Chapter 3

Arrangements

3.1 Basic Constructions

Let A be an arrangement in V and let L = L(.A) be the set of nonempty intersec-
tions of elements of A. An element X € L is called an edge of A. Define a partial
order on L by X <Y <= Y C X. Note that this is reverse inclusion. Thus V
is the unique minimal element of L. (Ordinary inclusion also gives a partial order
preferred by many authors.) Define a rank function on L by r(X) = codimX.
Thus (V) =0, r(H) =1 for H € A. Recall that the rank of A, r(A), is the maxi-
mal number of linearly independent hyperplanes in A. It is also the maximal rank
of any element in L(A). We call A central if NgesH # (), where T = NyeaH is
called the center. The f—arrangement A is called essential if it has an element of
rank £. Equivalently, A contains ¢ linearly independent hyperplanes.

Let N = N(A) = UgeaH be the divisor of A and let M = M(A) =V — N(A)
be the complement of A. Recall that V' has coordinates uy, ... ,u; and we defined
a linear polynomial ay with ker ay = H for each hyperplane H € A. The product
Q(A) = [Iyc4 @ is a defining polynomial for A. It is unique up to a constant.
The next four constructions will be used later.

Coning [OT1, 1.15]: The affine {-arrangement A gives rise to a central (£+1)-
arrangement cA, called the cone over A. Let @ be the homogenized Q(A) with
respect to the new variable ug. Then Q(cA) = uo@ and |cA| = |A|+ 1. Thereis a
natural embedding of A in cA in the subspace uy = 1. Note that this embedding
does not intersect ker ug = Hyo, the "infinite” hyperplane. Here M (cA) ~ M(A) x
C*.

Projective closure: Embed V = C’ in complex projective space CP and call
the complement of V' the infinite hyperplane, Hy. Let H be the projective closure
of H and write A = UgeaH. We call Ay, = AU {Hoo} the projective closure
of A. It is an arrangement in CP¢. Let uo, u1, ... ,ug be projective coordinates in
CP! so that Ho = kerug. Then H = ker a7 where tilde denotes the homogenized
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24 CHAPTER 3. ARRANGEMENTS

polynomial, Q(As) = u0Q(A), [Ase| = |A| + 1, and M(As) ~ M(A).

Projective quotient: Given a nonempty central (¢ + 1)-arrangement C, we
obtain a projective (-arrangement PC by viewing the defining homogeneous polyno-
mial Q(C) as a polynomial in projective coordinates. There is a natural bijection
between coning and projective closure, provided the infinite hyperplanes agree.
Here |C| = |PC| and M(PC) ~ M(C)/C*.

Deconing [OT1, p.15]: Given a nonempty central (£ + 1)-arrangement C and
a hyperplane H € C, we define an affine {-arrangement dyC, called the decone
of C with respect to H. We construct the projective quotient PC and choose
coordinates so that PH = ker ug is the hyperplane at infinity. By removing it, we
obtain the affine arrangement dyC = PC — PH. Note that Q(dgC) = Q(C)|ue=1
and |dgC| = |C| — 1. Here M(C) ~ M(duC) x C*.

These constructions are interrelated in the diagram below.

cA
N\

i
dy_cA = A A = PcA

Example 3.1.1. Let A be the Selberg 2-arrangement defined by
Q(A) = u1(u1 — Nug(uz — 1)(u1 — ug).

We label the hyperplanes in the order given by the the factors in Q and write j in
place of Hj in Figure 3.1, where we also display L(A). Here

Q(Aso) = uou(u1 — ug)ua(uz — uo)(u1 — ug)

and L(Aw) contains the additional edges {00, 1200, 3400, 500}.

5
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Figure 3.1: The Selberg Arrangement, I

Let i : L — Z be the Mobius function of L defined by u(V) = 1, and for
X >V by the recursion )y .y u(Y') = 0. The characteristic polynomial of A

is X(A 1) =Y yep p(X)t™ X We get from [OT1, 2.51]:
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Proposition 3.1.2. x(cA,t) = (t —1)x(A,1). O

This implies that if C is a central arrangement, then x(dgC,t) is independent
of H € C. Thus we may write x(dC, ).

Definition 3.1.3. Given an edge X € L define a subarrangement Ax of A by
Ax ={H € A| X C H}. Here Ay is the empty {-arrangement ®; and if X #V,
then Ax has center X in any arrangement. Define an arrangement AX in X by
AY ={XNH|HcA\Ax and XN H # 0}. We call AX the restriction of
A to X. The deletion-restriction triple is a nonempty arrangement A and H € A
together with A" = A\{H} and A" = A". We call H a separator ifr(A’) < r(A).

We get from [OT1, 2.57]:

Proposition 3.1.4. x(A,t) = x(A',t) — x(A",t). O

3.2 Dense Edges

Let C be a central arrangement in V' with center T(C) = Ny H # 0. We
call C decomposable if there exist nonempty subarrangements C; and Cs so that
C = C1 UCy is a disjoint union and after a linear coordinate change the defining
polynomials for C; and Cy have no common variables. This is equivalent to the
existence of two nonempty central arrangements so that C is their product in the
sense of [OT1, 2.13]. If C is decomposed into C; and Ca, we write

C=CWCs.
It is easy to see that
C=C4C & T(C) = T(Cl) -|—7‘(CQ) & T(Cl) + T(CQ) =V

Definition 3.2.1. Let A be an arrangement. An edge X € L is called dense in
A if and only if the central arrangement Ax is not decomposable.

The terminology is due to Varchenko [V2, 10.6.7]. A similar concept appeared
in the work of Esnault-Schechtman-Viehweg [ESV].

Example 3.2.2. The dense edges are {1,2,3,4,5,135, 245} in the Selberg arrange-
ment 3.1.1. The additional dense edges in its projective closure are {00, 1200, 3400}.

Lemma 3.2.3. Let V be any vector space with subspaces A, B,C, D. Then

(ANB)+(CND)=(A+C)N(B+ D) <
(A+B)n(C+D)=(AnC)+ (BND).
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Proof. We show =. The inclusion (A+B)N(C+D) D (ANC)+ (BN D) is clear.
For the reverse inclusion, let a € A, b€ B,c€ C,d € D and assume a+b = c+d.
Thena—c=d—-be (A+ C)N (B + D). By assumption, we may find z € AN B
andye CNDwitha—c=d—-b=2+y. Thena—-z=y+ce ANC and
b+rx=d—-yeBnND. Thusa+b=(a—x2)+(b+z)e(ANC)+(BND). O

Lemma 3.2.4. Let C be a nonempty central arrangement with H € C. If C" and
C" are decomposable, then C is decomposable.

Proof. 1f H is a separator, then C = C' & {H} is a decomposition and we are done.
Thus we may assume that H is not a separator. Suppose that ' = C; W Cy and
C" = By WBy. Let m: C' — C" be the natural surjection defined by n(K) = K N H.
Let C3 = 7 1(By) and Cy = 7~ 1(B). Then we have C =C3 UC4U{H} (disjoint).
Also

r(C)—1 r(C") =r(By) +7(Bs)
r(CsU{H})—1+r(C,U{H})—1.

Thus we obtain r(C) =7(Cs U{H}) +r(C4sU{H})— 1. Since H is not a separator,
r(C) = r(C") so we get 7(C) = r(Cy) +r(C2). If T(C;) C H, then r(C) = r(C; U
{H}) 4 r(C2) and we are done. Thus we may assume that 7(C;) ¢ H. Similarly
we may assume T'(Cy) € H. If T(C3) € H, then r(Cs) = r(C3 U {H}) — 1. Thus
r(C) = r(Cs) + r(Cs U {H}) and we are done. So we may assume T(C3) C H.
Similarly we may assume T'(C4) C H. Define

AZT(Clﬂ(/’g), BZT(C1HC4), CZT(CQQC{),), D:T(CQQC4).

Note that AN B = T(C;) and C N D = T(Cz). Since C" = C; W 2, we have
(ANB)+(CnD)=YV. Note that

(ANB)+(CNnD)C(A+C)N(B+D)
in general. Thus

(ANB)+(CNnD)=(A+C)N(B+ D).
By Lemma 3.2.3 we have

(A+B)n(C+D)=(AnC)+ (BND).
Note that ANC =T(Cs) and BN D = T(C4). Thus

(A+B)n(C+D)=T(C3)+T(Cs) C H.

Since T'(C1) ¢ H and T(C1) C A+ B, we have A+ B ¢ H. Similarly C+D ¢ H.
Therefore A+ B # V and C 4+ D # V. Thus C; is not decomposed into C; N C3
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and C; N Cy4. Similarly Cs is not decomposed into Co N Cs and Co N Cy. Therefore we
conclude

T(C1) < T(C1 N Cg) + T‘(C1 N C4), T(CQ) < T(CQ N C3) + T(CQ N C4)
Finally we have

r(C3)+r(Cs) —1 = 7(C)=7r(C1)+r(Co)
< T(C1ﬂc;),)-|-7‘(C1ﬂC4)—1+T(CQQC3>+T(CQQC4)—1
= T(Cg) + T(C4) — 2.

This is a contradiction. O

Definition 3.2.5. Let D;(A) denote the set of dense edges of dimension j in L(A)
and let D(A) = U;>0D;.

We prove two properties of dense edges needed in Chapter 4.
Lemma 3.2.6. Let A C B. If X € D(A), then X € D(B).

Proof. Suppose not. Then By is decomposable, so we have Ax C By = By W By
with nonempty subarrangements. Since Ay is indecomposable, we may assume
that Ay C By. Then X = T(Ax) D T(By) 2 T(Bx) = X, so X = T(B;). Since
r(X) = r(B1) + r(B2) = r(X) + r(Bz), we conclude that 7(B2) = 0 and B is
empty. O

Lemma 3.2.7. Let C =C1 W---WCp, be a central arrangement with an irreducible
decomposition.

(1) Ile = T(Ci), then Ci = CTT"

(2) For 0 < j <{—2 we have a disjoint union D;(C) = |J;~, D;(C;).

Proof. (1) The inclusion C; C Cr, is clear. Recall that the hyperplanes of C; may
be written in disjoint sets of variables. Let (C;) denote the vector space spanned by
the corresponding variables. If H € Cr,, then ay € (C;). If H € C;, then ay € (C;)
s0i=j.

(2) Let X € D;(C). Since Cy is indecomposable, there is a unique i with
Cx CCi. Then (C;)x = Cx is indecomposable and hence X € D;(C;). Conversely,
if X € D;(C;), then (C;)x is indecomposable. It follows from Lemma 3.2.6 that Cx
is indecomposable, so X € D;(C). O

3.3 The ( Invariant

In Chapter 4 we will show that certain conditions on the dense edges are sufficient
to compute local system cohomology groups explicitly. To determine these condi-
tions we need to know which edges of a given arrangement are dense. In higher
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dimensions it is difficult to use the definition directly. H. Crapo [Cr| introduced the
beta invariant (in a different form) and proved the results in this section, although
the original proof of [Cr, Lemma to Theorem 2| is incomplete. The argument
given in Lemma 3.2.4 is a completed version of the original proof. Corollary 3.3.5
provides a numerical criterion to decide which edges are dense.

Definition 3.3.1. Let A be an arrangement of rank r. Define its beta invariant
by

BlA) = (=1)"x(A, D).

Crapo defined his invariant only for nonempty central arrangements. For a central
(r 4 1)-arrangement C it is
d
-1)"—x(C, 1).
(-1 2x(C. 1)

We note the connection with our invariant.

Proposition 3.3.2. IfC is a central (r + 1)-arrangement, then

5(de) = (~1)" (€, 1),

Proof. Differentiate both sides of Proposition 3.1.2 with respect to ¢, set t = 1, and
multiply by (—1)". O

Proposition 3.3.3. If H is not a separator, then B(A) = B(A") + B(A").

Proof. This follows from Proposition 3.1.4 and the fact that 7(A”) =r(A) —1 =
r(A) - 1. g

Theorem 3.3.4. Let C be a nonempty central arrangement. Then
(1) if C is decomposable, then 3(dC) = 0,
(2) p(dC) >0,
(3) if B(dC) = 0, then C is decomposable.

Proof. (1) Suppose C is decomposable. Then C is a product of two nonempty
central arrangements. It follows from Proposition 3.1.2 that their characteristic
polynomials are divisible by (t—1). Thus (¢ — 1)? divides x(C,t) by [OT1, Lemma
2.50]. We see from Proposition 3.1.2 that 3(dC) = 0.

(2) We argue by induction on |C|. If |C| = 1, then 3(dC) = 1. Suppose |C| > 1.
Let H e Cand C' =C—{H}. If H is a separator, then C = {H}W (', so f(dC) =0
by (1). If H is not a separator, then 5(dC) = £(dC’) + 3(dC"”) by Proposition
3.3.3. The conclusion follows because 5(dC’") > 0, 5(dC”) > 0 by the induction
assumption. Thus £(dC) > 0.

(3) We argue by induction on |C|. If |C| = 1, then $(dC) # 0. Thus |C| > 1.
Let H € C. If H is a separator, we are done. If H is not a separator, then
0 = B(dC) = B(dC’) + B(dC"). Since B(dC') > 0 and B(dC”) > 0 by (2), we
have 4(dC’) = B(dC"”) = 0. By the induction assumption, both C" and C” are
decomposable. It follows from Lemma 3.2.4 that C is decomposable. O



3.3. THE  INVARIANT 29

Corollary 3.3.5. Let A be an arrangement and let X € L(A). The following
conditions are equivalent:

(1) X is dense,

(2) Ax is not decomposable,

(3) BldAx) #0,

(4) BdAx) > 0. 0

Example 3.3.6. In every arrangement the hyperplanes are dense and the whole
space is not. In the examples below we determine the dense edges of codimension
> 2. If a projective arrangement has normal crossings, then it has no dense edges.
In the projective 2-arrangement called Ceva(3) defined by

Q = (ug — uy) (g — u3) (ui — u3)

all twelve points are dense. In the projective 3-arrangement defined by

Q= U0U1U2U3(U1 - UQ)(UI - U3)(U2 - U3)

the four lines which are contained in three planes each are dense, but there are no
dense points.

We conclude with two topological interpretations of the f-invariant.

Theorem 3.3.7. Let Poin(M,t) = > dim HP(M, C)t? be the Poincaré polynomial
of M. By [OT1, 5.93], Poin(M,t) = (—t)*x(A,—t~1). In particular, B(A) =
le(M)| is the absolute value of the euler characteristic of the complement. O

Definition 3.3.8. We say that A is a complexified real arrangement if the poly-
nomials o have real coefficients. In this case let Vi = R be the real part of V
and let Mg = M NVg be the real complement. It is a disjoint union of open convex
subsets called chambers. Let ch(A) denote the set of chambers in Mg. If A is es-
sential, then some chambers may be bounded. Let bch(A) denote the set of bounded
chambers in Mg.

Zaslavsky [Za| proved:

Theorem 3.3.9. Let A be a real {-arrangement. Then |ch(A)| = (=1)*x(A, —1).
If A is essential, then |bch(A)| = B(A). O





