u| < Cllf; = full ).
1
Recalling p > n, we thus have

[wj — ugll ) < Clfj = fllesy)-

Hence, we find v € C(B)) such that u; converges to u uniformly in B; as
k — o0o. Moreover, we see that —C'||f~ || r(5,) < u < O fT||1e(m,) in By.

Therefore, by the standard covering and limiting arguments with weakly
convergence in W?2P locally, it suffices to find C' > 0, independent of k > 1,
such that

||uk||W2'p(Bl/2) S C

Moreover, we see that —C||f~||zr(5,) < u < C||f*|| o5, in Bi.
For € € (0,1/2), we select n :=n. € C*(B;) such that

i) 0<ny<1 in B,

Z) n = 0 in Bl \ Bl—eu

iii) n=1 in By o,

iv) |Dn| < Coe™?, |D?*n| < Coe™? in By,

where Cy > 0 is independent of ¢ € (0, 1/2).
Now, we recall Caffarelli’s result (1989) (see also [4]): There is a universal
constant C' > 0 such that

1D (i)l os, .y < CIPH(D? (i) oz, -
Hence, we find C; > 0 such that for 0 < e < 1/4,

| D*ur || Lo (B, oy < II1D*(u) | zo(s,_) < CIIPT(D*(nus))ll Lo (Bs,0)
< Cy (1fellrmisy + €M Dukll oy + € 2| unl osi.y)

Multiplying €2 > 0 in the above, we get
| D?up Loy o) < CLll fill ooy + b1 (ur) + do(ux)),

where ¢;(uy) := supgo.1 9 €’ | Dug| Lo (s,_.) for j =0, 1,2.
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Therefore, in view of the “interpolation” inequality (see [13] for example),
i.e. for any § > 0, there is C's > 0 such that

¢1(ur) < 02(ur) + Csdolus),

we find C5 > 0 such that

Ga(ur) < Cs (|| fellesr) + do(ur)) -

On the other hand, since we have L*-estimates for u;, we conclude the
proof. O

Remark. It is possible to show that the uniform limit w in Step 2 is
an LP-viscosity solution of (7.8) by Proposition 6.13. Moreover, since it is
known that if LP-viscosity supersolution of (7.8) belongs to W2”(B;), then
it is an LP-strong supersolution (see [5]), u satisfies P (D?u) + p|Du| = f(x)
a.e. in Bj.

7.4 Proof of the weak Harnack inequality

We need a modification of Lemma 4.1 in [4] since our PDE (7.14) below has
the first derivative term.

Lemma 7.6. (cf. Lemma 4.1 in [4]) There are ¢ € C*(By5) and
§ € C(Byyz) such that

x) < =2 for x € Qs,
=0 for v € B, sz,
(Z'):OfOI'IGBQ\/ﬁ\Bl/Q.

Proof. Set ¢o(r) := A{1 — (24/n/r)*} for A, > 0 so that ¢o(2y/n) = 0.

Since

{ Déo(|z]) = A(2v/n)*alz[~*z,
D?o(lz]) = AQ2vn)*alz| = H|z[’] - (o + 2)z @ },

we caluculate in the following way: At x # 0, we have
P=(D*¢o(|2])) = ulDeo(|z])| = A(2vn)*alz| ™ {(a + 2)A — nA — plal}.
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Fig 7.1

Setting a := A7'(nA + 2uy/n) — 2 so that « > 0 for n > 2, we see that
the right hand side of the above is nonnegative for x € B, 5 \ {0}. Thus,
taking ¢ € C?(By,;) such that ¢(x) = ¢o(|z]) for € By \ Bijp and
¢(x) < ¢o(3y/n/2) for x € By /n/e, we can choose a continuous function &
satisfying (1) and (4). See Fig 7.1.

Moreover, taking A := 2/{(4/3)* — 1} so that ¢¢(3v/n/2) = —2, we see
that (2) holds. O

We now present an important “cube decomposition lemma”.

We shall explain a terminology for the lemma: For a cube Q := Q, (x) with
r>0and z € R", we call Q a dyadic cube of Q) if it is one of cubes {Q1}2",
so that Qr 1= @Qy/2(x) for some z;, € Q, and U, Qx C QC U2 Q.

Lemma 7.7. (Lemma 4.2 in [4]) Let A C B C )1 be measurable sets
and 0 < ¢ < 1 such that

(a) |A[ <4, i
(b) Assume that if a dyadic cube Q of @ C Qy satisties [AN Q| > 0|Q),
then () C B.

Then, |A| < 0|B|.

Proof of Proposition 6.4. Assuming that v € C(B, /n) 1s a nonnegative
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viscosity supersolution of
PH(D*u) + p|Du| >0 in By sz, (7.14)
we shall show that for some constants py > 0 and C; > 0,

||| Lro (@) < Ch inf .
Q12

To this end, it is sufficient to show that if u € C(Bs5) satisfies that
infg, , u < 1, then we have [[u|zr(q,) < C1 for some constants py, C1 > 0.
-1
Indeed, by taking v(z) := u(z) (ianl/2 U+ 5) for any ¢ > 0 in place of u,
we have |[v||zro(g,) < C4, which implies the assertion by sending § — 0.

Lemma 7.8. There are § > 0 and M > 1 such that if u € C(By5) is a
nonnegative LP-viscosity supersolution of (7.14) such that

infu <1, (7.15)

Q3

then we have
{r € Qi [u(z) <M} >0

Remark. In our setting of proof of Proposition 7.4, assumption (7.15) is
automatically satisfied.

Proof of Lemma 7.8. Choose ¢ € C*(By, ;) and § € C(B, /) from Lemma
7.6. Using (4) of Proposition 3.2, we easily see that w := u + ¢ is an L"-
viscosity supersolution of

PH(D*w) 4+ p|Dw| > —¢ in By .

Since infg,w < —1 and w > 0 on 9B, by (2) and (3) in Lemma 7.6,
respectively, by Proposition 6.2, we find C' > 0 such that

1 < sup(—w) < —w) < Cll€]| : 7.16
= ng( w) < ;ll;;( w) < CllE]l, (D[—w, By /7INBY, 1 [—w)]) ( )

In view of (4) of Lemma 7.6, (7.16) implies that

I< érgfg\ﬂ\{% € Q| (u+o)(x) <0}
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Since
u(r) < —p(x) <

=

ax(—¢) =: M for x € By 4.

2

Wl
B

Therefore, setting § = (C supg, €])7" > 0 and M = supBQﬁ(—qﬁ) > 2, we
have
0<|{xel|ulx)<M}. O

We next show the following:

Lemma 7.9. Under the same assumptions as in Lemma 7.8, we have

Hx e Q| ulx) > MY <(1—60)" forallk=1,2,...

Proof. Lemma 7.8 yields the assertion for & = 1.

Suppose that it holds for k — 1. Setting A := {x € Q; | u(z) > M*} and
B :={x € Q| u(x) > M*1}, we shall show |A| < (1 —0)|B].

Since AC BC Qrand Al < {z € Q1 |u(x) > M} <d:=1-0,in
view of Lemma 7.8, it is enough to check that property (b) in Lemma 7.7
holds.

To this end, let Q := @1/ (2) be a dyadic cube of Q = Q1/2i-1(2) (for
some z, 2 € ()1 and j > 1) such that

1-46

4nQl > 010 =~

(7.17)

It remains to show Q C B.

Assuming that there is Z € Q such that & ¢ B; i.e. u(#) < M*1.

Set v(z) := u(z 4+ 277x)/M*! for & € By j. Since |2; — 2| < 3/27H | we
see that info, v < u(Z)/M*~1 < 1. Furthermore, since z € Qy, 2z + 277z €
B2\/ﬁ for x € B2\/ﬁ

Thus, since v is an LP-viscosity supersolution of

P*(D*v) + u|Dv| > 0,

Lemma 7.8 yields [{z € Q; | v(z) < M}| > 6. Therefore, we have

{r e Q | ua) < M| > - =010
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Thus, we have |@Q \ A| > 0|Q|. Hence, in view of (7.17), we have
QI = [ANQ[+[Q\ A >4]Q] +0|Q| = |,

which is a contradiction. O

Back to the proof of Proposition 6.4. A direct consequence of Lemma 7.9
is that there are C, e > 0 such that

{z e @ |ux) >t} <Ct™= fort>0. (7.18)

Indeed, for ¢ > M, we choose an integer k£ > 1 so that MFL >t > MF.
Thus, we have

{z € Q1 | u(z) >t} < [{z € Q1 | ulz) > MF} < (1—0)F < Cot™,
where Cp := (1 —0)! and ¢ := —log(1 — 0)/log M > 0.
Since 1 < M¢t™¢ for 0 < t < M, taking C' := max{Cy, M¢}, we obtain

(7.18).
Now, recalling Fubini’s theorem,

/Ql uP(z)dr < / uP(z)dx + 1

{weQy | u(@)=1}

:po/ 2z € Qu | ulz) > t}de + 1,
1

(see Lemma 9.7 in [13] for instance), in view of (7.18), for any po € (0,¢), we
can find C(pg) > 0 such that |[u|tr @) < C(po). O
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7.5 Proof of the local maximum principle

Although our proof is a bit technical, we give a modification of Trudinger’s
proof in [13] (Theorem 9.20), in which he observed a precise estimate for
“strong” subsolutions on the upper contact set. Recently, Fok in [11] (1996)
gave a similar proof to ours.

We note that we can find a different proof of the local maximum principle
in [4] (Theorem 4.8 (2)).

Proof of Proposition 6.5. We give a proof only when ¢ € (0, 1] because it
is immediate to show the assertion for ¢ > 1 by Hoélder’s inequality.
Let 29 € @, be such that maxg u = u(zy). It is sufficient to show that

“max u < C2||U+||LQ(Bl/2(xo))

By /4(z0)
since Bi/2(x9) C Q2. Thus, by considering u((z — x0)/2) instead of u(x), it
is enough to find Cy > 0 such that

max u < Collu™||a(p,).
B2

We may suppose that

maxu > 0 (7.19)
B

since otherwise, the conclusion is trivial.

Furthermore, by the continuity of u, we can choose 7 € (0,1/4) such that
1—-27>1/2 and

We shall consider the sup-convolution of u again: For ¢ € (0, 7),
€ ‘SL’ B y|2}
u*(x) = sup S u(y) — ——— ¢
(z) sup { v) — —;

By the uniform convergence of u® to u, (7.19) yields

maxu® > 0 for small € > 0. (7.20)
Bi-r

For small € > 0, we can choose ¢ := d(¢) € (0, 7) such that lim._,o6 = 0,

and
P~ (D*uf) — p|Duf| <0 a.e.in By_s.
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Putting n°(z) := {(1 — 6)? — |z|?}? for 8 := 2n/q > 2, we define v*(x) :=
nF(z)u(z). We note that

r® = maxv® > 0.
By _s
Fix r € (0,7°) and set I'¢ := I',[v%, B;_5]. By (1) in Lemma 7.5, we see
I'e C B 4[v].
For later convenience, we observe that

Dve(z) = —2B8xn(x) P~V Puf (x) 4+ n(z) Dus (z), (7.21)

D% (x) = —28n(x)P~V/8{us ()] + v ® Dus(z) + Dus(z) ® =}
+4B(B — () P2/t () @ @ + n(a) D*u (z).
Since u° is twice differentiable almost everywhere, we can choose a mea-
surable set N, C Bj_s such that |[N.| = 0 and u® is twice differentiable at
x € By_s \ N.. Of course, v¢ is also twice differentiable at = € By_5 \ Ne.
By (7.22), we have

(7.22)

P~ (D*f) < nP~(D*uf) + 280 Y/ {Anu® — P~ (2 ® Duf + Du* @ z)}

in By 5[v°]. By using (7.21), the last term in the above can be estimated
from above by

Clo /2 ()* + 7| D).

Moreover, using (7.21) again, we have
P(D*uf) < p|Duf| < pn~ [Dv*| 4+ Cy~ /P (uf)*.
Hence, we find C' > 0 such that
P~ (D*°) < Cnp Y8 Dv®| + Cp~#P(v*)T =1 ¢° in By_s\ N.. (7.23)
We next claim that there is C' > 0 such that
|Dve(2)] < O~ Y8 (z)v(x) for x € TS\ N.. (7.24)

First, we note that at x € 'S \ N, v°(y) < v°(z) + (Dv°(x),y — x) for
y € Bi_s.
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To show this claim, since we may suppose |Dv(z)| > 0 to get the esti-
mate, setting y := z — tDv®(x)|Dv(x)|™ € OBy_s for t € [1 — & — |z|,1 —
d + |z|], we see that

0 =1(y) <v°(z) — t|Dv°(x)|,

which implies
|Dve(2)] < Cvf(x)p VP(x) in TS\ N.. (7.25)

Here, we use Lemma 2.8 in [5], which will be proved in the end of this
subsection for the reader’s convenience:

Lemma 7.10. Let w € C(2) be twice differentiable a.e. in 2, and satisfy
P~ (D*w) < g a.e. inQ,

where g € LP(Q) with p > n. If —C1I < D*w(x) < O a.e. in Q) for some
Ch > 0, then w is an LP-viscosity subsolution of

P~ (D*w) < g inf. (7.26)

Since uf is Lipschitz continuous in Bj_s, by (7.22), we see that v° is an
L™-viscosity subsolution of

P~ (D*F) < ¢° in By_s.
Noting (7.25), in view of Proposition 6.2, we have

maxv® < C||77_2/B(UE)Jr |z (re)
Bi_s 52

< C <r_nax(v€)+) )

Bi_s

L™(B1-¢)>

which together with our choice of § yields

max v° < O ()"l o8, s)-
1-6

Therefore, by (7.20), we have

max u® < C'maxv® < C’||(u5)+||Lq(3176),
B2 Bi_s
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Therefore, sending ¢ — 0 in the above, we finish the proof. O

Proof of Lemma 7.10. In order to show that w € C(Q2) is an LP-viscosity
subsolution of (7.26), we suppose the contrary; there are e,7 > 0, & € ) and

¢ € Wil () such that 0 = (w — ¢)(&) = maxg(w — ), By (#) C Q, and

P (D*@) — g >2¢ a.e. in B(%).

We may suppose that # = 0 € Q. Setting ¥(z) := ¢(x) + 7|z|* for small
7 > 0, we observe that

h:=P (D*))—g>¢ ae. inB,.

Notice that 0 = (w —v)(0) > (w — ¢)(x) for x € B, \ {0}.

Moreover, we observe
P (D*(w—1)) < —¢ a.e. in B,. (7.27)

Consider ws := w * ps, where ps is the standard mollifier for 6 > 0. From
our assumption, we see that, as 6 — 0,

(1) ws — w uniformly in B,,
(2) D*ws; — D*w a.e. in B,.

By Lusin’s Theorem, for any « > 0, we find E,, C B, such that |B,\ E,| < «,

/ (14 [P~ (= D) Pdz < a,
BT\EQ

and
D?*w; — D*w uniformly in E, (as d — 0).

Setting hs := P~ (D?*(ws — 1)), we find C' > 0 such that
hs < C + P~ (—D*Y)

because of our hypothesis. Hence, we have

Ihs)\Eps, <C [ (L4 1P(=D2)])da + / ((ho)* dz.

By \Eq o
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Sending § — 0 in the above, by (7.27), we have

timsup () zoca) < ClL+ [P (=D*0))1oae < Car (7.28)

—0

On the other hand, in view of Proposition 6.2, we see that

max(ws — 1) < max(ws — 1) + C (hs) || o(z,)-

T

Hence, by sending 6 — 0, this inequality together with (7.28) implies that

0 = max(w — ¢) < rggx(w — 1)+ Ca for any a > 0.

T

This is a contradiction since maxgyp, (w — ) < 0. O
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